WO2020179549A1 - Three-dimensional foot measurement system - Google Patents

Three-dimensional foot measurement system Download PDF

Info

Publication number
WO2020179549A1
WO2020179549A1 PCT/JP2020/007536 JP2020007536W WO2020179549A1 WO 2020179549 A1 WO2020179549 A1 WO 2020179549A1 JP 2020007536 W JP2020007536 W JP 2020007536W WO 2020179549 A1 WO2020179549 A1 WO 2020179549A1
Authority
WO
WIPO (PCT)
Prior art keywords
feet
dimensional
external
dimensional camera
internal
Prior art date
Application number
PCT/JP2020/007536
Other languages
French (fr)
Japanese (ja)
Inventor
元秀 荒山
Original Assignee
株式会社ドリーム・ジーピー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ドリーム・ジーピー filed Critical 株式会社ドリーム・ジーピー
Priority to JP2021503986A priority Critical patent/JPWO2020179549A1/ja
Publication of WO2020179549A1 publication Critical patent/WO2020179549A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43DMACHINES, TOOLS, EQUIPMENT OR METHODS FOR MANUFACTURING OR REPAIRING FOOTWEAR
    • A43D1/00Foot or last measuring devices; Measuring devices for shoe parts
    • A43D1/02Foot-measuring devices

Definitions

  • the present invention relates to a three-dimensional foot measurement system, and more particularly to a three-dimensional foot measurement system that measures a foot using a three-dimensional camera.
  • FIGS. 16 and 17 are explanatory diagrams showing an example of such a device.
  • the foot F is inserted into the opening OP of the housing 9, and the foot F is placed on the transparent footrest G in the housing 9, and light rays are emitted from three directions.
  • the combined shape information of the foot F is three-dimensionally calculated by irradiating, imaging from each direction, calculating the shape, further converting the data into data in a common coordinate system, and then combining the data.
  • three measuring heads 7a, 7b, 7c are arranged inside the housing 9, three measuring heads 7a, 7b, 7c are arranged.
  • the measuring heads 7a, 7b, and 7c are light irradiation means 6a, 6b, 6c that irradiate the foot F with light, and CCD cameras 21a, 21b, 21c that capture an optical image formed on the surface of the foot F by the irradiation light, respectively. And include.
  • the measuring head 7a irradiates a light ray toward the upper surface portion of the foot and images the upper surface portion of the foot.
  • the measurement head 7b irradiates a light ray toward the sole surface portion and images the sole surface portion.
  • the measurement head 7c irradiates a light beam toward the rear part of the foot and images the rear part of the foot (for example, refer to Patent Document 1).
  • the present invention aims to provide a three-dimensional foot measuring system that can easily measure both feet in three dimensions in a short time.
  • the present invention provides a three-dimensional foot measurement system configured as follows.
  • the three-dimensional foot measuring system includes: (a) a housing in which light-transmitting plates for placing both feet are exposed on the upper surface; and (b) a case where the light-transmitting plates are imaged so as to image the both feet. First to third external three-dimensional cameras respectively arranged obliquely above, and (c) an internal three-dimensional camera arranged inside the housing so as to image the both feet on the translucent plate from below.
  • the first external three-dimensional camera images the insteps of both feet on the translucent plate from the front of both feet
  • the second external three-dimensional camera captures the heels of both feet on the translucent plate with both feet
  • the third external three-dimensional camera images the heels of both feet on the translucent plate from the diagonally rear left of both feet
  • the internal three-dimensional camera images the heels of both feet from the diagonally rear left of the translucent plate. It is configured to image the soles of both feet.
  • the base end portion is rotatably supported by the housing, has a shape extending obliquely upward from the base end portion of the light transmissive plate, and the first to third portions are at the tip end portion.
  • the external three-dimensional cameras are each fixed, and further include first to third support arms configured to be tiltable toward the upper surface of the housing.
  • the external 3D camera can be easily placed at a predetermined position. Further, the first to third support arms can be tilted, which is convenient for storage and transportation.
  • a mirror disposed inside the housing is further provided.
  • the internal three-dimensional camera is configured to capture images of the soles of the feet on the transparent plate via the mirror and the transparent plate.
  • the height of the housing can be prevented from increasing.
  • the data processing device includes the point cloud based on the data obtained by the first to third external three-dimensional cameras and the internal three-dimensional camera capturing images of the both feet on the transparent plate at the same time. The data are combined and the numerical value is calculated.
  • the shooting timing is not shifted, it is easy to combine the point cloud data. Moreover, the imaging time becomes the shortest, and the measurement time can be shortened.
  • the data obtained by imaging the feet on the translucent plate by the first to third external three-dimensional cameras and the internal three-dimensional camera includes distance information and color information.
  • the data processing device is within a predetermined range from the data obtained by the first to third external three-dimensional cameras and the internal three-dimensional camera capturing images of the both feet on the transparent plate.
  • the data including the distance information and the color information is extracted, the point cloud data is synthesized using the extracted data, and the numerical value is calculated.
  • the point cloud data can be efficiently combined and the measurement time can be shortened.
  • FIG. 1 is an overall configuration diagram of a three-dimensional foot measurement system.
  • FIG. 2 is a front view of the imaging device.
  • FIG. 3 is a plan view of the image pickup apparatus.
  • FIG. 4 is a left side view of the image pickup apparatus.
  • FIG. 5 is a perspective view of the imaging device.
  • FIG. 6 is a front view of the image pickup apparatus.
  • FIG. 7 is a plan view of the image pickup apparatus.
  • FIG. 8 is a right side view of the image pickup apparatus.
  • FIG. 9 is an image diagram of the imaging device.
  • FIG. 1 is an overall configuration diagram of a three-dimensional foot measurement system.
  • FIG. 2 is a front view of the imaging device.
  • FIG. 3 is a plan view of the image pickup apparatus.
  • FIG. 4 is a left side view of the image pickup apparatus.
  • FIG. 5 is a perspective view of the imaging device.
  • FIG. 6 is a front view of the image pickup apparatus.
  • FIG. 7 is a plan view of
  • FIG. 10 is an image of data obtained by imaging with the first external three-dimensional camera.
  • FIG. 11 is an image of data obtained by imaging with the second external three-dimensional camera.
  • FIG. 12 is an image of data obtained by imaging with a third external three-dimensional camera.
  • FIG. 13 is an image of data obtained by imaging with an internal three-dimensional camera.
  • FIG. 14 is an image of the point cloud data synthesized for the right foot.
  • FIG. 15 is an image of the point cloud data synthesized for the left foot.
  • FIG. 16 is an explanatory diagram showing a state in which the feet are put in the housing.
  • FIG. 17 is an explanatory diagram showing a state inside the housing.
  • Example 1 A three-dimensional foot measurement system 10 of Example 1 will be described with reference to FIGS. 1 to 15.
  • FIG. 1 is an overall configuration diagram of the three-dimensional foot measurement system 10. As shown in FIG. 1, the three-dimensional foot measurement system 10 includes an imaging device 12 and a data processing device 30.
  • FIG. 2 is a front view of the image pickup device 12.
  • FIG. 3 is a plan view of the image pickup device 12.
  • FIG. 4 is a left side view of the imaging device 12.
  • FIG. 9 is an image diagram of the imaging device 12. As shown in FIGS. 1 to 4 and 9, in the image pickup apparatus 12, a translucent plate 15 for mounting both feet 2a and 2b (see FIG. 3) is exposed on the upper surface 14a of the housing 14.
  • the translucent plate 15 has a plate shape that allows light to pass through to the extent that the soles of both feet 2a and 2b placed on the translucent plate 15 are imaged by an internal three-dimensional camera 26 and three-dimensionally measured, as will be described in detail later.
  • the member may be transparent, semi-transparent, or cloudy. For example, if the soles of both feet 2a and 2b on the translucent plate 15 can be imaged and three-dimensionally measured, the portion farther than the soles of both feet 2a and 2b on the translucent plate 15 can be seen as seen through frosted glass. It does not matter if the light is seen through the transparent plate 15.
  • a member 17 is provided so as to cross the center of the translucent plate 15, or a sticker (not shown) is attached to the front surface or the back surface of the translucent plate 15 to form both feet 2a, The position where 2b is placed may be easy to understand.
  • the portion where the light transmitting plate 15 is exposed on the upper surface 14a of the housing 14 is preferably rectangular in length and width of about 30 to 40 cm, but may be smaller or larger than this.
  • a shape other than the rectangular shape, such as a circle or an ellipse, may be used.
  • two locations for the right foot and the left foot may be exposed.
  • a mirror 16 and one internal three-dimensional camera 26 are arranged, and the soles of both feet 2a and 2b on the translucent plate 15 are translucent from below. It is configured to be imaged by the internal three-dimensional camera 26 via the plate 15 and the mirror 16. It is preferable to use the mirror 16 because the height of the housing 14 can be prevented from increasing even if the focal length of the internal three-dimensional camera 26 is increased in order to increase the depth of field. However, it may be configured without using the mirror 16.
  • three support arms 18a, 18b, and 18c are attached to the housing 14.
  • the base end portions 18p, 18q, 18r are rotatably supported by the housing 14, and the external three-dimensional cameras 20, 22, 24 are attached to the tip portions 19a, 19b, 19c, respectively. Is fixed.
  • the tip portions 19a, 19b, 19c have the same tubular shape, and the external three-dimensional cameras 20, 22, and 24 are fixed inside the tip portions 19a, 19b, 19c.
  • Apertures 19u, 19v, 19w (19u is not shown) having the same shape are formed in the tips 19a, 19b, 19c, and the external three-dimensional cameras 20, 22, and 24 image through the openings 19u, 19v, 19w. To do.
  • the support arms 18a, 18b, 18c have a shape extending diagonally upward from the base end portions 18p, 18q, 18r of the light transmitting plate 15, and the tip portions 19a, 19b, 19c are arranged diagonally above the light transmitting plate 15, respectively.
  • the external three-dimensional cameras 20, 22, and 24 are arranged obliquely above the translucent plate 15 so as to image the feet 2a and 2b on the translucent plate 15, respectively.
  • the first external three-dimensional camera 20 is arranged in front of both feet 2a and 2b on the translucent plate 15 by the first support arm 18a.
  • the second external three-dimensional camera 22 is arranged by the second support arm 18b on the light-transmitting plate 15 obliquely to the right rear of the feet 2a, 2b.
  • the third external three-dimensional camera 24 is arranged by the third support arm 18c to the left of the feet 2a, 2b on the translucent plate 15 and diagonally rearward.
  • the external 3D cameras 20, 22, 24 can be easily arranged at predetermined positions.
  • FIGS. 5 to 8 are views showing a state in which the support arms 18a, 18b, 18c are laid down.
  • 5 is a perspective view of the imaging device 12
  • FIG. 6 is a front view of the imaging device 12
  • FIG. 7 is a plan view of the imaging device 12
  • FIG. 8 is a right side view of the imaging device 12.
  • the support arms 18a, 18b, 18c are configured to be able to be tilted toward the upper surface 14a of the housing 14.
  • the image pickup device 12 becomes compact, which is convenient for storage and transportation.
  • the external 3D cameras 20, 22, 24 and the internal 3D camera 26 are 3D cameras having a built-in depth sensor that acquires depth information, and for example, an Intel (registered trademark) RealSense (registered trademark) depth camera is used. ..
  • the present invention is not limited to this, and a three-dimensional camera such as Microsoft's Kinect (registered trademark) may be used.
  • FIG. 10 is an image of data obtained by the first external three-dimensional camera 20 imaging both feet 2a and 2b on the transparent plate 15. As shown in FIG. 10, the first external three-dimensional camera 20 images the insteps of both feet 2a and 2b on the translucent plate 15 and their surroundings from the front of both feet 2a and 2b.
  • FIG. 11 is an image of data obtained by the second external three-dimensional camera 22 capturing images of both feet 2a and 2b on the translucent plate 15. As shown in FIG. 11, the second external three-dimensional camera 22 images the heels of both feet 2a and 2b on the translucent plate 15 and their surroundings from the diagonally right rear side of both feet 2a and 2b.
  • FIG. 12 is an image of data obtained by the third external three-dimensional camera 24 imaging both feet 2a and 2b on the translucent plate 15. As shown in FIG. 12, the third external three-dimensional camera 24 images the heels of both feet 2a and 2b on the translucent plate 15 and their surroundings from diagonally left rear of both feet 2a and 2b.
  • FIG. 13 is an image of data obtained by capturing images of both feet 2a and 2b on the translucent plate 15 by the internal three-dimensional camera 26. As shown in FIG. 13, the internal three-dimensional camera 26 images the entire soles of the feet 2a and 2b on the transparent plate 15 from below.
  • the data processing device 30 shown in FIG. 1 can be configured with a laptop computer, a tablet PC, or the like.
  • the data processing device 30 is connected to the external 3D cameras 20, 22, 24 and the internal 3D camera 26, and supplies power to the external 3D cameras 20, 22, 24 and the internal 3D camera 26.
  • the data processing device 30 receives data from the external three-dimensional cameras 20, 22, 24 and the internal three-dimensional camera 26, and executes predetermined data processing.
  • the data processing device 30 is on the translucent plate 15 from the data obtained by simultaneously imaging both feet 2a and 2b on the translucent plate 15 by the external three-dimensional cameras 20, 22, 24 and the internal three-dimensional camera 26.
  • the point cloud data representing the three-dimensional shapes of both feet 2a and 2b are synthesized, and the numerical values representing the characteristics of each of the two feet 2a and 2b on the translucent plate 15 are calculated using the combined point cloud data.
  • the point cloud data represents the three-dimensional shape of the entire foot including the instep, heel, sole, and the like.
  • the point cloud data may include color information of each point.
  • the numerical values to be calculated are, for example, foot length, foot width, foot circumference, and the like.
  • FIGS. 14 and 15 are synthesized from the data shown in FIGS. 10 to 13.
  • FIG. 14 is an image showing point cloud data combined for the right foot 2a.
  • FIG. 15 is an image showing the point cloud data combined for the left foot 2b.
  • the point cloud data When the point cloud data is combined from the data obtained by simultaneously imaging with the three-dimensional cameras 20, 22, 24, 26, there is no image shift, so the point cloud data can be easily combined. Moreover, the imaging time becomes the shortest, and the measurement time can be shortened.
  • the data obtained by the first to third external three-dimensional cameras 20, 22, 24 and the internal three-dimensional camera 26 imaging both feet 2a and 2b on the translucent plate 15 includes distance information and color information. including.
  • the data processing device 30 is predetermined from the data obtained by the first to third external three-dimensional cameras 20, 22, 24 and the internal three-dimensional camera 26 imaging both feet 2a and 2b on the translucent plate 15.
  • Data including distance information and color information within a predetermined range are extracted, and the extracted data is used to synthesize point cloud data representing the three-dimensional shapes of both feet 2a and 2b on the translucent plate 15, and the synthesized points.
  • the group data is used to calculate a numerical value representing a characteristic of each of the feet 2a and 2b on the transparent plate 15.
  • the predetermined range of the color information is set to include the skin color
  • the predetermined range of the distance information is set to include both feet 2a and 2b on the transparent plate 15.
  • point cloud data can be efficiently combined and measurement time can be shortened.
  • Measurement results such as point cloud data of both feet 2a and 2b and numerical values representing characteristics of each of both feet 2a and 2b may be sent from the data processing device 30 to a server and stored in a database.
  • a server By accumulating the measurement results, it becomes easy to use and utilize the measurement results.
  • the three-dimensional foot measuring system 10 uses three external three-dimensional cameras 20, 22, 24 and one internal three-dimensional camera 26 to measure the three-dimensional shape of both feet 2a, 2b from four directions. Therefore, compared with the case of measuring a three-dimensional shape from three directions, the entire feet 2a and 2b can be imaged without a blind spot, and the measurement can be performed with high accuracy. In particular, it is possible to accurately measure the shape of the heel, which has a great influence on the fitting of the shoe.
  • the measurement accuracy deteriorates when the angle formed by the normal of the surface passing through the point and the irradiation light irradiated to the point approaches vertical.
  • the part that the irradiation light does not reach becomes a blind spot and cannot be measured. Since the irradiation light is emitted from a single point with its direction changed, it is not parallel light. Therefore, when the heel is imaged from the rear with only one external three-dimensional camera, blind spots are easily formed on the left and right side surfaces, and it is difficult to accurately measure the shape of the heel.
  • By imaging the heel from diagonally right rear and diagonally left rear with two external three-dimensional cameras it is possible to prevent blind spots from occurring on the left and right sides, so the shape of the heel can be measured accurately.
  • the imaging time is short, and since the entire feet 2a and 2b are simultaneously imaged from four directions, the measurement is completed in a short time.
  • the measurement can be performed only by placing both feet 2a and 2b on the translucent plate 15, and since the imaging time is short, the time to keep both feet 2a and 2b stationary is also short.
  • the three-dimensional foot measuring system 10 can easily perform the three-dimensional measurement of the entire feet 2a and 2b in a short time, and can easily measure the feet of a small child.
  • the base end portions 18p, 18q, 18r of the support arms 18a, 18b, 18c may be configured to be detachably supported by the upper surface 14a and the side surface 14s of the housing 14. Also in this case, the external three-dimensional cameras 20, 22 and 24 can be easily arranged at predetermined positions.
  • the function of the data processing device 30 may be shared by a terminal such as a notebook computer or a tablet PC and a server. Specifically, the data input to the terminal from the external 3D camera and the internal 3D camera is sent from the terminal to the server, and the server synthesizes the point cloud data to calculate the numerical value representing the characteristic of the foot. It may be configured. Alternatively, the terminal may be configured to combine the point cloud data, the combined point cloud data may be sent from the terminal to the server, and the server may calculate the numerical value representing the feature of the foot.
  • the three-dimensional foot measurement system of the present invention can easily measure both feet in three dimensions in a short time, and can easily measure the feet of a small child.
  • 4 or more external 3D cameras may be used, or 2 or more internal 3D cameras may be used.
  • the measurement accuracy can be improved and the measurement range can be expanded. For example, it becomes possible to measure the length and height of the leg up to the knee.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

Provided is a three-dimensional foot measurement system that can easily measure feet three-dimensionally in a short time. This three-dimensional foot measurement system includes: (a) a housing (14) that has an upper surface (14a) at which a light-transmitting plate (15) for placing feet (2a, 2b) on is exposed; (b) first to third outside three-dimensional cameras (20, 22, 24) arranged diagonally above the light-transmitting plate (15); (c) an inside three-dimensional camera (26) arranged inside the housing (14); and (d) a data processing device that combines data obtained through the imaging of the feet (2a, 2b) by the three-dimensional cameras (20, 22, 24, 26) into point group data indicating the three-dimensional shapes of the feet (2a, 2b) and calculates numerical values indicating the features of the feet (2a, 2b). The first outside three-dimensional camera (20) images the insteps of the feet (2a, 2b) from the front side, the second outside three-dimensional camera (22) images the heels of the feet (2a, 2b) from the diagonally-backward-right side, the third outside three-dimensional camera (24) images the heels from the diagonally-backward-left side, and the inside three-dimensional camera (26) images the soles of the feet (2a, 2b) from below.

Description

三次元足計測システム3D foot measurement system
 本発明は、三次元足計測システムに関し、詳しくは、三次元カメラを用いて足を計測する三次元足計測システムに関する。 The present invention relates to a three-dimensional foot measurement system, and more particularly to a three-dimensional foot measurement system that measures a foot using a three-dimensional camera.
 従来、足を三次元計測する装置が種々提案されている。例えば、図16及び図17は、このような装置の一例を示す説明図である。この装置は、図16に示すように、筐体9の開口OPに足Fを差し入れて、筐体9内の透明な足台Gに足Fを載置した状態で、3つの方向から光線を照射し、それぞれの方向から撮像して形状を算出し、さらに変数変換によって共通の座標系でのデータとした後に合成して、三次元的に足Fの合成形状情報を算出する。図17に示すように、筐体9の内部には、3台の計測ヘッド7a,7b,7cが配置されている。計測ヘッド7a,7b,7cは、それぞれ、足Fに光線を照射する光照射手段6a,6b,6cと、照射光で足Fの表面にできた光学像を撮像するCCDカメラ21a,21b,21cとを含む。計測ヘッド7aは、足上面部位に向かって光線を照射し、かつ、この足上面部位を撮像する。計測ヘッド7bは、足裏面部位に向かって光線を照射し、かつ、この足裏面部位を撮像する。計測ヘッド7cは、足後面部位に向かって光線を照射し、かつ、この足後面部位を撮像する(例えば、特許文献1参照)。 Conventionally, various devices for measuring a foot in three dimensions have been proposed. For example, FIGS. 16 and 17 are explanatory diagrams showing an example of such a device. As shown in FIG. 16, in this device, the foot F is inserted into the opening OP of the housing 9, and the foot F is placed on the transparent footrest G in the housing 9, and light rays are emitted from three directions. The combined shape information of the foot F is three-dimensionally calculated by irradiating, imaging from each direction, calculating the shape, further converting the data into data in a common coordinate system, and then combining the data. As shown in FIG. 17, inside the housing 9, three measuring heads 7a, 7b, 7c are arranged. The measuring heads 7a, 7b, and 7c are light irradiation means 6a, 6b, 6c that irradiate the foot F with light, and CCD cameras 21a, 21b, 21c that capture an optical image formed on the surface of the foot F by the irradiation light, respectively. And include. The measuring head 7a irradiates a light ray toward the upper surface portion of the foot and images the upper surface portion of the foot. The measurement head 7b irradiates a light ray toward the sole surface portion and images the sole surface portion. The measurement head 7c irradiates a light beam toward the rear part of the foot and images the rear part of the foot (for example, refer to Patent Document 1).
特開平11-101623号公報Japanese Unexamined Patent Publication No. 11-101623
 上記のような装置は、照射光が外部に漏れたり、外部からの光が計測に悪影響を及ぼしたりするのを防ぐため、足を筐体内に差し入れる必要がある。照射光を走査しながら形状を計測するため、照射光の走査中は足を動かさないようにする必要がある。また、片足ずつ計測しなければならない。  In the above device, it is necessary to insert the foot into the housing to prevent the irradiation light from leaking to the outside and the light from the outside from adversely affecting the measurement. Since the shape is measured while scanning the irradiation light, it is necessary to keep the foot stationary while scanning the irradiation light. Also, one foot must be measured.
 筐体に足を差し入れ、足を動かさないようにするのは面倒である。また、片足ずつ計測するので、時間がかかる。そのため、小さい子供の足を計測することが難しい。  It is troublesome to put your feet in the case and keep them from moving. In addition, it takes time because it measures one foot at a time. Therefore, it is difficult to measure the feet of small children.
 本発明は、かかる実情に鑑み、簡単に短時間で両足を三次元計測することができる三次元足計測システムを提供しようとするものである。 In view of such circumstances, the present invention aims to provide a three-dimensional foot measuring system that can easily measure both feet in three dimensions in a short time.
 本発明は、上記課題を解決するため、以下のように構成した三次元足計測システムを提供する。 In order to solve the above problems, the present invention provides a three-dimensional foot measurement system configured as follows.
 三次元足計測システムは、(a)両足を載せるための透光板が上面に露出している筐体と、(b)前記透光板上の前記両足を撮像するように前記透光板の斜め上方にそれぞれ配置された第1乃至第3の外部三次元カメラと、(c)前記透光板上の前記両足を下方から撮像するように前記筐体の内部に配置された内部三次元カメラと、(d)前記第1乃至第3の外部三次元カメラ及び前記内部三次元カメラが前記透光板上の前記両足を撮像して得られたデータから、前記透光板上の前記両足の三次元形状を表す点群データを合成し、合成した前記点群データを用いて前記透光板上の前記両足のそれぞれについて特徴を表す数値を算出するデータ処理装置と、を備える。前記第1の外部三次元カメラが前記透光板上の前記両足の甲を前記両足の前方から撮像し、前記第2の外部三次元カメラが前記透光板上の前記両足の踵を前記両足の右斜め後方から撮像し、前記第3の外部三次元カメラが前記透光板上の前記両足の踵を前記両足の左斜め後方から撮像し、前記内部三次元カメラが前記透光板上の前記両足の足裏を撮像するように構成されている。 The three-dimensional foot measuring system includes: (a) a housing in which light-transmitting plates for placing both feet are exposed on the upper surface; and (b) a case where the light-transmitting plates are imaged so as to image the both feet. First to third external three-dimensional cameras respectively arranged obliquely above, and (c) an internal three-dimensional camera arranged inside the housing so as to image the both feet on the translucent plate from below. And (d) from the data obtained by the first to third external three-dimensional cameras and the internal three-dimensional camera capturing images of the feet on the transparent plate, It is provided with a data processing device that synthesizes point group data representing a three-dimensional shape and calculates a numerical value representing a feature for each of the two feet on the translucent plate using the synthesized point group data. The first external three-dimensional camera images the insteps of both feet on the translucent plate from the front of both feet, and the second external three-dimensional camera captures the heels of both feet on the translucent plate with both feet. The third external three-dimensional camera images the heels of both feet on the translucent plate from the diagonally rear left of both feet, and the internal three-dimensional camera images the heels of both feet from the diagonally rear left of the translucent plate. It is configured to image the soles of both feet.
 上記構成によれば、簡単に短時間で両足を三次元計測することができる。 According to the above configuration, it is possible to easily measure the three feet of both feet in a short time.
 好ましくは、(e)基端部が前記筐体に回動自在に支持され、前記基端部から前記透光板の斜め上方に伸びる形状を有し、先端部に前記第1乃至第3の外部三次元カメラがそれぞれ固定され、前記筐体の前記上面に向けて倒すことができるように構成された第1乃至第3の支持アームを、さらに備える。 Preferably, (e) the base end portion is rotatably supported by the housing, has a shape extending obliquely upward from the base end portion of the light transmissive plate, and the first to third portions are at the tip end portion. The external three-dimensional cameras are each fixed, and further include first to third support arms configured to be tiltable toward the upper surface of the housing.
 この場合、外部三次元カメラを所定位置に容易に配置することができる。また、第1乃至第3の支持アームを倒すことができるので、収納や運搬に便利である。 In this case, the external 3D camera can be easily placed at a predetermined position. Further, the first to third support arms can be tilted, which is convenient for storage and transportation.
 好ましくは、(f)前記筐体の内部に配置されたミラーを、さらに備える。前記ミラー及び前記透光板を介して、前記透光板上の前記両足の前記足裏を前記内部三次元カメラが撮像するように構成されている。 Preferably, (f) a mirror disposed inside the housing is further provided. The internal three-dimensional camera is configured to capture images of the soles of the feet on the transparent plate via the mirror and the transparent plate.
 この場合、被写界深度を深くするため内部三次元カメラの焦点距離を長くしても、筐体の高さが大きくならないようにすることができる。 In this case, even if the focal length of the internal 3D camera is increased to increase the depth of field, the height of the housing can be prevented from increasing.
 好ましくは、前記データ処理装置は、前記第1乃至第3の外部三次元カメラ及び前記内部三次元カメラが前記透光板上の前記両足を同時に撮像して得られた前記データから、前記点群データを合成し、前記数値を算出する。 Preferably, the data processing device includes the point cloud based on the data obtained by the first to third external three-dimensional cameras and the internal three-dimensional camera capturing images of the both feet on the transparent plate at the same time. The data are combined and the numerical value is calculated.
 この場合、撮影タイミングがずれていないので、点群データの合成が容易である。また、撮像時間が最も短くなり、計測時間を短縮できる。 In this case, since the shooting timing is not shifted, it is easy to combine the point cloud data. Moreover, the imaging time becomes the shortest, and the measurement time can be shortened.
 好ましくは、前記第1乃至第3の外部三次元カメラ及び前記内部三次元カメラが前記透光板上の前記両足を撮像して得られた前記データは、距離情報と色情報とを含む。前記データ処理装置は、前記第1乃至第3の外部三次元カメラ及び前記内部三次元カメラが前記透光板上の前記両足を撮像して得られた前記データから、予め定められた範囲内の前記距離情報及び前記色情報を含む前記データを抽出し、抽出した前記データを用いて前記点群データを合成し、前記数値を算出する。 Preferably, the data obtained by imaging the feet on the translucent plate by the first to third external three-dimensional cameras and the internal three-dimensional camera includes distance information and color information. The data processing device is within a predetermined range from the data obtained by the first to third external three-dimensional cameras and the internal three-dimensional camera capturing images of the both feet on the transparent plate. The data including the distance information and the color information is extracted, the point cloud data is synthesized using the extracted data, and the numerical value is calculated.
 この場合、点群データを効率よく合成することができ、計測時間を短縮することができる。 In this case, the point cloud data can be efficiently combined and the measurement time can be shortened.
 本発明によれば、簡単に短時間で両足を三次元計測することができる。 According to the present invention, it is possible to easily perform three-dimensional measurement of both feet in a short time.
図1は三次元足計測システムの全体構成図である。(実施例1)FIG. 1 is an overall configuration diagram of a three-dimensional foot measurement system. (Example 1) 図2は撮像装置の正面図である。(実施例1)FIG. 2 is a front view of the imaging device. (Example 1) 図3は撮像装置の平面図である。(実施例1)FIG. 3 is a plan view of the image pickup apparatus. (Example 1) 図4は撮像装置の左側面図である。(実施例1)FIG. 4 is a left side view of the image pickup apparatus. (Example 1) 図5は撮像装置の斜視図である。(実施例1)FIG. 5 is a perspective view of the imaging device. (Example 1) 図6は撮像装置の正面図である。(実施例1)FIG. 6 is a front view of the image pickup apparatus. (Example 1) 図7は撮像装置の平面図である。(実施例1)FIG. 7 is a plan view of the image pickup apparatus. (Example 1) 図8は撮像装置の右側面図である。(実施例1)FIG. 8 is a right side view of the image pickup apparatus. (Example 1) 図9は撮像装置のイメージ図である。(実施例1)FIG. 9 is an image diagram of the imaging device. (Example 1) 図10は第1の外部三次元カメラで撮像して得られるデータの画像である。(実施例1)FIG. 10 is an image of data obtained by imaging with the first external three-dimensional camera. (Example 1) 図11は第2の外部三次元カメラで撮像して得られるデータの画像である。(実施例1)FIG. 11 is an image of data obtained by imaging with the second external three-dimensional camera. (Example 1) 図12は第3の外部三次元カメラで撮像して得られるデータの画像である。(実施例1)FIG. 12 is an image of data obtained by imaging with a third external three-dimensional camera. (Example 1) 図13は内部三次元カメラで撮像して得られるデータの画像である。(実施例1)FIG. 13 is an image of data obtained by imaging with an internal three-dimensional camera. (Example 1) 図14は右足について合成した点群データの画像である。(実施例1)FIG. 14 is an image of the point cloud data synthesized for the right foot. (Example 1) 図15は左足について合成した点群データの画像である。(実施例1)FIG. 15 is an image of the point cloud data synthesized for the left foot. (Example 1) 図16は筐体に足を入れた状態を示す説明図である。(従来例)FIG. 16 is an explanatory diagram showing a state in which the feet are put in the housing. (Conventional example) 図17は筐体内部の様子を示す説明図である。(従来例)FIG. 17 is an explanatory diagram showing a state inside the housing. (Conventional example)
 以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <実施例1> 実施例1の三次元足計測システム10について、図1~図15を参照しながら説明する。 <Example 1> A three-dimensional foot measurement system 10 of Example 1 will be described with reference to FIGS. 1 to 15.
 図1は、三次元足計測システム10の全体構成図である。図1に示すように、三次元足計測システム10は、撮像装置12と、データ処理装置30とを備える。 FIG. 1 is an overall configuration diagram of the three-dimensional foot measurement system 10. As shown in FIG. 1, the three-dimensional foot measurement system 10 includes an imaging device 12 and a data processing device 30.
 図2は、撮像装置12の正面図である。図3は、撮像装置12の平面図である。図4は、撮像装置12の左側面図である。図9は、撮像装置12のイメージ図である。図1~図4及び図9に示すように、撮像装置12は、筐体14の上面14aに、両足2a,2b(図3参照)を載せるための透光板15が露出している。 FIG. 2 is a front view of the image pickup device 12. FIG. 3 is a plan view of the image pickup device 12. FIG. 4 is a left side view of the imaging device 12. FIG. 9 is an image diagram of the imaging device 12. As shown in FIGS. 1 to 4 and 9, in the image pickup apparatus 12, a translucent plate 15 for mounting both feet 2a and 2b (see FIG. 3) is exposed on the upper surface 14a of the housing 14.
 透光板15は、透光板15の上に載せた両足2a,2bの足裏を、詳しくは後述するように内部三次元カメラ26で撮像し三次元計測できる程度に、光を通す板状の部材であればよく、透明でも、半透明でも、くもっていても構わない。例えば、透光板15上の両足2a,2bの足裏を撮像し三次元計測できれば、すりガラスを通して見たときのように、透光板15上の両足2a,2bの足裏よりも遠い部分が、透光板15を通してぼけて見えても構わない。 The translucent plate 15 has a plate shape that allows light to pass through to the extent that the soles of both feet 2a and 2b placed on the translucent plate 15 are imaged by an internal three-dimensional camera 26 and three-dimensionally measured, as will be described in detail later. The member may be transparent, semi-transparent, or cloudy. For example, if the soles of both feet 2a and 2b on the translucent plate 15 can be imaged and three-dimensionally measured, the portion farther than the soles of both feet 2a and 2b on the translucent plate 15 can be seen as seen through frosted glass. It does not matter if the light is seen through the transparent plate 15.
 透光板15の上に両足2a,2bを載せるとき、透光板15の上に立っても、不図示の椅子に座わってもよい。図3において鎖線17で示すように、透光板15の中央を横断するように部材17を設けたり、透光板15の表面又は裏面に不図示のシールを貼り付けたりして、両足2a,2bを載せる位置を分かりやすくしてもよい。 When placing both feet 2a and 2b on the transparent plate 15, you may stand on the transparent plate 15 or sit on a chair (not shown). As shown by the chain line 17 in FIG. 3, a member 17 is provided so as to cross the center of the translucent plate 15, or a sticker (not shown) is attached to the front surface or the back surface of the translucent plate 15 to form both feet 2a, The position where 2b is placed may be easy to understand.
 透光板15が筐体14の上面14aに露出している部分は、長さ及び幅が30~40cm程度の矩形形状が好ましいが、これより小さくても大きくても構わない。矩形形状以外の形状、例えば、円形や楕円形等でも構わない。また、右足用と左足用の2箇所が露出しても構わない。 The portion where the light transmitting plate 15 is exposed on the upper surface 14a of the housing 14 is preferably rectangular in length and width of about 30 to 40 cm, but may be smaller or larger than this. A shape other than the rectangular shape, such as a circle or an ellipse, may be used. In addition, two locations for the right foot and the left foot may be exposed.
 図2に示すように、筐体14の内部には、ミラー16と1台の内部三次元カメラ26とが配置され、透光板15上の両足2a,2bの足裏を下方から、透光板15及びミラー16を介して内部三次元カメラ26で撮像するように構成されている。ミラー16を用いると、被写界深度を深くするために内部三次元カメラ26の焦点距離を長くしても、筐体14の高さが大きくならないようにすることができるので好ましい。もっとも、ミラー16を用いずに構成してもよい。 As shown in FIG. 2, inside the housing 14, a mirror 16 and one internal three-dimensional camera 26 are arranged, and the soles of both feet 2a and 2b on the translucent plate 15 are translucent from below. It is configured to be imaged by the internal three-dimensional camera 26 via the plate 15 and the mirror 16. It is preferable to use the mirror 16 because the height of the housing 14 can be prevented from increasing even if the focal length of the internal three-dimensional camera 26 is increased in order to increase the depth of field. However, it may be configured without using the mirror 16.
 図1~図4及び図9に示すように、筐体14には、3本の支持アーム18a,18b,18cが取り付けられている。支持アーム18a,18b,18cは、それぞれの基端部18p,18q,18rが筐体14に回動自在に支持され、それぞれの先端部19a,19b,19cに外部三次元カメラ20,22,24が固定されている。 As shown in FIGS. 1 to 4 and 9, three support arms 18a, 18b, and 18c are attached to the housing 14. In the support arms 18a, 18b, 18c, the base end portions 18p, 18q, 18r are rotatably supported by the housing 14, and the external three- dimensional cameras 20, 22, 24 are attached to the tip portions 19a, 19b, 19c, respectively. Is fixed.
 詳しくは、先端部19a,19b,19cは筒状の同一形状であり、先端部19a,19b,19cの内部に外部三次元カメラ20,22,24が固定されている。先端部19a,19b,19cには、同一形状の開口19u,19v,19w(19uは図示せず)が形成され、外部三次元カメラ20,22,24は、この開口19u,19v,19wを通して撮像する。 Specifically, the tip portions 19a, 19b, 19c have the same tubular shape, and the external three- dimensional cameras 20, 22, and 24 are fixed inside the tip portions 19a, 19b, 19c. Apertures 19u, 19v, 19w (19u is not shown) having the same shape are formed in the tips 19a, 19b, 19c, and the external three- dimensional cameras 20, 22, and 24 image through the openings 19u, 19v, 19w. To do.
 支持アーム18a,18b,18cは、基端部18p,18q,18rから透光板15の斜め上方に伸びる形状であり、先端部19a,19b,19cは透光板15の斜め上方にそれぞれ配置される。これにより、外部三次元カメラ20,22,24は、透光板15上の両足2a,2bを撮像するように透光板15の斜め上方にそれぞれ配置される。 The support arms 18a, 18b, 18c have a shape extending diagonally upward from the base end portions 18p, 18q, 18r of the light transmitting plate 15, and the tip portions 19a, 19b, 19c are arranged diagonally above the light transmitting plate 15, respectively. To. As a result, the external three- dimensional cameras 20, 22, and 24 are arranged obliquely above the translucent plate 15 so as to image the feet 2a and 2b on the translucent plate 15, respectively.
 図3から分かるように、第1の外部三次元カメラ20は、第1の支持アーム18aによって、透光板15上の両足2a,2bの正面前方に配置される。第2の外部三次元カメラ22は、第2の支持アーム18bによって、透光板15上の両足2a,2bの右斜め後方に配置される。第3の外部三次元カメラ24は、第3の支持アーム18cによって、透光板15上の両足2a,2bの左斜め後方に配置される。 As can be seen from FIG. 3, the first external three-dimensional camera 20 is arranged in front of both feet 2a and 2b on the translucent plate 15 by the first support arm 18a. The second external three-dimensional camera 22 is arranged by the second support arm 18b on the light-transmitting plate 15 obliquely to the right rear of the feet 2a, 2b. The third external three-dimensional camera 24 is arranged by the third support arm 18c to the left of the feet 2a, 2b on the translucent plate 15 and diagonally rearward.
 支持アーム18a,18b,18cの先端部19a,19b,19cに外部三次元カメラ20,22,24を固定することによって、外部三次元カメラ20,22,24を所定位置に容易に配置できる。 By fixing the external 3D cameras 20, 22, 24 to the tip portions 19a, 19b, 19c of the support arms 18a, 18b, 18c, the external 3D cameras 20, 22, 24 can be easily arranged at predetermined positions.
 図5~図8は支持アーム18a,18b,18cを倒した状態を示す図面である。図5は撮像装置12の斜視図、図6は撮像装置12の正面図、図7は撮像装置12の平面図、図8は撮像装置12の右側面図である。図5~図8に示すように、支持アーム18a,18b,18cは、筐体14の上面14aに向けて倒すことができるように構成されている。 5 to 8 are views showing a state in which the support arms 18a, 18b, 18c are laid down. 5 is a perspective view of the imaging device 12, FIG. 6 is a front view of the imaging device 12, FIG. 7 is a plan view of the imaging device 12, and FIG. 8 is a right side view of the imaging device 12. As shown in FIGS. 5 to 8, the support arms 18a, 18b, 18c are configured to be able to be tilted toward the upper surface 14a of the housing 14.
 支持アーム18a,18b,18cを倒すと、撮像装置12がコンパクトになるので、収納や運搬に便利である。 When the support arms 18a, 18b, 18c are tilted down, the image pickup device 12 becomes compact, which is convenient for storage and transportation.
 外部三次元カメラ20,22,24及び内部三次元カメラ26は、奥行きの情報を取得する深度センサーを内蔵した三次元カメラであり、例えば、Intel(登録商標)RealSense(登録商標)デプスカメラを用いる。これに限らず、Microsoft 社のKinect(登録商標)などの三次元カメラを用いても構わない。 The external 3D cameras 20, 22, 24 and the internal 3D camera 26 are 3D cameras having a built-in depth sensor that acquires depth information, and for example, an Intel (registered trademark) RealSense (registered trademark) depth camera is used. .. The present invention is not limited to this, and a three-dimensional camera such as Microsoft's Kinect (registered trademark) may be used.
 図10は、第1の外部三次元カメラ20が透光板15上の両足2a,2bを撮像して得られたデータの画像である。図10に示すように、第1の外部三次元カメラ20は、透光板15上の両足2a,2bの甲とそのまわりを両足2a,2bの前方から撮像する。 FIG. 10 is an image of data obtained by the first external three-dimensional camera 20 imaging both feet 2a and 2b on the transparent plate 15. As shown in FIG. 10, the first external three-dimensional camera 20 images the insteps of both feet 2a and 2b on the translucent plate 15 and their surroundings from the front of both feet 2a and 2b.
 図11は、第2の外部三次元カメラ22が透光板15上の両足2a,2bを撮像して得られたデータの画像である。図11に示すように、第2の外部三次元カメラ22は、透光板15上の両足2a,2bの踵とそのまわりを両足2a,2bの右斜め後方から撮像する。 FIG. 11 is an image of data obtained by the second external three-dimensional camera 22 capturing images of both feet 2a and 2b on the translucent plate 15. As shown in FIG. 11, the second external three-dimensional camera 22 images the heels of both feet 2a and 2b on the translucent plate 15 and their surroundings from the diagonally right rear side of both feet 2a and 2b.
 図12は、第3の外部三次元カメラ24が透光板15上の両足2a,2bを撮像して得られたデータの画像である。図12に示すように、第3の外部三次元カメラ24は、透光板15上の両足2a,2bの踵とそのまわりを両足2a,2bの左斜め後方から撮像する。 FIG. 12 is an image of data obtained by the third external three-dimensional camera 24 imaging both feet 2a and 2b on the translucent plate 15. As shown in FIG. 12, the third external three-dimensional camera 24 images the heels of both feet 2a and 2b on the translucent plate 15 and their surroundings from diagonally left rear of both feet 2a and 2b.
 図13は、内部三次元カメラ26が透光板15上の両足2a,2bを撮像して得られたデータの画像である。図13に示すように、内部三次元カメラ26は、透光板15上の両足2a,2bの足裏全体を下方から撮像する。 FIG. 13 is an image of data obtained by capturing images of both feet 2a and 2b on the translucent plate 15 by the internal three-dimensional camera 26. As shown in FIG. 13, the internal three-dimensional camera 26 images the entire soles of the feet 2a and 2b on the transparent plate 15 from below.
 図1に示したデータ処理装置30は、ノートパソコンやタブレットPCなどで構成できる。データ処理装置30は、外部三次元カメラ20,22,24及び内部三次元カメラ26に接続され、外部三次元カメラ20,22,24及び内部三次元カメラ26に電源を供給する。データ処理装置30は、外部三次元カメラ20,22,24及び内部三次元カメラ26からデータが入力され、所定のデータ処理を実行する。 The data processing device 30 shown in FIG. 1 can be configured with a laptop computer, a tablet PC, or the like. The data processing device 30 is connected to the external 3D cameras 20, 22, 24 and the internal 3D camera 26, and supplies power to the external 3D cameras 20, 22, 24 and the internal 3D camera 26. The data processing device 30 receives data from the external three- dimensional cameras 20, 22, 24 and the internal three-dimensional camera 26, and executes predetermined data processing.
 すなわち、データ処理装置30は、外部三次元カメラ20,22,24及び内部三次元カメラ26が透光板15上の両足2a,2bを同時に撮像して得られたデータから、透光板15上の両足2a,2bの三次元形状を表す点群データを合成し、合成した点群データを用いて、透光板15上の両足2a,2bのそれぞれについて特徴を表す数値を算出する。点群データは、甲、踵、足裏などを含む足全体の三次元形状を表す。点群データに、各点の色情報を含めてもよい。算出する数値は、例えば、足長、足幅、足囲などである。 That is, the data processing device 30 is on the translucent plate 15 from the data obtained by simultaneously imaging both feet 2a and 2b on the translucent plate 15 by the external three- dimensional cameras 20, 22, 24 and the internal three-dimensional camera 26. The point cloud data representing the three-dimensional shapes of both feet 2a and 2b are synthesized, and the numerical values representing the characteristics of each of the two feet 2a and 2b on the translucent plate 15 are calculated using the combined point cloud data. The point cloud data represents the three-dimensional shape of the entire foot including the instep, heel, sole, and the like. The point cloud data may include color information of each point. The numerical values to be calculated are, for example, foot length, foot width, foot circumference, and the like.
 例えば、図10~図13に示したデータから、図14及び図15に示す点群データを合成する。図14は、右足2aについて合成した点群データを示す画像である。図15は、左足2bについて合成した点群データを示す画像である。 For example, the point cloud data shown in FIGS. 14 and 15 is synthesized from the data shown in FIGS. 10 to 13. FIG. 14 is an image showing point cloud data combined for the right foot 2a. FIG. 15 is an image showing the point cloud data combined for the left foot 2b.
 三次元カメラ20,22,24,26で同時に撮像して得られたデータから、点群データを合成すると、画像のずれがないので、点群データの合成が容易である。また、撮像時間が最も短くなり、計測時間を短縮できる。 When the point cloud data is combined from the data obtained by simultaneously imaging with the three- dimensional cameras 20, 22, 24, 26, there is no image shift, so the point cloud data can be easily combined. Moreover, the imaging time becomes the shortest, and the measurement time can be shortened.
 図10~図13に示したように、外部三次元カメラ20,22,24及び内部三次元カメラ26が透光板15上の両足2a,2bを撮像したとき、両足2a,2b以外のものも映り込む。そこで、点群データを合成する前に、ノイズを取り除く前処理を行うことが好ましい。三次元カメラ20,22,24,26から得られたデータは、距離情報と色情報とを含むので、これを利用してノイズを取り除く。 As shown in FIGS. 10 to 13, when the external three- dimensional cameras 20, 22, 24 and the internal three-dimensional camera 26 image both feet 2a and 2b on the translucent plate 15, those other than both feet 2a and 2b are also included. It is reflected. Therefore, it is preferable to perform preprocessing for removing noise before combining the point cloud data. Since the data obtained from the three- dimensional cameras 20, 22, 24, 26 includes distance information and color information, noise is removed by using the distance information and the color information.
 すなわち、第1乃至第3の外部三次元カメラ20,22,24及び内部三次元カメラ26が透光板15上の両足2a,2bを撮像して得られたデータは、距離情報と色情報とを含む。データ処理装置30は、第1乃至第3の外部三次元カメラ20,22,24及び内部三次元カメラ26が透光板15上の両足2a,2bを撮像して得られたデータから、予め定めた所定範囲内の距離情報及び色情報を含むデータを抽出し、抽出したデータを用いて、透光板15上の両足2a,2bの三次元形状を表す点群データを合成し、合成した点群データを用いて、透光板15上の両足2a,2bのそれぞれについて特徴を表す数値を算出する。 That is, the data obtained by the first to third external three- dimensional cameras 20, 22, 24 and the internal three-dimensional camera 26 imaging both feet 2a and 2b on the translucent plate 15 includes distance information and color information. including. The data processing device 30 is predetermined from the data obtained by the first to third external three- dimensional cameras 20, 22, 24 and the internal three-dimensional camera 26 imaging both feet 2a and 2b on the translucent plate 15. Data including distance information and color information within a predetermined range are extracted, and the extracted data is used to synthesize point cloud data representing the three-dimensional shapes of both feet 2a and 2b on the translucent plate 15, and the synthesized points. The group data is used to calculate a numerical value representing a characteristic of each of the feet 2a and 2b on the transparent plate 15.
 例えば、色情報の所定範囲は肌色が含まれるように定め、距離情報の所定範囲は透光板15上の両足2a,2bが含まれるように定める。これにより、周囲の白い壁、天井等や、ミラー16を介して映り込んだ周囲の物体などのノイズを取り除くことができる。 For example, the predetermined range of the color information is set to include the skin color, and the predetermined range of the distance information is set to include both feet 2a and 2b on the transparent plate 15. As a result, noise such as surrounding white walls, ceilings, and surrounding objects reflected through the mirror 16 can be removed.
 前処理を行うと、点群データを効率よく合成することができ、計測時間を短縮することができる。 By performing pre-processing, point cloud data can be efficiently combined and measurement time can be shortened.
 両足2a,2bの点群データや、両足2a,2bのそれぞれについて特徴を表す数値などの計測結果は、データ処理装置30からサーバーに送出し、データベースに蓄積してもよい。計測結果を蓄積することにより、計測結果の利用や活用が容易になる。例えば、スマートフォン等から足の3D画像や足の特徴を表す数値を参照できるようにしたり、計測結果を靴の選択や設計、インソールの選択や設計に利用したり、計測結果の履歴からインソールの効果を分析したりすることが容易になる。子供の足の計測結果の履歴から、成長を知ることができる。 Measurement results such as point cloud data of both feet 2a and 2b and numerical values representing characteristics of each of both feet 2a and 2b may be sent from the data processing device 30 to a server and stored in a database. By accumulating the measurement results, it becomes easy to use and utilize the measurement results. For example, it is possible to refer to 3D images of the foot and numerical values representing the characteristics of the foot from a smartphone, etc., use the measurement results for shoe selection and design, insole selection and design, and the effect of the insole from the history of the measurement results. It becomes easy to analyze. Growth can be known from the history of the measurement results of children's feet.
 三次元足計測システム10は、3台の外部三次元カメラ20,22,24と1台の内部三次元カメラ26とを用いて、4方向から両足2a,2bの三次元形状を計測しているので、3方向から三次元形状を計測する場合に比べ、両足2a,2bの全体を死角なく撮像でき、精度よく計測できる。特に、靴のフィッティングに大きな影響を与える踵の形状を精度よく計測することができる。 The three-dimensional foot measuring system 10 uses three external three- dimensional cameras 20, 22, 24 and one internal three-dimensional camera 26 to measure the three-dimensional shape of both feet 2a, 2b from four directions. Therefore, compared with the case of measuring a three-dimensional shape from three directions, the entire feet 2a and 2b can be imaged without a blind spot, and the measurement can be performed with high accuracy. In particular, it is possible to accurately measure the shape of the heel, which has a great influence on the fitting of the shoe.
 すなわち、照射光を照射して表面上の点の位置を計測する場合、その点を通る表面の法線とその点に照射された照射光とのなす角が垂直に近づくと計測精度が悪くなり、照射光が届かない部分は死角となり、計測できない。照射光は一点から向きを変えて照射されるので、平行光ではない。そのため、1台の外部三次元カメラだけで踵を後方から撮像すると左右の側面に死角ができやすく、踵の形状を精度よく計測することが難しい。2台の外部三次元カメラで右斜め後方と左斜め後方とから踵を撮像すると、左右の側面に死角が生じないようにすることができるので、踵の形状を精度よく計測することができる。 That is, when the position of a point on the surface is measured by irradiating the irradiation light, the measurement accuracy deteriorates when the angle formed by the normal of the surface passing through the point and the irradiation light irradiated to the point approaches vertical. , The part that the irradiation light does not reach becomes a blind spot and cannot be measured. Since the irradiation light is emitted from a single point with its direction changed, it is not parallel light. Therefore, when the heel is imaged from the rear with only one external three-dimensional camera, blind spots are easily formed on the left and right side surfaces, and it is difficult to accurately measure the shape of the heel. By imaging the heel from diagonally right rear and diagonally left rear with two external three-dimensional cameras, it is possible to prevent blind spots from occurring on the left and right sides, so the shape of the heel can be measured accurately.
 三次元足計測システム10は、三次元カメラを用いるので撮像時間が短い上、両足2a,2bの全体を4方向から同時に撮像するので、短時間で計測が終了する。透光板15に両足2a,2bを載せるだけで計測でき、撮像時間が短いため両足2a,2bを動かさないようにする時間も短い。 Since the three-dimensional foot measurement system 10 uses a three-dimensional camera, the imaging time is short, and since the entire feet 2a and 2b are simultaneously imaged from four directions, the measurement is completed in a short time. The measurement can be performed only by placing both feet 2a and 2b on the translucent plate 15, and since the imaging time is short, the time to keep both feet 2a and 2b stationary is also short.
 また、第2の支持アーム18bと第3の支持アーム18cとの間を通って、透光板15の上に立ち、両足2a,2bを透光板15に載せると計測でき、計測の前後に前進又は後退するだけでよい。そのため、計測前後の動作を負担なく行うことができる。 Further, it can be measured by passing between the second support arm 18b and the third support arm 18c, standing on the light transmitting plate 15, and placing both feet 2a and 2b on the light transmitting plate 15, before and after the measurement. You just have to move forward or backward. Therefore, the operation before and after the measurement can be performed without burden.
 したがって、三次元足計測システム10は、両足2a,2bの全体を簡単に、かつ短時間で三次元計測することができ、小さい子供の足も容易に計測できる。 Therefore, the three-dimensional foot measuring system 10 can easily perform the three-dimensional measurement of the entire feet 2a and 2b in a short time, and can easily measure the feet of a small child.
 <変形例1> 支持アーム18a,18b,18cの基端部18p,18q,18rが、筐体14の上面14aや側面14sに着脱自在に支持されるように構成しても構わない。この場合も、外部三次元カメラ20,22,24を所定位置に容易に配置できる。 <Modification 1> The base end portions 18p, 18q, 18r of the support arms 18a, 18b, 18c may be configured to be detachably supported by the upper surface 14a and the side surface 14s of the housing 14. Also in this case, the external three- dimensional cameras 20, 22 and 24 can be easily arranged at predetermined positions.
 <変形例2> データ処理装置30の機能を、ノートパソコンやタブレットPCなどの端末とサーバーが分担するように構成してもよい。具体的には、外部三次元カメラ及び内部三次元カメラから端末に入力されたデータを、端末からサーバーに送出し、サーバーが点群データを合成し、足の特徴を表す数値を算出するように構成してもよい。あるいは、端末で点群データの合成までを行い、合成された点群データを端末からサーバーに送出し、サーバーが足の特徴を表す数値を算出するように構成してもよい。 <Modification 2> The function of the data processing device 30 may be shared by a terminal such as a notebook computer or a tablet PC and a server. Specifically, the data input to the terminal from the external 3D camera and the internal 3D camera is sent from the terminal to the server, and the server synthesizes the point cloud data to calculate the numerical value representing the characteristic of the foot. It may be configured. Alternatively, the terminal may be configured to combine the point cloud data, the combined point cloud data may be sent from the terminal to the server, and the server may calculate the numerical value representing the feature of the foot.
 <まとめ> 以上に説明したように、本発明の三次元足計測システムは、簡単に短時間で両足を三次元計測することができ、小さい子供の足も容易に計測できる。 <Summary> As explained above, the three-dimensional foot measurement system of the present invention can easily measure both feet in three dimensions in a short time, and can easily measure the feet of a small child.
 なお、本発明は、上記実施の形態に限定されるものではなく、種々変更を加えて実施することが可能である。 It should be noted that the present invention is not limited to the above embodiment, and can be implemented with various modifications.
 例えば、4台以上の外部三次元カメラを用いたり、2台以上の内部三次元カメラを用いたりしてもよい。外部三次元カメラや内部三次元カメラの台数を増やすと、計測精度を向上させたり、計測範囲を広げたりすることできる。例えば、膝までの足の長さや身長を計測することが可能になる。 For example, 4 or more external 3D cameras may be used, or 2 or more internal 3D cameras may be used. By increasing the number of external 3D cameras and internal 3D cameras, the measurement accuracy can be improved and the measurement range can be expanded. For example, it becomes possible to measure the length and height of the leg up to the knee.
 2a,2b 足
 10 三次元足計測システム
 12 撮像装置
 14 筐体
 14a 上面
 14s 側面
 15 透光板
 16 ミラー
 18a,18b,18c 支持アーム
 18p,18q,18r 基端部
 19a,19b,19c 先端部
 20,22,24 外部三次元カメラ
 26 内部三次元カメラ
 30 データ処理装置
2a, 2b foot 10 Three-dimensional foot measurement system 12 Imaging device 14 Housing 14a Top surface 14s Side surface 15 Translucent plate 16 Mirror 18a, 18b, 18c Support arm 18p, 18q, 18r Base end 19a, 19b, 19c Tip 20, 22, 24 External 3D camera 26 Internal 3D camera 30 Data processing device

Claims (5)

  1.  両足を載せるための透光板が上面に露出している筐体と、
     前記透光板上の前記両足を撮像するように前記透光板の斜め上方にそれぞれ配置された第1乃至第3の外部三次元カメラと、
     前記透光板上の前記両足を下方から撮像するように前記筐体の内部に配置された内部三次元カメラと、
     前記第1乃至第3の外部三次元カメラ及び前記内部三次元カメラが前記透光板上の前記両足を撮像して得られたデータから、前記透光板上の前記両足の三次元形状を表す点群データを合成し、合成した前記点群データを用いて前記透光板上の前記両足のそれぞれについて特徴を表す数値を算出するデータ処理装置と、
    を備え、
     前記第1の外部三次元カメラが前記透光板上の前記両足の甲を前記両足の前方から撮像し、前記第2の外部三次元カメラが前記透光板上の前記両足の踵を前記両足の右斜め後方から撮像し、前記第3の外部三次元カメラが前記透光板上の前記両足の踵を前記両足の左斜め後方から撮像し、前記内部三次元カメラが前記透光板上の前記両足の足裏を撮像するように構成されたことを特徴とする、三次元足計測システム。
    A case where a transparent plate for placing both feet is exposed on the upper surface,
    First to third external three-dimensional cameras respectively arranged obliquely above the transparent plate so as to capture images of both feet on the transparent plate,
    An internal three-dimensional camera arranged inside the housing so as to image the legs on the transparent plate from below;
    From the data obtained by the first to third external three-dimensional cameras and the internal three-dimensional camera imaging the both feet on the transparent plate, the three-dimensional shape of the feet on the transparent plate is represented. A data processing device that synthesizes point cloud data, and uses the synthesized point cloud data to calculate a numerical value representing a characteristic for each of the both feet on the translucent plate,
    Equipped with
    The first external three-dimensional camera images the insteps of the both feet on the translucent plate from the front of the both feet, and the second external three-dimensional camera moves the heels of the both feet on the translucent plate to the both feet. From the diagonally right rear side, the third external three-dimensional camera images the heels of both feet on the translucent plate from the diagonally left rear side of the both feet, and the internal three-dimensional camera on the translucent plate. A three-dimensional foot measuring system, which is configured to image the soles of both feet.
  2.  基端部が前記筐体に回動自在に支持され、前記基端部から前記透光板の斜め上方に伸びる形状を有し、先端部に前記第1乃至第3の外部三次元カメラがそれぞれ固定され、前記筐体の前記上面に向けて倒すことができるように構成された第1乃至第3の支持アームを、さらに備えたことを特徴とする、請求項1に記載の三次元足計測システム。 A base end portion is rotatably supported by the housing, has a shape that extends obliquely above the translucent plate from the base end portion, and has the first to third external three-dimensional cameras at the tip end portions, respectively. The three-dimensional foot measurement according to claim 1, further comprising first to third support arms that are fixed and configured to be able to be tilted toward the upper surface of the housing. system.
  3.  前記筐体の内部に配置されたミラーを、さらに備え、
     前記ミラー及び前記透光板を介して、前記透光板上の前記両足の前記足裏を前記内部三次元カメラが撮像するように構成されたことを特徴とする、請求項1又は2に記載の三次元足計測システム。
    Further provided with a mirror arranged inside the housing,
    3. The internal three-dimensional camera is configured to capture an image of the soles of the feet on the transparent plate via the mirror and the transparent plate, and the internal three-dimensional camera is configured to capture the image. Three-dimensional foot measurement system.
  4.  前記データ処理装置は、
    前記第1乃至第3の外部三次元カメラ及び前記内部三次元カメラが前記透光板上の前記両足を同時に撮像して得られた前記データから、前記点群データを合成し、前記数値を算出することを特徴とする、請求項1乃至3のいずれか一つに記載の三次元足計測システム。
    The data processing device is
    The point cloud data is combined from the data obtained by the first to third external three-dimensional cameras and the internal three-dimensional camera simultaneously capturing the both feet on the translucent plate to calculate the numerical value. The three-dimensional foot measuring system according to any one of claims 1 to 3, wherein
  5.  前記第1乃至第3の外部三次元カメラ及び前記内部三次元カメラが前記透光板上の前記両足を撮像して得られた前記データは、距離情報と色情報とを含み、
     前記データ処理装置は、前記第1乃至第3の外部三次元カメラ及び前記内部三次元カメラが前記透光板上の前記両足を撮像して得られた前記データから、予め定められた範囲内の前記距離情報及び前記色情報を含む前記データを抽出し、抽出した前記データを用いて前記点群データを合成し、前記数値を算出することを特徴とする、請求項1乃至4のいずれか一つに記載の三次元足計測システム。
    The data obtained by the first to third external three-dimensional cameras and the internal three-dimensional camera imaging the feet on the translucent plate include distance information and color information,
    The data processing device is within a predetermined range from the data obtained by the first to third external three-dimensional cameras and the internal three-dimensional camera capturing images of the both feet on the transparent plate. The data including the distance information and the color information is extracted, the point cloud data is combined using the extracted data, and the numerical value is calculated. The three-dimensional foot measurement system described in one.
PCT/JP2020/007536 2019-03-03 2020-02-25 Three-dimensional foot measurement system WO2020179549A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021503986A JPWO2020179549A1 (en) 2019-03-03 2020-02-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019038100 2019-03-03
JP2019-038100 2019-03-03

Publications (1)

Publication Number Publication Date
WO2020179549A1 true WO2020179549A1 (en) 2020-09-10

Family

ID=72337255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007536 WO2020179549A1 (en) 2019-03-03 2020-02-25 Three-dimensional foot measurement system

Country Status (3)

Country Link
JP (1) JPWO2020179549A1 (en)
TW (1) TW202108032A (en)
WO (1) WO2020179549A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116952303A (en) * 2023-07-27 2023-10-27 浙江卓诗尼鞋业有限公司 Comprehensive detection equipment for multiple functions of shoes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364139B2 (en) * 1982-03-25 1988-12-09
JP2006053147A (en) * 2004-08-11 2006-02-23 Acushnet Co Device and method of scanning object
JP2009159015A (en) * 2007-12-25 2009-07-16 Elmo Co Ltd Imaging apparatus
JP2013509927A (en) * 2009-11-04 2013-03-21 フットバランス システム オイ Insole and method and system for insole manufacturing
JP2015099116A (en) * 2013-11-20 2015-05-28 セイコーエプソン株式会社 Component analyzer
US20170255185A1 (en) * 2016-03-01 2017-09-07 Glen D. Hinshaw System and method for generating custom shoe insole

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364139B2 (en) * 1982-03-25 1988-12-09
JP2006053147A (en) * 2004-08-11 2006-02-23 Acushnet Co Device and method of scanning object
JP2009159015A (en) * 2007-12-25 2009-07-16 Elmo Co Ltd Imaging apparatus
JP2013509927A (en) * 2009-11-04 2013-03-21 フットバランス システム オイ Insole and method and system for insole manufacturing
JP2015099116A (en) * 2013-11-20 2015-05-28 セイコーエプソン株式会社 Component analyzer
US20170255185A1 (en) * 2016-03-01 2017-09-07 Glen D. Hinshaw System and method for generating custom shoe insole

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116952303A (en) * 2023-07-27 2023-10-27 浙江卓诗尼鞋业有限公司 Comprehensive detection equipment for multiple functions of shoes
CN116952303B (en) * 2023-07-27 2024-04-30 浙江卓诗尼鞋业有限公司 Comprehensive detection equipment for multiple functions of shoes

Also Published As

Publication number Publication date
JPWO2020179549A1 (en) 2020-09-10
TW202108032A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
US11792384B2 (en) Processing color information for intraoral scans
US11947013B2 (en) Detector for identifying at least one material property
JP5615998B2 (en) Device for scanning objects
US20190125250A1 (en) System and method for imaging in laser dental treatment
WO2015054281A1 (en) Calibration of 3d scanning device
ES2699529T3 (en) Detection of a moving object when scanning a rigid object in 3D
JP3912867B2 (en) Foot type measuring device
CN107735645B (en) Three-dimensional shape measuring device
JP4872035B2 (en) Imaging apparatus, captured image distance measuring method, captured image distance measuring program, and recording medium
KR101043976B1 (en) Scaner for oral cavity
US20150097968A1 (en) Integrated calibration cradle
JP6454489B2 (en) Observation system
JP2012059268A (en) Data capturing method for three-dimensional imaging
KR20140039836A (en) Scanner for oral cavity
CN105310692A (en) Measuring method for determining biometric data of human feet, and a pedestal measuring system
JP2009020080A (en) Device for measuring surface reflection characteristics
KR20140098119A (en) Systems and methods for simultaneous multi-directional imaging for capturing tomographic data
WO2020179549A1 (en) Three-dimensional foot measurement system
US7895009B2 (en) Impression foam digital scanner
JP2005351871A5 (en)
JP2011028042A (en) Detection system and detection method
CN109073370A (en) Use the depth sense of structured lighting
JP4608293B2 (en) Hand three-dimensional measuring apparatus and method
KR20160147171A (en) An astral lamp and astral lamp system about projection for near infrared fluoresence diagnosis
JP7118776B2 (en) IMAGING DEVICE, IMAGE PROCESSING METHOD, IMAGE PROCESSING PROGRAM AND RECORDING MEDIUM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503986

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20765707

Country of ref document: EP

Kind code of ref document: A1