WO2020194744A1 - Terminal device, base station device, and wireless communication system - Google Patents

Terminal device, base station device, and wireless communication system Download PDF

Info

Publication number
WO2020194744A1
WO2020194744A1 PCT/JP2019/013863 JP2019013863W WO2020194744A1 WO 2020194744 A1 WO2020194744 A1 WO 2020194744A1 JP 2019013863 W JP2019013863 W JP 2019013863W WO 2020194744 A1 WO2020194744 A1 WO 2020194744A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
transmission
frequency band
transmission state
state information
Prior art date
Application number
PCT/JP2019/013863
Other languages
French (fr)
Japanese (ja)
Inventor
剛史 下村
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2019/013863 priority Critical patent/WO2020194744A1/en
Publication of WO2020194744A1 publication Critical patent/WO2020194744A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a terminal device, a base station device, and a wireless communication system.
  • the traffic of mobile terminals occupies most of the network resources.
  • the traffic used by mobile terminals tends to increase in the future.
  • Non-Patent Documents 1 to 11 In the communication standard of the 5th generation mobile communication (5G or NR (New Radio)), in addition to the standard technology of the 4th generation mobile communication (4G) (for example, Non-Patent Documents 1 to 11), further There is a demand for technology that realizes high data signal rates, large capacities, and low delays.
  • 5G or NR New Radio
  • 4G 4th generation mobile communication
  • technical studies are underway in the 3GPP working group (for example, TSG-RAN WG1, TSG-RAN WG2, etc.), and the first edition of the standard document was issued at the end of 2017. (Non-Patent Documents 12-40).
  • 5G is classified into eMBB (Enhanced Mobile BroadBand), Massive MTC (Machine Type Communications), and URLLC (Ultra-Reliable and Low Latency Communication). It is intended to support use cases.
  • eMBB Enhanced Mobile BroadBand
  • Massive MTC Machine Type Communications
  • URLLC Ultra-Reliable and Low Latency Communication
  • a search space for receiving a downlink control signal is generally defined.
  • the terminal device searches for whether or not there is a downlink control signal (for example, PDCCH (Physical Downlink Control CHannel)) addressed to its own device in the search space, and if a downlink control signal is detected, the terminal device is used as a downlink control signal. Data signals are transmitted and received accordingly. Therefore, the terminal device monitors the area in the search space.
  • the search space is described in, for example, TS36.213 (Non-Patent Document 4) and TS38.213 (Non-Patent Document 18).
  • 3GPP partially stipulates communication using an unlicensed band.
  • signal transmission based on LBT Listen Before Talk
  • LBT Listen Before Talk
  • the LBT treatment is described in, for example, TS36.213 (Non-Patent Document 4) and TS37.213 (Non-Patent Document 37).
  • 3GPP TS 36.133 V15.5.0 (2018-12) 3GPP TS 36.211 V15.4.0 (2018-12) 3GPP TS 36.212 V15.4.0 (2018-12) 3GPP TS 36.213 V15.4.0 (2018-12) 3GPP TS 36.300 V15.4.0 (2018-12) 3GPP TS 36.321 V15.4.0 (2018-12) 3GPP TS 36.322 V15.1.0 (2018-07) 3GPP TS 36.323 V15.2.0 (2018-12) 3GPP TS 36.331 V15.4.0 (2018-12) 3GPP TS 36.413 V15.4.0 (2018-12) 3GPP TS 36.423 V15.4.0 (2018-06) 3GPP TS 36.425 V15.0.0 (2018-06) 3GPP TS 37.340 V15.4.0 (2018-12) 3GPP TS 38.201 V15.0.0 (2017-12) 3GPP TS 38.202 V15.4.0 (2018-12) 3GPP TS 38.211 V15.
  • the frequency band determined to be idle and not used by other devices as a result of LBT processing is used for signal transmission.
  • CC Component Carrier
  • the terminal device that receives the signals of the plurality of CCs monitors the search space of each of the plurality of CCs, and monitors whether or not the downlink control signal addressed to the own device is arranged in the search space. As a result, there is a problem that the processing load of the terminal device increases and the power consumption increases.
  • Such a problem does not occur only when the presence / absence of transmission is controlled for each CC.
  • LBT subband which is a unit of the frequency band in which LBT processing is executed. Also occurs in the same way.
  • the disclosed technology has been made in view of this point, and an object thereof is to provide a terminal device, a base station device, and a wireless communication system capable of reducing the processing load and the power consumption.
  • the terminal device disclosed in the present application does not require a search unit for searching whether or not a signal addressed to the own device is included in each of a plurality of frequency bands, and at least a license for use in wireless communication. It has a receiving unit that receives transmission state information indicating a transmission state of one frequency band in a second frequency band different from the first frequency band, and the search unit is received by the receiving unit. Depending on the transmission status information, the search for the first frequency band that is not used for downlink communication is omitted.
  • the terminal device According to one aspect of the terminal device, the base station device, and the wireless communication system disclosed in the present application, there is an effect that the processing load can be reduced and the power consumption can be reduced.
  • FIG. 1 is a block diagram showing a configuration of a base station apparatus according to the first embodiment.
  • FIG. 2 is a block diagram showing a configuration of a terminal device according to the first embodiment.
  • FIG. 3 is a flow chart showing the operation of the base station apparatus according to the first embodiment.
  • FIG. 4 is a flow chart showing the operation of the terminal device according to the first embodiment.
  • FIG. 5 is a diagram showing a specific example of the usage status of the radio resource.
  • FIG. 6 is a diagram showing an example of transmission state information.
  • FIG. 7 is a diagram showing another example of transmission state information.
  • FIG. 8 is a diagram showing still another example of the transmission state information.
  • FIG. 9 is a diagram showing a specific example of SFI.
  • FIG. 10 is a diagram showing an example of transmission state information.
  • FIG. 11 is a diagram showing a specific example of the usage status of the wireless resource.
  • FIG. 12 is a diagram showing another example of transmission state information.
  • FIG. 13 is
  • FIG. 1 is a block diagram showing a configuration of a base station device 100 according to a first embodiment.
  • the base station apparatus 100 executes transmission using an unlicensed band (hereinafter referred to as “U band”).
  • the base station apparatus 100 shown in FIG. 1 includes a network interface unit (hereinafter abbreviated as “network I / F unit”) 110, a processor 120, a wireless communication unit 130, an LBT processing unit 140, and a memory 150.
  • network I / F unit network interface unit
  • processor 120 the processing unit related to the communication using the U band
  • L band licensed band
  • FIG. 1 mainly shows a processing unit related to signal transmission, the base station apparatus 100 may have a processing unit related to signal reception.
  • the network I / F unit 110 is, for example, an interface for connecting to a communication device or another base station device constituting a core network.
  • the network I / F unit 110 receives information necessary for generating a control channel signal and information necessary for generating a data channel signal from a communication device constituting the core network.
  • the processor 120 includes, for example, a CPU (Central Processing Unit), an FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor), and the like, and controls the entire base station apparatus 100 in an integrated manner.
  • the processor 120 includes a scheduling unit 121, a control channel generation unit 122, a data channel generation unit 123, a transmission state information generation unit 124, and a mapping unit 125.
  • the scheduling unit 121 executes scheduling of the downlink and the uplink. That is, the scheduling unit 121 allocates the radio resources of each of the plurality of CCs in the U band to the signals transmitted to the terminal device, and executes the scheduling of the downlink. Further, the scheduling unit 121 allocates the radio resources of each of the plurality of CCs in the U band to the signal transmitted from the terminal device, and executes the scheduling of the uplink. The scheduling unit 121 notifies the control channel generation unit 122, the data channel generation unit 123, and the transmission status information generation unit 124 of the scheduling result.
  • the control channel generation unit 122 generates a control channel for each CC according to the scheduling result. Specifically, the control channel generation unit 122 specifies a terminal device to which the data signal transmitted by each CC is a destination, a radio resource to which the data signal is assigned, a coding rate and a modulation method of the data signal, and the like. Generate a control channel that contains downlink control information. Further, the control channel generation unit 122 generates a control channel including uplink control information that specifies a radio resource used by the terminal device for transmitting a data signal.
  • the data channel generation unit 123 generates a data channel for each CC according to the scheduling result. Specifically, the data channel generation unit 123 encodes and modulates the transmission data addressed to the terminal device to which the radio resource is allocated by scheduling, and generates a data channel including the obtained data signal.
  • the transmission status information generation unit 124 generates transmission status information indicating the transmission status of the downlink for each CC in the U band according to the result of scheduling and the result of LBT processing by the LBT processing unit 140. That is, the transmission state information generation unit 124 generates transmission state information indicating whether or not each CC is used for transmitting a downlink signal. Specifically, the transmission status information generation unit 124 provides transmission status information indicating that the CC that is used by another device as a result of the LBT processing and is determined to be in a busy state is not used for transmitting the downlink signal. Generate. On the other hand, the transmission state information generation unit 124 generates transmission state information indicating that the CC determined to be in the idle state as a result of the LBT processing and assigned to the terminal device by scheduling is used for transmitting the downlink signal. To do.
  • the mapping unit 125 maps the control channel, the data channel, and the transmission state information to the radio resource of the CC determined to be in the idle state by the LBT processing unit 140, and generates a transmission signal. At this time, the mapping unit 125 maps the control channel and the transmission state information to the area of the search space determined in advance. Therefore, the transmission state information indicating the transmission state of the CC determined to be in the busy state and not used for transmission is mapped to the search space of the CC determined to be in the idle state and used for transmission.
  • the search space is arranged at a predetermined frequency of each CC at a predetermined cycle. Therefore, the mapping unit 125 repeatedly maps the transmission state information at a predetermined cycle. However, the mapping unit 125 does not have to repeatedly map the transmission state information to all the search spaces. That is, the mapping unit 125 may map the transmission state information to a search space at a predetermined timing, such as a search space at the beginning of each slot or a search space at the beginning of every two slots.
  • the wireless communication unit 130 performs predetermined wireless transmission processing such as D / A (Digital / Analog) conversion and up-conversion on the transmission signal output from the mapping unit 125, and transmits the transmission signal via the antenna. Further, the wireless communication unit 130 executes reception processing in a frequency band corresponding to the U band.
  • the LBT processing unit 140 executes U-band LBT processing via the wireless communication unit 130. That is, the LBT processing unit 140 measures the received power during the U-band reception process to determine whether or not another device is transmitting a signal using the U-band CC. At this time, the LBT processing unit 140 measures the received power in units of, for example, a 20 MHz wide LBT subband, and if the received power is less than a predetermined threshold value, it determines that the LBT subband is in an idle state. Further, the LBT processing unit 140 determines that the LBT subband is in a busy state if the received power of the LBT subband is equal to or higher than a predetermined threshold value.
  • the LBT processing unit 140 determines that the CC is in the idle state, and at least one LBT subband included in the CC is in the busy state. For example, it is determined that this CC is in a busy state.
  • the memory 150 includes, for example, a RAM (Random Access Memory) or a ROM (Read Only Memory), and stores information used by the processor 120 to execute processing.
  • a RAM Random Access Memory
  • ROM Read Only Memory
  • FIG. 2 is a block diagram showing the configuration of the terminal device 200 according to the first embodiment.
  • the terminal device 200 receives a U-band signal.
  • the terminal device 200 shown in FIG. 2 has a wireless communication unit 210, a processor 220, and a memory 230.
  • FIG. 2 shows only the processing unit related to the communication using the U band, the terminal device 200 may execute the communication using not only the U band but also the L band.
  • FIG. 2 shows a processing unit mainly related to signal reception, the terminal device 200 may have a processing unit related to signal transmission.
  • the wireless communication unit 210 receives the U-band signal transmitted from the base station apparatus 100, and performs predetermined wireless reception processing such as down-conversion and A / D (Analog / Digital) conversion on the received signal.
  • the wireless communication unit 210 receives a CC signal including transmission status information, and performs wireless reception processing on the CC signal.
  • the processor 220 includes, for example, a CPU, FPGA, DSP, etc., and controls the entire terminal device 200 in an integrated manner. Specifically, the processor 220 includes a control channel search unit 221 and a control channel decoding unit 222, a data channel reception processing unit 223, and an application unit 224.
  • the control channel search unit 221 searches the search space for each CC in the U band, and detects the transmission status information and the control channel addressed to the terminal device 200. Then, the control channel search unit 221 identifies the transmission state for each CC based on the detected transmission state information, and searches the search space from the next time onward for the CC that is not used for transmitting the downlink signal. Omit. Further, the control channel search unit 221 outputs the detected control channel addressed to the terminal device 200 to the control channel decoding unit 222. That is, the control channel search unit 221 outputs the control channel for each CC to the control channel decoding unit 222.
  • the control channel decoding unit 222 decodes the control channel for each CC, specifies the radio resource allocated to the data signal addressed to the terminal device 200 of each CC, and specifies the coding rate and the modulation method of the data signal. Then, the control channel decoding unit 222 notifies the data channel reception processing unit 223 of the specified radio resource, coding rate, and modulation method.
  • the data channel reception processing unit 223 executes reception processing for the data channel for each CC in the U band. That is, the data channel reception processing unit 223 decodes the data channel of each CC by using the radio resource, the coding rate, and the modulation method notified from the control channel decoding unit 222, and acquires the data signal addressed to the terminal device 200. To do.
  • the application unit 224 executes the processing of a predetermined application. At this time, the application unit 224 executes the processing of a predetermined application by using the data signal acquired by the data channel reception processing unit 223.
  • FIG. 3 is a flow chart showing the operation of the base station apparatus 100 according to the first embodiment.
  • the scheduling unit 121 executes the scheduling of the downlink (step S101). That is, downlink scheduling is executed in which the radio resources of each of the plurality of CCs in the U band are allocated to signals addressed to the plurality of terminal devices including the terminal device 200. In scheduling, the coding rate and modulation method applied to the signal addressed to each terminal device are determined.
  • control channel generation unit 122 provides a control channel including a terminal device to which the data signal is destined, a radio resource to which the data signal is assigned, and downlink control information that specifies the coding rate and modulation method of the data signal. It is generated for each CC (step S102).
  • the data channel generation unit 123 encodes and modulates the transmission data addressed to the terminal device to which the radio resource is allocated by scheduling, and a data channel for each CC is generated (step S103).
  • the LBT processing unit 140 executes the U-band LBT processing, and monitors whether or not there is an idle CC in the U-band (step S104). As a result, while all CCs are busy (step S104No), the LBT process is repeated until any CC is idle. Then, when at least one CC is in the idle state (step S104Yes), the result of the LBT process is notified to the transmission state information generation unit 124 and the mapping unit 125.
  • the transmission status information generation unit 124 When the result of the LBT processing is notified, the transmission status information generation unit 124 generates transmission status information indicating the transmission status of the downlink for each CC in the U band (step S105).
  • the transmission status information includes information indicating whether or not each CC is used for transmitting a downlink signal. Therefore, the transmission status information also includes information about the CC that is determined to be busy as a result of the LBT processing and is not used for transmission.
  • Such transmission status information includes, for example, information for associating a number identifying a CC with the presence / absence of transmission, and also includes information on a time (for example, the number of slots) in which the presence / absence of transmission by each CC does not change. You may stay.
  • the generated transmission status information is output to the mapping unit 125.
  • the mapping unit 125 executes mapping of the control channel, the data channel, and the transmission state information (step S106).
  • the control channel and the transmission state information are mapped to the search space of the CC determined to be in the idle state by the LBT process.
  • the data channel addressed to each terminal device is mapped to the radio resource of the CC in the idle state.
  • the transmission signal of the base station apparatus 100 is generated.
  • the transmission signal is transmitted from the antenna after being subjected to a predetermined wireless transmission process by the wireless communication unit 130 (step S107).
  • the base station apparatus 100 arranges and transmits the transmission status information indicating the presence or absence of transmission for each CC in the search space of the CC in the idle state. Therefore, the terminal device 200 that receives the transmission status information can grasp the presence or absence of transmission for each CC, and can omit the search of the search space of the CC that is not used for the transmission.
  • FIG. 4 is a flow chart showing the operation of the terminal device 200 according to the first embodiment.
  • the signal transmitted from the base station device 100 is received by the wireless communication unit 210 via the antenna.
  • the received signal includes transmission state information (step S201). That is, the received CC search space includes transmission status information. Therefore, the control channel search unit 221 searches the search space for each CC in the U band, and detects the transmission state information and the control channel addressed to the terminal device 200.
  • the search spaces of all CCs used by the terminal device 200 are searched. As a result, the transmission status information and the control channel are detected from the search space of the CC used for transmitting the signal.
  • the control channel search unit 221 searches the search space of the CC used for transmission in the search space from the next time onward. Only run. In other words, the search is omitted for the CC search space that is not used for transmission. Therefore, unnecessary search is not executed, the processing load of the terminal device 200 can be reduced, and the power consumption can be reduced. In this way, the transmission status information is information indicating whether or not monitoring of the search space for each CC is necessary, and notifies the terminal device 200 that monitoring of the search space is not necessary for CCs that are not used for transmission. ..
  • the control channel is detected by the control channel search unit 221 by searching the search space of the CC used for transmission (step S202).
  • the detected control channel is decoded by the control channel decoding unit 222 (step S203).
  • the control channel includes information for identifying the radio resource to which the data signal addressed to the terminal device 200 is assigned, and information for specifying the coding rate and the modulation method of the data signal. This information is notified to the data channel reception processing unit 223.
  • the data channel reception processing unit 223 executes a reception process for acquiring a data signal from the radio resource specified by the control channel (step S204). Specifically, the data signal is acquired by executing the demodulation and decoding of the data channel according to the coding rate and the modulation method specified by the control channel. The acquired data signal is output to the application unit 224 and used for application processing.
  • the terminal device 200 refers to the received transmission status information, and the search for the CC search space that is not used for transmission is omitted. Therefore, the terminal device 200 can reduce the processing load due to unnecessary search and reduce the power consumption.
  • FIG. 5 is a diagram showing a specific example of the usage status of the radio resource in the U band.
  • CC # 1 and # 2 are included in the U band, and it is assumed that these CCs # 1 and # 2 are CCs that can be used by the terminal device 200.
  • the LBT processing of CC # 1 and # 2 is executed.
  • the base station device 100 transmits a signal to the terminal device 200 using the idle CC # 1. That is, the base station apparatus 100 transmits the burst signal 310 in CC # 1 from a predetermined transmission start timing. Further, the base station apparatus 100 does not transmit a signal because the busy state continues in CC # 2.
  • the burst signal 310 includes, for example, three slots # 1 to # 3.
  • Slot # 1 contains one minislot, while slots # 2 and # 3 contain two minislots.
  • the mini-slot coincides with the timing at which signal transmission can be started, and as a result of the LBT processing, when the idle period 302 continues for a predetermined time or longer, signal transmission is started from the nearest mini-slot. Therefore, depending on the timing at which the idle period 302 occurs, slot # 1 includes only one mini slot, which is shorter than full-size slots # 2 and # 3.
  • the full-size slot includes two mini-slots here, the full-size slot may include three or more mini-slots.
  • a search space is placed at the beginning of the mini slot. Therefore, the search space 321 periodically exists at the timing when the transmission of CC # 1 can be started, and the search space 322 periodically exists at the timing when the transmission of CC # 2 can be started. By searching these search spaces 321 and 322, the terminal device 200 determines whether or not a signal addressed to the terminal device 200 is transmitted by each CC.
  • the control channel 311 is mapped to the search space at the beginning of each slot of the burst signal 310. Therefore, the terminal device 200 can determine whether or not a signal addressed to the terminal device 200 is transmitted in CC # 1 by decoding the control channel 311 at the head of slot # 1. Further, the transmission status information 312 is mapped to the search space at the head of slots # 1 and # 3. As described above, the transmission state information 312 does not necessarily have to be mapped to the search spaces of all the mini slots. Further, if the processing time for generating the transmission status information 312 is relatively short and the generation of the transmission status information 312 is in time for the search space at the beginning of the burst signal 310, the transmission status information 312 is mapped only to the search space at the beginning.
  • the transmission state information 312 may be mapped only to this search space. Further, the transmission state information 312 may be periodically mapped to the search space during the transmission of the burst signal 310.
  • the transmission status information 312 includes information indicating that CC # 1 is used for transmission and CC # 2 is not used for transmission. Therefore, the terminal device 200 that has received the transmission state information 312 in slot # 1 can omit the search for the search space 323 after CC # 2. That is, the search for the search space 323 of CC # 2, which is not used for transmitting the downlink signal, can be omitted, the processing load of the terminal device 200 can be reduced, and the power consumption can be reduced.
  • 6 to 8 are diagrams showing specific examples of transmission state information according to the first embodiment.
  • the transmission status information indicates whether or not each CC is used for transmission in the "individual CC number" which is the identification information of the CC that may be used for each terminal device. "Presence / absence of transmission” is associated. In the example shown in FIG. 6, for example, “0" indicates a CC used for transmission, and “1" indicates a CC not used for transmission. Therefore, CC # 1 and CC # 2 are used for transmitting downlink signals, and CC # 3 is not used for transmitting downlink signals. Further, the transmission status information includes information on "continuation slots” indicating the number of slots in which the above-mentioned transmission presence / absence state continues. Therefore, the terminal device that receives the transmission status information shown in FIG. 6 can omit the search for the search space of CC # 3 for two slots after receiving the transmission status information.
  • the transmission presence / absence information and the continuation slot information are provided separately, but instead of the transmission presence / absence information, the CC shows the number of continuous slots in which the downlink signal is not transmitted.
  • the "number of unused slots" may be associated with the individual CC number. That is, the CC associated with "0" as the number of unused slots is used for transmitting the signal of the downlink, and the CC associated with "1" as the number of unused slots is the downlink line between one slot. Not used for signal transmission. Similarly, a CC to which "2" is associated with the number of unused slots is not used for transmitting downlink signals between the two slots, and a CC to which "3" is associated with the number of unused slots is 3. It is not used to transmit downlink signals between slots. In this way, it is also possible to provide transmission status information in which the "individual CC number" and the "number of unused slots" are associated with each other.
  • the transmission status information is a "common CC number" which is identification information of CCs in the U band, and a "transmission presence / absence” indicating whether or not each CC is used for transmission. May be associated with each other. That is, the terminal device uses any CC in the U band, but since the CC used differs depending on the terminal device, the individual CC number for each terminal device for the CC of the same frequency may be different. Therefore, a common CC number that is not related to the terminal device that uses the CC may be assigned to each CC in the U band, and the common CC number may be associated with the presence / absence of transmission.
  • the terminal device holds in advance the correspondence between the common CC number and the individual CC number, and it is possible to grasp whether or not the CC that may be used by the own device is transmitted by referring to this correspondence. it can.
  • the correspondence between the common CC number and the individual CC number may be notified in advance from the base station device to the terminal device as, for example, an RRC (Radio Resource Control) message.
  • RRC Radio Resource Control
  • the terminal device that receives the transmission state information shown in FIG. 7 is a CC that CCs # 1 and # 5 may use, the search for the search space of these CCs can be omitted.
  • the transmission status information is not only the presence / absence of transmission indicating whether or not it is used for transmission, but also the “transmission status” that specifies one of three or more states for each CC.
  • Information may be included. Specifically, for example, in the example shown in FIG. 8, "0" indicating that CC is used for transmitting downlink signals, "1” indicating that CC is undergoing LBT processing, and CC being upstream. "2" indicating that it is used for receiving the signal of the line and "3" indicating that it is not in any of these states are shown as transmission states for each CC.
  • the downlink signal is being transmitted, so if the terminal device searches for a search space in which the control channel in the signal may be arranged with respect to this CC. It can be judged to be good.
  • the search space in which the control channel may be arranged is, for example, the search space at the beginning of each slot.
  • the signal transmission may be started depending on the result of the LBT processing.
  • the search space at the timing at which transmission can be started should be searched.
  • the search space at the timing when transmission can be started is, for example, the search space at the timing corresponding to the beginning of the mini slot.
  • the terminal device can omit the search of the search space for these CCs. .. Further, since the CC whose transmission state is "3" is not used for uplink communication, the terminal device measures the received power of this CC, for example, to obtain interference power from another wireless communication system. It is possible to measure.
  • transmission status information indicating whether or not each CC in the U band is used for transmitting downlink signals is transmitted from the base station device to the terminal device and transmitted.
  • the terminal device that receives the status information omits the search of the search space in the CC that is not used for transmission. Therefore, the terminal device can reduce the processing load due to unnecessary search and reduce the power consumption.
  • the configurations of the base station device and the terminal device according to the second embodiment are the same as those of the base station device 100 (FIG. 1) and the terminal device 200 (FIG. 2) according to the first embodiment, the description thereof will be omitted.
  • the transmission state information is different from that of the first embodiment.
  • FIG. 9 is a diagram showing a specific example of SFI corresponding to the slot format.
  • SFI for each format that defines whether each of the 14 symbols contained in one slot is used for downlink or uplink communication is shown.
  • the symbol indicated by "D” is used for downlink communication
  • the symbol indicated by "U” is used for uplink communication
  • the symbol indicated by "F” is for downlink or uplink communication. It is used for communication or as time to switch communication from downlink to uplink.
  • the base station apparatus determines which format to use, and notifies the terminal apparatus of the determined format using, for example, a control channel. Then, the base station device and the terminal device communicate with each other through the slots of the determined format. That is, the base station device transmits the signal with the symbol represented by "D” or "F", and the terminal device transmits the signal with the symbol represented by "U” or "F".
  • the terminal device uses, for example, a format preset by the RRC or operates according to the PDCCH for individual resource allocation.
  • transmission status information is generated using SFI.
  • the transmission status information is included in the control information for notifying the SFI and transmitted.
  • the transmission state information shown in FIG. 10 is generated and transmitted from the base station device to the terminal device.
  • the SFI of each slot corresponds to the “individual CC number” which is the CC identification information that may be used for each terminal device and the “slot number” which is the identification information of the slots in each CC. It is attached.
  • the slots # 1 to # 3 of CC # 1 are SFI "0", "5", and "1", respectively. Therefore, in CC # 1, the 14 symbols of slot # 1 are used for downlink communication, the first 11 symbols of slot # 2 are used for downlink communication, and the remaining 3 symbols are for downlink or uplink communication. It is used for communication, and the 14 symbols of slot # 3 are used for uplink communication. Since the transmission status information is transmitted from the base station device to the terminal device, the transmission status information shown in FIG. 10 is transmitted with a symbol used for downlink communication in slot # 1 or slot # 2 of CC # 1. ..
  • slots # 1 to # 3 of CC # 2 are all SFI "1".
  • SFI "1" indicates that all symbols in the slot are used for uplink communication and that the slot is not used for downlink signal transmission. Therefore, for example, when CC # 2 is busy and is not used for transmitting downlink signals as a result of LBT processing, the base station apparatus sets the SFI of all slots of CC # 2 to "1" and sets the transmission state. Generate information. That is, the base station apparatus notifies that the search of the search space of CC # 2 is unnecessary regardless of whether or not the uplink communication is actually performed in the slots # 1 to # 3 of CC # 2. Therefore, the transmission state information in which the SFI of each slot is set to "1" is generated. The terminal device that receives such transmission state information omits the search of the search space in the slot of SFI "1" indicating that it is used for uplink communication.
  • FIG. 11 is a diagram showing a specific example of the usage status of wireless resources in the U band.
  • the same parts as those in FIG. 5 are designated by the same reference numerals.
  • CC # 1 and # 2 are included in the U band, and it is assumed that these CCs # 1 and # 2 are CCs that can be used by the terminal device.
  • the base station device transmits a signal to the terminal device, the LBT processing of CC # 1 and # 2 is executed.
  • the base station apparatus uses the idle CC # 1 to transmit a signal to the terminal apparatus. That is, the base station apparatus transmits a burst signal from a predetermined transmission start timing in CC # 1. Further, the base station apparatus does not transmit a signal because the busy state continues in CC # 2.
  • the control channel 311 is mapped to the search space at the beginning of each slot included in the burst signal. Further, the transmission state information 312 is mapped to the search space at the head of slot # 1.
  • the transmission state information 312 indicates whether or not the slot of each CC is used for transmitting a downlink signal by using SFI as described above. That is, as shown in FIG. 10, since slots # 1 to # 3 of CC # 1 correspond to SFIs "0", "5", and "1", slot # 1 of CC # 1 is for downlink communication.
  • Slot # 2 is used for downlink communication and switching time for downlink-to-upline communication, and slot # 3 is used for uplink communication. Since slot # 3 is used for uplink communication, it is confirmed that LBT processing is executed and CC # 1 is in an idle state before the terminal device transmits a signal in slot # 3.
  • all of the slots # 1 to # 3 of CC # 2 correspond to SFI "1", which means that CC # 2 is not used for transmitting downlink signals. This is the result of the base station device generating transmission status information using SFI "1" in order to notify the device. Therefore, in reality, CC # 2 is not used for uplink communication. Since the SFI of slots # 1 to # 3 of CC # 2 is "1" in the terminal device, the search for the search space 330 corresponding to slots # 1 to # 3 of CC # 2 can be omitted. That is, the search for the search space 330 of CC # 2, which is not used for transmitting the downlink signal, can be omitted, the processing load of the terminal device can be reduced, and the power consumption can be reduced.
  • the terminal device since the SFI of slot # 3 of CC # 1 is also "1", the terminal device also searches the search space corresponding to slot # 3 of CC # 1. It can be omitted.
  • the base station apparatus uses SFI to generate transmission state information indicating whether or not each CC in the U band is used for transmitting a downlink signal. Send to the terminal device. Then, the terminal device that receives the transmission state information omits the search of the search space in the CC that is not used for transmitting the downlink signal. Therefore, the terminal device can reduce the processing load due to unnecessary search and reduce the power consumption.
  • SFI "1" indicating that all the symbols in the slot are used for uplink communication is used as the SFI indicating that the downlink signal is not transmitted.
  • SFI indicating that the downlink signal is not transmitted.
  • a new SFI including the symbol "N” is defined, and the transmission status information is obtained using this SFI. It may be generated. For example, if SFI in which all the symbols in the slot are the symbol "N” is SFI "254", the transmission status information when CC # 2 is not used for transmission may be as shown in FIG. it can.
  • the terminal device can receive, for example, this CC.
  • the terminal device can receive, for example, this CC.
  • the power it is possible to measure the interference power from another wireless communication system.
  • FIG. 13 is a diagram showing a specific example of the usage status of radio resources in the L band and the U band. In FIG. 13, the same parts as those in FIG. 5 are designated by the same reference numerals.
  • CC # 0 is included in the L band, and communication is always performed between the base station device and the terminal device.
  • the control channel 401 is mapped to the head of each slot of CC # 0, and the transmission status information 402 regarding CC # 1 and # 2 of the U band is mapped.
  • the control channel 401 is a control channel such as PDCCH related to CC # 0.
  • the transmission state information 402 indicates whether or not CCs # 1 and # 2 in the U band are used for transmitting downlink signals.
  • the transmission status for each CC is notified to the terminal device by the transmission status information 402. ..
  • the terminal device that has received the transmission state information 402 in CC # 0 can omit the search for the search space 411 after CC # 2. That is, the search for the search space 411 of CC # 2, which is not used for transmitting the downlink signal, can be omitted, the processing load of the terminal device can be reduced, and the power consumption can be reduced.
  • the transmission status information when the transmission status information is transmitted using the L band CC, the transmission status information can be transmitted even if all the CCs in the U band are busy, and the terminal device can transmit the transmission status information.
  • the search for the search space in all CCs in the U band can be omitted.
  • the present invention is not limited to this. That is, for example, even when it is switched whether or not it is used for transmission in units of LBT subbands, the transmission state information described in each of the above embodiments is applied to reduce the processing load of the terminal device and reduce power consumption. It can be reduced. Similarly, when the presence / absence of transmission is switched in units of frequency bands other than the CC and LBT subbands, the transmission state information described in each of the above embodiments can be applied. Further, the transmission status information does not necessarily have to be transmitted to individual terminal devices, and for example, the transmission status information may be included in the group common PDCCH addressed to a plurality of terminal devices.
  • Network I / F unit 120 220 Processor 121 Scheduling unit 122 Control channel generator 123 Data channel generator 124 Transmission status information generator 125 Mapping unit 130, 210 Wireless communication unit 140 LBT processing unit 150, 230 Memory 221 Control channel search Part 222 Control channel decoding part 223 Data channel reception processing part 224 Application part

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This terminal device (200) comprises: a control channel search unit (221) which searches whether or not a signal addressed to an own device is included in each of a plurality of frequency bands; and a wireless communication unit (210) which receives at least transmission state information, which indicates a transmission state of a first frequency band that does not require a license for use in wireless communication, in a second frequency band different from the first frequency band, wherein the control channel search unit (221) omits the search for the first frequency band that is not used for downlink line communication, according to the transmission state information received by the wireless communication unit (210).

Description

端末装置、基地局装置及び無線通信システムTerminal equipment, base station equipment and wireless communication systems
 本発明は、端末装置、基地局装置及び無線通信システムに関する。 The present invention relates to a terminal device, a base station device, and a wireless communication system.
 現在のネットワークにおいては、モバイル端末(スマートフォンやフィーチャーホン)のトラフィックがネットワークのリソースの大半を占めている。また、モバイル端末が使用するトラフィックは、今後も拡大していく傾向にある。 In the current network, the traffic of mobile terminals (smartphones and feature phones) occupies most of the network resources. In addition, the traffic used by mobile terminals tends to increase in the future.
 一方で、IoT(Internet of Things)サービス(例えば、交通システム、スマートメータ、装置等の監視システム)の展開に合わせて、多様な要求条件を持つサービスに対応することが求められている。そのため、第5世代移動体通信(5Gまたは、NR(New Radio))の通信規格では、第4世代移動体通信(4G)の標準技術(例えば、非特許文献1~11)に加えて、さらなる高データ信号レート化、大容量化、低遅延化を実現する技術が求められている。なお、第5世代通信規格については、3GPPの作業部会(例えば、TSG-RAN WG1、TSG-RAN WG2等)で技術検討が進められており、2017年の末に標準規格書の初版が出されている(非特許文献12~40)。 On the other hand, in line with the development of IoT (Internet of Things) services (for example, monitoring systems for transportation systems, smart meters, devices, etc.), it is required to support services with various requirements. Therefore, in the communication standard of the 5th generation mobile communication (5G or NR (New Radio)), in addition to the standard technology of the 4th generation mobile communication (4G) (for example, Non-Patent Documents 1 to 11), further There is a demand for technology that realizes high data signal rates, large capacities, and low delays. Regarding the 5th generation communication standard, technical studies are underway in the 3GPP working group (for example, TSG-RAN WG1, TSG-RAN WG2, etc.), and the first edition of the standard document was issued at the end of 2017. (Non-Patent Documents 12-40).
 上述したように、多種多様なサービスに対応するために、5Gでは、eMBB(Enhanced Mobile BroadBand)、Massive MTC(Machine Type Communications)、及びURLLC(Ultra-Reliable and Low Latency Communication)に分類される多くのユースケースのサポートを想定している。 As mentioned above, in order to support a wide variety of services, 5G is classified into eMBB (Enhanced Mobile BroadBand), Massive MTC (Machine Type Communications), and URLLC (Ultra-Reliable and Low Latency Communication). It is intended to support use cases.
 ところで、一般に無線通信では、下り回線の制御信号を受信するためのサーチスペースが定義されている。端末装置は、サーチスペース内に自装置宛ての下り制御信号(例えば、PDCCH(Physical Downlink Control CHannel))があるか否かをサーチし、下り制御信号が検出された場合には、下り制御信号に応じてデータ信号の送受信を行う。このため、端末装置は、サーチスペース内の領域を監視する。なお、サーチスペースについては、例えば、TS36.213(非特許文献4)やTS38.213(非特許文献18)などに記載されている。 By the way, in wireless communication, a search space for receiving a downlink control signal is generally defined. The terminal device searches for whether or not there is a downlink control signal (for example, PDCCH (Physical Downlink Control CHannel)) addressed to its own device in the search space, and if a downlink control signal is detected, the terminal device is used as a downlink control signal. Data signals are transmitted and received accordingly. Therefore, the terminal device monitors the area in the search space. The search space is described in, for example, TS36.213 (Non-Patent Document 4) and TS38.213 (Non-Patent Document 18).
 また、現在、3GPPでは、アンライセンスバンド(unlicensed band)を用いた通信についても一部規定されている。アンライセンスバンドを用いた通信を行うには、無線ネットワーク間の公平な共存のためLBT(Listen Before Talk)処理に基づく信号送信が行われる。なお、LBT処理については、例えば、TS36.213(非特許文献4)やTS37.213(非特許文献37)などに記載されている。 Also, at present, 3GPP partially stipulates communication using an unlicensed band. In order to perform communication using the unlicensed band, signal transmission based on LBT (Listen Before Talk) processing is performed for fair coexistence between wireless networks. The LBT treatment is described in, for example, TS36.213 (Non-Patent Document 4) and TS37.213 (Non-Patent Document 37).
 アンライセンスバンド内の複数の周波数帯域を利用して通信が行われる際には、LBT処理の結果、他の装置に使用されておらずアイドル状態と判断された周波数帯域が信号の送信に使用される。すなわち、例えばアンライセンスバンドに属する複数のコンポーネントキャリア(Component Carrier:以下「CC」と略記する)を用いたキャリアアグリゲーションが行われる場合、LBT処理によってアイドル状態と判断されたCCが信号の送信に使用される。 When communication is performed using multiple frequency bands within the unlicensed band, the frequency band determined to be idle and not used by other devices as a result of LBT processing is used for signal transmission. To. That is, for example, when carrier aggregation is performed using a plurality of component carriers (Component Carrier: hereinafter abbreviated as "CC") belonging to an unlicensed band, the CC determined to be idle by the LBT process is used for signal transmission. Will be done.
 このため、複数のCCの信号を受信する端末装置は、複数のCCそれぞれのサーチスペースを監視し、自装置宛ての下り制御信号がサーチスペース内に配置されているか否かを監視する。結果として、端末装置の処理負荷が増大し、消費電力が大きくなるという問題がある。 Therefore, the terminal device that receives the signals of the plurality of CCs monitors the search space of each of the plurality of CCs, and monitors whether or not the downlink control signal addressed to the own device is arranged in the search space. As a result, there is a problem that the processing load of the terminal device increases and the power consumption increases.
 このような問題は、CCごとに送信の有無が制御される場合にのみ生じるものではなく、例えばLBT処理が実行される周波数帯域の単位であるLBTサブバンドごとに送信の有無が制御される場合にも同様に発生する。 Such a problem does not occur only when the presence / absence of transmission is controlled for each CC. For example, when the presence / absence of transmission is controlled for each LBT subband, which is a unit of the frequency band in which LBT processing is executed. Also occurs in the same way.
 開示の技術は、かかる点に鑑みてなされたものであって、処理負荷を低減し消費電力を削減することができる端末装置、基地局装置及び無線通信システムを提供することを目的とする。 The disclosed technology has been made in view of this point, and an object thereof is to provide a terminal device, a base station device, and a wireless communication system capable of reducing the processing load and the power consumption.
 本願が開示する端末装置は、1つの態様において、複数の周波数帯域それぞれにおいて自装置宛ての信号が含まれるか否かをサーチするサーチ部と、少なくとも無線通信に使用するための免許が不要な第1の周波数帯域の送信状態を示す送信状態情報を、前記第1の周波数帯域とは異なる第2の周波数帯域において受信する受信部とを有し、前記サーチ部は、前記受信部によって受信された送信状態情報に応じて、下り回線の通信に使用されない第1の周波数帯域に対するサーチを省略する。 In one embodiment, the terminal device disclosed in the present application does not require a search unit for searching whether or not a signal addressed to the own device is included in each of a plurality of frequency bands, and at least a license for use in wireless communication. It has a receiving unit that receives transmission state information indicating a transmission state of one frequency band in a second frequency band different from the first frequency band, and the search unit is received by the receiving unit. Depending on the transmission status information, the search for the first frequency band that is not used for downlink communication is omitted.
 本願が開示する端末装置、基地局装置及び無線通信システムの1つの態様によれば、処理負荷を低減し消費電力を削減することができるという効果を奏する。 According to one aspect of the terminal device, the base station device, and the wireless communication system disclosed in the present application, there is an effect that the processing load can be reduced and the power consumption can be reduced.
図1は、実施の形態1に係る基地局装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a base station apparatus according to the first embodiment. 図2は、実施の形態1に係る端末装置の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of a terminal device according to the first embodiment. 図3は、実施の形態1に係る基地局装置の動作を示すフロー図である。FIG. 3 is a flow chart showing the operation of the base station apparatus according to the first embodiment. 図4は、実施の形態1に係る端末装置の動作を示すフロー図である。FIG. 4 is a flow chart showing the operation of the terminal device according to the first embodiment. 図5は、無線リソースの使用状況の具体例を示す図である。FIG. 5 is a diagram showing a specific example of the usage status of the radio resource. 図6は、送信状態情報の一例を示す図である。FIG. 6 is a diagram showing an example of transmission state information. 図7は、送信状態情報の他の一例を示す図である。FIG. 7 is a diagram showing another example of transmission state information. 図8は、送信状態情報のさらに他の一例を示す図である。FIG. 8 is a diagram showing still another example of the transmission state information. 図9は、SFIの具体例を示す図である。FIG. 9 is a diagram showing a specific example of SFI. 図10は、送信状態情報の一例を示す図である。FIG. 10 is a diagram showing an example of transmission state information. 図11は、無線リソースの使用状況の具体例を示す図である。FIG. 11 is a diagram showing a specific example of the usage status of the wireless resource. 図12は、送信状態情報の他の一例を示す図である。FIG. 12 is a diagram showing another example of transmission state information. 図13は、無線リソースの使用状況の具体例を示す図である。FIG. 13 is a diagram showing a specific example of the usage status of the wireless resource.
 以下、本願が開示する端末装置、基地局装置及び無線通信システムの実施の形態について、図面を参照して詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。 Hereinafter, embodiments of the terminal device, base station device, and wireless communication system disclosed in the present application will be described in detail with reference to the drawings. The present invention is not limited to this embodiment.
(実施の形態1)
 図1は、実施の形態1に係る基地局装置100の構成を示すブロック図である。この基地局装置100は、アンライセンスバンド(以下「Uバンド」という)を用いた送信を実行する。図1に示す基地局装置100は、ネットワークインタフェース部(以下「ネットワークI/F部」と略記する)110、プロセッサ120、無線通信部130、LBT処理部140及びメモリ150を有する。図1においては、Uバンドを用いた通信に関係する処理部のみを図示しているが、基地局装置100は、Uバンドのみではなくライセンスバンド(licensed band:以下「Lバンド」という)を用いた通信を実行しても良い。また、図1においては、主に信号の送信に関する処理部を図示しているが、基地局装置100は、信号の受信に関する処理部を有していても良い。
(Embodiment 1)
FIG. 1 is a block diagram showing a configuration of a base station device 100 according to a first embodiment. The base station apparatus 100 executes transmission using an unlicensed band (hereinafter referred to as “U band”). The base station apparatus 100 shown in FIG. 1 includes a network interface unit (hereinafter abbreviated as “network I / F unit”) 110, a processor 120, a wireless communication unit 130, an LBT processing unit 140, and a memory 150. In FIG. 1, only the processing unit related to the communication using the U band is shown, but the base station apparatus 100 uses not only the U band but also a licensed band (hereinafter referred to as “L band”). You may execute the communication that was used. Further, although FIG. 1 mainly shows a processing unit related to signal transmission, the base station apparatus 100 may have a processing unit related to signal reception.
 ネットワークI/F部110は、例えばコアネットワークを構成する通信装置や他の基地局装置に接続するインタフェースである。ネットワークI/F部110は、制御チャネルの信号を生成するために必要な情報や、データチャネルの信号を生成するために必要な情報をコアネットワークを構成する通信装置から受信する。 The network I / F unit 110 is, for example, an interface for connecting to a communication device or another base station device constituting a core network. The network I / F unit 110 receives information necessary for generating a control channel signal and information necessary for generating a data channel signal from a communication device constituting the core network.
 プロセッサ120は、例えばCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)又はDSP(Digital Signal Processor)などを備え、基地局装置100の全体を統括制御する。具体的には、プロセッサ120は、スケジューリング部121、制御チャネル生成部122、データチャネル生成部123、送信状態情報生成部124及びマッピング部125を有する。 The processor 120 includes, for example, a CPU (Central Processing Unit), an FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor), and the like, and controls the entire base station apparatus 100 in an integrated manner. Specifically, the processor 120 includes a scheduling unit 121, a control channel generation unit 122, a data channel generation unit 123, a transmission state information generation unit 124, and a mapping unit 125.
 スケジューリング部121は、下り回線及び上り回線のスケジューリングを実行する。すなわち、スケジューリング部121は、Uバンド内の複数のCCそれぞれの無線リソースを端末装置へ送信される信号に割り当てて下り回線のスケジューリングを実行する。また、スケジューリング部121は、Uバンド内の複数のCCそれぞれの無線リソースを端末装置から送信される信号に割り当てて上り回線のスケジューリングを実行する。スケジューリング部121は、スケジューリングの結果を制御チャネル生成部122、データチャネル生成部123及び送信状態情報生成部124へ通知する。 The scheduling unit 121 executes scheduling of the downlink and the uplink. That is, the scheduling unit 121 allocates the radio resources of each of the plurality of CCs in the U band to the signals transmitted to the terminal device, and executes the scheduling of the downlink. Further, the scheduling unit 121 allocates the radio resources of each of the plurality of CCs in the U band to the signal transmitted from the terminal device, and executes the scheduling of the uplink. The scheduling unit 121 notifies the control channel generation unit 122, the data channel generation unit 123, and the transmission status information generation unit 124 of the scheduling result.
 制御チャネル生成部122は、スケジューリングの結果に従って、CCごとの制御チャネルを生成する。具体的には、制御チャネル生成部122は、それぞれのCCによって送信されるデータ信号の宛先となる端末装置、データ信号が割り当てられる無線リソース、及びデータ信号の符号化率と変調方式などを特定する下り回線の制御情報を含む制御チャネルを生成する。また、制御チャネル生成部122は、端末装置がデータ信号の送信に使用する無線リソースを特定する上り回線の制御情報を含む制御チャネルを生成する。 The control channel generation unit 122 generates a control channel for each CC according to the scheduling result. Specifically, the control channel generation unit 122 specifies a terminal device to which the data signal transmitted by each CC is a destination, a radio resource to which the data signal is assigned, a coding rate and a modulation method of the data signal, and the like. Generate a control channel that contains downlink control information. Further, the control channel generation unit 122 generates a control channel including uplink control information that specifies a radio resource used by the terminal device for transmitting a data signal.
 データチャネル生成部123は、スケジューリングの結果に従って、CCごとのデータチャネルを生成する。具体的には、データチャネル生成部123は、スケジューリングによって無線リソースが割り当てられた端末装置宛ての送信データを符号化及び変調し、得られたデータ信号を含むデータチャネルを生成する。 The data channel generation unit 123 generates a data channel for each CC according to the scheduling result. Specifically, the data channel generation unit 123 encodes and modulates the transmission data addressed to the terminal device to which the radio resource is allocated by scheduling, and generates a data channel including the obtained data signal.
 送信状態情報生成部124は、スケジューリングの結果とLBT処理部140によるLBT処理の結果とに従って、Uバンド内のCCごとの下り回線の送信状態を示す送信状態情報を生成する。すなわち、送信状態情報生成部124は、それぞれのCCが下り回線の信号の送信に使用されるか否かを示す送信状態情報を生成する。具体的には、送信状態情報生成部124は、LBT処理の結果他の装置に使用されておりビジー状態と判断されたCCが、下り回線の信号の送信に使用されないことを示す送信状態情報を生成する。一方、送信状態情報生成部124は、LBT処理の結果アイドル状態と判断され、かつスケジューリングによって端末装置に割り当てられたCCが、下り回線の信号の送信に使用されることを示す送信状態情報を生成する。 The transmission status information generation unit 124 generates transmission status information indicating the transmission status of the downlink for each CC in the U band according to the result of scheduling and the result of LBT processing by the LBT processing unit 140. That is, the transmission state information generation unit 124 generates transmission state information indicating whether or not each CC is used for transmitting a downlink signal. Specifically, the transmission status information generation unit 124 provides transmission status information indicating that the CC that is used by another device as a result of the LBT processing and is determined to be in a busy state is not used for transmitting the downlink signal. Generate. On the other hand, the transmission state information generation unit 124 generates transmission state information indicating that the CC determined to be in the idle state as a result of the LBT processing and assigned to the terminal device by scheduling is used for transmitting the downlink signal. To do.
 マッピング部125は、制御チャネル、データチャネル及び送信状態情報を、LBT処理部140によってアイドル状態と判断されたCCの無線リソースにマッピングして送信信号を生成する。このとき、マッピング部125は、制御チャネル及び送信状態情報を、あらかじめ決定されたサーチスペースの領域にマッピングする。したがって、アイドル状態と判断されて送信に使用されるCCのサーチスペースには、ビジー状態と判断されて送信に使用されないCCの送信状態を示す送信状態情報がマッピングされる。 The mapping unit 125 maps the control channel, the data channel, and the transmission state information to the radio resource of the CC determined to be in the idle state by the LBT processing unit 140, and generates a transmission signal. At this time, the mapping unit 125 maps the control channel and the transmission state information to the area of the search space determined in advance. Therefore, the transmission state information indicating the transmission state of the CC determined to be in the busy state and not used for transmission is mapped to the search space of the CC determined to be in the idle state and used for transmission.
 サーチスペースは、それぞれのCCの所定の周波数に所定の周期で配置される。このため、マッピング部125は、送信状態情報を所定の周期で繰り返してマッピングする。ただし、マッピング部125は、すべてのサーチスペースに送信状態情報を繰り返してマッピングしなくても良い。すなわち、マッピング部125は、例えば各スロットの先頭のサーチスペースや2スロットごとの先頭のサーチスペースなどのように、あらかじめ決定されたタイミングのサーチスペースに送信状態情報をマッピングすれば良い。 The search space is arranged at a predetermined frequency of each CC at a predetermined cycle. Therefore, the mapping unit 125 repeatedly maps the transmission state information at a predetermined cycle. However, the mapping unit 125 does not have to repeatedly map the transmission state information to all the search spaces. That is, the mapping unit 125 may map the transmission state information to a search space at a predetermined timing, such as a search space at the beginning of each slot or a search space at the beginning of every two slots.
 無線通信部130は、マッピング部125から出力される送信信号に対してD/A(Digital/Analog)変換及びアップコンバートなどの所定の無線送信処理を施し、アンテナを介して送信する。また、無線通信部130は、Uバンドに相当する周波数帯域の受信処理を実行する。 The wireless communication unit 130 performs predetermined wireless transmission processing such as D / A (Digital / Analog) conversion and up-conversion on the transmission signal output from the mapping unit 125, and transmits the transmission signal via the antenna. Further, the wireless communication unit 130 executes reception processing in a frequency band corresponding to the U band.
 LBT処理部140は、無線通信部130を介してUバンドのLBT処理を実行する。すなわち、LBT処理部140は、Uバンドの受信処理の際に受信電力を測定することにより、他の装置がUバンドのCCを使用して信号を送信しているか否かを判定する。このとき、LBT処理部140は、例えば20MHz幅のLBTサブバンドを単位として受信電力を測定し、受信電力が所定の閾値未満であれば、このLBTサブバンドはアイドル状態であると判定する。また、LBT処理部140は、LBTサブバンドの受信電力が所定の閾値以上であれば、このLBTサブバンドはビジー状態であると判定する。そして、LBT処理部140は、CCに含まれるすべてのLBTサブバンドがアイドル状態であれば、このCCがアイドル状態であると判断し、CCに含まれる少なくとも1つのLBTサブバンドがビジー状態であれば、このCCがビジー状態であると判断する。 The LBT processing unit 140 executes U-band LBT processing via the wireless communication unit 130. That is, the LBT processing unit 140 measures the received power during the U-band reception process to determine whether or not another device is transmitting a signal using the U-band CC. At this time, the LBT processing unit 140 measures the received power in units of, for example, a 20 MHz wide LBT subband, and if the received power is less than a predetermined threshold value, it determines that the LBT subband is in an idle state. Further, the LBT processing unit 140 determines that the LBT subband is in a busy state if the received power of the LBT subband is equal to or higher than a predetermined threshold value. Then, if all the LBT subbands included in the CC are in the idle state, the LBT processing unit 140 determines that the CC is in the idle state, and at least one LBT subband included in the CC is in the busy state. For example, it is determined that this CC is in a busy state.
 メモリ150は、例えばRAM(Random Access Memory)又はROM(Read Only Memory)などを備え、プロセッサ120が処理を実行するために使用する情報を記憶する。 The memory 150 includes, for example, a RAM (Random Access Memory) or a ROM (Read Only Memory), and stores information used by the processor 120 to execute processing.
 図2は、実施の形態1に係る端末装置200の構成を示すブロック図である。この端末装置200は、Uバンドの信号を受信する。図2に示す端末装置200は、無線通信部210、プロセッサ220及びメモリ230を有する。図2においては、Uバンドを用いた通信に関係する処理部のみを図示しているが、端末装置200は、UバンドのみではなくLバンドを用いた通信を実行しても良い。また、図2においては、主に信号の受信に関する処理部を図示しているが、端末装置200は、信号の送信に関する処理部を有していても良い。 FIG. 2 is a block diagram showing the configuration of the terminal device 200 according to the first embodiment. The terminal device 200 receives a U-band signal. The terminal device 200 shown in FIG. 2 has a wireless communication unit 210, a processor 220, and a memory 230. Although FIG. 2 shows only the processing unit related to the communication using the U band, the terminal device 200 may execute the communication using not only the U band but also the L band. Further, although FIG. 2 shows a processing unit mainly related to signal reception, the terminal device 200 may have a processing unit related to signal transmission.
 無線通信部210は、基地局装置100から送信されたUバンドの信号を受信し、受信信号に対してダウンコンバート及びA/D(Analog/Digital)変換などの所定の無線受信処理を施す。無線通信部210は、送信状態情報を含むCCの信号を受信し、このCCの信号に対して無線受信処理を施す。 The wireless communication unit 210 receives the U-band signal transmitted from the base station apparatus 100, and performs predetermined wireless reception processing such as down-conversion and A / D (Analog / Digital) conversion on the received signal. The wireless communication unit 210 receives a CC signal including transmission status information, and performs wireless reception processing on the CC signal.
 プロセッサ220は、例えばCPU、FPGA又はDSPなどを備え、端末装置200の全体を統括制御する。具体的には、プロセッサ220は、制御チャネルサーチ部221、制御チャネル復号部222、データチャネル受信処理部223及びアプリケーション部224を有する。 The processor 220 includes, for example, a CPU, FPGA, DSP, etc., and controls the entire terminal device 200 in an integrated manner. Specifically, the processor 220 includes a control channel search unit 221 and a control channel decoding unit 222, a data channel reception processing unit 223, and an application unit 224.
 制御チャネルサーチ部221は、Uバンド内のCCごとのサーチスペースをサーチし、送信状態情報と端末装置200宛ての制御チャネルとを検出する。そして、制御チャネルサーチ部221は、検出された送信状態情報に基づいてCCごとの送信状態を特定し、下り回線の信号の送信に使用されていないCCについては、次回以降のサーチスペースのサーチを省略する。また、制御チャネルサーチ部221は、検出された端末装置200宛ての制御チャネルを制御チャネル復号部222へ出力する。すなわち、制御チャネルサーチ部221は、CCごとの制御チャネルを制御チャネル復号部222へ出力する。 The control channel search unit 221 searches the search space for each CC in the U band, and detects the transmission status information and the control channel addressed to the terminal device 200. Then, the control channel search unit 221 identifies the transmission state for each CC based on the detected transmission state information, and searches the search space from the next time onward for the CC that is not used for transmitting the downlink signal. Omit. Further, the control channel search unit 221 outputs the detected control channel addressed to the terminal device 200 to the control channel decoding unit 222. That is, the control channel search unit 221 outputs the control channel for each CC to the control channel decoding unit 222.
 制御チャネル復号部222は、CCごとの制御チャネルを復号し、各CCの端末装置200宛てのデータ信号に割り当てられた無線リソースを特定するとともに、データ信号の符号化率及び変調方式を特定する。そして、制御チャネル復号部222は、特定した無線リソース、符号化率及び変調方式をデータチャネル受信処理部223へ通知する。 The control channel decoding unit 222 decodes the control channel for each CC, specifies the radio resource allocated to the data signal addressed to the terminal device 200 of each CC, and specifies the coding rate and the modulation method of the data signal. Then, the control channel decoding unit 222 notifies the data channel reception processing unit 223 of the specified radio resource, coding rate, and modulation method.
 データチャネル受信処理部223は、Uバンドの内のCCごとのデータチャネルに対する受信処理を実行する。すなわち、データチャネル受信処理部223は、制御チャネル復号部222から通知される無線リソース、符号化率及び変調方式を用いて、各CCのデータチャネルを復号し、端末装置200宛てのデータ信号を取得する。 The data channel reception processing unit 223 executes reception processing for the data channel for each CC in the U band. That is, the data channel reception processing unit 223 decodes the data channel of each CC by using the radio resource, the coding rate, and the modulation method notified from the control channel decoding unit 222, and acquires the data signal addressed to the terminal device 200. To do.
 アプリケーション部224は、所定のアプリケーションの処理を実行する。このとき、アプリケーション部224は、データチャネル受信処理部223によって取得されたデータ信号を用いて、所定のアプリケーションの処理を実行する。 The application unit 224 executes the processing of a predetermined application. At this time, the application unit 224 executes the processing of a predetermined application by using the data signal acquired by the data channel reception processing unit 223.
 次いで、上記のように構成された基地局装置100及び端末装置200の動作について、図3、4に示すフロー図を参照しながら説明する。図3は、実施の形態1に係る基地局装置100の動作を示すフロー図である。 Next, the operations of the base station device 100 and the terminal device 200 configured as described above will be described with reference to the flow charts shown in FIGS. 3 and 4. FIG. 3 is a flow chart showing the operation of the base station apparatus 100 according to the first embodiment.
 基地局装置100においては、スケジューリング部121によって下り回線のスケジューリングが実行される(ステップS101)。すなわち、Uバンド内の複数のCCそれぞれの無線リソースを、端末装置200を含む複数の端末装置宛ての信号に割り当てる下り回線のスケジューリングが実行される。スケジューリングでは、各端末装置宛ての信号に適用される符号化率及び変調方式などが決定される。 In the base station apparatus 100, the scheduling unit 121 executes the scheduling of the downlink (step S101). That is, downlink scheduling is executed in which the radio resources of each of the plurality of CCs in the U band are allocated to signals addressed to the plurality of terminal devices including the terminal device 200. In scheduling, the coding rate and modulation method applied to the signal addressed to each terminal device are determined.
 スケジューリングの結果は、制御チャネル生成部122、データチャネル生成部123及び送信状態情報生成部124へ通知される。そして、制御チャネル生成部122によって、データ信号の宛先となる端末装置、データ信号が割り当てられる無線リソース、及びデータ信号の符号化率と変調方式などを特定する下り回線の制御情報を含む制御チャネルがCCごとに生成される(ステップS102)。 The scheduling result is notified to the control channel generation unit 122, the data channel generation unit 123, and the transmission status information generation unit 124. Then, the control channel generation unit 122 provides a control channel including a terminal device to which the data signal is destined, a radio resource to which the data signal is assigned, and downlink control information that specifies the coding rate and modulation method of the data signal. It is generated for each CC (step S102).
 また、データチャネル生成部123によって、スケジューリングによって無線リソースが割り当てられた端末装置宛ての送信データが符号化及び変調され、CCごとのデータチャネルが生成される(ステップS103)。 Further, the data channel generation unit 123 encodes and modulates the transmission data addressed to the terminal device to which the radio resource is allocated by scheduling, and a data channel for each CC is generated (step S103).
 一方、LBT処理部140によってUバンドのLBT処理が実行され、Uバンド内にアイドル状態のCCがあるか否かが監視される(ステップS104)。この結果、すべてのCCがビジー状態である間は(ステップS104No)、いずれかのCCがアイドル状態になるまでLBT処理が繰り返される。そして、少なくとも1つのCCがアイドル状態になると(ステップS104Yes)、LBT処理の結果が送信状態情報生成部124及びマッピング部125へ通知される。 On the other hand, the LBT processing unit 140 executes the U-band LBT processing, and monitors whether or not there is an idle CC in the U-band (step S104). As a result, while all CCs are busy (step S104No), the LBT process is repeated until any CC is idle. Then, when at least one CC is in the idle state (step S104Yes), the result of the LBT process is notified to the transmission state information generation unit 124 and the mapping unit 125.
 LBT処理の結果が通知されると、送信状態情報生成部124によって、Uバンド内のCCごとの下り回線の送信状態を示す送信状態情報が生成される(ステップS105)。送信状態情報には、各CCが下り回線の信号の送信に使用されるか否かを示す情報が含まれる。したがって、送信状態情報には、LBT処理の結果ビジー状態と判断され、送信に使用されないCCに関する情報も含まれる。このような送信状態情報は、例えばCCを識別する番号と送信の有無とを対応付ける情報を含むとともに、各CCによる送信の有無が変化せずに継続する時間(例えばスロット数)の情報を含んでいても良い。生成された送信状態情報は、マッピング部125へ出力される。 When the result of the LBT processing is notified, the transmission status information generation unit 124 generates transmission status information indicating the transmission status of the downlink for each CC in the U band (step S105). The transmission status information includes information indicating whether or not each CC is used for transmitting a downlink signal. Therefore, the transmission status information also includes information about the CC that is determined to be busy as a result of the LBT processing and is not used for transmission. Such transmission status information includes, for example, information for associating a number identifying a CC with the presence / absence of transmission, and also includes information on a time (for example, the number of slots) in which the presence / absence of transmission by each CC does not change. You may stay. The generated transmission status information is output to the mapping unit 125.
 そして、マッピング部125によって、制御チャネル、データチャネル及び送信状態情報のマッピングが実行される(ステップS106)。ここでは、LBT処理によってアイドル状態と判断されたCCのサーチスペースに制御チャネル及び送信状態情報がマッピングされる。また、スケジューリングによる無線リソースの割り当てに従って、アイドル状態のCCの無線リソースに、各端末装置宛てのデータチャネルがマッピングされる。このようなマッピングにより、基地局装置100の送信信号が生成される。そして、送信信号は、無線通信部130によって所定の無線送信処理が施された後、アンテナから送信される(ステップS107)。 Then, the mapping unit 125 executes mapping of the control channel, the data channel, and the transmission state information (step S106). Here, the control channel and the transmission state information are mapped to the search space of the CC determined to be in the idle state by the LBT process. Further, according to the allocation of the radio resource by scheduling, the data channel addressed to each terminal device is mapped to the radio resource of the CC in the idle state. By such mapping, the transmission signal of the base station apparatus 100 is generated. Then, the transmission signal is transmitted from the antenna after being subjected to a predetermined wireless transmission process by the wireless communication unit 130 (step S107).
 このように、基地局装置100によって、CCごとの送信の有無を示す送信状態情報がアイドル状態のCCのサーチスペースに配置されて送信される。このため、送信状態情報を受信する端末装置200は、CCごとの送信の有無を把握することができ、送信に使用されていないCCのサーチスペースのサーチを省略することが可能となる。 In this way, the base station apparatus 100 arranges and transmits the transmission status information indicating the presence or absence of transmission for each CC in the search space of the CC in the idle state. Therefore, the terminal device 200 that receives the transmission status information can grasp the presence or absence of transmission for each CC, and can omit the search of the search space of the CC that is not used for the transmission.
 図4は、実施の形態1に係る端末装置200の動作を示すフロー図である。 FIG. 4 is a flow chart showing the operation of the terminal device 200 according to the first embodiment.
 基地局装置100から送信された信号は、アンテナを介して無線通信部210によって受信される。この受信信号には、送信状態情報が含まれる(ステップS201)。すなわち、受信されたCCのサーチスペースには、送信状態情報が含まれる。そこで、制御チャネルサーチ部221によって、Uバンド内のCCごとのサーチスペースがサーチされ、送信状態情報と端末装置200宛ての制御チャネルとが検出される。ここでは、Uバンド内の各CCが信号の送信に使用されているか否か不明であるため、端末装置200が使用するすべてのCCのサーチスペースがサーチされる。この結果、信号の送信に使用されたCCのサーチスペースから、送信状態情報及び制御チャネルが検出される。 The signal transmitted from the base station device 100 is received by the wireless communication unit 210 via the antenna. The received signal includes transmission state information (step S201). That is, the received CC search space includes transmission status information. Therefore, the control channel search unit 221 searches the search space for each CC in the U band, and detects the transmission state information and the control channel addressed to the terminal device 200. Here, since it is unknown whether or not each CC in the U band is used for signal transmission, the search spaces of all CCs used by the terminal device 200 are searched. As a result, the transmission status information and the control channel are detected from the search space of the CC used for transmitting the signal.
 送信状態情報には、各CCが送信に使用されるか否かが示されているため、次回以降のサーチスペースにおいては、制御チャネルサーチ部221によって、送信に使用されるCCのサーチスペースのサーチのみが実行される。換言すれば、送信に使用されないCCのサーチスペースについては、サーチが省略される。このため、無駄なサーチが実行されることがなく、端末装置200の処理負荷を低減し、消費電力を削減することができる。このように、送信状態情報は、CCごとのサーチスペースの監視が必要か否かを示す情報であり、送信に使用されないCCについてはサーチスペースの監視が不要であることを端末装置200へ通知する。 Since the transmission status information indicates whether or not each CC is used for transmission, the control channel search unit 221 searches the search space of the CC used for transmission in the search space from the next time onward. Only run. In other words, the search is omitted for the CC search space that is not used for transmission. Therefore, unnecessary search is not executed, the processing load of the terminal device 200 can be reduced, and the power consumption can be reduced. In this way, the transmission status information is information indicating whether or not monitoring of the search space for each CC is necessary, and notifies the terminal device 200 that monitoring of the search space is not necessary for CCs that are not used for transmission. ..
 送信に使用されるCCのサーチスペースのサーチにより、制御チャネルサーチ部221によって、制御チャネルが検出される(ステップS202)。検出された制御チャネルは、制御チャネル復号部222によって復号される(ステップS203)。制御チャネルには、端末装置200宛てのデータ信号が割り当てられた無線リソースを特定する情報と、データ信号の符号化率及び変調方式を特定する情報とが含まれる。これらの情報は、データチャネル受信処理部223へ通知される。 The control channel is detected by the control channel search unit 221 by searching the search space of the CC used for transmission (step S202). The detected control channel is decoded by the control channel decoding unit 222 (step S203). The control channel includes information for identifying the radio resource to which the data signal addressed to the terminal device 200 is assigned, and information for specifying the coding rate and the modulation method of the data signal. This information is notified to the data channel reception processing unit 223.
 そして、データチャネル受信処理部223によって、制御チャネルによって特定される無線リソースからデータ信号を取得する受信処理が実行される(ステップS204)。具体的には、制御チャネルによって特定される符号化率及び変調方式に応じて、データチャネルの復調及び復号が実行されることにより、データ信号が取得される。取得されたデータ信号は、アプリケーション部224へ出力され、アプリケーションの処理に利用される。 Then, the data channel reception processing unit 223 executes a reception process for acquiring a data signal from the radio resource specified by the control channel (step S204). Specifically, the data signal is acquired by executing the demodulation and decoding of the data channel according to the coding rate and the modulation method specified by the control channel. The acquired data signal is output to the application unit 224 and used for application processing.
 このように、端末装置200によって、受信された送信状態情報が参照され、送信に使用されていないCCのサーチスペースに対するサーチが省略される。このため、端末装置200は、不要なサーチによる処理負荷を低減し、消費電力を削減することができる。 In this way, the terminal device 200 refers to the received transmission status information, and the search for the CC search space that is not used for transmission is omitted. Therefore, the terminal device 200 can reduce the processing load due to unnecessary search and reduce the power consumption.
 次に、実施の形態1に係るUバンドを用いた通信方法について、具体的に図5を参照しながら説明する。図5は、Uバンドにおける無線リソースの使用状況の具体例を示す図である。 Next, the communication method using the U band according to the first embodiment will be specifically described with reference to FIG. FIG. 5 is a diagram showing a specific example of the usage status of the radio resource in the U band.
 図5に示すように、Uバンド内にはCC#1、#2の2つのCCが含まれ、これらのCC#1、#2は、端末装置200が使用可能なCCであるものとする。基地局装置100が端末装置200へ信号を送信する際には、CC#1、#2のLBT処理が実行される。ここでは、CC#1においては、ビジー状態の期間301が経過した後、アイドル状態の期間302が継続し、CC#2においては、ビジー状態の期間301が継続している。このため、基地局装置100は、アイドル状態となったCC#1を使用して端末装置200へ信号を送信する。すなわち、基地局装置100は、CC#1において、所定の送信開始タイミングからバースト信号310を送信する。また、基地局装置100は、CC#2においてはビジー状態が継続しているため、信号を送信しない。 As shown in FIG. 5, two CCs CC # 1 and # 2 are included in the U band, and it is assumed that these CCs # 1 and # 2 are CCs that can be used by the terminal device 200. When the base station apparatus 100 transmits a signal to the terminal apparatus 200, the LBT processing of CC # 1 and # 2 is executed. Here, in CC # 1, after the busy state period 301 elapses, the idle state period 302 continues, and in CC # 2, the busy state period 301 continues. Therefore, the base station device 100 transmits a signal to the terminal device 200 using the idle CC # 1. That is, the base station apparatus 100 transmits the burst signal 310 in CC # 1 from a predetermined transmission start timing. Further, the base station apparatus 100 does not transmit a signal because the busy state continues in CC # 2.
 バースト信号310は、例えばスロット#1~#3の3つのスロットを含む。スロット#1は1つのミニスロットを含む一方、スロット#2、#3は2つのミニスロットを含む。ミニスロットは、信号の送信開始が可能なタイミングに一致しており、LBT処理の結果、アイドル状態の期間302が所定時間以上継続すると、直近のミニスロットから信号の送信が開始される。このため、アイドル状態の期間302が発生するタイミングによっては、スロット#1がミニスロットを1つしか含まず、フルサイズのスロット#2、#3よりも短いスロットとなる。なお、ここではフルサイズのスロットが2つのミニスロットを含むものとしたが、フルサイズのスロットが3つ以上のミニスロットを含むようにしても良い。 The burst signal 310 includes, for example, three slots # 1 to # 3. Slot # 1 contains one minislot, while slots # 2 and # 3 contain two minislots. The mini-slot coincides with the timing at which signal transmission can be started, and as a result of the LBT processing, when the idle period 302 continues for a predetermined time or longer, signal transmission is started from the nearest mini-slot. Therefore, depending on the timing at which the idle period 302 occurs, slot # 1 includes only one mini slot, which is shorter than full-size slots # 2 and # 3. Although the full-size slot includes two mini-slots here, the full-size slot may include three or more mini-slots.
 ミニスロットの先頭にはサーチスペースが配置される。このため、CC#1の送信開始が可能なタイミングには、サーチスペース321が周期的に存在し、CC#2の送信開始が可能なタイミングには、サーチスペース322が周期的に存在する。端末装置200は、これらのサーチスペース321、322をサーチすることにより、端末装置200宛ての信号がそれぞれのCCによって送信されているか否かを判断する。 A search space is placed at the beginning of the mini slot. Therefore, the search space 321 periodically exists at the timing when the transmission of CC # 1 can be started, and the search space 322 periodically exists at the timing when the transmission of CC # 2 can be started. By searching these search spaces 321 and 322, the terminal device 200 determines whether or not a signal addressed to the terminal device 200 is transmitted by each CC.
 バースト信号310の各スロットの先頭のサーチスペースには、制御チャネル311がマッピングされている。このため、端末装置200は、スロット#1の先頭の制御チャネル311を復号することにより、CC#1において端末装置200宛ての信号が送信されるか否かを判断することができる。また、スロット#1、#3の先頭のサーチスペースには、送信状態情報312がマッピングされている。このように、送信状態情報312は、必ずしもすべてのミニスロットのサーチスペースにマッピングされなくても良い。また、送信状態情報312の生成に関する処理時間が比較的短時間であり、送信状態情報312の生成がバースト信号310の先頭のサーチスペースに間に合えば、送信状態情報312が先頭のサーチスペースのみにマッピングされるようにしても良い。同様に、送信状態情報312の生成がバースト信号310の2番目のスロットの先頭のサーチスペースに間に合えば、送信状態情報312がこのサーチスペースのみにマッピングされるようにしても良い。さらに、バースト信号310の送信中に、送信状態情報312が周期的にサーチスペースにマッピングされるようにしても良い。 The control channel 311 is mapped to the search space at the beginning of each slot of the burst signal 310. Therefore, the terminal device 200 can determine whether or not a signal addressed to the terminal device 200 is transmitted in CC # 1 by decoding the control channel 311 at the head of slot # 1. Further, the transmission status information 312 is mapped to the search space at the head of slots # 1 and # 3. As described above, the transmission state information 312 does not necessarily have to be mapped to the search spaces of all the mini slots. Further, if the processing time for generating the transmission status information 312 is relatively short and the generation of the transmission status information 312 is in time for the search space at the beginning of the burst signal 310, the transmission status information 312 is mapped only to the search space at the beginning. It may be done. Similarly, if the generation of the transmission state information 312 is in time for the search space at the beginning of the second slot of the burst signal 310, the transmission state information 312 may be mapped only to this search space. Further, the transmission state information 312 may be periodically mapped to the search space during the transmission of the burst signal 310.
 送信状態情報312には、CC#1が送信に使用され、CC#2が送信に使用されないことを示す情報が含まれる。このため、スロット#1の送信状態情報312を受信した端末装置200は、CC#2の以降のサーチスペース323に対するサーチを省略することができる。すなわち、下り回線の信号の送信に使用されていないCC#2のサーチスペース323に対するサーチを省略することができ、端末装置200の処理負荷を低減し、消費電力を削減することができる。 The transmission status information 312 includes information indicating that CC # 1 is used for transmission and CC # 2 is not used for transmission. Therefore, the terminal device 200 that has received the transmission state information 312 in slot # 1 can omit the search for the search space 323 after CC # 2. That is, the search for the search space 323 of CC # 2, which is not used for transmitting the downlink signal, can be omitted, the processing load of the terminal device 200 can be reduced, and the power consumption can be reduced.
 次に、送信状態情報の具体例について説明する。図6~8は、実施の形態1に係る送信状態情報の具体例を示す図である。 Next, a specific example of transmission status information will be described. 6 to 8 are diagrams showing specific examples of transmission state information according to the first embodiment.
 送信状態情報は、例えば図6に示すように、端末装置ごとに使用する可能性があるCCの識別情報である「個別CC番号」に、それぞれのCCが送信に使用されるか否かを示す「送信有無」を対応付けている。図6に示す例では、例えば「0」が送信に使用されるCCであることを示し、「1」が送信に使用されないCCであることを示す。したがって、CC#1、CC#2は下り回線の信号の送信に使用され、CC#3は下り回線の信号の送信に使用されない。さらに、送信状態情報は、上記の送信有無の状態が継続するスロット数を示す「継続スロット」の情報を含む。したがって、図6に示す送信状態情報を受信する端末装置は、送信状態情報を受信してから2スロットの間、CC#3のサーチスペースに対するサーチを省略することができる。 As shown in FIG. 6, for example, the transmission status information indicates whether or not each CC is used for transmission in the "individual CC number" which is the identification information of the CC that may be used for each terminal device. "Presence / absence of transmission" is associated. In the example shown in FIG. 6, for example, "0" indicates a CC used for transmission, and "1" indicates a CC not used for transmission. Therefore, CC # 1 and CC # 2 are used for transmitting downlink signals, and CC # 3 is not used for transmitting downlink signals. Further, the transmission status information includes information on "continuation slots" indicating the number of slots in which the above-mentioned transmission presence / absence state continues. Therefore, the terminal device that receives the transmission status information shown in FIG. 6 can omit the search for the search space of CC # 3 for two slots after receiving the transmission status information.
 なお、図6においては、送信有無の情報と継続スロットの情報とを別々に設けるものとしたが、送信有無の情報の代わりに、CCが下り回線の信号の送信に使用されない連続スロット数を示す「非使用スロット数」が個別CC番号に対応付けられても良い。すなわち、非使用スロット数として「0」が対応付けられるCCは、下り回線の信号の送信に使用され、非使用スロット数として「1」が対応付けられるCCは、1スロットの間は下り回線の信号の送信に使用されない。同様に、非使用スロット数として「2」が対応付けられるCCは、2スロットの間は下り回線の信号の送信に使用されず、非使用スロット数として「3」が対応付けられるCCは、3スロットの間は下り回線の信号の送信に使用されない。このように、「個別CC番号」と「非使用スロット数」を対応付けた送信状態情報とすることも可能である。 In FIG. 6, the transmission presence / absence information and the continuation slot information are provided separately, but instead of the transmission presence / absence information, the CC shows the number of continuous slots in which the downlink signal is not transmitted. The "number of unused slots" may be associated with the individual CC number. That is, the CC associated with "0" as the number of unused slots is used for transmitting the signal of the downlink, and the CC associated with "1" as the number of unused slots is the downlink line between one slot. Not used for signal transmission. Similarly, a CC to which "2" is associated with the number of unused slots is not used for transmitting downlink signals between the two slots, and a CC to which "3" is associated with the number of unused slots is 3. It is not used to transmit downlink signals between slots. In this way, it is also possible to provide transmission status information in which the "individual CC number" and the "number of unused slots" are associated with each other.
 また、送信状態情報は、例えば図7に示すように、Uバンド内のCCの識別情報である「共通CC番号」に、それぞれのCCが送信に使用されるか否かを示す「送信有無」を対応付けていても良い。すなわち、端末装置はUバンド内のいずれかのCCを使用するが、端末装置によって使用するCCは異なるため、同一周波数のCCに対する端末装置ごとの個別CC番号は異なることがある。そこで、Uバンド内のそれぞれのCCに、CCを使用する端末装置に関わらない共通CC番号を付与し、共通CC番号と送信有無が対応付けられても良い。 Further, as shown in FIG. 7, for example, the transmission status information is a "common CC number" which is identification information of CCs in the U band, and a "transmission presence / absence" indicating whether or not each CC is used for transmission. May be associated with each other. That is, the terminal device uses any CC in the U band, but since the CC used differs depending on the terminal device, the individual CC number for each terminal device for the CC of the same frequency may be different. Therefore, a common CC number that is not related to the terminal device that uses the CC may be assigned to each CC in the U band, and the common CC number may be associated with the presence / absence of transmission.
 この場合、端末装置は、共通CC番号と個別CC番号の対応関係をあらかじめ保持しており、この対応関係を参照して、自装置が使用する可能性があるCCの送信有無を把握することができる。共通CC番号と個別CC番号の対応関係は、例えばRRC(Radio Resource Control)メッセージとして、あらかじめ基地局装置から端末装置へ通知されても良い。図7に示す送信状態情報を受信する端末装置は、CC#1、#5が使用する可能性があるCCである場合に、これらのCCのサーチスペースに対するサーチを省略することができる。 In this case, the terminal device holds in advance the correspondence between the common CC number and the individual CC number, and it is possible to grasp whether or not the CC that may be used by the own device is transmitted by referring to this correspondence. it can. The correspondence between the common CC number and the individual CC number may be notified in advance from the base station device to the terminal device as, for example, an RRC (Radio Resource Control) message. When the terminal device that receives the transmission state information shown in FIG. 7 is a CC that CCs # 1 and # 5 may use, the search for the search space of these CCs can be omitted.
 さらに、送信状態情報は、例えば図8に示すように、送信に使用されるか否かを示す送信有無のみではなく、CCごとに3つ以上の状態のいずれかの状態を特定する「送信状態」の情報を含んでも良い。具体的には、例えば図8に示す例では、CCが下り回線の信号の送信に使用されていることを示す「0」、CCがLBT処理中であることを示す「1」、CCが上り回線の信号の受信に使用されていることを示す「2」、及びこれらのいずれの状態でもないことを示す「3」がCCごとの送信状態として示されている。 Further, as shown in FIG. 8, for example, the transmission status information is not only the presence / absence of transmission indicating whether or not it is used for transmission, but also the “transmission status” that specifies one of three or more states for each CC. Information may be included. Specifically, for example, in the example shown in FIG. 8, "0" indicating that CC is used for transmitting downlink signals, "1" indicating that CC is undergoing LBT processing, and CC being upstream. "2" indicating that it is used for receiving the signal of the line and "3" indicating that it is not in any of these states are shown as transmission states for each CC.
 送信状態が「0」であるCCについては、下り回線の信号が送信中であるため、端末装置は、このCCに関して、信号中の制御チャネルが配置される可能性があるサーチスペースをサーチすれば良いと判断することができる。制御チャネルが配置される可能性があるサーチスペースとは、例えば各スロットの先頭のサーチスペースである。 For a CC whose transmission state is "0", the downlink signal is being transmitted, so if the terminal device searches for a search space in which the control channel in the signal may be arranged with respect to this CC. It can be judged to be good. The search space in which the control channel may be arranged is, for example, the search space at the beginning of each slot.
 また、送信状態が「1」であるCCについては、現在は下り回線の信号が送信されていないものの、LBT処理の結果によっては信号の送信が開始される可能性があるため、端末装置は、このCCに関して、送信開始が可能なタイミングのサーチスペースをサーチすれば良いと判断することができる。送信開始が可能なタイミングのサーチスペースとは、例えばミニスロットの先頭に対応するタイミングのサーチスペースである。 Further, for the CC whose transmission state is "1", although the downlink signal is not currently transmitted, the signal transmission may be started depending on the result of the LBT processing. With respect to this CC, it can be determined that the search space at the timing at which transmission can be started should be searched. The search space at the timing when transmission can be started is, for example, the search space at the timing corresponding to the beginning of the mini slot.
 送信状態が「2」又は「3」であるCCについては、下り回線の信号の送信に使用されることがないため、端末装置は、これらのCCに関して、サーチスペースのサーチを省略することができる。また、送信状態が「3」のCCに関しては、上り回線の通信にも使用されていないため、端末装置は、例えばこのCCの受信電力を測定することにより、他の無線通信システムからの干渉電力を測定することが可能である。 Since the CCs whose transmission state is "2" or "3" are not used for transmitting downlink signals, the terminal device can omit the search of the search space for these CCs. .. Further, since the CC whose transmission state is "3" is not used for uplink communication, the terminal device measures the received power of this CC, for example, to obtain interference power from another wireless communication system. It is possible to measure.
 以上のように、本実施の形態によれば、Uバンド内のCCそれぞれが下り回線の信号の送信に使用されるか否かを示す送信状態情報が基地局装置から端末装置へ送信され、送信状態情報を受信する端末装置は、送信に使用されないCCにおけるサーチスペースのサーチを省略する。このため、端末装置は、不要なサーチによる処理負荷を低減し、消費電力を削減することができる。 As described above, according to the present embodiment, transmission status information indicating whether or not each CC in the U band is used for transmitting downlink signals is transmitted from the base station device to the terminal device and transmitted. The terminal device that receives the status information omits the search of the search space in the CC that is not used for transmission. Therefore, the terminal device can reduce the processing load due to unnecessary search and reduce the power consumption.
(実施の形態2)
 実施の形態2の特徴は、SFI(Slot Format Indicator)を用いて送信状態情報を送信する点である。
(Embodiment 2)
The feature of the second embodiment is that the transmission state information is transmitted by using SFI (Slot Format Indicator).
 実施の形態2に係る基地局装置及び端末装置の構成は、実施の形態1に係る基地局装置100(図1)及び端末装置200(図2)と同様であるため、その説明を省略する。実施の形態2においては、送信状態情報が実施の形態1とは異なる。 Since the configurations of the base station device and the terminal device according to the second embodiment are the same as those of the base station device 100 (FIG. 1) and the terminal device 200 (FIG. 2) according to the first embodiment, the description thereof will be omitted. In the second embodiment, the transmission state information is different from that of the first embodiment.
 無線通信システムでは、スロットごとのフォーマットが指定され、指定されたフォーマットに従って基地局装置及び端末装置が通信を行うことがある。図9は、スロットのフォーマットに対応するSFIの具体例を示す図である。図9においては、1つのスロットに含まれる14個のシンボルそれぞれが下り回線及び上り回線のどちらの通信に用いられるかを定義するフォーマットごとのSFIが示されている。各フォーマットにおいて、「D」で示されるシンボルは下り回線の通信に用いられ、「U」で示されるシンボルは上り回線の通信に用いられ、「F」で示されるシンボルは下り回線又は上り回線の通信に用いられるか、又は下り回線から上り回線へ通信を切り替えるための時間として用いられる。 In the wireless communication system, the format for each slot is specified, and the base station device and the terminal device may communicate according to the specified format. FIG. 9 is a diagram showing a specific example of SFI corresponding to the slot format. In FIG. 9, an SFI for each format that defines whether each of the 14 symbols contained in one slot is used for downlink or uplink communication is shown. In each format, the symbol indicated by "D" is used for downlink communication, the symbol indicated by "U" is used for uplink communication, and the symbol indicated by "F" is for downlink or uplink communication. It is used for communication or as time to switch communication from downlink to uplink.
 例えばSFI「0」のフォーマットでは、1スロットに含まれる14個のシンボルすべてが下り回線の通信に用いられ、SFI「3」のフォーマットでは、1スロットに含まれる最初の13個のシンボルが下り回線の通信に用いられ、末尾の1個のシンボルは状況に応じて下り回線の通信に用いられるか、又は下り回線から上り回線への通信の切り替え時間として用いられる。基地局装置は、どのフォーマットを使用するかを決定し、例えば制御チャネルを用いて、決定したフォーマットを端末装置へ通知する。そして、基地局装置及び端末装置は、決定されたフォーマットのスロットによって通信を行う。すなわち、基地局装置は、「D」又は「F」で示されるシンボルで信号を送信し、端末装置は、「U」又は「F」で示されるシンボルで信号を送信する。 For example, in the SFI "0" format, all 14 symbols contained in one slot are used for downlink communication, and in the SFI "3" format, the first 13 symbols contained in one slot are used for downlink communication. The one symbol at the end is used for downlink communication depending on the situation, or is used as the switching time of communication from downlink to uplink. The base station apparatus determines which format to use, and notifies the terminal apparatus of the determined format using, for example, a control channel. Then, the base station device and the terminal device communicate with each other through the slots of the determined format. That is, the base station device transmits the signal with the symbol represented by "D" or "F", and the terminal device transmits the signal with the symbol represented by "U" or "F".
 なお、図9においては、SFI「0」~「55」のフォーマットが定義されているが、SFI「56」~「254」のフォーマットは未定義であり、予備のSFIとなっている。また、SFI「255」は、SFIによってフォーマットを指定しないことを意味する。この場合、端末装置は、例えばRRCによってあらかじめ設定されたフォーマットを用いるか、又は個別のリソース割り当てに関するPDCCHに従って動作する。 Note that in FIG. 9, the formats of SFI "0" to "55" are defined, but the formats of SFI "56" to "254" are undefined and are spare SFIs. Further, SFI "255" means that the format is not specified by SFI. In this case, the terminal device uses, for example, a format preset by the RRC or operates according to the PDCCH for individual resource allocation.
 実施の形態2においては、SFIを用いて送信状態情報が生成される。換言すれば、送信状態情報は、SFIを通知する制御情報に含まれて送信される。具体的には、例えば図10に示す送信状態情報が生成され、基地局装置から端末装置へ送信される。図10においては、端末装置ごとに使用する可能性があるCCの識別情報である「個別CC番号」及び各CC内のスロットの識別情報である「スロット番号」に、それぞれのスロットのSFIが対応付けられている。 In the second embodiment, transmission status information is generated using SFI. In other words, the transmission status information is included in the control information for notifying the SFI and transmitted. Specifically, for example, the transmission state information shown in FIG. 10 is generated and transmitted from the base station device to the terminal device. In FIG. 10, the SFI of each slot corresponds to the “individual CC number” which is the CC identification information that may be used for each terminal device and the “slot number” which is the identification information of the slots in each CC. It is attached.
 図10に示す例では、CC#1のスロット#1~#3は、それぞれSFI「0」、「5」、「1」である。したがって、CC#1においては、スロット#1の14シンボルが下り回線の通信に用いられ、スロット#2の最初の11シンボルが下り回線の通信に用いられ残りの3シンボルが下り回線又は上り回線の通信に用いられ、スロット#3の14シンボルが上り回線の通信に用いられる。送信状態情報は、基地局装置から端末装置へ送信されるため、図10に示す送信状態情報は、CC#1のスロット#1又はスロット#2の下り回線の通信に用いられるシンボルで送信される。 In the example shown in FIG. 10, the slots # 1 to # 3 of CC # 1 are SFI "0", "5", and "1", respectively. Therefore, in CC # 1, the 14 symbols of slot # 1 are used for downlink communication, the first 11 symbols of slot # 2 are used for downlink communication, and the remaining 3 symbols are for downlink or uplink communication. It is used for communication, and the 14 symbols of slot # 3 are used for uplink communication. Since the transmission status information is transmitted from the base station device to the terminal device, the transmission status information shown in FIG. 10 is transmitted with a symbol used for downlink communication in slot # 1 or slot # 2 of CC # 1. ..
 一方、CC#2のスロット#1~#3は、いずれもSFI「1」である。SFI「1」は、スロット内のすべてのシンボルが上り回線の通信に用いられることを示しており、スロットが下り回線の信号の送信に使用されないことを示す。このため、基地局装置は、例えばLBT処理の結果、CC#2がビジー状態で下り回線の信号の送信に使用されない場合に、CC#2のすべてのスロットのSFIを「1」として、送信状態情報を生成する。つまり、基地局装置は、CC#2のスロット#1~#3において実際に上り回線の通信が行われるか否かに関わらず、CC#2のサーチスペースのサーチが不要であることを通知するために、各スロットのSFIを「1」とした送信状態情報を生成する。このような送信状態情報を受信する端末装置は、上り回線の通信に用いられることを示すSFI「1」のスロットにおいて、サーチスペースのサーチを省略する。 On the other hand, slots # 1 to # 3 of CC # 2 are all SFI "1". SFI "1" indicates that all symbols in the slot are used for uplink communication and that the slot is not used for downlink signal transmission. Therefore, for example, when CC # 2 is busy and is not used for transmitting downlink signals as a result of LBT processing, the base station apparatus sets the SFI of all slots of CC # 2 to "1" and sets the transmission state. Generate information. That is, the base station apparatus notifies that the search of the search space of CC # 2 is unnecessary regardless of whether or not the uplink communication is actually performed in the slots # 1 to # 3 of CC # 2. Therefore, the transmission state information in which the SFI of each slot is set to "1" is generated. The terminal device that receives such transmission state information omits the search of the search space in the slot of SFI "1" indicating that it is used for uplink communication.
 図11は、Uバンドにおける無線リソースの使用状況の具体例を示す図である。図11において、図5と同じ部分には同じ符号を付す。 FIG. 11 is a diagram showing a specific example of the usage status of wireless resources in the U band. In FIG. 11, the same parts as those in FIG. 5 are designated by the same reference numerals.
 図11に示すように、Uバンド内にはCC#1、#2の2つのCCが含まれ、これらのCC#1、#2は、端末装置が使用可能なCCであるものとする。基地局装置が端末装置へ信号を送信する際には、CC#1、#2のLBT処理が実行される。ここでは、CC#1においては、ビジー状態の期間301が経過した後、アイドル状態の期間302が継続し、CC#2においては、ビジー状態の期間301が継続している。このため、基地局装置は、アイドル状態となったCC#1を使用して端末装置へ信号を送信する。すなわち、基地局装置は、CC#1において、所定の送信開始タイミングからバースト信号を送信する。また、基地局装置は、CC#2においてはビジー状態が継続しているため、信号を送信しない。 As shown in FIG. 11, two CCs CC # 1 and # 2 are included in the U band, and it is assumed that these CCs # 1 and # 2 are CCs that can be used by the terminal device. When the base station device transmits a signal to the terminal device, the LBT processing of CC # 1 and # 2 is executed. Here, in CC # 1, after the busy state period 301 elapses, the idle state period 302 continues, and in CC # 2, the busy state period 301 continues. Therefore, the base station apparatus uses the idle CC # 1 to transmit a signal to the terminal apparatus. That is, the base station apparatus transmits a burst signal from a predetermined transmission start timing in CC # 1. Further, the base station apparatus does not transmit a signal because the busy state continues in CC # 2.
 バースト信号に含まれる各スロットの先頭のサーチスペースには、制御チャネル311がマッピングされている。また、スロット#1の先頭のサーチスペースには、送信状態情報312がマッピングされている。この送信状態情報312は、上述したようにSFIを用いて、各CCのスロットが下り回線の信号の送信に使用されるか否かを示している。すなわち、図10に示したように、CC#1のスロット#1~#3はSFI「0」、「5」、「1」に対応するため、CC#1のスロット#1は下り回線の通信に用いられ、スロット#2は下り回線の通信、及び下り回線から上り回線への通信の切り替え時間として用いられ、スロット#3は上り回線の通信に用いられる。なお、スロット#3は上り回線の通信に用いられるため、端末装置がスロット#3において信号を送信する前には、LBT処理が実行されCC#1がアイドル状態であることが確認される。 The control channel 311 is mapped to the search space at the beginning of each slot included in the burst signal. Further, the transmission state information 312 is mapped to the search space at the head of slot # 1. The transmission state information 312 indicates whether or not the slot of each CC is used for transmitting a downlink signal by using SFI as described above. That is, as shown in FIG. 10, since slots # 1 to # 3 of CC # 1 correspond to SFIs "0", "5", and "1", slot # 1 of CC # 1 is for downlink communication. Slot # 2 is used for downlink communication and switching time for downlink-to-upline communication, and slot # 3 is used for uplink communication. Since slot # 3 is used for uplink communication, it is confirmed that LBT processing is executed and CC # 1 is in an idle state before the terminal device transmits a signal in slot # 3.
 また、図10に示したように、CC#2のスロット#1~#3はいずれもSFI「1」に対応するが、これはCC#2が下り回線の信号の送信に使用されないことを端末装置へ通知するために、基地局装置がSFI「1」を用いて送信状態情報を生成した結果である。このため、実際には、CC#2は上り回線の通信にも使用されていない。端末装置は、CC#2のスロット#1~#3のSFIが「1」であるため、CC#2のスロット#1~#3に対応するサーチスペース330に対するサーチを省略することができる。すなわち、下り回線の信号の送信に使用されていないCC#2のサーチスペース330に対するサーチを省略することができ、端末装置の処理負荷を低減し、消費電力を削減することができる。 Further, as shown in FIG. 10, all of the slots # 1 to # 3 of CC # 2 correspond to SFI "1", which means that CC # 2 is not used for transmitting downlink signals. This is the result of the base station device generating transmission status information using SFI "1" in order to notify the device. Therefore, in reality, CC # 2 is not used for uplink communication. Since the SFI of slots # 1 to # 3 of CC # 2 is "1" in the terminal device, the search for the search space 330 corresponding to slots # 1 to # 3 of CC # 2 can be omitted. That is, the search for the search space 330 of CC # 2, which is not used for transmitting the downlink signal, can be omitted, the processing load of the terminal device can be reduced, and the power consumption can be reduced.
 なお、図11に示した例では、CC#1のスロット#3のSFIも「1」であるため、端末装置は、CC#1のスロット#3に対応するサーチスペースに対しても、サーチを省略することができる。 In the example shown in FIG. 11, since the SFI of slot # 3 of CC # 1 is also "1", the terminal device also searches the search space corresponding to slot # 3 of CC # 1. It can be omitted.
 このように、本実施の形態によれば、基地局装置は、Uバンド内のCCそれぞれが下り回線の信号の送信に使用されるか否かを示す送信状態情報をSFIを用いて生成し、端末装置へ送信する。そして、送信状態情報を受信する端末装置は、下り回線の信号の送信に使用されないCCにおけるサーチスペースのサーチを省略する。このため、端末装置は、不要なサーチによる処理負荷を低減し、消費電力を削減することができる。 As described above, according to the present embodiment, the base station apparatus uses SFI to generate transmission state information indicating whether or not each CC in the U band is used for transmitting a downlink signal. Send to the terminal device. Then, the terminal device that receives the transmission state information omits the search of the search space in the CC that is not used for transmitting the downlink signal. Therefore, the terminal device can reduce the processing load due to unnecessary search and reduce the power consumption.
 なお、上記実施の形態2においては、下り回線の信号の送信に使用されないことを示すSFIとして、スロット内のすべてのシンボルが上り回線の通信に用いられることを示すSFI「1」を利用するものとしたが、これに限定されない。すなわち、例えば下り回線及び上り回線のいずれの通信にも用いられないシンボル「N」を定義した上で、シンボル「N」を含むSFIを新たに定義し、このSFIを利用して送信状態情報が生成されても良い。例えばスロット内のすべてのシンボルがシンボル「N」であるSFIをSFI「254」とすれば、CC#2が送信に使用されない場合の送信状態情報は、図12に示すようなものとすることができる。このように、CCが下り回線の信号の送信に用いられないことだけでなく、上り回線の信号の送信にも用いられないことをSFIによって通知することで、端末装置は、例えばこのCCの受信電力を測定することにより、他の無線通信システムからの干渉電力を測定することが可能である。 In the second embodiment, SFI "1" indicating that all the symbols in the slot are used for uplink communication is used as the SFI indicating that the downlink signal is not transmitted. However, it is not limited to this. That is, for example, after defining the symbol "N" that is not used for both downlink and uplink communication, a new SFI including the symbol "N" is defined, and the transmission status information is obtained using this SFI. It may be generated. For example, if SFI in which all the symbols in the slot are the symbol "N" is SFI "254", the transmission status information when CC # 2 is not used for transmission may be as shown in FIG. it can. In this way, by notifying by SFI that the CC is not used not only for transmitting the downlink signal but also for transmitting the uplink signal, the terminal device can receive, for example, this CC. By measuring the power, it is possible to measure the interference power from another wireless communication system.
 また、上記各実施の形態においては、送信状態情報がUバンド内のCCによって送信されるものとしたが、送信状態情報は、Lバンド内のCCによって送信されても良い。図13は、Lバンド及びUバンドにおける無線リソースの使用状況の具体例を示す図である。図13において、図5と同じ部分には同じ符号を付す。 Further, in each of the above embodiments, the transmission status information is transmitted by the CC in the U band, but the transmission status information may be transmitted by the CC in the L band. FIG. 13 is a diagram showing a specific example of the usage status of radio resources in the L band and the U band. In FIG. 13, the same parts as those in FIG. 5 are designated by the same reference numerals.
 図13に示すように、Lバンド内にはCC#0が含まれ、常時基地局装置と端末装置の間で通信が行われている。CC#0の各スロットの先頭には、制御チャネル401がマッピングされるとともに、UバンドのCC#1、#2に関する送信状態情報402がマッピングされる。制御チャネル401は、CC#0に関するPDCCHなどの制御チャネルである。一方、送信状態情報402は、Uバンド内のCC#1、#2が下り回線の信号の送信に使用されるか否かを示す。ここでは、CC#1が下り回線の通信に使用される一方、CC#2が下り回線の通信に使用されないため、このようなCCごとの送信状態が送信状態情報402によって端末装置へ通知される。CC#0において送信状態情報402を受信した端末装置は、CC#2の以降のサーチスペース411に対するサーチを省略することができる。すなわち、下り回線の信号の送信に使用されていないCC#2のサーチスペース411に対するサーチを省略することができ、端末装置の処理負荷を低減し、消費電力を削減することができる。 As shown in FIG. 13, CC # 0 is included in the L band, and communication is always performed between the base station device and the terminal device. The control channel 401 is mapped to the head of each slot of CC # 0, and the transmission status information 402 regarding CC # 1 and # 2 of the U band is mapped. The control channel 401 is a control channel such as PDCCH related to CC # 0. On the other hand, the transmission state information 402 indicates whether or not CCs # 1 and # 2 in the U band are used for transmitting downlink signals. Here, since CC # 1 is used for downlink communication and CC # 2 is not used for downlink communication, the transmission status for each CC is notified to the terminal device by the transmission status information 402. .. The terminal device that has received the transmission state information 402 in CC # 0 can omit the search for the search space 411 after CC # 2. That is, the search for the search space 411 of CC # 2, which is not used for transmitting the downlink signal, can be omitted, the processing load of the terminal device can be reduced, and the power consumption can be reduced.
 このように、LバンドのCCを用いて送信状態情報を送信する場合には、たとえUバンド内のすべてのCCがビジー状態であっても送信状態情報を送信することができ、端末装置は、Uバンド内のすべてのCCにおけるサーチスペースに対するサーチを省略することができる。 In this way, when the transmission status information is transmitted using the L band CC, the transmission status information can be transmitted even if all the CCs in the U band are busy, and the terminal device can transmit the transmission status information. The search for the search space in all CCs in the U band can be omitted.
 なお、上記各実施の形態においては、CC単位で送信に使用されるか否かが切り替えられるものとしたが、これに限定されない。すなわち、例えばLBTサブバンド単位で送信に使用されるか否かが切り替えられる場合にも、上記各実施の形態において説明した送信状態情報を適用し、端末装置の処理負荷を低減し、消費電力を削減することができる。同様に、CC及びLBTサブバンド以外の周波数帯域を単位として送信の有無が切り替えられる場合にも、上記各実施の形態において説明した送信状態情報を適用することが可能である。また、送信状態情報は、必ずしも個別の端末装置宛てに送信されなくても良く、例えば複数の端末装置宛てのグループ共通PDCCHに送信状態情報が含まれるようにしても良い。 In each of the above embodiments, it is assumed that whether or not it is used for transmission is switched in CC units, but the present invention is not limited to this. That is, for example, even when it is switched whether or not it is used for transmission in units of LBT subbands, the transmission state information described in each of the above embodiments is applied to reduce the processing load of the terminal device and reduce power consumption. It can be reduced. Similarly, when the presence / absence of transmission is switched in units of frequency bands other than the CC and LBT subbands, the transmission state information described in each of the above embodiments can be applied. Further, the transmission status information does not necessarily have to be transmitted to individual terminal devices, and for example, the transmission status information may be included in the group common PDCCH addressed to a plurality of terminal devices.
 110 ネットワークI/F部
 120、220 プロセッサ
 121 スケジューリング部
 122 制御チャネル生成部
 123 データチャネル生成部
 124 送信状態情報生成部
 125 マッピング部
 130、210 無線通信部
 140 LBT処理部
 150、230 メモリ
 221 制御チャネルサーチ部
 222 制御チャネル復号部
 223 データチャネル受信処理部
 224 アプリケーション部
110 Network I / F unit 120, 220 Processor 121 Scheduling unit 122 Control channel generator 123 Data channel generator 124 Transmission status information generator 125 Mapping unit 130, 210 Wireless communication unit 140 LBT processing unit 150, 230 Memory 221 Control channel search Part 222 Control channel decoding part 223 Data channel reception processing part 224 Application part

Claims (7)

  1.  複数の周波数帯域それぞれにおいて自装置宛ての信号が含まれるか否かをサーチするサーチ部と、
     少なくとも無線通信に使用するための免許が不要な第1の周波数帯域の送信状態を示す送信状態情報を、前記第1の周波数帯域とは異なる第2の周波数帯域において受信する受信部とを有し、
     前記サーチ部は、
     前記受信部によって受信された送信状態情報に応じて、下り回線の通信に使用されない第1の周波数帯域に対するサーチを省略する
     ことを特徴とする端末装置。
    A search unit that searches whether or not a signal addressed to the own device is included in each of a plurality of frequency bands,
    It has a receiving unit that receives at least transmission state information indicating a transmission state of a first frequency band that does not require a license for use in wireless communication in a second frequency band different from the first frequency band. ,
    The search unit
    A terminal device characterized in that a search for a first frequency band not used for downlink communication is omitted according to transmission status information received by the receiving unit.
  2.  前記受信部は、
     自装置が使用する周波数帯域の識別情報に、当該周波数帯域が下り回線の通信に使用されるか否かを示す情報が対応付けられた送信状態情報を受信する
     ことを特徴とする請求項1記載の端末装置。
    The receiver
    The first aspect of claim 1, wherein the transmission state information in which the identification information of the frequency band used by the own device is associated with the information indicating whether or not the frequency band is used for downlink communication is received. Terminal device.
  3.  前記受信部は、
     前記複数の周波数帯域それぞれが、下り回線の通信に使用されるか、上り回線の通信に使用されるか、又は、下り回線及び上り回線のいずれの通信にも使用されないかを示す送信状態情報を受信する
     ことを特徴とする請求項1記載の端末装置。
    The receiver
    Transmission status information indicating whether each of the plurality of frequency bands is used for downlink communication, uplink communication, or not for downlink or uplink communication. The terminal device according to claim 1, wherein the terminal device receives the signal.
  4.  前記受信部は、
     前記複数の周波数帯域それぞれが、下り回線の通信に使用中であるか、又は、下り回線の通信に使用開始される可能性があるかを示す送信状態情報を受信する
     ことを特徴とする請求項1記載の端末装置。
    The receiver
    A claim characterized in that each of the plurality of frequency bands receives transmission state information indicating whether it is in use for downlink communication or may be started for downlink communication. 1. The terminal device according to 1.
  5.  複数の周波数帯域それぞれにおいて信号を送信可能な送信部と、
     前記複数の周波数帯域のうち、少なくとも無線通信に使用するための免許が不要な第1の周波数帯域の送信状態を示す送信状態情報を生成する生成部とを有し、
     前記送信部は、
     前記生成部によって生成された送信状態情報を、前記第1の周波数帯域とは異なる第2の周波数帯域において送信する
     ことを特徴とする基地局装置。
    A transmitter that can transmit signals in each of multiple frequency bands,
    It has a generator that generates transmission state information indicating the transmission state of at least the first frequency band that does not require a license to be used for wireless communication among the plurality of frequency bands.
    The transmitter
    A base station apparatus characterized in that transmission state information generated by the generation unit is transmitted in a second frequency band different from the first frequency band.
  6.  前記第1の周波数帯域が他の装置によって使用中であるか否かを判定する判定部をさらに有し、
     前記生成部は、
     前記判定部によって前記第1の周波数帯域が使用中であると判定された場合に、前記第1の周波数帯域において下り回線の信号が送信されないことを示す送信状態情報を生成する
     ことを特徴とする請求項5記載の基地局装置。
    It further has a determination unit for determining whether or not the first frequency band is in use by another device.
    The generator
    When the determination unit determines that the first frequency band is in use, it is characterized in that it generates transmission state information indicating that a downlink signal is not transmitted in the first frequency band. The base station apparatus according to claim 5.
  7.  基地局装置と端末装置とを有する無線通信システムであって、
     前記基地局装置は、
     複数の周波数帯域それぞれにおいて信号を送信可能な送信部と、
     前記複数の周波数帯域のうち、少なくとも無線通信に使用するための免許が不要な第1の周波数帯域の送信状態を示す送信状態情報を生成する生成部とを有し、
     前記送信部は、
     前記生成部によって生成された送信状態情報を、前記第1の周波数帯域とは異なる第2の周波数帯域において送信し、
     前記端末装置は、
     前記複数の周波数帯域それぞれにおいて自装置宛ての信号が含まれるか否かをサーチするサーチ部と、
     前記基地局装置から送信された送信状態情報を、前記第2の周波数帯域において受信する受信部とを有し、
     前記サーチ部は、
     前記受信部によって受信された送信状態情報に応じて、下り回線の通信に使用されない第1の周波数帯域に対するサーチを省略する
     ことを特徴とする無線通信システム。
    A wireless communication system having a base station device and a terminal device.
    The base station device is
    A transmitter that can transmit signals in each of multiple frequency bands,
    It has a generator that generates transmission state information indicating the transmission state of at least the first frequency band that does not require a license to be used for wireless communication among the plurality of frequency bands.
    The transmitter
    The transmission state information generated by the generation unit is transmitted in a second frequency band different from the first frequency band.
    The terminal device is
    A search unit that searches whether or not a signal addressed to the own device is included in each of the plurality of frequency bands, and
    It has a receiving unit that receives transmission state information transmitted from the base station apparatus in the second frequency band.
    The search unit
    A wireless communication system characterized in that a search for a first frequency band not used for downlink communication is omitted according to the transmission state information received by the receiving unit.
PCT/JP2019/013863 2019-03-28 2019-03-28 Terminal device, base station device, and wireless communication system WO2020194744A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013863 WO2020194744A1 (en) 2019-03-28 2019-03-28 Terminal device, base station device, and wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013863 WO2020194744A1 (en) 2019-03-28 2019-03-28 Terminal device, base station device, and wireless communication system

Publications (1)

Publication Number Publication Date
WO2020194744A1 true WO2020194744A1 (en) 2020-10-01

Family

ID=72609297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013863 WO2020194744A1 (en) 2019-03-28 2019-03-28 Terminal device, base station device, and wireless communication system

Country Status (1)

Country Link
WO (1) WO2020194744A1 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AT & T: "Wideband operation for NR-based access to unlicensed spectrum", 3GPP TSG RAN WG1 #96 R1- 1901887, 25 February 2019 (2019-02-25), XP051599581 *
LG ELECTRONICS: "Summary #2 on wide-band operation for NR-U", 3GPP TSG RAN WG1 #96 R1-1903595, 3 March 2019 (2019-03-03), XP051690862 *
VIVO: "Discussion on wideband operation in NR-U", 3GPP TSG RAN WG1 #96 R1-1901679, 25 February 2019 (2019-02-25), XP051599375 *

Similar Documents

Publication Publication Date Title
US11109411B2 (en) Channel sense method, network side device, and terminal
US10743336B2 (en) Scheduling and transmitting control information and data for direct communication
US11457443B2 (en) Method for transmitting configuration information and terminal device
JP6947871B2 (en) Resource allocation notification method and device
CN117651335A (en) Information transmission method and device
US20200204327A1 (en) Signal transmission method, related device, and system
US20200229213A1 (en) Carrier switching method on unlicensed spectrum, base station, and terminal device
KR20130063031A (en) Methods and apparatus for joint scheduling of peer-to-peer links and wireless wide area network links in cellular networks
EP3843487A1 (en) Terminal device, base station device, and communication system
US20230143285A1 (en) Communication method and sidelink device
CN114531400B (en) Data transmission method and related device
CN115211191A (en) System and method for sidelink configuration
EP3642987B1 (en) Apparatuses and methods for communicating in a wireless communication network
WO2020194744A1 (en) Terminal device, base station device, and wireless communication system
CN110831239B (en) Data transmission method, data transmission device and communication equipment
WO2021024442A1 (en) Terminal device, base station device, and wireless communication system
CN111511023A (en) Signal transmission method and device
KR20200118455A (en) HARQ information transmission method, apparatus and computer storage medium
US20230403718A1 (en) Methods and apparatuses for random access
CN108631932B (en) Modulation and coding strategy MCS configuration method and equipment
KR102199873B1 (en) Wireless communication method and apparatus
CN107959546B (en) Self-adaptive configuration adjustment method and device for air interface resources of narrow-band system
EP3860182A1 (en) Base station device, terminal device and radio communication system
CN116471571A (en) Method for transmitting information and communication device
WO2018142549A1 (en) Base station device, terminal device, and transmission method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP