WO2020191811A1 - Packet delay measurement by header of a protocol data unit (pdu) - Google Patents

Packet delay measurement by header of a protocol data unit (pdu) Download PDF

Info

Publication number
WO2020191811A1
WO2020191811A1 PCT/CN2019/081627 CN2019081627W WO2020191811A1 WO 2020191811 A1 WO2020191811 A1 WO 2020191811A1 CN 2019081627 W CN2019081627 W CN 2019081627W WO 2020191811 A1 WO2020191811 A1 WO 2020191811A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
delay
data
timestamp
packet delay
Prior art date
Application number
PCT/CN2019/081627
Other languages
French (fr)
Inventor
Xipeng Zhu
Sitaramanjaneyulu Kanamarlapudi
Gavin Bernard Horn
Leena Zacharias
Feilu Liu
Ruiming Zheng
Peng Cheng
Huichun LIU
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Publication of WO2020191811A1 publication Critical patent/WO2020191811A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/324Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC

Definitions

  • aspects of the present disclosure relate generally to wireless communications systems, and more particularly, to increasing reliability of packet delay measurement.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth and transmit power) .
  • multiple-access systems include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-
  • a wireless multiple-access communication system may include a number of base stations (BSs) that each can simultaneously support communication for multiple communication devices, otherwise known as user equipment (UEs) .
  • BSs base stations
  • UEs user equipment
  • a set of one or more gNBs may define an e NodeB (eNB) .
  • eNB e NodeB
  • a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs) , edge nodes (ENs) , radio heads (RHs) , smart radio heads (SRHs) , transmission reception points (TRPs) , etc.
  • DUs distributed units
  • EUs edge units
  • ENs edge nodes
  • RHs radio heads
  • SSRHs smart radio heads
  • TRPs transmission reception points
  • CUs central units
  • CNs central nodes
  • ANCs access node controllers
  • a set of one or more distributed units, in communication with a central unit may define an access node (e.g., a NR BS, a NR NB, a network node, a 5G NB, a next generation NB (gNB) , etc. ) .
  • an access node e.g., a NR BS, a NR NB, a network node, a 5G NB, a next generation NB (gNB) , etc.
  • a gNB or DU may communicate with a set of UEs on downlink channels (e.g., for transmissions from a base station or to a UE) and uplink channels (e.g., for transmissions from a UE to a gNB or DU) .
  • downlink channels e.g., for transmissions from a base station or to a UE
  • uplink channels e.g., for transmissions from a UE to a gNB or DU
  • NR e.g., 5G radio access
  • LTE long term evolution
  • 3GPP 3rd Generation Partnership Project
  • CP cyclic prefix
  • DL downlink
  • UL uplink
  • MIMO multiple-input multiple-output
  • D2D communications may help enable “peer to peer” communication between a variety devices, also referred to as device to device (D2D) communications.
  • D2D communications include vehicle to everything (V2X) communications where a vehicle may communicate with another vehicle (V2V) or a different device, such as a base station, traffic control system, or the like (all of which may help enable autonomous driving) .
  • V2X vehicle to everything
  • V2V vehicle to everything
  • a base station such as a base station, traffic control system, or the like (all of which may help enable autonomous driving) .
  • Certain aspects of the present disclosure provide a method for measuring packet delay (by a transmitter) .
  • the method generally includes generating a packet having a header indicating the packet is of a packet type used for packet delay testing and a packet payload including a timestamp; and transmitting the packet.
  • Certain aspects of the present disclosure provide a method for measuring packet delay (by a receiver) .
  • the method generally includes receiving a packet having a header indicating the packet is of a packet type used for packet delay testing and a packet payload including a timestamp; and determining packet delay based on the timestamp and a receive time of the packet.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
  • FIG. 2 is a block diagram conceptually illustrating a design of an example base station (BS) and user equipment (UE) , in accordance with certain aspects of the present disclosure.
  • BS base station
  • UE user equipment
  • FIG. 3 illustrates an example of a frame format for a new radio (NR) system, in accordance with certain aspects of the present disclosure.
  • NR new radio
  • FIGs. 4 and 5 illustrate example V2X deployments, in which aspects of the present disclosure may be practiced.
  • FIG. 6 illustrates example packet delay that may be measured in accordance with aspects of the present disclosure.
  • FIG. 7 illustrates example operations for measuring packet delay by a transmitter, in accordance with certain aspects of the present disclosure.
  • FIG. 8 illustrates example operations for measuring packet delay by a receiver, in accordance with certain aspects of the present disclosure.
  • FIGs. 9A, 9B, and 9C illustrate example PDU type values and corresponding control PDU types for measuring (and reporting) packet delay, in accordance with certain aspects of the present disclosure.
  • FIGs. 10 illustrates an example data PDU for measuring packet delay, in accordance with certain aspects of the present disclosure.
  • FIGs. 11 illustrates an example control PDU for measuring packet delay, in accordance with certain aspects of the present disclosure.
  • FIGs. 12 illustrates an example timeline for measuring packet delay based on a control PDU of FIG. 11, in accordance with certain aspects of the present disclosure.
  • the APPENDIX includes details for delay packet measurement, in accordance with certain aspects of the present disclosure.
  • examples of peer-to-peer include vehicle to everything (V2X) communications where a vehicle may communicate with another vehicle (V2V) or a different device, such as a base station, traffic control system, or the like.
  • V2X vehicle to everything
  • MDT Minimization of Driving Test
  • UE user equipment
  • aspects of the present disclosure may be utilized in MDT applications to measure uplink and/or downlink packet delay.
  • NR new radio access technology or 5G technology
  • NR may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g. 80 MHz beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g. 27 GHz or beyond) , massive machine type communications (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mmW millimeter wave
  • mMTC massive machine type communications
  • URLLC ultra-reliable low-latency communications
  • These services may include latency and reliability requirements.
  • These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements.
  • TTI transmission time intervals
  • QoS quality of service
  • these services may co-exist in the same subframe.
  • enhanced machine type communications are supported, targeting low cost devices, often at the cost of lower throughput.
  • eMTC may involve half-duplex (HD) operation in which uplink transmissions and downlink transmissions can both be performed-but not simultaneously.
  • Some eMTC devices e.g., eMTC UEs
  • eMTC UEs may look at (e.g., be configured with or monitor) no more than around 1 MHz or six resource blocks (RBs) of bandwidth at any given time.
  • eMTC UEs may be configured to receive no more than around 1000 bits per subframe. For example, these eMTC UEs may support a max throughput of around 300 Kbits per second.
  • This throughput may be sufficient for certain eMTC use cases, such as certain activity tracking, smart meter tracking, and/or updates, etc., which may consist of infrequent transmissions of small amounts of data; however, greater throughput for eMTC devices may be desirable for other cases, such as certain Internet-of-Things (IoT) use cases, wearables such as smart watches, etc.
  • IoT Internet-of-Things
  • a CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • cdma2000 covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • An OFDMA network may implement a radio technology such as NR (e.g.
  • E-UTRA Evolved UTRA
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDMA
  • UMTS Universal Mobile Telecommunication System
  • NR is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) .
  • 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
  • FIG. 1 illustrates an example wireless network 100 in which aspects of the present disclosure may be performed.
  • techniques presented herein may help provide uplink and downlink packet delay measurement.
  • base stations 110 and UEs 120 e.g., V2V UEs, such as UE120v-1, 120v-2, and UE 120v-3) may perform operations 700 and/or 800 to measure uplink and/or downlink packet delay.
  • V2V UEs such as UE120v-1, 120v-2, and UE 120v-3
  • the wireless network 100 may be, for example, a new radio (NR) or 5G network.
  • a UE 120 may be configured for enhanced machine type communications (eMTC) .
  • the UE 120 may be considered a low cost device, low cost UE, eMTC device, and/or eMTC UE.
  • the UE 120 can be configured to support higher bandwidth and/or data rates (e.g., higher than 1 MHz) .
  • the UE 120 may be configured with a plurality of narrowband regions (e.g., 24 resource blocks (RBs) or 96 RBs) .
  • the UE 120 may receive a resource allocation, from a gNB 110, allocating frequency hopped resources within a system bandwidth for the UE 120 to monitor and/or transmit on.
  • the resource allocation can indicate non-contiguous narrowband frequency resources for uplink transmission in at least one subframe.
  • the resource allocation may indicate frequency resources are not contained within a bandwidth capability of the UE to monitor for downlink transmission.
  • the UE 120 may determine, based on the resource allocation, different narrowband than the resources indicated in the resource allocation from the gNB 110 for uplink transmission or for monitoring.
  • the resource allocation indication (e.g., such as that included in the downlink control information (DCI) ) may include a set of allocated subframes, frequency hopping related parameters, and an explicit resource allocation on the first subframe of the allocated subframes.
  • the frequency hopped resource allocation on subsequent subframes are obtained by applying the frequency hopping procedure based on the frequency hopping related parameters (which may also be partly included in the DCI and configured partly through radio resource control (RRC) signaling) starting from the resources allocated on the first subframe of the allocated subframes.
  • RRC radio resource control
  • the wireless network 100 may include a number of gNBs 110 and other network entities.
  • a gNB may be a station that communicates with UEs.
  • Each gNB 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a Node B and/or a NB subsystem serving this coverage area, depending on the context in which the term is used.
  • the term “cell” and NB, next generation NB (gNB) , 5G NB, access point (AP) , BS, NR BS, or transmission reception point (TRP) may be interchangeable.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile gNB.
  • the gNBs may be interconnected to one another and/or to one or more other gNBs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, or the like using any suitable transport network.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, etc.
  • a frequency may also be referred to as a carrier, a frequency channel, a tone, a subband, a subcarrier, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • a gNB may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) .
  • CSG Closed Subscriber Group
  • a gNB for a macro cell may be referred to as a macro gNB.
  • a gNB for a pico cell may be referred to as a pico gNB.
  • a gNB for a femto cell may be referred to as a femto gNB or a home gNB.
  • the gNBs 110a, 110b and 110c may be macro gNBs for the macro cells 102a, 102b and 102c, respectively.
  • the gNB 110x may be a pico gNB for a pico cell 102x.
  • the gNBs 110y and 110z may be femto gNB for the femto cells 102y and 102z, respectively.
  • a gNB may support one or multiple (e.g., three) cells.
  • the wireless network 100 may also include relay stations.
  • a relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., a gNB or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or a gNB) .
  • a relay station may also be a UE that relays transmissions for other UEs.
  • a relay station 110r may communicate with the gNB 110a and a UE 120r in order to facilitate communication between the gNB 110a and the UE 120r.
  • a relay station may also be referred to as a relay gNB, a relay, etc.
  • the wireless network 100 may be a heterogeneous network that includes gNBs of different types, e.g., macro gNB, pico gNB, femto gNB, relays, etc. These different types of gNBs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless network 100.
  • gNBs of different types, e.g., macro gNB, pico gNB, femto gNB, relays, etc.
  • These different types of gNBs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless network 100.
  • a macro gNB may have a high transmit power level (e.g., 20 Watts)
  • pico gNB, femto gNB, and relays may have a lower transmit power level (e.g., 1 Watt) .
  • the wireless network 100 may support synchronous or asynchronous operation.
  • the gNBs may have similar frame timing, and transmissions from different gNBs may be approximately aligned in time.
  • the gNBs may have different frame timing, and transmissions from different gNBs may not be aligned in time.
  • the techniques described herein may be used for both synchronous and asynchronous operation.
  • a network controller 130 may couple to a set of gNBs and provide coordination and control for these gNBs.
  • the network controller 130 may communicate with the gNBs 110 via a backhaul.
  • the gNBs 110 may also communicate with one another, for example, directly or indirectly via wireless or wireline backhaul.
  • the UEs 120 may be dispersed throughout the wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc.
  • MTC machine-type communication
  • eMTC evolved MTC
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a gNB, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • a network e.g., a wide area network such as Internet or a cellular network
  • Some UEs may be considered Internet-of-Things (IoT) devices or narrowband IoT (NB-IoT) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband IoT
  • a solid line with double arrows indicates desired transmissions between a UE and a serving gNB, which is a gNB designated to serve the UE on the downlink and/or uplink.
  • a finely dashed line with double arrows indicates interfering transmissions between a UE and a gNB.
  • Certain wireless networks utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.
  • OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (e.g., an RB) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal FFT size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively.
  • the system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
  • aspects of the examples described herein may be associated with LTE technologies, aspects of the present disclosure may be applicable with other wireless communications systems, such as NR.
  • NR may utilize OFDM with a CP on the uplink and downlink and include support for half-duplex operation using TDD.
  • a single component carrier bandwidth of 100 MHz may be supported.
  • NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 75 kHz over a 0.1 ms duration.
  • Each radio frame may consist of two half frames, each half frame consisting of 5 subframes, with a length of 10 ms. Consequently, each subframe may have a length of 1 ms.
  • Each subframe may indicate a link direction (i.e., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched.
  • Each subframe may include DL/UL data as well as DL/UL control data.
  • UL and DL subframes for NR may be as described in more detail below with respect to FIGs. 6 and 7.
  • Beamforming may be supported and beam direction may be dynamically configured.
  • MIMO transmissions with precoding may also be supported.
  • MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE.
  • Multi-layer transmissions with up to 2 streams per UE may be supported.
  • Aggregation of multiple cells may be supported with up to 8 serving cells.
  • the basic transmission time interval (TTI) or packet duration is the 1 subframe.
  • TTI transmission time interval
  • a subframe is still 1 ms, but the basic TTI is referred to as a slot.
  • a subframe contains a variable number of slots (e.g., 1, 2, 4, 8, 16, ...slots) depending on the tone-spacing (e.g., 15, 30, 60, 120, 240... kHz) .
  • a scheduling entity e.g., a gNB
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
  • gNBs are not the only entities that may function as a scheduling entity. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more subordinate entities (e.g., one or more other UEs) . In this example, the UE is functioning as a scheduling entity, and other UEs utilize resources scheduled by the UE for wireless communication.
  • a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network. In a mesh network example, UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
  • P2P peer-to-peer
  • a scheduling entity and one or more subordinate entities may communicate utilizing the scheduled resources.
  • FIG. 2 illustrates example components of the gNB 110 and UE 120 illustrated in FIG. 1, which may be used to implement aspects of the present disclosure for frequency hopping for large bandwidth allocations.
  • antennas 252, Tx/Rx 222, processors 266, 258, 264, and/or controller/processor 280 of the UE 120 and/or antennas 234, processors 260, 220, 238, and/or controller/processor 240 of the gNB 110 may be used to perform the operations described herein and illustrated with reference to FIGs. 7 and 8.
  • FIG. 2 shows a block diagram of a design of a gNB 110 and a UE 120, which may be one of the gNBs and one of the UEs in FIG. 1.
  • the gNB 110 may be the macro gNB 110c in FIG. 1, and the UE 120 may be the UE 120y.
  • the gNB 110 may also be gNB of some other type.
  • the gNB 110 may be equipped with antennas 234a through 234t, and the UE 120 may be equipped with antennas 252a through 252r.
  • a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240.
  • the control information may be for the Physical Broadcast Channel (PBCH) , Physical Control Format Indicator Channel (PCFICH) , Physical Hybrid ARQ Indicator Channel (PHICH) , Physical Downlink Control Channel (PDCCH) , etc.
  • the data may be for the Physical Downlink Shared Channel (PDSCH) , etc.
  • the processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the processor 220 may also generate reference symbols, e.g., for the PSS, SSS, and cell-specific reference signal (CRS) .
  • reference symbols e.g., for the PSS, SSS, and cell-specific reference signal (CRS) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 232a through 232t.
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 232a through 232t may be transmitted via the antennas 234a through 234t, respectively.
  • the antennas 252a through 252r may receive the downlink signals from the gNB 110 and may provide received signals to the demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all the demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 260, and provide decoded control information to a controller/processor 280.
  • a transmit processor 264 may receive and process data (e.g., for the Physical Uplink Shared Channel (PUSCH) ) from a data source 262 and control information (e.g., for the Physical Uplink Control Channel (PUCCH) from the controller/processor 280.
  • the transmit processor 264 may also generate reference symbols for a reference signal.
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the demodulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to the gNB 110.
  • the uplink signals from the UE 120 may be received by the antennas 234, processed by the modulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.
  • the controllers/processors 240 and 280 may direct the operation at the gNB 110 and the UE 120, respectively.
  • the processor 240 and/or other processors and modules at the gNB 110 may perform or direct, e.g., the execution of various processes for the techniques described herein.
  • the processor 280 and/or other processors and modules at the UE 120 may also perform or direct, e.g., the execution of the functional blocks illustrated in FIGs. 7 and 8, and/or other processes for the techniques described herein.
  • FIG. 3 is a diagram showing an example of a frame format 300 for NR.
  • the transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames.
  • Each radio frame may have a predetermined duration (e.g., 10 ms) and may be partitioned into 10 subframes, each of 1 ms, with indices of 0 through 9.
  • Each subframe may include a variable number of slots depending on the subcarrier spacing.
  • Each slot may include a variable number of symbol periods (e.g., 7 or 14 symbols) depending on the subcarrier spacing.
  • the symbol periods in each slot may be assigned indices.
  • a mini-slot which may be referred to as a sub-slot structure, refers to a transmit time interval having a duration less than a slot (e.g., 2, 3, or 4 symbols) .
  • Each symbol in a slot may indicate a link direction (e.g., DL, UL, or flexible) for data transmission and the link direction for each subframe may be dynamically switched.
  • the link directions may be based on the slot format.
  • Each slot may include DL/UL data as well as DL/UL control information.
  • a synchronization signal (SS) block is transmitted.
  • the SS block includes a PSS, a SSS, and a two symbol PBCH.
  • the SS block can be transmitted in a fixed slot location, such as the symbols 0-3 as shown in FIG. 3.
  • the PSS and SSS may be used by UEs for cell search and acquisition.
  • the PSS may provide half-frame timing, the SS may provide the CP length and frame timing.
  • the PSS and SSS may provide the cell identity.
  • the PBCH carries some basic system information, such as downlink system bandwidth, timing information within radio frame, SS burst set periodicity, system frame number, etc.
  • the SS blocks may be organized into SS bursts to support beam sweeping. Further system information such as, remaining minimum system information (RMSI) , system information blocks (SIBs) , other system information (OSI) can be transmitted on a physical downlink shared channel (PDSCH) in certain subframes.
  • RMSI remaining minimum
  • LTE vehicle-to-everything LTE-V2X
  • NR-V2X new radio vehicle-to-everything
  • Non-limiting embodiments for frequencies covered may be, for example, 3GHz to 5GHz.
  • V2X system methods and apparatus may be applicable to both LTE-V2X and NR-V2X as well as other frequencies.
  • Other frequency spectrums other than those covered by LTE-V2X and NR-V2X are also considered to be applicable to the description and as such, the disclosure should not be considered limiting.
  • FIGs. 4 and 5 illustrate example V2X systems in which aspects of the present disclosure may be practiced.
  • the V2X system provided in FIGS. 4 and 5, provides two complementary transmission modes.
  • a first transmission mode involves direct communications between participants in the local area. Such communications are illustrated in FIG. 4.
  • a second transmission mode involves network communications through a network as illustrated in FIG. 5.
  • the first transmission mode allows for direct communication between different participants in a given geographic location.
  • a vehicle can have a communication with an individual (V2P) through a PC5 interface. Communications between a vehicle and another vehicle (V2V) may also occur through a PC5 interface.
  • V2P individual
  • V2V vehicle
  • communication may occur from a vehicle to other highway components, such as a signal (V2I) through a PC5 interface.
  • V2I signal
  • two-way communication can take place between elements, therefore each element may be a transmitter and a receiver of information.
  • the first transmission mode is a self-managed system and no network assistance is provided. Such transmission modes provide for reduced cost and increased reliability as network service interruptions do not occur during handover operations for moving vehicles. Resource assignments do not need coordination between operators and subscription to a network is not necessary, therefore there is reduced complexity for such self-managed systems.
  • the V2X system is configured to work in a 5.9 GHz spectrum, thus any vehicle with an equipped system may access this common frequency and share information. Such harmonized/common spectrum operations allows for safe operation. V2X operations may also co-exist with 802.11p operations by being placed on different channels, thus existing 802.11p operations will not be disturbed by the introduction of V2X systems.
  • the V2X system may be operated in a 10MHz band that describes/contains basic safety services. In other non-limiting embodiments, the V2X system may support advanced safety services in addition to basic safety services described above.
  • the V2X system may be used in a 5G NR V2X configuration, which is configured to interface with a wide variety of devices.
  • a 5G NR V2X configuration multi Gbps rates for download and upload may be provided.
  • latency is kept low, for example 1ms, to enhance operation of the V2X system, even in challenging environments.
  • a vehicle may communicate with another vehicle through network communications.
  • network communications may occur through discrete nodes, such as eNodeB, that send and receive information between vehicles.
  • the network communications may be used, for example, for long range communications between vehicles, such as noting the presence of an accident approximately 1 mile ahead.
  • Other types of communication may be sent by the node to vehicles, such as traffic flow conditions, road hazard warnings, environmental/weather reports, service station availability and other like data. Data can be obtained from cloud-based sharing services.
  • RSUs residential service units
  • 4G/5G small cell communication technologies to benefit in more highly covered areas to allow real time information to be shared among V2X users.
  • the V2X systems may rely more on small cell communications, as necessary.
  • higher layers may be leveraged to tune congestion control parameters.
  • using higher layers for such functions provides an enhanced performance on lower layers due to congestion control for PHY/MAC.
  • V2X technologies have significant advantages over 802.11p technologies.
  • Conventional 802.11p technologies have limited scaling capabilities and access control can be problematic.
  • V2X technologies two vehicles apart from one another may use the same resource without incident as there are no denied access requests.
  • V2X technologies also have advantages over 802.11p technologies as these V2X technologies are designed to meet latency requirements, even for moving vehicles, thus allowing for scheduling and access to resources in a timely manner.
  • V2X communications can provide for significant safety of operators where stopping distance estimations may be performed on a vehicle by vehicle basis. These stopping distance estimations allow for traffic to flow around courses, such as a blind curve, with greater vehicle safety, while maximizing the travel speed and efficiency.
  • packet delay measurement is a basic component of MDT. This measurement is important for the network optimization and QoS verification of various types of traffic, such as URLLC, voice, video and virtual reality/augmented reality (VR/AR) , and other such delay sensitive services.
  • URLLC URLLC
  • voice voice
  • video virtual reality/augmented reality
  • VR/AR virtual reality/augmented reality
  • packet delay has various components, such as: Packet Data Convergence Protocol (PDCP) queuing delay on the transmit (Tx) side, F1 (interface) delay, RLC delay, PHY/MAC delay, PDCP re-ordering in receiving side, and N3 (interface) delay.
  • PDCP Packet Data Convergence Protocol
  • a timestamp value of T1 may be used to calculate a packet delay based on a receive time T2.
  • the timestamp value T1 may be put in the packet.
  • the UL delay can be easily derived by PDCP receiving side as: T2 -T1.
  • DL delay can be measured by UE from timestamp in DL PDCP PDU.
  • the timestamp could be added as a new parameter in the PDCP header.
  • this solution increases the user plane processing complexity, downgrades the performance, and may be difficult to implement in a hardware centric user plane (UP) sub-system (where the hardware is optimized for efficient processing to reduce latency) .
  • UP hardware centric user plane
  • aspects of the present disclosure propose using a new format of a packet, such as a control PDU or data PDU of PDCP to carry the timestamp information.
  • a new format of a packet such as a control PDU or data PDU of PDCP to carry the timestamp information.
  • FIG. 7 illustrates example operations 700 for measuring packet delay by a transmitter.
  • the operations 700 may be performed, for example, by a base station 110 or UE 120 V-3 shown in FIG. 1 (e.g., to help measure packet delay as part of an MDT) .
  • Operations 700 begin, at block 702, by generating a packet having a header indicating the packet is of a packet type used for packet delay testing and a packet payload including a timestamp. At 704, the packet is transmitted.
  • FIG. 8 illustrates example operations 800 for measuring packet delay by a receiver.
  • the operations 700 may be performed, for example, by a base station 110 or UE 120 V-3 shown in FIG. 1 in conjunction with a transmitting device performing operations 700.
  • the operations 800 begin, at 802, by receiving a packet having a header indicating the packet is of a packet type used for packet delay testing and a packet payload including a timestamp. At 804, a packet delay is determined based on the timestamp and a receive time of the packet.
  • the PDCP protocol defines two kinds of PDUs: Data PDU and Control PDU.
  • the timestamp proposed herein may be included in either PDU type.
  • FIGs. 9A, 9B, and 9C illustrate example PDU type values and corresponding control PDU types for measuring (and reporting) packet delay, in accordance with certain aspects of the present disclosure.
  • FIG. 9A lists example PDU types and corresponding PDU type field values.
  • FIG. 9B illustrates an example format of control PDCP PDU 900B that includes a timestamp that may be used for packet delay measurement in accordance with the operations described above.
  • the control PDU 900B may include a PDU type field 902 with a value (e.g., 010 per FIG. 9A) that indicates the packet is for delay testing (and carries a timestamp) .
  • This PDU type for delay testing may also cause the control PDU of this type to be handled differently than other types of control PDUs.
  • a PDCP control PDU is not subject to queuing in the PDCP buffer.
  • the control PDU for delay test purposes may be enqueued (queued in) as if it were a normal data PDU of the data radio bearer (DRB) .
  • DRB data radio bearer
  • PDCP PDU 900C may include a downlink delay field reported from a UE.
  • a UE may measure the DL packet delay based on a packet from a base station and report the DL delay in a control PDU of this same format.
  • a PDU type (e.g., of 011 per FIG. 9A) may indicate the packet is used to report DL packet delay.
  • the packet used for such reporting could not have the timestamp, as illustrated in FIG. 9C.
  • the same reporting packet could also include a timestamp generated by the UE, in which case the BS could use this same reporting packet for measuring UL packet delay.
  • FIG. 10 illustrates an example format of data PDCP PDU 1000 that includes a timestamp that may be used for packet delay measurement in accordance with the operations described above.
  • the data PDCP PDU 1000 may use a (previously) reserved bit (labeled T in this example) to indicate the data PDU 1000 is for delay testing (and carries a timestamp) .
  • the MAC-I may be calculated based on the Timestamp as payload.
  • This delay test packet may be delivered in the same way as normal data by RLC and lower layers.
  • This type of packet may also participate into the PDCP re-ordering but may not be submitted to the upper layer by PDCP.
  • the receiving time T2 (used for measuring the packet delay) may be the time that the packet is ready to be submitted to upper layer by PDCP.
  • the packets described herein may be used for uplink or downlink delay measurement.
  • a base station e.g., gNB
  • a UE may generate such a packet with a timestamp for a base station to use to measure UL packet delay.
  • the timestamp described herein may represent the time a new packet arrives at a PDCP upper SAP (service access point) , as in the time the packet is delivered to the PDCP layer by higher protocol layer.
  • the timestamp may be in terms of relative time information.
  • the relative time information may be in terms of a system frame number (SFN) , slot ID information and, optionally, OFDMA symbol ID or time elapsed after delay test packet is triggered (e.g., for the periodic test packet triggering case) .
  • SFN system frame number
  • OFDMA symbol ID time elapsed after delay test packet is triggered (e.g., for the periodic test packet triggering case) .
  • a gNB may configure the delay test packet triggering interval (e.g. every X ms and/or every Y data packets) and provide this configuration to the UE.
  • the delay test packet triggering interval e.g. every X ms and/or every Y data packets
  • the gNB may configure the UE with the delay reporting interval.
  • the delay can be reported, for example, by RRC and/or PDCP control PDU, as described above with reference to FIG. 9.
  • the DL delay can be reported by:
  • IE new information element
  • packet delay measurement may be performed utilizing a new PDCP control (or data) PDU.
  • the PDCP control (or data) PDU for delay test carries the time when the delay test packet is generated.
  • the delay test packet may be enqueued (queued in) with normal data of the DRB (so it is subject to the same PDCP buffer delay as a normal data packet) .
  • the gNB may configure the delay test PDU generation interval as: every X ms and/or every Y data packets.
  • For DL delay measurement gNB configures the interval for UE to report the delay by the new PDCP control (or data) PDU.
  • a control PDU could be queued with data packets in an effort to accurately reflect buffer delay in the packet delay measurements.
  • another alternative is to include a PDCP sequence number (SN) and timestamp in the payload of the control PDU.
  • SN PDCP sequence number
  • a PDCP control PDU for delay test may include a PDCP SN in the payload (e.g., a 12-bit SN) .
  • the PDCP SN may be an expected SN of the SDU associated with the timestamp included in the control PDU.
  • FIG. 12 illustrates how a timestamp and SN may be used to calculate packet delay.
  • the network setting e.g. trigger a delay test PDU every X ms or every Y data PDUs
  • the time stamp T1 of that packet and the expected SN of that same packet is included in the control PDU.
  • the expected SN may be assigned based on the remaining packets ahead of this packet in the PDCP queue.
  • the PDCP control PDU is received before the associated data PDU because control PDU has higher priority.
  • the receiving side should note down the time T2 of the associated data PDU (with a SN matching that of the control PDU) and derive the delay as T2-T1, as shown in FIG. 12.
  • the methods disclosed herein comprise one or more steps or actions for achieving the described method.
  • the method steps and/or actions may be interchanged with one another without departing from the scope of the claims.
  • the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • determining encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
  • the various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions.
  • the means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
  • processors 266, 258, 264, and/or controller/processor 280 of the UE 120 shown in FIG. 2 may be configured to perform operations 700 of FIG. 7 and/or operations 800 of FIG. 8.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • an example hardware configuration may comprise a processing system in a wireless node.
  • the processing system may be implemented with a bus architecture.
  • the bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints.
  • the bus may link together various circuits including a processor, machine-readable media, and a bus interface.
  • the bus interface may be used to connect a network adapter, among other things, to the processing system via the bus.
  • the network adapter may be used to implement the signal processing functions of the PHY layer.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • the bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further.
  • the processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
  • the functions may be stored or transmitted over as one or more instructions or code on a computer-readable medium.
  • Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • the processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media.
  • a computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
  • the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface.
  • the machine-readable media, or any portion thereof may be integrated into the processor, such as the case may be with cache and/or general register files.
  • machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrical Erasable Programmable Read-Only Memory
  • registers magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • the machine-readable media may be embodied in a computer-program product.
  • a software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media.
  • the computer-readable media may comprise a number of software modules.
  • the software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions.
  • the software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices.
  • a software module may be loaded into RAM from a hard drive when a triggering event occurs.
  • the processor may load some of the instructions into cache to increase access speed.
  • One or more cache lines may then be loaded into a general register file for execution by the processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) .
  • computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
  • certain aspects may comprise a computer program product for performing the operations presented herein.
  • a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein.
  • modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable.
  • a user terminal and/or base station can be coupled to a server to facilitate the transfer of means for performing the methods described herein.
  • various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device.
  • storage means e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.
  • CD compact disc
  • floppy disk etc.
  • any other suitable technique for providing the methods and techniques described herein to a device can be utilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Aspects of the present disclosure propose a mechanism whereby a packet delay may be determined in an efficient manner. In some cases, a new protocol data unit (PDU) type is used that includes a timestamp is generated at a transmitter that allows a receiver to calculate a packet delay based upon a receive time.

Description

PACKET DELAY MEASUREMENT BY HEADER OF A PROTOCOL DATA UNIT (PDU) BACKGROUND
Field of the Disclosure
Aspects of the present disclosure relate generally to wireless communications systems, and more particularly, to increasing reliability of packet delay measurement.
Description of Related Art
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth and transmit power) . Examples of such multiple-access systems include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
In some examples, a wireless multiple-access communication system may include a number of base stations (BSs) that each can simultaneously support communication for multiple communication devices, otherwise known as user equipment (UEs) . In LTE or LTE-A network, a set of one or more gNBs may define an e NodeB (eNB) . In other examples (e.g., in a next generation, new radio (NR) , or 5G network) , a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs) , edge nodes (ENs) , radio heads (RHs) , smart radio heads (SRHs) , transmission reception points (TRPs) , etc. ) in communication with a number of central units (CUs) (e.g., central nodes (CNs) , access node controllers (ANCs) , etc. ) , where a set of one or more distributed units, in communication with a central unit, may define an access node (e.g., a NR BS, a NR NB, a network node, a 5G  NB, a next generation NB (gNB) , etc. ) . A gNB or DU may communicate with a set of UEs on downlink channels (e.g., for transmissions from a base station or to a UE) and uplink channels (e.g., for transmissions from a UE to a gNB or DU) .
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. NR (e.g., 5G radio access) is an example of an emerging telecommunication standard. NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP. It is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) as well as support beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in NR and LTE technology. Preferably, these improvements should be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
Such improvements may help enable “peer to peer” communication between a variety devices, also referred to as device to device (D2D) communications. Examples of D2D communications include vehicle to everything (V2X) communications where a vehicle may communicate with another vehicle (V2V) or a different device, such as a base station, traffic control system, or the like (all of which may help enable autonomous driving) .
BRIEF SUMMARY
The systems, methods, and devices of the disclosure each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this disclosure as expressed by the claims which follow, some features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description” one will understand how the features of this disclosure provide advantages that include improved communications between access points and stations in a wireless network.
Certain aspects of the present disclosure provide a method for measuring packet delay (by a transmitter) . The method generally includes generating a packet having a header indicating the packet is of a packet type used for packet delay testing and a packet payload including a timestamp; and transmitting the packet.
Certain aspects of the present disclosure provide a method for measuring packet delay (by a receiver) . The method generally includes receiving a packet having a header indicating the packet is of a packet type used for packet delay testing and a packet payload including a timestamp; and determining packet delay based on the timestamp and a receive time of the packet.
Aspects generally include methods, apparatus, systems, computer readable mediums, and processing systems, as substantially described herein with reference to and as illustrated by the accompanying drawings.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects.
FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
FIG. 2 is a block diagram conceptually illustrating a design of an example base station (BS) and user equipment (UE) , in accordance with certain aspects of the present disclosure.
FIG. 3 illustrates an example of a frame format for a new radio (NR) system, in accordance with certain aspects of the present disclosure.
FIGs. 4 and 5 illustrate example V2X deployments, in which aspects of the present disclosure may be practiced.
FIG. 6 illustrates example packet delay that may be measured in accordance with aspects of the present disclosure.
FIG. 7 illustrates example operations for measuring packet delay by a transmitter, in accordance with certain aspects of the present disclosure.
FIG. 8 illustrates example operations for measuring packet delay by a receiver, in accordance with certain aspects of the present disclosure.
FIGs. 9A, 9B, and 9C illustrate example PDU type values and corresponding control PDU types for measuring (and reporting) packet delay, in accordance with certain aspects of the present disclosure.
FIGs. 10 illustrates an example data PDU for measuring packet delay, in accordance with certain aspects of the present disclosure.
FIGs. 11 illustrates an example control PDU for measuring packet delay, in accordance with certain aspects of the present disclosure.
FIGs. 12 illustrates an example timeline for measuring packet delay based on a control PDU of FIG. 11, in accordance with certain aspects of the present disclosure.
The APPENDIX includes details for delay packet measurement, in accordance with certain aspects of the present disclosure.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is  contemplated that elements disclosed in one aspect may be beneficially utilized on other aspects without specific recitation.
DETAILED DESCRIPTION
As noted above, examples of peer-to-peer (also referred to as device-to-device or D2D) communications include vehicle to everything (V2X) communications where a vehicle may communicate with another vehicle (V2V) or a different device, such as a base station, traffic control system, or the like.
One challenge in V2X systems is to reduce packet delay to support reliable communications with reduced latency. Minimization of Driving Test (MDT) refers to a feature that enables operators to utilize user equipment (UE) gathered measurements and associated location information, in order to assess network performance, while reducing overhead and expense associated with traditional drive tests. Packet delay measurement is a basic requirement of MDT.
Aspects of the present disclosure may be utilized in MDT applications to measure uplink and/or downlink packet delay.
The techniques presented herein may be applied in various scenarios, such as NR (new radio access technology or 5G technology) . NR may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g. 80 MHz beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g. 27 GHz or beyond) , massive machine type communications (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) . These services may include latency and reliability requirements. These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements. In addition, these services may co-exist in the same subframe.
In certain systems, (e.g., 3GPP Release-13 long term evolution (LTE) networks) , enhanced machine type communications (eMTC) are supported, targeting low cost devices, often at the cost of lower throughput. eMTC may involve half-duplex (HD) operation in which uplink transmissions and downlink transmissions can both be performed-but not simultaneously. Some eMTC devices (e.g., eMTC UEs) may look at (e.g., be configured with or monitor) no more than around 1 MHz or six resource  blocks (RBs) of bandwidth at any given time. eMTC UEs may be configured to receive no more than around 1000 bits per subframe. For example, these eMTC UEs may support a max throughput of around 300 Kbits per second. This throughput may be sufficient for certain eMTC use cases, such as certain activity tracking, smart meter tracking, and/or updates, etc., which may consist of infrequent transmissions of small amounts of data; however, greater throughput for eMTC devices may be desirable for other cases, such as certain Internet-of-Things (IoT) use cases, wearables such as smart watches, etc.
The following description provides examples, and is not limiting of the scope, applicability, or examples set forth in the claims. Changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in some other examples. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.
The techniques described herein may be used for various wireless communication networks such as LTE, CDMA, TDMA, FDMA, OFDMA, SC-FDMA and other networks. The terms “network” and “system” are often used interchangeably. A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) . An OFDMA network may implement a radio  technology such as NR (e.g. 5G RA) , Evolved UTRA (E-UTRA) , Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) . NR is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) . 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) . cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
EXAMPLE WIRELESS COMMUNICATIONS SYSTEM
FIG. 1 illustrates an example wireless network 100 in which aspects of the present disclosure may be performed. For example, techniques presented herein may help provide uplink and downlink packet delay measurement. For example, base stations 110 and UEs 120 (e.g., V2V UEs, such as UE120v-1, 120v-2, and UE 120v-3) may perform operations 700 and/or 800 to measure uplink and/or downlink packet delay.
The wireless network 100 may be, for example, a new radio (NR) or 5G network. A UE 120 may be configured for enhanced machine type communications (eMTC) . The UE 120 may be considered a low cost device, low cost UE, eMTC device, and/or eMTC UE. The UE 120 can be configured to support higher bandwidth and/or data rates (e.g., higher than 1 MHz) . The UE 120 may be configured with a plurality of narrowband regions (e.g., 24 resource blocks (RBs) or 96 RBs) . The UE 120 may receive a resource allocation, from a gNB 110, allocating frequency hopped resources within a system bandwidth for the UE 120 to monitor and/or transmit on. The resource allocation can indicate non-contiguous narrowband frequency resources for uplink transmission in at least one subframe. The resource allocation may indicate  frequency resources are not contained within a bandwidth capability of the UE to monitor for downlink transmission. The UE 120 may determine, based on the resource allocation, different narrowband than the resources indicated in the resource allocation from the gNB 110 for uplink transmission or for monitoring. The resource allocation indication (e.g., such as that included in the downlink control information (DCI) ) may include a set of allocated subframes, frequency hopping related parameters, and an explicit resource allocation on the first subframe of the allocated subframes. The frequency hopped resource allocation on subsequent subframes are obtained by applying the frequency hopping procedure based on the frequency hopping related parameters (which may also be partly included in the DCI and configured partly through radio resource control (RRC) signaling) starting from the resources allocated on the first subframe of the allocated subframes.
As illustrated in FIG. 1, the wireless network 100 may include a number of gNBs 110 and other network entities. A gNB may be a station that communicates with UEs. Each gNB 110 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a Node B and/or a NB subsystem serving this coverage area, depending on the context in which the term is used. In NR systems, the term “cell” and NB, next generation NB (gNB) , 5G NB, access point (AP) , BS, NR BS, or transmission reception point (TRP) may be interchangeable. In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile gNB. In some examples, the gNBs may be interconnected to one another and/or to one or more other gNBs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, or the like using any suitable transport network.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, etc. A frequency may also be referred to as a carrier, a frequency channel, a tone, a subband, a subcarrier, etc. Each frequency may support a single RAT in a given geographic area in order to avoid interference  between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
A gNB may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) . A gNB for a macro cell may be referred to as a macro gNB. A gNB for a pico cell may be referred to as a pico gNB. A gNB for a femto cell may be referred to as a femto gNB or a home gNB. In the example shown in FIG. 1, the  gNBs  110a, 110b and 110c may be macro gNBs for the  macro cells  102a, 102b and 102c, respectively. The gNB 110x may be a pico gNB for a pico cell 102x. The gNBs 110y and 110z may be femto gNB for the  femto cells  102y and 102z, respectively. A gNB may support one or multiple (e.g., three) cells.
The wireless network 100 may also include relay stations. A relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., a gNB or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or a gNB) . A relay station may also be a UE that relays transmissions for other UEs. In the example shown in FIG. 1, a relay station 110r may communicate with the gNB 110a and a UE 120r in order to facilitate communication between the gNB 110a and the UE 120r. A relay station may also be referred to as a relay gNB, a relay, etc.
The wireless network 100 may be a heterogeneous network that includes gNBs of different types, e.g., macro gNB, pico gNB, femto gNB, relays, etc. These different types of gNBs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless network 100. For example, a macro gNB may have a high transmit power level (e.g., 20 Watts) whereas pico gNB, femto gNB, and relays may have a lower transmit power level (e.g., 1 Watt) .
The wireless network 100 may support synchronous or asynchronous operation. For synchronous operation, the gNBs may have similar frame timing, and transmissions from different gNBs may be approximately aligned in time. For asynchronous operation, the gNBs may have different frame timing, and transmissions from different gNBs may not be aligned in time. The techniques described herein may be used for both synchronous and asynchronous operation.
network controller 130 may couple to a set of gNBs and provide coordination and control for these gNBs. The network controller 130 may communicate with the gNBs 110 via a backhaul. The gNBs 110 may also communicate with one another, for example, directly or indirectly via wireless or wireline backhaul.
The UEs 120 (e.g., 120x, 120y, etc. ) may be dispersed throughout the wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc. ) , an entertainment device (e.g., a music device, a video device, a satellite radio, etc. ) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium. Some UEs may be considered evolved or machine-type communication (MTC) devices or evolved MTC (eMTC) devices. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a gNB, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices or narrowband IoT (NB-IoT) devices.
In FIG. 1, a solid line with double arrows indicates desired transmissions between a UE and a serving gNB, which is a gNB designated to serve the UE on the downlink and/or uplink. A finely dashed line with double arrows indicates interfering transmissions between a UE and a gNB.
Certain wireless networks (e.g., LTE) utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink. OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (e.g., an RB) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal FFT size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively. The system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
While aspects of the examples described herein may be associated with LTE technologies, aspects of the present disclosure may be applicable with other wireless communications systems, such as NR.
NR may utilize OFDM with a CP on the uplink and downlink and include support for half-duplex operation using TDD. A single component carrier bandwidth of 100 MHz may be supported. NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 75 kHz over a 0.1 ms duration. Each radio frame may consist of two half frames, each half frame consisting of 5 subframes, with a length of 10 ms. Consequently, each subframe may have a length of 1 ms. Each subframe may indicate a link direction (i.e., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched. Each subframe may include DL/UL data as well as DL/UL control data. UL and DL subframes for NR may be as described in more detail below with respect to FIGs. 6 and 7. Beamforming may be supported and beam  direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
In LTE, the basic transmission time interval (TTI) or packet duration is the 1 subframe. In NR, a subframe is still 1 ms, but the basic TTI is referred to as a slot. A subframe contains a variable number of slots (e.g., 1, 2, 4, 8, 16, …slots) depending on the tone-spacing (e.g., 15, 30, 60, 120, 240... kHz) .
In some examples, access to the air interface may be scheduled, wherein a scheduling entity (e.g., a gNB) allocates resources for communication among some or all devices and equipment within its service area or cell. The scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity. gNBs are not the only entities that may function as a scheduling entity. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more subordinate entities (e.g., one or more other UEs) . In this example, the UE is functioning as a scheduling entity, and other UEs utilize resources scheduled by the UE for wireless communication. A UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network. In a mesh network example, UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
Thus, in a wireless communication network with a scheduled access to time–frequency resources and having a cellular configuration, a P2P configuration, and a mesh configuration, a scheduling entity and one or more subordinate entities may communicate utilizing the scheduled resources.
FIG. 2 illustrates example components of the gNB 110 and UE 120 illustrated in FIG. 1, which may be used to implement aspects of the present disclosure for frequency hopping for large bandwidth allocations. For example, antennas 252, Tx/Rx 222,  processors  266, 258, 264, and/or controller/processor 280 of the UE 120 and/or antennas 234,  processors  260, 220, 238, and/or controller/processor 240 of the  gNB 110 may be used to perform the operations described herein and illustrated with reference to FIGs. 7 and 8.
FIG. 2 shows a block diagram of a design of a gNB 110 and a UE 120, which may be one of the gNBs and one of the UEs in FIG. 1. For a restricted association scenario, the gNB 110 may be the macro gNB 110c in FIG. 1, and the UE 120 may be the UE 120y. The gNB 110 may also be gNB of some other type. The gNB 110 may be equipped with antennas 234a through 234t, and the UE 120 may be equipped with antennas 252a through 252r.
At the gNB 110, a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240. The control information may be for the Physical Broadcast Channel (PBCH) , Physical Control Format Indicator Channel (PCFICH) , Physical Hybrid ARQ Indicator Channel (PHICH) , Physical Downlink Control Channel (PDCCH) , etc. The data may be for the Physical Downlink Shared Channel (PDSCH) , etc. The processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The processor 220 may also generate reference symbols, e.g., for the PSS, SSS, and cell-specific reference signal (CRS) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 232a through 232t may be transmitted via the antennas 234a through 234t, respectively.
At the UE 120, the antennas 252a through 252r may receive the downlink signals from the gNB 110 and may provide received signals to the demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. A MIMO detector 256 may obtain received  symbols from all the demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 260, and provide decoded control information to a controller/processor 280.
On the uplink, at the UE 120, a transmit processor 264 may receive and process data (e.g., for the Physical Uplink Shared Channel (PUSCH) ) from a data source 262 and control information (e.g., for the Physical Uplink Control Channel (PUCCH) from the controller/processor 280. The transmit processor 264 may also generate reference symbols for a reference signal. The symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the demodulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to the gNB 110. At the gNB 110, the uplink signals from the UE 120 may be received by the antennas 234, processed by the modulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120. The receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.
The controllers/ processors  240 and 280 may direct the operation at the gNB 110 and the UE 120, respectively. The processor 240 and/or other processors and modules at the gNB 110 may perform or direct, e.g., the execution of various processes for the techniques described herein. The processor 280 and/or other processors and modules at the UE 120 may also perform or direct, e.g., the execution of the functional blocks illustrated in FIGs. 7 and 8, and/or other processes for the techniques described herein.
FIG. 3 is a diagram showing an example of a frame format 300 for NR. The transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames. Each radio frame may have a predetermined duration (e.g., 10 ms) and may be partitioned into 10 subframes, each of 1 ms, with indices of 0 through 9. Each subframe may include a variable number of slots depending on the subcarrier spacing. Each slot may include a variable number of symbol periods (e.g., 7 or 14 symbols) depending on the subcarrier spacing. The symbol periods in each slot may be assigned  indices. A mini-slot, which may be referred to as a sub-slot structure, refers to a transmit time interval having a duration less than a slot (e.g., 2, 3, or 4 symbols) .
Each symbol in a slot may indicate a link direction (e.g., DL, UL, or flexible) for data transmission and the link direction for each subframe may be dynamically switched. The link directions may be based on the slot format. Each slot may include DL/UL data as well as DL/UL control information.
In NR, a synchronization signal (SS) block is transmitted. The SS block includes a PSS, a SSS, and a two symbol PBCH. The SS block can be transmitted in a fixed slot location, such as the symbols 0-3 as shown in FIG. 3. The PSS and SSS may be used by UEs for cell search and acquisition. The PSS may provide half-frame timing, the SS may provide the CP length and frame timing. The PSS and SSS may provide the cell identity. The PBCH carries some basic system information, such as downlink system bandwidth, timing information within radio frame, SS burst set periodicity, system frame number, etc. The SS blocks may be organized into SS bursts to support beam sweeping. Further system information such as, remaining minimum system information (RMSI) , system information blocks (SIBs) , other system information (OSI) can be transmitted on a physical downlink shared channel (PDSCH) in certain subframes.
As noted above, LTE vehicle-to-everything (LTE-V2X) has been developed as a technology to address basic vehicular wireless communications to enhance road safety and the driving experience. In other systems, new radio vehicle-to-everything (NR-V2X) has been developed as an additional technology that covers more advanced communication use case to further enhance road safety and driving experience. Non-limiting embodiments for frequencies covered may be, for example, 3GHz to 5GHz. As described below, V2X system methods and apparatus may be applicable to both LTE-V2X and NR-V2X as well as other frequencies. Other frequency spectrums other than those covered by LTE-V2X and NR-V2X are also considered to be applicable to the description and as such, the disclosure should not be considered limiting.
FIGs. 4 and 5 illustrate example V2X systems in which aspects of the present disclosure may be practiced. The V2X system, provided in FIGS. 4 and 5, provides two complementary transmission modes. A first transmission mode involves  direct communications between participants in the local area. Such communications are illustrated in FIG. 4. A second transmission mode involves network communications through a network as illustrated in FIG. 5.
Referring to FIG. 4, the first transmission mode allows for direct communication between different participants in a given geographic location. As illustrated, a vehicle can have a communication with an individual (V2P) through a PC5 interface. Communications between a vehicle and another vehicle (V2V) may also occur through a PC5 interface. In a like manner, communication may occur from a vehicle to other highway components, such as a signal (V2I) through a PC5 interface. In each embodiment illustrated, two-way communication can take place between elements, therefore each element may be a transmitter and a receiver of information. In the configuration provided, the first transmission mode is a self-managed system and no network assistance is provided. Such transmission modes provide for reduced cost and increased reliability as network service interruptions do not occur during handover operations for moving vehicles. Resource assignments do not need coordination between operators and subscription to a network is not necessary, therefore there is reduced complexity for such self-managed systems.
In one, non-limiting embodiment, the V2X system is configured to work in a 5.9 GHz spectrum, thus any vehicle with an equipped system may access this common frequency and share information. Such harmonized/common spectrum operations allows for safe operation. V2X operations may also co-exist with 802.11p operations by being placed on different channels, thus existing 802.11p operations will not be disturbed by the introduction of V2X systems. In one non-limiting embodiment, the V2X system may be operated in a 10MHz band that describes/contains basic safety services. In other non-limiting embodiments, the V2X system may support advanced safety services in addition to basic safety services described above. In another non-limiting embodiment, the V2X system may be used in a 5G NR V2X configuration, which is configured to interface with a wide variety of devices. By utilizing a 5G NR V2X configuration, multi Gbps rates for download and upload may be provided. In a V2X system that uses a 5G NR V2X configuration, latency is kept low, for example 1ms, to enhance operation of the V2X system, even in challenging environments.
Referring to FIG. 5, a second of two complementary transmission modes is illustrated. In the illustrated embodiment, a vehicle may communicate with another vehicle through network communications. These network communications may occur through discrete nodes, such as eNodeB, that send and receive information between vehicles. The network communications may be used, for example, for long range communications between vehicles, such as noting the presence of an accident approximately 1 mile ahead. Other types of communication may be sent by the node to vehicles, such as traffic flow conditions, road hazard warnings, environmental/weather reports, service station availability and other like data. Data can be obtained from cloud-based sharing services.
For network communications, residential service units (RSUs) may be utilized as well as 4G/5G small cell communication technologies to benefit in more highly covered areas to allow real time information to be shared among V2X users. As the number of RSUs diminishes, the V2X systems may rely more on small cell communications, as necessary.
In either of the two complementary transmission modes, higher layers may be leveraged to tune congestion control parameters. In high density vehicle deployment areas, using higher layers for such functions provides an enhanced performance on lower layers due to congestion control for PHY/MAC.
The vehicle systems that use V2X technologies have significant advantages over 802.11p technologies. Conventional 802.11p technologies have limited scaling capabilities and access control can be problematic. In V2X technologies, two vehicles apart from one another may use the same resource without incident as there are no denied access requests. V2X technologies also have advantages over 802.11p technologies as these V2X technologies are designed to meet latency requirements, even for moving vehicles, thus allowing for scheduling and access to resources in a timely manner.
In the instance of a blind curve scenario, road conditions may play an integral part in decision making opportunities for vehicles. V2X communications can provide for significant safety of operators where stopping distance estimations may be performed on a vehicle by vehicle basis. These stopping distance estimations allow for  traffic to flow around courses, such as a blind curve, with greater vehicle safety, while maximizing the travel speed and efficiency.
EXAMPLE PACKET DELAY MEASUREMENT
As noted above, packet delay measurement is a basic component of MDT. This measurement is important for the network optimization and QoS verification of various types of traffic, such as URLLC, voice, video and virtual reality/augmented reality (VR/AR) , and other such delay sensitive services.
As illustrated in FIG. 6, packet delay has various components, such as: Packet Data Convergence Protocol (PDCP) queuing delay on the transmit (Tx) side, F1 (interface) delay, RLC delay, PHY/MAC delay, PDCP re-ordering in receiving side, and N3 (interface) delay.
It is generally very complicated to measure these separate components one by one, correlate them, and summarize the results. To simplify the delay measurement, as shown in FIG. 6, a timestamp value of T1 may be used to calculate a packet delay based on a receive time T2. In some cases, the timestamp value T1 may be put in the packet. As shown in FIG. 6, with timestamp T1 in a PDCP PDU, the UL delay can be easily derived by PDCP receiving side as: T2 -T1. Similarly, DL delay can be measured by UE from timestamp in DL PDCP PDU.
The timestamp could be added as a new parameter in the PDCP header. However, this solution increases the user plane processing complexity, downgrades the performance, and may be difficult to implement in a hardware centric user plane (UP) sub-system (where the hardware is optimized for efficient processing to reduce latency) .
Aspects of the present disclosure, however, propose using a new format of a packet, such as a control PDU or data PDU of PDCP to carry the timestamp information. As a result, hardware centric UP sub-systems may be re-used or used with relatively little change.
FIG. 7 illustrates example operations 700 for measuring packet delay by a transmitter. The operations 700 may be performed, for example, by a base station 110 or UE 120 V-3 shown in FIG. 1 (e.g., to help measure packet delay as part of an MDT) .
Operations 700 begin, at block 702, by generating a packet having a header indicating the packet is of a packet type used for packet delay testing and a packet payload including a timestamp. At 704, the packet is transmitted.
FIG. 8 illustrates example operations 800 for measuring packet delay by a receiver. For example, the operations 700 may be performed, for example, by a base station 110 or UE 120 V-3 shown in FIG. 1 in conjunction with a transmitting device performing operations 700.
The operations 800 begin, at 802, by receiving a packet having a header indicating the packet is of a packet type used for packet delay testing and a packet payload including a timestamp. At 804, a packet delay is determined based on the timestamp and a receive time of the packet.
The PDCP protocol defines two kinds of PDUs: Data PDU and Control PDU. The timestamp proposed herein may be included in either PDU type.
For example, FIGs. 9A, 9B, and 9C illustrate example PDU type values and corresponding control PDU types for measuring (and reporting) packet delay, in accordance with certain aspects of the present disclosure. FIG. 9A lists example PDU types and corresponding PDU type field values.
FIG. 9B illustrates an example format of control PDCP PDU 900B that includes a timestamp that may be used for packet delay measurement in accordance with the operations described above. As illustrated, the control PDU 900B may include a PDU type field 902 with a value (e.g., 010 per FIG. 9A) that indicates the packet is for delay testing (and carries a timestamp) .
This PDU type for delay testing may also cause the control PDU of this type to be handled differently than other types of control PDUs. Normally, a PDCP control PDU is not subject to queuing in the PDCP buffer. However, since PDCP queuing delay is a key component of packet delay, to measure this delay, the control PDU for delay test purposes may be enqueued (queued in) as if it were a normal data PDU of the data radio bearer (DRB) .
As illustrated in FIG. 9C, in some cases, PDCP PDU 900C may include a downlink delay field reported from a UE. For example, a UE may measure the DL packet delay based on a packet from a base station and report the DL delay in a control  PDU of this same format. In some cases, a PDU type (e.g., of 011 per FIG. 9A) may indicate the packet is used to report DL packet delay.
The packet used for such reporting could not have the timestamp, as illustrated in FIG. 9C. In some cases, however, the same reporting packet could also include a timestamp generated by the UE, in which case the BS could use this same reporting packet for measuring UL packet delay.
FIG. 10 illustrates an example format of data PDCP PDU 1000 that includes a timestamp that may be used for packet delay measurement in accordance with the operations described above. As illustrated, the data PDCP PDU 1000 may use a (previously) reserved bit (labeled T in this example) to indicate the data PDU 1000 is for delay testing (and carries a timestamp) .
The MAC-I may be calculated based on the Timestamp as payload. This delay test packet may be delivered in the same way as normal data by RLC and lower layers. This type of packet may also participate into the PDCP re-ordering but may not be submitted to the upper layer by PDCP. The receiving time T2 (used for measuring the packet delay) may be the time that the packet is ready to be submitted to upper layer by PDCP.
The packets described herein may be used for uplink or downlink delay measurement. For example, a base station (e.g., gNB) may generate such a packet with a timestamp for a UE to use to measure DL packet delay. On the other hand, a UE may generate such a packet with a timestamp for a base station to use to measure UL packet delay.
The timestamp described herein may represent the time a new packet arrives at a PDCP upper SAP (service access point) , as in the time the packet is delivered to the PDCP layer by higher protocol layer.
In some cases, to save radio resource, the timestamp may be in terms of relative time information. For example, the relative time information may be in terms of a system frame number (SFN) , slot ID information and, optionally, OFDMA symbol ID or time elapsed after delay test packet is triggered (e.g., for the periodic test packet triggering case) .
For UL delay packet measurement, a gNB may configure the delay test packet triggering interval (e.g. every X ms and/or every Y data packets) and provide this configuration to the UE.
For DL, the gNB may configure the UE with the delay reporting interval. The delay can be reported, for example, by RRC and/or PDCP control PDU, as described above with reference to FIG. 9. Alternatively, the DL delay can be reported by:
another new PDCP control PDU;
a new information element (IE) in the delay test purpose PDCP data PDU; or
another delay test purpose PDCP data PDU.
As described herein, packet delay measurement may be performed utilizing a new PDCP control (or data) PDU. The PDCP control (or data) PDU for delay test carries the time when the delay test packet is generated. The delay test packet may be enqueued (queued in) with normal data of the DRB (so it is subject to the same PDCP buffer delay as a normal data packet) . For UL delay measurement, the gNB may configure the delay test PDU generation interval as: every X ms and/or every Y data packets. For DL delay measurement, gNB configures the interval for UE to report the delay by the new PDCP control (or data) PDU.
As described above, a control PDU could be queued with data packets in an effort to accurately reflect buffer delay in the packet delay measurements. To avoid queueing the control PDU along with data PDUs, another alternative is to include a PDCP sequence number (SN) and timestamp in the payload of the control PDU.
For example, as illustrated in FIG. 11, a PDCP control PDU for delay test may include a PDCP SN in the payload (e.g., a 12-bit SN) . The PDCP SN may be an expected SN of the SDU associated with the timestamp included in the control PDU.
FIG. 12 illustrates how a timestamp and SN may be used to calculate packet delay. Based on the network setting (e.g. trigger a delay test PDU every X ms or every Y data PDUs) , whenever the delay reporting is triggered, upon a next data packet arrival, the time stamp T1 of that packet and the expected SN of that same packet is  included in the control PDU. In some cases, the expected SN may be assigned based on the remaining packets ahead of this packet in the PDCP queue.
Typically, the PDCP control PDU is received before the associated data PDU because control PDU has higher priority. The receiving side should note down the time T2 of the associated data PDU (with a SN matching that of the control PDU) and derive the delay as T2-T1, as shown in FIG. 12.
The methods disclosed herein comprise one or more steps or actions for achieving the described method. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is specified, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
As used herein, the term “determining” encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Unless specifically stated otherwise, the term “some” refers to one or more. All structural and  functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for. ”
The various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions. The means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor. For example,  processors  266, 258, 264, and/or controller/processor 280 of the UE 120 shown in FIG. 2 may be configured to perform operations 700 of FIG. 7 and/or operations 800 of FIG. 8.
The various illustrative logical blocks, modules and circuits described in connection with the present disclosure may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device (PLD) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
If implemented in hardware, an example hardware configuration may comprise a processing system in a wireless node. The processing system may be implemented with a bus architecture. The bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints. The bus may link together various circuits including a processor, machine-readable media, and a bus interface. The bus  interface may be used to connect a network adapter, among other things, to the processing system via the bus. The network adapter may be used to implement the signal processing functions of the PHY layer. In the case of a UE 120 (see FIG. 1) , a user interface (e.g., keypad, display, mouse, joystick, etc. ) may also be connected to the bus. The bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further. The processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
If implemented in software, the functions may be stored or transmitted over as one or more instructions or code on a computer-readable medium. Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. The processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media. A computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. By way of example, the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface. Alternatively, or in addition, the machine-readable media, or any portion thereof, may be integrated into the processor, such as the case may be with cache and/or general register files. Examples of machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks,  optical disks, hard drives, or any other suitable storage medium, or any combination thereof. The machine-readable media may be embodied in a computer-program product.
A software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media. The computer-readable media may comprise a number of software modules. The software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions. The software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices. By way of example, a software module may be loaded into RAM from a hard drive when a triggering event occurs. During execution of the software module, the processor may load some of the instructions into cache to increase access speed. One or more cache lines may then be loaded into a general register file for execution by the processor. When referring to the functionality of a software module below, it will be understood that such functionality is implemented by the processor when executing instructions from that software module.
Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and
Figure PCTCN2019081627-appb-000001
disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in some aspects computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) . In addition, for other aspects computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
Thus, certain aspects may comprise a computer program product for performing the operations presented herein. For example, such a computer program  product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein.
Further, it should be appreciated that modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable. For example, such a device can be coupled to a server to facilitate the transfer of means for performing the methods described herein. Alternatively, various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device. Moreover, any other suitable technique for providing the methods and techniques described herein to a device can be utilized.
It is to be understood that the claims are not limited to the precise configuration and components illustrated above. Various modifications, changes and variations may be made in the arrangement, operation and details of the methods and apparatus described above without departing from the scope of the claims.
WHAT IS CLAIMED IS:

Claims (48)

  1. A method for measuring packet delay, comprising:
    generating a packet having
    a header indicating the packet is of a packet type used for packet delay testing, and
    a packet payload including a timestamp; and
    transmitting the packet.
  2. The method of claim 1, wherein the timestamp represents relative time information or time elapsed after generation of the packet is triggered.
  3. The method of claim 2, wherein the timestamp is represented in terms of a system frame number (SFN) , slot ID information, or a symbol ID.
  4. The method of claim 1, wherein the packet comprises a control packet.
  5. The method of claim 4, wherein the control packet comprises a Packet Data Convergence Protocol (PDCP) control protocol data unit (PDU) .
  6. The method of claim 4, further comprising, prior to transmitting the packet, queuing the control packet in a buffer also used to queue data packets.
  7. The method of claim 4, wherein:
    the timestamp corresponds to a time a data packet is delivered to a Packet Data Convergence Protocol (PDCP) layer of the UE by a higher protocol layer; and
    the control packet also includes an expected sequence number of the data packet.
  8. The method of claim 7, further comprising determining the expected sequence number based on remaining packets ahead of the data packet in a buffer used to queue data packets.
  9. The method of claim 1, wherein the packet comprises a data packet.
  10. The method of claim 9, wherein the data packet comprises a Packet Data Convergence Protocol (PDCP) data protocol data unit (PDU) .
  11. The method of claim 10, wherein:
    the indication the packet is of a packet type used for packet delay testing is provided via a bit in the header that is a reserved bit in data packets not used for packet delay testing.
  12. The method of claim 1, wherein:
    the packet is transmitted to a user equipment (UE) for measuring downlink packet delay; and
    the method further comprises receiving a report from the UE indicating measured downlink packet delay.
  13. The method of claim 12, wherein the indication of the measured downlink packet delay comprises at least one of an absolute delay value, a ratio of packets exceeding a delay threshold, or a number of packets received by the UE during a measurement period.
  14. The method of claim 12, wherein the report is provided via at least one of radio resource control (RRC) signaling or via another packet.
  15. The method of claim 14, wherein the other packet has a header indicating the other packet is of a packet type used for packet delay reporting.
  16. The method of claim 15, wherein the other packet providing the report has a same packet type as the packet transmitted to the UE for measuring downlink packet delay.
  17. The method of claim 16, wherein:
    the other packet also has a timestamp for measuring uplink packet delay; and
    the method further comprises measuring uplink packet delay based on the timestamp in the other packet.
  18. The method of claim 12, further comprising configuring the UE with an indication of how often to send the report.
  19. The method of claim 18, wherein the configuration indicates the UE is to send the report according to at least one of:
    an interval defined by time; or
    an interval defined by a number of data packets.
  20. The method of claim 1, wherein:
    the packet is transmitted to a base station for measuring uplink packet delay.
  21. The method of claim 20, further comprising receiving signaling indicating how often the UE is to generate packets for measuring uplink packet delay.
  22. The method of claim 21, wherein the configuration indicates the UE is to send packets for measuring uplink packet delay according to at least one of:
    an interval defined by time; or
    an interval defined by a number of data packets.
  23. A method for measuring packet delay, comprising:
    receiving a packet having
    a header indicating the packet is of a packet type used for packet delay testing, and
    a packet payload including a timestamp; and
    determining packet delay based on the timestamp and a receive time of the packet.
  24. The method of claim 23, wherein the timestamp represents relative time information or time elapsed after generation of the packet is triggered.
  25. The method of claim 24, wherein the timestamp is represented in terms of a system frame number (SFN) , slot ID information, or a symbol ID.
  26. The method of claim 23, wherein the receive time corresponds to a time the packet is ready to be submitted to upper layer processing by a lower physical processing layer.
  27. The method of claim 23, wherein the packet comprises a control packet.
  28. The method of claim 27, wherein the control packet comprises a Packet Data Convergence Protocol (PDCP) control protocol data unit (PDU) .
  29. The method of claim 27, further comprising, prior to determining the packet delay, queuing the control packet in a buffer also used to queue data packets.
  30. The method of claim 27, wherein:
    the timestamp corresponds to a time a data packet is delivered to a Packet Data Convergence Protocol (PDCP) layer of the UE by a higher protocol layer;
    the control packet also includes an expected sequence number of the data packet; and
    the packet delay is determined based on the timestamp and a receive time of the data packet as indicated by the sequence number.
  31. The method of claim 23, wherein the packet comprises a data packet.
  32. The method of claim 31, wherein the data packet comprises a Packet Data Convergence Protocol (PDCP) data protocol data unit (PDU) .
  33. The method of claim 32, wherein:
    the indication the packet is of a packet type used for packet delay testing is provided via a bit in the header that is a reserved bit in data packets not used for packet delay testing.
  34. The method of 23, wherein:
    the packet is transmitted from a base station for measuring downlink packet delay; and
    the method further comprises sending the base station a report indicating measured downlink packet delay.
  35. The method of claim 34, wherein the indication of the measured downlink packet delay comprises at least one of an absolute delay value, a ratio of packets exceeding a delay threshold, or a number of packets received by the UE during a measurement period.
  36. The method of claim 34, wherein the report is provided via at least one of radio resource control (RRC) signaling or via another packet.
  37. The method of claim 36, wherein the other packet has a header indicating the other packet is of a packet type used for packet delay reporting.
  38. The method of claim 37, wherein the other packet providing the report has a same packet type as the packet transmitted to the UE for measuring downlink packet delay.
  39. The method of claim 38, wherein:
    the other packet also has a timestamp for measuring uplink packet delay.
  40. The method of claim 37, further comprising receiving a configuration with an indication of how often to send the report.
  41. The method of claim 40, wherein the configuration indicates the UE is to send the report according to at least one of:
    an interval defined by time; or
    an interval defined by a number of data packets.
  42. The method of claim 23, wherein:
    the packet is transmitted from a user equipment (UE) for measuring uplink packet delay.
  43. The method of claim 42, further comprising signaling the UE with a configuration indicating how often the UE is to generate packets for measuring uplink packet delay.
  44. The method of claim 43, wherein the configuration indicates the UE is to send packets for measuring uplink packet delay according to at least one of:
    an interval defined by time; or
    an interval defined by a number of data packets.
  45. An apparatus for measuring packet delay, comprising:
    means for generating a packet having
    a header indicating the packet is of a packet type used for packet delay testing, and
    a packet payload including a timestamp; and
    means for transmitting the packet.
  46. An apparatus for measuring packet delay, comprising:
    means for receiving a packet having
    a header indicating the packet is of a packet type used for packet delay testing, and
    a packet payload including a timestamp; and
    means for determining packet delay based on the timestamp and a receive time of the packet.
  47. An apparatus for for measuring packet delay, comprising:
    at least one processor configured to generate a packet having
    a header indicating the packet is of a packet type used for packet delay testing, and
    a packet payload including a timestamp; and
    a transmitter configured to transmit the packet.
  48. An apparatus for measuring packet delay, comprising:
    a receiver configured to receive a packet having
    a header indicating the packet is of a packet type used for packet delay testing, and
    a packet payload including a timestamp; and
    at least one processor configured to determine packet delay based on the timestamp and a receive time of the packet.
PCT/CN2019/081627 2019-03-28 2019-04-05 Packet delay measurement by header of a protocol data unit (pdu) WO2020191811A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962825759P 2019-03-28 2019-03-28
US62/825,759 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020191811A1 true WO2020191811A1 (en) 2020-10-01

Family

ID=72609592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081627 WO2020191811A1 (en) 2019-03-28 2019-04-05 Packet delay measurement by header of a protocol data unit (pdu)

Country Status (1)

Country Link
WO (1) WO2020191811A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024000500A1 (en) * 2022-06-30 2024-01-04 Zte Corporation Wireless communication method and device thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530860A1 (en) * 2011-06-01 2012-12-05 ADVA Optical Networking SE A method and apparatus for transporting time related information in a packet switched network
CN104025550A (en) * 2011-12-30 2014-09-03 英国电讯有限公司 Obtaining information from data items
WO2018006926A1 (en) * 2016-07-04 2018-01-11 Telefonaktiebolaget Lm Ericsson (Publ) A method, apparatus and system for handling an internet protocol packet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530860A1 (en) * 2011-06-01 2012-12-05 ADVA Optical Networking SE A method and apparatus for transporting time related information in a packet switched network
CN104025550A (en) * 2011-12-30 2014-09-03 英国电讯有限公司 Obtaining information from data items
WO2018006926A1 (en) * 2016-07-04 2018-01-11 Telefonaktiebolaget Lm Ericsson (Publ) A method, apparatus and system for handling an internet protocol packet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: ""Delay measurements for URLLC and MMTel"", 3GPP TSG-RAN WG3 MEETING #103,R3-190194, 1 March 2019 (2019-03-01), XP051604138 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024000500A1 (en) * 2022-06-30 2024-01-04 Zte Corporation Wireless communication method and device thereof

Similar Documents

Publication Publication Date Title
US11956122B2 (en) Vehicle to everything (V2X) centralized predictive quality of service (QoS)
WO2018141090A1 (en) Coupling aperiodic channel state information (csi) reference symbol (rs) (csi-rs) structure with feedback content and reporting timing
WO2020056726A1 (en) Uplink control information multiplexing on physical uplink control channel
WO2019192007A1 (en) Collision handling for csi reporting on pusch
US20200092739A1 (en) Methods and apparatuses for a user equipment (ue) based channel state information (csi) reporting request
CN110506447B (en) Scheduling request multiplexing based on reliability and delay objectives
WO2019213941A1 (en) Aperiodic channel state information computation for cross-carrier scheduling
US10856319B2 (en) Link dependent scheduling request format for URLLC
US11863479B2 (en) Quasi-colocation indication for demodulation reference signals
US11109333B2 (en) Method to receive multiple signals using multiple beams
WO2018082010A1 (en) Ue-assisted physical resource block group (prg) configuration and signaling
WO2020029288A1 (en) Quasi-colocation indication for non-zero power channel state information reference signal port groups
US11564210B2 (en) Two stage control channel for peer to peer communication
US11626961B2 (en) Channel state information (CSI) measurement with different quasi-colocation (QCL) configurations for a same CSI reference signal (CSI-RS) resource
WO2020191811A1 (en) Packet delay measurement by header of a protocol data unit (pdu)
WO2021035495A1 (en) Deactivation time for semi-persistent channel state information (sp-csi)
WO2021143711A1 (en) Prevention of c-v2x full-certificate message loss during congestion control
US11751184B2 (en) Indication of degraded transmit beam group in group-based reporting
US10651967B1 (en) Communication using multiple modulation coding schemes based on difference in time from demodulation reference signal communication
WO2021232402A1 (en) Csi forwarding in sidelink
WO2020029273A1 (en) Collision handling for csi report and ul data
WO2020205975A1 (en) Improved feedback for multicast peer-to-peer communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920692

Country of ref document: EP

Kind code of ref document: A1