WO2020189491A1 - Information processing device and information processing method - Google Patents

Information processing device and information processing method Download PDF

Info

Publication number
WO2020189491A1
WO2020189491A1 PCT/JP2020/010789 JP2020010789W WO2020189491A1 WO 2020189491 A1 WO2020189491 A1 WO 2020189491A1 JP 2020010789 W JP2020010789 W JP 2020010789W WO 2020189491 A1 WO2020189491 A1 WO 2020189491A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight
unit
interference
space
information
Prior art date
Application number
PCT/JP2020/010789
Other languages
French (fr)
Japanese (ja)
Inventor
脩介 渡邉
忠成 長榮
貢輝 福山
雅和 濱野
山田 武史
尚史 原
雄一朗 瀬川
康裕 北村
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2021507270A priority Critical patent/JP7267397B2/en
Publication of WO2020189491A1 publication Critical patent/WO2020189491A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength

Definitions

  • the present invention relates to a technique for supporting the operation of an air vehicle.
  • Patent Document 1 states that patent document 1 acquires rotation information indicating the orientation of the nacelle and the phase of the blade in the wind turbine to be inspected, and acquires inspection data based on the rotation information.
  • a technique for generating data on the flight route (inspection route) of an aircraft is disclosed.
  • an object of the present invention is to reduce the influence of interference on the communication performed by the flying object.
  • the present invention has an acquisition unit that acquires strength information indicating the strength of each direction of radio waves emitted from the telecom equipment, and inspection data of the telecom equipment controlled by wireless communication and from a remote position.
  • an information processing device including an instruction unit for instructing a flight to reduce interference with radio waves whose intensity is indicated by the acquired intensity information when flying an air vehicle capable of acquiring the data.
  • the influence of interference on the communication performed by the flying object can be reduced.
  • Example FIG. 1 shows an example of the overall configuration of the equipment inspection system 1 according to the embodiment.
  • the equipment inspection system 1 is a system that supports inspection work of telecom equipment using an air vehicle.
  • the telecom equipment in this system is equipment that wirelessly transmits and receives electric signals.
  • the function of the telecommunications equipment is maintained by finding deterioration of the telecommunications equipment through inspection and repairing it if necessary.
  • the antenna equipment installed in the mobile communication base station is the inspection target will be described.
  • Inspection of telecom equipment is performed using inspection data, which is data for determining the degree of deterioration (degree of deterioration) and the necessity of repair.
  • the inspection data is, for example, measurement data of an infrared sensor, measurement data of an ultrasonic sensor, measurement data of a millimeter wave sensor, or the like.
  • the photographing data (data indicating a still image or a moving image) taken by the photographing means is used as the inspection data.
  • the degree of deterioration and the necessity of repair based on the inspection data are mainly determined by the person in charge of inspection.
  • the person in charge of inspection may judge the degree of deterioration by looking at the displayed inspection data, or determine the degree of deterioration after having the computer perform a process (image processing, etc.) for further analysis of the inspection data. May be good. It is not necessary to limit the subject of the judgment to a person, and for example, artificial intelligence may be made to judge the degree of deterioration or the like.
  • the equipment inspection system 1 includes a network 2, a server device 10, a drone 20, and a radio 30.
  • the network 2 is a communication system including a mobile communication network, the Internet, and the like, and relays data exchange between devices accessing the own system.
  • the server device 10 accesses the network 2 by wired communication (may be wireless communication), and the drone 20 and the radio 30 access by wireless communication.
  • the drone 20 is a rotorcraft type flying object that flies by rotating one or more rotors.
  • the drone 20 has a function of acquiring inspection data of the telecom equipment while flying at a position away from the telegraph equipment to be inspected.
  • the drone 20 has a photographing function of capturing an ambient image as a function of acquiring inspection data.
  • the drone 20 controls operations such as flight by wireless communication, and acquires inspection data (photographed data of telecom equipment in this embodiment).
  • the radio 30 is a device that performs proportional control (proportional control), and is used by the operator to operate the drone 20.
  • the radio 30 transmits control data for controlling the operation of the drone 20 such as flight by wireless communication conforming to a standard such as a wireless LAN (Local Area Network) or Bluetooth (registered trademark).
  • the drone 20 controls the operation of its own aircraft according to the control content (control of flight, shooting, etc.) indicated by the received control data.
  • the antenna equipment from which the drone 20 acquires inspection data also emits strong radio waves. If the radio waves of the antenna equipment interfere with the radio waves for operation, the control of the drone 20 is lost and the risk of collision or crash increases. Therefore, the server device 10 performs instruction processing or the like instructing the drone 20 to fly in which radio wave interference is unlikely to occur.
  • the server device 10 is an example of the "information processing device" of the present invention.
  • FIG. 2 shows an example of the hardware configuration of the server device 10.
  • the server device 10 may be physically configured as a computer device including a processor 11, a memory 12, a storage 13, a communication device 14, a bus 15, and the like.
  • the word "device” can be read as a circuit, a device, a unit, or the like.
  • each device may be included one or more, or some devices may not be included.
  • the processor 11 operates, for example, an operating system to control the entire computer.
  • the processor 11 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU Central Processing Unit
  • the baseband signal processing unit and the like may be realized by the processor 11. Further, the processor 11 reads a program (program code), a software module, data, and the like from at least one of the storage 13 and the communication device 14 into the memory 12, and executes various processes according to the read program and the like.
  • a program program code
  • the program a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above are executed by one processor 11, they may be executed simultaneously or sequentially by two or more processors 11.
  • the processor 11 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 12 is a computer-readable recording medium.
  • the memory 12 may be composed of at least one such as a ROM (ReadOnlyMemory), an EPROM (ErasableProgrammableROM), an EPROM (ElectricallyErasableProgrammableROM), and a RAM (RandomAccessMemory).
  • the memory 12 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 12 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 13 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, or a magneto-optical disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, or a magneto-optical disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 13 may be called an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 12 and the storage 13.
  • the communication device 14 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network.
  • the above-mentioned transmission / reception antenna, amplifier unit, transmission / reception unit, transmission line interface, and the like may be realized by the communication device 14.
  • the transmission / reception unit may be physically or logically separated from each other in the transmission unit and the reception unit.
  • each device such as the processor 11 and the memory 12 is connected by a bus 15 for communicating information.
  • the bus 15 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • FIG. 3 shows an example of the hardware configuration of the drone 20.
  • the drone 20 is physically a computer including a processor 21, a memory 22, a storage 23, a communication device 24, a flight device 25, a sensor device 26, a battery 27, a camera 28, a bus 29, and the like. It may be configured as a device.
  • the hardware of the same name shown in FIG. 2 such as the processor 21 is the same type of hardware as in FIG. 2, although there are differences in performance and specifications.
  • the communication device 24 has a function of communicating with the radio 30 (for example, a wireless communication function using radio waves in the 2.4 GHz band) in addition to the communication with the network 2.
  • the flight device 25 includes a motor 251 and a rotor 252, and is a device for flying its own aircraft. The flight device 25 can move its own aircraft in all directions and make its own aircraft stationary (hovering) in the air.
  • the sensor device 26 is a device having a sensor group for acquiring information necessary for flight control.
  • the sensor device 26 has, for example, a position sensor that measures the position (latitude and longitude) of the own machine and a direction in which the own machine is facing (the front direction of the own machine is determined by the drone, and the determined front direction). It is equipped with a direction sensor that measures the direction in which the aircraft is facing) and an altitude sensor that measures the altitude of the aircraft.
  • the sensor device 26 includes a speed sensor for measuring the speed of the own machine and an inertial measurement sensor (IMU (Inertial Measurement Unit)) for measuring the angular speed of three axes and the acceleration in three directions.
  • the battery 27 is a device that stores electric power and supplies electric power to each part of the drone 20.
  • the camera 28 includes an image sensor, optical system parts, and the like, and photographs an object in the direction in which the lens is facing.
  • FIG. 4 shows an example of the hardware configuration of the radio 30.
  • the radio 30 may be physically configured as a computer device including a processor 31, a memory 32, a storage 33, a communication device 34, an input device 35, an output device 36, a bus 37, and the like.
  • the hardware of the same name shown in FIG. 2 such as the processor 31 is the same type of hardware as in FIG. 2, although there are differences in performance and specifications.
  • the input device 35 is an input device (for example, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the input device 35 includes a left stick 351 and a right stick 352, and accepts an operation on each stick as a movement operation in the front-back direction, the up-down direction, the left-right direction, and the rotation direction of the drone 20.
  • the output device 36 is an output device (for example, a monitor 361, a speaker, an LED (Light Emitting Diode) lamp, etc.) that outputs to the outside.
  • the input device 35 and the output device 36 may have an integrated configuration (for example, the monitor 361 is a touch screen).
  • each of the above devices includes hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be composed of. Further, in each of the above devices, a part or all of each functional block may be realized by the hardware. For example, the processor 11 may be implemented using at least one of the hardware.
  • Each function in each device included in the equipment inspection system 1 is performed by the processor by loading predetermined software (program) on the hardware such as each processor and memory, and the communication by each communication device is controlled. It is achieved by controlling at least one of reading and writing of data in memory and storage.
  • FIG. 5 shows the functional configuration realized by each device.
  • the server device 10 includes a strength information acquisition unit 101, an interference space identification unit 102, and a flight instruction unit 103.
  • the radio 30 includes an inspection target notification unit 301 and an instruction response processing unit 302.
  • the inspection target notification unit 301 notifies the server device 10 of the telecom equipment to be inspected.
  • the inspection target notification unit 301 displays, for example, a list of the names of the base stations having the telecom equipment to be inspected, and transmits the base station ID of the base station selected by the inspector to the server device 10.
  • the strength information acquisition unit 101 acquires strength information indicating the strength of each direction of the radio wave emitted from the telecom equipment to be inspected.
  • the strength information acquisition unit 101 is an example of the “acquisition unit” of the present invention.
  • the intensity information is information including, for example, a radiation pattern indicating the gain of radio waves emitted from the telecom equipment in each radiation direction and output information indicating the strength of the radio wave output of the telecom equipment.
  • a radiation pattern is created in advance by an inspector from the shape of the antenna of each base station, which is the telecom equipment to be inspected.
  • FIG. 6 shows an example of the radiation pattern.
  • the radiation pattern Ae1 on the E surface (electric field surface) and the radiation pattern Ah1 on the H surface (magnetic field surface) are represented.
  • the radiation pattern Ae1 has a large gain in the horizontal direction and a small gain in the vertical direction.
  • the radiation pattern Ah1 has a large gain in the east-west direction B1 and a north-south direction B2, and a small gain in the direction B3 connecting the southwest and the northeast and the direction B4 connecting the southeast and the northwest.
  • the person in charge of inspection creates output information in advance based on the specifications of the telecom equipment as well as the radiation pattern.
  • the intensity information including the radiation pattern and the output information created by the inspector in this way is stored in, for example, the server device 10 including the base station ID corresponding to each.
  • the strength information acquisition unit 101 reads out the strength information including the base station ID transmitted from the radio 30 from its own device and acquires it as the strength information of the telecom equipment to be inspected.
  • the strength information may be stored in an external device.
  • the strength information acquisition unit 101 acquires the strength information read from the external device. Further, in this embodiment, in order to make the explanation easy to understand, it is not necessary to consider the change of the radio field intensity with time.
  • the strength information acquisition unit 101 supplies the acquired strength information to the interference space identification unit 102.
  • the interference space identification unit 102 sets a space in which the intensity of the radio wave indicated by the intensity information acquired by the intensity information acquisition unit 101 is equal to or higher than the threshold value as an interference space in which the wireless communication performed by the drone 20 and the radio wave emitted by the telegraph equipment interfere with each other. Identify.
  • the interference space specifying unit 102 is an example of the "specific unit" of the present invention.
  • the interference space identification unit 102 stores, for example, airspace information indicating the range of the airspace around the telecom equipment of each base station.
  • Airspace information is represented by, for example, a unit space.
  • the unit space is a virtual cubic space that is spread tightly in the real space, and is a space that represents the smallest unit of the airspace.
  • FIG. 7 shows an example of the radio field intensity in each unit space.
  • the unit space around the telecom equipment 3 is color-coded into four types.
  • the telegraph equipment 3 is an antenna equipment in which four antennas 4 are arranged so as to be located at each apex of a quadrangle.
  • Lv4, Lv3, Lv2, and Lv1 (the relationship of radio field intensity is Lv4> Lv3> Lv2> Lv1) in order from the unit space where the color is dark.
  • the telecom equipment 3 viewed from the south side to the north and the surrounding unit space are shown.
  • Each unit space shown in FIG. 7A is a unit space in which the position of the north-south direction B2 is common to that of the telegraph equipment 3, and as shown on the H plane of FIG. 6, the radio wave in the east-west direction B1 having a large gain is large. It is a unit space in which strength is expressed.
  • unit spaces having a radio field intensity of Lv4 are lined up in the horizontal direction of the antenna 4 of the telecom equipment 3, and unit spaces having a radio field strength of Lv3 are lined up above and below the unit space of Lv4. Further, unit spaces having a radio field intensity of Lv2 are lined up above and below the unit space of Lv3, and unit spaces having a radio field strength of Lv1 are lined up above and below the unit space of Lv2.
  • the unit space group having a radio wave intensity of Lv4, the unit space group having Lv3, and the unit space group having a radio wave intensity of Lv2 all have a width in the vertical direction as the distance from the antenna 4 increases, as shown by the gain on the E plane in FIG. It is wider, that is, the vertical range is wider.
  • each unit space shown in FIG. 7B is a unit space in which the position of the direction B4 connecting southeast and northwest is common to that of the telegraph equipment 3, and as shown in the H plane of FIG. 6, the southwest has a small gain.
  • This is a unit space in which the radio field intensity in the direction B3 connecting the northeast and the northwest is represented.
  • unit spaces having a radio field intensity of Lv3 are lined up in the horizontal direction of the antenna 4 of the telecom equipment 3, and unit spaces having a radio field strength of Lv2 are lined up above and below the unit space of Lv3.
  • the interference space identification unit 102 determines the radio wave intensity of each unit space by the radiation pattern of the telegraph equipment 3 (the unit space in the direction of larger gain has a stronger radio wave intensity) and output information (the larger the output of the radio wave of the telegraph equipment, the stronger the radio wave intensity). Is strong) and the distance between each unit space and the antenna 4 (the farther the distance from the antenna 4 is, the weaker the radio field intensity is).
  • the interference space specifying unit 102 specifies, for example, a unit space having a radio field intensity of Lv4 as an interference space.
  • the interference space specifying unit 102 generates interference space information indicating a unit space representing the specified interference space.
  • FIG. 7A it is assumed that an interference space is generated in the unit space in the east-west direction B1 and the north-south direction B2 when viewed from the telecom equipment 3. Therefore, the interference space specifying unit 102 generates interference space information indicating each unit space in the east-west direction B1 and the north-south direction B2 as an interference space.
  • the interference space identification unit 102 adds a base station ID to the generated interference space information and supplies it to the flight instruction unit 103.
  • the flight instruction unit 103 instructs the flight to reduce the interference with the radio wave whose intensity is indicated by the intensity information acquired by the intensity information acquisition unit 101.
  • the flight instruction unit 103 is an example of the "instruction unit" of the present invention.
  • the flight instruction unit 103 instructs the flight not to pass through the interference space specified by the interference space identification unit 102.
  • the flight instruction unit 103 stores, for example, equipment information indicating the number of inspection directions required for the antenna equipment of each base station in association with the base station ID.
  • the inspection direction is the direction to acquire the inspection data of the antenna equipment.
  • the number of inspection directions required is determined by the number and arrangement of antennas. For example, in the case of antenna equipment in which one or two or more antennas are arranged straight, inspection data may be acquired from two directions, so that two inspection directions are required. Further, if the antenna equipment has three or more antennas arranged along a triangle, three inspection directions are required.
  • the flight instruction unit 103 reads out the equipment information stored in association with the base station ID indicated by the supplied interference space information.
  • the flight instruction unit 103 determines the number of directions indicated by the read equipment information from the directions in which the unit space representing the interference space indicated by the supplied interference space information does not exist.
  • the flight instruction unit 103 determines four inspection directions because the four antennas are arranged along the quadrangle. Since the unit space in the four directions of north, south, east, and west is specified as the interference space in the flight instruction unit 103, the four northeast, northwest, southwest, and southeast directions that are not specified as the interference space are specified. Determine one inspection direction.
  • the flight instruction unit 103 generates instruction data for instructing flight to acquire inspection data for the four determined inspection directions, and transmits the generated instruction data to the radio 30.
  • the instruction response processing unit 302 of the radio 30 performs a process corresponding to the instruction indicated by the transmitted instruction data (hereinafter referred to as “instruction response process”).
  • instruction response process the instruction response processing unit 302 performs a process of displaying the instruction content indicated by the instruction data on the monitor 361 of the own device and transmitting the instruction content to the operator as the instruction response process.
  • FIG. 8 shows an example of the displayed instruction content.
  • the instruction handling processing unit 302 puts the character string "Please acquire the inspection data from the following four directions for the telecom equipment 3. Northeast, southeast, southwest, northwest" on the monitor 361 of the radio 30. it's shown.
  • the drone 20 flies on the northeast side, the southeast side, the southwest side, and the northwest side of the telecom equipment 3 and acquires inspection data.
  • the server device 10 performs an instruction process for instructing the flight of the drone 20 to acquire the inspection data of the telecom equipment to be inspected.
  • FIG. 9 shows an example of the operation procedure of each device in the instruction processing.
  • the operation procedure of FIG. 10 is started, for example, when the operator of the drone 20 performs an operation of selecting a base station to be inspected for the radio 30.
  • the server device 10 receives the notification of the base station ID transmitted from the radio 30 (step S11), the radio wave emitted from the telecom equipment of the base station indicated by the received base station ID. (Step S12), the strength information indicating the strength in each direction of is acquired.
  • the server device 10 (interference space specifying unit 102) identifies an interference space in which interference between the wireless communication performed by the drone 20 and the radio wave emitted by the telecom equipment occurs based on the acquired strength information (step S13). ..
  • the server device 10 transmits instruction data instructing the flight to reduce the interference with the radio wave whose intensity is indicated by the intensity information acquired in step S12 to the radio 30 (step S14). Specifically, the server device 10 (flight instruction unit 103) transmits instruction data instructing flight that does not pass through the interference space specified in step S13.
  • the flight path when the operator flies the drone 20 according to the instruction indicated by the transmitted instruction data will be described with reference to FIG.
  • FIG. 10 shows an example of the flight path of the drone 20.
  • the telecom equipment 3 viewed from the southeast side, the flight path Bne1 which is separated into three unit spaces on the northeast side of the telecom equipment 3 and reciprocates up and down, and the unit space 3 on the southwest side of the telecom equipment 3.
  • the flight path Bsw1 is separated and reciprocates up and down.
  • the drone 20 will fly without passing through an interference space (a unit space having a radio field intensity of Lv4) as shown in FIG. 7B.
  • the operator will decide the flight direction without knowing the radio field strength of each airspace.
  • An example of the flight path in that case will be described with reference to FIG.
  • FIG. 11 shows an example of another flight path of the drone 20.
  • the telecom equipment 3 viewed from the south side
  • the flight path Be1 which is separated by three unit spaces on the east side of the telegraph equipment 3 and reciprocates up and down
  • the west side of the telegraph equipment 3 are separated by three unit spaces.
  • the flight path Bw1 that reciprocates up and down is represented.
  • the drone 20 passes through an interference space (a unit space having a radio field intensity of Lv4) as shown in FIG. 7A.
  • the drone 20 controls the operation of its own machine by receiving the control data transmitted from the radio 30.
  • the radio wave from the radio 30 and the telegraph equipment It is possible that the radio waves from the drone 20 interfere with each other, fail to receive the control data, and the drone 20 is not controlled correctly.
  • the flight is instructed to reduce the interference with the radio waves from the telecom equipment.
  • the influence of interference on the communication performed by the drone 20 can be reduced as compared with the case where the above flight instruction is not given. .. Further, in this embodiment, the flight that does not pass through the interference space specified as described above is instructed. Therefore, the influence of the interference can be reduced more reliably than in the case where the flight instruction is given without specifying the interference space.
  • the interference space specifying unit 102 may specify a larger space as an interference space as the frequency band of the radio wave of the telegraph equipment and the frequency band of the radio wave used by the drone 20 in wireless communication are closer.
  • the intensity information acquisition unit 101 acquires intensity information including the frequency band of the radio wave transmitted by the telecom equipment.
  • the frequency band of radio waves transmitted by telecommunications equipment may differ, for example, for each telecommunications equipment. Further, even in the same telecom equipment, radio waves of a plurality of different frequency bands may be emitted at the same time. In the latter case, the intensity information acquisition unit 101 acquires intensity information including each frequency band of the radio waves emitted at the same time.
  • the interference space identification unit 102 provides a threshold table in which the difference between the radio wave frequency band of the telecom equipment and the radio wave frequency band used by the drone 20 in wireless communication and the radio wave intensity threshold used when specifying the interference space are associated with each other. Use.
  • FIG. 12 shows an example of a threshold table.
  • the difference between the frequency bands “less than Th11”, “Th11 or more and less than Th12”, and “Th12 or more”, and the threshold values “Th1”, “Th2”, and “Th3” (T1 ⁇ T2 ⁇ T3) are associated with each other.
  • the interference space specifying unit 102 calculates the difference between the medians of the frequency bands as the difference of the frequency band, and specifies the interference space by using the threshold value associated with the calculated difference in the threshold table.
  • the interference space specifying unit 102 specifies the large space as the interference space because the smaller the difference in the frequency band, the smaller the threshold of the radio wave intensity used when specifying the interference space. Will be done.
  • the interference space identification unit 102 sets the threshold value associated with the smallest of the above differences in each frequency band in the threshold table. Use to identify the interference space.
  • the interference space specifying unit 102 specifies the interference space by using the radiation pattern and output information of the radio wave in the frequency band where the difference is minimized.
  • the specified interference space is compared with the case where the size of the interference space is made uniform regardless of the difference in the frequency band. Is too small to cause the drone 20 to be affected by interference, that is, it is possible to prevent the drone 20 from losing control and crashing due to the influence of interference.
  • Drone control In the embodiment, the flight of the drone 20 and the acquisition of inspection data were controlled by operating the radio 30, but for example, instructions such as flight path, flight speed, flight time, and shooting timing were given from a personal computer or the like. It may be transmitted to the drone 20 to autonomously control the acquisition of flight and inspection data.
  • Aircraft In the examples, a rotary-wing aircraft type air vehicle was used as the air vehicle, but the vehicle is not limited to this.
  • the air vehicle may be, for example, an airplane type air vehicle or a helicopter type air vehicle.
  • any flying object may be used as long as it can fly around the telecom equipment to be inspected and has a function of acquiring inspection data.
  • interference space route a route that passes through the interference space specified by the interference space identification unit 102 (hereinafter referred to as "interference space route") may be flown in order to acquire inspection data. There may be cases where it must be done.
  • the drone 20 may have an autonomous flight function for autonomous flight on a designated route, as described in the above modification.
  • the flight instruction unit 103 may instruct the drone 20 to fly autonomously on the interference space route. For example, in the example of FIG. 7, when a unit space having a radio field intensity of Lv3 or higher is specified as an interference space, as shown in FIG. 7B, if the radio wave strength does not pass through the unit space of Lv3, the telecom equipment 3 Not all inspection data can be obtained.
  • the flight instruction unit 103 instructs the drone 20 to fly autonomously when the radio field intensity shown in FIG. 7B passes through the unit space of Lv3.
  • the radio 30 may have a function of switching between an operated flight and an autonomous flight that maintains the last operated flight state (autonomous flight that maintains the flight direction, flight speed, etc.) (in this case, at the end).
  • the flight route is specified when the flight is continued in the operated flight state).
  • the flight instruction unit 103 gives an instruction of this modification by notifying the operator of the altitude to switch to autonomous flight and the altitude to switch to flight by operation. Further, the flight instruction unit 103 forcibly switches to autonomous flight when the radio wave intensity reaches the unit space of Lv3 or more with respect to the drone 20, and operates when the radio wave intensity has passed through the unit space of Lv3 or more. You may send instruction data to switch to flight by. In this case, the drone 20 switches between operational flight and autonomous flight as indicated by the received instruction data.
  • the drone 20 capable of autonomous flight can fly safely even when there is an interference space route, as compared with the case where the switch to autonomous flight is not performed.
  • the drone 20 controls the operation of its own machine by the control data transmitted from the radio 30 as described above.
  • the control data from the radio 30 includes data for controlling the operation related to flight. That is, the drone 20 has a receiving function for receiving a communication indicating a flight instruction.
  • the flight instruction unit 103 instructs the autonomous flight as described above, the flight instruction unit 103 may instruct to stop the reception function during the autonomous flight.
  • the drone 20 flies in the interference space, there is a possibility that the above receiving function receives incomplete control data due to the interference of radio waves. Further, in some cases, the possibility that the reception function mistakenly receives the radio wave emitted from the telecom equipment as control data is not zero.
  • this modified example by stopping the reception function during autonomous flight, an abnormal flight is performed by receiving inappropriate control data and the drone 20 falls, as compared with the case where the reception function is not stopped. You can prevent the situation.
  • the drone 20 may be able to select wireless communication in two or more frequency bands. For example, in the case of wireless communication conforming to the wireless LAN standard, it may be possible to select between the 2.4 GHz band and the 5 GHz band. In that case, the flight instruction unit 103 may instruct to select wireless communication in a frequency band of two or more frequency bands in which interference with radio waves emitted by the telecom equipment is unlikely to occur.
  • the flight instruction unit 103 transmits instruction data indicating the instruction content as a character string, as in the embodiment, for example.
  • FIG. 13 shows an example of the instruction content displayed in this modification.
  • the instruction handling processing unit 302 displays the character string "Please select the operation in the 5 GHz band" on the monitor 361 of the radio 30.
  • the telecom equipment emits radio waves in a frequency band in which the difference from the 2.4 GHz band is smaller than the difference from the 5 GHz band. If the operator follows the displayed instructions, wireless communication in the frequency band where interference with the radio waves emitted by the telecom equipment is least likely to occur is surely performed. On the other hand, if there is no frequency band instruction, wireless communication may be performed in a frequency band where interference with radio waves emitted by the telecom equipment is likely to occur, depending on the operator's choice.
  • the flight instruction unit 103 may use at least one or more other frequency bands even if the second or later frequency band is less likely to interfere with the radio waves emitted by the telecom equipment. If interference is less likely to occur and the degree of interference falls below a predetermined reference, it may be instructed to select wireless communication in that frequency band. Even in that case, it is possible to suppress the influence of radio wave interference on the acquisition of inspection data as compared with the case where the frequency band is not instructed.
  • Flight instruction The flight instruction unit 103 may instruct flight by a method different from each of the above examples.
  • the flight instruction unit 103 indicates only the direction in which the inspection data is acquired, but the flight route to be flown may be instructed more specifically.
  • the specific instruction is, for example, an instruction indicating a unit space to be flown, a distance from a telecom facility, a flight speed, a flight direction, or the like.
  • the flight instruction unit 103 may give a flight instruction in words as in the embodiment, or may give an image or a moving image showing a flight path, for example. Further, in the embodiment, the flight instruction unit 103 instructed the flight to move the drone 20 up and down almost simply, but may instruct a complicated flight to move the drone 20 up and down, left and right, back and forth, and diagonally in order to avoid the interference space. Good. Further, the flight instruction unit 103 may instruct the flight to pass through the interference space when the necessary inspection data cannot be acquired without flying in the interference space.
  • the flight instruction unit 103 may instruct, for example, the period in which the interference space is the smallest as the period for flight. In either case, the flight instruction unit 103 is as unaffected by radio wave interference as possible so that the drone 20 does not lose control and crash due to the above-mentioned radio wave interference that does not reach the correct control data. Just point to.
  • the device for realizing each function shown in FIG. 5 is not limited to the above-mentioned device.
  • the drone 20 or the radio 30 may realize the functions realized by the server device 10.
  • the drone 20 or the radio 30 is an example of the "information processing device" of the present invention.
  • the instruction data may be transmitted to the radio 30 as in the embodiment, but it is possible to avoid the interference more quickly if the drone 20 itself makes a flight to reduce the interference according to the instruction. desirable. In any case, it is sufficient that each function shown in FIG. 5 is realized in the entire equipment inspection system 1.
  • an information processing system including each information processing device and an air vehicle such as a drone 20 (equipment inspection system 1).
  • the present invention can be regarded as an information processing method for realizing the processing performed by each information processing device, and also as a program for operating a computer that controls each information processing device.
  • the program regarded as the present invention may be provided in the form of a recording medium such as an optical disk in which the program is stored, or may be downloaded to a computer via a network such as the Internet, and the downloaded program may be installed and used. It may be provided in the form of
  • each functional block may be realized by using one physically or logically connected device, or directly or indirectly (for example, two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption.
  • broadcasting notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these. I can't.
  • a functional block (constituent unit) for functioning transmission is called a transmitting unit or a transmitter.
  • the method of realizing each of them is not particularly limited.
  • the input / output information, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information and the like can be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
  • Judgment method may be performed by a value represented by 1 bit (0 or 1), a boolean value (Boolean: true or false), or a numerical value. (For example, comparison with a predetermined value) may be performed.
  • the input / output information, etc. may be stored in a specific location (for example, memory) or managed by a management table. Input / output information and the like can be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
  • Software Software is an instruction, instruction set, code, code segment, program code, program, regardless of whether it is called software, firmware, middleware, microcode, hardware description language, or another name.
  • Subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website that uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • “Judgment”, “Decision” The terms “determining” and “determining” used in this disclosure may include a wide variety of actions. “Judgment” and “decision” are, for example, judgment, calculation, computing, processing, deriving, investigating, looking up, search, inquiry. It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
  • Accessing for example, accessing data in memory
  • judgment and “decision” mean that "resolving”, “selecting”, “choosing”, “establishing”, “comparing”, etc. are regarded as “judgment” and “decision”.
  • judgment and “decision” may include that some action is regarded as “judgment” and “decision”.
  • judgment (decision)” may be read as “assuming", “expecting”, “considering” and the like.
  • 1 ... Equipment inspection system, 2 ... Network, 10 ... Server device, 20 ... Drone, 30 ... Propo, 101 ... Strength information acquisition unit, 102 ... Interference space identification unit, 103 ... Flight instruction unit, 301 ... Inspection target notification unit, 302 ... Instruction handling processing unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Traffic Control Systems (AREA)

Abstract

As a technology for assisting with an operation of an aerial body (20) which inspects a state of a telegraph facility, an intensity information acquisition unit (101) acquires intensity information indicating an intensity of radio waves emitted from a telegraph facility to be inspected for each direction. The intensity information is information which includes, for example, a radiation pattern indicating a gain for each radiation direction of the radio waves emitted from the telegraph facility. On the basis of the intensity information acquired by the intensity information acquisition unit (101), an interference space identification unit (102) identifies radio wave intensity in an airspace in the vicinity of the telegraph facility to be inspected. A flight command unit (103) commands a flight such that interference with the radio waves for which the intensity is indicated by the intensity information acquired by the intensity information acquisition unit (101) is reduced. A command correspondence processing unit (302) carries out a process which corresponds to a command indicated by transmitted command data.

Description

情報処理装置及び情報処理方法Information processing device and information processing method
 本発明は、飛行体の運用を支援する技術に関する。 The present invention relates to a technique for supporting the operation of an air vehicle.
 飛行体の運用を支援する技術として、特許文献1には、点検対象の風車におけるナセルの向き及びブレードの位相を示す回転情報を取得し、回転情報に基づいて、点検用のデータを取得する無人機の飛行ルート(点検ルート)のデータを生成する技術が開示されている。 As a technique for supporting the operation of an air vehicle, Patent Document 1 states that patent document 1 acquires rotation information indicating the orientation of the nacelle and the phase of the blade in the wind turbine to be inspected, and acquires inspection data based on the rotation information. A technique for generating data on the flight route (inspection route) of an aircraft is disclosed.
特開2018-21491号公報Japanese Unexamined Patent Publication No. 2018-21491
 基地局等の電波を発する電信設備の状態を検査するために特許文献1の技術のようにドローン等の飛行体でその電信設備の検査データ(画像データ等)を取得する場合、発信される電波が干渉して飛行体との通信(操縦者が用いる操縦機との通信等)が不安定になるおそれがある。
 そこで、本発明は、飛行体が行う通信に対する干渉の影響を少なくすることを目的とする。
When acquiring inspection data (image data, etc.) of a telecom equipment with a flying object such as a drone as in the technology of Patent Document 1 in order to inspect the state of a telecom equipment that emits radio waves such as a base station, the radio waves transmitted. May interfere and communication with the aircraft (communication with the pilot used by the operator, etc.) may become unstable.
Therefore, an object of the present invention is to reduce the influence of interference on the communication performed by the flying object.
 上記目的を達成するために、本発明は、電信設備から発せられる電波の方向毎の強度を示す強度情報を取得する取得部と、無線通信により制御され且つ離れた位置から前記電信設備の検査データを取得可能な飛行体を飛行させる場合に、取得された前記強度情報により強度が示される電波との干渉を小さくする飛行を指示する指示部とを備える情報処理装置を提供する。 In order to achieve the above object, the present invention has an acquisition unit that acquires strength information indicating the strength of each direction of radio waves emitted from the telecom equipment, and inspection data of the telecom equipment controlled by wireless communication and from a remote position. Provided is an information processing device including an instruction unit for instructing a flight to reduce interference with radio waves whose intensity is indicated by the acquired intensity information when flying an air vehicle capable of acquiring the data.
 本発明によれば、飛行体が行う通信に対する干渉の影響を少なくすることができる。 According to the present invention, the influence of interference on the communication performed by the flying object can be reduced.
実施例に係る設備検査システムの全体構成の一例を表す図Diagram showing an example of the overall configuration of the equipment inspection system according to the embodiment サーバ装置のハードウェア構成の一例を表す図Diagram showing an example of the hardware configuration of the server device ドローンのハードウェア構成の一例を表す図Diagram showing an example of drone hardware configuration プロポのハードウェア構成の一例を表す図Diagram showing an example of the hardware configuration of the radio 各装置が実現する機能構成を表す図Diagram showing the functional configuration realized by each device 放射パターンの一例を表す図Diagram showing an example of radiation pattern 各単位空間の電波強度の一例を表す図Diagram showing an example of radio field strength in each unit space 表示される指示内容の一例を表す図Diagram showing an example of the displayed instructions 指示処理における各装置の動作手順の一例を表す図The figure which shows an example of the operation procedure of each device in instruction processing ドローンの飛行経路の一例を表す図Diagram showing an example of a drone's flight path ドローンの別の飛行経路の一例を表す図Diagram showing an example of another flight path of a drone 閾値テーブルの一例を表す図Diagram showing an example of a threshold table 変形例で表示される指示内容の一例を表す図Diagram showing an example of the instruction content displayed in the modified example
[1]実施例
 図1は実施例に係る設備検査システム1の全体構成の一例を表す。設備検査システム1は、飛行体を用いた電信設備の検査業務を支援するシステムである。本システムにおける電信設備とは、電気信号を無線で送受信する設備のことである。検査により電信設備の劣化を見つけ、必要であれば修繕することで、電信設備の機能が維持される。本実施例では、移動体通信の基地局に設置されたアンテナ設備が検査対象である場合を説明する。
[1] Example FIG. 1 shows an example of the overall configuration of the equipment inspection system 1 according to the embodiment. The equipment inspection system 1 is a system that supports inspection work of telecom equipment using an air vehicle. The telecom equipment in this system is equipment that wirelessly transmits and receives electric signals. The function of the telecommunications equipment is maintained by finding deterioration of the telecommunications equipment through inspection and repairing it if necessary. In this embodiment, the case where the antenna equipment installed in the mobile communication base station is the inspection target will be described.
 電信設備の検査は、劣化の程度(劣化度)及び修繕の要否を判断するためのデータである検査データを用いて行われる。検査データとは、例えば、赤外線センサの測定データ、超音波センサの測定データ及びミリ波センサの測定データ等である。本実施例では、撮影手段による撮影データ(静止画像又は動画像を示すデータ)が検査データとして用いられる。 Inspection of telecom equipment is performed using inspection data, which is data for determining the degree of deterioration (degree of deterioration) and the necessity of repair. The inspection data is, for example, measurement data of an infrared sensor, measurement data of an ultrasonic sensor, measurement data of a millimeter wave sensor, or the like. In this embodiment, the photographing data (data indicating a still image or a moving image) taken by the photographing means is used as the inspection data.
 検査データに基づく劣化度及び修繕の要否の判断は、主に検査担当者によって行われる。検査担当者は、表示された検査データを見て劣化度等を判断してもよいし、検査データをさらに分析する処理(画像処理等)をコンピュータに行わせてから劣化度等を判断してもよい。なお、判断の主体を人に限定する必要はなく、例えば人工知能に劣化度等を判断させてもよい。 The degree of deterioration and the necessity of repair based on the inspection data are mainly determined by the person in charge of inspection. The person in charge of inspection may judge the degree of deterioration by looking at the displayed inspection data, or determine the degree of deterioration after having the computer perform a process (image processing, etc.) for further analysis of the inspection data. May be good. It is not necessary to limit the subject of the judgment to a person, and for example, artificial intelligence may be made to judge the degree of deterioration or the like.
 設備検査システム1は、ネットワーク2と、サーバ装置10と、ドローン20と、プロポ30とを備える。ネットワーク2は、移動体通信網及びインターネット等を含む通信システムであり、自システムにアクセスする装置同士のデータのやり取りを中継する。ネットワーク2には、サーバ装置10が有線通信で(無線通信でもよい)、ドローン20及びプロポ30が無線通信でアクセスしている。 The equipment inspection system 1 includes a network 2, a server device 10, a drone 20, and a radio 30. The network 2 is a communication system including a mobile communication network, the Internet, and the like, and relays data exchange between devices accessing the own system. The server device 10 accesses the network 2 by wired communication (may be wireless communication), and the drone 20 and the radio 30 access by wireless communication.
 ドローン20は、本実施例では、1以上の回転翼を回転させて飛行する回転翼機型の飛行体である。ドローン20は、検査対象である電信設備から離れた位置を飛行しながらその電信設備の検査データを取得する機能を有している。ドローン20は、本実施例では、周囲の映像を撮影する撮影機能を、検査データを取得する機能として備えている。ドローン20は、無線通信により飛行等の動作を制御され、検査データ(本実施例では電信設備の撮影データ)を取得する。 In this embodiment, the drone 20 is a rotorcraft type flying object that flies by rotating one or more rotors. The drone 20 has a function of acquiring inspection data of the telecom equipment while flying at a position away from the telegraph equipment to be inspected. In this embodiment, the drone 20 has a photographing function of capturing an ambient image as a function of acquiring inspection data. The drone 20 controls operations such as flight by wireless communication, and acquires inspection data (photographed data of telecom equipment in this embodiment).
 プロポ30は、プロポーショナル式の制御(比例制御)を行う装置であり、操作者がドローン20の操作に用いる。プロポ30は、例えば無線LAN(Local Area Network)又はBluetooth(登録商標)等の規格に準拠した無線通信により、ドローン20の飛行等の動作を制御する制御データを送信する。ドローン20は、受信した制御データが示す制御内容(飛行及び撮影等の制御)に従い自機の動作を制御する。 The radio 30 is a device that performs proportional control (proportional control), and is used by the operator to operate the drone 20. The radio 30 transmits control data for controlling the operation of the drone 20 such as flight by wireless communication conforming to a standard such as a wireless LAN (Local Area Network) or Bluetooth (registered trademark). The drone 20 controls the operation of its own aircraft according to the control content (control of flight, shooting, etc.) indicated by the received control data.
 一方、ドローン20が検査データを取得するアンテナ設備も、強力な電波を発信している。アンテナ設備の電波が操作用の電波に干渉すると、ドローン20の制御が失われて衝突又は墜落の危険が増す。そこで、サーバ装置10は、電波の干渉が生じにくい飛行をドローン20に指示する指示処理等を行う。サーバ装置10は本発明の「情報処理装置」の一例である。 On the other hand, the antenna equipment from which the drone 20 acquires inspection data also emits strong radio waves. If the radio waves of the antenna equipment interfere with the radio waves for operation, the control of the drone 20 is lost and the risk of collision or crash increases. Therefore, the server device 10 performs instruction processing or the like instructing the drone 20 to fly in which radio wave interference is unlikely to occur. The server device 10 is an example of the "information processing device" of the present invention.
 図2はサーバ装置10のハードウェア構成の一例を表す。サーバ装置10は、物理的には、プロセッサ11と、メモリ12と、ストレージ13と、通信装置14と、バス15などを含むコンピュータ装置として構成されてもよい。なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。 FIG. 2 shows an example of the hardware configuration of the server device 10. The server device 10 may be physically configured as a computer device including a processor 11, a memory 12, a storage 13, a communication device 14, a bus 15, and the like. In the following description, the word "device" can be read as a circuit, a device, a unit, or the like.
 また、各装置は、1つ又は複数含まれていてもよいし、一部の装置が含まれていなくてもよい。プロセッサ11は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ11は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。 Further, each device may be included one or more, or some devices may not be included. The processor 11 operates, for example, an operating system to control the entire computer. The processor 11 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
 例えば、ベースバンド信号処理部等は、プロセッサ11によって実現されてもよい。また、プロセッサ11は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ13及び通信装置14の少なくとも一方からメモリ12に読み出し、読み出したプログラム等に従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。 For example, the baseband signal processing unit and the like may be realized by the processor 11. Further, the processor 11 reads a program (program code), a software module, data, and the like from at least one of the storage 13 and the communication device 14 into the memory 12, and executes various processes according to the read program and the like. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
 上述の各種処理は、1つのプロセッサ11によって実行される旨を説明してきたが、2以上のプロセッサ11により同時又は逐次に実行されてもよい。プロセッサ11は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。メモリ12は、コンピュータ読み取り可能な記録媒体である。 Although it has been explained that the various processes described above are executed by one processor 11, they may be executed simultaneously or sequentially by two or more processors 11. The processor 11 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line. The memory 12 is a computer-readable recording medium.
 メモリ12は、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ12は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ12は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 12 may be composed of at least one such as a ROM (ReadOnlyMemory), an EPROM (ErasableProgrammableROM), an EPROM (ElectricallyErasableProgrammableROM), and a RAM (RandomAccessMemory). The memory 12 may be called a register, a cache, a main memory (main storage device), or the like. The memory 12 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
 ストレージ13は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。 The storage 13 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, or a magneto-optical disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
 ストレージ13は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ12及びストレージ13の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。通信装置14は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)である。 The storage 13 may be called an auxiliary storage device. The storage medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 12 and the storage 13. The communication device 14 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network.
 例えば、上述の送受信アンテナ、アンプ部、送受信部、伝送路インターフェースなどは、通信装置14によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。また、プロセッサ11、メモリ12などの各装置は、情報を通信するためのバス15によって接続される。バス15は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 For example, the above-mentioned transmission / reception antenna, amplifier unit, transmission / reception unit, transmission line interface, and the like may be realized by the communication device 14. The transmission / reception unit may be physically or logically separated from each other in the transmission unit and the reception unit. Further, each device such as the processor 11 and the memory 12 is connected by a bus 15 for communicating information. The bus 15 may be configured by using a single bus, or may be configured by using a different bus for each device.
 図3はドローン20のハードウェア構成の一例を表す。ドローン20は、物理的には、プロセッサ21と、メモリ22と、ストレージ23と、通信装置24と、飛行装置25と、センサ装置26と、バッテリー27と、カメラ28と、バス29などを含むコンピュータ装置として構成されてもよい。プロセッサ21等の図2に同名のハードウェアが表されているものは、性能及び仕様等の違いはあるが図2と同種のハードウェアである。 FIG. 3 shows an example of the hardware configuration of the drone 20. The drone 20 is physically a computer including a processor 21, a memory 22, a storage 23, a communication device 24, a flight device 25, a sensor device 26, a battery 27, a camera 28, a bus 29, and the like. It may be configured as a device. The hardware of the same name shown in FIG. 2 such as the processor 21 is the same type of hardware as in FIG. 2, although there are differences in performance and specifications.
 通信装置24は、ネットワーク2との通信に加え、プロポ30との通信を行う機能(例えば2.4GHz帯の電波による無線通信機能)を有する。飛行装置25は、モータ251及びローター252等を備え、自機を飛行させる装置である。飛行装置25は、空中において、あらゆる方向に自機を移動させたり、自機を静止(ホバリング)させたりすることができる。 The communication device 24 has a function of communicating with the radio 30 (for example, a wireless communication function using radio waves in the 2.4 GHz band) in addition to the communication with the network 2. The flight device 25 includes a motor 251 and a rotor 252, and is a device for flying its own aircraft. The flight device 25 can move its own aircraft in all directions and make its own aircraft stationary (hovering) in the air.
 センサ装置26は、飛行制御に必要な情報を取得するセンサ群を有する装置である。センサ装置26は、例えば、自機の位置(緯度及び経度)を測定する位置センサと、自機が向いている方向(ドローンには自機の正面方向が定められており、定められた正面方向が向いている方向)を測定する方向センサと、自機の高度を測定する高度センサとを備える。 The sensor device 26 is a device having a sensor group for acquiring information necessary for flight control. The sensor device 26 has, for example, a position sensor that measures the position (latitude and longitude) of the own machine and a direction in which the own machine is facing (the front direction of the own machine is determined by the drone, and the determined front direction). It is equipped with a direction sensor that measures the direction in which the aircraft is facing) and an altitude sensor that measures the altitude of the aircraft.
 また、センサ装置26は、自機の速度を測定する速度センサと、3軸の角速度及び3方向の加速度を測定する慣性計測センサ(IMU(Inertial Measurement Unit))とを備える。バッテリー27は、電力を蓄積し、ドローン20の各部に電力を供給する装置である。カメラ28は、イメージセンサ及び光学系の部品等を備え、レンズが向いている方向にある物体を撮影する。 Further, the sensor device 26 includes a speed sensor for measuring the speed of the own machine and an inertial measurement sensor (IMU (Inertial Measurement Unit)) for measuring the angular speed of three axes and the acceleration in three directions. The battery 27 is a device that stores electric power and supplies electric power to each part of the drone 20. The camera 28 includes an image sensor, optical system parts, and the like, and photographs an object in the direction in which the lens is facing.
 図4はプロポ30のハードウェア構成の一例を表す。プロポ30は、物理的には、プロセッサ31と、メモリ32と、ストレージ33と、通信装置34と、入力装置35と、出力装置36と、バス37などを含むコンピュータ装置として構成されてもよい。プロセッサ31等の図2に同名のハードウェアが表されているものは、性能及び仕様等の違いはあるが図2と同種のハードウェアである。 FIG. 4 shows an example of the hardware configuration of the radio 30. The radio 30 may be physically configured as a computer device including a processor 31, a memory 32, a storage 33, a communication device 34, an input device 35, an output device 36, a bus 37, and the like. The hardware of the same name shown in FIG. 2 such as the processor 31 is the same type of hardware as in FIG. 2, although there are differences in performance and specifications.
 入力装置35は、外部からの入力を受け付ける入力デバイス(例えばスイッチ、ボタン及びセンサ等)である。特に、入力装置35は、左スティック351及び右スティック352を備え、各スティックへの操作をドローン20の前後方向、上下方向、左右方向、回転方向への移動操作として受け付ける。出力装置36は、外部への出力を実施する出力デバイス(例えばモニター361、スピーカー及びLED(Light Emitting Diode)ランプ等)である。なお、入力装置35及び出力装置36は、一体となった構成(例えばモニター361がタッチスクリーン)であってもよい。 The input device 35 is an input device (for example, a switch, a button, a sensor, etc.) that receives an input from the outside. In particular, the input device 35 includes a left stick 351 and a right stick 352, and accepts an operation on each stick as a movement operation in the front-back direction, the up-down direction, the left-right direction, and the rotation direction of the drone 20. The output device 36 is an output device (for example, a monitor 361, a speaker, an LED (Light Emitting Diode) lamp, etc.) that outputs to the outside. The input device 35 and the output device 36 may have an integrated configuration (for example, the monitor 361 is a touch screen).
 また、上記の各装置は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよい。また、上記の各装置は、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ11は、当該ハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, each of the above devices includes hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be composed of. Further, in each of the above devices, a part or all of each functional block may be realized by the hardware. For example, the processor 11 may be implemented using at least one of the hardware.
 設備検査システム1が備える各装置における各機能は、各々のプロセッサ、メモリなどのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサが演算を行い、各々の通信装置による通信を制御したり、メモリ及びストレージにおけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in each device included in the equipment inspection system 1 is performed by the processor by loading predetermined software (program) on the hardware such as each processor and memory, and the communication by each communication device is controlled. It is achieved by controlling at least one of reading and writing of data in memory and storage.
 図5は各装置が実現する機能構成を表す。サーバ装置10は、強度情報取得部101と、干渉空間特定部102と、飛行指示部103とを備える。プロポ30は、検査対象通知部301と、指示対応処理部302を備える。検査対象通知部301は、検査対象の電信設備をサーバ装置10に通知する。検査対象通知部301は、例えば、検査対象の電信設備を有する各基地局の名称の一覧を表示して、検査担当者が選択した基地局の基地局IDをサーバ装置10に送信する。 FIG. 5 shows the functional configuration realized by each device. The server device 10 includes a strength information acquisition unit 101, an interference space identification unit 102, and a flight instruction unit 103. The radio 30 includes an inspection target notification unit 301 and an instruction response processing unit 302. The inspection target notification unit 301 notifies the server device 10 of the telecom equipment to be inspected. The inspection target notification unit 301 displays, for example, a list of the names of the base stations having the telecom equipment to be inspected, and transmits the base station ID of the base station selected by the inspector to the server device 10.
 強度情報取得部101は、検査対象の電信設備から発せられる電波の方向毎の強度を示す強度情報を取得する。強度情報取得部101は本発明の「取得部」の一例である。強度情報は、例えば、電信設備から発せられる電波の放射方向毎の利得を示す放射パターンと、電信設備の電波の出力の強さを示す出力情報とを含む情報である。本実施例では、検査対象の電信設備である各基地局のアンテナの形状等から放射パターンが例えば検査担当者によって予め作成される。 The strength information acquisition unit 101 acquires strength information indicating the strength of each direction of the radio wave emitted from the telecom equipment to be inspected. The strength information acquisition unit 101 is an example of the “acquisition unit” of the present invention. The intensity information is information including, for example, a radiation pattern indicating the gain of radio waves emitted from the telecom equipment in each radiation direction and output information indicating the strength of the radio wave output of the telecom equipment. In this embodiment, for example, a radiation pattern is created in advance by an inspector from the shape of the antenna of each base station, which is the telecom equipment to be inspected.
 図6は放射パターンの一例を表す。図6の例では、E面(電界面)の放射パターンAe1と、H面(磁界面)の放射パターンAh1とが表されている。放射パターンAe1は、水平方向への利得が大きく、鉛直方向への利得が小さい。放射パターンAh1は、東西方向B1及び南北方向B2への利得が大きく、南西と北東を結ぶ方向B3及び東南と北西を結ぶ方向B4への利得が小さい。 FIG. 6 shows an example of the radiation pattern. In the example of FIG. 6, the radiation pattern Ae1 on the E surface (electric field surface) and the radiation pattern Ah1 on the H surface (magnetic field surface) are represented. The radiation pattern Ae1 has a large gain in the horizontal direction and a small gain in the vertical direction. The radiation pattern Ah1 has a large gain in the east-west direction B1 and a north-south direction B2, and a small gain in the direction B3 connecting the southwest and the northeast and the direction B4 connecting the southeast and the northwest.
 検査担当者は、放射パターンと共に、電信設備の仕様等に基づいて出力情報も予め作成する。こうして検査担当者が作成した放射パターン及び出力情報を含む強度情報は、各々に対応する基地局IDを含めて例えばサーバ装置10が記憶しておく。強度情報取得部101は、プロポ30から送信されてきた基地局IDを含む強度情報を自装置から読み出し、検査対象の電信設備の強度情報として取得する。 The person in charge of inspection creates output information in advance based on the specifications of the telecom equipment as well as the radiation pattern. The intensity information including the radiation pattern and the output information created by the inspector in this way is stored in, for example, the server device 10 including the base station ID corresponding to each. The strength information acquisition unit 101 reads out the strength information including the base station ID transmitted from the radio 30 from its own device and acquires it as the strength information of the telecom equipment to be inspected.
 なお、強度情報は外部装置に記憶されていてもよい。その場合は、強度情報取得部101は、外部装置から読み出した強度情報を取得する。また、本実施例では、説明を分かり易くするため、電波強度の時間による変化は考慮しなくてよいものとする。強度情報取得部101は、取得した強度情報を干渉空間特定部102に供給する。 Note that the strength information may be stored in an external device. In that case, the strength information acquisition unit 101 acquires the strength information read from the external device. Further, in this embodiment, in order to make the explanation easy to understand, it is not necessary to consider the change of the radio field intensity with time. The strength information acquisition unit 101 supplies the acquired strength information to the interference space identification unit 102.
 干渉空間特定部102は、強度情報取得部101により取得された強度情報が示す電波の強度が閾値以上の空間を、ドローン20が行う無線通信と電信設備が発する電波との干渉が生じる干渉空間として特定する。干渉空間特定部102は本発明の「特定部」の一例である。干渉空間特定部102は、例えば、各基地局の電信設備の周囲の空域の範囲を示す空域情報を記憶しておく。 The interference space identification unit 102 sets a space in which the intensity of the radio wave indicated by the intensity information acquired by the intensity information acquisition unit 101 is equal to or higher than the threshold value as an interference space in which the wireless communication performed by the drone 20 and the radio wave emitted by the telegraph equipment interfere with each other. Identify. The interference space specifying unit 102 is an example of the "specific unit" of the present invention. The interference space identification unit 102 stores, for example, airspace information indicating the range of the airspace around the telecom equipment of each base station.
 空域情報は、例えば単位空間によって表される。単位空間とは、実空間に隙間なく敷き詰められた仮想の立方体の空間であり、空域の最小単位を表す空間のことである。
 図7は各単位空間の電波強度の一例を表す。図7の例では、電信設備3の周囲の単位空間が4種類に色分けされている。電信設備3は、4本のアンテナ4が四角形の各頂点に位置するように配置されたアンテナ設備である。
Airspace information is represented by, for example, a unit space. The unit space is a virtual cubic space that is spread tightly in the real space, and is a space that represents the smallest unit of the airspace.
FIG. 7 shows an example of the radio field intensity in each unit space. In the example of FIG. 7, the unit space around the telecom equipment 3 is color-coded into four types. The telegraph equipment 3 is an antenna equipment in which four antennas 4 are arranged so as to be located at each apex of a quadrangle.
 図7の例では、色が濃い単位空間から順番にLv4、Lv3、Lv2、Lv1(電波強度の関係がLv4>Lv3>Lv2>Lv1)であることを表す。図7(a)の例では、南側から北向きに見た電信設備3と、周囲の単位空間とが表されている。図7(a)に表す各単位空間は、南北方向B2の位置が電信設備3と共通する単位空間であり、図6のH面に表されているように、利得が大きい東西方向B1の電波強度が表される単位空間である。 In the example of FIG. 7, it is shown that Lv4, Lv3, Lv2, and Lv1 (the relationship of radio field intensity is Lv4> Lv3> Lv2> Lv1) in order from the unit space where the color is dark. In the example of FIG. 7A, the telecom equipment 3 viewed from the south side to the north and the surrounding unit space are shown. Each unit space shown in FIG. 7A is a unit space in which the position of the north-south direction B2 is common to that of the telegraph equipment 3, and as shown on the H plane of FIG. 6, the radio wave in the east-west direction B1 having a large gain is large. It is a unit space in which strength is expressed.
 例えば、電信設備3のアンテナ4の水平方向には電波強度がLv4の単位空間が並んでおり、Lv4の単位空間の上下に電波強度がLv3の単位空間が並んでいる。また、Lv3の単位空間の上下には電波強度がLv2の単位空間が並んでおり、Lv2の単位空間の上下には電波強度がLv1の単位空間が並んでいる。電波強度がLv4の単位空間群、Lv3の単位空間群、Lv2の単位空間群は、いずれも、図6のE面の利得に表されているように、アンテナ4から離れるほど鉛直方向の幅が広くなっている、すなわち、鉛直方向の範囲が広がっている。 For example, unit spaces having a radio field intensity of Lv4 are lined up in the horizontal direction of the antenna 4 of the telecom equipment 3, and unit spaces having a radio field strength of Lv3 are lined up above and below the unit space of Lv4. Further, unit spaces having a radio field intensity of Lv2 are lined up above and below the unit space of Lv3, and unit spaces having a radio field strength of Lv1 are lined up above and below the unit space of Lv2. The unit space group having a radio wave intensity of Lv4, the unit space group having Lv3, and the unit space group having a radio wave intensity of Lv2 all have a width in the vertical direction as the distance from the antenna 4 increases, as shown by the gain on the E plane in FIG. It is wider, that is, the vertical range is wider.
 図7(b)の例では、南東側から北西向きに見た電信設備3と、周囲の単位空間とが表されている。図7(b)に表す各単位空間は、東南と北西を結ぶ方向B4の位置が電信設備3と共通する単位空間であり、図6のH面に表されているように、利得が小さい南西と北東を結ぶ方向B3の電波強度が表される単位空間である。例えば、電信設備3のアンテナ4の水平方向には電波強度がLv3の単位空間が並んでおり、Lv3の単位空間の上下に電波強度がLv2の単位空間が並んでいる。 In the example of FIG. 7B, the telecom equipment 3 viewed from the southeast side to the northwest and the surrounding unit space are shown. Each unit space shown in FIG. 7B is a unit space in which the position of the direction B4 connecting southeast and northwest is common to that of the telegraph equipment 3, and as shown in the H plane of FIG. 6, the southwest has a small gain. This is a unit space in which the radio field intensity in the direction B3 connecting the northeast and the northwest is represented. For example, unit spaces having a radio field intensity of Lv3 are lined up in the horizontal direction of the antenna 4 of the telecom equipment 3, and unit spaces having a radio field strength of Lv2 are lined up above and below the unit space of Lv3.
 また、Lv2の単位空間の上下には電波強度がLv1の単位空間が並んでいる。電波強度がLv3の単位空間群及びLv2の単位空間群の鉛直方向に広がる範囲は、図7(a)に表すLv3の単位空間群及びLv2の単位空間群よりも狭くなっている。干渉空間特定部102は、各単位空間の電波強度を、電信設備3の放射パターン(利得が大きい方向の単位空間ほど電波強度が強い)、出力情報(電信設備の電波の出力が大きいほど電波強度が強い)及び各単位空間とアンテナ4との距離(アンテナ4からの距離が遠いほど電波強度が弱い)に基づいて算出する。 In addition, unit spaces with a radio field intensity of Lv1 are lined up above and below the unit space of Lv2. The range in which the radio wave intensity extends in the vertical direction of the unit space group of Lv3 and the unit space group of Lv2 is narrower than that of the unit space group of Lv3 and the unit space group of Lv2 shown in FIG. 7 (a). The interference space identification unit 102 determines the radio wave intensity of each unit space by the radiation pattern of the telegraph equipment 3 (the unit space in the direction of larger gain has a stronger radio wave intensity) and output information (the larger the output of the radio wave of the telegraph equipment, the stronger the radio wave intensity). Is strong) and the distance between each unit space and the antenna 4 (the farther the distance from the antenna 4 is, the weaker the radio field intensity is).
 干渉空間特定部102は、本実施例では、例えば電波強度がLv4の単位空間を干渉空間として特定する。干渉空間特定部102は、特定した干渉空間を表す単位空間を示す干渉空間情報を生成する。本実施例では、図7(a)に表すように、電信設備3から見て東西方向B1及び南北方向B2の単位空間に干渉空間が発生するものとする。そのため、干渉空間特定部102は、東西方向B1及び南北方向B2の各単位空間を干渉空間として示す干渉空間情報を生成する。干渉空間特定部102は、生成した干渉空間情報に基地局IDを付加して飛行指示部103に供給する。 In this embodiment, the interference space specifying unit 102 specifies, for example, a unit space having a radio field intensity of Lv4 as an interference space. The interference space specifying unit 102 generates interference space information indicating a unit space representing the specified interference space. In this embodiment, as shown in FIG. 7A, it is assumed that an interference space is generated in the unit space in the east-west direction B1 and the north-south direction B2 when viewed from the telecom equipment 3. Therefore, the interference space specifying unit 102 generates interference space information indicating each unit space in the east-west direction B1 and the north-south direction B2 as an interference space. The interference space identification unit 102 adds a base station ID to the generated interference space information and supplies it to the flight instruction unit 103.
 飛行指示部103は、強度情報取得部101により取得された強度情報により強度が示される電波との干渉を小さくする飛行を指示する。飛行指示部103は本発明の「指示部」の一例である。飛行指示部103は、本実施例では、干渉空間特定部102により特定された干渉空間を通らない飛行を指示する。飛行指示部103は、飛行指示を行うため、例えば、各基地局のアンテナ設備に必要な検査方向の数を示す設備情報を基地局IDに対応付けて記憶する。 The flight instruction unit 103 instructs the flight to reduce the interference with the radio wave whose intensity is indicated by the intensity information acquired by the intensity information acquisition unit 101. The flight instruction unit 103 is an example of the "instruction unit" of the present invention. In this embodiment, the flight instruction unit 103 instructs the flight not to pass through the interference space specified by the interference space identification unit 102. In order to give flight instructions, the flight instruction unit 103 stores, for example, equipment information indicating the number of inspection directions required for the antenna equipment of each base station in association with the base station ID.
 検査方向とは、アンテナ設備の検査データを取得する方向のことである。アンテナ設備は、アンテナの数及び配置によって必要な検査方向の数が決まっている。例えばアンテナが1本又は2本以上のアンテナが真っすぐに配置されているアンテナ設備であれば、2方向から検査データが取得されればよいので、必要な検査方向が2つになる。また、3本以上のアンテナが三角形に沿って配置されているアンテナ設備であれば必要な検査方向が3つになる。 The inspection direction is the direction to acquire the inspection data of the antenna equipment. For antenna equipment, the number of inspection directions required is determined by the number and arrangement of antennas. For example, in the case of antenna equipment in which one or two or more antennas are arranged straight, inspection data may be acquired from two directions, so that two inspection directions are required. Further, if the antenna equipment has three or more antennas arranged along a triangle, three inspection directions are required.
 また、4本以上のアンテナが四角形又は円形に沿って配置されているアンテナ設備であれば必要な検査方向が4つになる。飛行指示部103は、供給された干渉空間情報が示す基地局IDに対応付けて記憶している設備情報を読み出す。飛行指示部103は、供給された干渉空間情報が示す干渉空間を表す単位空間が存在しない方向のうちから、読み出した設備情報が示す数の方向を決定する。 Also, if the antenna equipment has four or more antennas arranged along a quadrangle or a circle, four inspection directions are required. The flight instruction unit 103 reads out the equipment information stored in association with the base station ID indicated by the supplied interference space information. The flight instruction unit 103 determines the number of directions indicated by the read equipment information from the directions in which the unit space representing the interference space indicated by the supplied interference space information does not exist.
 飛行指示部103は、図6及び図7に表す電信設備3の場合であれば、4本のアンテナが四角形に沿って配置されているため、4つの検査方向を決定する。そして、飛行指示部103は、前述したように東西南北の4方向の単位空間が干渉空間として特定されているので、干渉空間として特定されていない北東向き、北西向き、南西向き及び南東向きの4つの検査方向を決定する。 In the case of the telecom equipment 3 shown in FIGS. 6 and 7, the flight instruction unit 103 determines four inspection directions because the four antennas are arranged along the quadrangle. Since the unit space in the four directions of north, south, east, and west is specified as the interference space in the flight instruction unit 103, the four northeast, northwest, southwest, and southeast directions that are not specified as the interference space are specified. Determine one inspection direction.
 飛行指示部103は、決定した4つの検査方向について検査データを取得する飛行を指示する指示データを生成し、生成した指示データをプロポ30に送信する。プロポ30の指示対応処理部302は、送信されてきた指示データが示す指示に対応する処理(以下「指示対応処理」と言う)を行う。指示対応処理部302は、本実施例では、指示データが示す指示内容を自装置のモニター361に表示して指示内容を操作者に伝達する処理を、指示対応処理として行う。 The flight instruction unit 103 generates instruction data for instructing flight to acquire inspection data for the four determined inspection directions, and transmits the generated instruction data to the radio 30. The instruction response processing unit 302 of the radio 30 performs a process corresponding to the instruction indicated by the transmitted instruction data (hereinafter referred to as “instruction response process”). In this embodiment, the instruction response processing unit 302 performs a process of displaying the instruction content indicated by the instruction data on the monitor 361 of the own device and transmitting the instruction content to the operator as the instruction response process.
 図8は表示される指示内容の一例を表す。図8の例では、指示対応処理部302は、プロポ30のモニター361に、「電信設備3は以下の4方向から検査データを取得してください。北東・南東・南西・北西」という文字列を表示している。操作者が表示された指示に従った場合、ドローン20は電信設備3の北東側、南東側、南西側、北西側を飛行して検査データを取得する。 FIG. 8 shows an example of the displayed instruction content. In the example of FIG. 8, the instruction handling processing unit 302 puts the character string "Please acquire the inspection data from the following four directions for the telecom equipment 3. Northeast, southeast, southwest, northwest" on the monitor 361 of the radio 30. it's shown. When the operator follows the displayed instruction, the drone 20 flies on the northeast side, the southeast side, the southwest side, and the northwest side of the telecom equipment 3 and acquires inspection data.
 サーバ装置10は、上記の構成に基づいて、検査対象の電信設備の検査データを取得するドローン20の飛行を指示する指示処理を行う。
 図9は指示処理における各装置の動作手順の一例を表す。図10の動作手順は、例えば、ドローン20の操作者がプロポ30に対して検査対象の基地局を選択する操作を行うことを契機に開始される。
Based on the above configuration, the server device 10 performs an instruction process for instructing the flight of the drone 20 to acquire the inspection data of the telecom equipment to be inspected.
FIG. 9 shows an example of the operation procedure of each device in the instruction processing. The operation procedure of FIG. 10 is started, for example, when the operator of the drone 20 performs an operation of selecting a base station to be inspected for the radio 30.
 まず、サーバ装置10(強度情報取得部101)は、プロポ30から送信されてくる基地局IDの通知を受け取ると(ステップS11)、受け取った基地局IDが示す基地局の電信設備から発せられる電波の方向毎の強度を示す強度情報を取得する(ステップS12)。次に、サーバ装置10(干渉空間特定部102)は、取得された強度情報に基づいて、ドローン20が行う無線通信と電信設備が発する電波との干渉が生じる干渉空間を特定する(ステップS13)。 First, when the server device 10 (strength information acquisition unit 101) receives the notification of the base station ID transmitted from the radio 30 (step S11), the radio wave emitted from the telecom equipment of the base station indicated by the received base station ID. (Step S12), the strength information indicating the strength in each direction of is acquired. Next, the server device 10 (interference space specifying unit 102) identifies an interference space in which interference between the wireless communication performed by the drone 20 and the radio wave emitted by the telecom equipment occurs based on the acquired strength information (step S13). ..
 そして、サーバ装置10(飛行指示部103)は、ステップS12において取得された強度情報により強度が示される電波との干渉を小さくする飛行を指示する指示データをプロポ30に送信する(ステップS14)。詳細には、サーバ装置10(飛行指示部103)は、ステップS13において特定された干渉空間を通らない飛行を指示する指示データを送信する。送信された指示データが示す指示に従って操作者がドローン20を飛行させた場合の飛行経路について図10を参照して説明する。 Then, the server device 10 (flight instruction unit 103) transmits instruction data instructing the flight to reduce the interference with the radio wave whose intensity is indicated by the intensity information acquired in step S12 to the radio 30 (step S14). Specifically, the server device 10 (flight instruction unit 103) transmits instruction data instructing flight that does not pass through the interference space specified in step S13. The flight path when the operator flies the drone 20 according to the instruction indicated by the transmitted instruction data will be described with reference to FIG.
 図10はドローン20の飛行経路の一例を表す。図10の例では、南東側から見た電信設備3と、電信設備3の北東側を単位空間3つ分離れて上下に往復飛行する飛行経路Bne1と、電信設備3の南西側を単位空間3つ分離れて上下に往復飛行する飛行経路Bsw1とが表されている。飛行経路Bne1及びBsw1を飛行させた場合、ドローン20は、図7(b)に表すように、干渉空間(電波強度がLv4の単位空間)を通らずに飛行することになる。 FIG. 10 shows an example of the flight path of the drone 20. In the example of FIG. 10, the telecom equipment 3 viewed from the southeast side, the flight path Bne1 which is separated into three unit spaces on the northeast side of the telecom equipment 3 and reciprocates up and down, and the unit space 3 on the southwest side of the telecom equipment 3. The flight path Bsw1 is separated and reciprocates up and down. When the flight paths Bne1 and Bsw1 are flown, the drone 20 will fly without passing through an interference space (a unit space having a radio field intensity of Lv4) as shown in FIG. 7B.
 サーバ装置10からの指示がない場合、操作者は、各空域の電波強度が分からない状態で飛行する方向を決めることになる。その場合の飛行経路の一例について図11を参照して説明する。 If there is no instruction from the server device 10, the operator will decide the flight direction without knowing the radio field strength of each airspace. An example of the flight path in that case will be described with reference to FIG.
 図11はドローン20の別の飛行経路の一例を表す。図11の例では、南側から見た電信設備3と、電信設備3の東側を単位空間3つ分離れて上下に往復飛行する飛行経路Be1と、電信設備3の西側を単位空間3つ分離れて上下に往復飛行する飛行経路Bw1とが表されている。飛行経路Be1及びBw1を飛行させた場合、ドローン20は、図7(a)に表すように、干渉空間(電波強度がLv4の単位空間)を通ることになる。 FIG. 11 shows an example of another flight path of the drone 20. In the example of FIG. 11, the telecom equipment 3 viewed from the south side, the flight path Be1 which is separated by three unit spaces on the east side of the telegraph equipment 3 and reciprocates up and down, and the west side of the telegraph equipment 3 are separated by three unit spaces. The flight path Bw1 that reciprocates up and down is represented. When the flight paths Be1 and Bw1 are flown, the drone 20 passes through an interference space (a unit space having a radio field intensity of Lv4) as shown in FIG. 7A.
 ドローン20は、プロポ30から送信された制御データを受信することで自機の動作を制御しているが、干渉空間のように電波強度が強い空間を飛行すると、プロポ30からの電波と電信設備からの電波が干渉し、制御データの受信に失敗して、ドローン20の制御が正しく行われないことが起こり得る。本実施例では、上記のとおり、電信設備からの電波との干渉を小さくする飛行が指示される。 The drone 20 controls the operation of its own machine by receiving the control data transmitted from the radio 30. However, when flying in a space with strong radio wave strength such as an interference space, the radio wave from the radio 30 and the telegraph equipment It is possible that the radio waves from the drone 20 interfere with each other, fail to receive the control data, and the drone 20 is not controlled correctly. In this embodiment, as described above, the flight is instructed to reduce the interference with the radio waves from the telecom equipment.
 そのため、図10の例のように操作者がサーバ装置10からの指示に従うことで、上記の飛行指示が行われない場合に比べて、ドローン20が行う通信に対する干渉の影響を少なくすることができる。また、本実施例では、上記のとおり特定された干渉空間を通らない飛行が指示される。そのため、干渉空間を特定せずに飛行指示が行われる場合に比べて、より確実に上記干渉の影響を少なくすることができる。 Therefore, when the operator follows the instruction from the server device 10 as in the example of FIG. 10, the influence of interference on the communication performed by the drone 20 can be reduced as compared with the case where the above flight instruction is not given. .. Further, in this embodiment, the flight that does not pass through the interference space specified as described above is instructed. Therefore, the influence of the interference can be reduced more reliably than in the case where the flight instruction is given without specifying the interference space.
[2]変形例
 上述した実施例は本発明の実施の一例に過ぎず、以下のように変形させてもよい。また、実施例及び各変形例は必要に応じてそれぞれ組み合わせてもよい。実施例及び各変形例を組み合わせる際は、各変形例について優先順位を付けて(各変形例を実施すると競合する事象が生じる場合にどちらを優先するかを決める順位付けをして)実施してもよい。
[2] Modifications The above-mentioned examples are merely examples of the implementation of the present invention, and may be modified as follows. Further, the examples and the modified examples may be combined as necessary. When combining the examples and each modification, prioritize each modification (prioritize which one should be prioritized when a conflicting event occurs when each modification occurs). May be good.
[2-1]電波の周波数帯
 電波の干渉は、電波同士の周波数帯が近いほど起きやすい。そこで、干渉空間特定部102は、電信設備の電波の周波数帯とドローン20が無線通信で用いる電波の周波数帯とが近いほど大きな空間を干渉空間として特定してもよい。本変形例では、強度情報取得部101は、電信設備が発信する電波の周波数帯を含む強度情報を取得する。
[2-1] Frequency band of radio waves Radio wave interference is more likely to occur as the frequency bands of radio waves are closer. Therefore, the interference space specifying unit 102 may specify a larger space as an interference space as the frequency band of the radio wave of the telegraph equipment and the frequency band of the radio wave used by the drone 20 in wireless communication are closer. In this modification, the intensity information acquisition unit 101 acquires intensity information including the frequency band of the radio wave transmitted by the telecom equipment.
 電信設備が発信する電波の周波数帯は、例えば電信設備毎の異なっている場合がある。また、同じ電信設備でも、複数の異なる周波数帯の電波を同時に発している場合もある。後者の場合は、強度情報取得部101は、同時に発せられる電波の各周波数帯を含む強度情報を取得する。干渉空間特定部102は、電信設備の電波の周波数帯とドローン20が無線通信で用いる電波の周波数帯の差分と、干渉空間を特定する際に用いる電波強度の閾値とを対応付けた閾値テーブルを用いる。 The frequency band of radio waves transmitted by telecommunications equipment may differ, for example, for each telecommunications equipment. Further, even in the same telecom equipment, radio waves of a plurality of different frequency bands may be emitted at the same time. In the latter case, the intensity information acquisition unit 101 acquires intensity information including each frequency band of the radio waves emitted at the same time. The interference space identification unit 102 provides a threshold table in which the difference between the radio wave frequency band of the telecom equipment and the radio wave frequency band used by the drone 20 in wireless communication and the radio wave intensity threshold used when specifying the interference space are associated with each other. Use.
 図12は閾値テーブルの一例を表す。図12の例では、「Th11未満」、「Th11以上Th12未満」及び「Th12以上」という周波数帯の差分と、「Th1」、「Th2」及び「Th3」(T1<T2<T3)という閾値とが対応付けられている。干渉空間特定部102は、例えば、周波数帯の中央値同士の差分を周波数帯の差分として算出し、算出した差分に閾値テーブルにおいて対応付けられている閾値を用いて干渉空間を特定する。 FIG. 12 shows an example of a threshold table. In the example of FIG. 12, the difference between the frequency bands “less than Th11”, “Th11 or more and less than Th12”, and “Th12 or more”, and the threshold values “Th1”, “Th2”, and “Th3” (T1 <T2 <T3) Are associated with each other. For example, the interference space specifying unit 102 calculates the difference between the medians of the frequency bands as the difference of the frequency band, and specifies the interference space by using the threshold value associated with the calculated difference in the threshold table.
 干渉空間を特定する際に用いる電波強度の閾値が小さくなるほど、より多くの単位空間が干渉空間として特定されるようになるので、特定される干渉空間が大きくなる。つまり、図12の閾値テーブルを用いることで、干渉空間特定部102は、周波数帯の差分が小さいほど、干渉空間を特定する際に用いる電波強度の閾値が小さくなり、大きな空間を干渉空間として特定することになる。 The smaller the threshold value of the radio field intensity used when specifying the interference space, the more unit space will be specified as the interference space, and the larger the specified interference space will be. That is, by using the threshold table of FIG. 12, the interference space specifying unit 102 specifies the large space as the interference space because the smaller the difference in the frequency band, the smaller the threshold of the radio wave intensity used when specifying the interference space. Will be done.
 なお、同じ電信設備が複数の異なる周波数帯の電波を同時に発している場合は、干渉空間特定部102は、各周波数帯における上記差分のうち最小のものに閾値テーブルにおいて対応付けられている閾値を用いて干渉空間を特定する。その際、干渉空間特定部102は、上記差分が最小になった周波数帯の電波の放射パターン及び出力情報を用いて干渉空間を特定する。 When the same telegraph equipment simultaneously emits radio waves of a plurality of different frequency bands, the interference space identification unit 102 sets the threshold value associated with the smallest of the above differences in each frequency band in the threshold table. Use to identify the interference space. At that time, the interference space specifying unit 102 specifies the interference space by using the radiation pattern and output information of the radio wave in the frequency band where the difference is minimized.
 本変形例では、上記のとおり周波数帯の差分に基づいて干渉空間のサイズを変化させることで、周波数帯の差分に関わらず干渉空間のサイズを一律にする場合に比べて、特定された干渉空間が小さすぎて干渉の影響をドローン20が受けること、すなわち、干渉の影響でドローン20が制御を失い墜落するという事態が起こりにくいようにすることができる。 In this modified example, by changing the size of the interference space based on the difference in the frequency band as described above, the specified interference space is compared with the case where the size of the interference space is made uniform regardless of the difference in the frequency band. Is too small to cause the drone 20 to be affected by interference, that is, it is possible to prevent the drone 20 from losing control and crashing due to the influence of interference.
[2-2]ドローンの制御
 実施例ではプロポ30の操作によりドローン20の飛行及び検査データの取得が制御されたが、例えばパソコン等から飛行経路、飛行速度、飛行時刻及び撮影タイミング等の指示をドローン20に送信して自律的に飛行及び検査データの取得を制御させてもよい。
[2-2] Drone control In the embodiment, the flight of the drone 20 and the acquisition of inspection data were controlled by operating the radio 30, but for example, instructions such as flight path, flight speed, flight time, and shooting timing were given from a personal computer or the like. It may be transmitted to the drone 20 to autonomously control the acquisition of flight and inspection data.
[2-3]飛行体
 実施例では、飛行体として回転翼機型の飛行体が用いられたが、これに限らない。飛行体は、例えば飛行機型の飛行体であってもよいし、ヘリコプター型の飛行体であってもよい。要するに、検査対象の電信設備の周囲を飛行することが可能であり、且つ、検査データを取得する機能を有するものであれば、どのような飛行体が用いられてもよい。
[2-3] Aircraft In the examples, a rotary-wing aircraft type air vehicle was used as the air vehicle, but the vehicle is not limited to this. The air vehicle may be, for example, an airplane type air vehicle or a helicopter type air vehicle. In short, any flying object may be used as long as it can fly around the telecom equipment to be inspected and has a function of acquiring inspection data.
[2-4]自律飛行への切り替え
 電信設備によっては、検査データを取得するために干渉空間特定部102により特定される干渉空間を通過するルート(以下「干渉空間ルート」と言う)を飛行しなければならない場合が起こり得る。一方、ドローン20は、上記変形例で述べたように、指定されたルートで自律飛行を行う自律飛行機能を有している場合がある。
[2-4] Switching to autonomous flight Depending on the telecom equipment, a route that passes through the interference space specified by the interference space identification unit 102 (hereinafter referred to as "interference space route") may be flown in order to acquire inspection data. There may be cases where it must be done. On the other hand, the drone 20 may have an autonomous flight function for autonomous flight on a designated route, as described in the above modification.
 飛行指示部103は、干渉空間ルートを飛行しなければならず、且つ、ドローン20が自律飛行機能を有している場合、干渉空間ルートにおいてドローン20に自律飛行させるよう指示してもよい。例えば図7の例において、電波強度がLv3以上の単位空間が干渉空間として特定された場合、図7(b)に表すように、電波強度がLv3の単位空間を通過しなければ電信設備3の検査データを全ては取得できない。 If the flight instruction unit 103 must fly on the interference space route and the drone 20 has an autonomous flight function, the flight instruction unit 103 may instruct the drone 20 to fly autonomously on the interference space route. For example, in the example of FIG. 7, when a unit space having a radio field intensity of Lv3 or higher is specified as an interference space, as shown in FIG. 7B, if the radio wave strength does not pass through the unit space of Lv3, the telecom equipment 3 Not all inspection data can be obtained.
 飛行指示部103は、図7の例であれば、図7(b)に表す電波強度がLv3の単位空間を通過する際にはドローン20に自律飛行させるように指示する。例えばプロポ30が操作による飛行と、最後に操作した飛行状態を維持する自律飛行(飛行方向及び飛行速度等を維持する自律飛行)とを切り替える機能を有している場合がある(この場合最後に操作した飛行状態で飛行を継続した場合の飛行ルートが指定されたことになる)。 In the example of FIG. 7, the flight instruction unit 103 instructs the drone 20 to fly autonomously when the radio field intensity shown in FIG. 7B passes through the unit space of Lv3. For example, the radio 30 may have a function of switching between an operated flight and an autonomous flight that maintains the last operated flight state (autonomous flight that maintains the flight direction, flight speed, etc.) (in this case, at the end). The flight route is specified when the flight is continued in the operated flight state).
 上記の場合、飛行指示部103は、自律飛行に切り替える高度と操作による飛行に切り替える高度とを操作者に通知することで、本変形例の指示を行う。また、飛行指示部103は、ドローン20に対して、電波強度がLv3以上の単位空間に到達すると自律飛行に強制的に切り替えて飛行し、電波強度がLv3以上の単位空間を通過し終えると操作による飛行に切り替える指示データを送信してもよい。この場合、ドローン20は、受信した指示データが示すように操作による飛行と自律飛行とを切り替える。 In the above case, the flight instruction unit 103 gives an instruction of this modification by notifying the operator of the altitude to switch to autonomous flight and the altitude to switch to flight by operation. Further, the flight instruction unit 103 forcibly switches to autonomous flight when the radio wave intensity reaches the unit space of Lv3 or more with respect to the drone 20, and operates when the radio wave intensity has passed through the unit space of Lv3 or more. You may send instruction data to switch to flight by. In this case, the drone 20 switches between operational flight and autonomous flight as indicated by the received instruction data.
 干渉空間の飛行中はプロポ30からの制御データがドローン20に届かない可能性が高まるが、自律飛行をしていれば、制御データが届かなくてもドローン20が指定されたルートの飛行を継続する。本変形例によれば、自律飛行が可能なドローン20であれば、干渉空間ルートが存在する場合でも、自律飛行への切り替えを行われない場合に比べて安全に飛行させることができる。 There is a high possibility that the control data from the radio 30 will not reach the drone 20 during the flight in the interference space, but if the drone 20 is flying autonomously, the drone 20 will continue to fly on the specified route even if the control data does not reach. To do. According to this modification, the drone 20 capable of autonomous flight can fly safely even when there is an interference space route, as compared with the case where the switch to autonomous flight is not performed.
 なお、ドローン20は、上述したようにプロポ30から送信されてきた制御データにより自機の動作を制御する。プロポ30からの制御データには、飛行に関する動作を制御するデータが含まれている。つまり、ドローン20は、飛行の指示を示す通信を受信する受信機能を有している。飛行指示部103は、上記のように自律飛行を指示する場合、自律飛行をしている期間は受信機能を停止させることを指示してもよい。 The drone 20 controls the operation of its own machine by the control data transmitted from the radio 30 as described above. The control data from the radio 30 includes data for controlling the operation related to flight. That is, the drone 20 has a receiving function for receiving a communication indicating a flight instruction. When the flight instruction unit 103 instructs the autonomous flight as described above, the flight instruction unit 103 may instruct to stop the reception function during the autonomous flight.
 ドローン20が干渉空間を飛行する際は、電波の干渉によって、不完全な制御データを上記受信機能が受信する可能性がある。また、場合によっては、電信設備から発せられた電波を制御データとして誤って上記受信機能が受信する可能性も0ではない。本変形例では、自律飛行中に受信機能を停止させることで、受信機能を停止させない場合に比べて、不適切な制御データを受信することで異常な飛行が行われてドローン20が落下するという事態を防ぐことができる。 When the drone 20 flies in the interference space, there is a possibility that the above receiving function receives incomplete control data due to the interference of radio waves. Further, in some cases, the possibility that the reception function mistakenly receives the radio wave emitted from the telecom equipment as control data is not zero. In this modified example, by stopping the reception function during autonomous flight, an abnormal flight is performed by receiving inappropriate control data and the drone 20 falls, as compared with the case where the reception function is not stopped. You can prevent the situation.
[2-5]周波数帯の選択
 ドローン20が2以上の周波数帯での無線通信を選択可能な場合がある。例えば無線LANの規格に準拠した無線通信であれば、2.4GHz帯と5GHz帯とを選択可能な場合がある。その場合に、飛行指示部103は、2以上の周波数帯のうち電信設備が発する電波と干渉が生じにくい周波数帯での無線通信を選択するよう指示してもよい。
[2-5] Frequency band selection The drone 20 may be able to select wireless communication in two or more frequency bands. For example, in the case of wireless communication conforming to the wireless LAN standard, it may be possible to select between the 2.4 GHz band and the 5 GHz band. In that case, the flight instruction unit 103 may instruct to select wireless communication in a frequency band of two or more frequency bands in which interference with radio waves emitted by the telecom equipment is unlikely to occur.
 飛行指示部103は、例えば実施例と同様に指示内容を文字列で示す指示データを送信する。
 図13は本変形例で表示される指示内容の一例を表す。図13の例では、指示対応処理部302は、プロポ30のモニター361に、「5GHz帯での操作を選択してください。」という文字列を表示している。
The flight instruction unit 103 transmits instruction data indicating the instruction content as a character string, as in the embodiment, for example.
FIG. 13 shows an example of the instruction content displayed in this modification. In the example of FIG. 13, the instruction handling processing unit 302 displays the character string "Please select the operation in the 5 GHz band" on the monitor 361 of the radio 30.
 図13の例では、2.4Ghz帯との差分が5GHz帯との差分よりも小さくなる周波数帯の電波を電信設備が発している。操作者が表示された指示に従えば、電信設備が発する電波と干渉が最も生じにくい周波数帯での無線通信が確実に行われる。一方、周波数帯の指示がない場合、操作者の選択によっては電信設備が発する電波と干渉が生じやすい周波数帯での無線通信が行われる可能性がある。 In the example of FIG. 13, the telecom equipment emits radio waves in a frequency band in which the difference from the 2.4 GHz band is smaller than the difference from the 5 GHz band. If the operator follows the displayed instructions, wireless communication in the frequency band where interference with the radio waves emitted by the telecom equipment is least likely to occur is surely performed. On the other hand, if there is no frequency band instruction, wireless communication may be performed in a frequency band where interference with radio waves emitted by the telecom equipment is likely to occur, depending on the operator's choice.
 本変形例では、周波数帯の指示が行われない場合に比べて、ドローン20が行う無線通信と電信設備が発する電波との干渉が生じにくいようにすることができる。なお、3以上の周波数帯を選択可能な場合、飛行指示部103は、電信設備が発する電波と干渉の生じにくさが2番目以降の周波数帯であっても、少なくとも1以上の他の周波数帯よりも干渉が生じにくく且つ干渉の度合いが所定の基準未満に収まるのであれば、その周波数帯での無線通信を選択するよう指示してもよい。その場合でも、周波数帯の指示が行われない場合に比べて、電波の干渉が検査データの取得に与える影響を抑えることができる。 In this modified example, it is possible to prevent interference between the wireless communication performed by the drone 20 and the radio wave emitted by the telecom equipment, as compared with the case where the frequency band is not instructed. When three or more frequency bands can be selected, the flight instruction unit 103 may use at least one or more other frequency bands even if the second or later frequency band is less likely to interfere with the radio waves emitted by the telecom equipment. If interference is less likely to occur and the degree of interference falls below a predetermined reference, it may be instructed to select wireless communication in that frequency band. Even in that case, it is possible to suppress the influence of radio wave interference on the acquisition of inspection data as compared with the case where the frequency band is not instructed.
[2-6]飛行指示
 飛行指示部103は、上記の各例とは異なる方法で飛行を指示してもよい。例えば実施例では、飛行指示部103は、検査データを取得する方向だけを指示したが、飛行すべき飛行経路をより具体的に指示してもよい。具体的な指示とは、例えば飛行すべき単位空間を示したり、電信設備からの距離、飛行速度及び飛行方向等を示したりする指示である。
[2-6] Flight instruction The flight instruction unit 103 may instruct flight by a method different from each of the above examples. For example, in the embodiment, the flight instruction unit 103 indicates only the direction in which the inspection data is acquired, but the flight route to be flown may be instructed more specifically. The specific instruction is, for example, an instruction indicating a unit space to be flown, a distance from a telecom facility, a flight speed, a flight direction, or the like.
 また、飛行指示部103は、飛行の指示を実施例のように言葉で行ってもよいし、例えば飛行経路を図示した画像又は動画で行ってもよい。また、飛行指示部103は、実施例では、ドローン20をほぼ単純に上下動させる飛行を指示したが、干渉空間を避けるために上下左右、前後及び斜めに移動させる複雑な飛行を指示してもよい。また、飛行指示部103は、干渉空間を飛行しないと必要な検査データが取得できない場合には、干渉空間を通過する飛行を指示してもよい。 Further, the flight instruction unit 103 may give a flight instruction in words as in the embodiment, or may give an image or a moving image showing a flight path, for example. Further, in the embodiment, the flight instruction unit 103 instructed the flight to move the drone 20 up and down almost simply, but may instruct a complicated flight to move the drone 20 up and down, left and right, back and forth, and diagonally in order to avoid the interference space. Good. Further, the flight instruction unit 103 may instruct the flight to pass through the interference space when the necessary inspection data cannot be acquired without flying in the interference space.
 また、干渉空間が時間の経過と共に変化する場合には、飛行指示部103は、例えば干渉空間が最も小さくなる期間を飛行すべき期間として指示してもよい。いずれの場合も、飛行指示部103は、上述した電波の干渉により正しい制御データが届かないためにドローン20が制御を失って墜落することがないように、電波の干渉の影響をなるべく受けない飛行を指示すればよい。 Further, when the interference space changes with the passage of time, the flight instruction unit 103 may instruct, for example, the period in which the interference space is the smallest as the period for flight. In either case, the flight instruction unit 103 is as unaffected by radio wave interference as possible so that the drone 20 does not lose control and crash due to the above-mentioned radio wave interference that does not reach the correct control data. Just point to.
[2-7]各機能を実現する装置
 図5に表す各機能を実現する装置は、上述した装置に限らない。例えば、サーバ装置10が実現する機能をドローン20又はプロポ30が実現してもよい。その場合はドローン20又はプロポ30が本発明の「情報処理装置」の一例となる。ドローン20が実現する場合は、実施例のようにプロポ30に指示データを送信してもよいが、ドローン20自身が指示に従って干渉を小さくする飛行を行った方が迅速な干渉の回避が可能なので望ましい。いずれの場合も、設備検査システム1の全体で図5に表す各機能が実現されていればよい。
[2-7] Device for Realizing Each Function The device for realizing each function shown in FIG. 5 is not limited to the above-mentioned device. For example, the drone 20 or the radio 30 may realize the functions realized by the server device 10. In that case, the drone 20 or the radio 30 is an example of the "information processing device" of the present invention. When the drone 20 is realized, the instruction data may be transmitted to the radio 30 as in the embodiment, but it is possible to avoid the interference more quickly if the drone 20 itself makes a flight to reduce the interference according to the instruction. desirable. In any case, it is sufficient that each function shown in FIG. 5 is realized in the entire equipment inspection system 1.
[2-8]発明のカテゴリ
 本発明は、上述したサーバ装置10及びプロポ30等の情報処理装置の他、各情報処理装置及びドローン20のような飛行体を備える情報処理システム(設備検査システム1はその一例)としても捉えられる。また、本発明は、各情報処理装置が実施する処理を実現するための情報処理方法としても捉えられるし、各情報処理装置を制御するコンピュータを機能させるためのプログラムとしても捉えられる。本発明として捉えられるプログラムは、プログラムを記憶させた光ディスク等の記録媒体の形態で提供されてもよいし、インターネット等のネットワークを介してコンピュータにダウンロードさせ、ダウンロードしたプログラムをインストールして利用可能にするなどの形態で提供されてもよい。
[2-8] Category of Invention In the present invention, in addition to the above-mentioned information processing devices such as the server device 10 and the radio 30, an information processing system including each information processing device and an air vehicle such as a drone 20 (equipment inspection system 1). Can be regarded as an example). Further, the present invention can be regarded as an information processing method for realizing the processing performed by each information processing device, and also as a program for operating a computer that controls each information processing device. The program regarded as the present invention may be provided in the form of a recording medium such as an optical disk in which the program is stored, or may be downloaded to a computer via a network such as the Internet, and the downloaded program may be installed and used. It may be provided in the form of
[2-9]機能ブロック
 なお、上記実施例の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。
[2-9] Functional Blocks The block diagram used in the description of the above embodiment shows blocks for functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited.
 すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 That is, each functional block may be realized by using one physically or logically connected device, or directly or indirectly (for example, two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. There are broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these. I can't. For example, a functional block (constituent unit) for functioning transmission is called a transmitting unit or a transmitter. As described above, the method of realizing each of them is not particularly limited.
[2-10]入出力された情報等の扱い
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
[2-10] Handling of input / output information, etc. The input / output information, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information and the like can be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
[2-11]判定方法
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
[2-11] Judgment method Judgment may be performed by a value represented by 1 bit (0 or 1), a boolean value (Boolean: true or false), or a numerical value. (For example, comparison with a predetermined value) may be performed.
[2-12]処理手順等
 本開示において説明した各態様/実施例の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
[2-12] Processing Procedures, etc. The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
[2-13]入出力された情報等の扱い
 入出力された情報等は特定の場所(例えばメモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
[2-13] Handling of input / output information, etc. The input / output information, etc. may be stored in a specific location (for example, memory) or managed by a management table. Input / output information and the like can be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
[2-14]ソフトウェア
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
[2-14] Software Software is an instruction, instruction set, code, code segment, program code, program, regardless of whether it is called software, firmware, middleware, microcode, hardware description language, or another name. , Subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website that uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
[2-15]情報、信号
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
[2-15] Information, Signals, etc. The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
[2-16]「判断」、「決定」
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。
[2-16] "Judgment", "Decision"
The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment, calculation, computing, processing, deriving, investigating, looking up, search, inquiry. It may include (eg, searching in a table, database or another data structure), ascertaining as "judgment" or "decision".
 また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in memory) may be regarded as "judgment" or "decision". In addition, "judgment" and "decision" mean that "resolving", "selecting", "choosing", "establishing", "comparing", etc. are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include that some action is regarded as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
[2-17]「に基づいて」の意味
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
[2-17] Meaning of "based on" The phrase "based on" used in this disclosure does not mean "based on only" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
[2-18]「異なる」
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
[2-18] "Different"
In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
[2-19]「及び」、「又は」
 本開示において、「A及びB」でも「A又はB」でも実施可能な構成については、一方の表現で記載された構成を、他方の表現で記載された構成として用いてもよい。例えば「A及びB」と記載されている場合、他の記載との不整合が生じず実施可能であれば、「A又はB」として用いてもよい。
[2-19] "and", "or"
In the present disclosure, for configurations that can be implemented by either "A and B" or "A or B", the configuration described in one expression may be used as the configuration described in the other expression. For example, when "A and B" are described, they may be used as "A or B" as long as they are not inconsistent with other descriptions and can be implemented.
[2-20]態様のバリエーション等
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
[2-20] Variations of Aspects, etc. Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit notification, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as an amendment or modification mode without departing from the purpose and scope of the present disclosure as defined by the claims. Therefore, the description of this disclosure is for purposes of illustration only and does not have any restrictive meaning to this disclosure.
1…設備検査システム、2…ネットワーク、10…サーバ装置、20…ドローン、30…プロポ、101…強度情報取得部、102…干渉空間特定部、103…飛行指示部、301…検査対象通知部、302…指示対応処理部。 1 ... Equipment inspection system, 2 ... Network, 10 ... Server device, 20 ... Drone, 30 ... Propo, 101 ... Strength information acquisition unit, 102 ... Interference space identification unit, 103 ... Flight instruction unit, 301 ... Inspection target notification unit, 302 ... Instruction handling processing unit.

Claims (7)

  1.  電信設備から発せられる電波の方向毎の強度を示す強度情報を取得する取得部と、
     無線通信により制御され且つ離れた位置から前記電信設備の検査データを取得可能な飛行体を飛行させる場合に、取得された前記強度情報により強度が示される電波との干渉を小さくする飛行を指示する指示部と
     を備える情報処理装置。
    An acquisition unit that acquires strength information indicating the strength of each direction of radio waves emitted from telecom equipment,
    When flying an air vehicle that is controlled by wireless communication and can acquire inspection data of the telecom equipment from a remote position, the flight is instructed to reduce interference with radio waves whose intensity is indicated by the acquired intensity information. An information processing device equipped with an indicator.
  2.  取得された前記強度情報が示す電波の強度が閾値以上の空間を前記干渉が生じる干渉空間として特定する特定部を備え、
     前記指示部は、特定された前記干渉空間を通らない飛行を指示する
     請求項1に記載の情報処理装置。
    It is provided with a specific unit that identifies a space in which the intensity of the radio wave indicated by the acquired intensity information is equal to or greater than a threshold value as an interference space in which the interference occurs.
    The information processing device according to claim 1, wherein the instruction unit instructs a flight that does not pass through the specified interference space.
  3.  前記特定部は、前記電信設備の電波の周波数帯と前記飛行体が無線通信で用いる電波の周波数帯とが近いほど大きな空間を前記干渉空間として特定する
     請求項2に記載の情報処理装置。
    The information processing device according to claim 2, wherein the specific unit specifies a larger space as the interference space as the frequency band of the radio wave of the telecom equipment and the frequency band of the radio wave used by the flying object in wireless communication are closer.
  4.  前記飛行体は、指定されたルートで自律飛行を行う機能を有し、
     前記指示部は、前記検査データを取得するために前記干渉空間を通過するルートを飛行しなければならない場合、当該ルートにおいて前記飛行体に自律飛行させるよう指示する
     請求項2又は3に記載の情報処理装置。
    The air vehicle has a function of autonomously flying on a designated route.
    The information according to claim 2 or 3, wherein when the instruction unit has to fly a route passing through the interference space in order to acquire the inspection data, the instruction unit instructs the flying object to fly autonomously on the route. Processing equipment.
  5.  前記飛行体は、飛行の指示を示す通信を受信する受信機能を少なくとも有し、
     前記指示部は、前記自律飛行を指示する場合、当該自律飛行をしている期間は前記受信機能を停止させることを指示する
     請求項4に記載の情報処理装置。
    The air vehicle has at least a receiving function for receiving a communication indicating a flight instruction.
    The information processing device according to claim 4, wherein when the instruction unit instructs the autonomous flight, the instruction unit instructs to stop the reception function during the autonomous flight.
  6.  前記飛行体は、2以上の周波数帯での無線通信を選択可能であり、
     前記指示部は、前記2以上の周波数帯のうち前記電波と干渉が生じにくい周波数帯での無線通信を選択するよう指示する
     請求項1から5のいずれか1項に記載の情報処理装置。
    The air vehicle can select wireless communication in two or more frequency bands.
    The information processing device according to any one of claims 1 to 5, wherein the indicating unit instructs to select wireless communication in a frequency band in which interference with radio waves is unlikely to occur among the two or more frequency bands.
  7.  電信設備から発せられる電波の方向毎の強度を示す強度情報を取得するステップと、
     無線通信により制御され且つ離れた位置から前記電信設備の検査データを取得可能な飛行体を飛行させる場合に、取得された前記強度情報により強度が示される電波との干渉を小さくする飛行を指示するステップと
     を有する情報処理方法。
    Steps to acquire strength information indicating the strength of each direction of radio waves emitted from telecom equipment, and
    When flying an air vehicle that is controlled by wireless communication and can acquire inspection data of the telecom equipment from a remote position, the flight is instructed to reduce interference with radio waves whose intensity is indicated by the acquired intensity information. An information processing method that has steps.
PCT/JP2020/010789 2019-03-18 2020-03-12 Information processing device and information processing method WO2020189491A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021507270A JP7267397B2 (en) 2019-03-18 2020-03-12 Information processing device and information processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019049806 2019-03-18
JP2019-049806 2019-03-18

Publications (1)

Publication Number Publication Date
WO2020189491A1 true WO2020189491A1 (en) 2020-09-24

Family

ID=72519839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010789 WO2020189491A1 (en) 2019-03-18 2020-03-12 Information processing device and information processing method

Country Status (2)

Country Link
JP (1) JP7267397B2 (en)
WO (1) WO2020189491A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017091072A (en) * 2015-11-06 2017-05-25 住友電気工業株式会社 Unmanned flying body, information processing device, radio wave measurement program, and information processing program
JP2017118421A (en) * 2015-12-25 2017-06-29 Kddi株式会社 Measuring apparatus, measuring method, and program
JP2018110352A (en) * 2017-01-05 2018-07-12 Kddi株式会社 Steering device, information processing method, program, and flight system
JP2018113650A (en) * 2017-01-13 2018-07-19 Kddi株式会社 Flight device, measuring method, and information management device
JP2018136237A (en) * 2017-02-23 2018-08-30 株式会社国際電気通信基礎技術研究所 Electromagnetic field data acquisition system, flight vehicle, terminal device, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017091072A (en) * 2015-11-06 2017-05-25 住友電気工業株式会社 Unmanned flying body, information processing device, radio wave measurement program, and information processing program
JP2017118421A (en) * 2015-12-25 2017-06-29 Kddi株式会社 Measuring apparatus, measuring method, and program
JP2018110352A (en) * 2017-01-05 2018-07-12 Kddi株式会社 Steering device, information processing method, program, and flight system
JP2018113650A (en) * 2017-01-13 2018-07-19 Kddi株式会社 Flight device, measuring method, and information management device
JP2018136237A (en) * 2017-02-23 2018-08-30 株式会社国際電気通信基礎技術研究所 Electromagnetic field data acquisition system, flight vehicle, terminal device, and program

Also Published As

Publication number Publication date
JPWO2020189491A1 (en) 2021-12-09
JP7267397B2 (en) 2023-05-01

Similar Documents

Publication Publication Date Title
US11501651B2 (en) Flight control apparatus and flight control system
JP7082711B2 (en) Information processing equipment and information processing method
JPWO2019146580A1 (en) Information processing device and information processing method
JP7194682B2 (en) flight controller
JP7079345B2 (en) Information processing equipment
WO2020230371A1 (en) Control device, program, and control method
US20210074168A1 (en) Flight control system and flight control apparatus
WO2020189491A1 (en) Information processing device and information processing method
WO2020189493A1 (en) Information processing device and information processing method
US20200111372A1 (en) Flight control apparatus and flight control system
JP7157823B2 (en) Information processing equipment
US20210191429A1 (en) Flying object control apparatus
WO2021140798A1 (en) Information processing system
WO2021014699A1 (en) Information processing device
JP7075947B2 (en) Flight control device and flight control system
JP7182426B2 (en) Information processing equipment
US11823580B2 (en) Information processing apparatus
US11794900B2 (en) Information processing apparatus
WO2020262528A1 (en) Information processing device, and information processing method
JP6934964B2 (en) Routing device, program, routing method, and system
WO2020262529A1 (en) Information processing device, and information processing method
WO2020189608A1 (en) Information processing device
JP2020067587A (en) Information processing device
EP3632803A1 (en) Flying body management system
CN117311391A (en) Unmanned aerial vehicle flight control method, unmanned aerial vehicle system and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774367

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507270

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20774367

Country of ref document: EP

Kind code of ref document: A1