WO2020189891A1 - Point cloud data transmission apparatus, point cloud data transmission method, point cloud data reception apparatus, and point cloud data reception method - Google Patents

Point cloud data transmission apparatus, point cloud data transmission method, point cloud data reception apparatus, and point cloud data reception method Download PDF

Info

Publication number
WO2020189891A1
WO2020189891A1 PCT/KR2020/001615 KR2020001615W WO2020189891A1 WO 2020189891 A1 WO2020189891 A1 WO 2020189891A1 KR 2020001615 W KR2020001615 W KR 2020001615W WO 2020189891 A1 WO2020189891 A1 WO 2020189891A1
Authority
WO
WIPO (PCT)
Prior art keywords
point cloud
cloud data
information
unit
geometry
Prior art date
Application number
PCT/KR2020/001615
Other languages
French (fr)
Korean (ko)
Inventor
오세진
허혜정
심동규
이종석
최한솔
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2020189891A1 publication Critical patent/WO2020189891A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the embodiments are directed to a method and apparatus for processing point cloud content.
  • the point cloud content is content expressed as a point cloud, which is a set of points (points) belonging to a coordinate system representing a three-dimensional space.
  • Point cloud content can express media consisting of three dimensions, and provides various services such as VR (Virtual Reality, Virtual Reality), AR (Augmented Reality, Augmented Reality), MR (Mixed Reality, Mixed Reality), and autonomous driving services. Used to provide. However, tens of thousands to hundreds of thousands of point data are required to represent point cloud content. Therefore, a method for efficiently processing a vast amount of point data is required.
  • Embodiments provide an apparatus and method for efficiently processing point cloud data.
  • Embodiments provide a point cloud data processing method and apparatus for solving latency and encoding/decoding complexity.
  • a method for transmitting point cloud data includes: obtaining point cloud data; Encoding the point cloud data; And/or transmitting point cloud data; It may include.
  • a method of receiving point cloud data includes: receiving point cloud data; Decoding the point cloud data; And rendering the point cloud data. It may include.
  • the apparatus and method according to the embodiments may process point cloud data with high efficiency.
  • the apparatus and method according to the embodiments may provide a point cloud service of high quality.
  • the apparatus and method according to the embodiments may provide point cloud content for providing general-purpose services such as VR services and autonomous driving services.
  • FIG. 1 shows an example of a point cloud content providing system according to embodiments.
  • FIG. 2 is a block diagram illustrating an operation of providing point cloud content according to embodiments.
  • FIG 3 shows an example of a point cloud video capture process according to embodiments.
  • FIG. 4 shows an example of a point cloud encoder according to embodiments.
  • FIG. 5 shows an example of a voxel according to embodiments.
  • FIG. 6 shows an example of an octree and an occupancy code according to embodiments.
  • FIG. 7 shows an example of a neighbor node pattern according to embodiments.
  • FIG. 10 shows an example of a point cloud decoder according to embodiments.
  • FIG. 11 shows an example of a point cloud decoder according to embodiments.
  • FIG 13 is an example of a reception device according to embodiments.
  • FIG. 14 illustrates an architecture for G-PCC-based point cloud content streaming according to embodiments.
  • 15 shows an example of a transmission device according to embodiments.
  • FIG. 16 shows an example of a receiving device according to embodiments.
  • FIG. 17 shows an example of a structure capable of interworking with a method/device for transmitting and receiving point cloud data according to embodiments.
  • FIG. 18 shows an example of a space of points constituting point cloud content according to embodiments.
  • FIG. 19 shows an example of a point cloud encoder according to embodiments.
  • FIG. 20 shows an example of a geometric information encoder according to embodiments.
  • 21 illustrates a bounding box of geometric information of point cloud data according to embodiments.
  • FIG. 22 shows an example of an operation of a space dividing unit according to embodiments.
  • 23 is a diagram illustrating an example of performing octtree division information and/or derivation information of geometric information of point cloud data according to embodiments.
  • FIG. 24 shows an example of a structure of point cloud data according to embodiments.
  • 25 shows an example of a process of inverse quantization of geometric information according to embodiments.
  • 26 illustrates an exemplary embodiment of inverse quantization of geometric information according to embodiments.
  • FIG. 27 shows an example of a point cloud decoder according to embodiments.
  • 29 shows an example of occupancy derivation according to embodiments.
  • FIG. 30 shows signaling information related to a geometry node according to embodiments.
  • 31 illustrates a method of transmitting point cloud data according to embodiments.
  • 32 illustrates a method of receiving point cloud data according to embodiments.
  • FIG. 1 shows an example of a point cloud content providing system according to embodiments.
  • the point cloud content providing system illustrated in FIG. 1 may include a transmission device 10000 and a reception device 10004.
  • the transmission device 10000 and the reception device 10004 are capable of wired or wireless communication to transmit and receive point cloud data.
  • the transmission device 10000 may secure, process, and transmit point cloud video (or point cloud content).
  • the transmission device 10000 is a fixed station, a base transceiver system (BTS), a network, an artificial intelligence (AI) device and/or system, a robot, an AR/VR/XR device and/or server. And the like.
  • the transmission device 10000 uses a radio access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)) to communicate with a base station and/or other wireless devices, Robots, vehicles, AR/VR/XR devices, portable devices, home appliances, Internet of Thing (IoT) devices, AI devices/servers, etc. may be included.
  • 5G NR New RAT
  • LTE Long Term Evolution
  • the transmission device 10000 includes a point cloud video acquisition unit (Point Cloud Video Acquisition, 10001), a point cloud video encoder (Point Cloud Video Encoder, 10002) and/or a transmitter (Transmitter (or Communication module), 10003). Include)
  • the point cloud video acquisition unit 10001 acquires a point cloud video through a process such as capture, synthesis, or generation.
  • the point cloud video is point cloud content expressed as a point cloud, which is a set of points located in a three-dimensional space, and may be referred to as point cloud video data.
  • a point cloud video according to embodiments may include one or more frames. One frame represents a still image/picture. Accordingly, the point cloud video may include a point cloud image/frame/picture, and may be referred to as any one of a point cloud image, a frame, and a picture.
  • the point cloud video encoder 10002 encodes the secured point cloud video data.
  • the point cloud video encoder 10002 may encode point cloud video data based on Point Cloud Compression coding.
  • Point cloud compression coding may include Geometry-based Point Cloud Compression (G-PCC) coding and/or Video based Point Cloud Compression (V-PCC) coding or next-generation coding.
  • G-PCC Geometry-based Point Cloud Compression
  • V-PCC Video based Point Cloud Compression
  • point cloud compression coding according to the embodiments is not limited to the above-described embodiments.
  • the point cloud video encoder 10002 may output a bitstream including encoded point cloud video data.
  • the bitstream may include not only the encoded point cloud video data, but also signaling information related to encoding of the point cloud video data.
  • the transmitter 10003 transmits a bitstream including encoded point cloud video data.
  • the bitstream according to the embodiments is encapsulated into a file or segment (for example, a streaming segment) and transmitted through various networks such as a broadcasting network and/or a broadband network.
  • the transmission device 10000 may include an encapsulation unit (or an encapsulation module) that performs an encapsulation operation.
  • the encapsulation unit may be included in the transmitter 10003.
  • a file or segment may be transmitted to the receiving device 10004 through a network or stored in a digital storage medium (eg, USB, SD, CD, DVD, Blu-ray, HDD, SSD, etc.).
  • the transmitter 10003 may perform wired/wireless communication with the reception device 10004 (or a receiver 10005) through a network such as 4G, 5G, or 6G.
  • the transmitter 10003 may perform necessary data processing operations according to a network system (for example, a communication network system such as 4G, 5G, or 6G).
  • the transmission device 10000 may transmit encapsulated data according to an on demand method.
  • the reception device 10004 includes a receiver 10005, a point cloud video decoder 10006, and/or a renderer 10007.
  • the receiving device 10004 uses a wireless access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)) to communicate with a base station and/or other wireless devices, a robot , Vehicles, AR/VR/XR devices, portable devices, home appliances, Internet of Thing (IoT) devices, AI devices/servers, and the like.
  • 5G NR New RAT
  • LTE Long Term Evolution
  • the receiver 10005 receives a bitstream including point cloud video data or a file/segment in which the bitstream is encapsulated from a network or a storage medium.
  • the receiver 10005 may perform necessary data processing operations according to a network system (for example, a communication network system such as 4G, 5G, or 6G).
  • the receiver 10005 may decapsulate the received file/segment and output a bitstream.
  • the receiver 10005 may include a decapsulation unit (or a decapsulation module) for performing a decapsulation operation.
  • the decapsulation unit may be implemented as an element (or component) separate from the receiver 10005.
  • the point cloud video decoder 10006 decodes a bitstream including point cloud video data.
  • the point cloud video decoder 10006 may decode the point cloud video data according to the encoding method (for example, a reverse process of the operation of the point cloud video encoder 10002). Accordingly, the point cloud video decoder 10006 may decode the point cloud video data by performing point cloud decompression coding, which is a reverse process of the point cloud compression.
  • Point cloud decompression coding includes G-PCC coding.
  • the renderer 10007 renders the decoded point cloud video data.
  • the renderer 10007 may output point cloud content by rendering audio data as well as point cloud video data.
  • the renderer 10007 may include a display for displaying point cloud content.
  • the display is not included in the renderer 10007 and may be implemented as a separate device or component.
  • the feedback information is information for reflecting an interaction ratio with a user who consumes point cloud content, and includes user information (eg, head orientation information, viewport information, etc.).
  • user information eg, head orientation information, viewport information, etc.
  • the feedback information is the content sending side (for example, the transmission device 10000) and/or a service provider.
  • the feedback information may be used not only in the transmitting device 10000 but also in the receiving device 10004, and may not be provided.
  • Head orientation information is information on a position, direction, angle, and movement of a user's head.
  • the receiving device 10004 may calculate viewport information based on the head orientation information.
  • the viewport information is information on the area of the point cloud video that the user is viewing.
  • a viewpoint is a point at which the user is watching a point cloud video, and may mean a center point of a viewport area. That is, the viewport is an area centered on a viewpoint, and the size and shape of the area may be determined by a field of view (FOV).
  • FOV field of view
  • the receiving device 10004 may extract viewport information based on a vertical or horizontal FOV supported by the device in addition to the head orientation information.
  • the receiving device 10004 performs a gaze analysis and the like to check the point cloud consumption method of the user, the point cloud video area that the user gazes, and the gaze time.
  • the receiving device 10004 may transmit feedback information including the result of gaze analysis to the transmitting device 10000.
  • Feedback information may be obtained during rendering and/or display.
  • Feedback information may be secured by one or more sensors included in the receiving device 10004.
  • the feedback information may be secured by the renderer 10007 or a separate external element (or device, component, etc.).
  • a dotted line in FIG. 1 shows a process of transmitting feedback information secured by the renderer 10007.
  • the point cloud content providing system may process (encode/decode) point cloud data based on feedback information.
  • the point cloud video data decoder 10006 may perform a decoding operation based on the feedback information.
  • the receiving device 10004 may transmit feedback information to the transmitting device 10000.
  • the transmission device 10000 (or the point cloud video data encoder 10002) may perform an encoding operation based on feedback information. Therefore, the point cloud content providing system does not process (encode/decode) all point cloud data, but efficiently processes necessary data (e.g., point cloud data corresponding to the user's head position) based on feedback information. Point cloud content can be provided to users.
  • the transmission device 10000 may be referred to as an encoder, a transmission device, a transmitter, and the like
  • the reception device 10004 may be referred to as a decoder, a reception device, a receiver, or the like.
  • Point cloud data (processed in a series of acquisition/encoding/transmission/decoding/rendering) processed in the point cloud content providing system of FIG. 1 according to embodiments may be referred to as point cloud content data or point cloud video data.
  • the point cloud content data may be used as a concept including metadata or signaling information related to the point cloud data.
  • Elements of the point cloud content providing system shown in FIG. 1 may be implemented by hardware, software, processor, and/or a combination thereof.
  • FIG. 2 is a block diagram illustrating an operation of providing point cloud content according to embodiments.
  • the block diagram of FIG. 2 shows the operation of the point cloud content providing system described in FIG. 1.
  • the point cloud content providing system may process point cloud data based on point cloud compression coding (eg, G-PCC).
  • point cloud compression coding eg, G-PCC
  • a point cloud content providing system may acquire a point cloud video (20000).
  • the point cloud video is expressed as a point cloud belonging to a coordinate system representing a three-dimensional space.
  • a point cloud video may include a Ply (Polygon File format or the Stanford Triangle format) file.
  • Ply files contain point cloud data such as the geometry and/or attributes of the point.
  • the geometry includes the positions of the points.
  • the position of each point may be expressed by parameters (eg, values of each of the X-axis, Y-axis, and Z-axis) representing a three-dimensional coordinate system (eg, a coordinate system composed of XYZ axes).
  • Attributes include attributes of points (eg, texture information of each point, color (YCbCr or RGB), reflectance (r), transparency, etc.).
  • a point has one or more attributes (or attributes).
  • one point may have an attribute of one color, or two attributes of a color and reflectance.
  • geometry may be referred to as positions, geometry information, geometry data, and the like, and attributes may be referred to as attributes, attribute information, attribute data, and the like.
  • the point cloud content providing system (for example, the point cloud transmission device 10000 or the point cloud video acquisition unit 10001) provides points from information related to the acquisition process of the point cloud video (eg, depth information, color information, etc.). Cloud data can be secured.
  • the point cloud content providing system may encode point cloud data (20001).
  • the point cloud content providing system may encode point cloud data based on point cloud compression coding.
  • the point cloud data may include the geometry and attributes of the point.
  • the point cloud content providing system may output a geometry bitstream by performing geometry encoding for encoding geometry.
  • the point cloud content providing system may output an attribute bitstream by performing attribute encoding for encoding the attribute.
  • the point cloud content providing system may perform attribute encoding based on geometry encoding.
  • the geometry bitstream and the attribute bitstream according to the embodiments may be multiplexed and output as one bitstream.
  • the bitstream according to embodiments may further include signaling information related to geometry encoding and attribute encoding.
  • the point cloud content providing system may transmit encoded point cloud data (20002).
  • the encoded point cloud data may be expressed as a geometry bitstream and an attribute bitstream.
  • the encoded point cloud data may be transmitted in the form of a bitstream together with signaling information related to encoding of the point cloud data (eg, signaling information related to geometry encoding and attribute encoding).
  • the point cloud content providing system may encapsulate the bitstream for transmitting the encoded point cloud data and transmit it in the form of a file or segment.
  • the point cloud content providing system may receive a bitstream including encoded point cloud data.
  • the point cloud content providing system may demultiplex the bitstream.
  • the point cloud content providing system can decode the encoded point cloud data (e.g., geometry bitstream, attribute bitstream) transmitted as a bitstream. have.
  • the point cloud content providing system (for example, the receiving device 10004 or the point cloud video decoder 10005) can decode the point cloud video data based on signaling information related to encoding of the point cloud video data included in the bitstream. have.
  • the point cloud content providing system (for example, the receiving device 10004 or the point cloud video decoder 10005) may restore positions (geometry) of points by decoding a geometry bitstream.
  • the point cloud content providing system may restore the attributes of points by decoding an attribute bitstream based on the restored geometry.
  • the point cloud content providing system (for example, the receiving device 10004 or the point cloud video decoder 10005) may restore the point cloud video based on the decoded attributes and positions according to the restored geometry.
  • the point cloud content providing system may render the decoded point cloud data (20004 ).
  • the point cloud content providing system may render geometry and attributes decoded through a decoding process according to a rendering method according to various rendering methods. Points of the point cloud content may be rendered as a vertex having a certain thickness, a cube having a specific minimum size centered on the vertex position, or a circle centered on the vertex position. All or part of the rendered point cloud content is provided to the user through a display (eg VR/AR display, general display, etc.).
  • a display eg VR/AR display, general display, etc.
  • the point cloud content providing system may secure feedback information (20005).
  • the point cloud content providing system may encode and/or decode point cloud data based on feedback information. Since the operation of the system for providing feedback information and point cloud content according to the embodiments is the same as the feedback information and operation described in FIG. 1, a detailed description will be omitted.
  • FIG 3 shows an example of a point cloud video capture process according to embodiments.
  • FIGS. 1 to 2 shows an example of a point cloud video capture process in the point cloud content providing system described in FIGS. 1 to 2.
  • the point cloud content is an object located in various three-dimensional spaces (for example, a three-dimensional space representing a real environment, a three-dimensional space representing a virtual environment, etc.) and/or a point cloud video (images and/or Videos). Therefore, the point cloud content providing system according to the embodiments includes one or more cameras (eg, an infrared camera capable of securing depth information, color information corresponding to the depth information) to generate the point cloud content. You can capture a point cloud video using an RGB camera that can extract the image), a projector (for example, an infrared pattern projector to secure depth information), and LiDAR.
  • cameras eg, an infrared camera capable of securing depth information, color information corresponding to the depth information
  • a projector for example, an infrared pattern projector to secure depth information
  • LiDAR LiDAR
  • the point cloud content providing system may obtain point cloud data by extracting a shape of a geometry composed of points in a 3D space from depth information, and extracting an attribute of each point from color information.
  • An image and/or an image according to the embodiments may be captured based on at least one or more of an inward-facing method and an outward-facing method.
  • the left side of Fig. 3 shows an inword-facing scheme.
  • the inword-facing method refers to a method in which one or more cameras (or camera sensors) located surrounding a central object capture a central object.
  • the in-word-facing method provides point cloud content that provides users with 360-degree images of key objects (e.g., provides users with 360-degree images of objects (e.g., key objects such as characters, players, objects, actors, etc.) VR/AR content).
  • the outward-facing method refers to a method in which one or more cameras (or camera sensors) located surrounding the central object capture the environment of the central object other than the central object.
  • the outward-pacing method may be used to generate point cloud content (for example, content representing an external environment that may be provided to a user of a self-driving vehicle) to provide an environment that appears from a user's point of view.
  • the point cloud content may be generated based on the capture operation of one or more cameras.
  • the point cloud content providing system may calibrate one or more cameras to set a global coordinate system before the capture operation.
  • the point cloud content providing system may generate point cloud content by synthesizing an image and/or image captured by the above-described capture method with an arbitrary image and/or image.
  • the point cloud content providing system may not perform the capture operation described in FIG. 3 when generating point cloud content representing a virtual space.
  • the point cloud content providing system may perform post-processing on the captured image and/or image. In other words, the point cloud content providing system removes an unwanted area (e.g., background), recognizes the space where captured images and/or images are connected, and performs an operation to fill in a spatial hole if there is. I can.
  • the point cloud content providing system may generate one point cloud content by performing coordinate system transformation on points of the point cloud video acquired from each camera.
  • the point cloud content providing system may perform a coordinate system transformation of points based on the position coordinates of each camera. Accordingly, the point cloud content providing system may generate content representing a wide range, or may generate point cloud content having a high density of points.
  • FIG. 4 shows an example of a point cloud encoder according to embodiments.
  • the point cloud encoder uses point cloud data (for example, positions and/or positions of points) to adjust the quality of the point cloud content (for example, lossless-lossless, loss-lossy, near-lossless) according to network conditions or applications. Attributes) and perform an encoding operation.
  • point cloud data for example, positions and/or positions of points
  • the quality of the point cloud content for example, lossless-lossless, loss-lossy, near-lossless
  • Attributes perform an encoding operation.
  • the point cloud content providing system may not be able to stream the content in real time. Therefore, the point cloud content providing system can reconstruct the point cloud content based on the maximum target bitrate in order to provide it according to the network environment.
  • the point cloud encoder may perform geometry encoding and attribute encoding. Geometry encoding is performed before attribute encoding.
  • Point cloud encoders include a coordinate system transform unit (Transformation Coordinates, 40000), a quantization unit (Quantize and Remove Points (Voxelize), 40001), an octree analysis unit (Analyze Octree, 40002), and a surface aproximation analysis unit ( Analyze Surface Approximation, 40003), Arithmetic Encode (40004), Reconstruct Geometry (40005), Transform Colors (40006), Transfer Attributes (40007), RAHT Transformation A unit 40008, an LOD generation unit (Generated LOD) 40009, a lifting transform unit (Lifting) 40010, a coefficient quantization unit (Quantize Coefficients, 40011), and/or an Arithmetic Encode (40012).
  • a coordinate system transform unit Transformation Coordinates, 40000
  • a quantization unit Quantization and Remove Points (Voxelize)
  • An octree analysis unit Analyze Octree, 40002
  • the coordinate system transform unit 40000, the quantization unit 40001, the octree analysis unit 40002, the surface aproximation analysis unit 40003, the arithmetic encoder 40004, and the geometry reconstruction unit 40005 perform geometry encoding. can do.
  • Geometry encoding according to embodiments may include octree geometry coding, direct coding, trisoup geometry encoding, and entropy encoding. Direct coding and trisoup geometry encoding are applied selectively or in combination. Also, geometry encoding is not limited to the above example.
  • the coordinate system conversion unit 40000 receives positions and converts them into a coordinate system.
  • positions may be converted into position information in a three-dimensional space (eg, a three-dimensional space represented by an XYZ coordinate system).
  • the location information of the 3D space according to embodiments may be referred to as geometry information.
  • the quantization unit 40001 quantizes geometry. For example, the quantization unit 40001 may quantize points based on the minimum position values of all points (eg, minimum values on each axis with respect to the X-axis, Y-axis, and Z-axis). The quantization unit 40001 multiplies the difference between the minimum position value and the position value of each point by a preset quantum scale value, and then performs a quantization operation to find the nearest integer value by performing a rounding or a rounding. Thus, one or more points may have the same quantized position (or position value). The quantization unit 40001 according to embodiments performs voxelization based on the quantized positions to reconstruct the quantized points.
  • the quantization unit 40001 performs voxelization based on the quantized positions to reconstruct the quantized points.
  • the minimum unit including the 2D image/video information is a pixel, and points of the point cloud content (or 3D point cloud video) according to the embodiments may be included in one or more voxels.
  • Voxel is a combination of volume and pixel
  • the quantization unit 40001 may match groups of points in a 3D space with voxels.
  • one voxel may include only one point.
  • one voxel may include one or more points.
  • a position of a center point (ceter) of a corresponding voxel may be set based on positions of one or more points included in one voxel.
  • attributes of all positions included in one voxel may be combined and assigned to a corresponding voxel.
  • the octree analysis unit 40002 performs octree geometry coding (or octree coding) to represent voxels in an octree structure.
  • the octree structure represents points matched to voxels based on an octal tree structure.
  • the surface aproxiation analysis unit 40003 may analyze and approximate the octree.
  • the octree analysis and approximation according to the embodiments is a process of analyzing to voxelize a region including a plurality of points in order to efficiently provide octree and voxelization.
  • the arithmetic encoder 40004 entropy encodes the octree and/or the approximated octree.
  • the encoding method includes an Arithmetic encoding method.
  • a geometry bitstream is generated.
  • Color conversion unit 40006, attribute conversion unit 40007, RAHT conversion unit 40008, LOD generation unit 40009, lifting conversion unit 40010, coefficient quantization unit 40011 and/or Arismatic encoder 40012 Performs attribute encoding.
  • one point may have one or more attributes. Attribute encoding according to embodiments is applied equally to attributes of one point. However, when one attribute (eg, color) includes one or more elements, independent attribute encoding is applied to each element.
  • Attribute encoding includes color transform coding, attribute transform coding, Region Adaptive Hierarchial Transform (RAHT) coding, Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform coding, and interpolation-based hierarchical nearest -Neighbor prediction with an update/lifting step (Lifting Transform)) coding may be included.
  • RAHT Region Adaptive Hierarchial Transform
  • Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform coding Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform coding
  • interpolation-based hierarchical nearest -Neighbor prediction with an update/lifting step (Lifting Transform)) coding may be included.
  • the aforementioned RAHT coding, predictive transform coding, and lifting transform coding may be selectively used, or a combination of one or more codings may be used.
  • attribute encoding according to embodiments is not limited to the above-de
  • the color conversion unit 40006 performs color conversion coding for converting color values (or textures) included in attributes.
  • the color conversion unit 40006 may convert the format of color information (eg, convert from RGB to YCbCr).
  • the operation of the color conversion unit 40006 according to the embodiments may be selectively applied according to color values included in attributes.
  • the geometry reconstruction unit 40005 reconstructs (decompresses) an octree and/or an approximated octree.
  • the geometry reconstruction unit 40005 reconstructs an octree/voxel based on a result of analyzing the distribution of points.
  • the reconstructed octree/voxel may be referred to as reconstructed geometry (or reconstructed geometry).
  • the attribute conversion unit 40007 performs attribute conversion for converting attributes based on the reconstructed geometry and/or positions for which geometry encoding has not been performed. As described above, since attributes are dependent on geometry, the attribute conversion unit 40007 may transform the attributes based on the reconstructed geometry information. For example, the attribute conversion unit 40007 may convert an attribute of the point of the position based on the position value of the point included in the voxel. As described above, when a position of a center point of a corresponding voxel is set based on positions of one or more points included in one voxel, the attribute conversion unit 40007 converts attributes of one or more points. When tri-soup geometry encoding is performed, the attribute conversion unit 40007 may convert attributes based on trisoup geometry encoding.
  • the attribute conversion unit 40007 is an average value of attributes or attribute values (for example, the color of each point or reflectance) of points neighboring within a specific position/radius from the position (or position value) of the center point of each voxel. Attribute conversion can be performed by calculating.
  • the attribute conversion unit 40007 may apply a weight according to a distance from a central point to each point when calculating an average value. Thus, each voxel has a position and a calculated attribute (or attribute value).
  • the attribute conversion unit 40007 may search for neighboring points existing within a specific position/radius from the position of the center point of each voxel based on a K-D tree or a Molton code.
  • the K-D tree is a binary search tree and supports a data structure that can manage points based on location so that the Nearest Neighbor Search (NNS) can be quickly performed.
  • the Molton code represents a coordinate value (for example, (x, y, z)) representing a three-dimensional position of all points as a bit value, and is generated by mixing the bits. For example, if the coordinate value indicating the position of the point is (5, 9, 1), the bit value of the coordinate value is (0101, 1001, 0001).
  • the attribute conversion unit 40007 may sort points based on a Morton code value and perform a shortest neighbor search (NNS) through a depth-first traversal process. After the attribute transformation operation, when the shortest neighbor search (NNS) is required in another transformation process for attribute coding, a K-D tree or a Molton code is used.
  • NSS shortest neighbor search
  • the converted attributes are input to the RAHT conversion unit 40008 and/or the LOD generation unit 40009.
  • the RAHT conversion unit 40008 performs RAHT coding for predicting attribute information based on the reconstructed geometry information. For example, the RAHT conversion unit 40008 may predict attribute information of a node at a higher level of the octree based on attribute information associated with a node at a lower level of the octree.
  • the LOD generation unit 40009 generates a level of detail (LOD) to perform predictive transform coding.
  • LOD level of detail
  • the LOD according to the embodiments is a degree representing the detail of the point cloud content, and a smaller LOD value indicates that the detail of the point cloud content decreases, and a larger LOD value indicates that the detail of the point cloud content is high. Points can be classified according to LOD.
  • the lifting transform unit 40010 performs lifting transform coding that transforms attributes of a point cloud based on weights. As described above, the lifting transform coding can be selectively applied.
  • the coefficient quantization unit 40011 quantizes attribute-coded attributes based on coefficients.
  • Arismatic encoder 40012 encodes quantized attributes based on Arismatic coding.
  • the elements of the point cloud encoder of FIG. 4 are not shown in the drawing, but hardware including one or more processors or integrated circuits configured to communicate with one or more memories included in the point cloud providing apparatus. , Software, firmware, or a combination thereof.
  • One or more processors may perform at least one or more of the operations and/or functions of the elements of the point cloud encoder of FIG. 4 described above. Further, one or more processors may operate or execute a set of software programs and/or instructions for performing operations and/or functions of the elements of the point cloud encoder of FIG. 4.
  • One or more memories according to embodiments may include high speed random access memory, and non-volatile memory (e.g., one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state Memory devices (solid-state memory devices, etc.).
  • FIG. 5 shows an example of a voxel according to embodiments.
  • voxels located in a three-dimensional space represented by a coordinate system composed of three axes of the X-axis, Y-axis, and Z-axis.
  • a point cloud encoder eg, quantization unit 40001
  • voxel 5 is an octree structure recursively subdividing a cubical axis-aligned bounding box defined by two poles (0,0,0) and (2 d , 2 d , 2 d ) Shows an example of a voxel generated through.
  • One voxel includes at least one or more points.
  • the voxel can estimate spatial coordinates from the positional relationship with the voxel group.
  • voxels have attributes (color or reflectance, etc.) like pixels of a 2D image/video. A detailed description of the voxel is the same as that described with reference to FIG. 4 and thus is omitted.
  • FIG. 6 shows an example of an octree and an occupancy code according to embodiments.
  • a point cloud content providing system (point cloud video encoder 10002) or a point cloud encoder (for example, octree analysis unit 40002) efficiently manages the area and/or position of the voxel.
  • octree geometry coding (or octree coding) based on an octree structure is performed.
  • FIG. 6 shows an octree structure.
  • the three-dimensional space of the point cloud content according to the embodiments is expressed by axes of a coordinate system (eg, X-axis, Y-axis, Z-axis).
  • the octree structure is created by recursive subdividing of a cubical axis-aligned bounding box defined by two poles (0,0,0) and (2 d , 2 d , 2 d ). . 2d may be set to a value constituting the smallest bounding box surrounding all points of the point cloud content (or point cloud video).
  • d represents the depth of the octree.
  • the d value is determined according to the following equation. In the following equation, (x int n , y int n , z int n ) represents positions (or position values) of quantized points.
  • the entire 3D space may be divided into eight spaces according to the division.
  • Each divided space is represented by a cube with 6 faces.
  • each of the eight spaces is divided again based on the axes of the coordinate system (eg, X axis, Y axis, Z axis).
  • axes of the coordinate system e.g, X axis, Y axis, Z axis.
  • each space is further divided into eight smaller spaces.
  • the divided small space is also represented as a cube with 6 faces. This division method is applied until a leaf node of an octree becomes a voxel.
  • the lower part of FIG. 6 shows the octree's ocupancy code.
  • the octree's ocupancy code is generated to indicate whether each of the eight divided spaces generated by dividing one space includes at least one point. Therefore, one Okufanshi code is represented by 8 child nodes. Each child node represents the occupancy of the divided space, and the child node has a value of 1 bit. Therefore, the Ocufanshi code is expressed as an 8-bit code. That is, if at least one point is included in the space corresponding to the child node, the node has a value of 1. If the point is not included in the space corresponding to the child node (empty), the node has a value of 0. Since the ocupancy code shown in FIG.
  • a point cloud encoder (for example, the Arismatic encoder 40004) according to embodiments may entropy encode an ocupancy code.
  • the point cloud encoder can intra/inter code the ocupancy code.
  • the reception device (for example, the reception device 10004 or the point cloud video decoder 10006) according to the embodiments reconstructs an octree based on an ocupancy code.
  • a point cloud encoder may perform voxelization and octree coding to store positions of points.
  • points in the 3D space are not always evenly distributed, there may be a specific area where there are not many points. Therefore, it is inefficient to perform voxelization over the entire 3D space. For example, if there are almost no points in a specific area, it is not necessary to perform voxelization to the corresponding area.
  • the point cloud encoder does not perform voxelization for the above-described specific region (or nodes other than the leaf nodes of the octree), but directly codes the positions of points included in the specific region. ) Can be performed. Coordinates of a direct coding point according to embodiments are referred to as a direct coding mode (DCM).
  • the point cloud encoder according to embodiments may perform trisoup geometry encoding in which positions of points within a specific region (or node) are reconstructed based on voxels based on a surface model. Trisoup geometry encoding is a geometry encoding that expresses the representation of an object as a series of triangle meshes.
  • Direct coding and trisoup geometry encoding may be selectively performed.
  • direct coding and trisoup geometry encoding according to embodiments may be performed in combination with octree geometry coding (or octree coding).
  • the option to use direct mode to apply direct coding must be activated, and the node to which direct coding is applied is not a leaf node, but below the threshold within a specific node. There must be points of. In addition, the number of all points subject to direct coding must not exceed a preset limit.
  • the point cloud encoder (or the arithmetic encoder 40004) according to the embodiments may entropy-code the positions (or position values) of the points.
  • the point cloud encoder determines a specific level of the octree (if the level is less than the depth d of the octree), and from that level, the node Trisoup geometry encoding that reconstructs the position of a point in the region based on voxels can be performed (tri-soup mode).
  • a point cloud encoder may designate a level to which trisoup geometry encoding is applied. For example, if the specified level is equal to the depth of the octree, the point cloud encoder does not operate in the try-soup mode.
  • the point cloud encoder may operate in the try-soup mode only when the specified level is less than the depth value of the octree.
  • a three-dimensional cube area of nodes of a designated level according to the embodiments is referred to as a block.
  • One block may include one or more voxels.
  • the block or voxel may correspond to a brick.
  • the geometry is represented by a surface.
  • the surface according to embodiments may intersect each edge (edge) of the block at most once.
  • one block has 12 edges, there are at least 12 intersection points within one block. Each intersection is called a vertex (vertex, or vertex).
  • a vertex existing along an edge is detected when there is at least one occupied voxel adjacent to the edge among all blocks sharing the edge.
  • An occupied voxel refers to a voxel including a point. The position of the vertex detected along the edge is the average position along the edge of all voxels among all blocks sharing the edge.
  • the point cloud encoder When a vertex is detected, the point cloud encoder according to the embodiments entropy-codes the starting point of the edge (x, y, z), the direction vector of the edge ( ⁇ x, ⁇ y, ⁇ z), and vertex position values (relative position values within the edge). I can.
  • the point cloud encoder e.g., the geometry reconstruction unit 40005
  • the point cloud encoder performs a triangle reconstruction, up-sampling, and voxelization process. By doing so, you can create reconstructed geometry (reconstructed geometry).
  • the vertices located at the edge of the block determine the surface that passes through the block.
  • the surface according to the embodiments is a non-planar polygon.
  • the triangle reconstruction process reconstructs the surface represented by a triangle based on the starting point of the edge, the direction vector of the edge, and the position value of the vertex.
  • the triangle reconstruction process is as follows. 1 Calculate the centroid value of each vertex, 2 calculate the squared values of the values subtracted from each vertex value by subtracting the center value, and calculate the sum of all the values.
  • each vertex is projected on the x-axis based on the center of the block, and projected on the (y, z) plane.
  • the projected value on the (y, z) plane is (ai, bi)
  • is obtained through atan2(bi, ai)
  • vertices are aligned based on the ⁇ value.
  • the table below shows a combination of vertices for generating a triangle according to the number of vertices. Vertices are ordered from 1 to n.
  • the table below shows that for four vertices, two triangles may be formed according to a combination of vertices.
  • the first triangle may consist of 1st, 2nd, and 3rd vertices among the aligned vertices
  • the second triangle may consist of 3rd, 4th, and 1st vertices among the aligned vertices.
  • the upsampling process is performed to voxelize by adding points in the middle along the edge of the triangle. Additional points are created based on the upsampling factor and the width of the block. The additional point is called a refined vertice.
  • the point cloud encoder may voxelize refined vertices. In addition, the point cloud encoder may perform attribute encoding based on the voxelized position (or position value).
  • FIG. 7 shows an example of a neighbor node pattern according to embodiments.
  • the point cloud encoder may perform entropy coding based on context adaptive arithmetic coding.
  • a point cloud content providing system or a point cloud encoder directly converts the Ocufanshi code.
  • Entropy coding is possible.
  • the point cloud content providing system or point cloud encoder performs entropy encoding (intra encoding) based on the ocupancy code of the current node and the ocupancy of neighboring nodes, or entropy encoding (inter encoding) based on the ocupancy code of the previous frame. ) Can be performed.
  • a frame according to embodiments means a set of point cloud videos generated at the same time.
  • the compression efficiency of intra-encoding/inter-encoding may vary depending on the number of referenced neighbor nodes. The larger the bit, the more complicated it is, but it can be skewed to one side, increasing the compression efficiency. For example, if you have a 3-bit context, you have to code in 8 ways. The divided coding part affects the complexity of the implementation. Therefore, it is necessary to match the appropriate level of compression efficiency and complexity.
  • a point cloud encoder determines occupancy of neighboring nodes of each node of an octree and obtains a value of a neighbor pattern.
  • the neighboring node pattern is used to infer the occupancy pattern of the corresponding node.
  • the left side of FIG. 7 shows a cube corresponding to a node (centered cube) and six cubes (neighbor nodes) that share at least one surface with the cube. Nodes shown in the figure are nodes of the same depth (depth). Numbers shown in the figure indicate weights (1, 2, 4, 8, 16, 32, etc.) associated with each of the six nodes. Each weight is sequentially assigned according to the positions of neighboring nodes.
  • the right side of FIG. 7 shows neighboring node pattern values.
  • the neighbor node pattern value is the sum of values multiplied by weights of the occupied neighbor nodes (neighbor nodes having points). Therefore, the neighbor node pattern value has a value from 0 to 63. When the neighbor node pattern value is 0, it indicates that no node (occupied node) has a point among neighboring nodes of the corresponding node. If the neighboring node pattern value is 63, it indicates that all neighboring nodes are occupied nodes. As shown in the figure, since neighboring nodes to which weights 1, 2, 4, and 8 are assigned are occupied nodes, the neighboring node pattern value is 15, which is the sum of 1, 2, 4, and 8.
  • the point cloud encoder may perform coding according to the neighboring node pattern value (for example, if the neighboring node pattern value is 63, 64 codings are performed). According to embodiments, the point cloud encoder may reduce coding complexity by changing a neighbor node pattern value (for example, based on a table changing 64 to 10 or 6).
  • the encoded geometry is reconstructed (decompressed) before attribute encoding is performed.
  • the geometry reconstruction operation may include changing the placement of the direct coded points (eg, placing the direct coded points in front of the point cloud data).
  • the geometry reconstruction process is triangular reconstruction, upsampling, voxelization, and the attribute is dependent on geometry, so the attribute encoding is performed based on the reconstructed geometry.
  • the point cloud encoder may reorganize points for each LOD.
  • the figure shows point cloud content corresponding to the LOD.
  • the left side of the figure shows the original point cloud content.
  • the second figure from the left of the figure shows the distribution of the lowest LOD points, and the rightmost figure in the figure shows the distribution of the highest LOD points. That is, the points of the lowest LOD are sparsely distributed, and the points of the highest LOD are densely distributed. That is, as the LOD increases according to the direction of the arrow indicated at the bottom of the drawing, the spacing (or distance) between points becomes shorter.
  • a point cloud content providing system or a point cloud encoder (for example, a point cloud video encoder 10002, a point cloud encoder in FIG. 4, or an LOD generator 40009) generates an LOD. can do.
  • the LOD is generated by reorganizing the points into a set of refinement levels according to a set LOD distance value (or a set of Euclidean distance).
  • the LOD generation process is performed in the point cloud decoder as well as the point cloud encoder.
  • FIG. 9 shows examples (P0 to P9) of points of point cloud content distributed in a three-dimensional space.
  • the original order of FIG. 9 represents the order of points P0 to P9 before LOD generation.
  • the LOD based order of FIG. 9 represents the order of points according to LOD generation. Points are rearranged by LOD. Also, the high LOD includes points belonging to the low LOD.
  • LOD0 includes P0, P5, P4 and P2.
  • LOD1 includes the points of LOD0 and P1, P6 and P3.
  • LOD2 includes points of LOD0, points of LOD1 and P9, P8 and P7.
  • the point cloud encoder may selectively or combine predictive transform coding, lifting transform coding, and RAHT transform coding.
  • the point cloud encoder may generate a predictor for points and perform predictive transform coding to set a predicted attribute (or predicted attribute value) of each point. That is, N predictors may be generated for N points.
  • the predicted attribute (or attribute value) is a weight calculated based on the distance to each neighboring point to the attributes (or attribute values, for example, color, reflectance, etc.) of neighboring points set in the predictor of each point. It is set as the average value multiplied by (or weight value).
  • a point cloud encoder e.g., the coefficient quantization unit 40011
  • the quantization process is as shown in the following table.
  • the point cloud encoder (for example, the arithmetic encoder 40012) according to the embodiments may entropy-code the quantized and dequantized residual values as described above when there are points adjacent to the predictors of each point.
  • the point cloud encoder according to embodiments (for example, the arithmetic encoder 40012) may entropy-code attributes of the corresponding point without performing the above-described process if there are no points adjacent to the predictor of each point.
  • the point cloud encoder (for example, the lifting transform unit 40010) according to the embodiments generates a predictor of each point, sets the calculated LOD to the predictor, registers neighboring points, and increases the distance to the neighboring points.
  • Lifting transform coding can be performed by setting weights.
  • Lifting transform coding according to embodiments is similar to the above-described predictive transform coding, but differs in that a weight is accumulated and applied to an attribute value.
  • a process of cumulatively applying a weight to an attribute value according to embodiments is as follows.
  • the weights calculated by additionally multiplying the weights calculated for all predictors by the weights stored in the QW corresponding to the predictor indexes are cumulatively added to the update weight array by the indexes of neighboring nodes.
  • the value obtained by multiplying the calculated weight by the attribute value of the index of the neighboring node is accumulated and summed.
  • the predicted attribute value is calculated by additionally multiplying the attribute value updated through the lift update process by the weight updated through the lift prediction process (stored in QW).
  • a point cloud encoder for example, the coefficient quantization unit 40011
  • the point cloud encoder for example, the Arismatic encoder 40012
  • the point cloud encoder (for example, the RAHT transform unit 40008) according to the embodiments may perform RAHT transform coding that estimates the attributes of higher-level nodes by using an attribute associated with a node at a lower level of the octree.
  • RAHT transform coding is an example of attribute intra coding through octree backward scan.
  • the point cloud encoder according to the embodiments scans from voxels to the entire area, and repeats the merging process up to the root node while merging the voxels into larger blocks in each step.
  • the merging process according to the embodiments is performed only for an occupied node.
  • the merging process is not performed for the empty node, and the merging process is performed for the node immediately above the empty node.
  • FIG. 10 shows an example of a point cloud decoder according to embodiments.
  • the point cloud decoder illustrated in FIG. 10 is an example of the point cloud video decoder 10006 described in FIG. 1, and may perform the same or similar operation as that of the point cloud video decoder 10006 described in FIG. 1.
  • the point cloud decoder may receive a geometry bitstream and an attribute bitstream included in one or more bitstreams.
  • the point cloud decoder includes a geometry decoder and an attribute decoder.
  • the geometry decoder performs geometry decoding on the geometry bitstream and outputs decoded geometry.
  • the attribute decoder outputs decoded attributes by performing attribute decoding on the basis of the decoded geometry and the attribute bitstream.
  • the decoded geometry and decoded attributes are used to reconstruct the point cloud content.
  • FIG. 11 shows an example of a point cloud decoder according to embodiments.
  • the point cloud decoder illustrated in FIG. 11 is an example of the point cloud decoder described in FIG. 10, and may perform a decoding operation that is a reverse process of the encoding operation of the point cloud encoder described in FIGS. 1 to 9.
  • the point cloud decoder may perform geometry decoding and attribute decoding. Geometry decoding is performed prior to attribute decoding.
  • the point cloud decoder includes an arithmetic decoder (11000), an octree synthesis unit (synthesize octree, 11001), a surface optimization synthesis unit (synthesize surface approximation, 11002), and a geometry reconstruction unit (reconstruct geometry). , 11003), inverse transform coordinates (11004), arithmetic decode (11005), inverse quantize (11006), RAHT transform unit (11007), LOD generator (generate LOD, 11008) ), Inverse lifting (11009), and/or inverse transform colors (11010).
  • the arithmetic decoder 11000, the octree synthesis unit 11001, the surface opoxidation synthesis unit 11002, the geometry reconstruction unit 11003, and the coordinate system inverse transform unit 11004 may perform geometry decoding.
  • Geometry decoding according to embodiments may include direct coding and trisoup geometry decoding. Direct coding and trisoup geometry decoding are optionally applied. Further, the geometry decoding is not limited to the above example, and is performed in the reverse process of the geometry encoding described in FIGS. 1 to 9.
  • the Arismatic decoder 11000 decodes the received geometry bitstream based on Arismatic coding.
  • the operation of the Arismatic decoder 11000 corresponds to the reverse process of the Arismatic encoder 40004.
  • the octree synthesizer 11001 may generate an octree by obtaining an ocupancy code from a decoded geometry bitstream (or information on a geometry obtained as a result of decoding).
  • a detailed description of the OQFancy code is as described in FIGS. 1 to 9.
  • the surface opoxidation synthesizer 11002 may synthesize a surface based on the decoded geometry and/or the generated octree.
  • the geometry reconstruction unit 11003 may regenerate the geometry based on the surface and/or the decoded geometry. 1 to 9, direct coding and trisoup geometry encoding are selectively applied. Accordingly, the geometry reconstruction unit 11003 directly imports and adds position information of points to which direct coding is applied. In addition, when trisoup geometry encoding is applied, the geometry reconstruction unit 11003 performs a reconstruction operation of the geometry reconstruction unit 40005, such as triangle reconstruction, up-sampling, and voxelization, to restore the geometry. have. Detailed contents are the same as those described in FIG.
  • the reconstructed geometry may include a point cloud picture or frame that does not include attributes.
  • the coordinate system inverse transform unit 11004 may acquire positions of points by transforming a coordinate system based on the restored geometry.
  • Arithmetic decoder 11005, inverse quantization unit 11006, RAHT conversion unit 11007, LOD generation unit 11008, inverse lifting unit 11009, and/or color inverse conversion unit 11010 are attributes described in FIG. Decoding can be performed.
  • Attribute decoding according to embodiments includes Region Adaptive Hierarchial Transform (RAHT) decoding, Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform decoding, and interpolation-based hierarchical nearest-neighbor prediction with an update/lifting. step (Lifting Transform)) decoding may be included.
  • RAHT Region Adaptive Hierarchial Transform
  • Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform decoding Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform decoding
  • interpolation-based hierarchical nearest-neighbor prediction with an update/lifting step (Lifting Transform)) decoding may be included.
  • the Arismatic decoder 11005 decodes the attribute bitstream by arithmetic coding.
  • the inverse quantization unit 11006 inverse quantizes information on the decoded attribute bitstream or the attribute obtained as a result of decoding, and outputs inverse quantized attributes (or attribute values). Inverse quantization may be selectively applied based on the attribute encoding of the point cloud encoder.
  • the RAHT conversion unit 11007, the LOD generation unit 11008 and/or the inverse lifting unit 11009 may process reconstructed geometry and inverse quantized attributes. As described above, the RAHT conversion unit 11007, the LOD generation unit 11008, and/or the inverse lifting unit 11009 may selectively perform a decoding operation corresponding thereto according to the encoding of the point cloud encoder.
  • the inverse color transform unit 11010 performs inverse transform coding for inverse transforming a color value (or texture) included in the decoded attributes.
  • the operation of the color inverse transform unit 11010 may be selectively performed based on the operation of the color transform unit 40006 of the point cloud encoder.
  • elements of the point cloud decoder of FIG. 11 are not shown in the drawing, hardware including one or more processors or integrated circuits configured to communicate with one or more memories included in the point cloud providing apparatus , Software, firmware, or a combination thereof.
  • One or more processors may perform at least one or more of the operations and/or functions of the elements of the point cloud decoder of FIG. 11 described above. Further, one or more processors may operate or execute a set of software programs and/or instructions for performing operations and/or functions of elements of the point cloud decoder of FIG. 11.
  • the transmission device shown in FIG. 12 is an example of the transmission device 10000 of FIG. 1 (or a point cloud encoder of FIG. 4 ).
  • the transmission device illustrated in FIG. 12 may perform at least one or more of the same or similar operations and methods as the operations and encoding methods of the point cloud encoder described in FIGS. 1 to 9.
  • the transmission apparatus includes a data input unit 12000, a quantization processing unit 12001, a voxelization processing unit 12002, an octree occupancy code generation unit 12003, a surface model processing unit 12004, an intra/ Inter-coding processing unit (12005), Arithmetic coder (12006), metadata processing unit (12007), color conversion processing unit (12008), attribute transformation processing unit (or attribute transformation processing unit) (12009), prediction/lifting/RAHT transformation
  • a processing unit 12010, an Arithmetic coder 12011, and/or a transmission processing unit 12012 may be included.
  • the data input unit 12000 receives or acquires point cloud data.
  • the data input unit 12000 may perform the same or similar operation and/or an acquisition method to the operation and/or acquisition method of the point cloud video acquisition unit 10001 (or the acquisition process 20000 described in FIG. 2 ).
  • the coder 12006 performs geometry encoding.
  • the geometry encoding according to the embodiments is the same as or similar to the geometry encoding described in FIGS. 1 to 9, so a detailed description thereof will be omitted.
  • the quantization processing unit 12001 quantizes geometry (eg, a position value or position value of points).
  • the operation and/or quantization of the quantization processor 12001 is the same as or similar to the operation and/or quantization of the quantization unit 40001 described in FIG. 4. Detailed descriptions are the same as those described in FIGS. 1 to 9.
  • the voxelization processor 12002 voxelsizes the position values of the quantized points.
  • the voxelization processor 120002 may perform the same or similar operation and/or process as the operation and/or the voxelization process of the quantization unit 40001 described in FIG. 4. Detailed descriptions are the same as those described in FIGS. 1 to 9.
  • the octree occupancy code generation unit 12003 performs octree coding on positions of voxelized points based on an octree structure.
  • the octree ocupancy code generation unit 12003 may generate an ocupancy code.
  • the octree occupancy code generation unit 12003 may perform the same or similar operation and/or method as the operation and/or method of the point cloud encoder (or octree analysis unit 40002) described in FIGS. 4 and 6. Detailed descriptions are the same as those described in FIGS. 1 to 9.
  • the surface model processing unit 12004 may perform trisoup geometry encoding to reconstruct positions of points within a specific area (or node) based on a voxel based on a surface model.
  • the face model processing unit 12004 may perform the same or similar operation and/or method as the operation and/or method of the point cloud encoder (eg, the surface aproxiation analysis unit 40003) described in FIG. 4. Detailed descriptions are the same as those described in FIGS. 1 to 9.
  • the intra/inter coding processor 12005 may intra/inter code point cloud data.
  • the intra/inter coding processing unit 12005 may perform the same or similar coding as the intra/inter coding described in FIG. 7. The detailed description is the same as described in FIG. 7. According to embodiments, the intra/inter coding processing unit 12005 may be included in the arithmetic coder 12006.
  • the arithmetic coder 12006 entropy encodes an octree and/or an approximated octree of point cloud data.
  • the encoding method includes an Arithmetic encoding method.
  • the arithmetic coder 12006 performs the same or similar operation and/or method to the operation and/or method of the arithmetic encoder 40004.
  • the metadata processing unit 12007 processes metadata related to point cloud data, for example, a set value, and provides it to a necessary processing such as geometry encoding and/or attribute encoding.
  • the metadata processing unit 12007 may generate and/or process signaling information related to geometry encoding and/or attribute encoding. Signaling information according to embodiments may be encoded separately from geometry encoding and/or attribute encoding. In addition, signaling information according to embodiments may be interleaved.
  • the color conversion processing unit 12008, the attribute conversion processing unit 12009, the prediction/lifting/RAHT conversion processing unit 12010, and the Arithmetic coder 12011 perform attribute encoding.
  • Attribute encoding according to embodiments is the same as or similar to the attribute encoding described in FIGS. 1 to 9, and thus a detailed description thereof will be omitted.
  • the color conversion processing unit 12008 performs color conversion coding that converts color values included in attributes.
  • the color conversion processing unit 12008 may perform color conversion coding based on the reconstructed geometry. Description of the reconstructed geometry is the same as described in FIGS. 1 to 9. In addition, the same or similar operation and/or method to the operation and/or method of the color conversion unit 40006 described in FIG. 4 is performed. Detailed description will be omitted.
  • the attribute conversion processing unit 12009 performs attribute conversion for converting attributes based on the reconstructed geometry and/or positions for which geometry encoding has not been performed.
  • the attribute conversion processing unit 12009 performs the same or similar operation and/or method to the operation and/or method of the attribute conversion unit 40007 described in FIG. 4. Detailed description will be omitted.
  • the prediction/lifting/RAHT transform processing unit 12010 may code transformed attributes by using any one or a combination of RAHT coding, predictive transform coding, and lifting transform coding.
  • the prediction/lifting/RAHT conversion processing unit 12010 performs at least one of the same or similar operations as the RAHT conversion unit 40008, LOD generation unit 40009, and lifting conversion unit 40010 described in FIG. 4. do.
  • descriptions of predictive transform coding, lifting transform coding, and RAHT transform coding are the same as those described in FIGS.
  • the Arismatic coder 12011 may encode coded attributes based on Arismatic coding.
  • the Arismatic coder 12011 performs the same or similar operation and/or method to the operation and/or method of the Arismatic encoder 400012.
  • the transmission processor 12012 transmits each bitstream including the encoded geometry and/or the encoded attribute, and metadata information, or transmits the encoded geometry and/or the encoded attribute, and the metadata information in one piece. It can be configured as a bitstream and transmitted. When the encoded geometry and/or encoded attribute and metadata information according to the embodiments are configured as one bitstream, the bitstream may include one or more sub-bitstreams.
  • the bitstream according to the embodiments is a sequence parameter set (SPS) for signaling of a sequence level, a geometry parameter set (GPS) for signaling of geometry information coding, an attribute parameter set (APS) for signaling of attribute information coding, and a tile.
  • SPS sequence parameter set
  • GPS geometry parameter set
  • APS attribute parameter set
  • TPS Transaction Parameter Set
  • Slice data may include information on one or more slices.
  • One slice according to embodiments may include one geometry bitstream (Geom0 0 ) and one or more attribute bitstreams (Attr0 0 and Attr1 0 ).
  • the TPS according to the embodiments may include information about each tile (eg, coordinate value information and height/size information of a bounding box) with respect to one or more tiles.
  • the geometry bitstream may include a header and a payload.
  • the header of the geometry bitstream may include identification information of a parameter set included in GPS (geom_ parameter_set_id), a tile identifier (geom_tile_id), a slice identifier (geom_slice_id), and information about data included in the payload.
  • the metadata processing unit 12007 may generate and/or process signaling information and transmit the generated and/or processed signaling information to the transmission processing unit 12012.
  • elements that perform geometry encoding and elements that perform attribute encoding may share data/information with each other as dotted line processing.
  • the transmission processing unit 12012 according to the embodiments may perform the same or similar operation and/or transmission method as the operation and/or transmission method of the transmitter 10003. Detailed descriptions are the same as those described in FIGS. 1 to 2 and thus will be omitted.
  • FIG 13 is an example of a reception device according to embodiments.
  • the receiving device illustrated in FIG. 13 is an example of the receiving device 10004 of FIG. 1 (or the point cloud decoder of FIGS. 10 and 11 ).
  • the receiving device illustrated in FIG. 13 may perform at least one or more of the same or similar operations and methods as the operations and decoding methods of the point cloud decoder described in FIGS. 1 to 11.
  • the receiving apparatus includes a receiving unit 13000, a receiving processing unit 13001, an arithmetic decoder 13002, an octree reconstruction processing unit 13003 based on an Occupancy code, and a surface model processing unit (triangle reconstruction).
  • a receiving unit 13000 Up-sampling, voxelization) (13004), inverse quantization processing unit (13005), metadata parser (13006), arithmetic decoder (13007), inverse quantization processing unit (13008), prediction A /lifting/RAHT inverse transformation processing unit 13009, a color inverse transformation processing unit 13010, and/or a renderer 13011 may be included.
  • Each component of decoding according to the embodiments may perform a reverse process of the component of encoding according to the embodiments.
  • the receiving unit 13000 receives point cloud data.
  • the receiving unit 13000 may perform the same or similar operation and/or a receiving method as the operation and/or receiving method of the receiver 10005 of FIG. 1. Detailed description will be omitted.
  • the reception processing unit 13001 may obtain a geometry bitstream and/or an attribute bitstream from received data.
  • the reception processing unit 13001 may be included in the reception unit 13000.
  • the arithmetic decoder 13002, the ocupancy code-based octree reconstruction processing unit 13003, the surface model processing unit 13004, and the inverse quantization processing unit 13005 may perform geometry decoding. Since the geometry decoding according to the embodiments is the same as or similar to the geometry decoding described in FIGS. 1 to 10, a detailed description will be omitted.
  • the Arismatic decoder 13002 may decode a geometry bitstream based on Arismatic coding.
  • the Arismatic decoder 13002 performs the same or similar operation and/or coding as the operation and/or coding of the Arismatic decoder 11000.
  • the ocupancy code-based octree reconstruction processing unit 13003 may obtain an ocupancy code from a decoded geometry bitstream (or information on a geometry obtained as a result of decoding) to reconstruct the octree.
  • the ocupancy code-based octree reconstruction processing unit 13003 performs the same or similar operation and/or method as the operation and/or the octree generation method of the octree synthesis unit 11001.
  • the surface model processing unit 13004 decodes the trisoup geometry based on the surface model method and reconstructs the related geometry (eg, triangle reconstruction, up-sampling, voxelization). Can be done.
  • the surface model processing unit 13004 performs an operation identical or similar to that of the surface opoxidation synthesis unit 11002 and/or the geometry reconstruction unit 11003.
  • the inverse quantization processing unit 13005 may inverse quantize the decoded geometry.
  • the metadata parser 13006 may parse metadata included in the received point cloud data, for example, a setting value.
  • the metadata parser 13006 may pass metadata to geometry decoding and/or attribute decoding.
  • the detailed description of the metadata is the same as that described in FIG. 12 and thus will be omitted.
  • the arithmetic decoder 13007, the inverse quantization processing unit 13008, the prediction/lifting/RAHT inverse transformation processing unit 13009, and the color inverse transformation processing unit 13010 perform attribute decoding. Since the attribute decoding is the same as or similar to the attribute decoding described in FIGS. 1 to 10, a detailed description will be omitted.
  • the Arismatic decoder 13007 may decode the attribute bitstream through Arismatic coding.
  • the arithmetic decoder 13007 may perform decoding of the attribute bitstream based on the reconstructed geometry.
  • the Arismatic decoder 13007 performs the same or similar operation and/or coding as the operation and/or coding of the Arismatic decoder 11005.
  • the inverse quantization processing unit 13008 may inverse quantize the decoded attribute bitstream.
  • the inverse quantization processing unit 13008 performs the same or similar operation and/or method as the operation and/or the inverse quantization method of the inverse quantization unit 11006.
  • the prediction/lifting/RAHT inverse transform processing unit 13009 may process reconstructed geometry and inverse quantized attributes.
  • the prediction/lifting/RAHT inverse transform processing unit 13009 is the same or similar to the operations and/or decodings of the RAHT transform unit 11007, the LOD generator 11008 and/or the inverse lifting unit 11009, and/or At least one or more of the decodings is performed.
  • the color inverse transform processing unit 13010 according to embodiments performs inverse transform coding for inverse transforming a color value (or texture) included in the decoded attributes.
  • the color inverse transform processing unit 13010 performs the same or similar operation and/or inverse transform coding as the operation and/or inverse transform coding of the color inverse transform unit 11010.
  • the renderer 13011 may render point cloud data.
  • FIG. 14 illustrates an architecture for G-PCC-based point cloud content streaming according to embodiments.
  • FIG. 14 shows a process in which the transmission device (for example, the transmission device 10000, the transmission device of FIG. 12, etc.) described in FIGS. 1 to 13 processes and transmits the point cloud content.
  • the transmission device for example, the transmission device 10000, the transmission device of FIG. 12, etc.
  • the transmission device may obtain audio Ba of the point cloud content (Audio Acquisition), encode the acquired audio, and output audio bitstreams Ea.
  • the transmission device acquires a point cloud (Bv) (or point cloud video) of the point cloud content (Point Acqusition), performs point cloud encoding on the acquired point cloud, and performs a point cloud video bitstream ( Eb) can be output.
  • the point cloud encoding of the transmission device is the same as or similar to the point cloud encoding (for example, the encoding of the point cloud encoder of FIG. 4) described in FIGS.
  • the transmission device may encapsulate the generated audio bitstreams and video bitstreams into files and/or segments (File/segment encapsulation).
  • the encapsulated file and/or segment may include a file of a file format such as ISOBMFF or a DASH segment.
  • Point cloud-related metadata may be included in an encapsulated file format and/or segment.
  • Meta data may be included in boxes of various levels in the ISOBMFF file format or may be included in separate tracks in the file.
  • the transmission device may encapsulate the metadata itself as a separate file.
  • the transmission device according to the embodiments may deliver the encapsulated file format and/or segment through a network. Since the encapsulation and transmission processing method of the transmission device is the same as those described in FIGS. 1 to 13 (for example, the transmitter 10003, the transmission step 20002 of FIG. 2, etc.), detailed descriptions are omitted.
  • FIG. 14 shows a process of processing and outputting point cloud content by the receiving device (for example, the receiving device 10004, the receiving device of FIG. 13, etc.) described in FIGS. 1 to 13.
  • the receiving device for example, the receiving device 10004, the receiving device of FIG. 13, etc.
  • the receiving device includes a device that outputs final audio data and final video data (e.g., loudspeakers, headphones, display), and a point cloud player that processes point cloud content ( Point Cloud Player).
  • the final data output device and the point cloud player may be configured as separate physical devices.
  • the point cloud player according to the embodiments may perform Geometry-based Point Cloud Compression (G-PCC) coding and/or Video based Point Cloud Compression (V-PCC) coding and/or next-generation coding.
  • G-PCC Geometry-based Point Cloud Compression
  • V-PCC Video based Point Cloud Compression
  • the receiving device secures a file and/or segment (F', Fs') included in the received data (for example, a broadcast signal, a signal transmitted through a network, etc.) and decapsulation (File/ segment decapsulation). Since the reception and decapsulation method of the reception device is the same as that described in FIGS. 1 to 13 (for example, the receiver 10005, the reception unit 13000, the reception processing unit 13001, etc.), a detailed description is omitted.
  • the receiving device secures an audio bitstream E'a and a video bitstream E'v included in a file and/or segment. As shown in the drawing, the receiving device outputs the decoded audio data B'a by performing audio decoding on the audio bitstream, and rendering the decoded audio data to final audio data. (A'a) is output through speakers or headphones.
  • the receiving device outputs decoded video data B'v by performing point cloud decoding on the video bitstream E'v. Since the point cloud decoding according to the embodiments is the same as or similar to the point cloud decoding described in FIGS. 1 to 13 (for example, decoding of the point cloud decoder of FIG. 11 ), a detailed description will be omitted.
  • the receiving device may render the decoded video data and output the final video data through the display.
  • the receiving device may perform at least one of decapsulation, audio decoding, audio rendering, point cloud decoding, and rendering operations based on metadata transmitted together.
  • the description of the metadata is the same as that described with reference to FIGS. 12 to 13 and thus will be omitted.
  • the receiving device may generate feedback information (orientation, viewport).
  • Feedback information may be used in a decapsulation process, a point cloud decoding process and/or a rendering process of a receiving device, or may be transmitted to a transmitting device. The description of the feedback information is the same as that described with reference to FIGS. 1 to 13 and thus will be omitted.
  • 15 shows an example of a transmission device according to embodiments.
  • the transmission device of FIG. 15 is a device that transmits point cloud content, and the transmission device described in FIGS. 1 to 14 (for example, the transmission device 10000 of FIG. 1, the point cloud encoder of FIG. 4, the transmission device of FIG. 12, 14). Accordingly, the transmission device of FIG. 15 performs the same or similar operation to that of the transmission device described in FIGS. 1 to 14.
  • the transmission device may perform at least one or more of point cloud acquisition, point cloud encoding, file/segment encapsulation, and delivery. Can be done.
  • the transmission device may perform geometry encoding and attribute encoding.
  • Geometry encoding according to embodiments may be referred to as geometry compression, and attribute encoding may be referred to as attribute compression.
  • attribute compression As described above, one point may have one geometry and one or more attributes. Therefore, the transmission device performs attribute encoding for each attribute.
  • the drawing shows an example in which a transmission device has performed one or more attribute compressions (attribute #1 compression, ...attribute #N compression).
  • the transmission apparatus may perform auxiliary compression. Additional compression is performed on the metadata. Description of the meta data is the same as that described with reference to FIGS. 1 to 14 and thus will be omitted.
  • the transmission device may perform mesh data compression.
  • Mesh data compression according to embodiments may include the trisoup geometry encoding described in FIGS. 1 to 14.
  • the transmission device may encapsulate bitstreams (eg, point cloud streams) output according to point cloud encoding into files and/or segments.
  • a transmission device performs media track encapsulation for carrying data other than metadata (for example, media data), and metadata tracak for carrying meta data. encapsulation) can be performed.
  • metadata may be encapsulated as a media track.
  • the transmitting device receives feedback information (orientation/viewport metadata) from the receiving device, and based on the received feedback information, at least one of point cloud encoding, file/segment encapsulation, and transmission operations. Any one or more can be performed. Detailed descriptions are the same as those described with reference to FIGS.
  • FIG. 16 shows an example of a receiving device according to embodiments.
  • the receiving device of FIG. 16 is a device that receives point cloud content, and the receiving device described in FIGS. 1 to 14 (for example, the receiving device 10004 of FIG. 1, the point cloud decoder of FIG. 11, the receiving device of FIG. 13, 14). Accordingly, the receiving device of FIG. 16 performs the same or similar operation to that of the receiving device described in FIGS. 1 to 14. In addition, the receiving device of FIG. 16 may receive a signal transmitted from the transmitting device of FIG. 15, and may perform a reverse process of the operation of the transmitting device of FIG.
  • the receiving device may perform at least one or more of delivery, file/segement decapsulation, point cloud decoding, and point cloud rendering. Can be done.
  • the reception device performs decapsulation on a file and/or segment acquired from a network or a storage device.
  • the receiving device performs media track decapsulation carrying data other than meta data (for example, media data), and metadata track decapsulation carrying meta data. decapsulation) can be performed.
  • the metadata track decapsulation is omitted.
  • the receiving device may perform geometry decoding and attribute decoding on bitstreams (eg, point cloud streams) secured through decapsulation.
  • Geometry decoding according to embodiments may be referred to as geometry decompression, and attribute decoding may be referred to as attribute decompression.
  • a point may have one geometry and one or more attributes, and are each encoded. Therefore, the receiving device performs attribute decoding for each attribute.
  • the drawing shows an example in which the receiving device performs one or more attribute decompressions (attribute #1 decompression, ...attribute #N decompression).
  • the reception device may perform auxiliary decompression. Additional decompression is performed on the metadata.
  • the receiving device may perform mesh data decompression.
  • the mesh data decompression according to embodiments may include decoding the trisoup geometry described with reference to FIGS. 1 to 14.
  • the reception device according to the embodiments may render the output point cloud data according to the point cloud decoding.
  • the receiving device secures orientation/viewport metadata using a separate sensing/tracking element, etc., and transmits feedback information including the same to a transmission device (for example, the transmission device of FIG. 15). Can be transmitted.
  • the receiving device may perform at least one or more of a receiving operation, file/segment decapsulation, and point cloud decoding based on the feedback information. Detailed descriptions are the same as those described with reference to FIGS.
  • FIG. 17 shows an example of a structure capable of interworking with a method/device for transmitting and receiving point cloud data according to embodiments.
  • the structure of FIG. 17 includes at least one of a server 1760, a robot 1710, an autonomous vehicle 1720, an XR device 1730, a smartphone 1740, a home appliance 1750, and/or an HMD 1770.
  • a configuration connected to the cloud network 1710 is shown.
  • the robot 1710, the autonomous vehicle 1720, the XR device 1730, the smartphone 1740, the home appliance 1750, and the like are referred to as devices.
  • the XR device 1730 may correspond to a point cloud data (PCC) device according to embodiments or may be interlocked with a PCC device.
  • PCC point cloud data
  • the cloud network 1700 may constitute a part of a cloud computing infrastructure or may mean a network that exists in the cloud computing infrastructure.
  • the cloud network 1700 may be configured using a 3G network, a 4G or long term evolution (LTE) network, or a 5G network.
  • LTE long term evolution
  • the server 1760 includes at least one of a robot 1710, an autonomous vehicle 1720, an XR device 1730, a smartphone 1740, a home appliance 1750, and/or an HMD 1770, and a cloud network 1700.
  • the connected devices 1710 to 1770 may be connected through, and may help at least part of the processing of the connected devices.
  • the HMD (Head-Mount Display) 1770 represents one of types in which an XR device and/or a PCC device according to embodiments may be implemented.
  • the HMD type device according to the embodiments includes a communication unit, a control unit, a memory unit, an I/O unit, a sensor unit, and a power supply unit.
  • the devices 1710 to 1750 shown in FIG. 17 may be interlocked/coupled with the point cloud data transmission/reception apparatus according to the above-described embodiments.
  • the XR/PCC device 1730 is applied with PCC and/or XR (AR+VR) technology to provide a head-mount display (HMD), a head-up display (HUD) provided in a vehicle, a television, a mobile phone, a smart phone, It may be implemented as a computer, wearable device, home appliance, digital signage, vehicle, fixed robot or mobile robot.
  • HMD head-mount display
  • HUD head-up display
  • vehicle a television
  • mobile phone a smart phone
  • It may be implemented as a computer, wearable device, home appliance, digital signage, vehicle, fixed robot or mobile robot.
  • the XR/PCC device 1730 analyzes 3D point cloud data or image data acquired through various sensors or from an external device to generate position data and attribute data for 3D points, thereby Information can be obtained, and the XR object to be output can be rendered and output.
  • the XR/PCC device 1730 may output an XR object including additional information on the recognized object in correspondence with the recognized object.
  • the autonomous vehicle 1720 may be implemented as a mobile robot, a vehicle, or an unmanned aerial vehicle by applying PCC technology and XR technology.
  • the autonomous driving vehicle 1720 to which the XR/PCC technology is applied may refer to an autonomous driving vehicle having a means for providing an XR image, an autonomous driving vehicle that is an object of control/interaction within the XR image.
  • the autonomous vehicle 1720 which is the object of control/interaction in the XR image, is distinguished from the XR device 1730 and may be interlocked with each other.
  • the autonomous vehicle 1720 having a means for providing an XR/PCC image may acquire sensor information from sensors including a camera, and may output an XR/PCC image generated based on the acquired sensor information.
  • the autonomous vehicle 1720 may provide an XR/PCC object corresponding to a real object or an object in a screen to the occupant by outputting an XR/PCC image with a HUD.
  • the XR/PCC object when the XR/PCC object is output to the HUD, at least a part of the XR/PCC object may be output to overlap the actual object facing the occupant's gaze.
  • the XR/PCC object when the XR/PCC object is output on a display provided inside the autonomous vehicle, at least a part of the XR/PCC object may be output to overlap the object in the screen.
  • the autonomous vehicle 1220 may output XR/PCC objects corresponding to objects such as lanes, other vehicles, traffic lights, traffic signs, motorcycles, pedestrians, and buildings.
  • VR Virtual Reality
  • AR Augmented Reality
  • MR Magnetic Reality
  • PCC Point Cloud Compression
  • VR technology is a display technology that provides objects or backgrounds in the real world only as CG images.
  • AR technology refers to a technology that shows a virtually created CG image on a real object image.
  • MR technology is similar to the AR technology described above in that virtual objects are mixed and combined in the real world.
  • real objects and virtual objects made from CG images are clear, and virtual objects are used in a form that complements the real objects, whereas in MR technology, the virtual objects are regarded as having the same characteristics as the real objects. It is distinct from technology. More specifically, for example, it is a hologram service to which the aforementioned MR technology is applied.
  • VR, AR, and MR technologies are sometimes referred to as XR (extended reality) technology rather than clearly distinguishing between them. Therefore, embodiments of the present invention are applicable to all of VR, AR, MR, and XR technologies.
  • This technology can be applied to encoding/decoding based on PCC, V-PCC, and G-PCC technology.
  • the PCC method/apparatus according to the embodiments may be applied to a vehicle providing an autonomous driving service.
  • Vehicles providing autonomous driving service are connected to PCC devices to enable wired/wireless communication.
  • the vehicle receives/processes AR/VR/PCC service related content data that can be provided together with the autonomous driving service. Can be transferred to.
  • the point cloud transmission/reception device may receive/process AR/VR/PCC service related content data according to a user input signal input through the user interface device and provide it to the user.
  • the vehicle or user interface device may receive a user input signal.
  • the user input signal may include a signal indicating an autonomous driving service.
  • FIG. 18 shows an example of a space of points constituting point cloud content according to embodiments.
  • Point cloud data may represent a three-dimensional space based on XYZ coordinates in an encoding/decoding unit, for example, a unit of a cube.
  • the method/apparatus according to the embodiments may encode/decode point cloud data based on an encoding/decoding unit.
  • the encoding/decoding unit 18000 represents a unit of space.
  • the encoding/decoding unit may have a box shape of a cube based on 3D coordinates.
  • the sub-geometric information or geometric information 18001 represents an information unit obtained by dividing an encoding/decoding unit. According to embodiments, such a box may be referred to as sub-geometric information and/or geometric information.
  • Point 18002 represents a point representing point cloud data.
  • Point represents point cloud content and represents geometric information.
  • the bounding box 18003 represents a box including sub geometric information and/or geometric information. It refers to a bounding box expressing a space in which points including geometric information are distributed. Depending on the embodiments, the bounding box may be a box that divides or includes a coding/decoding unit, and may include sub-geometric information or geometric information, or may refer to a box corresponding to sub-geometric information or geometric information.
  • the offset 18004 represents a value representing the position of the sub-geometric information, the geometric information, and/or the bounding box on a three-dimensional space coordinate.
  • the bounding box may be positioned at a position expressed based on x offset, y offset, and z offset based on the origin of the XYZ coordinate system.
  • the bounding box width, the bounding box height, and the bounding box depth 17005 represent the width, height, and depth of the bounding box, respectively.
  • Point cloud data or point cloud content represents 3D point cloud data.
  • a method/apparatus according to embodiments represents a method/apparatus for transmitting and/or receiving point cloud data according to the embodiments.
  • the method/apparatus according to the embodiments relates to a method for improving compression of location information (geometric information) of points in Geometry-based Point Cloud Compression (G-PCC) for compressing 3D point cloud data. .
  • the method/apparatus according to the embodiments proposes a method of dividing the geometric information of a point cloud and effectively predicting it in order to effectively compress the geometric information of a point constituting the point cloud data.
  • points constituting the point cloud content may exist while being biased to a partial area in space.
  • occupancy information indicating that the point does not exist should be encoded and transmitted to the region where the point does not exist on the oct tree indicating the geometric information of the points.
  • the scheme proposed by the embodiments proposes a scheme that can be derived from a decoder instead of encoding and transmitting occupancy information of points in an area where points of point cloud content do not exist.
  • Point cloud data may be represented by dividing a space into an encoding/decoding unit to represent a space.
  • the encoding/decoding unit may be in the form of a rectangular parallelepiped (or a cube, etc.).
  • the method/apparatus according to the embodiments proposes a method that can be derived from a decoder instead of encoding and transmitting occupancy information of points in an area where points of point cloud content do not exist. Through this, by reducing the amount of information to be encoded for the geometric information, it is possible to improve compression of the location information (geometric information) of the point cloud.
  • FIG. 19 shows an example of a point cloud encoder according to embodiments.
  • the encoder according to the embodiments may be referred to as a PCC encoder, and as shown in the drawing, may be configured with a geometric information encoder or/and an attribute information encoder.
  • the space division unit 19000 receives PCC data.
  • the spatial division unit may spatially divide PCC data into 3D blocks.
  • the spatial division unit may spatially divide point cloud data (PCC data) based on a bounding box and/or a sub-bounding box, and the method/device according to the embodiments is based on a divided unit (box).
  • PCC data point cloud data
  • the method/device according to the embodiments is based on a divided unit (box).
  • the geometry information encoding unit 19001 may encode geometry information (or geometry information).
  • the encoder may generate a bitstream including the encoded geometry information.
  • the encoding unit may generate reconstructed (reconstructed) geometry information.
  • the attribute information encoding unit 19002 may receive spatially divided PCC data and reconstructed geometric information.
  • the encoder may generate a bitstream including attribute information (or attribute information) by encoding the received data.
  • the attribute information encoder may encode attribute information based on the reconstructed geometric information.
  • the spatial division unit, the geometric information encoding unit, and the attribute information encoding unit may correspond to hardware, software, a processor, and/or a combination thereof.
  • the PCC data according to embodiments may be composed of geometric information or/and attribute information of a point.
  • the attribute information according to the embodiments is one or more, such as a vector representing the color of a point (R, G, B) or/and a brightness value or/and a reflection coefficient of a lidar or/and a temperature value obtained from a thermal imaging camera. It may be a vector of values obtained from two sensors.
  • the spatial division unit may divide the input PCC data into at least one 3D block.
  • the block may mean a coding unit (CU), a prediction unit (PU), or a transformation unit (TU).
  • the partitioning may be performed based on at least one of an octree, a quadtree, a binary tree, a triple tree, and a k-d tree.
  • Point cloud data (PCC data) may have a form in which points are variously distributed in a 3D space.
  • the method/apparatus according to the embodiments may process variously distributed points based on a divided spatial box for efficient encoding/decoding of point cloud data.
  • the geometric information encoding unit generates an encoded geometric information bitstream and reconstructed geometric information from the received geometric information.
  • the generated bitstream may be transmitted to the PCC decoder.
  • the generated reconstructed geometric information may be input to the attribute information encoding unit.
  • the attribute information encoding unit receives the received attribute information and generates an attribute information bitstream.
  • the generated attribute information bitstream may be transmitted to the PCC decoder.
  • the spatial division unit which can be derived from a decoder, instead of encoding and delivering occupancy information of points in an area where points of point cloud content do not exist based on the spatial division process. Suggest a plan. Through this, by reducing the amount of information to be encoded for the geometric information, it is possible to improve compression of the location information (geometric information) of the point cloud.
  • the point cloud data transmission method may further include spatially dividing the point cloud data.
  • the method of receiving point cloud data may further include the step of spatially dividing the point cloud data.
  • FIG. 20 shows an example of a geometric information encoder according to embodiments.
  • the coordinate system conversion unit 2001 may receive geometric information corresponding to the location information and convert a coordinate system of the geometric information.
  • the geometric information conversion quantization unit 2002 can quantize geometric information.
  • the residual geometric information quantization unit 2003 may quantize the quantized geometric information and/or the residual geometric information generated based on the predicted geometric information. For example, the residual value can be generated by subtracting the predicted geometric information from the geometric information.
  • the geometric information entropy encoder 2004 may encode geometric information based on an entropy encoding method.
  • the geometric information entropy encoding unit may generate a bitstream including geometric information.
  • the residual geometric information inverse quantization unit (2005) may inversely quantize the residual geometric information.
  • the filtering unit 1906 may perform filtering based on the inverse quantized geometric information and the predicted geometric information. For example, it is possible to filter the generated data by summing the predicted geometric information and residual geometric information.
  • the memory unit 2007 may store geometric information based on the filtered data.
  • the memory unit may generate the restored geometric information based on the stored geometric information.
  • the geometric information prediction unit 2008 may predict geometric information based on the geometric information stored in the memory.
  • the geometric information prediction unit may transmit the predicted data to the residual geometric information quantization unit and/or the full vehicle geometric information inverse quantization unit.
  • Each element of the geometric information encoder according to the embodiments may correspond to hardware, software, a processor, and/or a combination thereof.
  • the geometric information encoding unit may include a coordinate system transforming unit, a geometric information transforming quantization unit, a residual geometric information quantizing unit, a geometric information entropy encoding unit, a residual geometric information inverse quantizing unit, a memory, and a geometric information predicting unit.
  • the coordinate system conversion unit may receive geometric information as an input and convert it into a coordinate system different from the existing coordinate system. Alternatively, coordinate system transformation may not be performed.
  • the geometric information converted by the coordinate system may be input to the geometric information conversion quantization unit.
  • Whether the coordinate system is transformed and the coordinate system information may be signaled in units such as a sequence, frame, tile, slice, or block, or whether the coordinate system of neighboring blocks is transformed or not , It can be derived using the location of the unit, and the distance between the unit and the origin.
  • the coordinate system information to be converted may be signaled in units such as sequence, frame, tile, slice, block, etc. It can be derived using the size, number of points, quantization value, block division depth, unit location, and distance between the unit and the origin.
  • the geometric information transform quantization unit receives geometric information as input, applies one or more transforms such as position transform or/and rotation transform, divides the geometric information by a quantization value, and quantizes the transformed quantized geometric information. .
  • the transformed quantized geometric information may be input to a geometric information entropy encoding unit and a residual geometric information quantizing unit.
  • the geometric information prediction unit predicts geometric information through geometric information of points in a memory and generates predicted geometric information.
  • the prediction information used for prediction may be encoded by performing entropy encoding.
  • the residual geometric information quantization unit receives residual geometric information obtained by differentiating the transformed-quantized geometric information and the predicted geometric information, and quantizes it into a quantized value to generate quantized residual geometric information.
  • Quantized residual geometric information may be input to a geometric information entropy encoding unit and a residual geometric information inverse quantization unit.
  • the geometric information entropy encoding unit may receive quantized residual geometric information or geometric information and perform entropy encoding.
  • Entropy coding may use various coding methods such as Exponential Golomb, Context-Adaptive Variable Length Coding (CAVLC), and Context-Adaptive Binary Arithmetic Coding (CABAC).
  • the residual geometric information inverse quantization unit receives the quantized residual geometric information and restores the residual geometric information by scaling the quantized value.
  • the restored residual geometric information may be restored to geometric information in addition to the predicted geometric information.
  • the filtering unit may perform filtering on the reconstructed geometric information.
  • Information related to filtering may be encoded by performing entropy encoding.
  • the memory may store geometric information calculated through a filtering unit.
  • the stored geometric information may be provided to the geometric information prediction unit when performing prediction.
  • 21 illustrates a bounding box of geometric information of point cloud data according to embodiments.
  • the geometric information according to the embodiments may be divided based on the bounding box according to the embodiments.
  • the bounding box 2100 refers to an area in the form of a rectangular parallelepiped (or a cube, etc.) having a minimum size including geometric information.
  • a bounding box including geometric information may be divided into a box including four sub-geometric information.
  • the sub-bounding box 2101 refers to a sub-box including geometric information included in the bounding box.
  • the sub/decoding unit 2102 may include one or more sub geometric information or geometric information, and may include one or more bounding boxes and/or sub bounding boxes.
  • the method/apparatus according to the embodiments may efficiently encode/decode points and geometric information distributed in space based on the bounding box.
  • the method/apparatus according to the embodiments may provide a technique for dividing geometric information of point cloud content.
  • the geometric information of the point cloud content can be divided into a bounding box (the bounding box may refer to a rectangular area of the smallest size including the geometric information).
  • the bounding box according to the embodiments may be divided into one or a plurality of sub-bounding boxes of equal or non-uniform size and may be encoded/decoded independently or dependent on each other.
  • the encoding/decoding unit may be configured in a square shape having a minimum size including a sub-bounding box or a bounding box according to embodiments.
  • the encoding/decoding unit may be configured in a square shape having the smallest size including the geometric information.
  • Geometry information may be expressed by dividing the sub/decoding unit according to the embodiments into an oct tree structure.
  • the method/apparatus according to the embodiments proposes a method that can be derived from a decoder instead of encoding and transmitting occupancy information of points in an area where points of point cloud content do not exist based on a bounding box of geometric information.
  • a decoder instead of encoding and transmitting occupancy information of points in an area where points of point cloud content do not exist based on a bounding box of geometric information.
  • FIG. 22 shows an example of an operation of a space dividing unit according to embodiments.
  • the spatial division unit parses higher-level information (2200), divides the bounding box into sub-bounding boxes, configures a coding/decoding unit (2201), and/or parses or derives divided information of a sub/decoding unit (2202). You can do it.
  • Each component according to the embodiments will be described as follows.
  • the high-level information parsing 2200 represents a process in which the receiving method/device according to the embodiments parses signaling information (or parameter set) included in the point cloud data.
  • the high-level information means signaling information or a parameter set according to embodiments, and may include information related to a spatial division unit according to embodiments.
  • the transmission method/apparatus according to the embodiments may perform spatial partitioning and include signaling information related to spatial partitioning as higher level information in higher level information.
  • the division of the bounding box into sub-bounding boxes and the configuration of a decoding/decoding unit 2201 represents a process in which the transmission/reception method/device according to the embodiments divides and represents the space of the point cloud data in the space division process.
  • points of point cloud data may be divided into bounding boxes.
  • the bounding box may be divided into one or more sub bounding boxes.
  • the bounding box/subbounding box may constitute an encoding/decoding unit.
  • the method/apparatus according to embodiments provides an effect of efficiently encoding/decoding points distributed based on a bounding box/subbounding box in a coding/decoding unit.
  • Parsing or deriving split information 2202 of a sub/decoding unit is a process in which a transmission method/device according to embodiments acquires coding units and/or split information necessary for encoding (encoding), or reception according to embodiments. It represents a process in which a method/apparatus obtains a decoding unit and/or split information required for decoding (decoding).
  • the spatial division unit for dividing geometric information includes a step of parsing high-level information, division of geometric information into sub-geometric information, parsing or deriving encoding/decoding unit information, and division of encoding/decoding units. It may involve parsing or deriving information.
  • the spatial division unit may be applied in the octtree coding step according to the embodiments.
  • coordinates of encoding/decoding units, size of encoding/decoding units, number of encoding/decoding units, minimum node size, maximum node division depth, coordinates of bounding box, width, height, depth of region The number of information, geometric information, etc. may be parsed or derived from higher level information.
  • the bounding box according to the embodiments may be divided into sub bounding boxes. By parsing the coordinates, size, and number of sub-bounding boxes from high-level information, division information of sub-geometric information can be found.
  • the encoding/decoding unit can be set in the form of a rectangular parallelepiped having a minimum size including a subbounding box.
  • a division method, and whether or not geometric information exists within a node may be parsed or derived to find out.
  • child nodes can be created by division, and node division can be repeatedly performed until division of the node is stopped. If the regions of the node and the sub-bounding box do not overlap, it is determined that geometric information does not exist in the node, and whether or not the node is divided may be derived.
  • the node and the bounding box area overlap using the coordinate information of the node, the size of the node, the coordinate information of the subbounding box, and the size of the subbounding box according to the embodiments. In the following cases, it can be determined that the regions of the node and the bounding box do not overlap.
  • the regions of the node and the bounding box according to the embodiments overlap, it is possible to parse or derive whether the node is divided, the division method, and whether or not geometric information exists in the node.
  • the regions of the node and the bounding box overlap and the size of the node is the same as the minimum node size whether or not the node is divided can be derived, meaning that the division of the node is stopped, and the existence of a point in the node can be derived or parsed.
  • Points constituting the point cloud content according to the embodiments may exist in a partial area in a space.
  • occupancy information indicating non-existence for a region that does not exist in the octtree of points must be encoded by the geometry information encoder.
  • One point cloud content may be divided into one or more bounding boxes, and geometric information may be encoded in units of each bounding box or sub bounding box.
  • the spatial dividing unit or the spatial dividing step of the method/apparatus instead of encoding and transmitting occupancy information of points in a region where points of point cloud content do not exist, a method that can be derived from a decoder is proposed. Through this, by reducing the amount of information to be encoded for the geometric information, it is possible to improve compression of the location information (geometric information) of the point cloud.
  • a method of transmitting point cloud data may include a step of dividing a bounding box in relation to a process of dividing the point cloud data into bounding boxes.
  • the encoding step may encode points of point cloud data included in the bounding box related to the spatial division.
  • a method of receiving point cloud data may include a step of dividing a bounding box in relation to a process of dividing the point cloud data into bounding boxes.
  • a point of point cloud data included in a bounding box related to spatial division may be decoded.
  • the point cloud data may include parameters including the number of bounding boxes related to spatial division, spatial coordinate information of the bounding box, and width, height, and depth of the bounding box.
  • 23 is a diagram illustrating an example of performing octtree division information and/or derivation information of geometric information of point cloud data according to embodiments.
  • the octree (or octtree) according to the embodiments may basically convey information in the form of, for example, 8 bits.
  • the method/apparatus according to the embodiments may divide a space in which points of point cloud data are distributed.
  • embodiments may represent points based on an octree structure. Since the spatial distribution map of the points varies, it may be inefficient to encode/decode all spaces.
  • embodiments may hierarchically divide points (or geometric information) into sub-bounding boxes, bounding boxes, and sub/decoding units as shown in the drawing, thereby efficiently expressing an area where points are located. .
  • an octree (or octtree) includes a node, and may have a structure between a parent node and a child node.
  • the parent node may include 8-bit child nodes.
  • the embodiments may express the octtree using bits of 0 and 1.
  • reference 1001 may indicate information on whether or not to be split provided from an encoder (encoder, transmission device, etc.) according to embodiments.
  • the method/apparatus according to the embodiments may encode/transmit/receive/decode only a portion where data exists without the need to encode/transmit/receive/decode all 8 bits. For example, an area in which 0 is continuously present is an area in which data does not exist, and the transmission method/apparatus according to the embodiments may transmit only 1 bit to 4 bits in which data exists.
  • the embodiments can provide high encoding/decoding performance by reducing data throughput compared to a method of transmitting information of all spaces by expressing a space of point cloud data as a cube or a rectangular parallelepiped.
  • various point cloud data such as lidar data
  • a partitioning method may be encoded/decoded using a partitioning method according to the embodiments.
  • the receiving method/apparatus does not actually receive an area corresponding to (0000) in the drawing, but restores and decodes based on the received point cloud data and parameter information included in the point cloud data. I can.
  • the method/apparatus or space dividing unit may divide the point cloud data into one or more bounding boxes.
  • the method/device or the spatial division unit sets the coordinate (range) of the bounding box or offset information on the coordinate system, You can set the width, height, and depth of the bounding box.
  • the method/apparatus according to the embodiments may signal the number of points included in the bounding box range.
  • the bounding box may be divided into one or more sub-bounding boxes.
  • the method/apparatus sets the number of sub-bounding boxes and obtains information such as coordinates, offsets, width, height, and depth to determine the range of each sub-bounding box. Can signal.
  • the receiving method/device does not need to receive all the bits of the spatially divided tree structure of point cloud data, and points are based on the bounding box/subbounding box/related signaling information (parameters), etc.
  • bounding box/subbounding box/related signaling information parameters
  • only information marked in yellow may be encoded and transmitted through a geometric information encoder.
  • the PCC decoder can implicitly derive the information of the part marked in blue by using the bounding box information, etc., and reconstruct the geometric information octtree of the point by combining the derived information and the transmitted information.
  • the following parameters may be included in the bit stream and transmitted.
  • the size of the encoding/decoding unit (for example, whether it is in a bounding box unit or a subbounding box unit, etc.)
  • Number of encoding/decoding units (number of encoding/decoding units based on the size of the encoding/decoding unit)
  • Sub-bounding such as coordinates (x offset, y offset, z offset) in space of each bounding box, width, height, depth, number of points included in the bounding box, etc.
  • x offset coordinates (x offset, y offset, z offset) in space of each bounding box
  • y offset offsets in space of each bounding box
  • the decoder implicitly induces portions corresponding to information about whether to be temporarily derived from the decoder, the number of bounding boxes, the number of subbounding boxes included in the bounding box, and the number of subbounding boxes. At least one or more of coordinates in space, width, height, and depth information of each subbounding box may be required. For example, bounding box/sub bounding box and coordinate information may be required.
  • FIG. 24 shows an example of a structure of point cloud data according to embodiments.
  • Point cloud data may have a bitstream form as shown in the drawing.
  • the point cloud data may include a sequence parameter set (SPS), a geometry parameter set (GPS), an attribute parameter set (APS), and a tile parameter set (TPS) including signaling information according to embodiments.
  • Point cloud data may include one or more geometry and/or attributes.
  • the point cloud data may include geometry and/or attributes in units of one or more slices.
  • the geometry may have a structure of a geometry slice header and geometry slice data.
  • the TPS including signaling information is Tile(0). It may include tile_bounding_box_xyz0, Tile(0)_tile_bounding_box_whd, and the like.
  • the geometry may include geom_geom_parameter_set_id, geom_tile_id, geom_slice_id, geomBoxOrigin, geom_box_log2_scale, geom_max_node_size_log2, geom_num_points, and the like.
  • the parameters according to the above-described embodiments may be added to and transmitted to SPS, GPS, or APS, or may be added to and transmitted to TPS or Geom for each Slice or Attr for each Slice.
  • Attrobite bitstream attribute blick header + attribute brick data
  • different partitioning techniques may be applied for each tile or slice.
  • the width, height, depth, and number of points included in the bounding box may be different for each slice.
  • the parameter may be added and transmitted to the TPS or Geom for each Slice or Attr for each Slice.
  • 25 shows an example of a process of inverse quantization of geometric information according to embodiments.
  • a decoder may perform geometric information decoding, and the geometric information decoding may inverse quantize the geometric information.
  • Each step according to the embodiments may be as follows.
  • Parsing or deriving geometric information dequantization value 2500 refers to a process of parsing or deriving a value for dequantizing geometric information of point cloud data.
  • the geometric information quantized at the transmission or encoder side according to the embodiments may be inverse quantized by a reception or decoder according to the embodiments in a reverse process.
  • the inverse quantization value may be parsed or derived based on point cloud data, parameter set and/or signaling information.
  • Performing geometric information inverse quantization 2501 refers to a process in which a receiving method/device, for example, a geometric information decoder, inverse quantizes geometric information based on a parsed or derived inverse quantization value.
  • a geometric information inverse quantization value may be parsed or derived from a geometric information decoder, and the geometric information inverse quantization may be performed based on this.
  • inverse quantization values in the width, height, and depth directions may be parsed or derived.
  • One or more parsed inverse quantization values can be shared in the width, height, or depth direction.
  • the inverse quantization value may be derived using a value or ratio of the width or depth or height of the bounding box.
  • Inverse quantization information can be shared in units of bounding boxes or subbounding boxes.
  • the scale values of the width, height, and depth may be the same or may be different from each other.
  • inverse quantization may be performed by multiplying the restored geometric information by scale values in the width, height, and depth directions, respectively.
  • 26 illustrates an exemplary embodiment of inverse quantization of geometric information according to embodiments.
  • Geometric information may have a width, a depth and/or a height.
  • the geometric information decoder may inverse quantize the geometric information.
  • the width, depth and/or height of the geometric information can be scaled by each value.
  • a width scale value, a depth scale value, and a height scale value may be the same or different.
  • FIG. 27 shows an example of a point cloud decoder according to embodiments.
  • Each component according to embodiments of the point cloud data receiving method/device or decoder (decoder) according to the embodiments is as follows.
  • the spatial dividing unit 2700 may receive the geometric information bitstream and divide the space of the geometric information. Based on the information obtained by spatially dividing the geometric information by the transmission method/device according to the embodiments, the decoder may also divide the space of the point cloud data.
  • the geometry information decoding unit 2701 may decode a geometry information bitstream.
  • the attribute information decoding unit 2702 may decode attribute information of the attribute information bitstream based on the restored geometric information. Geometric information and/or attribute information included in the point cloud data may be decoded and restored PCC data.
  • the PCC decoder may include a geometric information decoding unit and an attribute information decoding unit.
  • the spatial division unit may divide a space based on division information provided from an encoder or derived from a decoder.
  • the geometric information decoding unit restores the geometric information by decoding the received geometric information bitstream.
  • the restored geometric information may be input to the attribute information decoding unit.
  • the attribute information decoding unit receives the received attribute information bitstream and restored geometric information received from the geometry information decoding unit and restores attribute information.
  • the restored attribute information can be composed of restored PCC data along with the restored geometric information.
  • the geometric information decoder includes a geometric information entropy decoding unit 2800, a residual geometric information inverse quantization unit 2801, a geometric information prediction unit 2802, a filtering unit 2803, a memory unit 2804, and/or A coordinate system inverse transform unit 2805 may be included.
  • the geometric information entropy decoder 2800 may receive a bitstream including geometric information and decode the geometric information. For example, it can be decoded based on an entropy method.
  • the residual geometric information inverse quantization unit 2801 may inversely quantize the residual geometric information.
  • the geometric information prediction unit 2802 may predict geometric information.
  • the geometric information prediction unit may predict geometric information based on the geometric information stored in the memory.
  • the filtering unit 2803 may filter data generated based on inverse quantized residual geometric information and/or predicted geometric information.
  • data may be generated by the apparatus according to the embodiments by summing the inverse quantized residual geometric information and/or the predicted geometric information.
  • the memory unit 2804 may store filtered data.
  • the coordinate system inverse transform unit 2805 may receive geometric information stored in a memory and convert the coordinate system of the geometric information into an inverse manner.
  • the inverse coordinate system transform unit may generate geometric information.
  • the apparatus for decoding geometric information may include a geometric information entropy decoding unit, a residual geometric information inverse quantization unit, a geometric information prediction unit, and an inverse coordinate system transform unit.
  • the geometric information entropy decoder may perform entropy decoding on an input bitstream. For example, for entropy decoding, various methods such as Exponential Golomb, Context-Adaptive Variable Length Coding (CAVLC), and Context-Adaptive Binary Arithmetic Coding (CABAC) may be applied.
  • the geometric information entropy decoder may decode information related to geometric information prediction performed by the encoding apparatus. Quantized residual geometric information generated through entropy decoding may be input to the residual geometric information inverse quantization unit.
  • the residual geometric information inverse quantization unit may perform inverse quantization based on a quantization parameter and the received quantized residual geometric information to generate residual geometric information or geometric information.
  • the geometric information prediction unit may generate predicted geometric information based on information related to generation of predicted geometric information provided from the geometric information entropy decoder and previously decoded geometric information provided from a memory.
  • the geometric information prediction unit may include an inter prediction unit and an intra prediction unit.
  • the inter prediction unit uses information required for inter prediction of the current prediction unit provided by the encoding device, and determines the current prediction unit based on information included in at least one of a space before or after the current space including the current prediction unit. Inter prediction can be performed.
  • the intra prediction unit may generate predicted geometric information based on geometric information of a point in the current space.
  • intra prediction may be performed based on intra prediction mode information of the prediction unit provided by the encoding device.
  • the reconstructed geometric information may be generated by adding the reconstructed residual geometric information to the predicted geometric information.
  • the reconstructed geometric information according to the embodiments may be provided to the filtering unit.
  • the filtering unit may perform filtering based on the filtering-related information provided from the decoder or the characteristics of the reconstructed geometric information derived from the decoder.
  • the memory may store the reconstructed geometric information calculated through the filtering unit.
  • the inverse coordinate system transform unit may perform inverse coordinate system transformation based on information related to coordinate system transformation provided from the geometric information entropy decoding unit and restored geometric information stored in a memory.
  • 29 shows an example of occupancy derivation according to embodiments.
  • the method/apparatus according to the embodiments performs accupancy delivery. Can be done.
  • the method/apparatus according to the embodiments may perform the following process.
  • the method/apparatus determines whether each child node of the current node is included in the bounding box (subbounding box) when the current node is not completely included in the bounding box (subbounding box). Check, and encode/decode only the accupancy of child nodes that overlap with the bounding box (subbounding box).
  • the method/apparatus according to the embodiments has an effect of removing unnecessary zero-acupancy signaling when an empty area occupies space in relation to a bounding box (subbounding box).
  • FIG. 30 shows signaling information related to a geometry node according to embodiments.
  • Point cloud data may include signaling information related to a geometry node.
  • single_occupancy_flag represents a flag for single accupancy.
  • occupancy_idx represents identification information of accupancy.
  • the method/apparatus according to the embodiments refers to the accupant identification information.
  • overlapped_occupancy indicates a bitmap that identifies overlapped with contents bounding box and occupied child nodes of the current node, which overlap with the point cloud content bounding box.
  • the method/apparatus according to the embodiments may refer to this value when the current node is not completely included in the bounding box (subbounding box).
  • occupancy_map represents an accupancy map.
  • the method/apparatus according to the embodiments refers to the accufancy map.
  • occupancy_byte represents byte information during accupancy.
  • num_points_eq1_flag represents flag information related to the number of points.
  • num_points_minus2 represents information related to the number of points.
  • direct_mode_flag represents flag information related to the direct mode.
  • num_direct_points_minus1 represents information related to the number of direct points.
  • point_rem_x[ i ][ j ] represent the x, y, and z information of the point.
  • point_rem_y[ i ][ j ] represent the x, y, and z information of the point.
  • point_rem_z[ i ][ j] represent the x, y, and z information of the point.
  • the method/apparatus according to the embodiments may perform a space division operation, and may efficiently encode/decode point cloud data without wasting space.
  • 31 illustrates a method of transmitting point cloud data according to embodiments.
  • Point cloud data transmission method acquiring point cloud data; (S31001) encoding point cloud data; And/or (S31002) transmitting point cloud data; It may include.
  • the method/apparatus according to the embodiments may acquire point cloud data.
  • the process of obtaining point cloud data according to embodiments may include the process described in FIGS. 1 to 3, and the like.
  • the method/apparatus according to the embodiments may encode point cloud data.
  • the process of encoding point cloud data according to embodiments may include the processes described in FIGS. 1 to 2, 3, 5-9, 12, 18 to 23, and the like.
  • the method/apparatus according to the embodiments may transmit point cloud data.
  • the process of transmitting point cloud data according to embodiments may include the process described in FIGS. 1 to 2, 23, 14-16, and the like.
  • the point cloud data transmission method/apparatus according to the embodiments can be combined with the above-described embodiments, and divides the geometric information of the point cloud to effectively compress the geometric information of the points constituting the point cloud data. It can provide an effect that can effectively predict this.
  • the method/apparatus for transmitting point cloud data according to the embodiments is an accue indicating that points do not exist for an area where a point does not exist in the oct tree in consideration of the presence area and/or the non-existence area when points are distributed in space.
  • Fansi information can be transmitted, and data transmission efficiency can be increased based on a bounding box (or subbounding box).
  • 32 illustrates a method of receiving point cloud data according to embodiments.
  • a method for receiving point cloud data includes (S32000) receiving point cloud data; (S32001) decoding the point cloud data; And/or (S32002) rendering the point cloud data; It may include.
  • the method/apparatus according to the embodiments may receive point cloud data.
  • the process of receiving point cloud data according to embodiments may include the process described in FIGS. 1 to 2, 10-11, 13-16, and the like.
  • the method/apparatus according to the embodiments may decode the point cloud data.
  • the decoding process of point cloud data according to embodiments may include the process described in FIGS. 1-2, 5-9, 10-11, 13, 18, 21-28, and the like.
  • the method/apparatus according to the embodiments may render point cloud data.
  • the rendering process according to embodiments may include the process described in FIGS. 1-2, 23, 14-16, and the like.
  • Each of the above-described parts, modules or units may be software, processor, or hardware parts that execute successive processes stored in a memory (or storage unit). Each of the steps described in the above-described embodiment may be performed by processor, software, and hardware parts. Each module/block/unit described in the above-described embodiment may operate as a processor, software, or hardware. In addition, methods suggested by the embodiments may be executed as code. This code can be written to a storage medium that can be read by the processor, and thus can be read by a processor provided by the apparatus.
  • the processor-readable recording medium includes all types of recording devices that store data that can be read by the processor. Examples of recording media that can be read by the processor include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage, etc., and also include those implemented in the form of carrier waves such as transmission through the Internet. . Further, the processor-readable recording medium is distributed over a computer system connected through a network, so that the processor-readable code can be stored and executed in a distributed manner.
  • Various elements of the embodiments may be performed by hardware, software, firmware, or a combination thereof.
  • Various elements of the embodiments may be implemented on a single chip such as a hardware circuit.
  • the embodiments may optionally be performed on individual needles.
  • at least one of the elements of the embodiments may be executed in one or more processors including instructions for performing operations according to the embodiments.
  • first and second are used to describe various elements of the embodiments. These terms do not limit the interpretation of the elements of the embodiments. These terms are used to distinguish between one element and another.
  • a first user input signal may be referred to as a second user input signal.
  • the second user input signal may be referred to as a first user input signal.
  • Both the first user input signal and the second user input signal are user input signals, and do not mean the same user input signals unless clearly indicated in context.
  • Conditional expressions such as when, when, and when used to describe the embodiments are not limited to an optional case. When a specific condition is satisfied, it is intended to perform a related operation in response to a specific condition or to interpret the related definition.
  • the embodiments may be applied wholly or partially to the point cloud data transmission/reception apparatus and system.
  • Embodiments may include changes/modifications, and changes/modifications do not depart from the scope of the claims and the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

A point cloud data transmission method according to embodiments may comprise the steps of: encoding point cloud data; and/or transmitting a bitstream including the point cloud data. In addition, a point cloud data reception method according to embodiments may comprise the steps of: receiving point cloud data; decoding the point cloud data; and rendering the point cloud data.

Description

포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
실시예들은 포인트 클라우드 콘텐트(Point Cloud Content)를 처리하는 방법 및 장치에 대한 것이다.The embodiments are directed to a method and apparatus for processing point cloud content.
포인트 클라우드 콘텐트는 3차원 공간을 표현하는 좌표계에 속한 점(포인트)들의 집합인 포인트 클라우드로 표현되는 콘텐트이다. 포인트 클라우드 콘텐트는3차원으로 이루어진 미디어를 표현할 수 있으며, VR (Virtual Reality, 가상현실), AR (Augmented Reality, 증강현실), MR (Mixed Reality, 혼합현실), 및 자율 주행 서비스 등의 다양한 서비스를 제공하기 위해 사용된다. 하지만 포인트 클라우드 콘텐트를 표현하기 위해서는 수만개에서 수십만개의 포인트 데이터가 필요하다. 따라서 방대한 양의 포인트 데이터를 효율적으로 처리하기 위한 방법이 요구된다. The point cloud content is content expressed as a point cloud, which is a set of points (points) belonging to a coordinate system representing a three-dimensional space. Point cloud content can express media consisting of three dimensions, and provides various services such as VR (Virtual Reality, Virtual Reality), AR (Augmented Reality, Augmented Reality), MR (Mixed Reality, Mixed Reality), and autonomous driving services. Used to provide. However, tens of thousands to hundreds of thousands of point data are required to represent point cloud content. Therefore, a method for efficiently processing a vast amount of point data is required.
실시예들은 포인트 클라우드 데이터를 효율적으로 처리하기 위한 장치 및 방법을 제공한다. 실시예들은 지연시간(latency) 및 인코딩/디코딩 복잡도를 해결하기 위한 포인트 클라우드 데이터 처리 방법 및 장치를 제공한다. The embodiments provide an apparatus and method for efficiently processing point cloud data. Embodiments provide a point cloud data processing method and apparatus for solving latency and encoding/decoding complexity.
다만, 전술한 기술적 과제만으로 제한되는 것은 아니고, 기재된 전체 내용에 기초하여 당업자가 유추할 수 있는 다른 기술적 과제로 실시예들의 권리범위가 확장될 수 있다.However, it is not limited only to the above-described technical problem, and the scope of the rights of the embodiments may be extended to other technical problems that can be inferred by those skilled in the art based on the entire description.
상술한 목적 및 다른 이점을 달성하기 위해서 실시예들에 따른 포인트 클라우드 데이터 송신 방법은 포인트 클라우드 데이터를 획득하는 단계; 포인트 클라우드 데이터를 인코딩하는 단계; 및/또는 포인트 클라우드 데이터를 전송하는 단계; 를 포함할 수 있다.In order to achieve the above object and other advantages, a method for transmitting point cloud data according to embodiments includes: obtaining point cloud data; Encoding the point cloud data; And/or transmitting point cloud data; It may include.
또한, 실시예들에 따른 포인트 클라우드 데이터 수신 방법은 포인트 클라우드 데이터를 수신하는 단계; 포인트 클라우드 데이터를 디코딩하는 단계; 및 포인트 클라우드 데이터를 렌더링하는 단계; 를 포함할 수 있다.In addition, a method of receiving point cloud data according to embodiments includes: receiving point cloud data; Decoding the point cloud data; And rendering the point cloud data. It may include.
실시예들에 따른 장치 및 방법은 높은 효율로 포인트 클라우드 데이터를 처리할 수 있다.The apparatus and method according to the embodiments may process point cloud data with high efficiency.
실시예들에 따른 장치 및 방법은 높은 퀄리티의 포인트 클라우드 서비스를 제공할 수 있다.The apparatus and method according to the embodiments may provide a point cloud service of high quality.
실시예들에 따른 장치 및 방법은 VR 서비스, 자율주행 서비스 등 범용적인 서비스를 제공하기 위한 포인트 클라우드 콘텐트를 제공할 수 있다.The apparatus and method according to the embodiments may provide point cloud content for providing general-purpose services such as VR services and autonomous driving services.
도면은 실시예들을 더욱 이해하기 위해서 포함되며, 도면은 실시예들에 관련된 설명과 함께 실시예들을 나타낸다. 이하에서 설명하는 다양한 실시예들의 보다 나은 이해를 위하여, 하기 도면들에 걸쳐 유사한 참조 번호들이 대응하는 부분들을 포함하는 다음의 도면들과 관련하여 이하의 실시예들의 설명을 반드시 참조해야 한다. The drawings are included to further understand the embodiments, and the drawings represent embodiments together with a description related to the embodiments. For a better understanding of the various embodiments described below, reference should be made to the description of the following embodiments with reference to the following drawings in which like reference numerals include corresponding parts throughout the following drawings.
도1은 실시예들에 따른 포인트 클라우드콘텐츠 제공 시스템의 예시를 나타낸다.1 shows an example of a point cloud content providing system according to embodiments.
도 2는 실시예들에 따른 포인트 클라우드 콘텐트 제공 동작을 나타내는 블록도이다.2 is a block diagram illustrating an operation of providing point cloud content according to embodiments.
도 3은 실시예들에 따른 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다. 3 shows an example of a point cloud video capture process according to embodiments.
도 4는 실시예들에 따른 포인트 클라우드 인코더(Point Cloud Encoder)의 예시를 나타낸다.4 shows an example of a point cloud encoder according to embodiments.
도 5 는 실시예들에 따른 복셀의 예시를 나타낸다.5 shows an example of a voxel according to embodiments.
도 6은 실시예들에 따른 옥트리 및 오큐판시 코드 (occupancy code)의 예시를 나타낸다.6 shows an example of an octree and an occupancy code according to embodiments.
도 7은 실시예들에 따른 이웃 노드 패턴의 예시를 나타낸다.7 shows an example of a neighbor node pattern according to embodiments.
도 8은 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다. 8 shows an example of a point configuration for each LOD according to embodiments.
도 9는 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다. 9 shows an example of a point configuration for each LOD according to embodiments.
도 10은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.10 shows an example of a point cloud decoder according to embodiments.
도 11은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.11 shows an example of a point cloud decoder according to embodiments.
도 12는 실시예들에 따른 전송 장치의 예시이다.12 is an example of a transmission device according to embodiments.
도 13은 실시예들에 따른 수신 장치의 예시이다.13 is an example of a reception device according to embodiments.
도 14는 실시예들에 따른 G-PCC 기반 포인트 클라우드 콘텐트 스트리밍을 위한 아키텍쳐를 나타낸다.14 illustrates an architecture for G-PCC-based point cloud content streaming according to embodiments.
도15는 실시예들에 따른 전송 장치의 예시를 나타낸다. 15 shows an example of a transmission device according to embodiments.
도16은 실시예들에 따른 수신 장치의 예시를 나타낸다. 16 shows an example of a receiving device according to embodiments.
도 17은 실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치와 연동 가능한 구조의 예시를 나타낸다.17 shows an example of a structure capable of interworking with a method/device for transmitting and receiving point cloud data according to embodiments.
도 18은 실시예들에 따른 포인트 클라우드 콘텐츠를 구성하는 포인트들의 공간의 예시를 나타낸다.18 shows an example of a space of points constituting point cloud content according to embodiments.
도 19는 실시예들에 따른 포인트 클라우드 부호화기의 예시를 나타낸다.19 shows an example of a point cloud encoder according to embodiments.
도 20은 실시예들에 따른 기하정보 부호화기의 예시를 나타낸다.20 shows an example of a geometric information encoder according to embodiments.
도 21은 실시예들에 따른 포인트 클라우드 데이터의 기하정보의 바운딩 박스를 나타낸다.21 illustrates a bounding box of geometric information of point cloud data according to embodiments.
도 22는 실시예들에 따른 공간분할부의 동작의 예시를 나타낸다.22 shows an example of an operation of a space dividing unit according to embodiments.
도 23은 실시예들에 따른 포인트 클라우드 데이터의 기하정보의 옥트트리 분할 정보 및/또는 유도 정보 실시 예시를 나타낸다.23 is a diagram illustrating an example of performing octtree division information and/or derivation information of geometric information of point cloud data according to embodiments.
도 24는 실시예들에 따른 포인트 클라우드 데이터의 구조의 예시를 나타낸다.24 shows an example of a structure of point cloud data according to embodiments.
도 25는 실시예들에 따른 기하정보 역양자화 과정의 예시를 나타낸다.25 shows an example of a process of inverse quantization of geometric information according to embodiments.
도 26은 실시예들에 따른 기하정보 역양자화의 실시 예시를 나타낸다.26 illustrates an exemplary embodiment of inverse quantization of geometric information according to embodiments.
도 27은 실시예들에 따른 포인트 클라우드 복호화기의 예시를 나타낸다.27 shows an example of a point cloud decoder according to embodiments.
도 28은 실시예들에 따른 기하정보 복호화부의 예시를 나타낸다.28 illustrates an example of a geometric information decoding unit according to embodiments.
도 29는 실시예들에 따른 occupancy 유도(derivation) 예시를 나타낸다.29 shows an example of occupancy derivation according to embodiments.
도 30은 실시예들에 따른 지오메트리 노드에 관련된 시그널링 정보를 나타낸다.30 shows signaling information related to a geometry node according to embodiments.
도 31은 실시예들에 따른 포인트 클라우드 데이터 송신 방법을 나타낸다.31 illustrates a method of transmitting point cloud data according to embodiments.
도 32는 실시예들에 따른 포인트 클라우드 데이터 수신 방법을 나타낸다.32 illustrates a method of receiving point cloud data according to embodiments.
실시예들의 바람직한 실시예에 대해 구체적으로 설명하며, 그 예는 첨부된 도면에 나타낸다. 첨부된 도면을 참조한 아래의 상세한 설명은 실시예들의 실시예에 따라 구현될 수 있는 실시예만을 나타내기보다는 실시예들의 바람직한 실시예를 설명하기 위한 것이다. 다음의 상세한 설명은 실시예들에 대한 철저한 이해를 제공하기 위해 세부 사항을 포함한다. 그러나 실시예들이 이러한 세부 사항 없이 실행될 수 있다는 것은 당업자에게 자명하다.The preferred embodiments of the embodiments will be described in detail, examples of which are shown in the accompanying drawings. The detailed description below with reference to the accompanying drawings is intended to describe preferred embodiments of the embodiments, rather than showing only embodiments that can be implemented according to the embodiments of the embodiments. The following detailed description includes details to provide a thorough understanding of the embodiments. However, it is obvious to a person skilled in the art that the embodiments may be practiced without these details.
실시예들에서 사용되는 대부분의 용어는 해당 분야에서 널리 사용되는 일반적인 것들에서 선택되지만, 일부 용어는 출원인에 의해 임의로 선택되며 그 의미는 필요에 따라 다음 설명에서 자세히 서술한다. 따라서 실시예들은 용어의 단순한 명칭이나 의미가 아닌 용어의 의도된 의미에 근거하여 이해되어야 한다.Most terms used in the embodiments are selected from general ones widely used in the relevant field, but some terms are arbitrarily selected by the applicant, and their meanings will be described in detail in the following description as necessary. Accordingly, the embodiments should be understood based on the intended meaning of the term, not the simple name or meaning of the term.
도1은 실시예들에 따른 포인트 클라우드콘텐츠 제공 시스템의 예시를 나타낸다.1 shows an example of a point cloud content providing system according to embodiments.
도 1에 도시된 포인트 클라우드 콘텐트 제공 시스템은 전송 장치(transmission device)(10000) 및 수신 장치(reception device)(10004)를 포함할 수 있다. 전송 장치(10000) 및 수신 장치(10004)는 포인트 클라우드 데이터를 송수신하기 위해 유무선 통신 가능하다.The point cloud content providing system illustrated in FIG. 1 may include a transmission device 10000 and a reception device 10004. The transmission device 10000 and the reception device 10004 are capable of wired or wireless communication to transmit and receive point cloud data.
. 실시예들에 따른 전송 장치(10000)는 포인트 클라우드 비디오(또는 포인트 클라우드 콘텐트)를 확보하고 처리하여 전송할 수 있다. 실시예들에 따라, 전송 장치(10000)는 고정국(fixed station), BTS(base transceiver system), 네트워크, AI(Ariticial Intelligence) 기기 및/또는 시스템, 로봇, AR/VR/XR 기기 및/또는 서버 등을 포함할 수 있다. 또한 실시예들에 따라 전송 장치(10000)는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여, 기지국 및/또는 다른 무선 기기와 통신을 수행하는 기기, 로봇, 차량, AR/VR/XR 기기, 휴대기기, 가전, IoT(Internet of Thing)기기, AI 기기/서버 등을 포함할 수 있다. . The transmission device 10000 according to the embodiments may secure, process, and transmit point cloud video (or point cloud content). According to embodiments, the transmission device 10000 is a fixed station, a base transceiver system (BTS), a network, an artificial intelligence (AI) device and/or system, a robot, an AR/VR/XR device and/or server. And the like. In addition, according to embodiments, the transmission device 10000 uses a radio access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)) to communicate with a base station and/or other wireless devices, Robots, vehicles, AR/VR/XR devices, portable devices, home appliances, Internet of Thing (IoT) devices, AI devices/servers, etc. may be included.
실시예들에 따른 전송 장치(10000)는 포인트 클라우드 비디오 획득부(Point Cloud Video Acquisition, 10001), 포인트 클라우드 비디오 인코더(Point Cloud Video Encoder, 10002) 및/또는 트랜스미터(Transmitter (or Communication module), 10003)를 포함한다The transmission device 10000 according to embodiments includes a point cloud video acquisition unit (Point Cloud Video Acquisition, 10001), a point cloud video encoder (Point Cloud Video Encoder, 10002) and/or a transmitter (Transmitter (or Communication module), 10003). Include)
실시예들에 따른 포인트 클라우드 비디오 획득부(10001)는 캡쳐, 합성 또는 생성 등의 처리 과정을 통해 포인트 클라우드 비디오를 획득한다. 포인트 클라우드 비디오는 3차원 공간에 위치한 포인트들의 집합인 포인트 클라우드로 표현되는 포인트 클라우드 콘텐트로서, 포인트 클라우드 비디오 데이터 등으로 호칭될 수 있다. 실시예들에 따른 포인트 클라우드 비디오는 하나 또는 그 이상의 프레임들을 포함할 수 있다. 하나의 프레임은 정지 영상/픽쳐를 나타낸다. 따라서 포인트 클라우드 비디오는 포인트 클라우드 영상/프레임/픽처를 포함할 수 있으며, 포인트 클라우드 영상, 프레임 및 픽처 중 어느 하나로 호칭될 수 있다.The point cloud video acquisition unit 10001 according to the embodiments acquires a point cloud video through a process such as capture, synthesis, or generation. The point cloud video is point cloud content expressed as a point cloud, which is a set of points located in a three-dimensional space, and may be referred to as point cloud video data. A point cloud video according to embodiments may include one or more frames. One frame represents a still image/picture. Accordingly, the point cloud video may include a point cloud image/frame/picture, and may be referred to as any one of a point cloud image, a frame, and a picture.
실시예들에 따른 포인트 클라우드 비디오 인코더(10002)는 확보된 포인트 클라우드 비디오 데이터를 인코딩한다. 포인트 클라우드 비디오 인코더(10002)는 포인트 클라우드 컴프레션(Point Cloud Compression) 코딩을 기반으로 포인트 클라우드 비디오 데이터를 인코딩할 수 있다. 실시예들에 따른 포인트 클라우드 컴프레션 코딩은 G-PCC(Geometry-based Point Cloud Compression) 코딩 및/또는 V-PCC(Video based Point Cloud Compression) 코딩 또는 차세대 코딩을 포함할 수 있다. 또한 실시예들에 따른 포인트 클라우드 컴프레션 코딩은 상술한 실시예에 국한되는 것은 아니다. 포인트 클라우드 비디오 인코더(10002)는 인코딩된 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 출력할 수 있다. 비트스트림은 인코딩된 포인트 클라우드 비디오 데이터뿐만 아니라, 포인트 클라우드 비디오 데이터의 인코딩과 관련된 시그널링 정보를 포함할 수 있다.The point cloud video encoder 10002 according to embodiments encodes the secured point cloud video data. The point cloud video encoder 10002 may encode point cloud video data based on Point Cloud Compression coding. Point cloud compression coding according to embodiments may include Geometry-based Point Cloud Compression (G-PCC) coding and/or Video based Point Cloud Compression (V-PCC) coding or next-generation coding. In addition, point cloud compression coding according to the embodiments is not limited to the above-described embodiments. The point cloud video encoder 10002 may output a bitstream including encoded point cloud video data. The bitstream may include not only the encoded point cloud video data, but also signaling information related to encoding of the point cloud video data.
실시예들에 따른 트랜스미터(10003)는 인코딩된 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 전송한다. 실시예들에 따른 비트스트림은 파일 또는 세그먼트(예를 들면 스트리밍 세그먼트) 등으로 인캡슐레이션되어 방송망 및/또는 브로드밴드 망등의 다양한 네트워크를 통해 전송된다. 도면에 도시되지 않았으나, 전송 장치(10000)는 인캡슐레이션 동작을 수행하는 인캡슐레이션부(또는 인캡슐레이션 모듈)을 포함할 수 있다. 또한 실시예들에 따라 인캡슐레이션부는 트랜스미터(10003)에 포함될 수 있다. 실시예들에 따라 파일 또는 세그먼트는 네트워크를 통해 수신 장치(10004)로 전송되거나, 디지털 저장매체(예를 들면 USB, SD, CD, DVD, 블루레이, HDD, SSD 등)에 저장될 수 있다. 실시예들에 따른 트랜스미터(10003)는 수신 장치(10004) (또는 리시버(Receiver, 10005))와 4G, 5G, 6G 등의 네트워크를 통해 유/무선 통신 가능하다. 또한 트랜스미터(10003)는 네트워크 시스템(예를 들면 4G, 5G, 6G 등의 통신 네트워크 시스템)에 따라 필요한 데이터 처리 동작을 수행할 수 있다. 또한 전송 장치(10000)는 온 디맨드(On Demand) 방식에 따라 인캡슐레이션된 데이터를 전송할 수도 있다.The transmitter 10003 according to the embodiments transmits a bitstream including encoded point cloud video data. The bitstream according to the embodiments is encapsulated into a file or segment (for example, a streaming segment) and transmitted through various networks such as a broadcasting network and/or a broadband network. Although not shown in the drawing, the transmission device 10000 may include an encapsulation unit (or an encapsulation module) that performs an encapsulation operation. Also, according to embodiments, the encapsulation unit may be included in the transmitter 10003. According to embodiments, a file or segment may be transmitted to the receiving device 10004 through a network or stored in a digital storage medium (eg, USB, SD, CD, DVD, Blu-ray, HDD, SSD, etc.). The transmitter 10003 according to the embodiments may perform wired/wireless communication with the reception device 10004 (or a receiver 10005) through a network such as 4G, 5G, or 6G. In addition, the transmitter 10003 may perform necessary data processing operations according to a network system (for example, a communication network system such as 4G, 5G, or 6G). In addition, the transmission device 10000 may transmit encapsulated data according to an on demand method.
실시예들에 따른 수신 장치(10004)는 리시버(Receiver, 10005), 포인트 클라우드 비디오 디코더(Point Cloud Decoder, 10006) 및/또는 렌더러(Renderer, 10007)를 포함한다. 실시예들에 따라 수신 장치(10004)는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여, 기지국 및/또는 다른 무선 기기와 통신을 수행하는 기기, 로봇, 차량, AR/VR/XR 기기, 휴대기기, 가전, IoT(Internet of Thing)기기, AI 기기/서버 등을 포함할 수 있다.The reception device 10004 according to the embodiments includes a receiver 10005, a point cloud video decoder 10006, and/or a renderer 10007. According to embodiments, the receiving device 10004 uses a wireless access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)) to communicate with a base station and/or other wireless devices, a robot , Vehicles, AR/VR/XR devices, portable devices, home appliances, Internet of Thing (IoT) devices, AI devices/servers, and the like.
실시예들에 따른 리시버(10005)는 포인트 클라우드 비디오 데이터를 포함하는 비트스트림 또는 비트스트림이 인캡슐레이션된 파일/세그먼트 등을 네트워크 또는 저장매체로부터 수신한다. 리시버(10005)는 네트워크 시스템(예를 들면 4G, 5G, 6G 등의 통신 네트워크 시스템)에 따라 필요한 데이터 처리 동작을 수행할 수 있다. 실시예들에 따른 리시버(10005)는 수신한 파일/세그먼트를 디캡슐레이션하여 비트스트림을 출력할수 있다. 또한 실시예들에 따라 리시버(10005)는 디캡슐레이션 동작을 수행하기 위한 디캡슐레이션부(또는 디캡슐레이션 모듈)을 포함할 수 있다. 또한 디캡슐레이션부는 리시버(10005)와 별개의 엘레멘트(또는 컴포넌트)로 구현될 수 있다.The receiver 10005 according to embodiments receives a bitstream including point cloud video data or a file/segment in which the bitstream is encapsulated from a network or a storage medium. The receiver 10005 may perform necessary data processing operations according to a network system (for example, a communication network system such as 4G, 5G, or 6G). The receiver 10005 according to the embodiments may decapsulate the received file/segment and output a bitstream. In addition, according to embodiments, the receiver 10005 may include a decapsulation unit (or a decapsulation module) for performing a decapsulation operation. In addition, the decapsulation unit may be implemented as an element (or component) separate from the receiver 10005.
포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 디코딩한다. 포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 비디오 데이터가 인코딩된 방식에 따라 디코딩할 수 있다(예를 들면 포인트 클라우드 비디오 인코더(10002)의 동작의 역과정). 따라서 포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 컴프레션의 역과정인 포인트 클라우드 디컴프레션 코딩을 수행하여 포인트 클라우드 비디오 데이터를 디코딩할 수 있다. 포인트 클라우드 디컴프레션 코딩은 G-PCC 코딩을 포함한다.The point cloud video decoder 10006 decodes a bitstream including point cloud video data. The point cloud video decoder 10006 may decode the point cloud video data according to the encoding method (for example, a reverse process of the operation of the point cloud video encoder 10002). Accordingly, the point cloud video decoder 10006 may decode the point cloud video data by performing point cloud decompression coding, which is a reverse process of the point cloud compression. Point cloud decompression coding includes G-PCC coding.
렌더러(10007)는 디코딩된 포인트 클라우드 비디오 데이터를 렌더링한다. 렌더러(10007)는 포인트 클라우드 비디오 데이터 뿐만 아니라 오디오 데이터도 렌더링하여 포인트 클라우드 콘텐트를 출력할 수 있다. 실시예들에 따라 렌더러(10007)는 포인트 클라우드 콘텐트를 디스플레이하기 위한 디스플레이를 포함할 수 있다. 실시예들에 따라 디스플레이는 렌더러(10007)에 포함되지 않고 별도의 디바이스 또는 컴포넌트로 구현될 수 있다.The renderer 10007 renders the decoded point cloud video data. The renderer 10007 may output point cloud content by rendering audio data as well as point cloud video data. According to embodiments, the renderer 10007 may include a display for displaying point cloud content. According to embodiments, the display is not included in the renderer 10007 and may be implemented as a separate device or component.
도면에 점선으로 표시된 화살표는 수신 장치(10004)에서 획득한 피드백 정보(feedback information)의 전송 경로를 나타낸다. 피드백 정보는 포인트 클라우드 컨텐트를 소비하는 사용자와의 인터랙티비를 반영하기 위한 정보로서, 사용자의 정보(예를 들면 헤드 오리엔테이션 정보), 뷰포트(Viewport) 정보 등)을 포함한다. 특히 포인트 클라우드 콘텐트가 사용자와의 상호작용이 필요한 서비스(예를 들면 자율주행 서비스 등)를 위한 콘텐트인 경우, 피드백 정보는 콘텐트 송신측(예를 들면 전송 장치(10000)) 및/또는 서비스 프로바이더에게 전달될 수 있다. 실시예들에 따라 피드백 정보는 전송 장치(10000) 뿐만 아니라 수신 장치(10004)에서도 사용될 수 있으며, 제공되지 않을 수도 있다.An arrow indicated by a dotted line in the drawing indicates a transmission path of feedback information acquired by the receiving device 10004. The feedback information is information for reflecting an interaction ratio with a user who consumes point cloud content, and includes user information (eg, head orientation information, viewport information, etc.). In particular, when the point cloud content is content for a service that requires interaction with a user (for example, an autonomous driving service, etc.), the feedback information is the content sending side (for example, the transmission device 10000) and/or a service provider. Can be delivered to According to embodiments, the feedback information may be used not only in the transmitting device 10000 but also in the receiving device 10004, and may not be provided.
실시예들에 따른 헤드 오리엔테이션 정보는 사용자의 머리 위치, 방향, 각도, 움직임 등에 대한 정보이다. 실시예들에 따른 수신 장치(10004)는 헤드 오리엔테이션 정보를 기반으로 뷰포트 정보를 계산할 수 있다. 뷰포트 정보는 사용자가 바라보고 있는 포인트 클라우드 비디오의 영역에 대한 정보이다. 시점(viewpoint)은 사용자가 포인트 클라우 비디오를 보고 있는 점으로 뷰포트 영역의 정중앙 지점을 의미할 수 있다. 즉, 뷰포트는 시점을 중심으로 한 영역으로서, 영역의 크기, 형태 등은 FOV(Field Of View) 에 의해 결정될 수 있다. 따라서 수신 장치(10004)는 헤드 오리엔테이션 정보 외에 장치가 지원하는 수직(vertical) 혹은 수평(horizontal) FOV 등을 기반으로 뷰포트 정보를 추출할 수 있다. 또한 수신 장치(10004)는 게이즈 분석 (Gaze Analysis) 등을 수행하여 사용자의 포인트 클라우드 소비 방식, 사용자가 응시하는 포인트 클라우 비디오 영역, 응시 시간 등을 확인한다. 실시예들에 따라 수신 장치(10004)는 게이즈 분석 결과를 포함하는 피드백 정보를 송신 장치(10000)로 전송할 수 있다. 실시예들에 따른 피드백 정보는 렌더링 및/또는 디스플레이 과정에서 획득될 수 있다. 실시예들에 따른 피드백 정보는 수신 장치(10004)에 포함된 하나 또는 그 이상의 센서들에 의해 확보될 수 있다. 또한 실시예들에 따라 피드백 정보는 렌더러(10007) 또는 별도의 외부 엘레멘트(또는 디바이스, 컴포넌트 등)에 의해 확보될 수 있다. 도1의 점선은 렌더러(10007)에서 확보한 피드백 정보의 전달 과정을 나타낸다. 포인트 클라우드 콘텐트 제공 시스템은 피드백 정보를 기반으로 포인트 클라우드 데이터를 처리(인코딩/디코딩)할 수 있다. 따라서 포인트 클라우드 비디오 데이터 디코더(10006)는 피드백 정보를 기반으로 디코딩 동작을 수행할 수 있다. 또한 수신 장치(10004)는 피드백 정보를 전송 장치(10000)로 전송할 수 있다. 전송 장치(10000)(또는 포인트 클라우드 비디오 데이터 인코더(10002))는 피드백 정보를 기반으로 인코딩 동작을 수행할 수 있다. 따라서 포인트 클라우드 콘텐트 제공 시스템은 모든 포인트 클라우드 데이터를 처리(인코딩/디코딩)하지 않고, 피드백 정보를 기반으로 필요한 데이터(예를 들면 사용자의 헤드 위치에 대응하는 포인트 클라우드 데이터)를 효율적으로 처리하고, 사용자에게 포인트 클라우드 콘텐트를 제공할 수 있다. Head orientation information according to embodiments is information on a position, direction, angle, and movement of a user's head. The receiving device 10004 according to the embodiments may calculate viewport information based on the head orientation information. The viewport information is information on the area of the point cloud video that the user is viewing. A viewpoint is a point at which the user is watching a point cloud video, and may mean a center point of a viewport area. That is, the viewport is an area centered on a viewpoint, and the size and shape of the area may be determined by a field of view (FOV). Accordingly, the receiving device 10004 may extract viewport information based on a vertical or horizontal FOV supported by the device in addition to the head orientation information. In addition, the receiving device 10004 performs a gaze analysis and the like to check the point cloud consumption method of the user, the point cloud video area that the user gazes, and the gaze time. According to embodiments, the receiving device 10004 may transmit feedback information including the result of gaze analysis to the transmitting device 10000. Feedback information according to embodiments may be obtained during rendering and/or display. Feedback information according to embodiments may be secured by one or more sensors included in the receiving device 10004. Also, according to embodiments, the feedback information may be secured by the renderer 10007 or a separate external element (or device, component, etc.). A dotted line in FIG. 1 shows a process of transmitting feedback information secured by the renderer 10007. The point cloud content providing system may process (encode/decode) point cloud data based on feedback information. Accordingly, the point cloud video data decoder 10006 may perform a decoding operation based on the feedback information. Also, the receiving device 10004 may transmit feedback information to the transmitting device 10000. The transmission device 10000 (or the point cloud video data encoder 10002) may perform an encoding operation based on feedback information. Therefore, the point cloud content providing system does not process (encode/decode) all point cloud data, but efficiently processes necessary data (e.g., point cloud data corresponding to the user's head position) based on feedback information. Point cloud content can be provided to users.
실시예들에 따라, 전송 장치(10000)는 인코더, 전송 디바이스, 전송기 등으로 호칭될 수 있으며, 수신 장치(10004)는 디코더, 수신 디바이스, 수신기 등으로 호칭될 수 있다.According to embodiments, the transmission device 10000 may be referred to as an encoder, a transmission device, a transmitter, and the like, and the reception device 10004 may be referred to as a decoder, a reception device, a receiver, or the like.
실시예들에 따른 도 1 의 포인트 클라우드 콘텐트 제공 시스템에서 처리되는 (획득/인코딩/전송/디코딩/렌더링의 일련의 과정으로 처리되는) 포인트 클라우드 데이터는 포인트 클라우드 콘텐트 데이터 또는 포인트 클라우드 비디오 데이터라고 호칭할 수 있다. 실시예들에 따라 포인트 클라우드 콘텐트 데이터는 포인트 클라우드 데이터와 관련된 메타데이터 내지 시그널링 정보를 포함하는 개념으로 사용될 수 있다.Point cloud data (processed in a series of acquisition/encoding/transmission/decoding/rendering) processed in the point cloud content providing system of FIG. 1 according to embodiments may be referred to as point cloud content data or point cloud video data. I can. According to embodiments, the point cloud content data may be used as a concept including metadata or signaling information related to the point cloud data.
도 1에 도시된 포인트 클라우드 콘텐트 제공 시스템의 엘리먼트들은 하드웨어, 소프트웨어, 프로세서 및/또는 그것들의 결합등으로 구현될 수 있다.Elements of the point cloud content providing system shown in FIG. 1 may be implemented by hardware, software, processor, and/or a combination thereof.
도 2는 실시예들에 따른 포인트 클라우드 콘텐트 제공 동작을 나타내는 블록도이다.2 is a block diagram illustrating an operation of providing point cloud content according to embodiments.
도 2의 블록도는 도 1에서 설명한 포인트 클라우드 콘텐트 제공 시스템의 동작을 나타낸다. 상술한 바와 같이 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 컴프레션 코딩(예를 들면 G-PCC)을 기반으로 포인트 클라우드 데이터를 처리할 수 있다.The block diagram of FIG. 2 shows the operation of the point cloud content providing system described in FIG. 1. As described above, the point cloud content providing system may process point cloud data based on point cloud compression coding (eg, G-PCC).
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 포인트 클라우드 전송 장치(10000) 또는 포인트 클라우드 비디오 획득부(10001))은 포인트 클라우드 비디오를 획득할 수 있다(20000). 포인트 클라우드 비디오는 3차원 공간을 표현하는 좌표계에 속한 포인트 클라우드로 표현된다. 실시예들에 따른 포인트 클라우드 비디오는 Ply (Polygon File format or the Stanford Triangle format) 파일을 포함할 수 있다. 포인트 클라우드 비디오가 하나 또는 그 이상의 프레임들을 갖는 경우, 획득한 포인트 클라우드 비디오는 하나 또는 그 이상의 Ply 파일들을 포함할 수 있다. Ply 파일은 포인트의 지오메트리(Geometry) 및/또는 어트리뷰트(Attribute)와 같은 포인트 클라우드 데이터를 포함한다. 지오메트리는 포인트들의 포지션들을 포함한다. 각 포인트의 포지션은 3차원 좌표계(예를 들면 XYZ축들로 이루어진 좌표계 등)를 나타내는 파라미터들(예를 들면 X축, Y축, Z축 각각의 값)로 표현될 수 있다. 어트리뷰트는 포인트들의 어트리뷰트들(예를 들면, 각 포인트의 텍스쳐 정보, 색상(YCbCr 또는 RGB), 반사율(r), 투명도 등)을 포함한다. 하나의 포인트는 하나 또는 그 이상의 어트리뷰트들(또는 속성들)을 가진다. 예를 들어 하나의 포인트는 하나의 색상인 어트리뷰트를 가질 수도 있고, 색상 및 반사율인 두 개의 어트리뷰트들을 가질 수도 있다. 실시예들에 따라, 지오메트리는 포지션들, 지오메트리 정보, 지오메트리 데이터 등으로 호칭 가능하며, 어트리뷰트는 어트리뷰트들, 어트리뷰트 정보, 어트리뷰트 데이터 등으로 호칭할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템(예를 들면 포인트 클라우드 전송 장치(10000) 또는 포인트 클라우드 비디오 획득부(10001))은 포인트 클라우드 비디오의 획득 과정과 관련된 정보(예를 들면 깊이 정보, 색상 정보 등)으로부터 포인트 클라우드 데이터를 확보할 수 있다.A point cloud content providing system according to embodiments (for example, the point cloud transmission apparatus 10000 or the point cloud video acquisition unit 10001) may acquire a point cloud video (20000). The point cloud video is expressed as a point cloud belonging to a coordinate system representing a three-dimensional space. A point cloud video according to embodiments may include a Ply (Polygon File format or the Stanford Triangle format) file. When the point cloud video has one or more frames, the acquired point cloud video may include one or more Ply files. Ply files contain point cloud data such as the geometry and/or attributes of the point. The geometry includes the positions of the points. The position of each point may be expressed by parameters (eg, values of each of the X-axis, Y-axis, and Z-axis) representing a three-dimensional coordinate system (eg, a coordinate system composed of XYZ axes). Attributes include attributes of points (eg, texture information of each point, color (YCbCr or RGB), reflectance (r), transparency, etc.). A point has one or more attributes (or attributes). For example, one point may have an attribute of one color, or two attributes of a color and reflectance. Depending on embodiments, geometry may be referred to as positions, geometry information, geometry data, and the like, and attributes may be referred to as attributes, attribute information, attribute data, and the like. In addition, the point cloud content providing system (for example, the point cloud transmission device 10000 or the point cloud video acquisition unit 10001) provides points from information related to the acquisition process of the point cloud video (eg, depth information, color information, etc.). Cloud data can be secured.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 전송 장치(10000) 또는 포인트 클라우드 비디오 인코더(10002))은 포인트 클라우드 데이터를 인코딩할 수 있다(20001). 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 컴프레션 코딩을 기반으로 포인트 클라우드 데이터를 인코딩할 수 있다. 상술한 바와 같이 포인트 클라우드 데이터는 포인트의 지오메트리 및 어트리뷰트를 포함할 수 있다. 따라서 포인트 클라우드 콘텐트 제공 시스템은 지오메트리를 인코딩하는 지오메트리 인코딩을 수행하여 지오메트리 비트스트림을 출력할 수 있다. 포인트 클라우드 콘텐트 제공 시스템은 어트리뷰트를 인코딩하는 어트리뷰트 인코딩을 수행하여 어트리뷰트 비트스트림을 출력할 수 있다. 실시예들에 따라 포인트 클라우드 콘텐트 제공 시스템은 지오메트리 인코딩에 기초하여 어트리뷰트 인코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 비트스트림 및 어트리뷰트 비트스트림은 멀티플렉싱되어 하나의 비트스트림으로 출력될 수 있다. 실시예들에 따른 비트스트림은 지오메트리 인코딩 및 어트리뷰트 인코딩과 관련된 시그널링 정보를 더 포함할 수 있다.The point cloud content providing system (for example, the transmission device 10000 or the point cloud video encoder 10002) according to the embodiments may encode point cloud data (20001). The point cloud content providing system may encode point cloud data based on point cloud compression coding. As described above, the point cloud data may include the geometry and attributes of the point. Accordingly, the point cloud content providing system may output a geometry bitstream by performing geometry encoding for encoding geometry. The point cloud content providing system may output an attribute bitstream by performing attribute encoding for encoding the attribute. According to embodiments, the point cloud content providing system may perform attribute encoding based on geometry encoding. The geometry bitstream and the attribute bitstream according to the embodiments may be multiplexed and output as one bitstream. The bitstream according to embodiments may further include signaling information related to geometry encoding and attribute encoding.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 전송 장치(10000) 또는 트랜스미터(10003))는 인코딩된 포인트 클라우드 데이터를 전송할 수 있다(20002). 도1에서 설명한 바와 같이 인코딩된 포인트 클라우드 데이터는 지오메트리 비트스트림, 어트리뷰트 비트스트림으로 표현될 수 있다. 또한 인코딩된 포인트 클라우드 데이터는 포인트 클라우드 데이터의 인코딩과 관련된 시그널링 정보(예를 들면 지오메트리 인코딩 및 어트리뷰트 인코딩과 관련된 시그널링 정보)과 함께 비트스트림의 형태로 전송될 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 인코딩된 포인트 클라우드 데이터를 전송하는 비트스트림을 인캡슐레이션 하여 파일 또는 세그먼트의 형태로 전송할 수 있다.The point cloud content providing system according to embodiments (for example, the transmission device 10000 or the transmitter 10003) may transmit encoded point cloud data (20002). As described in FIG. 1, the encoded point cloud data may be expressed as a geometry bitstream and an attribute bitstream. In addition, the encoded point cloud data may be transmitted in the form of a bitstream together with signaling information related to encoding of the point cloud data (eg, signaling information related to geometry encoding and attribute encoding). In addition, the point cloud content providing system may encapsulate the bitstream for transmitting the encoded point cloud data and transmit it in the form of a file or segment.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 리시버(10005))은 인코딩된 포인트 클라우드 데이터를 포함하는 비트스트림을 수신할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 리시버(10005))은 비트스트림을 디멀티플렉싱할 수 있다. The point cloud content providing system according to the embodiments (for example, the receiving device 10004 or the receiver 10005) may receive a bitstream including encoded point cloud data. In addition, the point cloud content providing system (for example, the receiving device 10004 or the receiver 10005) may demultiplex the bitstream.
포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 비트스트림으로 전송되는 인코딩된 포인트 클라우드 데이터(예를 들면 지오메트리 비트스트림, 어트리뷰트 비트스트림)을 디코딩할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 비트스트림에 포함된 포인트 클라우드 비디오 데이터의 인코딩과 관련된 시그널링 정보를 기반으로 포인트 클라우드 비디오 데이터를 디코딩할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 지오메트리 비트스트림을 디코딩하여 포인트들의 포지션들(지오메트리)을 복원할 수 있다. 포인트 클라우드 콘텐트 제공 시스템은 복원한 지오메트리를 기반으로 어트리뷰트 비트스트림을 디코딩하여 포인트들의 어트리뷰트들을 복원할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 복원된 지오메트리에 따른 포지션들 및 디코딩된 어트리뷰트를 기반으로 포인트 클라우드 비디오를 복원할 수 있다.The point cloud content providing system (e.g., the receiving device 10004 or the point cloud video decoder 10005) can decode the encoded point cloud data (e.g., geometry bitstream, attribute bitstream) transmitted as a bitstream. have. The point cloud content providing system (for example, the receiving device 10004 or the point cloud video decoder 10005) can decode the point cloud video data based on signaling information related to encoding of the point cloud video data included in the bitstream. have. The point cloud content providing system (for example, the receiving device 10004 or the point cloud video decoder 10005) may restore positions (geometry) of points by decoding a geometry bitstream. The point cloud content providing system may restore the attributes of points by decoding an attribute bitstream based on the restored geometry. The point cloud content providing system (for example, the receiving device 10004 or the point cloud video decoder 10005) may restore the point cloud video based on the decoded attributes and positions according to the restored geometry.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 렌더러(10007))은 디코딩된 포인트 클라우드 데이터를 렌더링할 수 있다(20004). 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 렌더러(10007))은 디코딩 과정을 통해 디코딩된 지오메트리 및 어트리뷰트들을 다양한 렌더링 방식에 따라 렌더링 방식에 따라 렌더링 할 수 있다. 포인트 클라우드 콘텐트의 포인트들은 일정 두께를 갖는 정점, 해당 정점 위치를 중앙으로 하는 특정 최소 크기를 갖는 정육면체, 또는 정점 위치를 중앙으로 하는 원 등으로 렌더링 될 수도 있다. 렌더링된 포인트 클라우드 콘텐트의 전부 또는 일부 영역은 디스플레이 (예를 들면 VR/AR 디스플레이, 일반 디스플레이 등)을 통해 사용자에게 제공된다.The point cloud content providing system according to the embodiments (for example, the receiving device 10004 or the renderer 10007) may render the decoded point cloud data (20004 ). The point cloud content providing system (for example, the receiving device 10004 or the renderer 10007) may render geometry and attributes decoded through a decoding process according to a rendering method according to various rendering methods. Points of the point cloud content may be rendered as a vertex having a certain thickness, a cube having a specific minimum size centered on the vertex position, or a circle centered on the vertex position. All or part of the rendered point cloud content is provided to the user through a display (eg VR/AR display, general display, etc.).
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004))는 피드백 정보를 확보할 수 있다(20005). 포인트 클라우드 콘텐트 제공 시스템은 피드백 정보를 기반으로 포인트 클라우드 데이터를 인코딩 및/또는 디코딩할 수 있다. 실시예들에 따른 피드백 정보 및 포인트 클라우드 콘텐트 제공 시스템의 동작은 도 1에서 설명한 피드백 정보 및 동작과 동일하므로 구체적인 설명은 생략한다.The point cloud content providing system according to the embodiments (for example, the receiving device 10004) may secure feedback information (20005). The point cloud content providing system may encode and/or decode point cloud data based on feedback information. Since the operation of the system for providing feedback information and point cloud content according to the embodiments is the same as the feedback information and operation described in FIG. 1, a detailed description will be omitted.
도 3은 실시예들에 따른 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다. 3 shows an example of a point cloud video capture process according to embodiments.
도 3은 도 1 내지 도 2에서 설명한 포인트 클라우드 콘텐트 제공 시스템의 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다.3 shows an example of a point cloud video capture process in the point cloud content providing system described in FIGS. 1 to 2.
포인트 클라우드 콘텐트는 다양한 3차원 공간(예를 들면 현실 환경을 나타내는 3차원 공간, 가상 환경을 나타내는3차원 공간 등)에 위치한 오브젝트(object) 및/또는 환경을 나타내는 포인트 클라우드 비디오(이미지들 및/또는 영상들)을 포함한다. 따라서 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 콘텐트를 생성하기 위하여 하나 또는 그 이상의 카메라(camera)들(예를 들면, 깊이 정보를 확보할 수 있는 적외선 카메라, 깊이 정보에 대응되는 색상 정보를 추출 할 수 있는 RGB 카메라 등), 프로젝터(예를 들면 깊이 정보를 확보하기 위한 적외선 패턴 프로젝터 등), 라이다(LiDAR)등을 사용하여 포인트 클라우드 비디오를 캡쳐할 수 있다. 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 깊이 정보로부터 3차원 공간상의 포인트들로 구성된 지오메트리의 형태를 추출하고, 색상정보로부터 각 포인트의 어트리뷰트를 추출하여 포인트 클라우드 데이터를 확보할 수 있다. 실시예들에 따른 이미지 및/또는 영상은 인워드-페이싱(inward-facing) 방식 및 아웃워드-페이싱(outward-facing) 방식 중 적어도 어느 하나 이상을 기반으로 캡쳐될 수 있다.The point cloud content is an object located in various three-dimensional spaces (for example, a three-dimensional space representing a real environment, a three-dimensional space representing a virtual environment, etc.) and/or a point cloud video (images and/or Videos). Therefore, the point cloud content providing system according to the embodiments includes one or more cameras (eg, an infrared camera capable of securing depth information, color information corresponding to the depth information) to generate the point cloud content. You can capture a point cloud video using an RGB camera that can extract the image), a projector (for example, an infrared pattern projector to secure depth information), and LiDAR. The point cloud content providing system according to the embodiments may obtain point cloud data by extracting a shape of a geometry composed of points in a 3D space from depth information, and extracting an attribute of each point from color information. An image and/or an image according to the embodiments may be captured based on at least one or more of an inward-facing method and an outward-facing method.
도3의 왼쪽은 인워드-페이싱 방식을 나타낸다. 인워드-페이싱 방식은 중심 오브젝트를 둘러싸고 위치한 하나 또는 그 이상의 카메라들(또는 카메라 센서들)이 중심 오브젝트를 캡쳐하는 방식을 의미한다. 인워드-페이싱 방식은 핵심 객체에 대한 360도 이미지를 사용자에게 제공하는 포인트 클라우드 콘텐트(예를 들면 사용자에게 객체(예-캐릭터, 선수, 물건, 배우 등 핵심이 되는 객체)의 360도 이미지를 제공하는 VR/AR 콘텐트)를 생성하기 위해 사용될 수 있다. The left side of Fig. 3 shows an inword-facing scheme. The inword-facing method refers to a method in which one or more cameras (or camera sensors) located surrounding a central object capture a central object. The in-word-facing method provides point cloud content that provides users with 360-degree images of key objects (e.g., provides users with 360-degree images of objects (e.g., key objects such as characters, players, objects, actors, etc.) VR/AR content).
도3의 오른쪽은 아웃워드-페이싱 방식을 나타낸다. 아웃워드-페이싱 방식은 중심 오브젝트를 둘러싸고 위치한 하나 또는 그 이상의 카메라들(또는 카메라 센서들)이 중심 오브젝트가 아닌 중심 오브젝트의 환경을 캡쳐하는 방식을 의미한다. 아웃워드-페이싱 방식은 사용자의 시점에서 나타나는 주변 환경을 제공하기 위한 포인트 클라우드 콘텐트(예를 들면자율 주행 차량의 사용자에게 제공될 수 있는 외부 환경을 나타내는 콘텐트)를 생성하기 위해 사용될 수 있다. The right side of Fig. 3 shows the outword-pacing scheme. The outward-facing method refers to a method in which one or more cameras (or camera sensors) located surrounding the central object capture the environment of the central object other than the central object. The outward-pacing method may be used to generate point cloud content (for example, content representing an external environment that may be provided to a user of a self-driving vehicle) to provide an environment that appears from a user's point of view.
도면에 도시된 바와 같이, 포인트 클라우드 콘텐트는 하나 또는 그 이상의 카메라들의 캡쳐 동작을 기반으로 생성될 수 있다. 이 경우 각 카메라의 좌표계가 다를 수 있으므로 포인트 클라우드 콘텐트 제공 시스템은 캡쳐 동작 이전에 글로벌 공간 좌표계(global coordinate system)을 설정하기 위하여 하나 또는 그 이상의 카메라들의 캘리브레이션을 수행할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 상술한 캡쳐 방식으로 캡쳐된 이미지 및/또는 영상과 임의의 이미지 및/또는 영상을 합성하여 포인트 클라우드 콘텐트를 생성할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 가상 공간을 나타내는 포인트 클라우드 콘텐트를 생성하는 경우 도3에서 설명한 캡쳐 동작을 수행하지 않을 수 있다. 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 캡쳐한 이미지 및/또는 영상에 대해 후처리를 수행할 수 있다. 즉, 포인트 클라우드 콘텐트 제공 시스템은 원하지 않는 영역(예를 들면 배경)을 제거하거나, 캡쳐한 이미지들 및/또는 영상들이 연결된 공간을 인식하고, 구명(spatial hole)이 있는 경우 이를 메우는 동작을 수행할 수 있다. As shown in the figure, the point cloud content may be generated based on the capture operation of one or more cameras. In this case, since the coordinate system of each camera may be different, the point cloud content providing system may calibrate one or more cameras to set a global coordinate system before the capture operation. In addition, the point cloud content providing system may generate point cloud content by synthesizing an image and/or image captured by the above-described capture method with an arbitrary image and/or image. In addition, the point cloud content providing system may not perform the capture operation described in FIG. 3 when generating point cloud content representing a virtual space. The point cloud content providing system according to embodiments may perform post-processing on the captured image and/or image. In other words, the point cloud content providing system removes an unwanted area (e.g., background), recognizes the space where captured images and/or images are connected, and performs an operation to fill in a spatial hole if there is. I can.
또한 포인트 클라우드 콘텐트 제공 시스템은 각 카메라로부터 확보한 포인트 클라우드 비디오의 포인트들에 대하여 좌표계 변환을 수행하여 하나의 포인트 클라우드 콘텐트를 생성할 수 있다. 포인트 클라우드 콘텐트 제공 시스템은 각 카메라의 위치 좌표를 기준으로 포인트들의 좌표계 변환을 수행할 수 있다. 이에 따라, 포인트 클라우드 콘텐트 제공 시스템은 하나의 넓은 범위를 나타내는 콘텐트를 생성할 수도 있고, 포인트들의 밀도가 높은 포인트 클라우드 콘텐트를 생성할 수 있다. In addition, the point cloud content providing system may generate one point cloud content by performing coordinate system transformation on points of the point cloud video acquired from each camera. The point cloud content providing system may perform a coordinate system transformation of points based on the position coordinates of each camera. Accordingly, the point cloud content providing system may generate content representing a wide range, or may generate point cloud content having a high density of points.
도 4는 실시예들에 따른 포인트 클라우드 인코더(Point Cloud Encoder)의 예시를 나타낸다.4 shows an example of a point cloud encoder according to embodiments.
도 4는 도 1의 포인트 클라우드 비디오 인코더(10002)의 예시를 나타낸다. 포인트 클라우드 인코더는 네트워크의 상황 혹은 애플리케이션 등에 따라 포인트 클라우드 콘텐트의 질(예를 들어 무손실-lossless, 손실-lossy, near-lossless)을 조절하기 위하여 포인트 클라우드 데이터(예를 들면 포인트들의 포지션들 및/또는 어트리뷰트들)을 재구성하고 인코딩 동작을 수행한다. 포인트 클라우드 콘텐트의 전체 사이즈가 큰 경우(예를 들어 30 fps의 경우 60 Gbps인 포인트 클라우드 콘텐트) 포인트 클라우드 콘텐트 제공 시스템은 해당 콘텐트를 리얼 타임 스트리밍하지 못할 수 있다. 따라서 포인트 클라우드 콘텐트 제공 시스템은 네트워크 환경등에 맞춰 제공하기 위하여 최대 타깃 비트율(bitrate)을 기반으로 포인트 클라우드 콘텐트를 재구성할 수 있다.4 shows an example of the point cloud video encoder 10002 of FIG. 1. The point cloud encoder uses point cloud data (for example, positions and/or positions of points) to adjust the quality of the point cloud content (for example, lossless-lossless, loss-lossy, near-lossless) according to network conditions or applications. Attributes) and perform an encoding operation. When the total size of the point cloud content is large (for example, a point cloud content of 60 Gbps in the case of 30 fps), the point cloud content providing system may not be able to stream the content in real time. Therefore, the point cloud content providing system can reconstruct the point cloud content based on the maximum target bitrate in order to provide it according to the network environment.
도 1 내지 도2 에서 설명한 바와 같이 포인트 클라우드 인코더는 지오메트리 인코딩 및 어트리뷰트 인코딩을 수행할 수 있다. 지오메트리 인코딩은 어트리뷰트 인코딩보다 먼저 수행된다. As described in FIGS. 1 to 2, the point cloud encoder may perform geometry encoding and attribute encoding. Geometry encoding is performed before attribute encoding.
실시예들에 따른 포인트 클라우드 인코더는 좌표계 변환부(Transformation Coordinates, 40000), 양자화부(Quantize and Remove Points (Voxelize), 40001), 옥트리 분석부(Analyze Octree, 40002), 서페이스 어프록시메이션 분석부(Analyze Surface Approximation, 40003), 아리스메틱 인코더(Arithmetic Encode, 40004), 지오메트리 리컨스트럭션부(Reconstruct Geometry, 40005), 컬러 변환부(Transform Colors, 40006), 어트리뷰트 변환부(Transfer Attributes, 40007), RAHT 변환부(40008), LOD생성부(Generated LOD, 40009), 리프팅 변환부(Lifting)(40010), 계수 양자화부(Quantize Coefficients, 40011) 및/또는 아리스메틱 인코더(Arithmetic Encode, 40012)를 포함한다.Point cloud encoders according to embodiments include a coordinate system transform unit (Transformation Coordinates, 40000), a quantization unit (Quantize and Remove Points (Voxelize), 40001), an octree analysis unit (Analyze Octree, 40002), and a surface aproximation analysis unit ( Analyze Surface Approximation, 40003), Arithmetic Encode (40004), Reconstruct Geometry (40005), Transform Colors (40006), Transfer Attributes (40007), RAHT Transformation A unit 40008, an LOD generation unit (Generated LOD) 40009, a lifting transform unit (Lifting) 40010, a coefficient quantization unit (Quantize Coefficients, 40011), and/or an Arithmetic Encode (40012).
좌표계 변환부(40000), 양자화부(40001), 옥트리 분석부(40002), 서페이스 어프록시메이션 분석부(40003), 아리스메틱 인코더(40004), 및 지오메트리 리컨스트럭션부(40005)는 지오메트리 인코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 인코딩은 옥트리 지오메트리 코딩, 다이렉트 코딩(direct coding), 트라이숩 지오메트리 인코딩(trisoup geometry encoding) 및 엔트로피 인코딩을 포함할 수 있다. 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 또는 조합으로 적용된다. 또한 지오메트리 인코딩은 위의 예시에 국한되지 않는다.The coordinate system transform unit 40000, the quantization unit 40001, the octree analysis unit 40002, the surface aproximation analysis unit 40003, the arithmetic encoder 40004, and the geometry reconstruction unit 40005 perform geometry encoding. can do. Geometry encoding according to embodiments may include octree geometry coding, direct coding, trisoup geometry encoding, and entropy encoding. Direct coding and trisoup geometry encoding are applied selectively or in combination. Also, geometry encoding is not limited to the above example.
도면에 도시된 바와 같이, 실시예들에 따른 좌표계 변환부(40000)는 포지션들을 수신하여 좌표계(coordinate)로 변환한다. 예를 들어, 포지션들은 3차원 공간 (예를 들면XYZ 좌표계로 표현되는 3차원 공간 등)의 위치 정보로 변환될 수 있다. 실시예들에 따른 3차원 공간의 위치 정보는 지오메트리 정보로 지칭될 수 있다.As shown in the drawing, the coordinate system conversion unit 40000 according to the embodiments receives positions and converts them into a coordinate system. For example, positions may be converted into position information in a three-dimensional space (eg, a three-dimensional space represented by an XYZ coordinate system). The location information of the 3D space according to embodiments may be referred to as geometry information.
실시예들에 따른 양자화부(40001)는 지오메트리를 양자화한다. 예를 들어, 양자화부(40001)는 전체 포인트들의 최소 위치 값(예를 들면 X축, Y축, Z축 에 대하여 각축상의 최소 값)을 기반으로 포인트들을 양자화 할 수 있다. 양자화부(40001)는 최소 위치 값과 각 포인트의 위치 값의 차이에 기 설정된 양자 스케일(quatization scale) 값을 곱한 뒤, 내림 또는 올림을 수행하여 가장 가까운 정수 값을 찾는 양자화 동작을 수행한다. 따라서 하나 또는 그 이상의 포인트들은 동일한 양자화된 포지션 (또는 포지션 값)을 가질 수 있다. 실시예들에 따른 양자화부(40001)는 양자화된 포인트들을 재구성하기 위해 양자화된 포지션들을 기반으로 복셀화(voxelization)를 수행한다. 2차원 이미지/비디오 정보를 포함하는 최소 단위는 픽셀(pixel)과 같이, 실시예들에 따른 포인트 클라우드 콘텐트(또는 3차원 포인트 클라우드 비디오)의 포인트들은 하나 또는 그 이상의 복셀(voxel)들에 포함될 수 있다. 복셀은 볼륨(Volume)과 픽셀(Pixel)의 조합어로서, 3차원 공간을 표현하는 축들(예를 들면 X축, Y축, Z축)을 기반으로 3차원 공간을 유닛(unit=1.0) 단위로 나누었을 때 발생하는 3차원 큐빅 공간을 의미한다. 양자화부(40001)는 3차원 공간의 포인트들의 그룹들을 복셀들로 매칭할 수 있다. 실시예들에 따라 하나의 복셀은 하나의 포인트만 포함할 수 있다. 실시예들에 따라 하나의 복셀은 하나 또는 그 이상의 포인트들을 포함할 수 있다. 또한 하나의 복셀을 하나의 포인트로 표현하기 위하여, 하나의 복셀에 포함된 하나 또는 그 이상의 포인트들의 포지션들을 기반으로 해당 복셀의 중앙점(ceter)의 포지션을 설정할 수 있다. 이 경우 하나의 복셀에 포함된 모든 포지션들의 어트리뷰트들은 통합되어(combined) 해당 복셀에 할당될(assigned)수 있다.The quantization unit 40001 according to embodiments quantizes geometry. For example, the quantization unit 40001 may quantize points based on the minimum position values of all points (eg, minimum values on each axis with respect to the X-axis, Y-axis, and Z-axis). The quantization unit 40001 multiplies the difference between the minimum position value and the position value of each point by a preset quantum scale value, and then performs a quantization operation to find the nearest integer value by performing a rounding or a rounding. Thus, one or more points may have the same quantized position (or position value). The quantization unit 40001 according to embodiments performs voxelization based on the quantized positions to reconstruct the quantized points. The minimum unit including the 2D image/video information is a pixel, and points of the point cloud content (or 3D point cloud video) according to the embodiments may be included in one or more voxels. have. Voxel is a combination of volume and pixel, and the three-dimensional space is a unit (unit=1.0) based on the axes representing the three-dimensional space (for example, X-axis, Y-axis, Z-axis). It refers to a three-dimensional cubic space that occurs when divided by. The quantization unit 40001 may match groups of points in a 3D space with voxels. According to embodiments, one voxel may include only one point. According to embodiments, one voxel may include one or more points. In addition, in order to express one voxel as one point, a position of a center point (ceter) of a corresponding voxel may be set based on positions of one or more points included in one voxel. In this case, attributes of all positions included in one voxel may be combined and assigned to a corresponding voxel.
실시예들에 따른 옥트리 분석부(40002)는 복셀을 옥트리(octree) 구조로 나타내기 위한 옥트리 지오메트리 코딩(또는 옥트리 코딩)을 수행한다. 옥트리 구조는 팔진 트리 구조에 기반하여 복셀에 매칭된 포인트들을 표현한다.The octree analysis unit 40002 according to the embodiments performs octree geometry coding (or octree coding) to represent voxels in an octree structure. The octree structure represents points matched to voxels based on an octal tree structure.
실시예들에 따른 서페이스 어프록시메이션 분석부(40003)는 옥트리를 분석하고, 근사화할 수 있다. 실시예들에 따른 옥트리 분석 및 근사화는 효율적으로 옥트리 및 복셀화를 제공하기 위해서 다수의 포인트들을 포함하는 영역에 대해 복셀화하기 위해 분석하는 과정이다.The surface aproxiation analysis unit 40003 according to the embodiments may analyze and approximate the octree. The octree analysis and approximation according to the embodiments is a process of analyzing to voxelize a region including a plurality of points in order to efficiently provide octree and voxelization.
실시예들에 따른 아리스메틱 인코더(40004)는 옥트리 및/또는 근사화된 옥트리를 엔트로피 인코딩한다. 예를 들어, 인코딩 방식은 아리스메틱(Arithmetic) 인코딩 방법을 포함한다. 인코딩의 결과로 지오메트리 비트스트림이 생성된다.The arithmetic encoder 40004 according to embodiments entropy encodes the octree and/or the approximated octree. For example, the encoding method includes an Arithmetic encoding method. As a result of encoding, a geometry bitstream is generated.
컬러 변환부(40006), 어트리뷰트 변환부(40007), RAHT 변환부(40008), LOD생성부(40009), 리프팅 변환부(40010), 계수 양자화부(40011) 및/또는 아리스메틱 인코더(40012)는 어트리뷰트 인코딩을 수행한다. 상술한 바와 같이 하나의 포인트는 하나 또는 그 이상의 어트리뷰트들을 가질 수 있다. 실시예들에 따른 어트리뷰트 인코딩은 하나의 포인트가 갖는 어트리뷰트들에 대해 동일하게 적용된다. 다만, 하나의 어트리뷰트(예를 들면 색상)이 하나 또는 그 이상의 요소들을 포함하는 경우, 각 요소마다 독립적인 어트리뷰트 인코딩이 적용된다. 실시예들에 따른 어트리뷰트 인코딩은 컬러 변환 코딩, 어트리뷰트 변환 코딩, RAHT(Region Adaptive Hierarchial Transform) 코딩, 예측 변환(Interpolaration-based hierarchical nearest-neighbour prediction-Prediction Transform) 코딩 및 리프팅 변환 (interpolation-based hierarchical nearest-neighbour prediction with an update/lifting step (Lifting Transform)) 코딩을 포함할 수 있다. 포인트 클라우드 콘텐트에 따라 상술한 RAHT 코딩, 예측 변환 코딩 및 리프팅 변환 코딩은 선택적으로 사용되거나, 하나 또는 그 이상의 코딩들의 조합이 사용될 수 있다. 또한 실시예들에 따른 어트리뷰트 인코딩은 상술한 예시에 국한되는 것은 아니다. Color conversion unit 40006, attribute conversion unit 40007, RAHT conversion unit 40008, LOD generation unit 40009, lifting conversion unit 40010, coefficient quantization unit 40011 and/or Arismatic encoder 40012 Performs attribute encoding. As described above, one point may have one or more attributes. Attribute encoding according to embodiments is applied equally to attributes of one point. However, when one attribute (eg, color) includes one or more elements, independent attribute encoding is applied to each element. Attribute encoding according to embodiments includes color transform coding, attribute transform coding, Region Adaptive Hierarchial Transform (RAHT) coding, Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform coding, and interpolation-based hierarchical nearest -Neighbor prediction with an update/lifting step (Lifting Transform)) coding may be included. Depending on the point cloud content, the aforementioned RAHT coding, predictive transform coding, and lifting transform coding may be selectively used, or a combination of one or more codings may be used. In addition, attribute encoding according to embodiments is not limited to the above-described example.
실시예들에 따른 컬러 변환부(40006)는 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 변환하는 컬러 변환 코딩을 수행한다. 예를 들어, 컬러 변환부(40006)는 색상 정보의 포맷을 변환(예를 들어 RGB에서 YCbCr로 변환)할 수 있다. 실시예들에 따른 컬러 변환부(40006)의 동작은 어트리뷰트들에 포함된 컬러값에 따라 옵셔널(optional)하게 적용될 수 있다.The color conversion unit 40006 according to embodiments performs color conversion coding for converting color values (or textures) included in attributes. For example, the color conversion unit 40006 may convert the format of color information (eg, convert from RGB to YCbCr). The operation of the color conversion unit 40006 according to the embodiments may be selectively applied according to color values included in attributes.
실시예들에 따른 지오메트리 리컨스트럭션부(40005)는 옥트리 및/또는 근사화된 옥트리를 재구성(디컴프레션)한다. 지오메트리 리컨스트럭션부(40005)는 포인트들의 분포를 분석한 결과에 기반하여 옥트리/복셀을 재구성한다. 재구성된 옥트리/복셀은 재구성된 지오메트리(또는 복원된 지오메트리)로 호칭될 수 있다.The geometry reconstruction unit 40005 according to embodiments reconstructs (decompresses) an octree and/or an approximated octree. The geometry reconstruction unit 40005 reconstructs an octree/voxel based on a result of analyzing the distribution of points. The reconstructed octree/voxel may be referred to as reconstructed geometry (or reconstructed geometry).
실시예들에 따른 어트리뷰트 변환부(40007)는 지오메트리 인코딩이 수행되지 않은 포지션들 및/또는 재구성된 지오메트리를 기반으로 어트리뷰트들을 변환하는 어트리뷰트 변환을 수행한다. 상술한 바와 같이 어트리뷰트들은 지오메트리에 종속되므로, 어트리뷰트 변환부(40007)는 재구성된 지오메트리 정보를 기반으로 어트리뷰트들을 변환할 수 있다. 예를 들어, 어트리뷰트 변환부(40007)는 복셀에 포함된 포인트의 포지션값을 기반으로 그 포지션의 포인트가 가지는 어트리뷰트를 변환할 수 있다. 상술한 바와 같이 하나의 복셀에 포함된 하나 또는 그 이상의 포인트들의 포지션들을 기반으로 해당 복셀의 중앙점의 포지션이 설정된 경우, 어트리뷰트 변환부(40007)는 하나 또는 그 이상의 포인트들의 어트리뷰트들을 변환한다. 트라이숩 지오메트리 인코딩이 수행된 경우, 어트리뷰트 변환부(40007)는 트라이숩 지오메트리 인코딩을 기반으로 어트리뷰트들을 변환할 수 있다. The attribute conversion unit 40007 according to the embodiments performs attribute conversion for converting attributes based on the reconstructed geometry and/or positions for which geometry encoding has not been performed. As described above, since attributes are dependent on geometry, the attribute conversion unit 40007 may transform the attributes based on the reconstructed geometry information. For example, the attribute conversion unit 40007 may convert an attribute of the point of the position based on the position value of the point included in the voxel. As described above, when a position of a center point of a corresponding voxel is set based on positions of one or more points included in one voxel, the attribute conversion unit 40007 converts attributes of one or more points. When tri-soup geometry encoding is performed, the attribute conversion unit 40007 may convert attributes based on trisoup geometry encoding.
어트리뷰트 변환부(40007)는 각 복셀의 중앙점의 포지션(또는 포지션 값)으로부터 특정 위치/반경 내에 이웃하고 있는 포인트들의 어트리뷰트들 또는 어트리뷰트 값들(예를 들면 각 포인트의 색상, 또는 반사율 등)의 평균값을 계산하여 어트리뷰트 변환을 수행할 수 있다. 어트리뷰트 변환부(40007)는 평균값 계산시 중앙점으로부터 각 포인트까지의 거리에 따른 가중치를 적용할 수 있다. 따라서 각 복셀은 포지션과 계산된 어트리뷰트(또는 어트리뷰트 값)을 갖게 된다. The attribute conversion unit 40007 is an average value of attributes or attribute values (for example, the color of each point or reflectance) of points neighboring within a specific position/radius from the position (or position value) of the center point of each voxel. Attribute conversion can be performed by calculating. The attribute conversion unit 40007 may apply a weight according to a distance from a central point to each point when calculating an average value. Thus, each voxel has a position and a calculated attribute (or attribute value).
어트리뷰트 변환부(40007)는 K-D 트리 또는 몰톤 코드를 기반으로 각 복셀의 중앙점의 포지션으로부터 특정 위치/반경 내에 존재하는 이웃 포인트들을 탐색할 수 있다. K-D 트리는 이진 탐색 트리(binary search tree)로 빠르게 최단 이웃점 탐색(Nearest Neighbor Search-NNS)이 가능하도록 point들을 위치 기반으로 관리할 수 있는 자료 구조를 지원한다. 몰튼 코드는 모든 포인트들의 3차원 포지션을 나타내는 좌표값(예를 들면 (x, y, z))을 비트값으로 나타내고, 비트들을 믹싱하여 생성된다. 예를 들어 포인트의 포지션을 나타내는 좌표값이 (5, 9, 1)일 경우 좌표값의 비트 값은 (0101, 1001, 0001)이다. 비트 값을z, y, x 순서로 비트 인덱스에 맞춰 믹싱하면 010001000111이다. 이 값을 10진수로 나타내면 1095이 된다. 즉, 좌표값이 (5, 9, 1)인 포인트의 몰톤 코드 값은 1095이다. 어트리뷰트 변환부(40007)는 몰튼 코드 값을 기준으로 포인트들을 정렬하고depth-first traversal 과정을 통해 최단 이웃점 탐색(NNS)을 할 수 있다. 어트리뷰트 변환 동작 이후, 어트리뷰트 코딩을 위한 다른 변환 과정에서도 최단 이웃점 탐색(NNS)이 필요한 경우, K-D 트리 또는 몰톤 코드가 활용된다.The attribute conversion unit 40007 may search for neighboring points existing within a specific position/radius from the position of the center point of each voxel based on a K-D tree or a Molton code. The K-D tree is a binary search tree and supports a data structure that can manage points based on location so that the Nearest Neighbor Search (NNS) can be quickly performed. The Molton code represents a coordinate value (for example, (x, y, z)) representing a three-dimensional position of all points as a bit value, and is generated by mixing the bits. For example, if the coordinate value indicating the position of the point is (5, 9, 1), the bit value of the coordinate value is (0101, 1001, 0001). If the bit values are mixed according to the bit index in the order of z, y, x, it is 010001000111. If this value is expressed as a decimal number, it becomes 1095. That is, the Molton code value of the point whose coordinate value is (5, 9, 1) is 1095. The attribute conversion unit 40007 may sort points based on a Morton code value and perform a shortest neighbor search (NNS) through a depth-first traversal process. After the attribute transformation operation, when the shortest neighbor search (NNS) is required in another transformation process for attribute coding, a K-D tree or a Molton code is used.
도면에 도시된 바와 같이 변환된 어트리뷰트들은 RAHT 변환부(40008) 및/또는 LOD 생성부(40009)로 입력된다.As shown in the figure, the converted attributes are input to the RAHT conversion unit 40008 and/or the LOD generation unit 40009.
실시예들에 따른 RAHT 변환부(40008)는 재구성된 지오메트리 정보에 기반하여 어트리뷰트 정보를 예측하는 RAHT코딩을 수행한다. 예를 들어, RAHT 변환부(40008)는 옥트리의 하위 레벨에 있는 노드와 연관된 어트리뷰트 정보에 기반하여 옥트리의 상위 레벨에 있는 노드의 어트리뷰트 정보를 예측할 수 있다. The RAHT conversion unit 40008 according to embodiments performs RAHT coding for predicting attribute information based on the reconstructed geometry information. For example, the RAHT conversion unit 40008 may predict attribute information of a node at a higher level of the octree based on attribute information associated with a node at a lower level of the octree.
실시예들에 따른 LOD생성부(40009)는 예측 변환 코딩을 수행하기 위하여LOD(Level of Detail)를 생성한다. 실시예들에 따른 LOD는 포인트 클라우드 콘텐트의 디테일을 나타내는 정도로서, LOD 값이 작을 수록 포인트 클라우드 콘텐트의 디테일이 떨어지고, LOD 값이 클 수록 포인트 클라우드 콘텐트의 디테일이 높음을 나타낸다. 포인트들을 LOD에 따라 분류될 수 있다. The LOD generation unit 40009 according to embodiments generates a level of detail (LOD) to perform predictive transform coding. The LOD according to the embodiments is a degree representing the detail of the point cloud content, and a smaller LOD value indicates that the detail of the point cloud content decreases, and a larger LOD value indicates that the detail of the point cloud content is high. Points can be classified according to LOD.
실시예들에 따른 리프팅 변환부(40010)는 포인트 클라우드의 어트리뷰트들을 가중치에 기반하여 변환하는 리프팅 변환 코딩을 수행한다. 상술한 바와 같이 리프팅 변환 코딩은 선택적으로 적용될 수 있다.The lifting transform unit 40010 according to embodiments performs lifting transform coding that transforms attributes of a point cloud based on weights. As described above, the lifting transform coding can be selectively applied.
실시예들에 따른 계수 양자화부(40011)은 어트리뷰트 코딩된 어트리뷰트들을 계수에 기반하여 양자화한다.The coefficient quantization unit 40011 according to embodiments quantizes attribute-coded attributes based on coefficients.
실시예들에 따른 아리스메틱 인코더(40012)는 양자화된 어트리뷰트들을 아리스메틱 코딩 에 기반하여 인코딩한다. Arismatic encoder 40012 according to embodiments encodes quantized attributes based on Arismatic coding.
도 4의 포인트 클라우드 인코더의 엘레멘트들은 도면에 도시되지 않았으나 포인트 클라우드 제공 장치에 포함된 하나 또는 그 이상의 메모리들과 통신가능하도록 설정된 하나 또는 그 이상의 프로세서들 또는 집적 회로들(integrated circuits)을 포함하는 하드웨어, 소프트웨어, 펌웨어 또는 이들의 조합으로 구현될 수 있다. 하나 또는 그 이상의 프로세서들은 상술한 도 4의 포인트 클라우드 인코더의 엘레멘트들의 동작들 및/또는 기능들 중 적어도 어느 하나 이상을 수행할 수 있다. 또한 하나 또는 그 이상의 프로세서들은 도 4의 포인트 클라우드 인코더의 엘레멘트들의 동작들 및/또는 기능들을 수행하기 위한 소프트웨어 프로그램들 및/또는 인스트럭션들의 세트를 동작하거나 실행할 수 있다. 실시예들에 따른 하나 또는 그 이상의 메모리들은 하이 스피드 랜덤 억세스 메모리를 포함할 수도 있고, 비휘발성 메모리(예를 들면 하나 또는 그 이상의 마그네틱 디스크 저장 디바이스들, 플래쉬 메모리 디바이스들, 또는 다른 비휘발성 솔리드 스테이트 메모리 디바이스들(Solid-state memory devices)등)를 포함할 수 있다.The elements of the point cloud encoder of FIG. 4 are not shown in the drawing, but hardware including one or more processors or integrated circuits configured to communicate with one or more memories included in the point cloud providing apparatus. , Software, firmware, or a combination thereof. One or more processors may perform at least one or more of the operations and/or functions of the elements of the point cloud encoder of FIG. 4 described above. Further, one or more processors may operate or execute a set of software programs and/or instructions for performing operations and/or functions of the elements of the point cloud encoder of FIG. 4. One or more memories according to embodiments may include high speed random access memory, and non-volatile memory (e.g., one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state Memory devices (solid-state memory devices, etc.).
도 5 는 실시예들에 따른 복셀의 예시를 나타낸다.5 shows an example of a voxel according to embodiments.
도 5는 X축, Y축, Z축의 3가지 축으로 구성된 좌표계로 표현되는 3차원 공간상에 위치한 복셀을 나타낸다. 도 4에서 설명한 바와 같이 포인트 클라우드 인코더(예를 들면 양자화부(40001) 등)은 복셀화를 수행할 수 있다. 복셀은 3차원 공간을 표현하는 축들(예를 들면 X축, Y축, Z축)을 기반으로 3차원 공간을 유닛(unit=1.0) 단위로 나누었을 때 발생하는 3차원 큐빅 공간을 의미한다. 도 5는 두 개의 극점들(0,0,0) 및 (2 d, 2 d, 2 d) 으로 정의되는 바운딩 박스(cubical axis-aligned bounding box)를 재귀적으로 분할(reculsive subdividing)하는 옥트리 구조를 통해 생성된 복셀의 예시를 나타낸다. 하나의 복셀은 적어도 하나 이상의 포인트를 포함한다. 복셀은 복셀군(voxel group)과의 포지션 관계로부터 공간 좌표를 추정 할 수 있다. 상술한 바와 같이 복셀은 2차원 이미지/영상의 픽셀과 마찬가지로 어트리뷰트(색상 또는 반사율 등)을 가진다. 복셀에 대한 구체적인 설명은 도 4에서 설명한 바와 동일하므로 생략한다.5 shows voxels located in a three-dimensional space represented by a coordinate system composed of three axes of the X-axis, Y-axis, and Z-axis. As described with reference to FIG. 4, a point cloud encoder (eg, quantization unit 40001) may perform voxelization. The voxel refers to a three-dimensional cubic space generated when a three-dimensional space is divided into units (unit = 1.0) based on axes (eg, X-axis, Y-axis, and Z-axis) representing the three-dimensional space. FIG. 5 is an octree structure recursively subdividing a cubical axis-aligned bounding box defined by two poles (0,0,0) and (2 d , 2 d , 2 d ) Shows an example of a voxel generated through. One voxel includes at least one or more points. The voxel can estimate spatial coordinates from the positional relationship with the voxel group. As described above, voxels have attributes (color or reflectance, etc.) like pixels of a 2D image/video. A detailed description of the voxel is the same as that described with reference to FIG. 4 and thus is omitted.
도 6은 실시예들에 따른 옥트리 및 오큐판시 코드 (occupancy code)의 예시를 나타낸다.6 shows an example of an octree and an occupancy code according to embodiments.
도 1 내지 도 4에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템(포인트 클라우드 비디오 인코더(10002)) 또는 포인트 클라우드 인코더(예를 들면 옥트리 분석부(40002))는 복셀의 영역 및/또는 포지션을 효율적으로 관리하기 위하여 옥트리 구조 기반의 옥트리 지오메트리 코딩(또는 옥트리 코딩)을 수행한다. As described in FIGS. 1 to 4, a point cloud content providing system (point cloud video encoder 10002) or a point cloud encoder (for example, octree analysis unit 40002) efficiently manages the area and/or position of the voxel. To do this, octree geometry coding (or octree coding) based on an octree structure is performed.
도 6의 상단은 옥트리 구조를 나타낸다. 실시예들에 따른 포인트 클라우드 콘텐트의 3차원 공간은 좌표계의 축들(예를 들면 X축, Y축, Z축)로 표현된다. 옥트리 구조는 두 개의 극점들(0,0,0) 및 (2 d, 2 d, 2 d) 으로 정의되는 바운딩 박스(cubical axis-aligned bounding box)를 재귀적으로 분할(reculsive subdividing)하여 생성된다. 2d는 포인트 클라우드 콘텐트(또는 포인트 클라우드 비디오)의 전체 포인트들을 감싸는 가장 작은 바운딩 박스를 구성하는 값으로 설정될 수 있다. d는 옥트리의 깊이(depth)를 나타낸다. d값은 다음의 식에 따라 결정된다. 하기 식에서 (x int n, y int n, z int n)는 양자화된 포인트들의 포지션들(또는 포지션 값들)을 나타낸다. The upper part of FIG. 6 shows an octree structure. The three-dimensional space of the point cloud content according to the embodiments is expressed by axes of a coordinate system (eg, X-axis, Y-axis, Z-axis). The octree structure is created by recursive subdividing of a cubical axis-aligned bounding box defined by two poles (0,0,0) and (2 d , 2 d , 2 d ). . 2d may be set to a value constituting the smallest bounding box surrounding all points of the point cloud content (or point cloud video). d represents the depth of the octree. The d value is determined according to the following equation. In the following equation, (x int n , y int n , z int n ) represents positions (or position values) of quantized points.
Figure PCTKR2020001615-appb-img-000001
Figure PCTKR2020001615-appb-img-000001
도 6의 상단의 중간에 도시된 바와 같이, 분할에 따라 전체 3차원 공간은 8개의 공간들로 분할될 수 있다. 분할된 각 공간은 6개의 면들을 갖는 큐브로 표현된다. 도 6 상단의 오른쪽에 도시된 바와 같이 8개의 공간들 각각은 다시 좌표계의 축들(예를 들면 X축, Y축, Z축)을 기반으로 분할된다. 따라서 각 공간은 다시 8개의 작은 공간들로 분할된다. 분할된 작은 공간 역시 6개의 면들을 갖는 큐브로 표현된다. 이와 같은 분할 방식은 옥트리의 리프 노드(leaf node)가 복셀이 될 때까지 적용된다.As shown in the middle of the upper portion of FIG. 6, the entire 3D space may be divided into eight spaces according to the division. Each divided space is represented by a cube with 6 faces. As shown on the right side of the upper part of FIG. 6, each of the eight spaces is divided again based on the axes of the coordinate system (eg, X axis, Y axis, Z axis). Thus, each space is further divided into eight smaller spaces. The divided small space is also represented as a cube with 6 faces. This division method is applied until a leaf node of an octree becomes a voxel.
도 6의 하단은 옥트리의 오큐판시 코드를 나타낸다. 옥트리의 오큐판시 코드는 하나의 공간이 분할되어 발생되는 8개의 분할된 공간들 각각이 적어도 하나의 포인트를 포함하는지 여부를 나타내기 위해 생성된다. 따라서 하나의 오큐판시 코드는 8개의 자식 노드(child node)들로 표현된다. 각 자식 노드는 분할된 공간의 오큐판시를 나타내며, 자식 노드는 1비트의 값을 갖는다. 따라서 오큐판시 코드는 8 비트 코드로 표현된다. 즉, 자식 노드에 대응하는 공간에 적어도 하나의 포인트가 포함되어 있으면 해당 노드는 1값을 갖는다. 자식 노드에 대응하는 공간에 포인트가 포함되어 있지 않으면 (empty), 해당 노드는 0값을 갖는다. 도 6에 도시된 오큐판시 코드는 00100001이므로 8개의 자식 노드 중 3번째 자식 노드 및 8번째 자식 노드에 대응하는 공간들은 각각 적어도 하나의 포인트를 포함함을 나타낸다. 도면에 도시된 바와 같이 3번째 자식 노드 및 8번째 자식 노드는 각각 8개의 자식 노드를 가지며, 각 자식 노드는 8비트의 오큐판시 코드로 표현된다. 도면은 3번째 자식 노드의 오큐판시 코드가 10000111이고, 8번째 자식 노드의 오큐판시 코드가 01001111임을 나타낸다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40004))는 오큐판시 코드를 엔트로피 인코딩할 수 있다. 또한 압축 효율을 높이기 위해 포인트 클라우드 인코더는 오큐판시 코드를 인트라/인터 코딩할 수 있다. 실시예들에 따른 수신 장치(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10006))는 오큐판시 코드를 기반으로 옥트리를 재구성한다.The lower part of FIG. 6 shows the octree's ocupancy code. The octree's ocupancy code is generated to indicate whether each of the eight divided spaces generated by dividing one space includes at least one point. Therefore, one Okufanshi code is represented by 8 child nodes. Each child node represents the occupancy of the divided space, and the child node has a value of 1 bit. Therefore, the Ocufanshi code is expressed as an 8-bit code. That is, if at least one point is included in the space corresponding to the child node, the node has a value of 1. If the point is not included in the space corresponding to the child node (empty), the node has a value of 0. Since the ocupancy code shown in FIG. 6 is 00100001, it indicates that the spaces corresponding to the third child node and the eighth child node among the eight child nodes each include at least one point. As shown in the figure, the third child node and the eighth child node each have eight child nodes, and each child node is represented by an 8-bit ocupancy code. The drawing shows that the occupancy code of the third child node is 10000111, and the ocupancy code of the 8th child node is 01001111. A point cloud encoder (for example, the Arismatic encoder 40004) according to embodiments may entropy encode an ocupancy code. In addition, in order to increase the compression efficiency, the point cloud encoder can intra/inter code the ocupancy code. The reception device (for example, the reception device 10004 or the point cloud video decoder 10006) according to the embodiments reconstructs an octree based on an ocupancy code.
실시예들에 따른 포인트 클라우드 인코더(예를 들면 도 4의 포인트 클라우드 인코더, 또는 옥트리 분석부(40002))는 포인트들의 포지션들을 저장하기 위해 복셀화 및 옥트리 코딩을 수행할 수 있다. 하지만 3차원 공간 내 포인트들이 언제나 고르게 분포하는 것은 아니므로, 포인트들이 많이 존재하지 않는 특정 영역이 존재할 수 있다. 따라서 3차원 공간 전체에 대해 복셀화를 수행하는 것은 비효율 적이다. 예를 들어 특정 영역에 포인트가 거의 존재하지 않는다면, 해당 영역까지 복셀화를 수행할 필요가 없다.A point cloud encoder according to embodiments (for example, the point cloud encoder of FIG. 4 or the octree analyzer 40002) may perform voxelization and octree coding to store positions of points. However, since points in the 3D space are not always evenly distributed, there may be a specific area where there are not many points. Therefore, it is inefficient to perform voxelization over the entire 3D space. For example, if there are almost no points in a specific area, it is not necessary to perform voxelization to the corresponding area.
따라서 실시예들에 따른 포인트 클라우드 인코더는 상술한 특정 영역(또는 옥트리의 리프 노드를 제외한 노드)에 대해서는 복셀화를 수행하지 않고, 특정 영역에 포함된 포인트들의 포지션을 직접 코딩하는 다이렉트 코딩(Direct coding)을 수행할 수 있다. 실시예들에 따른 다이렉트 코딩 포인트의 좌표들은 다이렉트 코딩 모드(Direct Coding Mode, DCM)으로 호칭된다. 또한 실시예들에 따른 포인트 클라우드 인코더는 표면 모델(surface model)을 기반으로 특정 영역(또는 노드)내의 포인트들의 포지션들을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩(Trisoup geometry encoding)을 수행할 수 있다. 트라이숩 지오메트리 인코딩은 오브젝트의 표현을 삼각형 메쉬(triangle mesh)의 시리즈로 표현하는 지오메트리 인코딩이다. 따라서 포인트 클라우드 디코더는 메쉬 표면으로부터 포인트 클라우드를 생성할 수 있다. 실시예들에 따른 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 수행될 수 있다. 또한 실시예들에 따른 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 옥트리 지오메트리 코딩(또는 옥트리 코딩)과 결합되어 수행될 수 있다.Therefore, the point cloud encoder according to the embodiments does not perform voxelization for the above-described specific region (or nodes other than the leaf nodes of the octree), but directly codes the positions of points included in the specific region. ) Can be performed. Coordinates of a direct coding point according to embodiments are referred to as a direct coding mode (DCM). In addition, the point cloud encoder according to embodiments may perform trisoup geometry encoding in which positions of points within a specific region (or node) are reconstructed based on voxels based on a surface model. Trisoup geometry encoding is a geometry encoding that expresses the representation of an object as a series of triangle meshes. Therefore, the point cloud decoder can generate a point cloud from the mesh surface. Direct coding and trisoup geometry encoding according to embodiments may be selectively performed. In addition, direct coding and trisoup geometry encoding according to embodiments may be performed in combination with octree geometry coding (or octree coding).
다이렉트 코딩(Direct coding)을 수행하기 위해서는 다이렉트 코딩을 적용하기 위한 직접 모드(direct mode) 사용 옵션이 활성화 되어 있어야 하며, 다이렉트 코딩을 적용할 노드는 리프 노드가 아니고, 특정 노드 내에 한계치(threshold) 이하의 포인트들이 존재해야 한다. 또한 다이텍트 코딩의 대상이 되는 전채 포인트들의 개수는 기설정된 한계값을 넘어서는 안된다. 위의 조건이 만족되면, 실시예들에 따른 포인트 클라우드 인코더(또는 아리스메틱 인코더(40004))는 포인트들의 포지션들(또는 포지션 값들)을 엔트로피 코딩할 수 있다.In order to perform direct coding, the option to use direct mode to apply direct coding must be activated, and the node to which direct coding is applied is not a leaf node, but below the threshold within a specific node. There must be points of. In addition, the number of all points subject to direct coding must not exceed a preset limit. When the above condition is satisfied, the point cloud encoder (or the arithmetic encoder 40004) according to the embodiments may entropy-code the positions (or position values) of the points.
실시예들에 따른 포인트 클라우드 인코더(예를 들면 서페이스 어프록시메이션 분석부(40003))는 옥트리의 특정 레벨(레벨은 옥트리의 깊이 d보다는 작은 경우)을 정하고, 그 레벨부터는 표면 모델을 사용하여 노드 영역내의 포인트의 포지션을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩을 수행할 수 있다(트라이숩 모드). 실시예들에 따른 포인트 클라우드 인코더는 트라이숩 지오메트리 인코딩을 적용할 레벨을 지정할 수 있다. 예를 들어, 지정된 레벨이 옥트리의 깊이와 같으면 포인트 클라우드 인코더는 트라이숩 모드로 동작하지 않는다. 즉, 실시예들에 따른 포인트 클라우드 인코더는 지정된 레벨이 옥트리의 깊이값 보다 작은 경우에만 트라이숩 모드로 동작할 수 있다. 실시예들에 따른 지정된 레벨의 노드들의 3차원 정육면체 영역을 블록(block)이라 호칭한다. 하나의 블록은 하나 또는 그 이상의 복셀들을 포함할 수 있다. 블록 또는 복셀은 브릭(brick)에 대응될 수도 있다. 각 블록 내에서 지오메트리는 표면(surface)으로 표현된다. 실시예들에 따른 표면은 최대 한번 블록의 각 엣지(edge, 모서리)와 교차할 수 있다. The point cloud encoder according to the embodiments (for example, the surface aproximation analysis unit 40003) determines a specific level of the octree (if the level is less than the depth d of the octree), and from that level, the node Trisoup geometry encoding that reconstructs the position of a point in the region based on voxels can be performed (tri-soup mode). A point cloud encoder according to embodiments may designate a level to which trisoup geometry encoding is applied. For example, if the specified level is equal to the depth of the octree, the point cloud encoder does not operate in the try-soup mode. That is, the point cloud encoder according to the embodiments may operate in the try-soup mode only when the specified level is less than the depth value of the octree. A three-dimensional cube area of nodes of a designated level according to the embodiments is referred to as a block. One block may include one or more voxels. The block or voxel may correspond to a brick. Within each block, the geometry is represented by a surface. The surface according to embodiments may intersect each edge (edge) of the block at most once.
하나의 블록은 12개의 엣지들을 가지므로, 하나의 블록 내 적어도 12개의 교차점들이 존재한다. 각 교차점은 버텍스(vertex, 정점 또는 꼭지점)라 호칭된다. 엣지를 따라 존재하는 버텍스은 해당 엣지를 공유하는 모든 블록들 중 그 엣지에 인접한 적어도 하나의 오큐파이드 복셀(occupied voxel)이 있는 경우 감지된다. 실시예들에 따른 오큐파이드 복셀은 포인트를 포함하는 복셀을 의미한다. 엣지를 따라 검출된 버텍스의 포지션은 해당 엣지를 공유하는 모든 블록들 중 해당 엣지에 인접한 모든 복셀들의 엣지에 따른 평균 포지션(the average position along the edge of all voxels)이다.Since one block has 12 edges, there are at least 12 intersection points within one block. Each intersection is called a vertex (vertex, or vertex). A vertex existing along an edge is detected when there is at least one occupied voxel adjacent to the edge among all blocks sharing the edge. An occupied voxel according to embodiments refers to a voxel including a point. The position of the vertex detected along the edge is the average position along the edge of all voxels among all blocks sharing the edge.
버텍스가 검출되면 실시예들에 따른 포인트 클라우드 인코더는 엣지의 시작점(x, y, z), 엣지의 방향벡터(Δx,Δy,Δz), 버텍스 위치 값 (엣지 내의 상대적 위치 값)들을 엔트로피코딩할 수 있다. 트라이숩 지오메트리 인코딩이 적용된 경우, 실시예들에 따른 포인트 클라우드 인코더(예를 들면 지오메트리 리컨스트럭션부(40005))는 삼각형 재구성(triangle reconstruction), 업-샘플링(up-sampling), 복셀화 과정을 수행하여 복원된 지오메트리(재구성된 지오메트리)를 생성할 수 있다. When a vertex is detected, the point cloud encoder according to the embodiments entropy-codes the starting point of the edge (x, y, z), the direction vector of the edge (Δx, Δy, Δz), and vertex position values (relative position values within the edge). I can. When trisoup geometry encoding is applied, the point cloud encoder (e.g., the geometry reconstruction unit 40005) according to embodiments performs a triangle reconstruction, up-sampling, and voxelization process. By doing so, you can create reconstructed geometry (reconstructed geometry).
블록의 엣지에 위치한 버텍스들은 블록을 통과하는 표면(surface)를 결정한다. 실시예들에 따른 표면은 비평면 다각형이다. 삼각형 재구성 과정은 엣지의 시작점, 엣지의 방향 벡터와 버텍스의 위치값을 기반으로 삼각형으로 나타내는 표면을 재구성한다. 삼각형 재구성 과정은 다음과 같다. ①각 버텍스들의 중심(centroid)값을 계산하고, ②각 버텍스값에서 중심 값을 뺀 값들에 ③자승을 수행하고 그 값을 모두 더한 값을 구한다. The vertices located at the edge of the block determine the surface that passes through the block. The surface according to the embodiments is a non-planar polygon. The triangle reconstruction process reconstructs the surface represented by a triangle based on the starting point of the edge, the direction vector of the edge, and the position value of the vertex. The triangle reconstruction process is as follows. ① Calculate the centroid value of each vertex, ② calculate the squared values of the values subtracted from each vertex value by subtracting the center value, and calculate the sum of all the values.
Figure PCTKR2020001615-appb-img-000002
Figure PCTKR2020001615-appb-img-000002
더해진 값의 최소값을 구하고, 최소값이 있는 축에 따라서 프로젝션 (Projection, 투영) 과정을 수행한다. 예를 들어 x 요소(element)가 최소인 경우, 각 버텍스를 블록의 중심을 기준으로 x축으로 프로젝션 시키고, (y, z) 평면으로 프로젝션 시킨다. (y, z)평면으로 프로젝션 시키면 나오는 값이 (ai, bi)라면 atan2(bi, ai)를 통해 θ값을 구하고, θ값을 기준으로 버텍스들(vertices)을 정렬한다. 하기의 표는 버텍스들의 개수에 따라 삼각형을 생성하기 위한 버텍스들의 조합을 나타낸다. 버텍스들은 1부터 n까지의 순서로 정렬된다. 하기 표는4개의 버텍스들에 대하여, 버텍스들의 조합에 따라 두 개의 삼각형들이 구성될 수 있음을 나타낸다. 첫번째 삼각형은 정렬된 버텍스들 중 1, 2, 3번째 버텍스들로 구성되고, 두번째 삼각형은 정렬된 버텍스들 중 3, 4, 1번째 버텍스들로 구성될 수 있다. Calculate the minimum value of the added value, and perform a projection process along the axis with the minimum value. For example, if the x element is the minimum, each vertex is projected on the x-axis based on the center of the block, and projected on the (y, z) plane. If the projected value on the (y, z) plane is (ai, bi), θ is obtained through atan2(bi, ai), and vertices are aligned based on the θ value. The table below shows a combination of vertices for generating a triangle according to the number of vertices. Vertices are ordered from 1 to n. The table below shows that for four vertices, two triangles may be formed according to a combination of vertices. The first triangle may consist of 1st, 2nd, and 3rd vertices among the aligned vertices, and the second triangle may consist of 3rd, 4th, and 1st vertices among the aligned vertices.
Figure PCTKR2020001615-appb-img-000003
Figure PCTKR2020001615-appb-img-000003
업샘플링 과정은 삼각형의 엣지를 따라서 중간에 점들을 추가하여 복셀화 하기 위해서 수행된다. 업샘플링 요소 값(upsampling factor)과 블록의 너비를 기준으로 추가 점들을 생성한다. 추가점은 리파인드 버텍스(refined vertice)라고 호칭된다. 실시예들에 따른 포인트 클라우드 인코더는 리파인드 버텍스들을 복셀화할 수 있다. 또한 포인트 클라우드 인코더는 복셀화 된 포지션(또는 포지션 값)을 기반으로 어트리뷰트 인코딩을 수행할 수 있다.The upsampling process is performed to voxelize by adding points in the middle along the edge of the triangle. Additional points are created based on the upsampling factor and the width of the block. The additional point is called a refined vertice. The point cloud encoder according to embodiments may voxelize refined vertices. In addition, the point cloud encoder may perform attribute encoding based on the voxelized position (or position value).
도 7은 실시예들에 따른 이웃 노드 패턴의 예시를 나타낸다.7 shows an example of a neighbor node pattern according to embodiments.
포인트 클라우드 비디오의 압축 효율을 증가시키기 위하여 실시예들에 따른 포인트 클라우드 인코더는 콘텍스트 어탭티브 아리스메틱 (context adaptive arithmetic) 코딩을 기반으로 엔트로피 코딩을 수행할 수 있다.In order to increase the compression efficiency of the point cloud video, the point cloud encoder according to the embodiments may perform entropy coding based on context adaptive arithmetic coding.
도 1 내지 도 6에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템 또는 포인트 클라우드 인코더(예를 들면 포인트 클라우드 비디오 인코더(10002), 도 4의 포인트 클라우드 인코더 또는 아리스메틱 인코더(40004))는 오큐판시 코드를 곧바로 엔트로피 코딩할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템 또는 포인트 클라우드 인코더는 현재 노드의 오큐판시 코드와 이웃 노드들의 오큐판시를 기반으로 엔트로피 인코딩(인트라 인코딩)을 수행하거나, 이전 프레임의 오큐판시 코드를 기반으로 엔트로피 인코딩(인터 인코딩)을 수행할 수 있다. 실시예들에 따른 프레임은 동일한 시간에 생성된 포인트 클라우드 비디오의 집합을 의미한다. 실시예들에 따른 인트라 인코딩/인터 인코딩의 압축 효율은 참조하는 이웃 노드들의 개수에 따라 달라질 수 있다. 비트가 커지면 복잡해지지만 한쪽으로 치우치게 만들어서 압축 효율이 높아질 수 있다. 예를 들어 3-bit context를 가지면, 2의 3승인 = 8가지 방법으로 코딩 해야 한다. 나누어 코딩을 하는 부분은 구현의 복잡도에 영향을 준다. 따라서 압축의 효율과 복잡도의 적정 수준을 맞출 필요가 있다.As described in FIGS. 1 to 6, a point cloud content providing system or a point cloud encoder (for example, a point cloud video encoder 10002, a point cloud encoder or an Arismatic encoder 40004 of FIG. 4) directly converts the Ocufanshi code. Entropy coding is possible. In addition, the point cloud content providing system or point cloud encoder performs entropy encoding (intra encoding) based on the ocupancy code of the current node and the ocupancy of neighboring nodes, or entropy encoding (inter encoding) based on the ocupancy code of the previous frame. ) Can be performed. A frame according to embodiments means a set of point cloud videos generated at the same time. The compression efficiency of intra-encoding/inter-encoding according to embodiments may vary depending on the number of referenced neighbor nodes. The larger the bit, the more complicated it is, but it can be skewed to one side, increasing the compression efficiency. For example, if you have a 3-bit context, you have to code in 8 ways. The divided coding part affects the complexity of the implementation. Therefore, it is necessary to match the appropriate level of compression efficiency and complexity.
도7은 이웃 노드들의 오큐판시를 기반으로 오큐판시 패턴을 구하는 과정을 나타낸다. 실시예들에 따른 포인트 클라우드 인코더는 옥트리의 각 노드의 이웃 노드들의 오큐판시(occupancy)를 판단하고 이웃 노드 패턴(neighbor pattern) 값을 구한다. 이웃 노드 패턴은 해당 노드의 오큐판시 패턴을 추론하기 위해 사용된다. 도7의 왼쪽은 노드에 대응하는 큐브(가운데 위치한 큐브) 및 해당 큐브와 적어도 하나의 면을 공유하는 6개의 큐브들(이웃 노드들)을 나타낸다. 도면에 도시된 노드들은 같은 뎁스(깊이)의 노드들이다. 도면에 도시된 숫자는 6개의 노드들 각각과 연관된 가중치들(1, 2, 4, 8, 16, 32, 등)을 나타낸다. 각 가중치는 이웃 노드들의 위치에 따라 순차적으로 부여된다. 7 shows a process of obtaining an ocupancy pattern based on the ocupancy of neighboring nodes. A point cloud encoder according to embodiments determines occupancy of neighboring nodes of each node of an octree and obtains a value of a neighbor pattern. The neighboring node pattern is used to infer the occupancy pattern of the corresponding node. The left side of FIG. 7 shows a cube corresponding to a node (centered cube) and six cubes (neighbor nodes) that share at least one surface with the cube. Nodes shown in the figure are nodes of the same depth (depth). Numbers shown in the figure indicate weights (1, 2, 4, 8, 16, 32, etc.) associated with each of the six nodes. Each weight is sequentially assigned according to the positions of neighboring nodes.
도 7의 오른쪽은 이웃 노드 패턴 값을 나타낸다. 이웃 노드 패턴 값은 오큐파이드 이웃 노드(포인트를 갖는 이웃 노드)의 가중치가 곱해진 값들의 합이다. 따라서 이웃 노드 패턴 값은 0에서 63까지의 값을 갖는다. 이웃 노드 패턴 값이 0 인 경우, 해당 노드의 이웃 노드 중 포인트를 갖는 노드(오큐파이드 노드)가 없음을 나타낸다. 이웃 노드 패턴 값이 63인 경우, 이웃 노드들이 전부 오큐파이드 노드들임을 나타낸다. 도면에 도시된 바와 같이 가중치1, 2, 4, 8가 부여된 이웃 노드들은 오큐파이드 노드들이므로, 이웃 노드 패턴 값은 1, 2, 4, 8을 더한 값인 15이다. 포인트 클라우드 인코더는 이웃 노드 패턴 값에 따라 코딩을 수행할 수 있다(예를 들어 이웃 노드 패턴 값이 63인 경우, 64가지의 코딩을 수행). 실시예들에 따라 포인트 클라우드 인코더는 이웃 노드 패턴 값을 변경 (예를 들면 64를 10 또는 6으로 변경하는 테이블을 기반으로) 하여 코딩의 복잡도를 줄일 수 있다. The right side of FIG. 7 shows neighboring node pattern values. The neighbor node pattern value is the sum of values multiplied by weights of the occupied neighbor nodes (neighbor nodes having points). Therefore, the neighbor node pattern value has a value from 0 to 63. When the neighbor node pattern value is 0, it indicates that no node (occupied node) has a point among neighboring nodes of the corresponding node. If the neighboring node pattern value is 63, it indicates that all neighboring nodes are occupied nodes. As shown in the figure, since neighboring nodes to which weights 1, 2, 4, and 8 are assigned are occupied nodes, the neighboring node pattern value is 15, which is the sum of 1, 2, 4, and 8. The point cloud encoder may perform coding according to the neighboring node pattern value (for example, if the neighboring node pattern value is 63, 64 codings are performed). According to embodiments, the point cloud encoder may reduce coding complexity by changing a neighbor node pattern value (for example, based on a table changing 64 to 10 or 6).
도 8은 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.8 shows an example of a point configuration for each LOD according to embodiments.
도 1 내지 도 7에서 설명한 바와 같이, 어트리뷰트 인코딩이 수행되기 전 인코딩된 지오메트리는 재구성(디컴프레션) 된다. 다이렉트 코딩이 적용된 경우, 지오메트리 재구성 동작은 다이렉트 코딩된 포인트들의 배치를 변경하는 것을 포함할 수 있다(예를 들면 다이렉트 코딩된 포인트들을 포인트 클라우드 데이터의 앞쪽에 배치). 트라이숩 지오메트리 인코딩이 적용된 경우, 지오메트리 재구성 과정은 삼각형 재구성, 업샘플링, 복셀화 과정을 어트리뷰트는 지오메트리에 종속되므로, 어트리뷰트 인코딩은 재구성된 지오메트리를 기반으로 수행된다. As described with reference to FIGS. 1 through 7, the encoded geometry is reconstructed (decompressed) before attribute encoding is performed. When direct coding is applied, the geometry reconstruction operation may include changing the placement of the direct coded points (eg, placing the direct coded points in front of the point cloud data). When trisoup geometry encoding is applied, the geometry reconstruction process is triangular reconstruction, upsampling, voxelization, and the attribute is dependent on geometry, so the attribute encoding is performed based on the reconstructed geometry.
포인트 클라우드 인코더(예를 들면 LOD 생성부(40009))는 포인트들을 LOD별로 분류(reorganization)할 수 있다. 도면은 LOD에 대응하는 포인트 클라우드 콘텐트를 나타낸다. 도면의 왼쪽은 오리지널 포인트 클라우드 콘텐트를 나타낸다. 도면의 왼쪽에서 두번째 그림은 가장 낮은 LOD의 포인트들의 분포를 나타내며, 도면의 가장 오른쪽 그림은 가장 높은 LOD의 포인트들의 분포를 나타낸다. 즉, 가장 낮은 LOD의 포인트들은 드문드문(sparse) 분포하며, 가장 높은 LOD의 포인트들은 촘촘히 분포한다. 즉, 도면 하단에 표시된 화살표 방향에 따라 LOD가 증가할수록 포인트들 간의 간격(또는 거리)는 더 짧아진다. The point cloud encoder (for example, the LOD generator 40009) may reorganize points for each LOD. The figure shows point cloud content corresponding to the LOD. The left side of the figure shows the original point cloud content. The second figure from the left of the figure shows the distribution of the lowest LOD points, and the rightmost figure in the figure shows the distribution of the highest LOD points. That is, the points of the lowest LOD are sparsely distributed, and the points of the highest LOD are densely distributed. That is, as the LOD increases according to the direction of the arrow indicated at the bottom of the drawing, the spacing (or distance) between points becomes shorter.
도 9는 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다. 9 shows an example of a point configuration for each LOD according to embodiments.
도 1 내지 도 8에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템, 또는 포인트 클라우드 인코더(예를 들면 포인트 클라우드 비디오 인코더(10002), 도 4의 포인트 클라우드 인코더, 또는 LOD 생성부(40009))는 LOD를 생성할 수 있다. LOD는 포인트들을 설정된 LOD 거리 값(또는 유클리이디언 디스턴스(Euclidean Distance)의 세트)에 따라 리파인먼트 레벨들(refinement levels)의 세트로 재정열(reorganize)하여 생성된다. LOD 생성 과정은 포인트 클라우드 인코더뿐만 아니라 포인트 클라우드 디코더에서도 수행된다.As described in FIGS. 1 to 8, a point cloud content providing system or a point cloud encoder (for example, a point cloud video encoder 10002, a point cloud encoder in FIG. 4, or an LOD generator 40009) generates an LOD. can do. The LOD is generated by reorganizing the points into a set of refinement levels according to a set LOD distance value (or a set of Euclidean distance). The LOD generation process is performed in the point cloud decoder as well as the point cloud encoder.
도 9의 상단은 3차원 공간에 분포된 포인트 클라우드 콘텐트의 포인트들의 예시(P0내지 P9)를 나타낸다. 도 9의 오리지널 오더(Original order)는 LOD 생성전 포인트들 P0내지 P9의 순서를 나타낸다. 도 9의 LOD 기반 오더 (LOD based order)는 LOD 생성에 따른 포인트들의 순서를 나타낸다. 포인트들은 LOD별 재정열된다. 또한 높은 LOD는 낮은 LOD에 속한 포인트들을 포함한다. 도 9에 도시된 바와 같이 LOD0는 P0, P5, P4 및 P2를 포함한다. LOD1은 LOD0의 포인트들과 P1, P6 및 P3를 포함한다. LOD2는 LOD0의 포인트들, LOD1의 포인트들 및 P9, P8 및 P7을 포함한다.The upper part of FIG. 9 shows examples (P0 to P9) of points of point cloud content distributed in a three-dimensional space. The original order of FIG. 9 represents the order of points P0 to P9 before LOD generation. The LOD based order of FIG. 9 represents the order of points according to LOD generation. Points are rearranged by LOD. Also, the high LOD includes points belonging to the low LOD. As shown in FIG. 9, LOD0 includes P0, P5, P4 and P2. LOD1 includes the points of LOD0 and P1, P6 and P3. LOD2 includes points of LOD0, points of LOD1 and P9, P8 and P7.
도 4에서 설명한 바와 같이 실시예들에 따른 포인트 클라우드 인코더는 예측 변환 코딩, 리프팅 변환 코딩 및 RAHT 변환 코딩을 선택적으로 또는 조합하여 수행할 수 있다.As described with reference to FIG. 4, the point cloud encoder according to embodiments may selectively or combine predictive transform coding, lifting transform coding, and RAHT transform coding.
실시예들에 따른 포인트 클라우드 인코더는 포인트들에 대한 예측기(predictor)를 생성하여 각 포인트의 예측 어트리뷰트(또는 예측 어트리뷰트값)을 설정하기 위한 예측 변환 코딩을 수행할 수 있다. 즉, N개의 포인트들에 대하여 N개의 예측기들이 생성될 수 있다. 실시예들에 따른 예측기는 각 포인트의 LOD 값과 LOD별 설정된 거리 내에 존재하는 이웃 포인트들에 대한 인덱싱 정보 및 이웃 포인트들까지의 거리 값을 기반으로 가중치(=1/거리) 값을 계산하할 수 있다.The point cloud encoder according to embodiments may generate a predictor for points and perform predictive transform coding to set a predicted attribute (or predicted attribute value) of each point. That is, N predictors may be generated for N points. The predictor according to the embodiments may calculate a weight (=1/distance) value based on the LOD value of each point, indexing information about neighboring points existing within the distance set for each LOD, and the distance value to the neighboring points. I can.
실시예들에 따른 예측 어트리뷰트(또는 어트리뷰트값)은 각 포인트의 예측기에 설정된 이웃 포인트들의 어트리뷰트들(또는 어트리뷰트 값들, 예를 들면 색상, 반사율 등)에 각 이웃 포인트까지의 거리를 기반으로 계산된 가중치(또는 가중치값)을 곱한 값의 평균값으로 설정된다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 계수 양자화부(40011)는 각 포인트의 어트리뷰트(어트리뷰트 값)에서 예측 어트리뷰트(어트리뷰트값)을 뺀 잔여값들(residuals, 잔여 어트리뷰트, 잔여 어트리뷰트값, 어트리뷰트 예측 잔여값 등으로 호칭할 수 있다)을 양자화(quatization) 및 역양자화(inverse quantization)할 수 있다. 양자화 과정은 다음의 표에 나타난 바와 같다.The predicted attribute (or attribute value) according to the embodiments is a weight calculated based on the distance to each neighboring point to the attributes (or attribute values, for example, color, reflectance, etc.) of neighboring points set in the predictor of each point. It is set as the average value multiplied by (or weight value). A point cloud encoder according to embodiments (e.g., the coefficient quantization unit 40011) subtracts a predicted attribute (attribute value) from an attribute (attribute value) of each point, residuals (residuals, residual attributes, residual attribute values, attributes) It can be called a prediction residual value, etc.) can be quantized and inverse quantized The quantization process is as shown in the following table.
Attribute prediction residuals quantization pseudo codeAttribute prediction residuals quantization pseudo code
int PCCQuantization(int value, int quantStep) {int PCCQuantization(int value, int quantStep) {
if( value >=0) {if( value >= 0) {
return floor(value / quantStep + 1.0 / 3.0);return floor(value / quantStep + 1.0 / 3.0);
} else {} else {
return -floor(-value / quantStep + 1.0 / 3.0);return -floor(-value / quantStep + 1.0 / 3.0);
}}
}}
Attribute prediction residuals inverse quantization pseudo codeAttribute prediction residuals inverse quantization pseudo code
int PCCInverseQuantization(int value, int quantStep) {int PCCInverseQuantization(int value, int quantStep) {
if( quantStep ==0) {if( quantStep ==0) {
return value;return value;
} else {} else {
return value * quantStep;return value * quantStep;
}}
}}
실시예들에 따른 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40012))는 각 포인트의 예측기에 이웃한 포인트들이 있는 경우, 상술한 바와 같이 양자화 및 역양자화된 잔여값을 엔트로피 코딩 할 수 있다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40012))는 각 포인트의 예측기에 이웃한 포인트들이 없으면 상술한 과정을 수행하지 않고 해당 포인트의 어트리뷰트들을 엔트로피 코딩할 수 있다. The point cloud encoder (for example, the arithmetic encoder 40012) according to the embodiments may entropy-code the quantized and dequantized residual values as described above when there are points adjacent to the predictors of each point. The point cloud encoder according to embodiments (for example, the arithmetic encoder 40012) may entropy-code attributes of the corresponding point without performing the above-described process if there are no points adjacent to the predictor of each point.
실시예들에 따른 포인트 클라우드 인코더 (예를 들면 리프팅 변환부(40010))는 각 포인트의 예측기를 생성하고, 예측기에 계산된 LOD를 설정 및 이웃 포인트들을 등록하고, 이웃 포인트들까지의 거리에 따른 가중치를 설정하여 리프팅 변환 코딩을 수행할 수 있다. 실시예들에 따른 리프팅 변환 코딩은 상술한 예측 변환 코딩과 유사하나, 어트리뷰트값에 가중치를 누적 적용한다는 점에서 차이가 있다. 실시예들에 따른 어트리뷰트값에 가중치를 누적 적용하는 과정은 다음과 같다.The point cloud encoder (for example, the lifting transform unit 40010) according to the embodiments generates a predictor of each point, sets the calculated LOD to the predictor, registers neighboring points, and increases the distance to the neighboring points. Lifting transform coding can be performed by setting weights. Lifting transform coding according to embodiments is similar to the above-described predictive transform coding, but differs in that a weight is accumulated and applied to an attribute value. A process of cumulatively applying a weight to an attribute value according to embodiments is as follows.
1) 각 포인트의 가중치 값을 저장하는 배열 QW(QuantizationWieght)를 생성한다. QW의 모든 요소들의 초기값은 1.0이다. 예측기에 등록된 이웃 노드의 예측기 인덱스의 QW 값에 현재 포인트의 예측기의 가중치를 곱한 값을 더한다. 1) Create an array QW (Quantization Wieght) that stores the weight value of each point. The initial value of all elements of QW is 1.0. The QW value of the predictor index of the neighboring node registered in the predictor is multiplied by the weight of the predictor of the current point.
2) 리프트 예측 과정: 예측된 어트리뷰트 값을 계산하기 위하여 포인트의 어트리뷰트 값에 가중치를 곱한 값을 기존 어트리뷰트값에서 뺀다. 2) Lift prediction process: In order to calculate the predicted attribute value, the value obtained by multiplying the attribute value of the point by the weight is subtracted from the existing attribute value.
3) 업데이트웨이트(updateweight) 및 업데이트(update)라는 임시 배열들을 생성하고 임시 배열들을 0으로 초기화한다. 3) Create temporary arrays called updateweight and update, and initialize temporary arrays to 0.
4) 모든 예측기에 대해서 계산된 가중치에 예측기 인덱스에 해당하는 QW에 저장된 가중치를 추가로 곱해서 산출된 가중치를 업데이트웨이트 배열에 이웃 노드의 인덱스로 누적으로 합산한다. 업데이트 배열에는 이웃 노드의 인덱스의 어트리뷰트 값에 산출된 가중치를 곱한 값을 누적 합산한다. 4) The weights calculated by additionally multiplying the weights calculated for all predictors by the weights stored in the QW corresponding to the predictor indexes are cumulatively added to the update weight array by the indexes of neighboring nodes. In the update array, the value obtained by multiplying the calculated weight by the attribute value of the index of the neighboring node is accumulated and summed.
5) 리프트 업데이트 과정: 모든 예측기에 대해서 업데이트 배열의 어트리뷰트 값을 예측기 인덱스의 업데이트웨이트 배열의 가중치 값으로 나누고, 나눈 값에 다시 기존 어트리뷰트 값을 더한다. 5) Lift update process: For all predictors, the attribute value of the update array is divided by the weight value of the update weight array of the predictor index, and the existing attribute value is added to the divided value.
6) 모든 예측기에 대해서, 리프트 업데이트 과정을 통해 업데이트된 어트리뷰트 값에 리프트 예측 과정을 통해 업데이트 된(QW에 저장된) 가중치를 추가로 곱하여 예측 어트리뷰트 값을 산출한다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 계수 양자화부(40011))는 예측 어트리뷰트 값을 양자화한다. 또한 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40012))는 양자화된 어트리뷰트 값을 엔트로피 코딩한다. 6) For all predictors, the predicted attribute value is calculated by additionally multiplying the attribute value updated through the lift update process by the weight updated through the lift prediction process (stored in QW). A point cloud encoder (for example, the coefficient quantization unit 40011) according to embodiments quantizes a predicted attribute value. In addition, the point cloud encoder (for example, the Arismatic encoder 40012) entropy-codes the quantized attribute values.
실시예들에 따른 포인트 클라우드 인코더(예를 들면 RAHT 변환부(40008))는 옥트리의 하위 레벨에 있는 노드와 연관된 어트리뷰트를 사용하여 상위 레벨의 노드들의 어트리뷰트를 에측하는 RAHT 변환 코딩을 수행할 수 있다. RAHT 변환 코딩은 옥트리 백워드 스캔을 통한 어트리뷰트 인트라 코딩의 예시이다. 실시예들에 따른 포인트 클라우드 인코더는 복셀에서 전체 영역으로 스캔하고, 각 스텝에서 복셀을 더 큰 블록으로 합치면서 루트 노드까지의 병합 과정을 반복수행한다. 실시예들에 따른 병합 과정은 오큐파이드 노드에 대해서만 수행된다. 엠티 노드(empty node)에 대해서는 병합 과정이 수행되지 않으며, 엠티 노드의 바로 상위 노드에 대해 병합 과정이 수행된다. The point cloud encoder (for example, the RAHT transform unit 40008) according to the embodiments may perform RAHT transform coding that estimates the attributes of higher-level nodes by using an attribute associated with a node at a lower level of the octree. . RAHT transform coding is an example of attribute intra coding through octree backward scan. The point cloud encoder according to the embodiments scans from voxels to the entire area, and repeats the merging process up to the root node while merging the voxels into larger blocks in each step. The merging process according to the embodiments is performed only for an occupied node. The merging process is not performed for the empty node, and the merging process is performed for the node immediately above the empty node.
Figure PCTKR2020001615-appb-img-000004
Figure PCTKR2020001615-appb-img-000004
도 10은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.10 shows an example of a point cloud decoder according to embodiments.
도 10에 도시된 포인트 클라우드 디코더는 도 1에서 설명한 포인트 클라우드 비디오 디코더(10006) 예시로서, 도 1에서 설명한 포인트 클라우드 비디오 디코더(10006)의 동작 등과 동일 또는 유사한 동작을 수행할 수 있다. 도면이 도시된 바와 같이 포인트 클라우드 디코더는 하나 또는 그 이상의 비트스트림(bitstream)들에 포함된 지오메트리 비트스트림(geometry bitstream) 및 어트리뷰트 비트스트림(attribute bitstream)을 수신할 수 있다. 포인트 클라우드 디코더는 지오메트리 디코더(geometry decoder)및 어트리뷰트 디코더(attribute decoder)를 포함한다. 지오메트리 디코더는 지오메트리 비트스트림에 대해 지오메트리 디코딩을 수행하여 디코딩된 지오메트리(decoded geometry)를 출력한다. 어트리뷰트 디코더는 디코딩된 지오메트리 및 어트리뷰트 비트스트림을 기반으로 어트리뷰트 디코딩을 수행하여 디코딩된 어트리뷰트들(decoded attributes)을 출력한다. 디코딩된 지오메트리 및 디코딩된 어트리뷰트들은 포인트 클라우드 콘텐트를 복원(decoded point cloud)하는데 사용된다. The point cloud decoder illustrated in FIG. 10 is an example of the point cloud video decoder 10006 described in FIG. 1, and may perform the same or similar operation as that of the point cloud video decoder 10006 described in FIG. 1. As shown in the figure, the point cloud decoder may receive a geometry bitstream and an attribute bitstream included in one or more bitstreams. The point cloud decoder includes a geometry decoder and an attribute decoder. The geometry decoder performs geometry decoding on the geometry bitstream and outputs decoded geometry. The attribute decoder outputs decoded attributes by performing attribute decoding on the basis of the decoded geometry and the attribute bitstream. The decoded geometry and decoded attributes are used to reconstruct the point cloud content.
도 11은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.11 shows an example of a point cloud decoder according to embodiments.
도 11에 도시된 포인트 클라우드 디코더는 도 10에서 설명한 포인트 클라우드 디코더의 예시로서, 도 1 내지 도 9에서 설명한 포인트 클라우드 인코더의 인코딩 동작의 역과정인 디코딩 동작을 수행할 수 있다.The point cloud decoder illustrated in FIG. 11 is an example of the point cloud decoder described in FIG. 10, and may perform a decoding operation that is a reverse process of the encoding operation of the point cloud encoder described in FIGS. 1 to 9.
도 1 및 도 10에서 설명한 바와 같이 포인트 클라우드 디코더는 지오메트리 디코딩 및 어트리뷰트 디코딩을 수행할 수 있다. 지오메트리 디코딩은 어트리뷰트 디코딩보다 먼저 수행된다.As described in FIGS. 1 and 10, the point cloud decoder may perform geometry decoding and attribute decoding. Geometry decoding is performed prior to attribute decoding.
실시예들에 따른 포인트 클라우드 디코더는 아리스메틱 디코더(arithmetic decode, 11000), 옥트리 합성부(synthesize octree, 11001), 서페이스 오프록시메이션 합성부(synthesize surface approximation, 11002), 지오메트리 리컨스트럭션부(reconstruct geometry, 11003), 좌표계 역변환부(inverse transform coordinates, 11004), 아리스메틱 디코더(arithmetic decode, 11005), 역양자화부(inverse quantize, 11006), RAHT변환부(11007), LOD생성부(generate LOD, 11008), 인버스 리프팅부(Inverse lifting, 11009), 및/또는 컬러 역변환부(inverse transform colors, 11010)를 포함한다.The point cloud decoder according to the embodiments includes an arithmetic decoder (11000), an octree synthesis unit (synthesize octree, 11001), a surface optimization synthesis unit (synthesize surface approximation, 11002), and a geometry reconstruction unit (reconstruct geometry). , 11003), inverse transform coordinates (11004), arithmetic decode (11005), inverse quantize (11006), RAHT transform unit (11007), LOD generator (generate LOD, 11008) ), Inverse lifting (11009), and/or inverse transform colors (11010).
아리스메틱 디코더(11000), 옥트리 합성부(11001), 서페이스 오프록시메이션 합성부(11002), 지오메트리 리컨스럭션부(11003), 좌표계 역변환부(11004)는 지오메트리 디코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 디코딩은 다이렉트 코딩(direct coding) 및 트라이숩 지오메트리 디코딩(trisoup geometry decoding)을 포함할 수 있다. 다이렉트 코딩 및 트라이숩 지오메트리 디코딩은 선택적으로 적용된다. 또한 지오메트리 디코딩은 위의 예시에 국한되지 않으며, 도 1 내지 도 9에서 설명한 지오메트리 인코딩의 역과정으로 수행된다. The arithmetic decoder 11000, the octree synthesis unit 11001, the surface opoxidation synthesis unit 11002, the geometry reconstruction unit 11003, and the coordinate system inverse transform unit 11004 may perform geometry decoding. Geometry decoding according to embodiments may include direct coding and trisoup geometry decoding. Direct coding and trisoup geometry decoding are optionally applied. Further, the geometry decoding is not limited to the above example, and is performed in the reverse process of the geometry encoding described in FIGS. 1 to 9.
실시예들에 따른 아리스메틱 디코더(11000)는 수신한 지오메트리 비트스트림을 아리스메틱 코딩을 기반으로 디코딩한다. 아리스메틱 디코더(11000)의 동작은 아리스메틱 인코더(40004)의 역과정에 대응한다.The Arismatic decoder 11000 according to embodiments decodes the received geometry bitstream based on Arismatic coding. The operation of the Arismatic decoder 11000 corresponds to the reverse process of the Arismatic encoder 40004.
실시예들에 따른 옥트리 합성부(11001)는 디코딩된 지오메트리 비트스트림으로부터 (또는 디코딩 결과 확보된 지오메트리에 관한 정보)로부터 오큐판시 코드를 획득하여 옥트리를 생성할 수 있다. 오큐판시 코드에 대한 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 같다.The octree synthesizer 11001 according to the embodiments may generate an octree by obtaining an ocupancy code from a decoded geometry bitstream (or information on a geometry obtained as a result of decoding). A detailed description of the OQFancy code is as described in FIGS. 1 to 9.
실시예들에 따른 서페이스 오프록시메이션 합성부(11002)는 트라이숩 지오메트리 인코딩이 적용된 경우, 디코딩된 지오메트리 및/또는 생성된 옥트리에 기반하여 서페이스를 합성할 수 있다.When trisoup geometry encoding is applied, the surface opoxidation synthesizer 11002 according to embodiments may synthesize a surface based on the decoded geometry and/or the generated octree.
실시예들에 따른 지오메트리 리컨스트럭션부(11003)는 서페이스 및 또는 디코딩된 지오메트리에 기반하여 지오메트리를 재생성할 수 있다. 도 1 내지 도 9에서 설명한 바와 같이, 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 적용된다. 따라서 지오메트리 리컨스트럭션부(11003)는 다이렉트 코딩이 적용된 포인트들의 포지션 정보들을 직접 가져와서 추가한다. 또한, 트라이숩 지오메트리 인코딩이 적용된 경우, 지오메트리 리컨스트럭션부(11003)는 지오메트리 리컨스트럭션부(40005)의 재구성 동작, 예를 들면 삼각형 재구성, 업-샘플링, 복셀화 동작을 수행하여 지오메트리를 복원할 수 있다. 구체적인 내용은 도 6에서 설명한 바와 동일하므로 생략한다. 복원된 지오메트리는 어트리뷰트들을 포함하지 않는 포인트 클라우드 픽쳐 또는 프레임을 포함할 수 있다.The geometry reconstruction unit 11003 according to the embodiments may regenerate the geometry based on the surface and/or the decoded geometry. 1 to 9, direct coding and trisoup geometry encoding are selectively applied. Accordingly, the geometry reconstruction unit 11003 directly imports and adds position information of points to which direct coding is applied. In addition, when trisoup geometry encoding is applied, the geometry reconstruction unit 11003 performs a reconstruction operation of the geometry reconstruction unit 40005, such as triangle reconstruction, up-sampling, and voxelization, to restore the geometry. have. Detailed contents are the same as those described in FIG. The reconstructed geometry may include a point cloud picture or frame that does not include attributes.
실시예들에 따른 좌표계 역변환부(11004)는 복원된 지오메트리를 기반으로 좌표계를 변환하여 포인트들의 포지션들을 획득할 수 있다. The coordinate system inverse transform unit 11004 according to embodiments may acquire positions of points by transforming a coordinate system based on the restored geometry.
아리스메틱 디코더(11005), 역양자화부(11006), RAHT 변환부(11007), LOD생성부(11008), 인버스 리프팅부(11009), 및/또는 컬러 역변환부(11010)는 도 10에서 설명한 어트리뷰트 디코딩을 수행할 수 있다. 실시예들에 따른 어트리뷰트 디코딩은 RAHT(Region Adaptive Hierarchial Transform) 디코딩, 예측 변환(Interpolaration-based hierarchical nearest-neighbour prediction-Prediction Transform) 디코딩 및 리프팅 변환 (interpolation-based hierarchical nearest-neighbour prediction with an update/lifting step (Lifting Transform)) 디코딩을 포함할 수 있다. 상술한 3가지의 디코딩들은 선택적으로 사용되거나, 하나 또는 그 이상의 디코딩들의 조합이 사용될 수 있다. 또한 실시예들에 따른 어트리뷰트 디코딩은 상술한 예시에 국한되는 것은 아니다. Arithmetic decoder 11005, inverse quantization unit 11006, RAHT conversion unit 11007, LOD generation unit 11008, inverse lifting unit 11009, and/or color inverse conversion unit 11010 are attributes described in FIG. Decoding can be performed. Attribute decoding according to embodiments includes Region Adaptive Hierarchial Transform (RAHT) decoding, Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform decoding, and interpolation-based hierarchical nearest-neighbor prediction with an update/lifting. step (Lifting Transform)) decoding may be included. The above three decodings may be used selectively, or a combination of one or more decodings may be used. In addition, attribute decoding according to embodiments is not limited to the above-described example.
실시예들에 따른 아리스메틱 디코더(11005)는 어트리뷰트 비트스트림을 아리스메틱 코딩으로 디코딩한다. The Arismatic decoder 11005 according to the embodiments decodes the attribute bitstream by arithmetic coding.
실시예들에 따른 역양자화부(11006)는 디코딩된 어트리뷰트 비트스트림 또는 디코딩 결과 확보한 어트리뷰트에 대한 정보를 역양자화(inverse quantization)하고 역양자화된 어트리뷰트들(또는 어트리뷰트 값들)을 출력한다. 역양자화는 포인트 클라우드 인코더의 어트리뷰트 인코딩에 기반하여 선택적으로 적용될 수 있다.The inverse quantization unit 11006 according to embodiments inverse quantizes information on the decoded attribute bitstream or the attribute obtained as a result of decoding, and outputs inverse quantized attributes (or attribute values). Inverse quantization may be selectively applied based on the attribute encoding of the point cloud encoder.
실시예들에 따라 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)는 재구성된 지오메트리 및 역양자화된 어트리뷰트들을 처리할 수 있다. 상술한 바와 같이 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)는 포인트 클라우드 인코더의 인코딩에 따라 그에 대응하는 디코딩 동작을 선택적으로 수행할 수 있다. According to embodiments, the RAHT conversion unit 11007, the LOD generation unit 11008 and/or the inverse lifting unit 11009 may process reconstructed geometry and inverse quantized attributes. As described above, the RAHT conversion unit 11007, the LOD generation unit 11008, and/or the inverse lifting unit 11009 may selectively perform a decoding operation corresponding thereto according to the encoding of the point cloud encoder.
실시예들에 따른 컬러 역변환부(11010)는 디코딩된 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 역변환하기 위한 역변환 코딩을 수행한다. 컬러 역변환부(11010)의 동작은 포인트 클라우드 인코더의 컬러 변환부(40006)의 동작에 기반하여 선택적으로 수행될 수 있다.The inverse color transform unit 11010 according to embodiments performs inverse transform coding for inverse transforming a color value (or texture) included in the decoded attributes. The operation of the color inverse transform unit 11010 may be selectively performed based on the operation of the color transform unit 40006 of the point cloud encoder.
도 11의 포인트 클라우드 디코더의 엘레멘트들은 도면에 도시되지 않았으나 포인트 클라우드 제공 장치에 포함된 하나 또는 그 이상의 메모리들과 통신가능하도록 설정된 하나 또는 그 이상의 프로세서들 또는 집적 회로들(integrated circuits)을 포함하는 하드웨어, 소프트웨어, 펌웨어 또는 이들의 조합으로 구현될 수 있다. 하나 또는 그 이상의 프로세서들은 상술한 도 11의 포인트 클라우드 디코더의 엘레멘트들의 동작들 및/또는 기능들 중 적어도 어느 하나 이상을 수행할 수 있다. 또한 하나 또는 그 이상의 프로세서들은 도11의 포인트 클라우드 디코더의 엘레멘트들의 동작들 및/또는 기능들을 수행하기 위한 소프트웨어 프로그램들 및/또는 인스트럭션들의 세트를 동작하거나 실행할 수 있다. Although elements of the point cloud decoder of FIG. 11 are not shown in the drawing, hardware including one or more processors or integrated circuits configured to communicate with one or more memories included in the point cloud providing apparatus , Software, firmware, or a combination thereof. One or more processors may perform at least one or more of the operations and/or functions of the elements of the point cloud decoder of FIG. 11 described above. Further, one or more processors may operate or execute a set of software programs and/or instructions for performing operations and/or functions of elements of the point cloud decoder of FIG. 11.
도 12는 실시예들에 따른 전송 장치의 예시이다.12 is an example of a transmission device according to embodiments.
도 12에 도시된 전송 장치는 도 1의 전송장치(10000) (또는 도 4의 포인트 클라우드 인코더)의 예시이다. 도 12에 도시된 전송 장치는 도 1 내지 도 9에서 설명한 포인트 클라우드 인코더의 동작들 및 인코딩 방법들과 동일 또는 유사한 동작들 및 방법들 중 적어도 어느 하나 이상을 수행할 수 있다. 실시예들에 따른 전송 장치는 데이터 입력부(12000), 양자화 처리부(12001), 복셀화 처리부(12002), 옥트리 오큐판시 코드 (Occupancy code) 생성부(12003), 표면 모델 처리부(12004), 인트라/인터 코딩 처리부(12005), 아리스메틱 (Arithmetic) 코더(12006), 메타데이터 처리부(12007), 색상 변환 처리부(12008), 어트리뷰트 변환 처리부(또는 속성 변환 처리부)(12009), 예측/리프팅/RAHT 변환 처리부(12010), 아리스메틱 (Arithmetic) 코더(12011) 및/또는 전송 처리부(12012)를 포함할 수 있다.The transmission device shown in FIG. 12 is an example of the transmission device 10000 of FIG. 1 (or a point cloud encoder of FIG. 4 ). The transmission device illustrated in FIG. 12 may perform at least one or more of the same or similar operations and methods as the operations and encoding methods of the point cloud encoder described in FIGS. 1 to 9. The transmission apparatus according to the embodiments includes a data input unit 12000, a quantization processing unit 12001, a voxelization processing unit 12002, an octree occupancy code generation unit 12003, a surface model processing unit 12004, an intra/ Inter-coding processing unit (12005), Arithmetic coder (12006), metadata processing unit (12007), color conversion processing unit (12008), attribute transformation processing unit (or attribute transformation processing unit) (12009), prediction/lifting/RAHT transformation A processing unit 12010, an Arithmetic coder 12011, and/or a transmission processing unit 12012 may be included.
실시예들에 따른 데이터 입력부(12000)는 포인트 클라우드 데이터를 수신 또는 획득한다. 데이터 입력부(12000)는 포인트 클라우드 비디오 획득부(10001)의 동작 및/또는 획득 방법(또는 도2에서 설명한 획득과정(20000))과 동일 또는 유사한 동작 및/또는 획득 방법을 수행할 수 있다. The data input unit 12000 according to the embodiments receives or acquires point cloud data. The data input unit 12000 may perform the same or similar operation and/or an acquisition method to the operation and/or acquisition method of the point cloud video acquisition unit 10001 (or the acquisition process 20000 described in FIG. 2 ).
데이터 입력부(12000), 양자화 처리부(12001), 복셀화 처리부(12002), 옥트리 오큐판시 코드 (Occupancy code) 생성부(12003), 표면 모델 처리부(12004), 인트라/인터 코딩 처리부(12005), Arithmetic 코더(12006)는 지오메트리 인코딩을 수행한다. 실시예들에 따른 지오메트리 인코딩은 도 1 내지 도 9에서 설명한 지오메트리 인코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다. Data input unit 12000, quantization processing unit 12001, voxelization processing unit 12002, Occupancy code generation unit 12003, surface model processing unit 12004, intra/inter coding processing unit 12005, Arithmetic The coder 12006 performs geometry encoding. The geometry encoding according to the embodiments is the same as or similar to the geometry encoding described in FIGS. 1 to 9, so a detailed description thereof will be omitted.
실시예들에 따른 양자화 처리부(12001)는 지오메트리(예를 들면 포인트들의 위치값, 또는 포지션값)을 양자화한다. 양자화 처리부(12001)의 동작 및/또는 양자화는 도 4에서 설명한 양자화부(40001)의 동작 및/또는 양자화와 동일 또는 유사하다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.The quantization processing unit 12001 according to embodiments quantizes geometry (eg, a position value or position value of points). The operation and/or quantization of the quantization processor 12001 is the same as or similar to the operation and/or quantization of the quantization unit 40001 described in FIG. 4. Detailed descriptions are the same as those described in FIGS. 1 to 9.
실시예들에 따른 복셀화 처리부(12002)는 양자화된 포인트들의 포지션 값을 복셀화한다. 복셀화 처리부(120002)는 도 4에서 설명한 양자화부(40001)의 동작 및/또는 복셀화 과정과 동일 또는 유사한 동작 및/또는 과정을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.The voxelization processor 12002 according to embodiments voxelsizes the position values of the quantized points. The voxelization processor 120002 may perform the same or similar operation and/or process as the operation and/or the voxelization process of the quantization unit 40001 described in FIG. 4. Detailed descriptions are the same as those described in FIGS. 1 to 9.
실시예들에 따른 옥트리 오큐판시 코드 생성부(12003)는 복셀화된 포인트들의 포지션들을 옥트리 구조를 기반으로 옥트리 코딩을 수행한다. 옥트리 오큐판시 코드 생성부(12003)는 오큐판시 코드를 생성할 수 있다. 옥트리 오큐판시 코드 생성부(12003)는 도 4 및 도 6에서 설명한 포인트 클라우드 인코더 (또는 옥트리 분석부(40002))의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.The octree occupancy code generation unit 12003 according to embodiments performs octree coding on positions of voxelized points based on an octree structure. The octree ocupancy code generation unit 12003 may generate an ocupancy code. The octree occupancy code generation unit 12003 may perform the same or similar operation and/or method as the operation and/or method of the point cloud encoder (or octree analysis unit 40002) described in FIGS. 4 and 6. Detailed descriptions are the same as those described in FIGS. 1 to 9.
실시예들에 따른 표면 모델 처리부(12004)는 표면 모델(surface model)을 기반으로 특정 영역(또는 노드)내의 포인트들의 포지션들을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩을 수행할 수 있다. 포면 모델 처리부(12004)는 도 4 에서 설명한 포인트 클라우드 인코더(예를 들면 서페이스 어프록시메이션 분석부(40003))의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.The surface model processing unit 12004 according to embodiments may perform trisoup geometry encoding to reconstruct positions of points within a specific area (or node) based on a voxel based on a surface model. The face model processing unit 12004 may perform the same or similar operation and/or method as the operation and/or method of the point cloud encoder (eg, the surface aproxiation analysis unit 40003) described in FIG. 4. Detailed descriptions are the same as those described in FIGS. 1 to 9.
실시예들에 따른 인트라/인터 코딩 처리부(12005)는 포인트 클라우드 데이터를 인트라/인터 코딩할 수 있다. 인트라/인터 코딩 처리부(12005)는 도 7에서 설명한 인트라/인터 코딩과 동일 또는 유사한 코딩을 수행할 수 있다. 구체적인 설명은 도 7에서 설명한 바와 동일하다. 실시예들에 따라 인트라/인터 코딩 처리부(12005)는 아리스메틱 코더(12006)에 포함될 수 있다.The intra/inter coding processor 12005 according to embodiments may intra/inter code point cloud data. The intra/inter coding processing unit 12005 may perform the same or similar coding as the intra/inter coding described in FIG. 7. The detailed description is the same as described in FIG. 7. According to embodiments, the intra/inter coding processing unit 12005 may be included in the arithmetic coder 12006.
실시예들에 따른 아리스메틱 코더(12006)는 포인트 클라우드 데이터의 옥트리 및/또는 근사화된 옥트리를 엔트로피 인코딩한다. 예를 들어, 인코딩 방식은 아리스메틱(Arithmetic) 인코딩 방법을 포함한다. . 아리스메틱 코더(12006)는 아리스메틱 인코더(40004)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. The arithmetic coder 12006 according to embodiments entropy encodes an octree and/or an approximated octree of point cloud data. For example, the encoding method includes an Arithmetic encoding method. . The arithmetic coder 12006 performs the same or similar operation and/or method to the operation and/or method of the arithmetic encoder 40004.
실시예들에 따른 메타데이터 처리부(12007)는 포인트 클라우드 데이터에 관한 메타데이터, 예를 들어 설정 값 등을 처리하여 지오메트리 인코딩 및/또는 어트리뷰트 인코딩 등 필요한 처리 과정에 제공한다. 또한 실시예들에 따른 메타데이터 처리부(12007)는 지오메트리 인코딩 및/또는 어트리뷰트 인코딩과 관련된 시그널링 정보를 생성 및/또는 처리할 수 있다. 실시예들에 따른 시그널링 정보는 지오메트리 인코딩 및/또는 어트리뷰트 인코딩과 별도로 인코딩처리될 수 있다. 또한 실시예들에 따른 시그널링 정보는 인터리빙 될 수도 있다.The metadata processing unit 12007 according to embodiments processes metadata related to point cloud data, for example, a set value, and provides it to a necessary processing such as geometry encoding and/or attribute encoding. In addition, the metadata processing unit 12007 according to embodiments may generate and/or process signaling information related to geometry encoding and/or attribute encoding. Signaling information according to embodiments may be encoded separately from geometry encoding and/or attribute encoding. In addition, signaling information according to embodiments may be interleaved.
색상 변환 처리부(12008), 어트리뷰트 변환 처리부(12009), 예측/리프팅/RAHT 변환 처리부(12010), 아리스메틱 (Arithmetic) 코더(12011)는 어트리뷰트 인코딩을 수행한다. 실시예들에 따른 어트리뷰트 인코딩은 도 1 내지 도 9에서 설명한 어트리뷰트 인코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.The color conversion processing unit 12008, the attribute conversion processing unit 12009, the prediction/lifting/RAHT conversion processing unit 12010, and the Arithmetic coder 12011 perform attribute encoding. Attribute encoding according to embodiments is the same as or similar to the attribute encoding described in FIGS. 1 to 9, and thus a detailed description thereof will be omitted.
실시예들에 따른 색상 변환 처리부(12008)는 어트리뷰트들에 포함된 색상값을 변환하는 색상 변환 코딩을 수행한다. 색상 변환 처리부(12008)는 재구성된 지오메트리를 기반으로 색상 변환 코딩을 수행할 수 있다. 재구성된 지오메트리에 대한 설명은 도 1 내지 도 9에서 설명한 바와 동일하다. 또한 도 4에서 설명한 컬러 변환부(40006)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 구체적인 설명은 생략한다. The color conversion processing unit 12008 according to embodiments performs color conversion coding that converts color values included in attributes. The color conversion processing unit 12008 may perform color conversion coding based on the reconstructed geometry. Description of the reconstructed geometry is the same as described in FIGS. 1 to 9. In addition, the same or similar operation and/or method to the operation and/or method of the color conversion unit 40006 described in FIG. 4 is performed. Detailed description will be omitted.
실시예들에 따른 어트리뷰트 변환 처리부(12009)는 지오메트리 인코딩이 수행되지 않은 포지션들 및/또는 재구성된 지오메트리를 기반으로 어트리뷰트들을 변환하는 어트리뷰트 변환을 수행한다. 어트리뷰트 변환 처리부(12009)는 도 4에 설명한 어트리뷰트 변환부(40007)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 구체적인 설명은 생략한다. 실시예들에 따른 예측/리프팅/RAHT 변환 처리부(12010)는 변환된 어트리뷰트들을 RAHT 코딩, 예측 변환 코딩 및 리프팅 변환 코딩 중 어느 하나 또는 조합하여 코딩할 수 있다. 예측/리프팅/RAHT 변환 처리부(12010)는 도 4에서 설명한 RAHT 변환부(40008), LOD 생성부(40009) 및 리프팅 변환부(40010)의 동작들과 동일 또는 유사한 동작들 중 적어도 하나 이상을 수행한다. 또한 예측 변환 코딩, 리프팅 변환 코딩 및 RAHT 변환 코딩에 대한 설명은 도 1 내지 도 9에서 설명한 바와 동일하므로 구체적인 설명은 생략한다.The attribute conversion processing unit 12009 according to embodiments performs attribute conversion for converting attributes based on the reconstructed geometry and/or positions for which geometry encoding has not been performed. The attribute conversion processing unit 12009 performs the same or similar operation and/or method to the operation and/or method of the attribute conversion unit 40007 described in FIG. 4. Detailed description will be omitted. The prediction/lifting/RAHT transform processing unit 12010 according to embodiments may code transformed attributes by using any one or a combination of RAHT coding, predictive transform coding, and lifting transform coding. The prediction/lifting/RAHT conversion processing unit 12010 performs at least one of the same or similar operations as the RAHT conversion unit 40008, LOD generation unit 40009, and lifting conversion unit 40010 described in FIG. 4. do. In addition, descriptions of predictive transform coding, lifting transform coding, and RAHT transform coding are the same as those described in FIGS.
실시예들에 따른 아리스메틱 코더(12011)는 코딩된 어트리뷰트들을 아리스메틱 코딩에 기반하여 인코딩할 수 있다. 아리스메틱 코더(12011)는 아리스메틱 인코더(400012)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.The Arismatic coder 12011 according to embodiments may encode coded attributes based on Arismatic coding. The Arismatic coder 12011 performs the same or similar operation and/or method to the operation and/or method of the Arismatic encoder 400012.
실시예들에 따른 전송 처리부(12012)는 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트, 메타 데이터 정보를 포함하는 각 비트스트림을 전송하거나, 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트, 메타 데이터 정보를 하나의 비트스트림으로 구성하여 전송할 수 있다. 실시예들에 따른 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트, 메타 데이터 정보가 하나의 비트스트림으로 구성되는 경우, 비트스트림은 하나 또는 그 이상의 서브 비트스트림들을 포함할 수 있다. 실시예들에 따른 비트스트림은 시퀀스 레벨의 시그널링을 위한 SPS (Sequence Parameter Set), 지오메트리 정보 코딩의 시그널링을 위한 GPS(Geometry Parameter Set), 어트리뷰트 정보 코딩의 시그널링을 위한 APS(Attribute Parameter Set), 타일 레벨의 시그널링을 위한 TPS (Tile Parameter Set)를 포함하는 시그널링 정보 및 슬라이스 데이터를 포함할 수 있다. 슬라이스 데이터는 하나 또는 그 이상의 슬라이스들에 대한 정보를 포함할 수 있다. 실시예들에 따른 하나의 슬라이스는 하나의 지오메트리 비트스트림(Geom0 0) 및 하나 또는 그 이상의 어트리뷰트 비트스트림들(Attr0 0, Attr1 0)을 포함할 수 있다. 실시예들에 따른 TPS는 하나 또는 그 이상의 타일들에 대하여 각 타일에 관한 정보(예를 들면 bounding box의 좌표값 정보 및 높이/크기 정보 등)을 포함할 수 있다. 지오메트리 비트스트림은 헤더와 페이로드를 포함할 수 있다. 실시예들에 따른 지오메트리 비트스트림의 헤더는 GPS에 포함된 파라미터 세트의 식별 정보(geom_ parameter_set_id), 타일 식별자(geom_tile_id), 슬라이스 식별자(geom_slice_id) 및 페이로드에 포함된 데이터에 관한 정보 등을 포함할 수 있다. 상술한 바와 같이 실시예들에 따른 메타데이터 처리부(12007)는 시그널링 정보를 생성 및/또는 처리하여 전송 처리부(12012)로 전송할 수 있다. 실시예들에 따라, 지오메트리 인코딩을 수행하는 엘레멘트들 및 어트리뷰트 인코딩을 수행하는 엘레멘트들은 점선 처리된 바와 같이 상호 데이터/정보를 공유할 수 있다. 실시예들에 따른 전송 처리부(12012)는 트랜스미터(10003)의 동작 및/또는 전송 방법과 동일 또는 유사한 동작 및/또는 전송 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 2에서 설명한 바와 동일하므로 생략한다. The transmission processor 12012 according to the embodiments transmits each bitstream including the encoded geometry and/or the encoded attribute, and metadata information, or transmits the encoded geometry and/or the encoded attribute, and the metadata information in one piece. It can be configured as a bitstream and transmitted. When the encoded geometry and/or encoded attribute and metadata information according to the embodiments are configured as one bitstream, the bitstream may include one or more sub-bitstreams. The bitstream according to the embodiments is a sequence parameter set (SPS) for signaling of a sequence level, a geometry parameter set (GPS) for signaling of geometry information coding, an attribute parameter set (APS) for signaling of attribute information coding, and a tile. It may include signaling information including TPS (Tile Parameter Set) for level signaling and slice data. Slice data may include information on one or more slices. One slice according to embodiments may include one geometry bitstream (Geom0 0 ) and one or more attribute bitstreams (Attr0 0 and Attr1 0 ). The TPS according to the embodiments may include information about each tile (eg, coordinate value information and height/size information of a bounding box) with respect to one or more tiles. The geometry bitstream may include a header and a payload. The header of the geometry bitstream according to embodiments may include identification information of a parameter set included in GPS (geom_ parameter_set_id), a tile identifier (geom_tile_id), a slice identifier (geom_slice_id), and information about data included in the payload. I can. As described above, the metadata processing unit 12007 according to the embodiments may generate and/or process signaling information and transmit the generated and/or processed signaling information to the transmission processing unit 12012. Depending on embodiments, elements that perform geometry encoding and elements that perform attribute encoding may share data/information with each other as dotted line processing. The transmission processing unit 12012 according to the embodiments may perform the same or similar operation and/or transmission method as the operation and/or transmission method of the transmitter 10003. Detailed descriptions are the same as those described in FIGS. 1 to 2 and thus will be omitted.
도 13은 실시예들에 따른 수신 장치의 예시이다.13 is an example of a reception device according to embodiments.
도 13에 도시된 수신 장치는 도 1의 수신장치(10004) (또는 도 10 및 도 11의 포인트 클라우드 디코더)의 예시이다. 도 13에 도시된 수신 장치는 도 1 내지 도 11에서 설명한 포인트 클라우드 디코더의 동작들 및 디코딩 방법들과 동일 또는 유사한 동작들 및 방법들 중 적어도 어느 하나 이상을 수행할 수 있다. The receiving device illustrated in FIG. 13 is an example of the receiving device 10004 of FIG. 1 (or the point cloud decoder of FIGS. 10 and 11 ). The receiving device illustrated in FIG. 13 may perform at least one or more of the same or similar operations and methods as the operations and decoding methods of the point cloud decoder described in FIGS. 1 to 11.
실시예들에 따른 수신 장치는 수신부(13000), 수신 처리부(13001), 아리스메틱 (arithmetic) 디코더(13002), 오큐판시 코드 (Occupancy code) 기반 옥트리 재구성 처리부(13003), 표면 모델 처리부(삼각형 재구성, 업-샘플링, 복셀화)(13004), 인버스(inverse) 양자화 처리부(13005), 메타데이터 파서(13006), 아리스메틱 (arithmetic) 디코더(13007), 인버스(inverse)양자화 처리부(13008), 예측/리프팅/RAHT 역변환 처리부(13009), 색상 역변환 처리부(13010) 및/또는 렌더러(13011)를 포함할 수 있다. 실시예들에 따른 디코딩의 각 구성요소는 실시예들에 따른 인코딩의 구성요소의 역과정을 수행할 수 있다.The receiving apparatus according to the embodiments includes a receiving unit 13000, a receiving processing unit 13001, an arithmetic decoder 13002, an octree reconstruction processing unit 13003 based on an Occupancy code, and a surface model processing unit (triangle reconstruction). , Up-sampling, voxelization) (13004), inverse quantization processing unit (13005), metadata parser (13006), arithmetic decoder (13007), inverse quantization processing unit (13008), prediction A /lifting/RAHT inverse transformation processing unit 13009, a color inverse transformation processing unit 13010, and/or a renderer 13011 may be included. Each component of decoding according to the embodiments may perform a reverse process of the component of encoding according to the embodiments.
실시예들에 따른 수신부(13000)는 포인트 클라우드 데이터를 수신한다. 수신부(13000)는 도 1의 리시버(10005)의 동작 및/또는 수신 방법과 동일 또는 유사한 동작 및/또는 수신 방법을 수행할 수 있다. 구체적인 설명은 생략한다.The receiving unit 13000 according to the embodiments receives point cloud data. The receiving unit 13000 may perform the same or similar operation and/or a receiving method as the operation and/or receiving method of the receiver 10005 of FIG. 1. Detailed description will be omitted.
실시예들에 따른 수신 처리부(13001)는 수신한 데이터로부터 지오메트리 비트스트림 및/또는 어트리뷰트 비트스트림을 획득할 수 있다. 수신 처리부(13001)는 수신부(13000)에 포함될 수 있다.The reception processing unit 13001 according to embodiments may obtain a geometry bitstream and/or an attribute bitstream from received data. The reception processing unit 13001 may be included in the reception unit 13000.
아리스메틱 디코더(13002), 오큐판시 코드 기반 옥트리 재구성 처리부(13003), 표면 모델 처리부(13004) 및 인버스 양자화 처리부(13005)는 지오메트리 디코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 디코딩은 도 1 내지 도 10에서 설명한 지오메트리 디코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다. The arithmetic decoder 13002, the ocupancy code-based octree reconstruction processing unit 13003, the surface model processing unit 13004, and the inverse quantization processing unit 13005 may perform geometry decoding. Since the geometry decoding according to the embodiments is the same as or similar to the geometry decoding described in FIGS. 1 to 10, a detailed description will be omitted.
실시예들에 따른 아리스메틱 디코더(13002)는 지오메트리 비트스트림을 아리스메틱 코딩을 기반으로 디코딩할 수 있다. 아리스메틱 디코더(13002)는 아리스메틱 디코더(11000)의 동작 및/또는 코딩과 동일 또는 유사한 동작 및/또는 코딩을 수행한다.The Arismatic decoder 13002 according to embodiments may decode a geometry bitstream based on Arismatic coding. The Arismatic decoder 13002 performs the same or similar operation and/or coding as the operation and/or coding of the Arismatic decoder 11000.
실시예들에 따른 오큐판시 코드 기반 옥트리 재구성 처리부(13003)는 디코딩된 지오메트리 비트스트림으로부터 (또는 디코딩 결과 확보된 지오메트리에 관한 정보)로부터 오큐판시 코드를 획득하여 옥트리를 재구성할 수 있다. 오큐판시 코드 기반 옥트리 재구성 처리부(13003)는 옥트리 합성부(11001)의 동작 및/또는 옥트리 생성 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 실시예들에 따른 표면 모델 처리부(13004)는 트라이숩 지오메트리 인코딩이 적용된 경우, 표면 모델 방식에 기반하여 트라이숩 지오메트리 디코딩 및 이와 관련된 지오메트리 리컨스트럭션(예를 들면 삼각형 재구성, 업-샘플링, 복셀화)을 수행할 수 있다. 표면 모델 처리부(13004)는 서페이스 오프록시메이션 합성부(11002) 및/또는 지오메트리 리컨스트럭션부(11003)의 동작과 동일 또는 유사한 동작을 수행한다.The ocupancy code-based octree reconstruction processing unit 13003 according to the embodiments may obtain an ocupancy code from a decoded geometry bitstream (or information on a geometry obtained as a result of decoding) to reconstruct the octree. The ocupancy code-based octree reconstruction processing unit 13003 performs the same or similar operation and/or method as the operation and/or the octree generation method of the octree synthesis unit 11001. When the trisoup geometry encoding is applied, the surface model processing unit 13004 according to the embodiments decodes the trisoup geometry based on the surface model method and reconstructs the related geometry (eg, triangle reconstruction, up-sampling, voxelization). Can be done. The surface model processing unit 13004 performs an operation identical or similar to that of the surface opoxidation synthesis unit 11002 and/or the geometry reconstruction unit 11003.
실시예들에 따른 인버스 양자화 처리부(13005)는 디코딩된 지오메트리를 인버스 양자화할 수 있다.The inverse quantization processing unit 13005 according to embodiments may inverse quantize the decoded geometry.
실시예들에 따른 메타데이터 파서(13006)는 수신한 포인트 클라우드 데이터에 포함된 메타데이터, 예를 들어 설정 값 등을 파싱할 수 있다. 메타데이터 파서(13006)는 메타데이터를 지오메트리 디코딩 및/또는 어트리뷰트 디코딩에 전달할 수 있다. 메타데이터에 대한 구체적인 설명은 도 12에서 설명한 바와 동일하므로 생략한다.The metadata parser 13006 according to embodiments may parse metadata included in the received point cloud data, for example, a setting value. The metadata parser 13006 may pass metadata to geometry decoding and/or attribute decoding. The detailed description of the metadata is the same as that described in FIG. 12 and thus will be omitted.
아리스메틱 디코더(13007), 인버스 양자화 처리부(13008), 예측/리프팅/RAHT 역변환 처리부(13009) 및 색상 역변환 처리부(13010)는 어트리뷰트 디코딩을 수행한다. 어트리뷰트 디코딩는 도 1 내지 도 10에서 설명한 어트리뷰트 디코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.The arithmetic decoder 13007, the inverse quantization processing unit 13008, the prediction/lifting/RAHT inverse transformation processing unit 13009, and the color inverse transformation processing unit 13010 perform attribute decoding. Since the attribute decoding is the same as or similar to the attribute decoding described in FIGS. 1 to 10, a detailed description will be omitted.
실시예들에 따른 아리스메틱 디코더(13007)는 어트리뷰트 비트스트림을 아리스메틱 코딩으로 디코딩할 수 있다. 아리스메틱 디코더(13007)는 재구성된 지오메트리를 기반으로 어트리뷰트 비트스트림의 디코딩을 수행할 수 있다. 아리스메틱 디코더(13007)는 아리스메틱 디코더(11005)의 동작 및/또는 코딩과 동일 또는 유사한 동작 및/또는 코딩을 수행한다. The Arismatic decoder 13007 according to the embodiments may decode the attribute bitstream through Arismatic coding. The arithmetic decoder 13007 may perform decoding of the attribute bitstream based on the reconstructed geometry. The Arismatic decoder 13007 performs the same or similar operation and/or coding as the operation and/or coding of the Arismatic decoder 11005.
실시예들에 따른 인버스 양자화 처리부(13008)는 디코딩된 어트리뷰트 비트스트림을 인버스 양자화할 수 있다. 인버스 양자화 처리부(13008)는 역양자화부(11006)의 동작 및/또는 역양자화 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.The inverse quantization processing unit 13008 according to embodiments may inverse quantize the decoded attribute bitstream. The inverse quantization processing unit 13008 performs the same or similar operation and/or method as the operation and/or the inverse quantization method of the inverse quantization unit 11006.
실시예들에 따른 예측/리프팅/RAHT 역변환 처리부(13009)는 재구성된 지오메트리 및 역양자화된 어트리뷰트들을 처리할 수 있다. 예측/리프팅/RAHT 역변환 처리부(13009)는 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)의 동작들 및/또는 디코딩들과 동일 또는 유사한 동작들 및/또는 디코딩들 중 적어도 어느 하나 이상을 수행한다. 실시예들에 따른 색상 역변환 처리부(13010)는 디코딩된 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 역변환하기 위한 역변환 코딩을 수행한다. 색상 역변환 처리부(13010)는 컬러 역변환부(11010)의 동작 및/또는 역변환 코딩과 동일 또는 유사한 동작 및/또는 역변환 코딩을 수행한다. 실시예들에 따른 렌더러(13011)는 포인트 클라우드 데이터를 렌더링할 수 있다.The prediction/lifting/RAHT inverse transform processing unit 13009 according to embodiments may process reconstructed geometry and inverse quantized attributes. The prediction/lifting/RAHT inverse transform processing unit 13009 is the same or similar to the operations and/or decodings of the RAHT transform unit 11007, the LOD generator 11008 and/or the inverse lifting unit 11009, and/or At least one or more of the decodings is performed. The color inverse transform processing unit 13010 according to embodiments performs inverse transform coding for inverse transforming a color value (or texture) included in the decoded attributes. The color inverse transform processing unit 13010 performs the same or similar operation and/or inverse transform coding as the operation and/or inverse transform coding of the color inverse transform unit 11010. The renderer 13011 according to embodiments may render point cloud data.
도 14는 실시예들에 따른 G-PCC 기반 포인트 클라우드 콘텐트 스트리밍을 위한 아키텍쳐를 나타낸다.14 illustrates an architecture for G-PCC-based point cloud content streaming according to embodiments.
도 14의 상단은 도 1 내지 도 13에서 설명한 전송 장치(예를 들면 전송 장치(10000), 도 12의 전송 장치 등)가 포인트 클라우드 콘텐트를 처리 및 전송하는 과정을 나타낸다. The upper part of FIG. 14 shows a process in which the transmission device (for example, the transmission device 10000, the transmission device of FIG. 12, etc.) described in FIGS. 1 to 13 processes and transmits the point cloud content.
도 1 내지 도 13에서 설명한 바와 같이 전송 장치는 포인트 클라우드 콘텐트의 오디오(Ba)를 획득하고(Audio Acquisition), 획득한 오디오를 인코딩(Audio encoding)하여 오디오 비트스트림(Ea)들을 출력할 수 있다. 또한 전송 장치는 포인트 클라우드 콘텐트의 포인트 클라우드(Bv)(또는 포인트 클라우드 비디오)를 확보하고(Point Acqusition), 확보한 포인트 클라우드에 대하여 포인트 클라우드 인코딩(Point cloud encoding)을 수행하여 포인트 클라우드 비디오 비트스트림(Eb)들을 출력할 수 있다. 전송 장치의 포인트 클라우드 인코딩은 도 1 내지 도 13에서 설명한 포인트 클라우드 인코딩(예를 들면 도 4의 포인트 클라우드 인코더의 인코딩 등)과 동일 또는 유사하므로 구체적인 설명은 생략한다. As described with reference to FIGS. 1 to 13, the transmission device may obtain audio Ba of the point cloud content (Audio Acquisition), encode the acquired audio, and output audio bitstreams Ea. In addition, the transmission device acquires a point cloud (Bv) (or point cloud video) of the point cloud content (Point Acqusition), performs point cloud encoding on the acquired point cloud, and performs a point cloud video bitstream ( Eb) can be output. The point cloud encoding of the transmission device is the same as or similar to the point cloud encoding (for example, the encoding of the point cloud encoder of FIG. 4) described in FIGS.
전송 장치는 생성된 오디오 비트스트림들 및 비디오 비트스트림들을 파일 및/또는 세그먼트로 인캡슐레이션(File/segment encapsulation)할 수 있다. 인캡슐레이션된 파일 및/또는 세그먼트(Fs, File)은 ISOBMFF 등의 파일 포맷의 파일 또는 DASH 세그먼트를 포함할 수 있다. 실시예들에 따른 포인트 클라우드 관련 메타 데이터(metadata)는 인캡슐레이션된 파일 포맷 및/또는 세그먼트에 포함될 수 있다. 메타 데이터는 ISOBMFF 파일 포맷 상의 다양한 레벨의 박스(box)에 포함되거나 파일 내에서 별도의 트랙에 포함될 수 있다. 실시예에 따라 전송 장치는 메타데이터 자체를 별도의 파일로 인캡슐레이션할 수 있다. 실시예들에 따른 전송 장치는 인캡슐레이션 된 파일 포맷 및/또는 세그먼트를 네트워크를 통해 전송(delivery)할 수 있다. 전송 장치의 인캡슐레이션 및 전송 처리 방법은 도 1 내지 도 13에서 설명한 바 (예를 들면 트랜스미터(10003), 도 2의 전송 단계(20002) 등)와 동일하므로 구체적인 설명은 생략한다.The transmission device may encapsulate the generated audio bitstreams and video bitstreams into files and/or segments (File/segment encapsulation). The encapsulated file and/or segment (Fs, File) may include a file of a file format such as ISOBMFF or a DASH segment. Point cloud-related metadata according to embodiments may be included in an encapsulated file format and/or segment. Meta data may be included in boxes of various levels in the ISOBMFF file format or may be included in separate tracks in the file. According to an embodiment, the transmission device may encapsulate the metadata itself as a separate file. The transmission device according to the embodiments may deliver the encapsulated file format and/or segment through a network. Since the encapsulation and transmission processing method of the transmission device is the same as those described in FIGS. 1 to 13 (for example, the transmitter 10003, the transmission step 20002 of FIG. 2, etc.), detailed descriptions are omitted.
도 14의 하단은 도 1 내지 도 13에서 설명한 수신 장치(예를 들면 수신 장치(10004), 도 13의 수신 장치 등)가 포인트 클라우드 콘텐트를 처리 및 출력하는 과정을 나타낸다. The bottom of FIG. 14 shows a process of processing and outputting point cloud content by the receiving device (for example, the receiving device 10004, the receiving device of FIG. 13, etc.) described in FIGS. 1 to 13.
실시예들에 따라 수신 장치는 최종 오디오 데이터 및 최종 비디오 데이터를 출력하는 디바이스 (예를 들면 스피커(Loudspeakers), 헤드폰들(headphones), 디스플레이(Display))와 포인트 클라우드 콘텐트를 처리하는 포인트 클라우드 플레이어(Point Cloud Player)를 포함할 수 있다. 최종 데이터 출력 디바이스 및 포인트 클라우드 플레이어는 별도의 물리적인 디바이스들로 구성될 수 있다. 실시예들에 따른 포인트 클라우드 플레이어는 G-PCC(Geometry-based Point Cloud Compression) 코딩 및/또는 V-PCC(Video based Point Cloud Compression) 코딩 및/또는 차세대 코딩을 수행할 수 있다.According to embodiments, the receiving device includes a device that outputs final audio data and final video data (e.g., loudspeakers, headphones, display), and a point cloud player that processes point cloud content ( Point Cloud Player). The final data output device and the point cloud player may be configured as separate physical devices. The point cloud player according to the embodiments may perform Geometry-based Point Cloud Compression (G-PCC) coding and/or Video based Point Cloud Compression (V-PCC) coding and/or next-generation coding.
실시예들에 따른 수신 장치는 수신한 데이터(예를 들면 방송 신호, 네트워크를 통해 전송되는 신호 등)에 포함된 파일 및/또는 세그먼트(F',Fs')를 확보하고 디캡슐레이션(File/segment decapsulation)할 수 있다. 수신 장치의 수신 및 디캡슐레이션 방법은 도 1 내지 도 13에서 설명한 바(예를 들면 리시버(10005), 수신부(13000), 수신 처리부(13001)등)와 동일하므로 구체적인 설명은 생략한다.The receiving device according to the embodiments secures a file and/or segment (F', Fs') included in the received data (for example, a broadcast signal, a signal transmitted through a network, etc.) and decapsulation (File/ segment decapsulation). Since the reception and decapsulation method of the reception device is the same as that described in FIGS. 1 to 13 (for example, the receiver 10005, the reception unit 13000, the reception processing unit 13001, etc.), a detailed description is omitted.
실시예들에 따른 수신 장치는 파일 및/또는 세그먼트에 포함된 오디오 비트스트림(E'a) 및 비디오 비트스트림(E'v)를 확보한다. 도면에 도시된 바와 같이 수신 장치는 오디오 비트스트림에 대해 오디오 디코딩(audio decoding)을 수행하여 디코딩된 오디오 데이터(B'a)를 출력하고, 디코딩된 오디오 데이터를 렌더링(audio rendering)하여 최종 오디오 데이터(A'a)를 스피커 또는 헤드폰 등을 통해 출력한다. The receiving device according to the embodiments secures an audio bitstream E'a and a video bitstream E'v included in a file and/or segment. As shown in the drawing, the receiving device outputs the decoded audio data B'a by performing audio decoding on the audio bitstream, and rendering the decoded audio data to final audio data. (A'a) is output through speakers or headphones.
또한 수신 장치는 비디오 비트스트림(E'v)에 대해 포인트 클라우드 디코딩(point cloud decoding)을 수행하여 디코딩된 비디오 데이터(B'v)를 출력한다. 실시예들에 따른 포인트 클라우드 디코딩은 도 1 내지 도 13에서 설명한 포인트 클라우드 디코딩과 동일 또는 유사하므로 (예를 들면 도11의 포인트 클라우드 디코더의 디코딩 등) 구체적인 설명은 생략한다. 수신 장치는 디코딩된 비디오 데이터를 렌더링(rendering)하여 최종 비디오 데이터를 디스플레이를 통해 출력할 수 있다.In addition, the receiving device outputs decoded video data B'v by performing point cloud decoding on the video bitstream E'v. Since the point cloud decoding according to the embodiments is the same as or similar to the point cloud decoding described in FIGS. 1 to 13 (for example, decoding of the point cloud decoder of FIG. 11 ), a detailed description will be omitted. The receiving device may render the decoded video data and output the final video data through the display.
실시예들에 따른 수신 장치는 함께 전송된 메타데이터를 기반으로 디캡슐레이션, 오디오 디코딩, 오디오 렌더링, 포인트 클라우드 디코딩 및 렌더링 동작 중 적어도 어느 하나 이상을 수행할 수 있다. 메타데이터에 대한 설명은 도 12 내지 도 13에서 설명한 바와 동일하므로 생략한다. The receiving device according to the embodiments may perform at least one of decapsulation, audio decoding, audio rendering, point cloud decoding, and rendering operations based on metadata transmitted together. The description of the metadata is the same as that described with reference to FIGS. 12 to 13 and thus will be omitted.
도면에 도시된 점선과 같이, 실시예들에 따른 수신 장치(예를 들면 포인트 클라우드 플레이어 또는 포인트 클라우드 플레어 내의 센싱/트랙킹부(sensing/tracking))는 피드백 정보(orientation, viewport)를 생성할 수 있다. 실시예들에 따른 피드백 정보는 수신 장치의 디캡슐레이션, 포인트 클라우드 디코딩 과정 및/또는 렌더링 과정에서 사용될 수도 있고, 송신 장치로 전달 될 수도 있다. 피드백 정보에 대한 설명은 도 1 내지 도 13에서 설명한 바와 동일하므로 생략한다.As shown in the dotted line shown in the drawing, the receiving device according to the embodiments (for example, a point cloud player or a sensing/tracking unit (sensing/tracking) in a point cloud flare) may generate feedback information (orientation, viewport). . Feedback information according to embodiments may be used in a decapsulation process, a point cloud decoding process and/or a rendering process of a receiving device, or may be transmitted to a transmitting device. The description of the feedback information is the same as that described with reference to FIGS. 1 to 13 and thus will be omitted.
도15는 실시예들에 따른 전송 장치의 예시를 나타낸다.15 shows an example of a transmission device according to embodiments.
도 15의 전송 장치는 포인트 클라우드 콘텐트를 전송하는 장치로서, 도 1 내지 도 14에서 설명한 전송 장치(예를 들면 도 1의 전송 장치(10000), 도 4의 포인트 클라우드 인코더, 도 12의 전송 장치, 도 14의 전송 장치 등)의 예시에 해당한다. 따라서 도 15의 전송 장치는 도 1 내지 도 14에서 설명한 전송 장치의 동작과 동일 또는 유사한 동작을 수행한다. The transmission device of FIG. 15 is a device that transmits point cloud content, and the transmission device described in FIGS. 1 to 14 (for example, the transmission device 10000 of FIG. 1, the point cloud encoder of FIG. 4, the transmission device of FIG. 12, 14). Accordingly, the transmission device of FIG. 15 performs the same or similar operation to that of the transmission device described in FIGS. 1 to 14.
실시예들에 따른 전송 장치는 포인트 클라우드 획득(point cloud acquisition), 포인트 클라우드 인코딩(point cloud encoding), 파일/세그먼트 인캡슐레이션(file/segement encapsulation) 및 전송(delivery) 중 적어도 하나 또는 그 이상을 수행할 수 있다. The transmission device according to embodiments may perform at least one or more of point cloud acquisition, point cloud encoding, file/segment encapsulation, and delivery. Can be done.
도면에 도시된 포인트 클라우드 획득 및 전송 동작은 도 1 내지 도 14에서 설명한 바와 동일하므로 구체적인 설명은 생략한다. Since the operation of acquiring and transmitting the point cloud illustrated in the drawing is the same as described in FIGS. 1 to 14, detailed descriptions will be omitted.
도 1 내지 도 14에서 설명한 바와 같이 실시예들에 따른 전송 장치는 지오메트리 인코딩 및 어트리뷰트 인코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 인코딩은 지오메트리 컴프레션(geometry compression)이라 호칭될 수 있으며 어트리뷰트 인코딩은 어트리뷰트 컴프레션(attribute compression)이라 호칭될 수 있다. 상술한 바와 같이 하나의 포인트는 하나의 지오메트리와 하나 또는 그 이상의 어트리뷰트들을 가질 수 있다. 따라서 전송 장치는 각 어트리뷰트에 대하여 어트리뷰트 인코딩을 수행한다. 도면은 전송 장치가 하나 또는 그 이상의 어트리뷰트 컴프레션들(attribute #1 compression, …attribute #N compression)을 수행한 예시를 나타낸다. 또한 실시예들에 따른 전송 장치는 추가 컴프레션(auxiliary compression)을 수행할 수 있다. 추가 컴프레션은 메타데이터(metadata)에 대해 수행된다. 메타 데이터에 대한 설명은 도 1 내지 도 14에서 설명한 바와 동일하므로 생략한다. 또한 전송 장치는 메쉬 데이터 컴프레션(Mesh data compression)을 수행할 수 있다. 실시예들에 따른 메쉬 데이터 컴프레션은 도 1 내지 도 14에서 설명한 트라이숩 지오메트리 인코딩을 포함할 수 있다.As described with reference to FIGS. 1 to 14, the transmission device according to embodiments may perform geometry encoding and attribute encoding. Geometry encoding according to embodiments may be referred to as geometry compression, and attribute encoding may be referred to as attribute compression. As described above, one point may have one geometry and one or more attributes. Therefore, the transmission device performs attribute encoding for each attribute. The drawing shows an example in which a transmission device has performed one or more attribute compressions (attribute #1 compression, ...attribute #N compression). In addition, the transmission apparatus according to the embodiments may perform auxiliary compression. Additional compression is performed on the metadata. Description of the meta data is the same as that described with reference to FIGS. 1 to 14 and thus will be omitted. In addition, the transmission device may perform mesh data compression. Mesh data compression according to embodiments may include the trisoup geometry encoding described in FIGS. 1 to 14.
실시예들에 따른 전송 장치는 포인트 클라우드 인코딩에 따라 출력된 비트스트림들(예를 들면 포인트 클라우드 스트림들)을 파일 및/또는 세그먼트로 인캡슐레이션 할 수 있다. 실시예들에 따라 전송 장치는 메타 데이터 외의 데이터(예를 들면 미디어 데이터)를 운반하는 미디어 트랙 인캡슐레이션(media track encapsulation)을 수행하고, 메타 데이터를 운반하는 메타데이터 트랙 인캡슐레이션(metadata tracak encapsulation)을 수행할 수 있다. 실시예들에 따라 메타데이터는 미디어 트랙으로 인캡슐레이션 될 수 있다.The transmission device according to the embodiments may encapsulate bitstreams (eg, point cloud streams) output according to point cloud encoding into files and/or segments. According to embodiments, a transmission device performs media track encapsulation for carrying data other than metadata (for example, media data), and metadata tracak for carrying meta data. encapsulation) can be performed. According to embodiments, metadata may be encapsulated as a media track.
도 1 내지 도 14에서 설명한 바와 같이 전송 장치는 수신 장치로부터 피드백 정보(오리엔테이션/뷰포트 메타 데이터)를 수신하고, 수신한 피드백 정보를 기반으로 포인트 클라우드 인코딩, 파일/세그먼트 인캡슐레이션 및 전송 동작 중 적어도 어느 하나 이상을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 14에서 설명한 바와 동일하므로 생략한다. 1 to 14, the transmitting device receives feedback information (orientation/viewport metadata) from the receiving device, and based on the received feedback information, at least one of point cloud encoding, file/segment encapsulation, and transmission operations. Any one or more can be performed. Detailed descriptions are the same as those described with reference to FIGS.
도16은 실시예들에 따른 수신 장치의 예시를 나타낸다.16 shows an example of a receiving device according to embodiments.
도 16의 수신 장치는 포인트 클라우드 콘텐트를 수신하는 장치로서, 도 1 내지 도 14에서 설명한 수신 장치(예를 들면 도 1의 수신 장치(10004), 도 11의 포인트 클라우드 디코더, 도 13의 수신 장치, 도 14의 수신 장치 등)의 예시에 해당한다. 따라서 도 16의 수신 장치는 도 1 내지 도 14에서 설명한 수신 장치의 동작과 동일 또는 유사한 동작을 수행한다. 또한 도 16의 수신 장치는 도 15의 전송 장치에서 전송한 신호 등을 받고, 도 15의 전송 장치의 동작의 역과정을 수행할 수 있다.The receiving device of FIG. 16 is a device that receives point cloud content, and the receiving device described in FIGS. 1 to 14 (for example, the receiving device 10004 of FIG. 1, the point cloud decoder of FIG. 11, the receiving device of FIG. 13, 14). Accordingly, the receiving device of FIG. 16 performs the same or similar operation to that of the receiving device described in FIGS. 1 to 14. In addition, the receiving device of FIG. 16 may receive a signal transmitted from the transmitting device of FIG. 15, and may perform a reverse process of the operation of the transmitting device of FIG.
실시예들에 따른 수신 장치는 수신 (delivery), 파일/세그먼트 디캡슐레이션(file/segement decapsulation), 포인트 클라우드 디코딩(point cloud decoding) 및 포인트 클라우드 렌더링(point cloud rendering) 중 적어도 하나 또는 그 이상을 수행할 수 있다. The receiving device according to embodiments may perform at least one or more of delivery, file/segement decapsulation, point cloud decoding, and point cloud rendering. Can be done.
도면에 도시된 포인트 클라우드 수신 및 포인트 클라우드 렌더링 동작은 도 1 내지 도 14에서 설명한 바와 동일하므로 구체적인 설명은 생략한다. Since the point cloud reception and point cloud rendering operations shown in the drawings are the same as those described in FIGS. 1 to 14, detailed descriptions are omitted.
도 1 내지 도 14에서 설명한 바와 같이 실시예들에 따른 수신 장치는 네트워크 또는 저장 장치로터 획득한 파일 및/또는 세그먼트에 대해 디캡슐레이션을 수행한다. 실시예들에 따라 수신 장치는 메타 데이터 외의 데이터(예를 들면 미디어 데이터)를 운반하는 미디어 트랙 디캡슐레이션(media track decapsulation)을 수행하고, 메타 데이터를 운반하는 메타데이터 트랙 디캡슐레이션(metadata tracak decapsulation)을 수행할 수 있다. 실시예들에 따라 메타데이터가 미디어 트랙으로 인캡슐레이션 된 경우, 메타 데이터 트랙 디캡슐레이션은 생략된다.As described with reference to FIGS. 1 to 14, the reception device according to the embodiments performs decapsulation on a file and/or segment acquired from a network or a storage device. According to embodiments, the receiving device performs media track decapsulation carrying data other than meta data (for example, media data), and metadata track decapsulation carrying meta data. decapsulation) can be performed. According to embodiments, when metadata is encapsulated into a media track, the metadata track decapsulation is omitted.
도 1 내지 도 14에서 설명한 바와 같이 수신 장치는 디캡슐레이션을 통해 확보한 비트스트림(예를 들면 포인트 클라우드 스트림들)에 대하여 지오메트리 디코딩 및 어트리뷰트 디코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 디코딩은 지오메트리 디컴프레션(geometry decompression)이라 호칭될 수 있으며 어트리뷰트 디코딩은 어트리뷰트 디컴프레션(attribute decompression)이라 호칭될 수 있다. 상술한 바와 같이 하나의 포인트는 하나의 지오메트리와 하나 또는 그 이상의 어트리뷰트들을 가질 수 있으며 각각 인코딩된다. 따라서 수신 장치는 각 어트리뷰트에 대하여 어트리뷰트 디코딩을 수행한다. 도면은 수신 장치가 하나 또는 그 이상의 어트리뷰트 디컴프레션들(attribute #1 decompression, …attribute #N decompression)을 수행한 예시를 나타낸다. 또한 실시예들에 따른 수신 장치는 추가 디컴프레션(auxiliary decompression)을 수행할 수 있다. 추가 디컴프레션은 메타데이터(metadata)에 대해 수행된다. 메타 데이터에 대한 설명은 도 1 내지 도 14에서 설명한 바와 동일하므로 생략한다. 또한 수신 장치는 메쉬 데이터 디컴프레션(Mesh data decompression)을 수행할 수 있다. 실시예들에 따른 메쉬 데이터 디컴프레션은 도 1 내지 도 14에서 설명한 트라이숩 지오메트리 디코딩을 포함할 수 있다. 실시예들에 따른 수신 장치는 포인트 클라우드 디코딩에 따라 출력된 포인트 클라우드 데이터를 렌더링 할 수 있다.As described with reference to FIGS. 1 to 14, the receiving device may perform geometry decoding and attribute decoding on bitstreams (eg, point cloud streams) secured through decapsulation. Geometry decoding according to embodiments may be referred to as geometry decompression, and attribute decoding may be referred to as attribute decompression. As described above, a point may have one geometry and one or more attributes, and are each encoded. Therefore, the receiving device performs attribute decoding for each attribute. The drawing shows an example in which the receiving device performs one or more attribute decompressions (attribute #1 decompression, ...attribute #N decompression). In addition, the reception device according to the embodiments may perform auxiliary decompression. Additional decompression is performed on the metadata. The description of the meta data is the same as that described with reference to FIGS. 1 to 14 and thus will be omitted. Also, the receiving device may perform mesh data decompression. The mesh data decompression according to embodiments may include decoding the trisoup geometry described with reference to FIGS. 1 to 14. The reception device according to the embodiments may render the output point cloud data according to the point cloud decoding.
도 1 내지 도 14에서 설명한 바와 같이 수신 장치는 별도의 센싱/트랙킹 엘레멘트등을 이용하여 오리엔테이션/뷰포트 메타 데이터를 확보하고, 이를 포함하는 피드백 정보를 전송 장치(예를 들면 도 15의 전송 장치)로 전송할 수 있다. 또한 수신 장치는 피드백 정보를 기반으로 수신 동작, 파일/세그먼트 디캡슐레이션 및 포인트 클라우드 디코딩 중 적어도 어느 하나 이상을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 14에서 설명한 바와 동일하므로 생략한다. As described in FIGS. 1 to 14, the receiving device secures orientation/viewport metadata using a separate sensing/tracking element, etc., and transmits feedback information including the same to a transmission device (for example, the transmission device of FIG. 15). Can be transmitted. In addition, the receiving device may perform at least one or more of a receiving operation, file/segment decapsulation, and point cloud decoding based on the feedback information. Detailed descriptions are the same as those described with reference to FIGS.
도 17은 실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치와 연동 가능한 구조의 예시를 나타낸다.17 shows an example of a structure capable of interworking with a method/device for transmitting and receiving point cloud data according to embodiments.
도 17의 구조는 서버(1760), 로봇(1710), 자율 주행 차량(1720), XR 장치(1730), 스마트폰(1740), 가전(1750) 및/또는 HMD(1770) 중에서 적어도 하나 이상이 클라우드 네트워크(1710)와 연결된 구성을 나타낸다. 로봇(1710), 자율 주행 차량(1720), XR 장치(1730), 스마트폰(1740) 또는 가전(1750) 등은 장치라 호칭된다. 또한, XR 장치(1730)는 실시예들에 따른 포인트 클라우드 데이터 (PCC) 장치에 대응되거나 PCC장치와 연동될 수 있다.The structure of FIG. 17 includes at least one of a server 1760, a robot 1710, an autonomous vehicle 1720, an XR device 1730, a smartphone 1740, a home appliance 1750, and/or an HMD 1770. A configuration connected to the cloud network 1710 is shown. The robot 1710, the autonomous vehicle 1720, the XR device 1730, the smartphone 1740, the home appliance 1750, and the like are referred to as devices. In addition, the XR device 1730 may correspond to a point cloud data (PCC) device according to embodiments or may be interlocked with a PCC device.
클라우드 네트워크(1700)는 클라우드 컴퓨팅 인프라의 일부를 구성하거나 클라우드 컴퓨팅 인프라 안에 존재하는 네트워크를 의미할 수 있다. 여기서, 클라우드 네트워크(1700)는 3G 네트워크, 4G 또는 LTE(Long Term Evolution) 네트워크 또는 5G 네트워크 등을 이용하여 구성될 수 있다.The cloud network 1700 may constitute a part of a cloud computing infrastructure or may mean a network that exists in the cloud computing infrastructure. Here, the cloud network 1700 may be configured using a 3G network, a 4G or long term evolution (LTE) network, or a 5G network.
서버(1760)는 로봇(1710), 자율 주행 차량(1720), XR 장치(1730), 스마트폰(1740), 가전(1750) 및/또는 HMD(1770) 중에서 적어도 하나 이상과 클라우드 네트워크(1700)을 통하여 연결되고, 연결된 장치들(1710 내지 1770)의 프로세싱을 적어도 일부를 도울 수 있다.The server 1760 includes at least one of a robot 1710, an autonomous vehicle 1720, an XR device 1730, a smartphone 1740, a home appliance 1750, and/or an HMD 1770, and a cloud network 1700. The connected devices 1710 to 1770 may be connected through, and may help at least part of the processing of the connected devices.
HMD (Head-Mount Display)(1770)는 실시예들에 따른 XR 디바이스 및/또는 PCC 디바이스가 구현될 수 있는 타입 중 하나를 나타낸다. 실시예들에 따른HMD 타입의 디바이스는, 커뮤니케이션 유닛, 컨트롤 유닛, 메모리 유닛, I/O 유닛, 센서 유닛, 그리고 파워 공급 유닛 등을 포함한다. The HMD (Head-Mount Display) 1770 represents one of types in which an XR device and/or a PCC device according to embodiments may be implemented. The HMD type device according to the embodiments includes a communication unit, a control unit, a memory unit, an I/O unit, a sensor unit, and a power supply unit.
이하에서는, 상술한 기술이 적용되는 장치(1710 내지 1750)의 다양한 실시 예들을 설명한다. 여기서, 도 17에 도시된 장치(1710 내지 1750)는 상술한 실시예들에 따른 포인트 클라우드 데이터 송수신 장치와 연동/결합될 수 있다.Hereinafter, various embodiments of the devices 1710 to 1750 to which the above-described technology is applied will be described. Here, the devices 1710 to 1750 shown in FIG. 17 may be interlocked/coupled with the point cloud data transmission/reception apparatus according to the above-described embodiments.
<PCC+XR><PCC+XR>
XR/PCC 장치(1730)는 PCC 및/또는 XR(AR+VR) 기술이 적용되어, HMD(Head-Mount Display), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 휴대폰, 스마트 폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지, 차량, 고정형 로봇이나 이동형 로봇 등으로 구현될 수도 있다.The XR/PCC device 1730 is applied with PCC and/or XR (AR+VR) technology to provide a head-mount display (HMD), a head-up display (HUD) provided in a vehicle, a television, a mobile phone, a smart phone, It may be implemented as a computer, wearable device, home appliance, digital signage, vehicle, fixed robot or mobile robot.
XR/PCC 장치(1730)는 다양한 센서들을 통해 또는 외부 장치로부터 획득한 3차원 포인트 클라우드 데이터 또는 이미지 데이터를 분석하여 3차원 포인트들에 대한 위치 데이터 및 어트리뷰트 데이터를 생성함으로써 주변 공간 또는 현실 객체에 대한 정보를 획득하고, 출력할 XR 객체를 렌더링하여 출력할 수 있다. 예컨대, XR/PCC 장치(1730)는 인식된 물체에 대한 추가 정보를 포함하는 XR 객체를 해당 인식된 물체에 대응시켜 출력할 수 있다.The XR/PCC device 1730 analyzes 3D point cloud data or image data acquired through various sensors or from an external device to generate position data and attribute data for 3D points, thereby Information can be obtained, and the XR object to be output can be rendered and output. For example, the XR/PCC device 1730 may output an XR object including additional information on the recognized object in correspondence with the recognized object.
<PCC+자율주행+XR><PCC+Autonomous Driving+XR>
자율 주행 차량(1720)은 PCC 기술 및 XR 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다. The autonomous vehicle 1720 may be implemented as a mobile robot, a vehicle, or an unmanned aerial vehicle by applying PCC technology and XR technology.
XR/PCC 기술이 적용된 자율 주행 차량(1720)은 XR 영상을 제공하는 수단을 구비한 자율 주행 차량이나, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량 등을 의미할 수 있다. 특히, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(1720)은 XR 장치(1730)와 구분되며 서로 연동될 수 있다.The autonomous driving vehicle 1720 to which the XR/PCC technology is applied may refer to an autonomous driving vehicle having a means for providing an XR image, an autonomous driving vehicle that is an object of control/interaction within the XR image. In particular, the autonomous vehicle 1720, which is the object of control/interaction in the XR image, is distinguished from the XR device 1730 and may be interlocked with each other.
XR/PCC영상을 제공하는 수단을 구비한 자율 주행 차량(1720)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하고, 획득한 센서 정보에 기초하여 생성된 XR/PCC 영상을 출력할 수 있다. 예컨대, 자율 주행 차량(1720)은 HUD를 구비하여 XR/PCC 영상을 출력함으로써, 탑승자에게 현실 객체 또는 화면 속의 객체에 대응되는 XR/PCC 객체를 제공할 수 있다.The autonomous vehicle 1720 having a means for providing an XR/PCC image may acquire sensor information from sensors including a camera, and may output an XR/PCC image generated based on the acquired sensor information. For example, the autonomous vehicle 1720 may provide an XR/PCC object corresponding to a real object or an object in a screen to the occupant by outputting an XR/PCC image with a HUD.
이때, XR/PCC 객체가 HUD에 출력되는 경우에는 XR/PCC 객체의 적어도 일부가 탑승자의 시선이 향하는 실제 객체에 오버랩되도록 출력될 수 있다. 반면, XR/PCC 객체가 자율 주행 차량의 내부에 구비되는 디스플레이에 출력되는 경우에는 XR/PCC 객체의 적어도 일부가 화면 속의 객체에 오버랩되도록 출력될 수 있다. 예컨대, 자율 주행 차량(1220)은 차로, 타 차량, 신호등, 교통 표지판, 이륜차, 보행자, 건물 등과 같은 객체와 대응되는 XR/PCC 객체들을 출력할 수 있다.In this case, when the XR/PCC object is output to the HUD, at least a part of the XR/PCC object may be output to overlap the actual object facing the occupant's gaze. On the other hand, when the XR/PCC object is output on a display provided inside the autonomous vehicle, at least a part of the XR/PCC object may be output to overlap the object in the screen. For example, the autonomous vehicle 1220 may output XR/PCC objects corresponding to objects such as lanes, other vehicles, traffic lights, traffic signs, motorcycles, pedestrians, and buildings.
실시예들에 의한 VR (Virtual Reality) 기술, AR (Augmented Reality) 기술, MR (Mixed Reality) 기술 및/또는 PCC(Point Cloud Compression)기술은, 다양한 디바이스에 적용 가능하다. VR (Virtual Reality) technology, AR (Augmented Reality) technology, MR (Mixed Reality) technology and/or PCC (Point Cloud Compression) technology according to the embodiments can be applied to various devices.
즉, VR 기술은, 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하는 디스플레이 기술이다. 반면, AR 기술은, 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 보여 주는 기술을 의미한다. 나아가, MR 기술은, 현실세계에 가상 객체들을 섞고 결합시켜서 보여준다는 점에서 전술한 AR 기술과 유사하다. 그러나, AR 기술에서는 현실 객체와 CG 영상으로 만들어진 가상 객체의 구별이 뚜렷하고, 현실 객체를 보완하는 형태로 가상 객체를 사용하는 반면, MR 기술에서는 가상 객체가 현실 객체와 동등한 성격으로 간주된다는 점에서 AR 기술과는 구별이 된다. 보다 구체적으로 예를 들면, 전술한 MR 기술이 적용된 것이 홀로그램 서비스 이다.That is, VR technology is a display technology that provides objects or backgrounds in the real world only as CG images. On the other hand, AR technology refers to a technology that shows a virtually created CG image on a real object image. Furthermore, MR technology is similar to the AR technology described above in that virtual objects are mixed and combined in the real world. However, in AR technology, the distinction between real objects and virtual objects made from CG images is clear, and virtual objects are used in a form that complements the real objects, whereas in MR technology, the virtual objects are regarded as having the same characteristics as the real objects. It is distinct from technology. More specifically, for example, it is a hologram service to which the aforementioned MR technology is applied.
다만, 최근에는 VR, AR, MR 기술을 명확히 구별하기 보다는 XR (extended Reality) 기술로 부르기도 한다. 따라서, 본 발명의 실시예들은 VR, AR, MR, XR 기술 모두에 적용 가능하다. 이러한 기술은 PCC, V-PCC, G-PCC 기술 기반 인코딩/디코딩이 적용될 수 있다.However, recently, VR, AR, and MR technologies are sometimes referred to as XR (extended reality) technology rather than clearly distinguishing between them. Therefore, embodiments of the present invention are applicable to all of VR, AR, MR, and XR technologies. This technology can be applied to encoding/decoding based on PCC, V-PCC, and G-PCC technology.
실시예들에 따른 PCC방법/장치는 자율 주행 서비스를 제공하는 차량에 적용될 수 있다.The PCC method/apparatus according to the embodiments may be applied to a vehicle providing an autonomous driving service.
자율 주행 서비스를 제공하는 차량은 PCC 디바이스와 유/무선 통신이 가능하도록 연결된다. Vehicles providing autonomous driving service are connected to PCC devices to enable wired/wireless communication.
실시예들에 따른 포인트 클라우드 데이터 (PCC) 송수신 장치는 차량과 유/무선 통신이 가능하도록 연결된 경우, 자율 주행 서비스와 함께 제공할 수 있는 AR/VR/PCC 서비스 관련 콘텐트 데이터를 수신/처리하여 차량에 전송할 수 있다. 또한 포인트 클라우드 데이터 송수신 장치 차량에 탑재된 경우, 포인트 클라우드 송수신 장치는 사용자 인터페이스 장치를 통해 입력된 사용자 입력 신호에 따라 AR/VR/PCC 서비스 관련 콘텐트 데이터를 수신/처리하여 사용자에게 제공할 수 있다. 실시예들에 따른 차량 또는 사용자 인터페이스 장치는 사용자 입력 신호를 수신할 수 있다. 실시예들에 따른 사용자 입력 신호는 자율 주행 서비스를 지시하는 신호를 포함할 수 있다.When the point cloud data (PCC) transmission and reception device according to the embodiments is connected to enable wired/wireless communication with the vehicle, the vehicle receives/processes AR/VR/PCC service related content data that can be provided together with the autonomous driving service. Can be transferred to. In addition, when the point cloud data transmission/reception device is mounted on a vehicle, the point cloud transmission/reception device may receive/process AR/VR/PCC service related content data according to a user input signal input through the user interface device and provide it to the user. The vehicle or user interface device according to the embodiments may receive a user input signal. The user input signal according to the embodiments may include a signal indicating an autonomous driving service.
도 18은 실시예들에 따른 포인트 클라우드 콘텐츠를 구성하는 포인트들의 공간의 예시를 나타낸다.18 shows an example of a space of points constituting point cloud content according to embodiments.
실시예들에 따른 포인트 클라우드 데이터는 XYZ 좌표에 기반하여 3차원 상의 공간을 부호화/복호화 단위, 예를 들어 정육면체의 단위로 나타낼 수 있다.Point cloud data according to embodiments may represent a three-dimensional space based on XYZ coordinates in an encoding/decoding unit, for example, a unit of a cube.
실시예들에 따른 방법/장치는 부/복호화 단위에 기반하여 포인트 클라우드 데이터를 부호화/복호화할 수 있다.The method/apparatus according to the embodiments may encode/decode point cloud data based on an encoding/decoding unit.
실시예들에 따른 부/복호화 단위(18000)는 공간의 단위를 나타낸다. 부/복호화 단위는 3차원 좌표에 기반한 정육면체의 박스 형태를 가질 수 있다. The encoding/decoding unit 18000 according to the embodiments represents a unit of space. The encoding/decoding unit may have a box shape of a cube based on 3D coordinates.
실시예들에 따른 서브 기하정보 또는 기하정보(18001)는 부/복호화 단위를 분할한 정보 단위를 나타낸다. 실시예들에 따라서, 이러한 박스는 서브 기하정보 및/또는 기하 정보 등으로 지칭될 수 있다.The sub-geometric information or geometric information 18001 according to the embodiments represents an information unit obtained by dividing an encoding/decoding unit. According to embodiments, such a box may be referred to as sub-geometric information and/or geometric information.
실시예들에 따른 포인트(18002)는 포인트 클라우드 데이터를 나타내는 포인트를 나타낸다. 포인트는 포인트 클라우드 콘텐츠를 나타내고, 기하정보를 나타낸다. Point 18002 according to the embodiments represents a point representing point cloud data. Point represents point cloud content and represents geometric information.
실시예들에 따른 바운딩 박스(18003)는 서브 기하정보 및/또는 기하정보를 포함하는 박스를 나타낸다. 기하정보를 포함하는 포인트들이 분포된 공간을 표현하는 바운딩 박스를 말한다. 실시예들에 따라, 바운딩 박스는 부/복호화 단위를 분할하는 또는 포함되는 박스일 수 있고, 서브 기하정보 또는 기하정보를 포함하거나, 서브 기하정보 또는 기하정보에 대응되는 박스를 말할 수 있다. The bounding box 18003 according to embodiments represents a box including sub geometric information and/or geometric information. It refers to a bounding box expressing a space in which points including geometric information are distributed. Depending on the embodiments, the bounding box may be a box that divides or includes a coding/decoding unit, and may include sub-geometric information or geometric information, or may refer to a box corresponding to sub-geometric information or geometric information.
실시예들에 따른 오프셋(18004)은 서브 기하정보, 기하정보 및/또는 바운딩 박스의 3차원 공간 좌표 상의 위치를 나타내는 값을 나타낸다. XYZ좌표계의 원점을 기준으로 x offset, y offset, z offset 에 기반하여 표현되는 위치에 바운딩 박스가 위치할 수 있다.The offset 18004 according to the embodiments represents a value representing the position of the sub-geometric information, the geometric information, and/or the bounding box on a three-dimensional space coordinate. The bounding box may be positioned at a position expressed based on x offset, y offset, and z offset based on the origin of the XYZ coordinate system.
실시예들에 따른 바운딩 박스 너비, 바운딩 박스 높이, 바운딩 박스 깊이(17005)는 각각 바운딩 박스의 width, height, depth를 나타낸다.The bounding box width, the bounding box height, and the bounding box depth 17005 according to the embodiments represent the width, height, and depth of the bounding box, respectively.
실시예들에 따른 포인트 클라우드 데이터 또는 포인트 클라우드 콘텐츠는 3차원 포인트 클라우드 데이터를 나타낸다. Point cloud data or point cloud content according to embodiments represents 3D point cloud data.
실시예들에 따른 방법/장치는 실시예들에 따른 포인트 클라우드 데이터 송신 방법/장치 및/또는 수신 방법/장치를 나타낸다.A method/apparatus according to embodiments represents a method/apparatus for transmitting and/or receiving point cloud data according to the embodiments.
실시예들에 따른 방법/장치는 3차원 포인트 클라우드(point cloud) 데이터 압축을 위한 Geometry-based Point Cloud Compression (G-PCC)의 포인트의 위치 정보 (기하정보) 압축을 향상을 위한 방안에 관한 것이다. The method/apparatus according to the embodiments relates to a method for improving compression of location information (geometric information) of points in Geometry-based Point Cloud Compression (G-PCC) for compressing 3D point cloud data. .
실시예들에 따른 방법/장치는 포인트 클라우드 데이터를 구성하는 포인트의 기하 정보를 효과적으로 압축할 수 있도록 하기 위하여 포인트 클라우드의 기하정보를 분할하고 이를 효과적으로 예측할 수 있는 방안을 제안한다. The method/apparatus according to the embodiments proposes a method of dividing the geometric information of a point cloud and effectively predicting it in order to effectively compress the geometric information of a point constituting the point cloud data.
도면에 도시된 바와 같이, 포인트 클라우드 콘텐츠를 구성하는 포인트들이 공간 상의 일부 영역으로 편중되어 존재할 수 있다. 이러한 경우 포인트들의 기하정보를 나타내는 옥트 트리 상에서 포인트가 존재하지 않는 영역에 대해 존재하지 않음을 나타내는 occupancy 정보를 부호화 해서 전달해 주어야 한다.As shown in the drawing, points constituting the point cloud content may exist while being biased to a partial area in space. In this case, occupancy information indicating that the point does not exist should be encoded and transmitted to the region where the point does not exist on the oct tree indicating the geometric information of the points.
실시예들이 제안한 방안은 포인트 클라우드 콘텐츠의 포인트들이 존재하지 않는 영역의 포인트들의 occupancy 정보를 부호화 해서 전달해 주는 대신 복호화기에서 유도할 수 있는 방안을 제안한다. The scheme proposed by the embodiments proposes a scheme that can be derived from a decoder instead of encoding and transmitting occupancy information of points in an area where points of point cloud content do not exist.
이를 통하여 기하정보의 부화화를 수행해야 하는 정보량을 감소시킴으로써, 포인트 클라우드의 위치 정보(기하정보)에 대한 압축 향상을 시킬 수 있다.Through this, it is possible to improve compression of the location information (geometric information) of the point cloud by reducing the amount of information that must be performed to hatch the geometric information.
실시예들에 따른 포인트 클라우드 데이터는 공간을 표현하기 위해서 부호화/복호화 단위로 공간을 나누어 나타낼 수 있다.Point cloud data according to embodiments may be represented by dividing a space into an encoding/decoding unit to represent a space.
예를 들어, 부/복호화 단위는 직육면체(또는 정육면체 등)의 형태일 수 있다.For example, the encoding/decoding unit may be in the form of a rectangular parallelepiped (or a cube, etc.).
실시예들에 따른 방법/장치는 포인트 클라우드 콘텐츠의 포인트들이 존재하지 않는 영역의 포인트들의 occupancy 정보를 부호화 해서 전달해 주는 대신 복호화기에서 유도할 수 있는 방안을 제안한다. 이를 통하여 기하정보의 부호화 해야 하는 정보량을 감소시킴으로써, 포인트 클라우드의 위치 정보(기하정보)에 대한 압축 향상을 시킬 수 있다. The method/apparatus according to the embodiments proposes a method that can be derived from a decoder instead of encoding and transmitting occupancy information of points in an area where points of point cloud content do not exist. Through this, by reducing the amount of information to be encoded for the geometric information, it is possible to improve compression of the location information (geometric information) of the point cloud.
도 19는 실시예들에 따른 포인트 클라우드 부호화기의 예시를 나타낸다.19 shows an example of a point cloud encoder according to embodiments.
실시예들에 따른 부호화기는 PCC 부호화기로 지칭될 수 있고, 도면에서 보는 바와 같이 기하정보 부호화기 또는/그리고 속성정보 부호화기로 구성될 수 있다.The encoder according to the embodiments may be referred to as a PCC encoder, and as shown in the drawing, may be configured with a geometric information encoder or/and an attribute information encoder.
실시예들에 따른 부호화기의 실시예들에 따른 각 구성요소를 설명하면 다음과 같다.Each component according to embodiments of the encoder according to the embodiments will be described as follows.
공간분할부(19000)는 PCC데이터를 수신한다. 공간분할부는 PCC데이터를 3차원 블록으로 공간분할할 수 있다. 실시예들에 따라 공간분할부는 바운딩 박스 및/또는 서브 바운딩 박스 등에 기반하여 포인트 클라우드 데이터(PCC데이터)를 공간 분할할 수 있고, 실시예들에 따른 방법/장치는 분할된 단위(박스)에 기반하여 인코딩/디코딩을 수행할 수 있다.The space division unit 19000 receives PCC data. The spatial division unit may spatially divide PCC data into 3D blocks. According to embodiments, the spatial division unit may spatially divide point cloud data (PCC data) based on a bounding box and/or a sub-bounding box, and the method/device according to the embodiments is based on a divided unit (box). Thus, encoding/decoding can be performed.
기하정보 부호화부(19001)는 지오메트리 정보(또는 기하 정보)를 인코딩할 수 있다. 부호화부는 인코딩된 지오메트리 정보를 포함하는 비트스트림을 생성할 수 있다. 부호화부는 복원(리컨스럭션)된 지오메트리 정보를 생성할 수 있다.The geometry information encoding unit 19001 may encode geometry information (or geometry information). The encoder may generate a bitstream including the encoded geometry information. The encoding unit may generate reconstructed (reconstructed) geometry information.
속성정보 부호화부(19002)는 공간분할된 PCC데이터 및 복원된 기하정보를 수신할 수 있다. 부호화부는 수신된 데이터를 인코딩하여 어트리뷰트 정보(또는 속성 정보)를 포함하는 비트스트림을 생성할 수 있다. 속성정보 부호화부는 복원된 기하정보에 기반하여 속성정보를 부호화할 수 있다.The attribute information encoding unit 19002 may receive spatially divided PCC data and reconstructed geometric information. The encoder may generate a bitstream including attribute information (or attribute information) by encoding the received data. The attribute information encoder may encode attribute information based on the reconstructed geometric information.
실시예들에 따라, 공간분할부, 기하정보 부호화부, 속성정보 부호화부는 하드웨어, 소프트웨어, 프로세서 및/또는 그것들의 조합에 대응할 수 있다.According to embodiments, the spatial division unit, the geometric information encoding unit, and the attribute information encoding unit may correspond to hardware, software, a processor, and/or a combination thereof.
실시예들에 따른 PCC 데이터는 포인트의 기하정보 또는/그리고 속성정보로 구성될 수 있다. The PCC data according to embodiments may be composed of geometric information or/and attribute information of a point.
Figure PCTKR2020001615-appb-img-000005
Figure PCTKR2020001615-appb-img-000005
실시예들에 따른 속성정보는 포인트의 색을 나타내는 벡터 (R,G,B) 또는/그리고 밝기 값 또는/그리고 라이다의 반사계수 또는/그리고 열화상 카메라로 부터 얻은 온도 값과 같이 하나 또는 다수개의 센서로 부터 획득한 값의 벡터일 수 있다. The attribute information according to the embodiments is one or more, such as a vector representing the color of a point (R, G, B) or/and a brightness value or/and a reflection coefficient of a lidar or/and a temperature value obtained from a thermal imaging camera. It may be a vector of values obtained from two sensors.
실시예들에 따른 공간 분할부는 입력된 PCC 데이터를 적어도 하나의 3차원 블록으로 분할 할 수 있다. 이때, 블록은 부호화 단위(CU), 예측 단위(PU) 또는 변환 단위(TU)를 의미할 수 있다. 상기 분할은 옥트리(Octree), 쿼드 트리(Quadtree), 바이너리 트리(Biniary tree), 트리플 트리(Triple tree), k-d 트리 중 적어도 하나에 기반하여 수행될 수 있다. 실시예들에 따른 포인트 클라우드 데이터(PCC데이터)는 3차원 공간 상에 포인트들이 다양하게 분포된 형태를 가질 수 있다. 실시예들에 따른 방법/장치는 포인트 클라우드 데이터의 효율적인 인코딩/디코딩을 위해서 다양하게 분포된 포인트들을 분할된 공간 박스에 기반하여 처리할 수 있다.The spatial division unit according to embodiments may divide the input PCC data into at least one 3D block. In this case, the block may mean a coding unit (CU), a prediction unit (PU), or a transformation unit (TU). The partitioning may be performed based on at least one of an octree, a quadtree, a binary tree, a triple tree, and a k-d tree. Point cloud data (PCC data) according to embodiments may have a form in which points are variously distributed in a 3D space. The method/apparatus according to the embodiments may process variously distributed points based on a divided spatial box for efficient encoding/decoding of point cloud data.
실시예들에 따른 기하정보 부호화부는 입력 받은 기하정보를 부호화 기하정보 비트스트림과 복원기하정보를 생성한다. 생성된 비트스트림은 PCC 복호화기로 전송될 수 있다. 또한, 생성된 복원기하정보는 속성정보 부호화부로 입력될 수 있다. The geometric information encoding unit according to embodiments generates an encoded geometric information bitstream and reconstructed geometric information from the received geometric information. The generated bitstream may be transmitted to the PCC decoder. In addition, the generated reconstructed geometric information may be input to the attribute information encoding unit.
실시예들에 따른 속성정보 부호화부는 입력 받은 속성정보를 입력 받아 속성정보 비트스트림을 생성한다. 생성된 속성정보 비트스트림은 PCC 복호화기로 전송될 수 있다. The attribute information encoding unit according to embodiments receives the received attribute information and generates an attribute information bitstream. The generated attribute information bitstream may be transmitted to the PCC decoder.
실시예들에 따른 방법/장치, 예를 들어, 공간분할부는 공간분할 프로세스에 기반하여 포인트 클라우드 콘텐츠의 포인트들이 존재하지 않는 영역의 포인트들의 occupancy 정보를 부호화 해서 전달해 주는 대신 복호화기에서 유도할 수 있는 방안을 제안한다. 이를 통하여 기하정보의 부호화 해야 하는 정보량을 감소시킴으로써, 포인트 클라우드의 위치 정보(기하정보)에 대한 압축 향상을 시킬 수 있다. Method/apparatus according to embodiments, for example, the spatial division unit, which can be derived from a decoder, instead of encoding and delivering occupancy information of points in an area where points of point cloud content do not exist based on the spatial division process. Suggest a plan. Through this, by reducing the amount of information to be encoded for the geometric information, it is possible to improve compression of the location information (geometric information) of the point cloud.
실시예들에 따른 포인트 클라우드 데이터 송신 방법은 포인트 클라우드 데이터를 공간 분할하는 단계를 더 포함할 수 있다.The point cloud data transmission method according to the embodiments may further include spatially dividing the point cloud data.
실시예들에 따른 포인트 클라우드 데이터 수신 방법은 포인트 클라우드 데이터를 공간 분할하는 단계를 더 포함할 수 있다.The method of receiving point cloud data according to embodiments may further include the step of spatially dividing the point cloud data.
도 20은 실시예들에 따른 기하정보 부호화기의 예시를 나타낸다.20 shows an example of a geometric information encoder according to embodiments.
실시예들에 따른 기하정보 부호화기의 실시예들에 따른 각 구성요소를 설명하면 다음과 같다.Each component according to embodiments of the geometric information encoder according to embodiments will be described as follows.
좌표계 변환부(2001)는 위치정보에 해당하는 기하정보를 수신하고, 기하정보의 좌표계를 변환할 수 있다.The coordinate system conversion unit 2001 may receive geometric information corresponding to the location information and convert a coordinate system of the geometric information.
기하정보 변환양자화부(2002)는 기하정보를 양자화할 수 있다.The geometric information conversion quantization unit 2002 can quantize geometric information.
잔차기하정보 양자화부(2003)는 양자화된 기하정보 및/또는 예측된 기하정보에 기반하여 생성된 잔차 기하정보를 양자화할 수 있다. 예를 들어, 잔차 값은 기하정보에서 예측된 기하정보를 감산함으로써 생성될 수 있다.The residual geometric information quantization unit 2003 may quantize the quantized geometric information and/or the residual geometric information generated based on the predicted geometric information. For example, the residual value can be generated by subtracting the predicted geometric information from the geometric information.
기하정보 엔트로피 부호화부(2004)는 기하정보를 엔트로피 인코딩 방식에 기반하여 인코딩할 수 있다. 기하정보 엔트로피 부호화부는 기하정보를 포함하는 비트스트림을 생성할 수 잇다.The geometric information entropy encoder 2004 may encode geometric information based on an entropy encoding method. The geometric information entropy encoding unit may generate a bitstream including geometric information.
잔차기하정보 역양자화부(2005)는 잔차 기하정보를 역으로 양자화할 수 있다.The residual geometric information inverse quantization unit (2005) may inversely quantize the residual geometric information.
필터링부(1906)는 역양자화된 기하정보 및 예측된 기하정보에 기반하여 필터링을 수행할 수 있다. 예를 들어, 예측된 기하정보 및 잔차 기하정보를 합산함으로써 생성된 데이터를 필터링할 수 있다The filtering unit 1906 may perform filtering based on the inverse quantized geometric information and the predicted geometric information. For example, it is possible to filter the generated data by summing the predicted geometric information and residual geometric information.
메모리부(2007)는 필터링된 데이터에 기반하여 기하정보를 저장할 수 있다. 메모리부는 저장된 기하정보에 기반하여 복원된 기하정보를 생성할 수 있다.The memory unit 2007 may store geometric information based on the filtered data. The memory unit may generate the restored geometric information based on the stored geometric information.
기하정보 예측부(2008)는 메모리에 저장된 기하정보에 기반하여 기하정보를 예측할 수 있다. 기하정보 예측부는 예측 데이터를 잔차기하정보 양자화부 및/또는 전차기하정보 역양자화부에 전달할 수 있다.The geometric information prediction unit 2008 may predict geometric information based on the geometric information stored in the memory. The geometric information prediction unit may transmit the predicted data to the residual geometric information quantization unit and/or the full vehicle geometric information inverse quantization unit.
실시예들에 따른 기하정보 부호화기의 각 엘리먼트는 하드웨어, 소프트웨어, 프로세서 및/또는 그것들의 조합 등에 대응될 수 있다.Each element of the geometric information encoder according to the embodiments may correspond to hardware, software, a processor, and/or a combination thereof.
실시예들에 따른 기하정보 부호화부는 좌표계 변환부, 기하정보 변환양자화부, 잔차기하정보 양자화부, 기하정보 엔트로피 부호화부, 잔차기하정보 역양자화부, 메모리, 기하정보 예측부를 포함할 수 있다. The geometric information encoding unit according to embodiments may include a coordinate system transforming unit, a geometric information transforming quantization unit, a residual geometric information quantizing unit, a geometric information entropy encoding unit, a residual geometric information inverse quantizing unit, a memory, and a geometric information predicting unit.
실시예들에 따른 좌표계 변환부는 기하정보를 입력으로 받아 기존 좌표계와 다른 좌표계로 변환할 수 있다. 또는 좌표계 변환을 수행하지 않을 수 있다. 좌표계 변환된 기하정보는 기하정보 변환양자화부로 입력될 수 있다. The coordinate system conversion unit according to the embodiments may receive geometric information as an input and convert it into a coordinate system different from the existing coordinate system. Alternatively, coordinate system transformation may not be performed. The geometric information converted by the coordinate system may be input to the geometric information conversion quantization unit.
실시예들에 따른 좌표계 변환 여부 및 좌표계 정보는 시퀀스, 프레임, 타일, 슬라이스, 블록 등의 단위로 시그널링 될 수 있고 또는 주변 블록의 좌표계 변환여부 블록의 크기, 포인트의 개수, 양자화 값, 블록 분할 깊이, 단위의 위치, 단위와 원점과의 거리 등을 사용하여 유도될 수 있다.Whether the coordinate system is transformed and the coordinate system information according to embodiments may be signaled in units such as a sequence, frame, tile, slice, or block, or whether the coordinate system of neighboring blocks is transformed or not , It can be derived using the location of the unit, and the distance between the unit and the origin.
실시예들에 따른 변환 하고자 하는 좌표계 정보는 좌표계 변환 여부를 확인 한 후 좌표계 변환 한다면 좌표계 정보는 시퀀스, 프레임, 타일, 슬라이스, 블록 등의 단위로 시그널링 될 수 있고 또는 주변 블록의 좌표계 변환여부 블록의 크기, 포인트의 개수, 양자화 값, 블록 분할 깊이, 단위의 위치, 단위와 원점과의 거리 등을 사용하여 유도될 수 있다.If the coordinate system information to be converted according to the embodiments is converted to the coordinate system after checking whether the coordinate system is converted, the coordinate system information may be signaled in units such as sequence, frame, tile, slice, block, etc. It can be derived using the size, number of points, quantization value, block division depth, unit location, and distance between the unit and the origin.
실시예들에 따른 기하정보 변환양자화부는 기하정보를 입력으로 받아 위치 변환 또는/그리고 회전 변환과 같이 하나 또는 다수개의 변환을 적용하고 양자화 값으로 기하정보를 나누어 양자화 하여 변환양자화된 기하정보를 생성한다. 변환양자화된 기하정보는 기하정보 엔트로피 부호화부와 잔차기하정보 양자화부로 입력될 수 있다. The geometric information transform quantization unit according to the embodiments receives geometric information as input, applies one or more transforms such as position transform or/and rotation transform, divides the geometric information by a quantization value, and quantizes the transformed quantized geometric information. . The transformed quantized geometric information may be input to a geometric information entropy encoding unit and a residual geometric information quantizing unit.
실시예들에 따른 기하정보 예측부는 메모리의 포인트들의 기하정보를 통해 기하정보를 예측 하여 예측된 기하정보를 생성한다. 예측에 사용된 예측 정보는 엔트로피 부호화를 수행하여 예측 정보를 부호화 할 수 있다. The geometric information prediction unit according to embodiments predicts geometric information through geometric information of points in a memory and generates predicted geometric information. The prediction information used for prediction may be encoded by performing entropy encoding.
실시예들에 따른 잔차기하정보 양자화부는 변환양자화된 기하정보와 예측된 기하정보를 차분한 잔차 기하정보를 입력 받아 양자화 값으로 양자화 하여 양자화된 잔차기하정보를 생성한다. 양자화된 잔차기하정보는 기하정보 엔트로피 부호화부와 잔차기하정보 역양자화부로 입력 될 수 있다. The residual geometric information quantization unit according to embodiments receives residual geometric information obtained by differentiating the transformed-quantized geometric information and the predicted geometric information, and quantizes it into a quantized value to generate quantized residual geometric information. Quantized residual geometric information may be input to a geometric information entropy encoding unit and a residual geometric information inverse quantization unit.
실시예들에 따른 기하정보 엔트로피 부호화부는 양자화된 잔차기하정보 혹은 기하 정보를 입력 받아 엔트로피 부호화를 수행 할 수 있다. 엔트로피 부호화는 예를 들어, 지수 골롬(Exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding)과 같은 다양한 부호화 방법을 사용할 수 있다.The geometric information entropy encoding unit according to embodiments may receive quantized residual geometric information or geometric information and perform entropy encoding. Entropy coding may use various coding methods such as Exponential Golomb, Context-Adaptive Variable Length Coding (CAVLC), and Context-Adaptive Binary Arithmetic Coding (CABAC).
실시예들에 따른 잔차기하정보 역양자화부는 양자화된 잔차기하정보를 입력받아 양자화 값으로 스케일링 하여 잔차기하정보를 복원한다. 복원된 잔차기하정보는 상기 예측된 기하정보와 더하여 기하정보로 복원될 수 있다. The residual geometric information inverse quantization unit according to embodiments receives the quantized residual geometric information and restores the residual geometric information by scaling the quantized value. The restored residual geometric information may be restored to geometric information in addition to the predicted geometric information.
실시예들에 따른 필터링부에서는 복원된 기하정보에 필터링을 수행할 수 있다. 필터링에 관련된 정보를 엔트로피 부호화를 수행하여 부호화될 수 있다.The filtering unit according to embodiments may perform filtering on the reconstructed geometric information. Information related to filtering may be encoded by performing entropy encoding.
실시예들에 따른 메모리는 필터링부를 통해 산출된 기하정보를 저장할 수 있다. 저장된 기하정보는 예측을 수행 시 기하정보 예측부에 제공될 수 있다.The memory according to embodiments may store geometric information calculated through a filtering unit. The stored geometric information may be provided to the geometric information prediction unit when performing prediction.
도 21은 실시예들에 따른 포인트 클라우드 데이터의 기하정보의 바운딩 박스를 나타낸다.21 illustrates a bounding box of geometric information of point cloud data according to embodiments.
실시예들에 따른 기하정보는 실시예들에 따른 바운딩 박스에 기반하여 분할될 수 있다.The geometric information according to the embodiments may be divided based on the bounding box according to the embodiments.
실시예들에 따른 바운딩 박스(2100)는 기하정보를 포함하는 최소 크기의 직육면체(또는 정육면체 등) 형태의 영역을 말한다.The bounding box 2100 according to the embodiments refers to an area in the form of a rectangular parallelepiped (or a cube, etc.) having a minimum size including geometric information.
예를 들어, 기하정보를 포함하는 바운딩 박스가 4 개의 서브 기하정보를 포함하는 박스로 구분될 수 있다. For example, a bounding box including geometric information may be divided into a box including four sub-geometric information.
실시예들에 따른 서브 바운딩 박스(2101)는 바운딩 박스에 포함되는 기하정보를 포함하는 서브 박스를 말한다.The sub-bounding box 2101 according to the embodiments refers to a sub-box including geometric information included in the bounding box.
실시예들에 따른 부/복호화 단위(2102)는 하나 또는 하나 이상의 서브 기하정보 또는 기하정보를 포함할 수 있고, 하나 또는 하나 이상의 바운딩 박스 및/또는 서브 바운딩 박스를 포함할 수 있다.The sub/decoding unit 2102 according to the embodiments may include one or more sub geometric information or geometric information, and may include one or more bounding boxes and/or sub bounding boxes.
실시예들에 따른 방법/장치는 바운딩 박스에 기반하여 공간 상에 분포된 포인트들, 기하정보를 효율적으로 인코딩/디코딩할 수 있다.The method/apparatus according to the embodiments may efficiently encode/decode points and geometric information distributed in space based on the bounding box.
실시예들에 따른 방법/장치는 Point cloud 콘텐츠의 기하 정보 분할 기법을 제공할 수 있다.The method/apparatus according to the embodiments may provide a technique for dividing geometric information of point cloud content.
도면에서 보는 바와 같이, Point cloud 콘텐츠의 기하정보는 바운딩 박스(바운딩박스는 기하정보를 포함하고 있는 최소 크기의 직육면체 모양의 영역을 가리킬 수 있다) 단위로 분할 할 수 있다.As shown in the figure, the geometric information of the point cloud content can be divided into a bounding box (the bounding box may refer to a rectangular area of the smallest size including the geometric information).
실시예들에 따른 바운딩박스는 크기가 균등한 또는 균등하지 않은 한 개 또는 다수개의 서브 바운딩박스로 분할되어 서로 의존적 또는 독립적으로 부/복호화 될 수 있다.The bounding box according to the embodiments may be divided into one or a plurality of sub-bounding boxes of equal or non-uniform size and may be encoded/decoded independently or dependent on each other.
실시예들에 따른 서브 바운딩박스 또는 바운딩박스를 포함하는 최소 크기의 정사각형 형태로 부/복호화 단위를 구성할 수 있다. 기하정보가 서브 기하정보로 분할되지 않을 경우, 기하정보를 포함하는 최소 크기의 정사각형 형태로 부/복호화 단위를 구성할 수 있다.The encoding/decoding unit may be configured in a square shape having a minimum size including a sub-bounding box or a bounding box according to embodiments. When the geometric information is not divided into sub-geometric information, the encoding/decoding unit may be configured in a square shape having the smallest size including the geometric information.
실시예들에 따른 부/복호화 단위를 옥트트리 구조로 분할하여 기하정보를 표현할 수 있다.Geometry information may be expressed by dividing the sub/decoding unit according to the embodiments into an oct tree structure.
실시예들에 따른 부/복호화 단위의 좌표, 부/복호화 단위의 크기, 부/복호화 단위의 개수, 최소 노드 크기, 최대 노드 분할 깊이, 바운딩박스의 좌표, 바운딩박스의 너비, 높이, 깊이 정보, 포인트의 개수 등에 대한 정보가 상위단계정보에 존재할 수 있다.Coordinates of coding/decoding units, size of coding/decoding units, number of coding/decoding units, minimum node size, maximum node division depth, coordinates of bounding box, width, height, depth information of the bounding box, according to embodiments Information about the number of points, etc. may exist in the upper level information.
실시예들에 따른 방법/장치는 기하정보의 바운딩박스에 기반하여 포인트 클라우드 콘텐츠의 포인트들이 존재하지 않는 영역의 포인트들의 occupancy 정보를 부호화 해서 전달해 주는 대신 복호화기에서 유도할 수 있는 방안을 제안한다. 이를 통하여 기하정보의 부호화 해야 하는 정보량을 감소시킴으로써, 포인트 클라우드의 위치 정보(기하정보)에 대한 압축 향상을 시킬 수 있다. The method/apparatus according to the embodiments proposes a method that can be derived from a decoder instead of encoding and transmitting occupancy information of points in an area where points of point cloud content do not exist based on a bounding box of geometric information. Through this, by reducing the amount of information to be encoded for the geometric information, it is possible to improve compression of the location information (geometric information) of the point cloud.
도 22는 실시예들에 따른 공간분할부의 동작의 예시를 나타낸다.22 shows an example of an operation of a space dividing unit according to embodiments.
실시예들에 따른 공간분할부는 상위레벨정보 파싱(2200), 바운딩박스의 서브바운딩박스로의 분할, 부/복호화 단위 구성(2201) 및/또는 부/복호화 단위의 분할정보 파싱 또는 유도(2202)를 수행할 수 있다. 실시예들에 따른 각 구성요소를 설명하면 다음과 같다.The spatial division unit according to the embodiments parses higher-level information (2200), divides the bounding box into sub-bounding boxes, configures a coding/decoding unit (2201), and/or parses or derives divided information of a sub/decoding unit (2202). You can do it. Each component according to the embodiments will be described as follows.
상위레벨정보 파싱(2200)은 실시예들에 따른 수신 방법/장치가 포인트 클라우드 데이터에 포함된 시그널링 정보(또는 파라미터 세트)을 파싱하는 과정을 나타낸다. 예를 들어, 상위레벨정보는 실시예들에 따른 시그널링 정보 또는 파라미터 세트를 의미하고, 실시예들에 따른 공간분할부에 관련된 정보를 포함할 수 있다. 실시예들에 따른 송신 방법/장치는 공간분할을 수행하고, 공간분할에 관련된 시그널링 정보를 상위레벨정보로서 상위레벨정보에 포함시킬 수 있다.The high-level information parsing 2200 represents a process in which the receiving method/device according to the embodiments parses signaling information (or parameter set) included in the point cloud data. For example, the high-level information means signaling information or a parameter set according to embodiments, and may include information related to a spatial division unit according to embodiments. The transmission method/apparatus according to the embodiments may perform spatial partitioning and include signaling information related to spatial partitioning as higher level information in higher level information.
바운딩박스의 서브바운딩박스로의 분할, 부/복호화 단위 구성(2201)은 실시예들에 따른 송신/수신 방법/장치가 공간분할 과정에서 포인트 클라우드 데이터의 공간을 분할하여 나타내는 과정을 나타낸다. 실시예들에 따라, 포인트 클라우드 데이터의 포인트들은 바운딩 박스로 분할될 수 있다. 실시예들에 따라, 바운딩 박스는 하나 이상의 서브 바운딩 박스로 분할될 수 있다. 실시예들에 따라, 바운딩박스/서브 바운딩 박스는 부/복호화 단위를 구성할 수 있다. 실시예들에 따른 방법/장치는 부/복호화 단위를 바운딩박스/서브바운딩박스에 기반하여 분포된 포인트들을 효율적으로 부호화/복호화할 수 있는 효과를 제공한다.The division of the bounding box into sub-bounding boxes and the configuration of a decoding/decoding unit 2201 represents a process in which the transmission/reception method/device according to the embodiments divides and represents the space of the point cloud data in the space division process. According to embodiments, points of point cloud data may be divided into bounding boxes. According to embodiments, the bounding box may be divided into one or more sub bounding boxes. According to embodiments, the bounding box/subbounding box may constitute an encoding/decoding unit. The method/apparatus according to embodiments provides an effect of efficiently encoding/decoding points distributed based on a bounding box/subbounding box in a coding/decoding unit.
부/복호화 단위의 분할정보 파싱 또는 유도(2202)는 실시예들에 따른 송신 방법/장치가 부호화(인코딩)을 위해서 필요한 부호화 단위 및/또는 분할정보를 획득하는 과정, 또는 실시예들에 따른 수신 방법/장치가 복호화(디코딩)을 위해서 필요한 복호화 단위 및/또는 분할정보를 획득하는 과정을 나타낸다.Parsing or deriving split information 2202 of a sub/decoding unit is a process in which a transmission method/device according to embodiments acquires coding units and/or split information necessary for encoding (encoding), or reception according to embodiments. It represents a process in which a method/apparatus obtains a decoding unit and/or split information required for decoding (decoding).
실시예들에 따른 기하 정보를 분할하는 공간 분할부는 도면에서 보는 바와 같이, 상위레벨정보 파싱 단계, 기하정보의 서브기하정보로의 분할, 부/복호화 단위 정보 파싱 또는 유도, 부/복호화 단위의 분할 정보 파싱 또는 유도 단계를 포함 할 수 있다. 해당 공간 분할부는 실시예들에 따른 옥트트리 코딩의 단계에서 적용될 수 있다.As shown in the drawing, the spatial division unit for dividing geometric information according to embodiments includes a step of parsing high-level information, division of geometric information into sub-geometric information, parsing or deriving encoding/decoding unit information, and division of encoding/decoding units. It may involve parsing or deriving information. The spatial division unit may be applied in the octtree coding step according to the embodiments.
실시예들에 따른 복호화기에서 부/복호화 단위의 좌표, 부/복호화 단위의 크기, 부/복호화 단위의 개수, 최소 노드 크기, 최대 노드 분할 깊이, 바운딩박스의 좌표, 영역의 너비, 높이, 깊이 정보, 기하정보의 개수 등이 상위레벨정보에서 파싱 또는 유도될 수 있다.In the decoder according to the embodiments, coordinates of encoding/decoding units, size of encoding/decoding units, number of encoding/decoding units, minimum node size, maximum node division depth, coordinates of bounding box, width, height, depth of region The number of information, geometric information, etc. may be parsed or derived from higher level information.
실시예들에 따른 바운딩박스를 서브 바운딩박스로 분할할 수 있다. 서브바운딩박스의 좌표, 크기, 개수 등을 상위레벨정보에서 파싱하여 서브기하정보의 분할 정보를 알아낼 수 있다. 서브바운딩박스를 포함하는 최소 크기의 직육면체 형태로 부/복호화 단위를 설정할 수 있다.The bounding box according to the embodiments may be divided into sub bounding boxes. By parsing the coordinates, size, and number of sub-bounding boxes from high-level information, division information of sub-geometric information can be found. The encoding/decoding unit can be set in the form of a rectangular parallelepiped having a minimum size including a subbounding box.
실시예들에 따른 부/복호화 단위의 분할여부, 분할방식, 노드 내 기하 정보 존재 여부 등을 파싱 또는 유도하여 알아낼 수 있다. 노드를 분할할 경우 분할에 의해 자식 노드가 생성될 수 있고, 노드의 분할이 중단될 때까지 노드 분할을 반복하여 수행할 수 있다. 노드와 서브 바운딩박스의 영역이 겹치지 않는 경우, 노드에 기하정보가 존재하지 않는다고 판단하여 노드 분할의 중단을 의미하는 분할여부가 유도될 수 있다. According to embodiments, whether or not a coding/decoding unit is divided, a division method, and whether or not geometric information exists within a node may be parsed or derived to find out. When a node is divided, child nodes can be created by division, and node division can be repeatedly performed until division of the node is stopped. If the regions of the node and the sub-bounding box do not overlap, it is determined that geometric information does not exist in the node, and whether or not the node is divided may be derived.
실시예들에 따른 노드의 좌표정보, 노드의 크기, 서브바운딩박스의 좌표정보, 서브바운딩박스의 크기 등을 이용하여 노드와 바운딩박스의 영역이 겹치는 지의 여부를 판단할 수 있다. 다음과 같은 경우는 노드와 바운딩박스의 영역이 겹치지 않는다고 판단할 수 있다.It is possible to determine whether or not the node and the bounding box area overlap using the coordinate information of the node, the size of the node, the coordinate information of the subbounding box, and the size of the subbounding box according to the embodiments. In the following cases, it can be determined that the regions of the node and the bounding box do not overlap.
실시예들에 따른 노드의 최소 x좌표가 서브바운딩박스의 최대 x좌표보다 클 경우 또는When the minimum x-coordinate of the node according to the embodiments is greater than the maximum x-coordinate of the subbounding box or
실시예들에 따른 노드의 최소 y좌표가 서브바운딩박스의 최대 y좌표보다 클 경우 또는When the minimum y coordinate of the node according to the embodiments is greater than the maximum y coordinate of the subbounding box or
실시예들에 따른 노드의 최소 z좌표가 서브바운딩박스의 최대 z좌표보다 클 경우 또는When the minimum z-coordinate of the node according to the embodiments is greater than the maximum z-coordinate of the subbounding box or
실시예들에 따른 노드의 최대 x좌표가 모두 서브바운딩박스의 최소 x좌표보다 작을 경우 또는If the maximum x-coordinates of the nodes according to the embodiments are all less than the minimum x-coordinates of the subbounding box or
실시예들에 따른 노드의 최대 y좌표가 모두 서브바운딩박스의 최소 y좌표보다 작을 경우 또는When the maximum y coordinates of the nodes according to the embodiments are all less than the minimum y coordinates of the subbounding box or
실시예들에 따른 노드의 최대 z좌표가 모두 서브바운딩박스의 최소 z좌표보다 작을 경우When the maximum z-coordinates of the nodes according to the embodiments are all less than the minimum z-coordinates of the subbounding box
실시예들에 따른 노드와 바운딩박스의 영역이 겹치는 경우, 노드의 분할 여부, 분할 방식, 노드 내 기하 정보 존재 여부 등을 파싱 또는 유도할 수 있다. 노드와 바운딩박스의 영역이 겹치고 노드의 크기가 최소 노드 크기와 동일한 경우, 노드의 분할을 중단을 의미하는 분할 여부가 유도될 수 있고 노드 내 포인트의 존재 여부가 유도 또는 파싱 될 수 있다.When the regions of the node and the bounding box according to the embodiments overlap, it is possible to parse or derive whether the node is divided, the division method, and whether or not geometric information exists in the node. When the regions of the node and the bounding box overlap and the size of the node is the same as the minimum node size, whether or not the node is divided can be derived, meaning that the division of the node is stopped, and the existence of a point in the node can be derived or parsed.
실시예들에 따른 포인트 클라우드 콘텐츠를 구성하는 포인트 들이 공간 상에 일부 영역으로 편중되어 존재할 수 있다. 이러한 경우 포인트들의 옥트트리 상에서 존재하지 않는 영역에 대해 존재하지 않음을 나타내는 occupancy정보를 기하정보 부호화기에서 부호화 해야 한다. 하지만 하기 그림에서 보는 바와 같이 실제 데이터가 존재하는 영역에 대한 바운딩 박스 정보 등을 전달하고 해당 바운딩 박스 영역에 존재하는 포인트들에 해당하는 기하정보 옥트 트리에 대해서만 기하정보 부호화를 진행할 수 있다. 하나의 포인트 클라우드 콘텐츠는 하나 이상의 바운딩 박스로 나뉠 수 있으며 각 바운딩 박스 혹은 서브 바운딩 박스 단위로 기하정보가 부호화 될 수 있다. Points constituting the point cloud content according to the embodiments may exist in a partial area in a space. In this case, occupancy information indicating non-existence for a region that does not exist in the octtree of points must be encoded by the geometry information encoder. However, as shown in the figure below, it is possible to transmit the bounding box information for the area where the actual data exists, and perform geometric information encoding only for the geometric information oct tree corresponding to the points existing in the corresponding bounding box area. One point cloud content may be divided into one or more bounding boxes, and geometric information may be encoded in units of each bounding box or sub bounding box.
실시예들에 따른 방법/장치의 공간분할부 또는 공간분할 단계는 포인트 클라우드 콘텐츠의 포인트들이 존재하지 않는 영역의 포인트들의 occupancy 정보를 부호화 해서 전달해 주는 대신 복호화기에서 유도할 수 있는 방안을 제안한다. 이를 통하여 기하정보의 부호화 해야 하는 정보량을 감소시킴으로써, 포인트 클라우드의 위치 정보(기하정보)에 대한 압축 향상을 시킬 수 있다. In the spatial dividing unit or the spatial dividing step of the method/apparatus according to the embodiments, instead of encoding and transmitting occupancy information of points in a region where points of point cloud content do not exist, a method that can be derived from a decoder is proposed. Through this, by reducing the amount of information to be encoded for the geometric information, it is possible to improve compression of the location information (geometric information) of the point cloud.
실시예들에 따른 포인트 클라우드 데이터 송신 방법은 포인트 클라우드 데이터가 바운딩 박스로 분할되는 과정 관련하여, 바운딩 박스 분할 단계를 포함할 수 있다.A method of transmitting point cloud data according to embodiments may include a step of dividing a bounding box in relation to a process of dividing the point cloud data into bounding boxes.
실시예들에 따른 인코딩하는 단계는 상기 공간 분할에 관련된 바운딩 박스에 포함되는 포인트 클라우드 데이터의 포인트를 인코딩할 수 있다.The encoding step according to embodiments may encode points of point cloud data included in the bounding box related to the spatial division.
실시예들에 따른 포인트 클라우드 데이터 수신 방법은 포인트 클라우드 데이터가 바운딩 박스로 분할되는 과정 관련하여, 바운딩 박스 분할 단계를 포함할 수 있다.A method of receiving point cloud data according to embodiments may include a step of dividing a bounding box in relation to a process of dividing the point cloud data into bounding boxes.
실시예들에 따른 디코딩하는 단계는 공간 분할에 관련된 바운딩 박스에 포함되는 포인트 클라우드 데이터의 포인트를 디코딩할 수 있다.In the decoding step according to embodiments, a point of point cloud data included in a bounding box related to spatial division may be decoded.
실시예들에 따른 포인트 클라우드 데이터는 공간 분할에 관련된 바운딩 박스의 개수, 바운딩 박스의 공간 좌표 정보, 바운딩 박스의 너비, 높이, 깊이를 포함하는 파라미터를 포함할 수 있다.The point cloud data according to embodiments may include parameters including the number of bounding boxes related to spatial division, spatial coordinate information of the bounding box, and width, height, and depth of the bounding box.
도 23은 실시예들에 따른 포인트 클라우드 데이터의 기하정보의 옥트트리 분할 정보 및/또는 유도 정보 실시 예시를 나타낸다.23 is a diagram illustrating an example of performing octtree division information and/or derivation information of geometric information of point cloud data according to embodiments.
실시예들에 따른 옥트리(또는 옥트트리)는 기본적으로, 예를 들어 8비트의 형태로 정보를 전달할 수 있다.The octree (or octtree) according to the embodiments may basically convey information in the form of, for example, 8 bits.
실시예들에 따른 방법/장치는 포인트 클라우드 데이터의 포인트들이 분포된 공간을 분할할 수 있다. 예를 들어, 실시예들은 포인트들을 옥트리 구조에 기반하여 표현할 수 있다. 포인트들의 공간 분포도는 다양하기 때문에, 모든 공간을 부호화/복호화하는 것은 비효율적일 수 있다. 이러한 문제를 해결하기 위해서 실시예들은 도면에 도시된 바와 같이 포인트들(또는 기하정보)를 서브 바운딩 박스, 바운딩 박스, 부/복호화 단위로 계층적으로 분할하여 포인트들이 위치한 영역을 효율적으로 표현할 수 있다.The method/apparatus according to the embodiments may divide a space in which points of point cloud data are distributed. For example, embodiments may represent points based on an octree structure. Since the spatial distribution map of the points varies, it may be inefficient to encode/decode all spaces. In order to solve this problem, embodiments may hierarchically divide points (or geometric information) into sub-bounding boxes, bounding boxes, and sub/decoding units as shown in the drawing, thereby efficiently expressing an area where points are located. .
예를 들어, 옥트리(또는 옥트트리)는 노드를 포함하고, 부모 노드-자식 노드 간의 구조를 가질 수 있다. 부모 노드는 8비트의 자식 노드를 포함할 수 있다. 영역 내 포인트(또는 포인트 클라우드 데이터, PCC데이터, 기하정보 등)의 존재 여부에 따라서, 실시예들은 옥트트리를 0 및 1의 비트를 사용하여 표현할 수 있다.For example, an octree (or octtree) includes a node, and may have a structure between a parent node and a child node. The parent node may include 8-bit child nodes. Depending on the presence or absence of points (or point cloud data, PCC data, geometric information, etc.) in the region, the embodiments may express the octtree using bits of 0 and 1.
실시예들에 따라, 포인트 클라우드 기하정보의 옥트트리 분할 정보 및 유도 정보를 실시하는 예시를 설명하면 다음과 같다.According to embodiments, an example of performing octtree division information and derivation information of point cloud geometric information will be described as follows.
예를 들어, 옥트트리의 (1)-((10001(0000))의 노드 관계를 참조하면, (1) 및 (0000)은 실시예들에 따른 복호화기(디코더, 수신 장치 등)에서 암시적 유도된 분할 여부 정보를 나타낼 수 있다. (1001)은 실시예들에 따른 부호화기(인코더, 송신 장치 등)으로부터 제공된 분할 여부 정보를 나타낼 수 있다.For example, referring to the node relationship of (1)-((10001(0000)) of the octtree, (1) and (0000) are implicit in the decoder (decoder, receiver, etc.) according to the embodiments. The derived information on whether to be split may be indicated, reference 1001 may indicate information on whether or not to be split provided from an encoder (encoder, transmission device, etc.) according to embodiments.
(1001)은 데이터가 존재함을 의미하고, (0000)은 데이터가 존재하지 않음을 나타낸다. 실시예들에 따른 방법/장치는 8비트를 모두 인코딩/전송/수신/디코딩할 필요 없이, 데이터가 존재하는 부분만 인코딩/전송/수신/디코딩할 수 있다. 예를 들어, 0이 연속적으로 존재하는 영역은 데이터가 존재하지 않은 영역이고, 실시예들에 따른 송신 방법/장치는 데이터가 존재하는 1비트 내지 4비트 등만 전송할 수 있다.(1001) means that data exists, and (0000) means that data does not exist. The method/apparatus according to the embodiments may encode/transmit/receive/decode only a portion where data exists without the need to encode/transmit/receive/decode all 8 bits. For example, an area in which 0 is continuously present is an area in which data does not exist, and the transmission method/apparatus according to the embodiments may transmit only 1 bit to 4 bits in which data exists.
바운딩 박스, 바운딩 박스의 범위(range) 를 설정하여 박스 내 데이터가 존재하는 영역만 처리하여 높은 게인을 제공하는 효과를 나타낼 수 있다. 따라서, 실시예들은 포인트 클라우드 데이터의 공간을 정육면체 또는 직육면체로 표현하여 모든 공간의 정보를 전송하는 방식 대비, 데이터 처리량을 줄일 수 있어서 높은 인코딩/디코딩 성능을 제공할 수 있다.By setting a bounding box and a bounding box range, it is possible to provide an effect of providing high gain by processing only an area in which data exists in the box. Accordingly, the embodiments can provide high encoding/decoding performance by reducing data throughput compared to a method of transmitting information of all spaces by expressing a space of point cloud data as a cube or a rectangular parallelepiped.
실시예들에 따라 라이다 데이터 등 다양한 포인트 클라우드 데이터 등을 실시예들에 따른 분할 방식을 사용하여 인코딩/디코딩할 수 있다.According to embodiments, various point cloud data, such as lidar data, may be encoded/decoded using a partitioning method according to the embodiments.
예를 들어, 실시예들에 따른 수신 방법/장치는 도면에서 (0000)에 해당하는 영역을 실제로 수신하지 않고, 수신된 포인트 클라우드 데이터 및 포인트 클라우드 데이터에 포함된 파라미터 정보등에 기반하여 복원하여 디코딩할 수 있다.For example, the receiving method/apparatus according to the embodiments does not actually receive an area corresponding to (0000) in the drawing, but restores and decodes based on the received point cloud data and parameter information included in the point cloud data. I can.
실시예들에 따른 방법/장치 또는 공간분할부는 포인트 클라우드 데이터를 하나 또는 하나 이상의 바운딩 박스로 나눌 수 있다. 실시예들에 따른 수신 방법/장치가 바운딩 박스에 기반하여 데이터를 복원할 수 있도록, 실시예들에 따른 방법/장치 또는 공간분할부는 바운딩 박스의 좌표(범위) 또는 좌표계상의 오프셋 정보를 설정하고, 바운딩 박스의 너비, 높이, 깊이 등을 설정할 수 있다. 추가적으로, 실시예들에 따른 방법/장치는 바운딩 박스 범위 내 포함된 포인트들의 개수를 시그널링할 수 있다. The method/apparatus or space dividing unit according to embodiments may divide the point cloud data into one or more bounding boxes. In order for the receiving method/device according to the embodiments to restore data based on the bounding box, the method/device or the spatial division unit according to the embodiments sets the coordinate (range) of the bounding box or offset information on the coordinate system, You can set the width, height, and depth of the bounding box. Additionally, the method/apparatus according to the embodiments may signal the number of points included in the bounding box range.
실시예들에 따라, 바운딩 박스는 하나 또는 하나 이상의 서브 바운딩 박스로 분할될 수 있다. 서브 바운딩 박스를 적용하는 경우, 실시예들에 따른 방법/장치는 서브 바운딩 박스의 개수를 설정하고, 각 서브 바운딩 박스의 범위를 파악하기 위한, 좌표, 오프셋, 너비, 높이, 깊이 등의 정보를 시그널링할 수 있다.Depending on embodiments, the bounding box may be divided into one or more sub-bounding boxes. When applying the sub-bounding box, the method/apparatus according to the embodiments sets the number of sub-bounding boxes and obtains information such as coordinates, offsets, width, height, and depth to determine the range of each sub-bounding box. Can signal.
이로 인하여, 실시예들에 따른 수신 방법/장치는 포인트 클라우드 데이터의 공간 분할된 트리 구조의 모든 비트들을 수신할 필요가 없고, 바운딩박스/서브바운딩박스/관련 시그널링정보(파라미터) 등에 기반하여 포인트들이 실제 존재하지 않는 영역에 대한 데이터(예를 들어, 연속적인 0 노드들)를 암시적으로 유도하여, 인코딩/디코딩 게인을 효과적으로 증가시킬 수 있다.Therefore, the receiving method/device according to the embodiments does not need to receive all the bits of the spatially divided tree structure of point cloud data, and points are based on the bounding box/subbounding box/related signaling information (parameters), etc. By implicitly inducing data for a region that does not actually exist (eg, consecutive 0 nodes), it is possible to effectively increase the encoding/decoding gain.
예를 들어, 도면에서 보는 바와 같이 노란색으로 표기된 정보에 대해서만 기하정보 부호화기를 통하여 부호화 되어 전달될 수 있다. PCC 복호화기에서는 바운딩 박스 정보 등을 이용하여 파란색으로 표기된 부분의 정보를 암시적으로 유도할 수 있으며 유도된 정보와 전달된 정보를 조합하여 포인트의 기하정보 옥트트리를 복원해 낼 수 있다. For example, as shown in the drawing, only information marked in yellow may be encoded and transmitted through a geometric information encoder. The PCC decoder can implicitly derive the information of the part marked in blue by using the bounding box information, etc., and reconstruct the geometric information octtree of the point by combining the derived information and the transmitted information.
이와 관련하여 하기 파라미터가 비트 스트림 상에 포함되어 전달될 수 있다. In this regard, the following parameters may be included in the bit stream and transmitted.
부/복호화 단위의 공간 상에서의 좌표 (x offset, y offset, z offset), Coordinates in space of the encoding/decoding unit (x offset, y offset, z offset),
부/복호화 단위의 크기 (예를 들어 바운딩 박스 단위인지 서브 바운딩 박스 단위 인지 등)The size of the encoding/decoding unit (for example, whether it is in a bounding box unit or a subbounding box unit, etc.)
부/복호화 단위의 개수 (부/복호화 단위의 크기를 기반으로 부/복호화 단위의 개수)Number of encoding/decoding units (number of encoding/decoding units based on the size of the encoding/decoding unit)
최소 노드 크기, 최대 노드 분할 깊이Minimum node size, maximum node splitting depth
바운딩 박스의 개수Number of bounding boxes
바운딩 박스 관련 정보 About bounding box
각 바운딩박스의 공간 상에서의 좌표 (x offset, y offset, z offset), 바운딩 박스의 너비 (width), 높이 (height), 깊이 (depth), 해당 바운딩 박스가 포함하는 포인트의 개수 등, 서브 바운딩 박스 존재 여부, Sub-bounding, such as coordinates (x offset, y offset, z offset) in space of each bounding box, width, height, depth, number of points included in the bounding box, etc. The presence of a box,
바운딩 박스 내 서브 바운딩 박스가 존재하는 경우 바운딩 박스가 포함하는 서브 바운딩 박스 관련 하기 정보If there is a sub-bounding box in the bounding box, the following information related to the sub-bounding box included in the bounding box
바운딩 박스가 포함하는 서브 바운딩 박스의 개수, The number of sub-bounding boxes included in the bounding box,
각 서브 바운딩 박스의 공간 상에서 좌표 (x offset, y offset, z offset), 각 서브 바운딩 박스의 너비, 높이, 깊이 정보 등Coordinates (x offset, y offset, z offset) in the space of each subbounding box, width, height, depth information, etc. of each subbounding box
실시예들에 따른 복호화부는 복호화기에서 임시적인 유도된 분할 여부 정보에 해당하는 부분들을 암시적으로 유도하기 위해서, 바운딩 박스의 개수, 바운딩 박스가 포함하는 서브 바운딩 박스의 개수, 각 서브 바운딩 박스의 공간 상에서 좌표, 각 서브 바운딩 박스의 너비, 높이, 깊이 정보 등 중 적어도 하나 이상의 정보가 필요할 수 있다. 예를 들어, 바운딩 박스/ 서브 바운딩 박스, 좌표 정보가 필수적으로 요구될 수 있다.The decoder according to the embodiments implicitly induces portions corresponding to information about whether to be temporarily derived from the decoder, the number of bounding boxes, the number of subbounding boxes included in the bounding box, and the number of subbounding boxes. At least one or more of coordinates in space, width, height, and depth information of each subbounding box may be required. For example, bounding box/sub bounding box and coordinate information may be required.
도 24는 실시예들에 따른 포인트 클라우드 데이터의 구조의 예시를 나타낸다.24 shows an example of a structure of point cloud data according to embodiments.
실시예들에 따른 포인트 클라우드 데이터는 도면과 같은 비트스트림의 형태를 가질 수 있다. 포인트 클라우드 데이터는 실시예들에 따른 시그널링정보 등을 포함하는 SPS(Sequence Parameter Set), GPS(Geometry Parameter Set), APS(Attribute Parameter Set), TPS(Tile Parameter Set)를 포함할 수 있다. 포인트 클라우드 데이터는 하나 또는 하나 이상의 지오메트리 및/또는 어트리뷰트를 포함할 수 있다. 포인트 클라우드 데이터는 지오메트리 및/또는 어트리뷰트는 하나 또는 하나 이상의 슬라이스 단위로 포함할 수 있다. 지오메트리는 지오메트리 슬라이스 헤더 및 지오메트리 슬라이스 데이터의 구조를 가질 수 있다. 예를 들어, 시그널링 정보를 포함하는 TPS는 Tile(0). tile_bounding_box_xyz0, Tile(0)_tile_bounding_box_whd 등을 포함할 수 있다. 지오메트리는 geom_geom_parameter_set_id, geom_tile_id, geom_slice_id, geomBoxOrigin, geom_box_log2_scale, geom_max_node_size_log2, geom_num_points 등을 포함할 수 있다.Point cloud data according to embodiments may have a bitstream form as shown in the drawing. The point cloud data may include a sequence parameter set (SPS), a geometry parameter set (GPS), an attribute parameter set (APS), and a tile parameter set (TPS) including signaling information according to embodiments. Point cloud data may include one or more geometry and/or attributes. The point cloud data may include geometry and/or attributes in units of one or more slices. The geometry may have a structure of a geometry slice header and geometry slice data. For example, the TPS including signaling information is Tile(0). It may include tile_bounding_box_xyz0, Tile(0)_tile_bounding_box_whd, and the like. The geometry may include geom_geom_parameter_set_id, geom_tile_id, geom_slice_id, geomBoxOrigin, geom_box_log2_scale, geom_max_node_size_log2, geom_num_points, and the like.
상술한 실시예들에 따른 파라미터는SPS, GPS, 또는 APS에 추가되어 전달되거나TPS 또는 각 Slice별 Geom 또는 Slice별 Attr에 추가되어 전달될 수 있다.The parameters according to the above-described embodiments may be added to and transmitted to SPS, GPS, or APS, or may be added to and transmitted to TPS or Geom for each Slice or Attr for each Slice.
각 약어는 다음을 의미한다. Each abbreviation means:
SPS: Sequence Parameter Set SPS: Sequence Parameter Set
GPS: Geometry Parameter SetGPS: Geometry Parameter Set
APS: Attribute Parameter SetAPS: Attribute Parameter Set
TPS: Tile Parameter Set TPS: Tile Parameter Set
Geom: Geometry bitstream = geometry slice header+ geometry slice dataGeom: Geometry bitstream = geometry slice header+ geometry slice data
Attr: Attrobite bitstream = attribute blick header + attribute brick dataAttr: Attrobite bitstream = attribute blick header + attribute brick data
실시예들에 따라서, Tile 혹은 slice 별로 서로 다른 분할 기법이 적용될 수 있다. 예를 들어 slice 별로바운딩 박스의 너비 (width), 높이 (height), 깊이 (depth), 바운딩 박스가 포함하는 포인트 개수 등일 다를 수 있다. 이러한 경우 상기 파라미터는 TPS 또는 각 Slice별 Geom 또는 Slice별 Attr에 추가되어 전달될 수 있다.Depending on embodiments, different partitioning techniques may be applied for each tile or slice. For example, the width, height, depth, and number of points included in the bounding box may be different for each slice. In this case, the parameter may be added and transmitted to the TPS or Geom for each Slice or Attr for each Slice.
도 25는 실시예들에 따른 기하정보 역양자화 과정의 예시를 나타낸다.25 shows an example of a process of inverse quantization of geometric information according to embodiments.
실시예들에 따른 수신 방법/장치는 예를 들어, 디코더(복호화기)는 기하정보 디코딩을 수행할 수 있고, 기하정보 디코딩은 기하정보를 역양자화할 수 있다. 실시예들에 따른 각 단계는 다음과 같을 수 있다.In the receiving method/apparatus according to the embodiments, for example, a decoder (decoder) may perform geometric information decoding, and the geometric information decoding may inverse quantize the geometric information. Each step according to the embodiments may be as follows.
기하정보 역양자화 값 파싱 또는 유도(2500)는 포인트 클라우드 데이터의 기하정보를 역양자화하기 위한 값을 파싱하거나 유도하는 과정을 말한다. 실시예들에 따른 송신 또는 인코더 측에서 양자화된 기하정보를 실시예들에 따른 수신 또는 디코더가 역과정으로 역양자화할 수 있다. 실시예들에 따라 역양자화 값은 포인트 클라우드 데이터, 파라미터 세트 및/또는 시그널링 정보 등에 기반하여 파싱되거나 유도될 수 있다.Parsing or deriving geometric information dequantization value 2500 refers to a process of parsing or deriving a value for dequantizing geometric information of point cloud data. The geometric information quantized at the transmission or encoder side according to the embodiments may be inverse quantized by a reception or decoder according to the embodiments in a reverse process. According to embodiments, the inverse quantization value may be parsed or derived based on point cloud data, parameter set and/or signaling information.
기하정보 역양자화 수행(2501)는 파싱 또는 유도된 역양자화 값에 기반하여 실시예들에 따른 수신 방법/장치, 예를 들어 기하정보 디코더가 기하정보를 역양자화하는 과정을 말한다.Performing geometric information inverse quantization 2501 refers to a process in which a receiving method/device, for example, a geometric information decoder, inverse quantizes geometric information based on a parsed or derived inverse quantization value.
실시예들에 따른 기하정보 역양자화 관련하여, 도면에서 보는 바와 같이, 기하정보 복호화기에서 기하정보 역양자화 값이 파싱 되거나 유도될 수 있으며 이를 기반으로 기하정보 역양자화를 수행할 수 있다.Regarding the inverse quantization of geometric information according to embodiments, as shown in the drawing, a geometric information inverse quantization value may be parsed or derived from a geometric information decoder, and the geometric information inverse quantization may be performed based on this.
실시예들에 따라, 너비, 높이, 깊이 방향으로의 역양자화 값은 파싱되거나 유도될 수 있다. 한 개 이상 파싱된 역양자화 값을 너비 또는 높이 또는 깊이 방향에서 공유할 수 있다. 역양자화 값은 바운딩박스의 너비 또는 깊이 또는 높이의 값 또는 비율 등을 이용하여 유도될 수 있다. 바운딩박스 또는 서브바운딩박스 단위로 역양자화 정보를 공유할 수 있다. According to embodiments, inverse quantization values in the width, height, and depth directions may be parsed or derived. One or more parsed inverse quantization values can be shared in the width, height, or depth direction. The inverse quantization value may be derived using a value or ratio of the width or depth or height of the bounding box. Inverse quantization information can be shared in units of bounding boxes or subbounding boxes.
실시예들에 따라, 역양자화 시 너비, 높이, 깊이의 스케일 값은 같을 수 있고 서로 다를 수 있다. According to embodiments, when inverse quantization, the scale values of the width, height, and depth may be the same or may be different from each other.
실시예들에 따라, 복원된 기하정보에 너비, 높이, 깊이 방향의 스케일 값을 각각 곱하여 역양자화를 수행할 수 있다According to embodiments, inverse quantization may be performed by multiplying the restored geometric information by scale values in the width, height, and depth directions, respectively.
도 26은 실시예들에 따른 기하정보 역양자화의 실시 예시를 나타낸다.26 illustrates an exemplary embodiment of inverse quantization of geometric information according to embodiments.
실시예들에 따른 기하정보는 너비, 깊이 및/또는 높이를 가질 수 있다. Geometric information according to embodiments may have a width, a depth and/or a height.
실시예들에 따른 기하정보 디코더는 기하정보를 역양자화할 수 있다. 기하정보의 너비, 깊이 및/또는 높이는 각 값으로 스케일링될 수 있다. 실시예들에 따라 너비 스케일 값, 깊이 스케일 값, 높이 스케일 값은 서로 같거나 다를 수 있다.The geometric information decoder according to embodiments may inverse quantize the geometric information. The width, depth and/or height of the geometric information can be scaled by each value. According to embodiments, a width scale value, a depth scale value, and a height scale value may be the same or different.
도 27은 실시예들에 따른 포인트 클라우드 복호화기의 예시를 나타낸다.27 shows an example of a point cloud decoder according to embodiments.
실시예들에 따른 포인트 클라우드 데이터 수신 방법/장치 또는 디코더(복호화기)의 실시예들에 따른 각 구성요소는 다음과 같다.Each component according to embodiments of the point cloud data receiving method/device or decoder (decoder) according to the embodiments is as follows.
공간분할부(2700)는 기하정보 비트스트림을 수신하여, 기하정보의 공간을 분할할 수 있다. 실시예들에 따른 송신 방법/장치가 기하정보를 공간분할한 정보에 기반하여, 복호화기도 포인트 클라우드 데이터의 공간을 분할할 수 있다.The spatial dividing unit 2700 may receive the geometric information bitstream and divide the space of the geometric information. Based on the information obtained by spatially dividing the geometric information by the transmission method/device according to the embodiments, the decoder may also divide the space of the point cloud data.
기하정보 복호화부(2701)는 기하정보 비트스트림을 복호화할 수 있다.The geometry information decoding unit 2701 may decode a geometry information bitstream.
속성정보 복호화부(2702)는 복원된 기하정보에 기반하여 속성정보 비트스트림의 속성정보를 복호화할 수 있다. 포인트 클라우드 데이터에 포함된 기하정보 및/또는 속성정보는 복호화되어 복원된 PCC데이터가 될 수 있다.The attribute information decoding unit 2702 may decode attribute information of the attribute information bitstream based on the restored geometric information. Geometric information and/or attribute information included in the point cloud data may be decoded and restored PCC data.
실시예들에 따른 PCC 복호화기는 기하정보 복호화부, 속성정보 복호화부를 포함 할 수 있다.The PCC decoder according to the embodiments may include a geometric information decoding unit and an attribute information decoding unit.
실시예들에 따른 공간 분할부는 부호화기로부터 제공된 또는 복호화기에서 유도된 분할 정보를 기초로 공간을 분할할 수 있다.The spatial division unit according to embodiments may divide a space based on division information provided from an encoder or derived from a decoder.
실시예들에 따른 기하정보 복호화부는 입력 받은 기하정보 비트스트림을 복호화하여 기하정보를 복원한다. 복원된 기하정보는 속성정보 복호화부로 입력 될 수 있다. The geometric information decoding unit according to embodiments restores the geometric information by decoding the received geometric information bitstream. The restored geometric information may be input to the attribute information decoding unit.
실시예들에 따른 속성정보 복호화부는 입력받은 속성정보 비트스트림과 기하정보 복호화부로부터 입력 받은 복원된 기하정보를 입력 받아 속성정보를 복원한다. 복원된 속성정보는 복원된 기하정보와 함께 복원된 PCC 데이터로 구성 될 수 있다The attribute information decoding unit according to embodiments receives the received attribute information bitstream and restored geometric information received from the geometry information decoding unit and restores attribute information. The restored attribute information can be composed of restored PCC data along with the restored geometric information.
도 28은 실시예들에 따른 기하정보 복호화부의 예시를 나타낸다.28 illustrates an example of a geometric information decoding unit according to embodiments.
실시예들에 따른 기하정보 복호화기는 기하정보 엔트로피 복호화부(2800), 잔차 기하정보 역양자화부(2801), 기하정보 예측부(2802), 필터링부(2803), 메모리부(2804) 및/또는 좌표계 역변환부(2805)를 포함할 수 있다.The geometric information decoder according to the embodiments includes a geometric information entropy decoding unit 2800, a residual geometric information inverse quantization unit 2801, a geometric information prediction unit 2802, a filtering unit 2803, a memory unit 2804, and/or A coordinate system inverse transform unit 2805 may be included.
실시예들에 따른 기하정보 엔트로피 복호화부(2800)는 기하정보를 포함하는 비트스트림을 수신하여, 기하정보를 복호화할 수 있다. 예를 들어, 엔트로피 방식에 기반하여 복호화할 수 있다.The geometric information entropy decoder 2800 according to embodiments may receive a bitstream including geometric information and decode the geometric information. For example, it can be decoded based on an entropy method.
실시예들에 따른 잔차 기하정보 역양자화부(2801)는 잔차 기하정보를 역으로 양자화할 수 있다. The residual geometric information inverse quantization unit 2801 according to embodiments may inversely quantize the residual geometric information.
실시예들에 따른 기하정보 예측부(2802)는 기하정보를 예측할 수 있다. 예를 들어, 기하정보 예측부는 메모리에 저장된 기하정보에 기반하여 기하정보를 예측할 수 있다.The geometric information prediction unit 2802 according to embodiments may predict geometric information. For example, the geometric information prediction unit may predict geometric information based on the geometric information stored in the memory.
실시예들에 따른 필터링부(2803)는 역양자화된 잔차 기하정보 및/또는 예측된 기하정보에 기반하여 생성된 데이터를 필터링할 수 있다. 예를 들어, 역양자화된 잔차 기하정보 및/또는 예측된 기하정보를 합산함으로써 데이터가 실시예들에 따른 장치에 의해 생성될 수 있다. The filtering unit 2803 according to embodiments may filter data generated based on inverse quantized residual geometric information and/or predicted geometric information. For example, data may be generated by the apparatus according to the embodiments by summing the inverse quantized residual geometric information and/or the predicted geometric information.
실시예들에 따른 메모리부(2804)는 필터링된 데이터를 저장할 수 있다.The memory unit 2804 according to embodiments may store filtered data.
실시예들에 따른 좌표계 역변환부(2805)는 메모리에 저장된 기하정보를 수신하여 기하정보의 좌표계를 역으로 변환할 수 있다. 좌표계 역변환부는 기하정보를 생성할 수 있다.The coordinate system inverse transform unit 2805 according to the embodiments may receive geometric information stored in a memory and convert the coordinate system of the geometric information into an inverse manner. The inverse coordinate system transform unit may generate geometric information.
실시예들에 따른 기하정보 복호화 장치는 기하정보 엔트로피 복호화부, 잔차 기하정보 역양자화부, 기하정보 예측부, 좌표계 역변환부가 포함될 수 있다. The apparatus for decoding geometric information according to embodiments may include a geometric information entropy decoding unit, a residual geometric information inverse quantization unit, a geometric information prediction unit, and an inverse coordinate system transform unit.
실시예들에 따른 기하정보 엔트로피 복호화부는 입력 비트스트림에 대해 엔트로피 복호화를 수행할 수 있다. 예를 들어, 엔트로피 복호화를 위해, 지수 골롬(Exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding)과 같은 다양한 방법이 적용될 수 있다. 기하정보 엔트로피 복호화부에서는 부호화 장치에서 수행된 기하정보 예측에 관련된 정보를 복호화할 수 있다. 엔트로피 복호화를 통해 생성된 양자화된 잔차 기하정보는 잔차기하정보 역양자화부로 입력 될 수 있다. The geometric information entropy decoder according to embodiments may perform entropy decoding on an input bitstream. For example, for entropy decoding, various methods such as Exponential Golomb, Context-Adaptive Variable Length Coding (CAVLC), and Context-Adaptive Binary Arithmetic Coding (CABAC) may be applied. The geometric information entropy decoder may decode information related to geometric information prediction performed by the encoding apparatus. Quantized residual geometric information generated through entropy decoding may be input to the residual geometric information inverse quantization unit.
실시예들에 따른 잔차 기하정보 역양자화부는 양자화 파라미터와 입력 받은 양자화된 잔차 기하정보를 기초로 역양자화를 수행하여 잔차 기하정보 혹은 기하 정보를 생성 할 수 있다. The residual geometric information inverse quantization unit according to embodiments may perform inverse quantization based on a quantization parameter and the received quantized residual geometric information to generate residual geometric information or geometric information.
실시예들에 따른 기하정보 예측부는 기하정보 엔트로피 복호화부에서 제공된 예측 기하정보 생성 관련 정보와 메모리에서 제공된 이전에 복호화된 기하정보를 기초로 예측 기하정보를 생성할 수 있다. 기하정보 예측부는 인터 예측부 및 인트라 예측부를 포함할 수 있다. 인터 예측부는 부호화 장치에서 제공된 현재 예측 단위의 인터 예측에 필요한 정보를 이용하여, 현재 예측 단위가 포함된 현재 공간의 이전 공간 또는 이후 공간 중 적어도 하나의 공간에 포함된 정보를 기초로 현재 예측 단위에 대한 인터 예측을 수행할 수 있다. 인트라 예측부는 현재 공간 내의 포인트의 기하정보를 기초로 예측 기하정보를 생성할 수 있다. 예측 단위가 인트라 예측을 수행한 경우, 부호화 장치에서 제공된 예측 단위의 인트라 예측 모드 정보를 기초로, 인트라 예측을 수행할 수 있다. 예측 기하정보에 복원 잔차 기하정보를 더하여 복원 기하정보를 생성할 수 있다.The geometric information prediction unit according to embodiments may generate predicted geometric information based on information related to generation of predicted geometric information provided from the geometric information entropy decoder and previously decoded geometric information provided from a memory. The geometric information prediction unit may include an inter prediction unit and an intra prediction unit. The inter prediction unit uses information required for inter prediction of the current prediction unit provided by the encoding device, and determines the current prediction unit based on information included in at least one of a space before or after the current space including the current prediction unit. Inter prediction can be performed. The intra prediction unit may generate predicted geometric information based on geometric information of a point in the current space. When the prediction unit performs intra prediction, intra prediction may be performed based on intra prediction mode information of the prediction unit provided by the encoding device. The reconstructed geometric information may be generated by adding the reconstructed residual geometric information to the predicted geometric information.
실시예들에 따른 복원 기하정보는 필터링부로 제공될 수 있다. 필터링부는 복호화부에서 제공된 필터링 관련 정보 또는 복호화기에서 유도된 복원 기하정보의 특성을 기초로 필터링을 수행할 수 있다.The reconstructed geometric information according to the embodiments may be provided to the filtering unit. The filtering unit may perform filtering based on the filtering-related information provided from the decoder or the characteristics of the reconstructed geometric information derived from the decoder.
실시예들에 따른 메모리는 필터링부를 통해 산출된 복원 기하정보를 저장할 수 있다.The memory according to embodiments may store the reconstructed geometric information calculated through the filtering unit.
실시예들에 따른 좌표계 역변환부는 기하정보 엔트로피 복호화부에서 제공된 좌표계 변환 관련 정보와 메모리에 저장된 복원된 기하정보를 기초로 좌표계 역변환을 수행 할 수 있다.The inverse coordinate system transform unit according to embodiments may perform inverse coordinate system transformation based on information related to coordinate system transformation provided from the geometric information entropy decoding unit and restored geometric information stored in a memory.
도 29는 실시예들에 따른 occupancy 유도(derivation) 예시를 나타낸다.29 shows an example of occupancy derivation according to embodiments.
실시예들에 따른 바운딩 박스(또는 서브 바운딩 박스)의 아웃사이드 영역의 제로-어큐판시 코드들(zero-occupancy codes)을 시그널링하는 대신에, 실시예들에 따른 방법/장치는 어큐판시 데리베이션을 수행할 수 있다. 실시예들에 따른 공간 분할과 관련하여, 실시예들에 따른 방법/장치는 다음과 과정을 수행할 수 있다.Instead of signaling the zero-occupancy codes of the outside region of the bounding box (or sub-bounding box) according to the embodiments, the method/apparatus according to the embodiments performs accupancy delivery. Can be done. Regarding the space division according to the embodiments, the method/apparatus according to the embodiments may perform the following process.
1) 옥트리의 노드 영역이 바운딩 박스에 관련된 영역에 포함되는지 여부를 확인한다.1) It is checked whether the node area of the octree is included in the area related to the bounding box.
2) 완전하게 포함되는 경우, 실시예들에 따른 인코딩/디코딩을 수행한다.2) When completely included, encoding/decoding according to embodiments is performed.
3) 완전하게 포함되지 않는 경우, 현재 노드의 자식 노드 각각이 바운딩 박스의 영역과 오버랩되는지 여부를 확인한다.3) If not completely included, it is checked whether each child node of the current node overlaps the bounding box area.
4) 오버랩되지 않는 경우, 자식 노드의 어큐판시를 인코딩/디코딩하지 않고, 0으로 유도(derive)한다.4) When not overlapping, the accupancy of the child node is not encoded/decoded, and is derived to 0.
예를 들어, 실시예들에 따른 방법/장치는 바운딩 박스(서브 바운딩 박스) 내에 현재 노드가 완전하게 포함되지 않는 경우, 현재 노드의 각 자식 노드가 바운딩 박스(서브 바운딩 박스)에 포함되는지 여부를 확인하고, 바운딩 박스(서브 바운딩 박스)와 오버랩되는 자식 노드들의 어큐판시만을 인코딩/디코딩한다.For example, the method/apparatus according to the embodiments determines whether each child node of the current node is included in the bounding box (subbounding box) when the current node is not completely included in the bounding box (subbounding box). Check, and encode/decode only the accupancy of child nodes that overlap with the bounding box (subbounding box).
이로 인하여, 실시예들에 따른 방법/장치는 바운딩 박스(서브 바운딩 박스) 관련하여 빈 영역이 공간을 차지하고 있는 경우, 불필요한 제로 어큐판시 시그널링을 제거할 수 있는 효과가 있다.For this reason, the method/apparatus according to the embodiments has an effect of removing unnecessary zero-acupancy signaling when an empty area occupies space in relation to a bounding box (subbounding box).
도 30은 실시예들에 따른 지오메트리 노드에 관련된 시그널링 정보를 나타낸다.30 shows signaling information related to a geometry node according to embodiments.
실시예들에 따른 포인트 클라우드 데이터는 지오메트리 노드와 관련한 시그널링 정보를 포함할 수 있다.Point cloud data according to embodiments may include signaling information related to a geometry node.
single_occupancy_flag는 싱글 어큐판시의 플래그를 나타낸다.single_occupancy_flag represents a flag for single accupancy.
occupancy_idx는 어큐판시의 식별정보를 나타낸다. 지오메트리 노드가 싱글 어큐판시에 해당하는 경우 실시예들에 따른 방법/장치는 어큐판시 식별정보를 참조한다.occupancy_idx represents identification information of accupancy. When the geometry node corresponds to a single accupant, the method/apparatus according to the embodiments refers to the accupant identification information.
overlapped_occupancy 는 포인트 클라우드 콘텐츠 바운딩 박스와 오버랩되고, 현재 노드의 자식 노드들 차지하는 것을 나타내는 비트맵을 나타낸다(overlapped_occupancy indicates a bitmap that identifies overlapped with contents bounding box and occupied child nodes of the current node). 실시예들에 따른 방법/장치는 바운딩 박스(서브 바운딩 박스) 내에 현재 노드가 완전하게 포함되지 않는 경우, 이 값을 참조할 수 있다.overlapped_occupancy indicates a bitmap that identifies overlapped with contents bounding box and occupied child nodes of the current node, which overlap with the point cloud content bounding box. The method/apparatus according to the embodiments may refer to this value when the current node is not completely included in the bounding box (subbounding box).
occupancy_map는 어큐판시 맵을 나타낸다. 바운딩 박스(서브 바운딩 박스) 내에 현재 노드가 완전하게 포함되는 경우에는 실시예들에 따른 방법/장치가 어큐판시 맵을 참조한다.occupancy_map represents an accupancy map. When the current node is completely included in the bounding box (subbounding box), the method/apparatus according to the embodiments refers to the accufancy map.
occupancy_byte는 어큐판시 바이트 정보를 나타낸다.occupancy_byte represents byte information during accupancy.
num_points_eq1_flag는 포인트 개수와 관련된 플래그 정보를 나타낸다.num_points_eq1_flag represents flag information related to the number of points.
num_points_minus2 는 포인트 개수에 관련된 정보를 나타낸다.num_points_minus2 represents information related to the number of points.
direct_mode_flag 는 다이렉트 모드에 관련된 플래그 정보를 나타낸다.direct_mode_flag represents flag information related to the direct mode.
num_direct_points_minus1 는 다이렉트 포인트의 개수에 관련된 정보를 나타낸다.num_direct_points_minus1 represents information related to the number of direct points.
point_rem_x[ i ][ j ], point_rem_y[ i ][ j ], point_rem_z[ i ][ j ] 는 포인트의 x, y, z 정보를 나타낸다.point_rem_x[ i ][ j ], point_rem_y[ i ][ j ], point_rem_z[ i ][ j] represent the x, y, and z information of the point.
실시예들에 따른 시그널링 정보에 기반하여, 실시예들에 따른 방법/장치는 공간분할 동작을 수행할 수 있고, 포인트 클라우드 데이터를 공간 낭비 없이 효율적으로 인코딩/디코딩할 수 있다.Based on the signaling information according to the embodiments, the method/apparatus according to the embodiments may perform a space division operation, and may efficiently encode/decode point cloud data without wasting space.
도 31은 실시예들에 따른 포인트 클라우드 데이터 송신 방법을 나타낸다.31 illustrates a method of transmitting point cloud data according to embodiments.
실시예들에 따른 포인트 클라우드 데이터 송신 방법은 (S31000) 포인트 클라우드 데이터를 획득하는 단계; (S31001) 포인트 클라우드 데이터를 인코딩하는 단계; 및/또는 (S31002) 포인트 클라우드 데이터를 전송하는 단계; 를 포함할 수 있다. 실시예들에 각 단계를 설명하면 다음과 같다.Point cloud data transmission method according to embodiments (S31000) acquiring point cloud data; (S31001) encoding point cloud data; And/or (S31002) transmitting point cloud data; It may include. Each step will be described in the embodiments as follows.
S31000관련하여, 실시예들에 따른 방법/장치는 포인트 클라우드 데이터를 획득할 수 있다. 실시예들에 따른 포인트 클라우드 데이터의 획득 과정은 도1 내지 도3 등에서 설명한 과정을 포함할 수 있다.Regarding S31000, the method/apparatus according to the embodiments may acquire point cloud data. The process of obtaining point cloud data according to embodiments may include the process described in FIGS. 1 to 3, and the like.
S31001 관련하여, 실시예들에 따른 방법/장치는 포인트 클라우드 데이터를 인코딩할 수 있다. 실시예들에 따른 포인트 클라우드 데이터의 인코딩 과정은 도1 내지2, 도3, 도5-9, 도12, 도18 내지 도23 등에서 설명한 과정을 포함할 수 있다.With respect to S31001, the method/apparatus according to the embodiments may encode point cloud data. The process of encoding point cloud data according to embodiments may include the processes described in FIGS. 1 to 2, 3, 5-9, 12, 18 to 23, and the like.
S31002 관련하여, 실시예들에 따른 방법/장치는 포인트 클라우드 데이터를 전송할 수 있다. 실시예들에 따른 포인트 클라우드 데이터의 전송 과정은 도1내지2, 도23, 도14-16 등에서 설명한 과정을 포함할 수 있다.In relation to S31002, the method/apparatus according to the embodiments may transmit point cloud data. The process of transmitting point cloud data according to embodiments may include the process described in FIGS. 1 to 2, 23, 14-16, and the like.
실시예들에 따른 포인트 클라우드 데이터 송신 방법/장치는 상술한 실시예들과 결합될 수 있고, 포인트 클라우드 데이터를 구성하는 포인트의 기하 정보를 효과적으로 압축할 수 있도록 하기 위하여 포인트 클라우드의 기하정보를 분할하고 이를 효과적으로 예측할 수 있는 효과를 제공할 수 있다. 또한. 실시예들에 따른 포인트 클라우드 데이터 송신 방법/장치는 포인트들이 공간 상에 분포되어 있는 경우, 존재 영역 및/또는 부존재 영역을 고려하여 옥트 트리 상에서 포인트가 존재하지 않는 영역에 대해 존재하지 않음을 나타내는 어큐판시 정보를 전송할 수 있고, 바운딩 박스(또는 서브 바운딩 박스)에 기반하여 데이터 전송 효율을 증가시킬 수 있다.The point cloud data transmission method/apparatus according to the embodiments can be combined with the above-described embodiments, and divides the geometric information of the point cloud to effectively compress the geometric information of the points constituting the point cloud data. It can provide an effect that can effectively predict this. In addition. The method/apparatus for transmitting point cloud data according to the embodiments is an accue indicating that points do not exist for an area where a point does not exist in the oct tree in consideration of the presence area and/or the non-existence area when points are distributed in space. Fansi information can be transmitted, and data transmission efficiency can be increased based on a bounding box (or subbounding box).
도 32는 실시예들에 따른 포인트 클라우드 데이터 수신 방법을 나타낸다.32 illustrates a method of receiving point cloud data according to embodiments.
실시예들에 포인트 클라우드 데이터 수신 방법은 (S32000) 포인트 클라우드 데이터를 수신하는 단계; (S32001) 포인트 클라우드 데이터를 디코딩하는 단계; 및/또는 (S32002) 포인트 클라우드 데이터를 렌더링하는 단계; 를 포함할 수 있다.In embodiments, a method for receiving point cloud data includes (S32000) receiving point cloud data; (S32001) decoding the point cloud data; And/or (S32002) rendering the point cloud data; It may include.
S32000관련하여, 실시예들에 따른 방법/장치는 포인트 클라우드 데이터를 수신할 수 있다. 실시예들에 따른 포인트 클라우드 데이터의 수신 과정은 도1내지2, 도10-11, 도13-16 등에서 설명한 과정을 포함할 수 있다.In relation to S32000, the method/apparatus according to the embodiments may receive point cloud data. The process of receiving point cloud data according to embodiments may include the process described in FIGS. 1 to 2, 10-11, 13-16, and the like.
S32001 관련하여, 실시예들에 따른 방법/장치는 포인트 클라우드 데이터를 디코딩할 수 있다. 실시예들에 따른 포인트 클라우드 데이터의 디코딩 과정은 도1-2, 도5-9, 10-11, 도13, 도18, 도21-28 등에서 설명한 과정을 포함할 수 있다.With respect to S32001, the method/apparatus according to the embodiments may decode the point cloud data. The decoding process of point cloud data according to embodiments may include the process described in FIGS. 1-2, 5-9, 10-11, 13, 18, 21-28, and the like.
S32002 관련하여, 실시예들에 따른 방법/장치는 포인트 클라우드 데이터를 렌더링할 수 있다. 실시예들에 따른 렌더링 과정은 도1-2, 23, 14-16 등에서 설명한 과정을 포함할 수 있다.With respect to S32002, the method/apparatus according to the embodiments may render point cloud data. The rendering process according to embodiments may include the process described in FIGS. 1-2, 23, 14-16, and the like.
전술한 각각의 파트, 모듈 또는 유닛은 메모리(또는 저장 유닛)에 저장된 연속된 수행과정들을 실행하는 소프트웨어, 프로세서, 하드웨어 파트일 수 있다. 전술한 실시예에 기술된 각 단계들은 프로세서, 소프트웨어, 하드웨어 파트들에 의해 수행될 수 있다. 전술한 실시예에 기술된 각 모듈/블락/유닛들은 프로세서, 소프트웨어, 하드웨어로서 동작할 수 있다. 또한, 실시예들이 제시하는 방법들은 코드로서 실행될 수 있다. 이 코드는 프로세서가 읽을 수 있는 저장매체에 쓰여질 수 있고, 따라서 장치(apparatus)가 제공하는 프로세서에 의해 읽혀질 수 있다. Each of the above-described parts, modules or units may be software, processor, or hardware parts that execute successive processes stored in a memory (or storage unit). Each of the steps described in the above-described embodiment may be performed by processor, software, and hardware parts. Each module/block/unit described in the above-described embodiment may operate as a processor, software, or hardware. In addition, methods suggested by the embodiments may be executed as code. This code can be written to a storage medium that can be read by the processor, and thus can be read by a processor provided by the apparatus.
설명의 편의를 위하여 각 도면을 나누어 설명하였으나, 각 도면에 서술되어 있는 실시 예들을 병합하여 새로운 실시 예를 구현하도록 설계하는 것도 가능하다. 그리고, 통상의 기술자의 필요에 따라, 이전에 설명된 실시 예들을 실행하기 위한 프로그램이 기록되어 있는 컴퓨터에서 판독 가능한 기록 매체를 설계하는 것도 실시예들의 권리범위에 속한다.For convenience of explanation, each drawing has been described separately, but it is also possible to design a new embodiment by merging the embodiments described in each drawing. In addition, designing a computer-readable recording medium in which a program for executing the previously described embodiments is recorded is also within the scope of the rights of the embodiments according to the needs of the skilled person.
실시예들에 따른 장치 및 방법은 상술한 바와 같이 설명된 실시 예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상술한 실시 예들은 다양한 변형이 이루어질 수 있도록 각 실시 예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.The apparatus and method according to the embodiments are not limitedly applicable to the configuration and method of the described embodiments as described above, but the above-described embodiments are all or part of each of the embodiments so that various modifications can be made. It may be configured in combination.
한편, 실시예들이 제안하는 방법을 네트워크 디바이스에 구비된, 프로세서가 읽을 수 있는 기록매체에, 프로세서가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 프로세서가 읽을 수 있는 기록매체는 프로세서에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 프로세서가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한, 인터넷을 통한 전송 등과 같은 캐리어 웨이브의 형태로 구현되는 것도 포함한다. 또한, 프로세서가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 프로세서가 읽을 수 있는 코드가 저장되고 실행될 수 있다.On the other hand, it is possible to implement the method proposed by the embodiments as a code readable by the processor on a recording medium readable by the processor provided in the network device. The processor-readable recording medium includes all types of recording devices that store data that can be read by the processor. Examples of recording media that can be read by the processor include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage, etc., and also include those implemented in the form of carrier waves such as transmission through the Internet. . Further, the processor-readable recording medium is distributed over a computer system connected through a network, so that the processor-readable code can be stored and executed in a distributed manner.
또한, 이상에서는 실시예들의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 실시예들은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 실시예들의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 실시예들의 기술적 사상이나 전망으로부터 개별적으로 이해돼서는 안 될 것이다.In addition, although preferred embodiments of the embodiments have been illustrated and described above, the embodiments are not limited to the specific embodiments described above, and the technical field to which the present invention belongs without departing from the gist of the embodiments claimed in the claims. In addition, various modifications can be implemented by those of ordinary skill in the art, and these modifications should not be understood individually from the technical idea or prospect of the embodiments.
실시예들의 사상이나 범위를 벗어나지 않고 실시예들에서 다양한 변경 및 변형이 가능함은 당업자에게 이해된다. 따라서, 실시예들은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 실시예들의 변경 및 변형을 포함하는 것으로 의도된다.It is understood by those skilled in the art that various changes and modifications are possible in the embodiments without departing from the spirit or scope of the embodiments. Accordingly, the embodiments are intended to cover variations and modifications of the embodiments provided within the appended claims and their equivalents.
본 명세서에서 장치 및 방법 발명이 모두 언급되고, 장치 및 방법 발명 모두의 설명은 서로 보완하여 적용될 수 있다.In the present specification, both apparatus and method inventions are mentioned, and descriptions of both apparatus and method inventions may be applied to complement each other.
이 문서에서 “/”와 “,”는 “및/또는”으로 해석된다. 예를 들어, “A/B”는 “A 및/또는 B”로 해석되고, “A, B”는 “A 및/또는 B”로 해석된다. 추가적으로, “A/B/C”는 “A, B 및/또는 C 중 적어도 하나”를 의미한다. 또한, “A, B, C”도 “A, B 및/또는 C 중 적어도 하나”를 의미한다. (In this document, the term “/”and “,”should be interpreted to indicate "and/or". For instance, the expression "A/B" may mean "A and/or B". Further, "A.B" may mean "A and/or B". Further, "A,B" may mean "A and/or B". Further, "A/B/C" may mean "at least one one of A, B, and/or C". Also, "A/B/C" may mean "at least one of A, B, and/or C.")In this document, “/” and “,” are interpreted as “and/or”. For example, “A/B” is interpreted as “A and/or B”, and “A, B” is interpreted as “A and/or B”. Additionally, “A/B/C” means “at least one of A, B and/or C”. In addition, “A, B, C” also means “at least one of A, B and/or C”. (In this document, the term “/”and “,”should be interpreted to indicate "and/or". For instance, the expression "A/B" may mean "A and/or B". Further, "AB" may mean "A and/or B". Further, "A,B" may mean "A and/or B". Further, "A/B/C" may mean "at least one one of A, B, and/ or C". Also, "A/B/C" may mean "at least one of A, B, and/or C.")
추가적으로, 이 문서에서 “또는”는 “및/또는”으로 해석된다. 예를 들어, “A 또는 B”은, 1) “A”만을 의미하고, 2) “B”만을 의미하거나, 3) “A 및 B”를 의미할 수 있다. 달리 표현하면, 본 문서의 “또는”은 “추가적으로 또는 대체적으로(additionally or alternatively)”를 의미할 수 있다. (Further, in the document, the term “or”should be interpreted to indicate “and/or.” For instance, the expression “A or B”may comprise 1) only A, 2) only B, and/or 3) both A and B. In other words, the term "or" in this document should be interpreted to indicate "additionally or alternatively".)Additionally, in this document “or” is to be interpreted as “and/or”. For example, “A or B” may mean 1) only “A”, 2) only “B”, or 3) “A and B”. In other words, “or” in this document may mean “additionally or alternatively”. (Further, in the document, the term “or” should be interpreted to indicate “and/or.” For instance, the expression “A or B” may comprise 1) only A, 2) only B, and/or 3) both A and B. In other words, the term "or" in this document should be interpreted to indicate "additionally or alternatively".)
실시예들의 다양한 엘리먼트들은 하드웨어, 소프트웨어, 펌웨어 또는 그것들의 조합에 의해 수행될 수 있다. 실시예들의 다양한 엘리먼트는 하드웨어 회로와 같은 싱글 칩 상에서 수행될 수 있다. 실시예들에 따라, 실시예들은 선택적으로 개별적인 침들 상에서 수행될 수 있다. 실시예들에 따라, 실시예들의 엘리먼트들 중 적어도 하나는 실시예들에 따른 동작을 수행하는 인스트럭션들을 포함하는 하나 또는 하나 이상의 프로세서 내에서 수행될 수 있다. Various elements of the embodiments may be performed by hardware, software, firmware, or a combination thereof. Various elements of the embodiments may be implemented on a single chip such as a hardware circuit. Depending on the embodiments, the embodiments may optionally be performed on individual needles. Depending on the embodiments, at least one of the elements of the embodiments may be executed in one or more processors including instructions for performing operations according to the embodiments.
제1, 제2 등과 같은 용어는 실시예들의 다양한 엘리먼트들을 설명하기 위해서 사용된다. 이러한 용어는 실시예들의 엘리먼트들의 해석을 제한하지 않는다. 이러한 용어는 하나의 엘리먼트 및 다른 엘리먼트 간의 구별을 위해서 사용된다. 예를 들어, 제1 사용자 인풋 시그널은 제2사용자 인풋 시그널로 지칭될 수 있다. 이와 유사하게, 제2사용자 인풋 시그널은 제1사용자 인풋시그널로 지칭될 수 있다. 이러한 용어는 실시예들의 범위 내에서 해석될 수 있다. 제1사용자 인풋 시그널 및 제2사용자 인풋 시그널은 모두 사용자 인풋 시그널들이고, 문맥 상 명확하게 지칭하지 않는 한 같은 사용자 인풋 시그널들을 의미하지 않는다.Terms such as first and second are used to describe various elements of the embodiments. These terms do not limit the interpretation of the elements of the embodiments. These terms are used to distinguish between one element and another. For example, a first user input signal may be referred to as a second user input signal. Similarly, the second user input signal may be referred to as a first user input signal. These terms can be interpreted within the scope of the embodiments. Both the first user input signal and the second user input signal are user input signals, and do not mean the same user input signals unless clearly indicated in context.
실시예들을 설명하기 위해 사용된 용어는 특정 실시예들을 설명하기 위한 목적으로 사용되고, 실시예들을 제한하기 위해서 의도되지 않는다. 실시예들의 설명 및 청구항에서 사용된 바와 같이, 문맥 상 명확하게 지칭하지 않는 한 단수는 복수를 포함하는 것으로 의도된다. 및/또는 표현은 용어 간의 모든 가능한 결합을 포함하는 의미로 사용된다. 포함한다 표현은 특징들, 수들, 단계들, 엘리먼트들, 및/또는 컴포넌트들이 존재하는 것을 설명하고, 추가적인 특징들, 수들, 단계들, 엘리먼트들, 및/또는 컴포넌트들을 포함하지 않는 것을 의미하지 않는다.The terms used to describe the embodiments are used for the purpose of describing specific embodiments, and are not intended to limit the embodiments. As used in the description of the embodiments and in the claims, the singular is intended to include the plural unless the context clearly indicates. And/or the expression is used in a sense including all possible combinations between terms. The include expression describes the existence of features, numbers, steps, elements, and/or components, and does not imply that no additional features, numbers, steps, elements, and/or components are included. .
실시예들을 설명하기 위해 사용되는, ~인 경우, ~때 등의 조건 표현은 선택적인 경우로만 제한 해석되지 않는다. 특정 조건을 만족하는 때, 특정 조건에 대응하여 관련 동작을 수행하거나, 관련 정의가 해석되도록 의도되었다.Conditional expressions such as when, when, and when used to describe the embodiments are not limited to an optional case. When a specific condition is satisfied, it is intended to perform a related operation in response to a specific condition or to interpret the related definition.
상술한 바와 같이, 실시예들을 실시하기 위한 최선의 형태에서 관련 내용을 설명하였다.As described above, related contents have been described in the best mode for carrying out the embodiments.
상술한 바와 같이, 실시예들은 포인트 클라우드 데이터 송수신 장치 및 시스템에 전체적 또는 부분적으로 적용될 수 있다.As described above, the embodiments may be applied wholly or partially to the point cloud data transmission/reception apparatus and system.
당업자는 실시예들의 범위 내에서 실시예들을 다양하게 변경 또는 변형할 수 있다.Those skilled in the art may variously change or modify the embodiments within the scope of the embodiments.
실시예들은 변경/변형들을 포함할 수 있고, 변경/변형은 청구항들 및 그 와 동일한 것들의 범위를 벗어나지 않는다.Embodiments may include changes/modifications, and changes/modifications do not depart from the scope of the claims and the same.

Claims (20)

  1. 포인트 클라우드 데이터를 인코딩하는 단계; 및 Encoding the point cloud data; And
    상기 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 단계; 를 포함하는,Transmitting a bitstream including the point cloud data; Containing,
    포인트 클라우드 데이터 송신 방법.Point cloud data transmission method.
  2. 제1항에 있어서, 상기 방법은,The method of claim 1, wherein the method comprises:
    상기 포인트 클라우드 데이터의 공간을 분할하는 단계를 더 포함하는, Further comprising the step of dividing the space of the point cloud data,
    포인트 클라우드 데이터 송신 방법.Point cloud data transmission method.
  3. 제2항에 있어서,The method of claim 2,
    상기 포인트 클라우드 데이터는 바운딩 박스에 기반하여 분할되는,The point cloud data is divided based on a bounding box,
    포인트 클라우드 데이터 송신 방법.Point cloud data transmission method.
  4. 제3항에 있어서,The method of claim 3,
    상기 포인트 클라우드 데이터는 상기 바운딩 박스에 기반하여 인코딩되는,The point cloud data is encoded based on the bounding box,
    포인트 클라우드 데이터 송신 방법.Point cloud data transmission method.
  5. 제3항에 있어서,The method of claim 3,
    상기 비트스트림은 상기 바운딩 박스의 개수, 상기 바운딩 박스의 공간 좌표 정보, 상기 바운딩 박스의 너비, 높이, 깊이를 포함하는 파라미터를 포함하는,The bitstream includes parameters including the number of bounding boxes, spatial coordinate information of the bounding box, width, height, and depth of the bounding box,
    포인트 클라우드 데이터 송신 방법.Point cloud data transmission method.
  6. 포인트 클라우드 데이터를 인코딩하는 인코더; 및An encoder for encoding point cloud data; And
    상기 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 트랜스미터; 를 포함하는,A transmitter for transmitting a bitstream including the point cloud data; Containing,
    포인트 클라우드 데이터 송신 장치.Point cloud data transmission device.
  7. 제6항에 있어서, 상기 장치는The method of claim 6, wherein the device
    상기 포인트 클라우드 데이터의 공간을 분할하는 공간분할부를 더 포함하는, Further comprising a space dividing unit for dividing the space of the point cloud data,
    포인트 클라우드 데이터 송신 장치.Point cloud data transmission device.
  8. 제7항에 있어서,The method of claim 7,
    상기 포인트 클라우드 데이터는 바운딩 박스에 기반하여 분할되는,The point cloud data is divided based on a bounding box,
    포인트 클라우드 데이터 송신 장치.Point cloud data transmission device.
  9. 제8항에 있어서,The method of claim 8,
    상기 포인트 클라우드 데이터는 상기 바운딩 박스에 기반하여 인코딩되는,The point cloud data is encoded based on the bounding box,
    포인트 클라우드 데이터 송신 장치.Point cloud data transmission device.
  10. 제8항에 있어서,The method of claim 8,
    상기 비트스트림은 상기 바운딩 박스의 개수, 상기 바운딩 박스의 공간 좌표 정보, 상기 바운딩 박스의 너비, 높이, 깊이를 포함하는 파라미터를 포함하는,The bitstream includes parameters including the number of bounding boxes, spatial coordinate information of the bounding box, width, height, and depth of the bounding box,
    포인트 클라우드 데이터 송신 장치.Point cloud data transmission device.
  11. 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 단계;Receiving a bitstream including point cloud data;
    상기 포인트 클라우드 데이터를 디코딩하는 단계; 및Decoding the point cloud data; And
    상기 포인트 클라우드 데이터를 렌더링하는 단계; 를 포함하는,Rendering the point cloud data; Containing,
    포인트 클라우드 데이터 수신 방법.How to receive point cloud data.
  12. 제11항에 있어서, 상기 방법은,The method of claim 11, wherein the method comprises:
    상기 포인트 클라우드 데이터를 공간 분할하는 단계를 더 포함하는, Further comprising the step of spatially dividing the point cloud data,
    포인트 클라우드 데이터 수신 방법.How to receive point cloud data.
  13. 제12항에 있어서,The method of claim 12,
    상기 포인트 클라우드 데이터는 바운딩 박스에 기반하여 분할되는,The point cloud data is divided based on a bounding box,
    포인트 클라우드 데이터 수신 방법.How to receive point cloud data.
  14. 제13항에 있어서,The method of claim 13,
    상기 포인트 클라우드 데이터는 상기 바운딩 박스에 기반하여 디코딩되는,The point cloud data is decoded based on the bounding box,
    포인트 클라우드 데이터 수신 방법.How to receive point cloud data.
  15. 제12항에 있어서,The method of claim 12,
    상기 비트스트림은 상기 공간 분할에 관련된 바운딩 박스의 개수, 상기 바운딩 박스의 공간 좌표 정보, 상기 바운딩 박스의 너비, 높이, 깊이를 포함하는 파라미터를 포함하는,The bitstream includes a parameter including the number of bounding boxes related to the spatial division, spatial coordinate information of the bounding box, and a width, height, and depth of the bounding box,
    포인트 클라우드 데이터 수신 방법.How to receive point cloud data.
  16. 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 수신부;A receiving unit receiving a bitstream including point cloud data;
    상기 포인트 클라우드 데이터를 디코딩하는 디코더; 및A decoder for decoding the point cloud data; And
    상기 포인트 클라우드 데이터를 렌더링하는 렌더러; 를 포함하는,A renderer for rendering the point cloud data; Containing,
    포인트 클라우드 데이터 수신 장치.Point cloud data receiving device.
  17. 제16항에 있어서, 상기 장치는The method of claim 16, wherein the device
    상기 포인트 클라우드 데이터를 공간 분할하는 공간분할부를 더 포함하는, Further comprising a space division unit for spatially dividing the point cloud data,
    포인트 클라우드 데이터 수신 장치.Point cloud data receiving device.
  18. 제17항에 있어서,The method of claim 17,
    상기 포인트 클라우드 데이터는 바운딩 박스로 분할되는,The point cloud data is divided into bounding boxes,
    포인트 클라우드 데이터 수신 장치.Point cloud data receiving device.
  19. 제18항에 있어서,The method of claim 18,
    상기 포인트 클라우드 데이터는 상기 바운딩 박스에 기반하여 디코딩되는,The point cloud data is decoded based on the bounding box,
    포인트 클라우드 데이터 수신 장치.Point cloud data receiving device.
  20. 제18항에 있어서,The method of claim 18,
    상기 비트스트림은 상기 바운딩 박스의 개수, 상기 바운딩 박스의 공간 좌표 정보, 상기 바운딩 박스의 너비, 높이, 깊이를 포함하는 파라미터를 포함하는,The bitstream includes parameters including the number of bounding boxes, spatial coordinate information of the bounding box, width, height, and depth of the bounding box,
    포인트 클라우드 데이터 수신 장치.Point cloud data receiving device.
PCT/KR2020/001615 2019-03-15 2020-02-04 Point cloud data transmission apparatus, point cloud data transmission method, point cloud data reception apparatus, and point cloud data reception method WO2020189891A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962819437P 2019-03-15 2019-03-15
US62/819,437 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020189891A1 true WO2020189891A1 (en) 2020-09-24

Family

ID=72519143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001615 WO2020189891A1 (en) 2019-03-15 2020-02-04 Point cloud data transmission apparatus, point cloud data transmission method, point cloud data reception apparatus, and point cloud data reception method

Country Status (1)

Country Link
WO (1) WO2020189891A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3792875A4 (en) * 2018-05-11 2021-06-30 Panasonic Intellectual Property Corporation of America Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device
WO2022092891A1 (en) * 2020-10-30 2022-05-05 엘지전자 주식회사 Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
WO2022258010A1 (en) * 2021-06-11 2022-12-15 维沃移动通信有限公司 Point cloud encoding processing method and apparatus, and point cloud decoding processing method and apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106846425A (en) * 2017-01-11 2017-06-13 东南大学 A kind of dispersion point cloud compression method based on Octree
US9734595B2 (en) * 2014-09-24 2017-08-15 University of Maribor Method and apparatus for near-lossless compression and decompression of 3D meshes and point clouds
KR101798132B1 (en) * 2016-12-26 2017-11-16 한국생산기술연구원 Modeling apparatus and method of work environment for high-speed collision detection of robot
WO2019012975A1 (en) * 2017-07-10 2019-01-17 ソニー株式会社 Information processing device and method
WO2019014078A2 (en) * 2017-07-12 2019-01-17 Topcon Positioning Systems, Inc Point cloud data method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9734595B2 (en) * 2014-09-24 2017-08-15 University of Maribor Method and apparatus for near-lossless compression and decompression of 3D meshes and point clouds
KR101798132B1 (en) * 2016-12-26 2017-11-16 한국생산기술연구원 Modeling apparatus and method of work environment for high-speed collision detection of robot
CN106846425A (en) * 2017-01-11 2017-06-13 东南大学 A kind of dispersion point cloud compression method based on Octree
WO2019012975A1 (en) * 2017-07-10 2019-01-17 ソニー株式会社 Information processing device and method
WO2019014078A2 (en) * 2017-07-12 2019-01-17 Topcon Positioning Systems, Inc Point cloud data method and apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3792875A4 (en) * 2018-05-11 2021-06-30 Panasonic Intellectual Property Corporation of America Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device
US11989921B2 (en) 2018-05-11 2024-05-21 Panasonic Intellectual Property Corporation Of America Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device
WO2022092891A1 (en) * 2020-10-30 2022-05-05 엘지전자 주식회사 Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
WO2022258010A1 (en) * 2021-06-11 2022-12-15 维沃移动通信有限公司 Point cloud encoding processing method and apparatus, and point cloud decoding processing method and apparatus

Similar Documents

Publication Publication Date Title
WO2020190093A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
WO2020189976A1 (en) Apparatus and method for processing point cloud data
WO2020242244A1 (en) Method and device for processing point cloud data
WO2020189982A1 (en) Device and method for processing point cloud data
WO2020197086A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
WO2020189943A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
WO2021002604A1 (en) Point cloud data processing method and apparatus
WO2020246689A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device and point cloud data reception method
WO2021002594A1 (en) Point cloud data processing apparatus and method
WO2020256308A1 (en) Device and method for processing point cloud data
WO2020262831A1 (en) Apparatus and method for processing point cloud data
WO2020190090A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device and point cloud data reception method
WO2020242077A1 (en) Apparatus and method for processing point cloud data
WO2021002592A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
WO2021029511A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
WO2021060850A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
WO2021261840A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device and point cloud data reception method
WO2021045603A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
WO2021002558A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
WO2021201384A1 (en) Apparatus and method for processing point cloud data
WO2021206291A1 (en) Point cloud data transmission device, transmission method, processing device, and processing method
WO2020189891A1 (en) Point cloud data transmission apparatus, point cloud data transmission method, point cloud data reception apparatus, and point cloud data reception method
WO2021029575A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
WO2021145573A1 (en) Point cloud data processing apparatus and method
WO2021002636A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20774383

Country of ref document: EP

Kind code of ref document: A1