WO2020171171A1 - Anti-hla-dr antibody, and use thereof for cancer therapy - Google Patents

Anti-hla-dr antibody, and use thereof for cancer therapy Download PDF

Info

Publication number
WO2020171171A1
WO2020171171A1 PCT/JP2020/006822 JP2020006822W WO2020171171A1 WO 2020171171 A1 WO2020171171 A1 WO 2020171171A1 JP 2020006822 W JP2020006822 W JP 2020006822W WO 2020171171 A1 WO2020171171 A1 WO 2020171171A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
cells
seq
cancer
cancer cells
Prior art date
Application number
PCT/JP2020/006822
Other languages
French (fr)
Japanese (ja)
Inventor
徳弘 中村
由貴江 笹倉
りさ 野澤
雄二 三嶋
Original Assignee
ブライトパス・バイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブライトパス・バイオ株式会社 filed Critical ブライトパス・バイオ株式会社
Priority to JP2021502140A priority Critical patent/JPWO2020171171A1/ja
Publication of WO2020171171A1 publication Critical patent/WO2020171171A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Definitions

  • the present invention relates to an antibody having a cytotoxic activity specifically against a cancer expressing HLA-DR, and a composition and a method for cancer treatment and cancer test containing the antibody.
  • Cancer is the leading cause of death in the Japanese people, with one in two suffering from cancer once in their lives and one in three dying due to cancer (2013 Ministry of Health, Labor and Welfare data. ). Therefore, although new cancer therapeutic agents are being developed both in Japan and overseas, satisfactory therapeutic results have not yet been obtained.
  • the HLA-DR antigen has been reported to be highly expressed in many cancers (leukemia, malignant lymphoma, glioblastoma, melanoma, breast cancer, colon cancer, lung cancer, etc.) and is considered to be a target for cancer treatment. Therefore, preparation of an antibody against this antigen has been attempted, a plurality of antibodies have been commercially available, and preparation of a new antibody has also been attempted (Patent Documents 1 and 2).
  • Non-Patent Document 1 drugs that target HLA-DR, such as IMMU-114 (humanized L243 antibody) and Hu1D10, have been developed (Patent Document 1), their efficacy is part of Phase 1 trials. Only partial response was observed in the cases, and no results that meet the needs of the medical field have been obtained (Non-Patent Document 1).
  • Non-Patent Document 2 a typical hemolytic uremic syndrome
  • HLA-DP HLA-DP
  • HLA-DQ HLA-DR
  • HLA-DR cytotoxicity of these antibodies in 3 types of Hodgkin lymphoma cells.
  • This antibody has a characteristic effect of making a huge hole in a cancer cell in a very short time, and has a damaging activity independent of effector cells or complement (Patent Document 2).
  • Patent Document 2 no information is known as to whether this research group is developing with this antibody.
  • the present invention provides a binding substance for an HLA-DR antigen capable of exerting cytotoxicity against a cancer cell expressing the HLA-DR antigen, and a binding substance for such an HLA-DR antigen. It is an object to provide a therapeutic drug for a tumor containing
  • the present inventors have developed a binding substance for HLA-DR antigens, which has heavy chain complementarity determining regions (CDRs) 1 to 3 and light chain CDRs 1 to 3 of a specific amino acid sequence, particularly an antibody or human form against HLA-DR antigens. It has been clarified that the above problems can be solved by providing an antibody derivative, and the present invention has been completed. The present inventors have also revealed that cancer can be treated by utilizing such a binding substance for the HLA-DR antigen.
  • CDRs heavy chain complementarity determining regions
  • [1] Complementarity determining region of heavy chain, CDR1 (SEQ ID No.: 1), CDR2 (SEQ ID No.: 2), CDR3 (SEQ ID No.: 3), Light chain complementarity determining regions, CDR1 (SEQ ID No.: 4), CDR2 (SEQ ID No.: 5), CDR3 (SEQ ID No.: 6),
  • An antibody or a humanized antibody derivative having a binding property to an HLA-DR antigen and inducing toxicity to a cancer cell comprising: [2]: The human antibody derivative is selected from humanized antibody variants selected from humanized antibodies, chimeric antibodies, multivalent antibodies, and multispecific antibodies or functional fragments thereof, [1] Antibody or humanized antibody derivative; [3]: The antibody or human antibody derivative according to [1] or [2], wherein the functional fragment is F(ab′)2; [4]: The amino acid sequence of the heavy chain variable region VH domain
  • a pharmaceutical composition for treating cancer comprising the antibody or humanized antibody derivative according to any one of [1] to [8]; [10]: The pharmaceutical composition according to [9], wherein the cancer is selected from the group consisting of Hodgkin lymphoma, lung cancer, and melanoma; [11]: a step of contacting the cancer cells collected from the subject with the antibody or humanized antibody derivative according to any one of [1] to [8] in vitro, Under culture conditions, a step of measuring whether the cell viability of cancer cells is reduced, or a step of measuring whether the secretion of immunostimulatory substances is enhanced, A method of measuring cytotoxicity against cancer cells, comprising: [12]: In the presence of peripheral blood lymphocytes of the same subject, it is measured whether the cell viability of cancer cells is reduced or whether immune cells derived from peripheral blood lymphocytes are activated, [ [11] The method for measuring cytotoxicity against cancer cells according to [11]; [13]: The antibody or humanized antibody derivative according to any one of [
  • Cytotoxicity of the antibody or human antibody derivative according to any one of [1] to [8] to cancer cells collected from a subject, secretion of an immunostimulator, or immunity A measurement kit containing the above-mentioned antibody for measuring cell activation in vitro.
  • the binding substance for the HLA-DR antigen of the present invention reduces or eliminates a tumor for the treatment of a cancer expressing the HLA-DR antigen and for inhibiting the growth of cancer cells.
  • This binding substance, particularly an antibody or a human antibody derivative can bind to the HLA-DR antigen, immunization of the HLA-DR antigen in vivo as a test application of cancer cells expressing the HLA-DR antigen. It can be used for biological detection (ELISA, Western blotting, flow cytometry, etc.).
  • the cancer cells are treated in the subject. It can be examined whether it has cytotoxicity against.
  • the binding substance of the present invention particularly an antibody or a humanized antibody derivative
  • FIG. 1 is a diagram showing the cell survival rate after treating two Hodgkin lymphoma cell lines (L428 cells and KM-H2 cells) with antibody LN-3.
  • FIG. 2 is a diagram showing cell death induction (relative value based on dead cell staining) after treating a lung cancer cell line (Calu-1) with antibody LN-3.
  • Figure 3 shows the cell survival rate of HLA-DR expressing cells ((A) L428 cells, (B) KM-H2 cells) and non-expressing cells ((C) Jurkat cells) treated with antibody LN-3.
  • FIG. FIG. 4 shows the amino acid sequences ((A) heavy chain, (B) light chain) of the variable region of antibody LN-3.
  • FIG. 5-1 is a diagram showing (A) antibody binding strength to each peptide by epitope mapping using a peptide array designed based on the human HLA-DR ⁇ 1 derived sequence.
  • FIG. 5-2 is a diagram showing a region in the HLA-DR ⁇ 1 three-dimensional structure of the (B) antibody-binding peptide by epitope mapping using a peptide array designed based on the human HLA-DR ⁇ 1-derived sequence.
  • FIG. 6 is a diagram showing that the BP1206 chimeric antibody has higher cytotoxicity than the antibody LN-3.
  • FIG. 7-1 is a diagram showing the effect of BP1206 chimeric antibody on tumor growth in a L428 cell subcutaneous transplant model ((A) tumor volume, (B) body weight).
  • FIG. 7-2 is a diagram showing the effect of BP1206 chimeric antibody on tumor growth in a L428 cell subcutaneous transplant model ((C) tumor weight at autopsy after 42 days).
  • FIG. 8-1 is a graph showing the dose response of the BP1206 chimeric antibody to tumor growth in the L428 cell subcutaneous transplant model ((A) tumor volume, (B) body weight).
  • FIG. 8-2 is a graph showing the dose responsiveness of the BP1206 chimeric antibody to tumor growth in the L428 cell subcutaneous transplant model ((C) tumor weight at necropsy after 42 days).
  • FIG. 8-1 is a graph showing the dose response of the BP1206 chimeric antibody to tumor growth in the L428 cell subcutaneous transplant model ((A) tumor volume, (B) body weight).
  • FIG. 8-2 is a graph showing the dose responsiveness of the BP1206 chimeric antibody to tumor growth in the L428 cell subcutaneous transplant model ((C) tumor weight at necropsy after 42 days).
  • FIG. 9 is a diagram showing the effect of a surrogate antibody (anti-mouse MHC class II antibody) against the BP1206 chimeric antibody on tumor growth in a mouse T cell lymphoma cell line E.G7 cell subcutaneous transplant model ((A) tumor Volume, (B) body weight).
  • FIG. 10-1 is a diagram showing that immunity induction to the model antigen (Ova) occurs in the mouse individual body of the anti-mouse MHC class II antibody administration group.
  • FIG. 10-2 is a diagram showing that administration of anti-mouse MHC class II antibody did not alter the composition of dendritic cells (DC) in the spleen of mouse individuals.
  • DC dendritic cells
  • FIG. 11 is a diagram showing a cell presence ratio when PBMCs of healthy subjects were treated with the BP1206 chimeric antibody, as compared with those before treatment.
  • FIG. 12 is a diagram showing that the antibody of the present invention has cytotoxic activity against two types of human melanoma-derived cell lines and two types of human lung cancer-derived cell lines.
  • FIG. 13 is a diagram showing that the antibody of the present invention has cytotoxic activity against three types of human melanoma-derived cell lines, and the combined effect of the antibody of the present invention and vemurafenib.
  • Figure 14 is a diagram showing cell death induction after treatment of a melanoma cell line with a BP1206 chimeric antibody (relative value based on viable cell mass measurement) ((A) HT144 cells, BP1206 chimeric antibody in combination with cisplatin, ( (B) HT144 cells, BP1206 antibody in combination with Vemurafenib, (C) A375 cells, BP1206 antibody in combination with Vemurafenib).
  • FIG. 15 is a diagram showing changes in cell shape when a Hodgkin lymphoma cell line (L428 cell) was treated with a BP1206 chimeric antibody.
  • FIG. 1 Hodgkin lymphoma cell line
  • FIG. 16 shows the effect of BP1206 chimeric antibody on HMGB1 secretion in the L428 cell subcutaneous transplant model (left) and infiltration of the antibody into tumor tissue (right).
  • FIG. 17-1 is a diagram showing a variable region amino acid sequence ((A) heavy chain) of a humanized antibody.
  • FIG. 17-2 is a diagram showing a variable region amino acid sequence ((B) light chain) of a humanized antibody.
  • FIG. 18 is a diagram showing cell death induction (relative value based on dead cell staining) when a Hodgkin lymphoma cell line (L428 cell) was treated with a BP1206 chimeric antibody or a BP1206 humanized antibody.
  • FIG. 17-1 is a diagram showing a variable region amino acid sequence ((A) heavy chain) of a humanized antibody.
  • FIG. 17-2 is a diagram showing a variable region amino acid sequence ((B) light chain) of a humanized antibody.
  • FIG. 18 is
  • FIG. 19 is a diagram showing that expression of the HLA-DR antigen was observed in nearly half of the tumor tissues examined, although there were variations in the amount of expression and the proportion of expressing cells. ..
  • FIG. 20 shows that in various cancer types, a correlation was observed between the expression level of the target antigen of the antibody of the present invention in cell lines and the induction of cell death by the addition of the antibody of the present invention.
  • FIG. 6 shows that the higher the target antigen expression level in E. coli, the higher the cell death inducing activity.
  • HLA-DR one of the major molecules that make up HLA (human leukocyte antigen) Class II, which is an antigen-presenting molecule
  • B Human antibody derivative: a human antibody variant selected from a humanized antibody or a chimeric antibody, or a functional fragment thereof
  • C humanized antibody: an antibody produced in a non-human animal body by recombination of a portion other than the heavy chain and light chain complementarity determining regions (CDR) into a human antibody gene
  • CDR chimeric antibody: an antibody produced recombinantly so that the variable region of the antibody produced in the non-human animal body is bound to the constant region of the human antibody gene
  • E Functional fragment of human antibody variant: means a part (partial fragment) of a human antibody variant (humanized antibody or chimeric antibody), which retains the action of the antibody on the antigen ( For example, specifically includes F(ab')2, Fab', Fab, single chain Fv (F(ab')2, Fab', Fab, single chain Fv
  • the present invention provides, in one aspect, a binding substance for an HLA-DR antigen, particularly an antibody or a humanized antibody derivative, which has a binding property for an HLA-DR antigen and induces toxicity to cancer cells.
  • the binding substance of the present invention particularly an antibody or a humanized antibody derivative, is used for treatment of cancer cells expressing HLA-DR antigen, for inhibiting the growth of cancer cells, and for reducing or eliminating tumors. be able to.
  • the present invention provides antibodies or human antibody derivatives having binding properties to HLA-DR antigens.
  • the antibody or human-type antibody derivative of the present invention comprises a total of 6 positions of complementarity determining regions (CDRs) 1 to 3 of heavy chain and CDRs 1 to 3 of light chain which are the same as those of the antibody having the binding property to HLA-DR antigen. It is characterized by having the amino acid sequence of. Examples of such amino acid sequences of CDRs at 6 positions of an antibody having binding properties to HLA-DR antigens include CDR1 (SEQ ID No.: 1) and CDR2 (SEQ ID No.: 2) of heavy chain.
  • CDR3 (SEQ ID No.: 3), and light chain CDR1 (SEQ ID No.: 4), CDR2 (SEQ ID No.: 5), CDR3 (SEQ ID No.: 6) Include an antibody or human-type antibody derivative specified by a combination of CDRs other than the above-mentioned combination of CDRs, as long as it has the characteristic of binding to the HLA-DR antigen.
  • the antibody or humanized antibody derivative of the present invention is also characterized in that it has the ability to induce toxicity to cancer cells expressing the HLA-DR antigen.
  • the toxicity to the cancer cells expressing the HLA-DR antigen may occur in vitro or in vivo. Whether or not it has the ability to induce cytotoxicity to cancer cells depends on the ability to actually induce cytotoxicity to cancer cells from among antibodies having binding properties to HLA-DR antigen. It can be obtained by screening.
  • the screening of the ability of the antibody or human antibody derivative to induce cytotoxicity to cancer cells can be performed in vivo or in vitro.
  • In-vivo screening is performed by transplanting target cancer cells into animals such as immunodeficient mice such as nude mice and SCID mice, and tumors in the body when the antibody or humanized antibody derivative of the present invention is administered. This can be done by measuring the change in mass size.
  • Screening performed in vitro can be performed by contacting a target cancer cell with the antibody or human antibody derivative of the present invention under culture conditions and examining whether the cancer cell causes cell death.
  • the cytotoxicity of the antibody of the present invention or the human antibody derivative against cancer cells is that the antibody or the human antibody derivative of the present invention bound to the cancer cell is a natural killer cell (NK cell), macrophage, neutrophil, Antibody-dependent cellular cytotoxicity induced by stimulating effector cells selected from the group consisting of eosinophils, complement-dependent cytotoxicity induced by stimulating the complement system, or these external factors It may be due to any aspect of physical destruction of cells due to independent antibody binding.
  • NK cell natural killer cell
  • macrophage macrophage
  • neutrophil neutrophil
  • Antibody-dependent cellular cytotoxicity induced by stimulating effector cells selected from the group consisting of eosinophils, complement-dependent cytotoxicity induced by stimulating the complement system, or these external factors It may be due to any aspect of physical destruction of cells due to independent antibody binding.
  • the antibody may be derived from any animal species of mammals, and the species from which the antibody is derived are not limited to humans, and include mouse, rat, guinea pig, hamster, It may be a rabbit or the like.
  • a human antibody derivative of the above-mentioned antibody is also a human antibody derivative of the above-mentioned antibody, as long as it has a binding property to HLA-DR antigen and has a functional characteristic of inducing toxicity to cancer cells.
  • a human antibody derivative in the present invention in one aspect, it has the amino acid sequence of the CDR at 6 positions of the above antibody, and the amino acid sequence of the constant region derived from a human antibody, and the other amino acid sequences are derived from the original antibody. It is possible to provide a derivative of an antibody, which is characterized by being a combination of the amino acid sequence of and the amino acid sequence of human antibody.
  • antibody derivatives include humanized antibodies in which amino acid sequences derived from human antibodies have been substituted for the regions other than the complementarity determining region (CDR) of the above-mentioned "antibody", or the variable regions of the above antibodies are the constant regions of human antibodies.
  • Chimeric antibodies such as those linked to regions, multivalent antibodies in which one type of antibody has multiple antigen binding sites, and multispecific antibodies in which one type of antibody has multiple specificities (bispecific antibodies) are included However, other than these are also included.
  • examples of the amino acid sequence of the heavy chain variable region VH domain of the antibody or humanized antibody derivative of the present invention include: SEQ ID No.:8, SEQ ID No.:12, SEQ ID No.:16, SEQ Amino acid sequence described in either ID No.: 20, 20, SEQ ID No.: 24, SEQ ID No.: 28, SEQ ID No.: 32, SEQ ID No.: 36, or SEQ ID No.: 40 Can be raised.
  • examples of the amino acid sequence of the light chain variable region VL domain of the antibody or humanized antibody derivative of the present invention include SEQ ID No.: 10, SEQ ID No.: 14, SEQ ID No.: 18, SEQ Amino acid sequence described in any of ID No.:22, SEQ ID No.:26, SEQ ID No.:30, SEQ ID No.:34, SEQ ID No.:38, or SEQ ID No.:42. Can be raised.
  • the human antibody derivative of the present invention also includes the functional fragment of the above-mentioned antibody or human antibody derivative.
  • Functional fragments of the antibody or human antibody derivative of the present invention include F(ab')2, Fab', Fab, single-chain Fv (scFv) and the like.
  • the functional fragment of the present invention may be any of these as long as it is characterized by being capable of inducing toxicity to cancer cells, and for example, F(ab')2 fragment or the like can be used. , Can be used as such a functional fragment.
  • the antibody or human antibody derivative of the present invention can be obtained by culturing antibody-producing cells collected from the animal body of the above-mentioned species of origin, but the antibody or human antibody derivative can also be obtained. It is also possible to design a vector for protein expression containing a DNA sequence capable of defining the amino acid sequence of, to introduce the vector into cells for protein production, and obtain it recombinantly.
  • the DNA sequence capable of defining the amino acid sequence of the antibody or human antibody derivative of the present invention is a method for obtaining it from cells producing the desired antibody or human antibody derivative, and the animal species used in the expression system based on the amino acid sequence. It can be prepared by a method of designing based on the optimized codon or a method of using these methods in combination.
  • Obtained by incorporating the prepared DNA sequence into an expression vector suitable for the cell type for protein expression (such as CHO cells) for which the antibody or human antibody derivative is to be expressed, and introducing it into the cell type for protein expression can be obtained using a method well known to those skilled in the art.
  • DNA sequences defining the amino acid sequences of the heavy chain variable region VH domain of the antibody or human antibody derivative of the present invention exemplified above are, for example, as follows:
  • DNA sequence defining the amino acid sequence of the light chain variable region VL domain of the antibody or human antibody derivative of the present invention exemplified above is, for example, as follows:
  • the antibody or human antibody derivative of the present invention is characterized in that it has the ability to induce cytotoxicity against cancer cells described above, and in one embodiment, for treating or preventing cancer.
  • a pharmaceutical composition comprising the antibody or humanized antibody derivative of the present invention, which induces toxicity to cancer cells in a subject in need thereof, can be provided.
  • Cancer cells that can be targeted in the present invention include, for example, leukemia (including chronic lymphocytic leukemia and acute lymphocytic leukemia), lymphoma (non-Hodgkin's lymphoma, Hodgkin's lymphoma, T-cell lymphoma, B-cell lymphoma, Burkitt lymphoma, malignant lymphoma, diffuse lymphoma, follicular lymphoma), myeloma (including multiple myeloma), melanoma, lung cancer, breast cancer, colon cancer, kidney cancer, gastric cancer, ovarian cancer, pancreas Cancer, cervical cancer, endometrial cancer, endometrial cancer, esophageal cancer, liver cancer, head and neck cancer, head and neck squamous cell carcinoma, skin cancer, urinary tract cancer, prostate Cancer, choriocarcinoma, pharyngeal cancer, laryngeal cancer, capsular tumor, male embryoma, endometri
  • the cancer cell is preferably a cancer cell that expresses an HLA-DR antigen, for example Hodgkin lymphoma, lung cancer, melanoma, cervical cancer, endometrial cancer, ovarian cancer, head. Cells derived from cervical cancer are preferred.
  • the antibody or humanized antibody derivative of the present invention is characterized in that it induces cytotoxicity to target cancer cells as described above, but does not induce cytotoxicity to normal cells. That is, when administered to a living body, cytotoxicity is induced only in cancer cells that express the target HLA-DR antigen, and in the case of normal cells that express the HLA-DR antigen, clinically, It is required not to induce potentially problematic cytotoxicity.
  • the antibody or humanized antibody derivative of the present invention can be provided as a composition in combination with another antibody or another drug such as an anticancer agent.
  • the antibody or humanized antibody derivative of the present invention can be bound to a drug to form an antibody drug complex (ADC).
  • ADC antibody drug complex
  • a formulation containing the antibody or humanized antibody derivative of the present invention together with a physiologically acceptable diluent or carrier can also be provided.
  • suitable carriers include buffers (phosphate buffer, citrate buffer, acetate buffer, etc.), salts (sodium chloride, etc.), sugars (glucose, trehalose, mannitol, sorbitol, etc.), additives (arginine, etc.). Amino acids, surfactants such as polysorbates, etc.), but are not limited to these.
  • the antibody or humanized antibody derivative of the present invention can be reconstituted and used by freeze-drying (freeze-drying) and adding a buffer aqueous solution as described above when necessary.
  • the preparation containing the antibody or human antibody derivative of the present invention can be administered in various dosage forms, for example, a parenteral preparation such as an injection or a drip.
  • the dose of the antibody or humanized antibody derivative of the present invention varies depending on the symptoms, age, body weight, etc., but usually for parenteral administration, 0.01 mg to 1000 mg per dose, preferably 1 mg to 10 mg per body weight per day. Depending on the type of cancer, it can be administered via an appropriate administration route such as intraperitoneal injection, subcutaneous injection, intramuscular injection, intratumoral injection, or intravenous injection.
  • the present invention is based on the above-mentioned characteristic of having an ability to induce cytotoxicity to cancer cells, and in another aspect, a subject in need of treatment or prevention of cancer is treated with the antibody or human of the present invention.
  • Methods of treating or preventing cancer in a subject can also be provided that include administering an effective amount of a type antibody derivative. Treatment or prevention of cancer with the antibody or human antibody derivative of the present invention occurs when the antibody or human antibody derivative causes cytotoxicity to cancer cells in the body.
  • an adjuvant for example, Clin. Microbiol
  • an adjuvant for example, Clin. Microbiol
  • a liposomal preparations particulate preparations bound to beads with a diameter of several ⁇ m, preparations bound with lipids, etc. It can also be administered in the form of dosage forms.
  • the antibody or human-type antibody derivative of the present invention is for detecting the HLA-DR antigen in a sample based on the characteristic that it has a binding property to the HLA-DR antigen.
  • the antibody or humanized antibody derivative of the present invention is a purification method using an antibody such as an immunoprecipitation method, an agglutination reaction, or a magnetic bead method for a sample containing cancer cells collected from a subject. It can be used in carrying out various detection methods that can be performed using an antibody, such as an ELISA method, a Western blot, an immunoassay such as immunohistochemistry, and immunocytochemistry such as flow cytometry.
  • the antibody or humanized antibody derivative of the present invention can be detected using a detection label generally known to those skilled in the art (eg, fluorescence, DAB, enzyme, etc.).
  • the antibody or human antibody derivative of the present invention also has a binding property to the HLA-DR antigen and induces toxicity to cancer cells, based on the characteristics of the antibody or human antibody derivative of the present invention. , Can be used to measure cytotoxicity against cancer cells in a subject.
  • the method for measuring the cytotoxicity against cancer cells in such a subject includes the following steps: A step of contacting a cancer cell collected from a subject with an antibody of the present invention or a humanized antibody derivative under culture conditions (that is, in vitro), Under culture conditions, a step of measuring whether the cell viability of cancer cells is reduced, or a step of measuring whether the secretion of immunostimulatory substances is enhanced, Examples of the method for measuring cytotoxicity against cancer cells using the antibody or humanized antibody derivative of the present invention containing
  • the secretion of the immunostimulatory substance is enhanced as a result of activation of peripheral blood lymphocyte-derived immune cells by the antibody of the present invention or the humanized antibody derivative under culture conditions is determined by the same test. It can be carried out by measuring whether or not immune cells derived from peripheral blood lymphocytes contacted with the antibody or humanized antibody derivative of the present invention are activated in the presence of peripheral blood lymphocytes in the body. By this method, by measuring the increase in the secretion of the immunostimulatory substance, when the antibody or humanized antibody derivative of the present invention is administered to the subject, cytotoxicity in the subject (in vivo) It is possible to measure activation of immune cells such as lymphocytes possessed and the resulting increase in cytotoxicity to cancer cells.
  • the present invention also comprises in vitro measurement of cytotoxicity against cancer cells collected from a subject, secretion of an immunostimulatory substance, or activation of immune cells, including the antibody or humanized antibody derivative of the present invention.
  • a measurement kit for doing so can also be provided.
  • Example 1 Identification of antibody clone having cytotoxicity
  • an antibody having cytotoxicity against human cancer cell-derived cells was identified from among existing anti-HLA-DR antibodies.
  • L428 cells DSMZ, ACC197
  • KM-H2 cells DSMZ, ACC8
  • 2x10e6 cells/ml of cells in RPMI1640 medium Wako Pure Chemical 189-02025) containing 10% FBS (Equitech-bio.Inc SFBM30-0500) and 1% penicilin-streptmycin (Nacalai Tesque 09367-34).
  • RPMI1640 medium Wako Pure Chemical 189-02025
  • FBS Equitech-bio.Inc SFBM30-0500
  • penicilin-streptmycin Nacalai Tesque 09367-34
  • Antibody LN-3 showed the action of reducing the survival rate of L428 cells to 11.3% and the survival rate of KM-H2 cells to 23.2% (Fig. 1).
  • the survival rate was calculated with the survival rate of each cell treated with the isotype control antibody as 100%.
  • L428 cells and KM-H2 cells as a result of examination by flow cytometry, since they show the same level of HLA-DR expression, the results of this Example, due to the difference in affinity between the antibody and cells, It was expected that the cytotoxic activity of the antibodies would be different.
  • Example 2 Evaluation of cytotoxicity against solid cancer cells
  • the cytotoxicity of existing anti-HLA-DR antibodies against solid cancer cells was examined.
  • the lung cancer cell line Calu-1 (ATCC HTB-46), in which high expression of HLA-DR was confirmed in the presence of IFN ⁇ , was adopted.
  • Calu-1 cells were prepared to 1 ⁇ 10 5 cells/ml using MyCoy's 5a Medium (SH30200.01, Hyclone) containing 10% FBS, and IFN- ⁇ was added to a final concentration of 2 ng/ml. Then, 100 ⁇ l of each was seeded on a 96-well plate. IncuCyte (registered trademark) Annexin V Red Reagent (Essen Bio, 4641) and antibody LN-3 (final concentration 1 ⁇ g/ml) were added and subjected to analysis by an Incucyte real-time analyzer (Essen Bio). Since apoptotic cells were stained with Annexin V Red Reagent, cell death induction was evaluated based on the change in fluorescence intensity after 15 hours.
  • IncuCyte registered trademark
  • Annexin V Red Reagent Essen Bio, 4641
  • antibody LN-3 final concentration 1 ⁇ g/ml
  • Example 3 Evaluation of target specificity
  • the antibody LN-3 which was found to be cytotoxic in Example 2, was evaluated for target specificity of cytotoxicity.
  • cytotoxicity test was performed on L428 cells, KM-H2 cells, which are human Hodgkin lymphoma cell lines that express HLA-DR, and Jurkat cells (ATCC TIB-152), which are HLA-DR non-expressing cells. Cytotoxicity was measured by the same method as in Example 1 except for the antibody concentration.
  • the antibody LN-3 shows dose-dependent cytotoxicity against HLA-DR expressing cells (Fig. 3(A) and (B) for L428 cells and KM-H2 cells, respectively) and to Jurkat cells. On the other hand, it showed no cytotoxicity (FIG. 3(C)), indicating that the induced cytotoxicity was HLA-DR specific (FIG. 3).
  • Example 4 Determination of antibody amino acid sequence
  • the amino acid sequence of antibody LN-3 was analyzed by mass spectrometry. Samples for mass spectrometric analysis were prepared by two methods, in gel digestion and in solution digestion.
  • MS/MS analysis was performed on the fragmented peptide using Thermo Fisher Q-Exactive, and the sequence was determined by de novo.
  • the leucine and the isoleucine having the same mass were distinguished from each other by using w-ion having different masses generated by HCD cleavage of a peptide fragment having the amino acid at the N-terminus.
  • FIG. 4(A) shows the heavy chain variable region amino acid sequence of antibody LN-3
  • FIG. 4(B) shows the light chain variable region amino acid sequence of antibody LN-3.
  • Example 5 Determination of epitope
  • the epitope in the amino acid sequence of HLA-DR to which antibody LN-3 binds was analyzed by peptide array.
  • a secondary antibody (anti-mouse antibody, Antimouse IgG (H+L), Thermo_84545) labeled with fluorescence was reacted and detected with a fluorescence scanner.
  • Example 6 Production of chimeric antibody
  • a human Fc chimeric recombinant antibody hereinafter referred to as BP1206 chimeric antibody
  • BP1206 chimeric antibody a human Fc chimeric recombinant antibody designed based on the antibody LN-3 was expressed and purified.
  • pCI-neo has a light chain expression element (EF-1 ⁇ promoter, secretion signal, light chain variable region, light chain constant region linked in tandem), heavy chain expression element (EF-1 ⁇ promoter, secretion)
  • EF-1 ⁇ promoter secretion signal
  • light chain variable region variable region
  • light chain constant region linked in tandem
  • heavy chain expression element EF-1 ⁇ promoter, secretion
  • the DNA sequences of the heavy chain variable region and the light chain variable region are based on the amino acid sequences of the antibody variable regions (Fig. 4, SEQ ID No.: 8 for heavy chains, SEQ ID No.: 10 for light chains). In addition, it was designed based on the codon optimized for the hamster expression system (SEQ ID No.:7 and SEQ ID No.:9).
  • the amino acid sequences of the heavy chain constant region portion and the light chain constant region portion the known amino acid sequences of the heavy chain constant region portion and light chain constant region portion of a human antibody, or a DNA sequence defining a variant thereof can be used.
  • ExpiCHO cells (invitrogen A2910002) were transfected with the plasmid using the Gibco TM ExpiCHO TM Expression System (GIbco A29129), cultured for 14 days, and the culture supernatant was collected.
  • the antibody was obtained by purifying the culture supernatant using a protein A column (MonoSpin ProA, GL Science 7510-11314).
  • Example 7 Drug effect on cancer-bearing mice (1)
  • the antitumor effect of the BP1206 chimeric antibody obtained in Example 6 on tumor in vivo was examined.
  • Hodgkin lymphoma cell line L428 cells (5 ⁇ 10e6 cells) were transplanted subcutaneously into the flank of a mouse NOD/Shi-scid, IL-2R ⁇ KOJic (generic name: NOG mouse, in vivo science).
  • the tumor mass reached 100 mm3
  • Body weight and tumor diameter were measured twice a week for 42 days from the first administration day of the BP1206 chimeric antibody. Further, after the observation period of 42 days was over, the tumor was excised and its weight was measured.
  • the isotype control antibody group continued to increase until Day 42, while the BP1206 chimeric antibody group continued to decrease, and compared to the isotype control antibody group after Day 5. It showed a statistically significant low value (Fig. 7(A)). Further, in one example of the BP1206 chimeric antibody group, tumor cells in the body disappeared.
  • Example 8 Drug effect on cancer-bearing mice (2) (dose-response test)
  • dose-responsiveness of the anti-tumor effect of the BP1206 chimeric antibody obtained in Example 6 on tumor in vivo was examined.
  • Hodgkin lymphoma cell line L428 cells (5x10e6 cells) were transplanted subcutaneously into the flank of mouse NOD/Shi-scid, IL-2R ⁇ KOJic.
  • the tumor mass reaches 100 mm3
  • Body weight and tumor diameter were measured twice a week for 42 days from the first administration day of the BP1206 chimeric antibody. Further, after the observation period of 42 days was over, the tumor was excised and its weight was measured.
  • the isotype control antibody group continued to increase until Day 42, while it decreased in the BP1206 chimeric antibody 10 mg/kg administration group and 5 mg/kg administration group, and the isotype It showed a statistically significant lower value than the control antibody group.
  • the BP1206 chimeric antibody 1 mg/kg administration group showed a statistically significant low value as compared with the isotype control antibody group on the 35th day during the observation period (FIG. 8(A)).
  • Example 9 Drug effect on cancer-bearing mice (3) (confirmation using surrogate antibody)
  • a surrogate antibody against the BP1206 chimeric antibody obtained in Example 6 antibody that crosses animal antigen, anti-mouse MHC class II antibody
  • the effect on cancer cells of the BP1206 chimeric antibody but was affected by species differences between the host and the transplanted cancer cells.
  • Mouse C57BL/6 (CLEA Japan, 7 weeks old, female) was subcutaneously implanted with the mouse T cell lymphoma cell line E.G7 cell mutant (5 ⁇ 10e6 cells) in the flank.
  • the cells used in this example are mutants prepared by forcibly expressing CIITA, which is a transcription factor that induces the expression of MHC Class II, in EG7 cells (ATCC (registered trademark) CRL-2113 TM ).
  • mice Three days after transplantation of E.G7 cells, one group will receive anti-mouse MHC class II antibody (M5/114 clone, Bioxcell) that is a surrogate antibody, and another group will receive 10 mg/kg of isotype control antibody.
  • Phosphate buffer solution (PBS) was administered to the remaining group as a negative control on the same schedule.
  • Body weight and tumor diameter were measured twice a week for 21 days from the first administration of anti-mouse MHC class II antibody.
  • the isotype control antibody-administered group and the PBS-administered group continued to increase significantly until Day 21, while the anti-mouse MHC class II antibody-administered group showed an increase in volume. It was relatively suppressed, and showed a statistically significant low value at Day 10 as compared with the isotype control antibody administration group and the PBS administration group (FIG. 9(A)). In addition, tumor cells in the body disappeared in one of the anti-mouse MHC class II antibody-administered groups.
  • DC dendritic cells
  • cDC1 particularly contributes to the process of recognizing a foreign antigen and activating TIL.
  • the effect of antibody administration on DC in spleen was determined based on the ratio of DC to total cells in the spleen, the ratio of cDC1 cells in DC, and the ratio of cDC2 cells in mice treated with antibody. was evaluated.
  • the DC ratio was calculated based on the expression of DR and CD11a-positive cells, and the ratio of cDC1 and cDC2 in DC was calculated based on the expression ratio of XCR1 and CD172a.
  • the percentages of cDC1 cells and cDC2 cells were 2.17 ⁇ 0.1% and 2.0 ⁇ 0.1%, 70.64 ⁇ 2.6% and 73.4 ⁇ 1.3%, 11.04 ⁇ in the isotype control antibody-administered group and the surrogate antibody-administered group, respectively. It was 1.3% and 11.4 ⁇ 1.3%.
  • Example 10 Effect on normal cells
  • the effect of the BP1206 chimeric antibody on normal cells expressing HLA-DR was evaluated.
  • PBMC peripheral blood mononuclear cells
  • PBMC peripheral blood mononuclear cells
  • B cells CD19 positive cells
  • T cells CD3 positive cells
  • the BP1206 chimeric antibody reduced the abundance of B cells (CD19 positive cells) by about 60%, while not affecting the abundance of T cells (CD3 positive cells).
  • rituximab a monoclonal antibody consisting of anti-human CD20 human/mouse chimeric antibody
  • rituximab reduces the abundance ratio of B cells by 90% (Blood. 2010 Jun 24; 115(25 ): 5180-5190), suggesting that the B cell suppression of the BP1206 chimeric antibody was less than that of rituximab.
  • Example 11 Evaluation of cytotoxicity against solid cancer cells (1)
  • the cytotoxic effect of the BP1206 chimeric antibody on solid cancer cells of various origins was examined.
  • solid cancer cells in this example, two human melanoma-derived cell lines (HT144 (ATCC, HTB-63) and A375 (ATCC, CRL-1619)) and two human lung cancer-derived cell lines (COR- L105 (ECACC, 92031918) and LU65 (JCRB, 0079)) were used to assess the cytotoxic effect of the BP1206 chimeric antibody on these cells using a three-dimensional culture method suitable for culturing these cells. ..
  • ⁇ For culture of HT144 cells MyCoy's 5A medium (GE, SH30200.01)
  • DMEM Dulbecco's Modified Eagle's Medium
  • RPMI1640 Wako, 189-02025 for culturing COR-L105
  • RPMI1640 Wako, 189-02025) was used with 10% FBS (gibco, 10270-106) added.
  • Colony culture was performed using a 24-well plate. Add 0.3 mL of 0.5% agar-containing medium to the well to form a Bed layer, and add 0.3 mL of 0.3% agar-containing medium containing cells and test substance on it, and incubate at 37°C in 5% CO 2 incubator for 5 days. I went.
  • the ratio of viable cells was measured using MTT reagent (Cell Proliferation Kit I, Sigma, 11465007001) or Calcein-AM (Dojindo, C396).
  • MTT reagent Cell Proliferation Kit I, Sigma, 11465007001
  • Calcein-AM Calcein-AM
  • Figure 12 shows the results when the colony culture method was adopted.
  • the survival rate of tumor cells was obtained by adding the BP1206 chimeric antibody. It has become clear that Among these cells, especially for human melanoma-derived cells, HT144 cells, a remarkable effect of reducing the ratio of viable cells to about 40% was shown.
  • Example 12 Evaluation of cytotoxicity against solid cancer cells (2)
  • the cytotoxic effect of BP1206 chimeric antibody on solid cancer cells of various origins and the combined effect with anticancer agents were examined.
  • Hs852.T ATCC CRL-7585
  • C32 ATCC CRL-1585
  • SK-MEL-24 ATCC HTB-71
  • Hs 852.T cells L-Glutamine-containing Dulbecco's Modified Eagle's Medium (DMEM) and High Glucose (Wako, 044-29765)
  • DMEM Dulbecco's Modified Eagle's Medium
  • Wako 044-29765
  • EMEM Eagle's Minimum Essential Medium
  • SK-MEL-24 culture Eagle's Minimum Essential Medium (EMEM) (Wako, 055-08975) was used with 10% FBS (gibco, 10270-106) added.
  • Vemurafenib SIGMA, S1267
  • SIGMA Vemurafenib
  • the LDH test is a test method that quantitatively evaluates cell death based on the activity of LDH (lactate dehydrogenase) that leaks out of cells due to cell membrane damage accompanying cell death.
  • LDH lactate dehydrogenase
  • lactic acid which is a substrate of LDH
  • NAD+ which is a cofactor
  • WST-8 tetrazolium salt which is a chromogenic substrate are added to the culture supernatant, and WST-8 is produced by NADH produced in the catalytic process of the enzyme.
  • the amount of dead cells was indirectly quantified from the absorbance (450 nm) after coloring using the principle that tetrazolium salt was reduced and colored.
  • Example 13 Evaluation of dose response of cytotoxicity to solid cancer cells (three-dimensional culture method) In this example, the dose response of the cytotoxic effect of BP1206 chimeric antibody on solid cancer cells was examined.
  • HT144 ATCC, HTB-63
  • A375 ATCC, CRL-1619
  • MyCoy's 5A medium GE Healthcare, SH30200.01
  • Agar Difco, 526-00054
  • FBS gibco, 10270-106
  • DMEM Wired Chemical Industries, 044-29765
  • BP1206 chimeric antibody were prepared at 6 ⁇ 10 4 cells/ml using the same medium as the bed layer, and added at 0.3 ml/well on the bed layer.
  • the specified dose is cisplatin (SIGMA, PHR1624, 2 ⁇ M) or vemurafenib (SIGMA, S1267, HT144 cells 300 nM, A375 cells 600 nM) together with the BP1206 chimeric antibody.
  • SIGMA cisplatin
  • PHR1624, 2 ⁇ M cisplatin
  • SIGMA vemurafenib
  • the mixture was mixed in the same manner, and similarly added at 0.3 ml/well on the bed layer. After cooling at 4°C to solidify, the temperature was returned to room temperature, and the cells were cultured at 37°C in a 5% CO 2 incubator for 5 days.
  • Figure 14 shows the results of cell death induction (relative value based on viable cell mass measurement) after treating cells with the BP1206 chimeric antibody.
  • A HT144 cells, BP1206 chimeric antibody and cisplatin combination
  • B HT144 cells, BP1206 chimeric antibody and Vemurafenib combination
  • C A375 cells, BP1206 chimeric antibody and Vemurafenib combination
  • the cell death rate induced by is shown.
  • the BP1206 chimeric antibody showed a dose-dependent survival inhibitory effect on both cell lines (Fig. 14). The survival inhibitory effect was enhanced more than additively by using cisplatin or vemurafenib in combination with the BP1206 chimeric antibody.
  • Example 14 Observation of cell morphological change associated with cell death induction
  • the BP1206 chimeric antibody induces cell death of cancer cells
  • cell morphological changes caused by cancer cells were shown. ..
  • L428 cells were suspended in the medium and seeded in a PCR tube (Nippon Genetics, FG-008FC) at a concentration of 50,000 cells/50 ⁇ l, and then the BP1206 chimeric antibody solution (50 ⁇ l) was added to a final concentration of 10 ⁇ g/mL. And incubated at 37°C for 1 hour. The cells were collected by centrifugation, suspended in a 1% glutaraldehyde solution (Nacalai, 1700392) and fixed overnight, and then the cell shape was analyzed with a tabletop electron microscope Miniscope TM3030Plu (Hitachi) (Fig. 15).
  • Example 15 Immunological cell death (Immunogenic cell death) induction evaluation
  • immunological cell death in tumor immunological cell death in tumor (Immunogenic cell death, hereinafter also referred to as ICD) Based on the secretion of the marker (described), the ICD-inducing ability of the antibody was evaluated.
  • Mouse CB17.Cg-PrkdcscidLystbg-J/CrlCrlj (generic name: SCID-Beige) was subcutaneously transplanted with Hodgkin lymphoma cell line L428 cells (5 ⁇ 10e6 cells) into the flank, and the tumor mass exceeded 100 mm 3 .
  • BP1206 chimeric antibody (10 mg/kg), isotype control antibody (10 mg/kg) or PBS was administered once to an individual (administration route: intraperitoneal, dosage form: solution). The number of experimental cases was 3 for the BP1206 chimeric antibody administration group and 3 for the isotype control antibody administration group, and 1 for the PBS administration group.
  • HMGB1 is a protein that originally exists in the nucleus, but is known to be released into the cytoplasm with cell death, and since it serves as an ICD marker, it can be labeled with an anti-HMGB1 antibody to produce a BP1206 chimeric antibody.
  • the effect on HMGB1 secretion can be investigated.
  • immunostaining using an anti-human IgG antibody was performed for the purpose of confirming whether the BP1206 chimeric antibody actually infiltrated into the tissue in the animal body.
  • Dyeing was performed according to the following procedure. After preparing thin slices, submerge in BOND Dewax Solution (Reica, AR9222) and 100% ethanol to deparaffinize them, wash with 0.01M PBS, and use BOND Epitope Retrieval Solution1 (Reica, AR9961). Then, the antigen activation treatment was performed at 98°C for 30 minutes. After washing with 0.01M PBS, react with anti-HMGB1 antibody (GeneTex, GTX628834, 750-fold diluted) or rabbit anti-human IgG (H+L) antibody (Bethyl, A80-118A, 10,000-fold diluted) at room temperature for 30 minutes I went.
  • BOND Dewax Solution Reica, AR9222
  • BOND Epitope Retrieval Solution1 Reica, AR9961
  • the antigen activation treatment was performed at 98°C for 30 minutes. After washing with 0.01M PBS, react with anti-HMGB1 antibody (GeneTex, GTX628834,
  • 16(A) and (B) are BP1206 chimeric antibody-administered mice
  • (C) and (D) are isotype control antibody-administered mice
  • (E) and (F) are PBS-administered mice, respectively.
  • (C) and (E) are whole tumor views
  • (B), (D) and (F) are enlarged views of strongly stained sites.
  • the effect of BP1206 chimeric antibody on HMGB1 secretion in the L428 cell subcutaneous transplant model (left) and tumor infiltration (right) are shown.
  • Example 16 Humanization of antibody
  • a humanized recombinant antibody hereinafter referred to as BP1206 humanized antibody
  • BP1206 humanized antibody was designed based on the structure of the BP1206 chimeric antibody prepared in Example 6, and its expression/purification I went.
  • Example 17 Functional evaluation of humanized antibody
  • the cytotoxic activity of the eight types of BP1206 humanized antibodies prepared in Example 13 against cancer cells was clarified.
  • the BP1206 humanized antibody prepared in Example 13 was evaluated for in vitro cytotoxicity against Hodgkin lymphoma cell line L428 cells.
  • L428 cells were prepared in RPMI medium containing 10% FBS at 1 ⁇ 10 6 cells/ml, and Propidium iodide (PI; DOJINDO, FE159) was added to a final concentration of 2 ⁇ M, then 50,000 cells/50 ⁇ l The cells were seeded in a PCR tube (Fast gene, FG-1700) at the concentration of.
  • Eight types of BP1206 humanized antibody solutions (50 ⁇ l) obtained in Example 13 were added to each tube (final antibody concentration 10 ⁇ g/mL) and incubated at 37° C. for 1 hour.
  • Example 18 Search for indications for solid cancer
  • indications for solid cancer of the BP1206 humanized antibody obtained in the present invention were searched.
  • the above-mentioned sample was spotted on a slide glass and carried out using a tumor tissue microarray (manufactured by Pantomics). After activating the antigens on the microarray by the pressure cooker method, they are sequentially reacted with the LN3 antibody, peroxidase-labeled polymer, and chromogenic substrate (diaminobenzidine (DAB)), and the expression of HLA-DR antigen is evaluated based on the color development of DAB. did.
  • DAB diaminobenzidine
  • Example 19 Correlation between target expression and cytotoxicity
  • various cancer cell lines are used to express target HLA-DR antigen and cytotoxicity that can be induced against the cells. The correlation between the two was investigated.
  • 16 cell lines ⁇ Kasumi-1: Derived from human acute myelogenous leukemia (AML) (ATCC CRL-2724); ⁇ OCI-LY-19 cells: derived from human diffuse large B-cell lymphoma (DLBCL) (DSMZ, ACC 528); ⁇ Nalm-6 cells: derived from human acute lymphocytic leukemia (ALL) (DSMZ, ACC 128); ⁇ KMS-26 cells: derived from human multiple myeloma (MM) (JCRB1187); ⁇ KG-1 cells: derived from human acute myeloblastic leukemia (AML) (ATCC CCL-246); -Rmos cells: derived from human Burkitt lymphoma (BL) (DSMZ, ACC-603); ⁇ KMS-11 cells: derived from human multiple myeloma (MM) (JCRB1179); ⁇ JJN-3 cells: derived from human multiple myeloma (MM) (DSMZ, ACC
  • Each cell was cultured by the method specified by the supplier.
  • the cells were suspended in PBS, 5 ⁇ 10 5 cells were collected in a PCR tube, BP1206 antibody was added to a final concentration of 10 ⁇ g/ml, and the mixture was incubated at 37° C. for 2 hours in a thermal cycler.
  • the cells were washed with PBS, stained with 7-AAD (Biolegend, 400625), and subjected to FACS analysis.
  • the ratio of 7-AAD unstained cells was calculated as the ratio of viable cells. The results are shown as a bar graph in FIG.
  • the target HLA-DR antigen expression level of the cell line was analyzed by FACS (BD Verse) after labeling each cell with a labeled anti-human HLA-DR antibody (Biolegend, 307615).
  • the expression level of the HLA-DR antigen is shown by dots in FIG.
  • the HLA-DR antigen-binding substance of the present invention is used to treat HLA-DR antigen-expressing cancer cells, to inhibit the growth of cancer cells, and thus to reduce or eliminate tumors. Can be made.
  • this binding substance particularly an antibody or a human antibody derivative can bind to the HLA-DR antigen, immunization of the HLA-DR antigen in vivo as a test application of cancer cells expressing the HLA-DR antigen. It can be used for biological detection (ELISA, Western blotting, flow cytometry, etc.).
  • the cell viability of the cancer cells is decreased by bringing the cancer cells collected from the subject into contact with the binding substance of the present invention, particularly an antibody or a humanized antibody derivative under culture conditions, or immunity
  • the binding substance of the present invention particularly the antibody or the humanized antibody derivative is administered to a subject having cancer cells
  • the cancer cells are treated in the subject. It is possible to investigate the degree of cytotoxicity against the.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Genetics & Genomics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Oncology (AREA)
  • Urology & Nephrology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

[Problem] The present invention addresses the problem of providing a substance that binds to HLA-DR antigen and can exert a cytotoxic activity on cancer cells expressing the HLA-DR antigen, and also providing a therapeutic agent for tumors that contains the substance binding to HLA-DR antigen. [Solution] The present inventors found that the aforesaid problem can be solved by providing a substance binding to HLA-DR antigen, said substance having heavy chain complementarity-determining regions (CDRs) 1 to 3 and light chain CDRs 1 to 3 with specific amino acid sequences, in particular, an antibody or a humanized antibody derivative against HLA-DR antigen. Selected drawing: none

Description

抗HLA-DR抗体、およびそのがん治療用途Anti-HLA-DR antibody and its use for cancer treatment
 本発明は、HLA-DRを発現するがんに対して特異的に細胞傷害性活性を有する抗体、および該抗体を含むがん治療用およびがん検査用の組成物および方法に関する。 The present invention relates to an antibody having a cytotoxic activity specifically against a cancer expressing HLA-DR, and a composition and a method for cancer treatment and cancer test containing the antibody.
 がんは日本人の死亡原因の第一位であり、二人に一人は生涯のうちに一度はがんに罹患し、三人に一人はがんのために死亡する(2013年 厚生労働省資料)。そのため、国内外において新規がん治療薬の開発が進められているものの、未だ満足のいく治療成績は得られていない。 Cancer is the leading cause of death in the Japanese people, with one in two suffering from cancer once in their lives and one in three dying due to cancer (2013 Ministry of Health, Labor and Welfare data. ). Therefore, although new cancer therapeutic agents are being developed both in Japan and overseas, satisfactory therapeutic results have not yet been obtained.
 HLA-DR抗原は、多くのがん(白血病、悪性リンパ腫、グリオブラストーマ、メラノーマ、乳癌、大腸癌、肺癌など)において高発現が報告されており、がん治療の標的と考えられている。そのため、この抗原に対する抗体の作製が試みられており、複数の抗体が市販されているとともに、さらに新たな抗体の作成も試みられている(特許文献1、特許文献2)。 The HLA-DR antigen has been reported to be highly expressed in many cancers (leukemia, malignant lymphoma, glioblastoma, melanoma, breast cancer, colon cancer, lung cancer, etc.) and is considered to be a target for cancer treatment. Therefore, preparation of an antibody against this antigen has been attempted, a plurality of antibodies have been commercially available, and preparation of a new antibody has also been attempted (Patent Documents 1 and 2).
 これまでに、IMMU-114(ヒト化L243抗体)やHu1D10といったHLA-DRを標的とした医薬品の開発が行われてきたものの(特許文献1)、有効性としては第一相試験の一部の症例で部分奏功が認められたのみであり、医療現場のニーズを満たす成果は得られていない(非特許文献1)。 So far, although drugs that target HLA-DR, such as IMMU-114 (humanized L243 antibody) and Hu1D10, have been developed (Patent Document 1), their efficacy is part of Phase 1 trials. Only partial response was observed in the cases, and no results that meet the needs of the medical field have been obtained (Non-Patent Document 1).
 また、これらの試験では急性腎不全、胃腸出血、敗血症性ショック、無菌性髄膜炎、非典型溶血性尿毒症症候群などの因果関係の否定できない有害事象による死亡例も報告されており、現時点で積極的な開発は継続されていない。更には、これらの開発品は固形がんに関しては有効性が確認されていない(非特許文献2)。 In addition, deaths due to undeniable adverse events such as acute renal failure, gastrointestinal bleeding, septic shock, aseptic meningitis, and atypical hemolytic uremic syndrome were also reported in these studies. Active development has not been continued. Furthermore, these developed products have not been confirmed to be effective for solid cancer (Non-Patent Document 2).
 さらに、複数のHLA分子(HLA-DP、HLA-DQ、HLA-DR)に対して結合する抗体を作製し、3種類のホジキンリンパ腫細胞でこの抗体の細胞傷害性を調べている。この抗体は、ごく短時間でがん細胞に巨大な穴をあけるという特徴的な作用をもち、かつ、エフェクター細胞や補体非依存性に傷害活性を示した(特許文献2)。しかし、この研究グループがこの抗体を用いた開発を行っているかどうかの情報は知られていない。 Furthermore, we have produced antibodies that bind to multiple HLA molecules (HLA-DP, HLA-DQ, HLA-DR) and are examining the cytotoxicity of these antibodies in 3 types of Hodgkin lymphoma cells. This antibody has a characteristic effect of making a huge hole in a cancer cell in a very short time, and has a damaging activity independent of effector cells or complement (Patent Document 2). However, no information is known as to whether this research group is developing with this antibody.
特許5214252Patent 5214252 特許5884139Patent 5884139
 本発明は、HLA-DR抗原を発現するがん細胞に対して細胞傷害性を発揮することができる、HLA-DR抗原に対する結合物質を提供すること、そしてそのようなHLA-DR抗原に対する結合物質を含む腫瘍の治療薬を提供することを課題とする。 The present invention provides a binding substance for an HLA-DR antigen capable of exerting cytotoxicity against a cancer cell expressing the HLA-DR antigen, and a binding substance for such an HLA-DR antigen. It is an object to provide a therapeutic drug for a tumor containing
 本発明者らは、特定のアミノ酸配列の重鎖相補性決定領域(CDR)1~3および軽鎖CDR1~3を有する、HLA-DR抗原に対する結合物質、特にHLA-DR抗原に対する抗体またはヒト型抗体誘導体を提供することにより、上記課題を解決することができることを明らかにし、本発明を完成するに至った。本発明者らはまた、そのようなHLA-DR抗原に対する結合物質を利用することにより、がんを治療することができることを明らかにした。 The present inventors have developed a binding substance for HLA-DR antigens, which has heavy chain complementarity determining regions (CDRs) 1 to 3 and light chain CDRs 1 to 3 of a specific amino acid sequence, particularly an antibody or human form against HLA-DR antigens. It has been clarified that the above problems can be solved by providing an antibody derivative, and the present invention has been completed. The present inventors have also revealed that cancer can be treated by utilizing such a binding substance for the HLA-DR antigen.
 より具体的には、本件出願は、前述した課題を解決するため、以下の態様を提供する:
[1]:重鎖の相補性決定領域、CDR1(SEQ ID No.: 1)、CDR2(SEQ ID No.: 2)、CDR3(SEQ ID No.: 3)、
 軽鎖の相補性決定領域、CDR1(SEQ ID No.: 4)、CDR2(SEQ ID No.: 5)、CDR3(SEQ ID No.: 6)、
を含む、HLA-DR抗原に対して結合性を有し、がん細胞に対する傷害性を誘導する、抗体またはヒト型抗体誘導体;
[2]:ヒト型抗体誘導体が、ヒト化抗体、キメラ抗体、多価抗体、および多重特異性抗体から選択されるヒト型抗体改変体またはその機能的断片から選択される、[1]に記載の抗体またはヒト型抗体誘導体;
[3]:機能的断片が、F(ab')2である、[1]または[2]に記載の抗体またはヒト型抗体誘導体;
[4]:抗体またはヒト型抗体誘導体の重鎖可変領域VHドメインのアミノ酸配列が、SEQ ID No.: 8、SEQ ID No.: 12、SEQ ID No.: 16、SEQ ID No.: 20、SEQ ID No.: 24、SEQ ID No.: 28、SEQ ID No.: 32、SEQ ID No.: 36、およびSEQ ID No.: 40から選択される、[1]~[3]のいずれか1つに記載の抗体またはヒト型抗体誘導体;
[5]:抗体またはヒト型抗体誘導体の軽鎖可変領域VLドメインのアミノ酸配列が、SEQ ID No.: 10、SEQ ID No.: 14、SEQ ID No.: 18、SEQ ID No.: 22、SEQ ID No.: 26、SEQ ID No.: 30、SEQ ID No.: 34、SEQ ID No.: 38、およびSEQ ID No.: 42から選択される、[1]~[4]のいずれか1つに記載の抗体またはヒト型抗体誘導体;
[6]:がん細胞に対する細胞傷害性を誘導するが、正常細胞に対する細胞傷害性を誘導しない、[1]~[5]のいずれか1つに記載の抗体またはヒト型抗体誘導体;
[7]:がん細胞が、ホジキンリンパ腫、肺がん、メラノーマからなる群から選択される、[1]~[6]のいずれか1つに記載の抗体またはヒト型抗体誘導体;
[8]:薬物と結合され、抗体薬物複合体 (ADC)を形成する、[1]~[7]のいずれか1つに記載の抗体またはヒト型抗体誘導体;
[9]:[1]~[8]のいずれか1つに記載の抗体またはヒト型抗体誘導体を含む、がん治療のための医薬組成物;
[10]:がんが、ホジキンリンパ腫、肺がん、メラノーマからなる群から選択される、[9]に記載の医薬組成物;
[11]:被験体から採取されたがん細胞を、in vitroにおいて[1]~[8]のいずれか1つに記載の抗体またはヒト型抗体誘導体と接触させる工程、
 培養条件下で、がん細胞の細胞生存率が低下するかどうかを測定する工程、若しくは免疫活性化物質の分泌が亢進するかどうかを測定する工程、
を含む、がん細胞に対する細胞傷害性測定方法;
[12]:同一被験体の末梢血リンパ球の存在下で、がん細胞の細胞生存率が低下するかどうか、若しくは末梢血リンパ球由来の免疫細胞が活性化するかどうかを測定する、[11]に記載のがん細胞に対する細胞傷害性測定方法;
[13]:被験体から採取されたがん細胞のin vitroでの細胞傷害性から、[1]~[8]のいずれか1つに記載の抗体またはヒト型抗体誘導体をその被験体に投与した場合のがん細胞に対する細胞傷害性の亢進を測定する、[11]または[12]に記載のがん細胞に対する細胞傷害性測定方法;
[14]:in vitroでの免疫活性化物質の分泌の亢進から、[1]~[8]のいずれか1つに記載の抗体またはヒト型抗体誘導体をその被験体に投与した場合のがん細胞に対する細胞傷害性の亢進を測定する、[11]または[12]に記載のがん細胞に対する細胞傷害性測定方法;
[15]:[1]~[8]のいずれか1つに記載の抗体またはヒト型抗体誘導体の、被験体から採取されたがん細胞に対する細胞傷害性、免疫活性化物質の分泌、若しくは免疫細胞の活性化を、in vitroにおいて測定するための、前記抗体を含む測定キット。
More specifically, the present application provides the following aspects in order to solve the aforementioned problems:
[1]: Complementarity determining region of heavy chain, CDR1 (SEQ ID No.: 1), CDR2 (SEQ ID No.: 2), CDR3 (SEQ ID No.: 3),
Light chain complementarity determining regions, CDR1 (SEQ ID No.: 4), CDR2 (SEQ ID No.: 5), CDR3 (SEQ ID No.: 6),
An antibody or a humanized antibody derivative having a binding property to an HLA-DR antigen and inducing toxicity to a cancer cell, comprising:
[2]: The human antibody derivative is selected from humanized antibody variants selected from humanized antibodies, chimeric antibodies, multivalent antibodies, and multispecific antibodies or functional fragments thereof, [1] Antibody or humanized antibody derivative;
[3]: The antibody or human antibody derivative according to [1] or [2], wherein the functional fragment is F(ab′)2;
[4]: The amino acid sequence of the heavy chain variable region VH domain of the antibody or human antibody derivative is SEQ ID No.: 8, SEQ ID No.: 12, SEQ ID No.: 16, SEQ ID No.: 20, Any of [1] to [3] selected from SEQ ID No.: 24, SEQ ID No.: 28, SEQ ID No.: 32, SEQ ID No.: 36, and SEQ ID No.: 40 The antibody or humanized antibody derivative described in 1 above;
[5]: The amino acid sequence of the light chain variable region VL domain of the antibody or human antibody derivative is SEQ ID No.: 10, SEQ ID No.: 14, SEQ ID No.: 18, SEQ ID No.: 22, Any one of [1] to [4] selected from SEQ ID No.: 26, SEQ ID No.: 30, SEQ ID No.: 34, SEQ ID No.: 38, and SEQ ID No.: 42 The antibody or humanized antibody derivative described in 1 above;
[6]: The antibody or humanized antibody derivative according to any one of [1] to [5], which induces cytotoxicity to cancer cells but not to normal cells;
[7]: The antibody or humanized antibody derivative according to any one of [1] to [6], wherein the cancer cell is selected from the group consisting of Hodgkin lymphoma, lung cancer, and melanoma;
[8]: The antibody or humanized antibody derivative according to any one of [1] to [7], which is bound to a drug to form an antibody drug complex (ADC).
[9]: A pharmaceutical composition for treating cancer, comprising the antibody or humanized antibody derivative according to any one of [1] to [8];
[10]: The pharmaceutical composition according to [9], wherein the cancer is selected from the group consisting of Hodgkin lymphoma, lung cancer, and melanoma;
[11]: a step of contacting the cancer cells collected from the subject with the antibody or humanized antibody derivative according to any one of [1] to [8] in vitro,
Under culture conditions, a step of measuring whether the cell viability of cancer cells is reduced, or a step of measuring whether the secretion of immunostimulatory substances is enhanced,
A method of measuring cytotoxicity against cancer cells, comprising:
[12]: In the presence of peripheral blood lymphocytes of the same subject, it is measured whether the cell viability of cancer cells is reduced or whether immune cells derived from peripheral blood lymphocytes are activated, [ [11] The method for measuring cytotoxicity against cancer cells according to [11];
[13]: The antibody or humanized antibody derivative according to any one of [1] to [8] is administered to the subject based on the cytotoxicity of cancer cells collected from the subject in vitro. The method for measuring cytotoxicity against cancer cells according to [11] or [12], which comprises measuring the increase in cytotoxicity against cancer cells in the case of
[14]: Cancer when the antibody or humanized antibody derivative according to any one of [1] to [8] is administered to the subject due to enhanced secretion of immunostimulatory substances in vitro A method for measuring cytotoxicity against cancer cells according to [11] or [12], which comprises measuring an increase in cytotoxicity against cells.
[15]: Cytotoxicity of the antibody or human antibody derivative according to any one of [1] to [8] to cancer cells collected from a subject, secretion of an immunostimulator, or immunity A measurement kit containing the above-mentioned antibody for measuring cell activation in vitro.
 本発明のHLA-DR抗原に対する結合物質、特に抗体またはヒト型抗体誘導体は、HLA-DR抗原を発現するがんの治療のため、がん細胞の増殖を阻害するため、腫瘍を縮小・消失させるために使用することができる。また、この結合物質、特に抗体またはヒト型抗体誘導体がHLA-DR抗原と結合することができることから、HLA-DR抗原を発現するがん細胞の検査用途として、生体内におけるHLA-DR抗原の免疫学的検出(ELISA,ウエスタンブロッティング、フローサイトメトリー等)のために使用することができる。 The binding substance for the HLA-DR antigen of the present invention, particularly an antibody or a humanized antibody derivative, reduces or eliminates a tumor for the treatment of a cancer expressing the HLA-DR antigen and for inhibiting the growth of cancer cells. Can be used for In addition, since this binding substance, particularly an antibody or a human antibody derivative can bind to the HLA-DR antigen, immunization of the HLA-DR antigen in vivo as a test application of cancer cells expressing the HLA-DR antigen. It can be used for biological detection (ELISA, Western blotting, flow cytometry, etc.).
 また、培養条件下で、被験体から採取されたがん細胞と本発明の結合物質、特に抗体またはヒト型抗体誘導体とを接触させ、がん細胞の細胞生存率が低下するかどうか、若しくは免疫活性化物質の分泌が亢進するかどうかを測定することにより、本発明の結合物質、特に抗体またはヒト型抗体誘導体をがん細胞を有する被験体に投与した場合に、その被験体内でがん細胞に対する細胞傷害性を有するかを調べることができる。本発明の結合物質、特に抗体またはヒト型抗体誘導体を、がん細胞を有する被験体に投与した場合に、その被験体内でがん細胞に対する細胞傷害性を有するかを調べる際には、培養条件下において、同一被験体の末梢血リンパ球の存在下で、がん細胞の細胞生存率が低下するかどうか、若しくは末梢血リンパ球由来の免疫細胞が活性化するかどうかを測定することによっても調べることができる。 In addition, whether or not the cell viability of the cancer cells is decreased by bringing the cancer cells collected from the subject into contact with the binding substance of the present invention, particularly an antibody or a humanized antibody derivative under culture conditions, or immunity By measuring whether or not the secretion of the activator is enhanced, when the binding substance of the present invention, particularly the antibody or the humanized antibody derivative is administered to a subject having cancer cells, the cancer cells are treated in the subject. It can be examined whether it has cytotoxicity against. When the binding substance of the present invention, particularly an antibody or a humanized antibody derivative, is administered to a subject having cancer cells, it is necessary to determine whether or not the subject has cytotoxicity to the cancer cells under culture conditions. Under the presence of peripheral blood lymphocytes of the same subject, by measuring whether the cell viability of cancer cells is reduced or whether immune cells derived from peripheral blood lymphocytes are activated, You can look it up.
図1は、2種ホジキンリンフォーマ細胞株(L428細胞およびKM-H2細胞)を、抗体LN-3で処理した後の細胞生存割合を示す図である。FIG. 1 is a diagram showing the cell survival rate after treating two Hodgkin lymphoma cell lines (L428 cells and KM-H2 cells) with antibody LN-3. 図2は、肺癌細胞株(Calu-1)を抗体LN-3で処理した後の細胞死誘導(死細胞染色に基づく相対値)を示す図である。FIG. 2 is a diagram showing cell death induction (relative value based on dead cell staining) after treating a lung cancer cell line (Calu-1) with antibody LN-3. 図3は、HLA-DR発現細胞((A)L428細胞、(B)KM-H2細胞)および非発現細胞((C)Jurkat細胞))を、抗体LN-3で処理した後の細胞生存割合を示す図である。Figure 3 shows the cell survival rate of HLA-DR expressing cells ((A) L428 cells, (B) KM-H2 cells) and non-expressing cells ((C) Jurkat cells) treated with antibody LN-3. FIG. 図4は、抗体LN-3の可変領域のアミノ酸配列((A)重鎖、(B)軽鎖)を示す図である。FIG. 4 shows the amino acid sequences ((A) heavy chain, (B) light chain) of the variable region of antibody LN-3. 図5-1は、ヒトHLA-DRβ1由来配列をもとに設計したペプチドアレイによるエピトープマッピングによる、(A)各ペプチドに対する抗体結合強度を示す図である。FIG. 5-1 is a diagram showing (A) antibody binding strength to each peptide by epitope mapping using a peptide array designed based on the human HLA-DRβ1 derived sequence. 図5-2は、ヒトHLA-DRβ1由来配列をもとに設計したペプチドアレイによるエピトープマッピングによる、(B)抗体結合ペプチドのHLA-DRβ1立体構造における領域を示す図である。FIG. 5-2 is a diagram showing a region in the HLA-DRβ1 three-dimensional structure of the (B) antibody-binding peptide by epitope mapping using a peptide array designed based on the human HLA-DRβ1-derived sequence. 図6は、BP1206キメラ抗体が、抗体LN-3よりも高い細胞傷害性を有することを示す図である。FIG. 6 is a diagram showing that the BP1206 chimeric antibody has higher cytotoxicity than the antibody LN-3. 図7-1は、L428細胞皮下移植モデルにおけるBP1206キメラ抗体の腫瘍増殖への影響を示す図である((A)腫瘍体積、(B)体重)。FIG. 7-1 is a diagram showing the effect of BP1206 chimeric antibody on tumor growth in a L428 cell subcutaneous transplant model ((A) tumor volume, (B) body weight). 図7-2は、L428細胞皮下移植モデルにおけるBP1206キメラ抗体の腫瘍増殖への影響を示す図である((C)42日経過後の剖検時の腫瘍重量)。FIG. 7-2 is a diagram showing the effect of BP1206 chimeric antibody on tumor growth in a L428 cell subcutaneous transplant model ((C) tumor weight at autopsy after 42 days). 図8-1は、L428細胞皮下移植モデルにおけるBP1206キメラ抗体の腫瘍増殖への用量反応性を示す図である((A)腫瘍体積、(B)体重)。FIG. 8-1 is a graph showing the dose response of the BP1206 chimeric antibody to tumor growth in the L428 cell subcutaneous transplant model ((A) tumor volume, (B) body weight). 図8-2は、L428細胞皮下移植モデルにおけるBP1206キメラ抗体の腫瘍増殖への用量反応性を示す図である((C)42日経過後の剖検時の腫瘍重量)。FIG. 8-2 is a graph showing the dose responsiveness of the BP1206 chimeric antibody to tumor growth in the L428 cell subcutaneous transplant model ((C) tumor weight at necropsy after 42 days). 図9は、マウスT細胞リンフォーマ細胞株E.G7細胞皮下移植モデルにおける、BP1206キメラ抗体に対するサロゲート抗体(抗マウスMHC class II抗体)の腫瘍増殖への影響を示す図である((A)腫瘍体積、(B)体重)。FIG. 9 is a diagram showing the effect of a surrogate antibody (anti-mouse MHC class II antibody) against the BP1206 chimeric antibody on tumor growth in a mouse T cell lymphoma cell line E.G7 cell subcutaneous transplant model ((A) tumor Volume, (B) body weight). 図10-1は、抗マウスMHC class II抗体投与群のマウス個体体内において、モデル抗原(Ova)に対する免疫誘導が生じることを示す図である。FIG. 10-1 is a diagram showing that immunity induction to the model antigen (Ova) occurs in the mouse individual body of the anti-mouse MHC class II antibody administration group. 図10-2は、抗マウスMHC class II抗体投与により、マウス個体の脾臓中の樹状細胞(DC)組成に変更がみられないことを示す図である。FIG. 10-2 is a diagram showing that administration of anti-mouse MHC class II antibody did not alter the composition of dendritic cells (DC) in the spleen of mouse individuals. 図11は、健常者PBMCをBP1206キメラ抗体で処理した時の、処理前と比較した細胞存在割合を示す図である。FIG. 11 is a diagram showing a cell presence ratio when PBMCs of healthy subjects were treated with the BP1206 chimeric antibody, as compared with those before treatment. 図12は、二種類のヒトメラノーマ由来細胞株および二種類のヒト肺がん由来細胞株に対して、本発明の抗体が細胞傷害性活性を有することを示す図である。FIG. 12 is a diagram showing that the antibody of the present invention has cytotoxic activity against two types of human melanoma-derived cell lines and two types of human lung cancer-derived cell lines. 図13は、三種類のヒトメラノーマ由来細胞株に対して、本発明の抗体が細胞傷害性活性を有すること、および本発明の抗体とベムラフェニブの併用効果を示す図である。FIG. 13 is a diagram showing that the antibody of the present invention has cytotoxic activity against three types of human melanoma-derived cell lines, and the combined effect of the antibody of the present invention and vemurafenib. 図14は、メラノーマ細胞株をBP1206キメラ抗体で処理した後の細胞死誘導(生細胞量測定に基づく相対値)を示す図である((A)HT144細胞、BP1206キメラ抗体とシスプラチンの併用、(B)HT144細胞、BP1206抗体とベムラフェニブの併用、(C)A375細胞、BP1206抗体とベムラフェニブの併用)。Figure 14 is a diagram showing cell death induction after treatment of a melanoma cell line with a BP1206 chimeric antibody (relative value based on viable cell mass measurement) ((A) HT144 cells, BP1206 chimeric antibody in combination with cisplatin, ( (B) HT144 cells, BP1206 antibody in combination with Vemurafenib, (C) A375 cells, BP1206 antibody in combination with Vemurafenib). 図15は、ホジキンリンフォーマ細胞株(L428細胞)をBP1206キメラ抗体で処理した際の細胞形状変化を示す図である。FIG. 15 is a diagram showing changes in cell shape when a Hodgkin lymphoma cell line (L428 cell) was treated with a BP1206 chimeric antibody. 図16は、L428細胞皮下移植モデルにおけるBP1206キメラ抗体のHMGB1分泌への影響(左)および抗体の腫瘍組織内への浸潤(右)を示す。FIG. 16 shows the effect of BP1206 chimeric antibody on HMGB1 secretion in the L428 cell subcutaneous transplant model (left) and infiltration of the antibody into tumor tissue (right). 図17-1は、ヒト化抗体の可変領域アミノ酸配列((A)重鎖)を示す図である。FIG. 17-1 is a diagram showing a variable region amino acid sequence ((A) heavy chain) of a humanized antibody. 図17-2は、ヒト化抗体の可変領域アミノ酸配列((B)軽鎖)を示す図である。FIG. 17-2 is a diagram showing a variable region amino acid sequence ((B) light chain) of a humanized antibody. 図18は、ホジキンリンフォーマ細胞株(L428細胞)をBP1206キメラ抗体もしくはBP1206ヒト化抗体で処理した際の細胞死誘導(死細胞染色に基づく相対値)を示す図である。FIG. 18 is a diagram showing cell death induction (relative value based on dead cell staining) when a Hodgkin lymphoma cell line (L428 cell) was treated with a BP1206 chimeric antibody or a BP1206 humanized antibody. 図19は、発現量のばらつきや発現細胞の割合のばらつきはあるものの、調べたそれぞれのがん種の半数近くの腫瘍組織で、HLA-DR抗原の発現がみられたことを示す図である。FIG. 19 is a diagram showing that expression of the HLA-DR antigen was observed in nearly half of the tumor tissues examined, although there were variations in the amount of expression and the proportion of expressing cells. .. 図20は、様々ながん種において、細胞株における本発明の抗体の標的抗原の発現量と、本発明の抗体の添加による細胞死誘導との間には相関関係が認められ、細胞株中での標的抗原発現量が高いほど、細胞死の誘導活性も高いことを示す図である。FIG. 20 shows that in various cancer types, a correlation was observed between the expression level of the target antigen of the antibody of the present invention in cell lines and the induction of cell death by the addition of the antibody of the present invention. FIG. 6 shows that the higher the target antigen expression level in E. coli, the higher the cell death inducing activity.
 本発明において使用する用語を以下の通り定義する:
(a)HLA-DR:抗原提示分子であるHLA(ヒト白血球抗原) Class IIを構成する主要分子の一つ;
(b)ヒト型抗体誘導体:ヒト化抗体またはキメラ抗体から選択されるヒト型抗体改変体、またはそれらの機能的断片;
(c)ヒト化抗体:非ヒト動物体内で産生された抗体のうち、重鎖および軽鎖の相補性決定領域(CDR)以外の部分をヒト抗体遺伝子に組み換え作製した抗体 ;
(d)キメラ抗体:非ヒト動物体内で産生された抗体の可変領域をヒト抗体遺伝子の定常領域に結合するように組み換え作製した抗体;
(e)ヒト型抗体改変体の機能的断片:ヒト型抗体改変体(ヒト化抗体またはキメラ抗体)の一部分(部分断片)であって、抗体の抗原への作用を保持するものを意味する(例えば、具体的にはF(ab')2、Fab'、Fab、一本鎖Fv(scFv)等を含む)。
The terms used in the present invention are defined as follows:
(A) HLA-DR: one of the major molecules that make up HLA (human leukocyte antigen) Class II, which is an antigen-presenting molecule;
(B) Human antibody derivative: a human antibody variant selected from a humanized antibody or a chimeric antibody, or a functional fragment thereof;
(C) humanized antibody: an antibody produced in a non-human animal body by recombination of a portion other than the heavy chain and light chain complementarity determining regions (CDR) into a human antibody gene;
(D) chimeric antibody: an antibody produced recombinantly so that the variable region of the antibody produced in the non-human animal body is bound to the constant region of the human antibody gene;
(E) Functional fragment of human antibody variant: means a part (partial fragment) of a human antibody variant (humanized antibody or chimeric antibody), which retains the action of the antibody on the antigen ( For example, specifically includes F(ab')2, Fab', Fab, single chain Fv (scFv) and the like).
 本発明は、一態様において、HLA-DR抗原に対して結合性を有し、がん細胞に対する傷害性を誘導する、HLA-DR抗原に対する結合物質、特に抗体またはヒト型抗体誘導体を提供することができる。本発明の結合物質、特に抗体またはヒト型抗体誘導体は、HLA-DR抗原を発現するがん細胞に対する治療のため、がん細胞の増殖を阻害するため、腫瘍を縮小・消失させるために使用することができる。 The present invention provides, in one aspect, a binding substance for an HLA-DR antigen, particularly an antibody or a humanized antibody derivative, which has a binding property for an HLA-DR antigen and induces toxicity to cancer cells. You can The binding substance of the present invention, particularly an antibody or a humanized antibody derivative, is used for treatment of cancer cells expressing HLA-DR antigen, for inhibiting the growth of cancer cells, and for reducing or eliminating tumors. be able to.
 抗体およびヒト型抗体誘導体
 本発明は、一態様において、HLA-DR抗原に対して結合性を有する、抗体またはヒト型抗体誘導体を提供する。本発明の抗体またはヒト型抗体誘導体は、HLA-DR抗原に対して結合性を有する抗体と同一の重鎖の相補性決定領域(CDR)1~3および軽鎖のCDR1~3の合計6箇所のアミノ酸配列を有することにより特徴づけられるものである。そのようなHLA-DR抗原に対して結合性を有する抗体の6箇所のCDRのアミノ配列の例としては、重鎖のCDR1(SEQ ID No.: 1)、CDR2(SEQ ID No.: 2)、CDR3(SEQ ID No.: 3)、および軽鎖のCDR1(SEQ ID No.: 4)、CDR2(SEQ ID No.: 5)、CDR3(SEQ ID No.: 6)を有するものが考えられるが、HLA-DR抗原に対して結合性を有するという特徴を有する限りにおいて、上記のCDRの組み合わせ以外のCDRの組み合わせで特定される抗体またはヒト型抗体誘導体が含まれる。
Antibodies and Human Antibody Derivatives In one aspect, the present invention provides antibodies or human antibody derivatives having binding properties to HLA-DR antigens. The antibody or human-type antibody derivative of the present invention comprises a total of 6 positions of complementarity determining regions (CDRs) 1 to 3 of heavy chain and CDRs 1 to 3 of light chain which are the same as those of the antibody having the binding property to HLA-DR antigen. It is characterized by having the amino acid sequence of. Examples of such amino acid sequences of CDRs at 6 positions of an antibody having binding properties to HLA-DR antigens include CDR1 (SEQ ID No.: 1) and CDR2 (SEQ ID No.: 2) of heavy chain. , CDR3 (SEQ ID No.: 3), and light chain CDR1 (SEQ ID No.: 4), CDR2 (SEQ ID No.: 5), CDR3 (SEQ ID No.: 6) Include an antibody or human-type antibody derivative specified by a combination of CDRs other than the above-mentioned combination of CDRs, as long as it has the characteristic of binding to the HLA-DR antigen.
 本発明の抗体またはヒト型抗体誘導体は、HLA-DR抗原を発現するがん細胞に対する傷害性を誘導する能力を有することも特徴とする。HLA-DR抗原を発現するがん細胞に対する傷害性は、in vitroにおいて生じるものであっても、in vivoにおいて生じるものであってもよい。このようながん細胞に対する細胞傷害性を誘導する能力を有するかどうかは、HLA-DR抗原に対して結合性を有する抗体の中から、実際にがん細胞に対する細胞傷害性を誘導する能力をスクリーニングすることにより得ることができる。 The antibody or humanized antibody derivative of the present invention is also characterized in that it has the ability to induce toxicity to cancer cells expressing the HLA-DR antigen. The toxicity to the cancer cells expressing the HLA-DR antigen may occur in vitro or in vivo. Whether or not it has the ability to induce cytotoxicity to cancer cells depends on the ability to actually induce cytotoxicity to cancer cells from among antibodies having binding properties to HLA-DR antigen. It can be obtained by screening.
 抗体またはヒト型抗体誘導体の、がん細胞に対する細胞傷害性を誘導する能力のスクリーニングは、生体内で行うこともでき、あるいは生体外で行うこともできる。生体内で行うスクリーニングは、ヌードマウスやSCIDマウス等の免疫不全マウスなどの動物に、標的とするがん細胞を移植し、本発明の抗体またはヒト型抗体誘導体を投与したときの体内での腫瘍塊のサイズの変化を測定することにより、行うことができる。生体外で行うスクリーニングは、標的とするがん細胞を培養条件下で本発明の抗体またはヒト型抗体誘導体と接触させ、がん細胞が細胞死を起こすかどうかを調べることにより行うことができる。 The screening of the ability of the antibody or human antibody derivative to induce cytotoxicity to cancer cells can be performed in vivo or in vitro. In-vivo screening is performed by transplanting target cancer cells into animals such as immunodeficient mice such as nude mice and SCID mice, and tumors in the body when the antibody or humanized antibody derivative of the present invention is administered. This can be done by measuring the change in mass size. Screening performed in vitro can be performed by contacting a target cancer cell with the antibody or human antibody derivative of the present invention under culture conditions and examining whether the cancer cell causes cell death.
 本発明の抗体またはヒト型抗体誘導体のがん細胞に対する細胞傷害性は、がん細胞に結合した本発明の抗体またはヒト型抗体誘導体が、ナチュラルキラー細胞(NK細胞)、マクロファージ、好中球、好酸球などからなる群から選択されるエフェクター細胞を刺激することにより誘導される抗体依存的細胞傷害、補体系を刺激することにより誘導される補体依存性細胞障害活性、あるいはこれら外部因子に依存しない抗体結合に起因する細胞の物理的破壊のいずれの態様によるものであってもよい。 The cytotoxicity of the antibody of the present invention or the human antibody derivative against cancer cells is that the antibody or the human antibody derivative of the present invention bound to the cancer cell is a natural killer cell (NK cell), macrophage, neutrophil, Antibody-dependent cellular cytotoxicity induced by stimulating effector cells selected from the group consisting of eosinophils, complement-dependent cytotoxicity induced by stimulating the complement system, or these external factors It may be due to any aspect of physical destruction of cells due to independent antibody binding.
 本発明において単に「抗体」という場合、その抗体は哺乳動物のどのような動物種由来のものであってもよく、その抗体の由来種はヒトに限定されず、マウス、ラット、モルモット、ハムスター、ウサギなどであってもよい。 When simply referred to as “antibody” in the present invention, the antibody may be derived from any animal species of mammals, and the species from which the antibody is derived are not limited to humans, and include mouse, rat, guinea pig, hamster, It may be a rabbit or the like.
 本発明においてはまた、HLA-DR抗原に対して結合性を有し、がん細胞に対する傷害性を誘導するという機能的な特徴を有する限りにおいて、上述の抗体のヒト型抗体誘導体であってもよい。本発明においてヒト型抗体誘導体という場合、一態様として、上記抗体の6箇所のCDRのアミノ酸配列、及びヒト抗体由来の定常領域のアミノ酸配列を有し、それ以外のアミノ酸配列は、元の抗体由来のアミノ酸配列とヒト抗体由来のアミノ酸配列との組み合わせであることを特徴とした抗体の誘導体を提供することができる。このような抗体誘導体の例としては、上述した「抗体」の相補性決定領域(CDR)以外をヒトの抗体由来のアミノ酸配列に置き換えたヒト化抗体、または上記抗体の可変領域をヒト抗体の定常領域に連結したものなどのキメラ抗体、1種類の抗体が複数の抗原結合部位を有する多価抗体、および1種類の抗体が複数の特異性を有する多重特異性抗体(バイスペシフィック抗体)が含まれるが、これら以外のものも含まれる。 In the present invention, it is also a human antibody derivative of the above-mentioned antibody, as long as it has a binding property to HLA-DR antigen and has a functional characteristic of inducing toxicity to cancer cells. Good. When referred to as a human antibody derivative in the present invention, in one aspect, it has the amino acid sequence of the CDR at 6 positions of the above antibody, and the amino acid sequence of the constant region derived from a human antibody, and the other amino acid sequences are derived from the original antibody. It is possible to provide a derivative of an antibody, which is characterized by being a combination of the amino acid sequence of and the amino acid sequence of human antibody. Examples of such antibody derivatives include humanized antibodies in which amino acid sequences derived from human antibodies have been substituted for the regions other than the complementarity determining region (CDR) of the above-mentioned "antibody", or the variable regions of the above antibodies are the constant regions of human antibodies. Chimeric antibodies such as those linked to regions, multivalent antibodies in which one type of antibody has multiple antigen binding sites, and multispecific antibodies in which one type of antibody has multiple specificities (bispecific antibodies) are included However, other than these are also included.
 一態様において、本発明の抗体またはヒト型抗体誘導体の重鎖可変領域VHドメインのアミノ酸配列の例としては、SEQ ID No.: 8、SEQ ID No.: 12、SEQ ID No.: 16、SEQ ID No.: 20、SEQ ID No.: 24、SEQ ID No.: 28、SEQ ID No.: 32、SEQ ID No.: 36、またはSEQ ID No.: 40のいずれかに記載されるアミノ酸配列をあげることができる。 In one aspect, examples of the amino acid sequence of the heavy chain variable region VH domain of the antibody or humanized antibody derivative of the present invention include: SEQ ID No.:8, SEQ ID No.:12, SEQ ID No.:16, SEQ Amino acid sequence described in either ID No.: 20, 20, SEQ ID No.: 24, SEQ ID No.: 28, SEQ ID No.: 32, SEQ ID No.: 36, or SEQ ID No.: 40 Can be raised.
 一態様において、本発明の抗体またはヒト型抗体誘導体の軽鎖可変領域VLドメインのアミノ酸配列の例としては、SEQ ID No.: 10、SEQ ID No.: 14、SEQ ID No.: 18、SEQ ID No.: 22、SEQ ID No.: 26、SEQ ID No.: 30、SEQ ID No.: 34、SEQ ID No.: 38、またはSEQ ID No.: 42のいずれかに記載されるアミノ酸配列をあげることができる。 In one aspect, examples of the amino acid sequence of the light chain variable region VL domain of the antibody or humanized antibody derivative of the present invention include SEQ ID No.: 10, SEQ ID No.: 14, SEQ ID No.: 18, SEQ Amino acid sequence described in any of ID No.:22, SEQ ID No.:26, SEQ ID No.:30, SEQ ID No.:34, SEQ ID No.:38, or SEQ ID No.:42. Can be raised.
 本発明においては、本発明のヒト型抗体誘導体には、上述した抗体またはヒト型抗体誘導体の機能的断片も含まれる。本発明における抗体またはヒト型抗体誘導体の機能的断片は、F(ab')2、Fab'、Fab、一本鎖Fv(scFv)などが含まれる。本発明の機能性断片は、がん細胞に対する傷害性を誘導することができることを特徴としていればこれらのうちのどのような断片であってもよく、例えば、F(ab')2断片などを、そのような機能的断片として使用することができる。 In the present invention, the human antibody derivative of the present invention also includes the functional fragment of the above-mentioned antibody or human antibody derivative. Functional fragments of the antibody or human antibody derivative of the present invention include F(ab')2, Fab', Fab, single-chain Fv (scFv) and the like. The functional fragment of the present invention may be any of these as long as it is characterized by being capable of inducing toxicity to cancer cells, and for example, F(ab')2 fragment or the like can be used. , Can be used as such a functional fragment.
 抗体またはヒト型抗体誘導体の取得
 本発明の抗体またはヒト型抗体誘導体は、前述した由来種の動物体内から採取した抗体産生細胞を培養することにより取得することもできるが、抗体またはヒト型抗体誘導体のアミノ酸配列を規定できるDNA配列を含むタンパク質発現用のベクターを設計し、そのベクターをタンパク質産生用の細胞に導入し、組換え的に取得してもよい。
Obtaining Antibody or Human Antibody Derivative The antibody or human antibody derivative of the present invention can be obtained by culturing antibody-producing cells collected from the animal body of the above-mentioned species of origin, but the antibody or human antibody derivative can also be obtained. It is also possible to design a vector for protein expression containing a DNA sequence capable of defining the amino acid sequence of, to introduce the vector into cells for protein production, and obtain it recombinantly.
 本発明の抗体またはヒト型抗体誘導体のアミノ酸配列を規定できるDNA配列は、目的とする抗体またはヒト型抗体誘導体を産生する細胞から取得する方法、アミノ酸配列に基づき発現系で使用される動物種に最適化したコドンに基づき設計する方法、あるいはこれらの方法を組み合わせて使用する方法により作製することができる。 The DNA sequence capable of defining the amino acid sequence of the antibody or human antibody derivative of the present invention is a method for obtaining it from cells producing the desired antibody or human antibody derivative, and the animal species used in the expression system based on the amino acid sequence. It can be prepared by a method of designing based on the optimized codon or a method of using these methods in combination.
 作製したDNA配列は、その抗体またはヒト型抗体誘導体を発現させようとするタンパク質発現用細胞種(例えば、CHO細胞など)に適した発現ベクターに組み込み、タンパク質発現用細胞種に導入することにより取得するなど、当業者によく知られた手法を用いて取得することができる。 Obtained by incorporating the prepared DNA sequence into an expression vector suitable for the cell type for protein expression (such as CHO cells) for which the antibody or human antibody derivative is to be expressed, and introducing it into the cell type for protein expression Can be obtained using a method well known to those skilled in the art.
 前述で例示した本発明の抗体またはヒト型抗体誘導体の重鎖可変領域VHドメインのアミノ酸配列を規定するDNA配列は、例えば、それぞれ以下の通りである: The DNA sequences defining the amino acid sequences of the heavy chain variable region VH domain of the antibody or human antibody derivative of the present invention exemplified above are, for example, as follows:
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 前述で例示した本発明の抗体またはヒト型抗体誘導体の軽鎖可変領域VLドメインのアミノ酸配列を規定するDNA配列は、例えば、それぞれ以下の通りである: The DNA sequence defining the amino acid sequence of the light chain variable region VL domain of the antibody or human antibody derivative of the present invention exemplified above is, for example, as follows:
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 抗体またはヒト型抗体誘導体の用途
 本発明の抗体またはヒト型抗体誘導体は、上述したがん細胞に対する細胞傷害性を誘導する能力を有するという特徴に基づき、一態様において、がんの治療または予防を必要としている被験体において、がん細胞に対する傷害性を誘導する、本発明の抗体またはヒト型抗体誘導体を含む医薬組成物、を提供することができる。
Use of Antibody or Human Antibody Derivative The antibody or human antibody derivative of the present invention is characterized in that it has the ability to induce cytotoxicity against cancer cells described above, and in one embodiment, for treating or preventing cancer. A pharmaceutical composition comprising the antibody or humanized antibody derivative of the present invention, which induces toxicity to cancer cells in a subject in need thereof, can be provided.
 本発明において標的とすることができるがん細胞は、例えば、白血病(慢性リンパ性白血病、急性リンパ性白血病を含む)、リンパ腫(非ホジキンリンパ腫、ホジキンリンパ腫、T細胞系リンパ腫、B細胞系リンパ腫、バーキットリンパ腫、悪性リンパ腫、びまん性リンパ腫、濾胞性リンパ腫を含む)、骨髄腫(多発性骨髄腫を含む)、メラノーマ、肺がん、乳がん、大腸がん、腎臓がん、胃がん、卵巣がん、膵臓がん、子宮頚がん、子宮体がん、子宮内膜がん、食道がん、肝臓がん、頭頚部がん、頭頚部扁平上皮がん、皮膚がん、尿路がん、前立腺がん、絨毛がん、咽頭がん、喉頭がん、きょう膜腫、男性胚腫、子宮内膜過形成、子宮内膜症、胚芽腫、線維肉腫、カポジ肉腫、血管腫、海綿状血管腫、血管芽腫、網膜芽腫、星状細胞腫、神経線維腫、稀突起謬腫、髄芽腫、神経芽腫、神経膠腫、横紋筋肉腫、謬芽腫、骨原性肉腫、平滑筋肉腫、甲状肉腫及びウィルムス腫瘍からなる群から選択されるがん由来の細胞が含まれる。本発明の態様において、がん細胞は、HLA-DR抗原を発現するがん細胞であることが好ましく、例えばホジキンリンパ腫、肺がん、メラノーマ、子宮頸がん、子宮体がん、卵巣がん、頭頚部がんに由来する細胞が好ましい。 Cancer cells that can be targeted in the present invention include, for example, leukemia (including chronic lymphocytic leukemia and acute lymphocytic leukemia), lymphoma (non-Hodgkin's lymphoma, Hodgkin's lymphoma, T-cell lymphoma, B-cell lymphoma, Burkitt lymphoma, malignant lymphoma, diffuse lymphoma, follicular lymphoma), myeloma (including multiple myeloma), melanoma, lung cancer, breast cancer, colon cancer, kidney cancer, gastric cancer, ovarian cancer, pancreas Cancer, cervical cancer, endometrial cancer, endometrial cancer, esophageal cancer, liver cancer, head and neck cancer, head and neck squamous cell carcinoma, skin cancer, urinary tract cancer, prostate Cancer, choriocarcinoma, pharyngeal cancer, laryngeal cancer, capsular tumor, male embryoma, endometrial hyperplasia, endometriosis, germinoma, fibrosarcoma, Kaposi's sarcoma, hemangiomas, cavernous hemangiomas, Hemangioblastoma, retinoblastoma, astrocytoma, neurofibroma, oligodendroma, medulloblastoma, neuroblastoma, glioma, rhabdomyosarcoma, blastoma, osteogenic sarcoma, smooth muscle Included are cells from a cancer selected from the group consisting of tumors, thyroid sarcomas, and Wilms tumors. In the embodiment of the present invention, the cancer cell is preferably a cancer cell that expresses an HLA-DR antigen, for example Hodgkin lymphoma, lung cancer, melanoma, cervical cancer, endometrial cancer, ovarian cancer, head. Cells derived from cervical cancer are preferred.
 本発明の抗体またはヒト型抗体誘導体は、上述するように標的となるがん細胞に対する細胞傷害性を誘導するが、正常細胞に対する細胞傷害性を誘導しないことを特徴とする。すなわち、生体に投与した場合、細胞傷害性は標的となるHLA-DR抗原を発現するがん細胞に対してのみ誘導され、HLA-DR抗原を発現するものの正常細胞である場合には、臨床上問題となりうる細胞傷害性を誘導しないことが求められる。 The antibody or humanized antibody derivative of the present invention is characterized in that it induces cytotoxicity to target cancer cells as described above, but does not induce cytotoxicity to normal cells. That is, when administered to a living body, cytotoxicity is induced only in cancer cells that express the target HLA-DR antigen, and in the case of normal cells that express the HLA-DR antigen, clinically, It is required not to induce potentially problematic cytotoxicity.
 本発明において、本発明の抗体またはヒト型抗体誘導体を、他の抗体または抗がん剤のような他の薬剤と組み合わせて組成物として提供することもできる。一態様において、本発明の抗体またはヒト型抗体誘導体を、薬物と結合し、抗体薬物複合体 (ADC)を形成することもできる。 In the present invention, the antibody or humanized antibody derivative of the present invention can be provided as a composition in combination with another antibody or another drug such as an anticancer agent. In one embodiment, the antibody or humanized antibody derivative of the present invention can be bound to a drug to form an antibody drug complex (ADC).
 本発明において、本発明の抗体またはヒト型抗体誘導体を、生理学的に許容され得る希釈剤またはキャリアとともに含む製剤もまた提供することができる。適切なキャリアとしては、緩衝剤(リン酸緩衝液、クエン酸緩衝液、酢酸緩衝液等)、塩(塩化ナトリウム等)、糖(グルコース、トレハロース、マンニトール、ソルビトール等)、添加物(アルギニン等のアミノ酸、ポリソルベート等の界面活性剤等)、を含むものが含まれるが、これらに限定されるものではない。あるいは、本発明の抗体またはヒト型抗体誘導体は、凍結乾燥(フリーズドライ)し、必要とされるときに上記のような緩衝水溶液を添加することにより再構成して使用することもできる。本発明の抗体またはヒト型抗体誘導体を含む製剤は、種々の剤型で投与することができ、例えば、注射剤、点滴剤等による非経口投与剤とすることができる。 In the present invention, a formulation containing the antibody or humanized antibody derivative of the present invention together with a physiologically acceptable diluent or carrier can also be provided. Suitable carriers include buffers (phosphate buffer, citrate buffer, acetate buffer, etc.), salts (sodium chloride, etc.), sugars (glucose, trehalose, mannitol, sorbitol, etc.), additives (arginine, etc.). Amino acids, surfactants such as polysorbates, etc.), but are not limited to these. Alternatively, the antibody or humanized antibody derivative of the present invention can be reconstituted and used by freeze-drying (freeze-drying) and adding a buffer aqueous solution as described above when necessary. The preparation containing the antibody or human antibody derivative of the present invention can be administered in various dosage forms, for example, a parenteral preparation such as an injection or a drip.
 本発明の抗体またはヒト型抗体誘導体の投与量は、症状、年齢、体重などによって異なるが、通常、非経口投与では、1回0.01mg~1000mg、好ましくは1日体重あたり1 mg~10 mgの範囲で、腹腔内注射、皮下注射、筋肉注射、腫瘍内注射、または静脈注射など、がんの種類によって適切な投与経路から投与することができる。 The dose of the antibody or humanized antibody derivative of the present invention varies depending on the symptoms, age, body weight, etc., but usually for parenteral administration, 0.01 mg to 1000 mg per dose, preferably 1 mg to 10 mg per body weight per day. Depending on the type of cancer, it can be administered via an appropriate administration route such as intraperitoneal injection, subcutaneous injection, intramuscular injection, intratumoral injection, or intravenous injection.
 本発明は、上述したがん細胞に対する細胞傷害性を誘導する能力を有するという特徴に基づき、別の一態様において、がんの治療または予防を必要としている被験体に、本発明の抗体またはヒト型抗体誘導体の有効量を投与することを含む、被験体中のがんを治療または予防する方法もまた提供することができる。本発明の抗体またはヒト型抗体誘導体によるがんの治療または予防は、この抗体またはヒト型抗体誘導体が体内においてがん細胞に対する細胞傷害性を引き起こすことにより生じる。 The present invention is based on the above-mentioned characteristic of having an ability to induce cytotoxicity to cancer cells, and in another aspect, a subject in need of treatment or prevention of cancer is treated with the antibody or human of the present invention. Methods of treating or preventing cancer in a subject can also be provided that include administering an effective amount of a type antibody derivative. Treatment or prevention of cancer with the antibody or human antibody derivative of the present invention occurs when the antibody or human antibody derivative causes cytotoxicity to cancer cells in the body.
 本発明の抗体またはヒト型抗体誘導体をがんの治療または予防のために生体に投与する場合、生体内で細胞性免疫あるいは液性免疫が効果的に成立するようにアジュバント(例えば、Clin. Microbiol.Rev., 7:277-289, 1994に記載のものなど)とともに投与したり、また、リポソーム製剤、直径数μmのビーズに結合させた粒子状の製剤、リピッドを結合させた製剤など、粒子状の剤型にして投与することもできる。 When the antibody or humanized antibody derivative of the present invention is administered to a living body for treating or preventing cancer, an adjuvant (for example, Clin. Microbiol) is used so that cell-mediated immunity or humoral immunity is effectively established in vivo. Rev., 7:277-289, 1994, etc.), or liposomal preparations, particulate preparations bound to beads with a diameter of several μm, preparations bound with lipids, etc. It can also be administered in the form of dosage forms.
 抗体およびヒト型抗体誘導体の生体外での用途
 本発明の抗体またはヒト型抗体誘導体は、HLA-DR抗原に対して結合性を有するという特徴に基づき、試料中のHLA-DR抗原を検出するために使用することができる。具体的には、本発明の抗体またはヒト型抗体誘導体は、被験体から採取したがん細胞を含む試料に対して、免疫沈降法、凝集反応、磁気ビーズ法などの抗体を用いた精製法、ELISA法、ウェスタンブロット、免疫組織化学などのイムノアッセイ、フローサイトメトリーなどの免疫細胞化学等、抗体を用いて行うことができる様々な検出方法を実施する際に使用することができる。それぞれの場合において、本発明の抗体またはヒト型抗体誘導体は、当業者に一般的に知られている検出用標識(例えば、蛍光、DAB、酵素、など)を用いて検出することができる。
In Vitro Use of Antibodies and Human-Type Antibody Derivatives The antibody or human-type antibody derivative of the present invention is for detecting the HLA-DR antigen in a sample based on the characteristic that it has a binding property to the HLA-DR antigen. Can be used for Specifically, the antibody or humanized antibody derivative of the present invention is a purification method using an antibody such as an immunoprecipitation method, an agglutination reaction, or a magnetic bead method for a sample containing cancer cells collected from a subject. It can be used in carrying out various detection methods that can be performed using an antibody, such as an ELISA method, a Western blot, an immunoassay such as immunohistochemistry, and immunocytochemistry such as flow cytometry. In each case, the antibody or humanized antibody derivative of the present invention can be detected using a detection label generally known to those skilled in the art (eg, fluorescence, DAB, enzyme, etc.).
 本発明の抗体またはヒト型抗体誘導体はまた、HLA-DR抗原に対して結合性を有し、がん細胞に対する傷害性を誘導する、という特徴に基づき、本発明の抗体またはヒト型抗体誘導体の、被験体におけるがん細胞に対する細胞傷害性を測定するために使用することができる。このような被験体におけるがん細胞に対する細胞傷害性を測定するための方法としては、以下の工程:
 被験体から採取されたがん細胞を、培養条件下(すなわち、in vitro)において本発明の抗体またはヒト型抗体誘導体と接触させる工程、
 培養条件下で、がん細胞の細胞生存率が低下するかどうかを測定する工程、若しくは免疫活性化物質の分泌が亢進するかどうかを測定する工程、
を含む、本発明の抗体またはヒト型抗体誘導体を用いてがん細胞に対する細胞傷害性を測定する方法を例としてあげることができる。
The antibody or human antibody derivative of the present invention also has a binding property to the HLA-DR antigen and induces toxicity to cancer cells, based on the characteristics of the antibody or human antibody derivative of the present invention. , Can be used to measure cytotoxicity against cancer cells in a subject. The method for measuring the cytotoxicity against cancer cells in such a subject includes the following steps:
A step of contacting a cancer cell collected from a subject with an antibody of the present invention or a humanized antibody derivative under culture conditions (that is, in vitro),
Under culture conditions, a step of measuring whether the cell viability of cancer cells is reduced, or a step of measuring whether the secretion of immunostimulatory substances is enhanced,
Examples of the method for measuring cytotoxicity against cancer cells using the antibody or humanized antibody derivative of the present invention containing
 この方法において、培養条件下で、本発明の抗体またはヒト型抗体誘導体との接触によりがん細胞の細胞生存率が低下するかどうかは、同一被験体の末梢血リンパ球の存在下で、本発明の抗体またはヒト型抗体誘導体との接触によりがん細胞の細胞生存率が低下するかどうかを測定することにより行うことができる。この方法により、被験体から採取されたがん細胞の培養条件下での細胞傷害性を測定することにより、本発明の抗体またはヒト型抗体誘導体をその被験体に投与した場合の、被験体内(in vivo)での細胞傷害性を測定することができる。 In this method, whether or not the cell viability of cancer cells is reduced by contact with the antibody of the present invention or a humanized antibody derivative under culture conditions is determined in the presence of peripheral blood lymphocytes of the same subject. It can be carried out by measuring whether or not the cell viability of cancer cells is reduced by contact with the antibody of the invention or the humanized antibody derivative. By this method, by measuring the cytotoxicity of the cancer cells collected from the subject under culture conditions, when the antibody or humanized antibody derivative of the present invention is administered to the subject, ( in vivo) cytotoxicity can be measured.
 また、培養条件下で、本発明の抗体またはヒト型抗体誘導体により末梢血リンパ球由来の免疫細胞が活性化されるなどの結果として、免疫活性化物質の分泌が亢進するかどうかは、同一被験体の末梢血リンパ球の存在下で、本発明の抗体またはヒト型抗体誘導体と接触された末梢血リンパ球由来の免疫細胞が活性化するかどうかを測定することにより行うことができる。この方法により、免疫活性化物質の分泌が亢進することを測定することにより、本発明の抗体またはヒト型抗体誘導体をその被験体に投与した場合の、被験体内(in vivo)において細胞傷害性を有するリンパ球などの免疫細胞の活性化や、その結果として生じるがん細胞に対する細胞傷害性の亢進を測定することができる。 In addition, whether or not the secretion of the immunostimulatory substance is enhanced as a result of activation of peripheral blood lymphocyte-derived immune cells by the antibody of the present invention or the humanized antibody derivative under culture conditions is determined by the same test. It can be carried out by measuring whether or not immune cells derived from peripheral blood lymphocytes contacted with the antibody or humanized antibody derivative of the present invention are activated in the presence of peripheral blood lymphocytes in the body. By this method, by measuring the increase in the secretion of the immunostimulatory substance, when the antibody or humanized antibody derivative of the present invention is administered to the subject, cytotoxicity in the subject (in vivo) It is possible to measure activation of immune cells such as lymphocytes possessed and the resulting increase in cytotoxicity to cancer cells.
 本発明はまた、本発明の抗体またはヒト型抗体誘導体を含む、被験体から採取されたがん細胞に対する細胞傷害性、免疫活性化物質の分泌、若しくは免疫細胞の活性化を、in vitroにおいて測定するための測定キットもまた提供することができる。 The present invention also comprises in vitro measurement of cytotoxicity against cancer cells collected from a subject, secretion of an immunostimulatory substance, or activation of immune cells, including the antibody or humanized antibody derivative of the present invention. A measurement kit for doing so can also be provided.
 以下、実施例を挙げて本発明を具体的に示す。下記に示す実施例はいかなる方法によっても本発明を限定するものではない。 The present invention will be specifically described below with reference to examples. The examples given below do not limit the invention in any way.
 実施例1:細胞傷害性を有する抗体クローンの同定
 本実施例においては、既存の抗HLA-DR抗体の中から、ヒトのがん細胞由来細胞に対する細胞傷害性を有する抗体を同定した。
Example 1: Identification of antibody clone having cytotoxicity In this example, an antibody having cytotoxicity against human cancer cell-derived cells was identified from among existing anti-HLA-DR antibodies.
 具体的には、市販されているマウス由来抗HLA-DR抗体LN-3(MAB13305, Abnova)について、ヒトホジキンリンフォーマ細胞株への細胞傷害性を評価した。 Specifically, we evaluated the cytotoxicity of the commercially available mouse-derived anti-HLA-DR antibody LN-3 (MAB13305, Ab Ab) to human Hodgkin lymphoma cell lines.
 ヒトホジキンリンフォーマ細胞株として、HLA-DRを発現する細胞である、L428細胞(DSMZ, ACC 197)、およびKM-H2細胞(DSMZ, ACC 8)を用いた。細胞を、10%FBS(Equitech-bio.Inc SFBM30-0500)および1% penicilin-streptmycin(ナカライテスク 09367-34)を含むRPMI 1640培地(和光純薬189-02025)中で2×10e6 cells/mlに調製し、フィッシャーチューブ(サーモフィッシャー, 04-978-145)に100μlずつ分注し、抗体LN-3を終濃度1μg/mlになるように添加した。37℃のウォーターバスで2時間インキュベートした後、細胞を遠心にて回収し、Annexin V APC(Biolegend 640941)及び7-AAD(Biolegend 420404)にてアポトーシスを起こした細胞(死細胞)を染色し、フローサイトメトリー解析に供した。Annexin V APC及び7-AADいずれも染色されない細胞を生細胞と判定し、生存割合を算出した。 As human Hodgkin lymphoma cell lines, L428 cells (DSMZ, ACC197) and KM-H2 cells (DSMZ, ACC8) that express HLA-DR were used. 2x10e6 cells/ml of cells in RPMI1640 medium (Wako Pure Chemical 189-02025) containing 10% FBS (Equitech-bio.Inc SFBM30-0500) and 1% penicilin-streptmycin (Nacalai Tesque 09367-34). Was prepared into 100 μl each in a Fischer tube (Thermo Fisher, 04-978-145), and antibody LN-3 was added to a final concentration of 1 μg/ml. After incubating in a 37°C water bath for 2 hours, cells were collected by centrifugation, and cells that had undergone apoptosis (dead cells) were stained with Annexin VPC (Biolegend 640941) and 7-AAD (Biolegend 420404), It was subjected to flow cytometric analysis. Cells in which neither Annexin V APC nor 7-AAD were stained were judged as live cells, and the survival rate was calculated.
 抗体LN-3は、L428細胞の生存割合を11.3%まで低下させ、KM-H2細胞の生存割合を23.2%まで低下させる作用を示した(図1)。ここで、生存割合は、アイソタイプコントロール抗体で処理した場合のそれぞれの細胞の生存割合を100%として算出した。L428細胞とKM-H2細胞とは、フローサイトメトリーでの検討の結果、同程度のHLA-DR発現量を示すことから、本実施例の結果は、抗体と細胞との親和性の違いにより、抗体の細胞傷害性活性が異なると予想された。 Antibody LN-3 showed the action of reducing the survival rate of L428 cells to 11.3% and the survival rate of KM-H2 cells to 23.2% (Fig. 1). Here, the survival rate was calculated with the survival rate of each cell treated with the isotype control antibody as 100%. L428 cells and KM-H2 cells, as a result of examination by flow cytometry, since they show the same level of HLA-DR expression, the results of this Example, due to the difference in affinity between the antibody and cells, It was expected that the cytotoxic activity of the antibodies would be different.
 実施例2:固形癌細胞に対する細胞傷害性の評価
 本実施例では、既存の抗HLA-DR抗体の固形癌細胞に対する細胞傷害性を調べた。
Example 2: Evaluation of cytotoxicity against solid cancer cells In this example, the cytotoxicity of existing anti-HLA-DR antibodies against solid cancer cells was examined.
 評価対象の固形癌細胞として、IFNγ共存下でHLA-DRの高発現が確認されている肺癌細胞株Calu-1(ATCC HTB-46)を採用した。 As the solid cancer cells to be evaluated, the lung cancer cell line Calu-1 (ATCC HTB-46), in which high expression of HLA-DR was confirmed in the presence of IFNγ, was adopted.
 Calu-1細胞を、10% FBSを含むMyCoy's 5a Medium(SH30200.01, Hyclone)を用いて1×105 cells/mlに調製し、IFN-γを終濃度2 ng/mlになるように加えた後、96 wellプレートに100μlずつ播種した。IncuCyte(登録商標)Annexin V Red Reagent(エッセンバイオ、4641)および抗体LN-3(終濃度1μg/ml)を添加し、Incucyte real-time analyzer(エッセンバイオ)による解析に供した。アポトーシスを起こした細胞がAnnexin V Red Reagentにより染色されることから、15時間後の蛍光強度変化に基づき、細胞死誘導を評価した。 Calu-1 cells were prepared to 1×10 5 cells/ml using MyCoy's 5a Medium (SH30200.01, Hyclone) containing 10% FBS, and IFN-γ was added to a final concentration of 2 ng/ml. Then, 100 μl of each was seeded on a 96-well plate. IncuCyte (registered trademark) Annexin V Red Reagent (Essen Bio, 4641) and antibody LN-3 (final concentration 1 μg/ml) were added and subjected to analysis by an Incucyte real-time analyzer (Essen Bio). Since apoptotic cells were stained with Annexin V Red Reagent, cell death induction was evaluated based on the change in fluorescence intensity after 15 hours.
 抗体LN-3において、がん細胞を含む多くの細胞に対して細胞増殖阻害効果を有するシクロヘキシミドを上回る細胞死誘導が観察され、当該抗体のCalu-1に対する細胞傷害性が確認された。また、当該細胞傷害性は抗マウスIgG抗体の添加による抗体クロスリンクにより増強されたことから、当該抗体の作用機序が標的分子の細胞膜上における重合に依存する可能性が示唆された(図2)。 In antibody LN-3, cell death induction was observed in many cells including cancer cells, which was higher than that of cycloheximide, which has a cell growth inhibitory effect, and the cytotoxicity of the antibody to Calu-1 was confirmed. Further, the cytotoxicity was enhanced by antibody cross-linking by the addition of anti-mouse IgG antibody, suggesting that the mechanism of action of the antibody may depend on the polymerization of the target molecule on the cell membrane (Fig. 2). ).
 実施例3:標的特異性の評価
 本実施例においては、実施例2において細胞傷害性が認められた抗体LN-3について、細胞傷害性の標的特異性について評価した。
Example 3: Evaluation of target specificity In this example, the antibody LN-3, which was found to be cytotoxic in Example 2, was evaluated for target specificity of cytotoxicity.
 HLA-DRを発現するヒトホジキンリンフォーマ細胞株であるL428細胞、KM-H2細胞およびHLA-DR非発現細胞であるJurkat細胞(ATCC TIB-152)に対する細胞傷害性試験を実施した。抗体の濃度以外は、実施例1と同様の方法で細胞傷害性を測定した。 A cytotoxicity test was performed on L428 cells, KM-H2 cells, which are human Hodgkin lymphoma cell lines that express HLA-DR, and Jurkat cells (ATCC TIB-152), which are HLA-DR non-expressing cells. Cytotoxicity was measured by the same method as in Example 1 except for the antibody concentration.
 当該抗体LN-3は、HLA-DR発現細胞に対して用量依存的な細胞傷害性を示す一方(L428細胞、KM-H2細胞につき、それぞれ図3(A)、(B))、Jurkat細胞に対して傷害性を全く示さず(図3(C))、誘導された細胞傷害性がHLA-DR特異的であることが示された(図3)。 The antibody LN-3 shows dose-dependent cytotoxicity against HLA-DR expressing cells (Fig. 3(A) and (B) for L428 cells and KM-H2 cells, respectively) and to Jurkat cells. On the other hand, it showed no cytotoxicity (FIG. 3(C)), indicating that the induced cytotoxicity was HLA-DR specific (FIG. 3).
 実施例4:抗体アミノ酸配列決定
 本実施例においては、抗体LN-3のアミノ酸配列を質量分析法によって解析した。質量分析解析用サンプルはin gel消化およびin solution消化の2種類の方法で調製した。
Example 4: Determination of antibody amino acid sequence In this example, the amino acid sequence of antibody LN-3 was analyzed by mass spectrometry. Samples for mass spectrometric analysis were prepared by two methods, in gel digestion and in solution digestion.
 in gel消化においては、抗体LN-3のサンプルを還元条件下でSDS-PAGEを行った後、抗体成分に該当するバンドを切り出して脱グリコシル化および還元アルキル化処理し、6種のプロテアーゼ(Pepsin、Trypsin、Asp N、Chymotrypsin、Lys C、Elastase)で抗体のタンパク質をペプチドに断片化した。 In in-gel digestion, after performing SDS-PAGE on a sample of antibody LN-3 under reducing conditions, the band corresponding to the antibody component was excised, deglycosylated and reductively alkylated, and treated with 6 proteases (Pepsin , Trypsin, AspN, Chymotrypsin, LysC, Elastase) were used to fragment the antibody protein into peptides.
 in solution消化においては、抗体LN-3のサンプルを溶液中で還元アルキル化後、6種のプロテアーゼ(Pepsin、Trypsin、Asp N、Chymotrypsin、Lys C、Elastase)でタンパク質をペプチドに断片化した。 In in-solution digestion, a sample of antibody LN-3 was reductively alkylated in solution, and then the protein was fragmented into peptides with 6 proteases (Pepsin, Trypsin, AspN, Chymotrypsin, LysC, and Elastase).
 断片化したペプチドについて、ThermoFisher Q-ExactiveによりMS/MS解析を行い、de novoで配列を決定した。なお、同一の質量を有するロイシンとイソロイシンの識別は、当該アミノ酸をN末に有するペプチド断片のHCD開裂によって生成される、質量の異なるw-ionを指標に実施した。 MS/MS analysis was performed on the fragmented peptide using Thermo Fisher Q-Exactive, and the sequence was determined by de novo. The leucine and the isoleucine having the same mass were distinguished from each other by using w-ion having different masses generated by HCD cleavage of a peptide fragment having the amino acid at the N-terminus.
 決定されたアミノ酸配列を図4に示す。この図において、図4(A)は抗体LN-3の重鎖可変領域アミノ酸配列を、図4(B)は抗体LN-3の軽鎖可変領域アミノ酸配列を、それぞれ示す。 The determined amino acid sequence is shown in Fig. 4. In this figure, FIG. 4(A) shows the heavy chain variable region amino acid sequence of antibody LN-3, and FIG. 4(B) shows the light chain variable region amino acid sequence of antibody LN-3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例5:エピトープの決定
 本実施例においては、抗体LN-3が結合するHLA-DRのアミノ酸配列中のエピトープを、ペプチドアレイにより解析した。
Example 5: Determination of epitope In this example, the epitope in the amino acid sequence of HLA-DR to which antibody LN-3 binds was analyzed by peptide array.
 抗体LN-3がHLA-DRβ1抗原を標的としていることから、報告されているHLA-DRβ1のアミノ酸配列(配列ID:P04229  HLA class II histocompatibility antigen, DRB1-1 beta chainの細胞外ドメイン(アミノ酸30~227))に基づき、タンパク質のN末端から長さ15残基のペプチドを3残基のオフセット(12残基のオーバーラップ)を設けて合計62本合成し、ガラススライドにプリントしてペプチドアレイを作製した。ガラススライドは予め20区画に分け、各区画に全てのペプチド(62本)をN=3でスポットした。ペプチドアレイの区画ごとに抗体クローンを添加してインキュベーションを行った後、蛍光標識した二次抗体(抗マウス抗体、Anti mouse IgG (H+L), Thermo_84545)を反応させて、蛍光スキャナで検出した。 Since the antibody LN-3 targets the HLA-DRβ1 antigen, the reported amino acid sequence of HLA-DRβ1 (sequence ID: P04229 HLA class II, histocompatibility antigen, extracellular domain of DRB1-1 beta chain (amino acids 30- 227)), a total of 62 peptides with a 15-residue length from the N-terminus of the protein were provided with a 3-residue offset (12-residue overlap) and printed on a glass slide to form a peptide array. It was made. The glass slide was divided into 20 sections in advance, and all the peptides (62) were spotted in each section at N=3. After adding antibody clones to each section of the peptide array and incubating, a secondary antibody (anti-mouse antibody, Antimouse IgG (H+L), Thermo_84545) labeled with fluorescence was reacted and detected with a fluorescence scanner.
 各ペプチドスポットから得られた蛍光強度から、各ペプチド断片に対する抗体LN-3の抗体結合強度を数値化した(図5(A))。この結果、4か所のペプチド(図5(A)における(1)~(4))への抗体LN-3の結合が確認され、当該抗体クローンが認識しうる配列として特定された。これらの(1)~(4)のHLA-DRβ1部分を、HLA-DRβ1の立体構造上に示した(図5(B))。 From the fluorescence intensity obtained from each peptide spot, the antibody binding strength of antibody LN-3 to each peptide fragment was quantified (Fig. 5(A)). As a result, the binding of the antibody LN-3 to the peptides at four positions ((1) to (4) in FIG. 5(A)) was confirmed, and the sequence was identified as a sequence recognizable by the antibody clone. The HLA-DRβ1 portions of (1) to (4) are shown on the three-dimensional structure of HLA-DRβ1 (FIG. 5(B)).
 実施例6:キメラ抗体製造
 本実施例においては、抗体LN-3に基づき設計したヒトFcキメラ組み換え抗体(以下、BP1206キメラ抗体という)の発現・精製を行った。
Example 6: Production of chimeric antibody In this example, a human Fc chimeric recombinant antibody (hereinafter referred to as BP1206 chimeric antibody) designed based on the antibody LN-3 was expressed and purified.
 発現用のベクターとして、pCI-neoに、軽鎖発現エレメント(EF-1αプロモーター、分泌シグナル、軽鎖可変領域、軽鎖定常領域をタンデムに連結)、重鎖発現エレメント(EF-1αプロモーター、分泌シグナル、重鎖可変領域、重鎖定常領域をタンデムに連結)を両方とも連結することで、プラスミドを構築した。 As a vector for expression, pCI-neo has a light chain expression element (EF-1α promoter, secretion signal, light chain variable region, light chain constant region linked in tandem), heavy chain expression element (EF-1α promoter, secretion) A plasmid was constructed by ligating both the signal, the heavy chain variable region, and the heavy chain constant region in tandem).
 重鎖可変領域および軽鎖可変領域のDNA配列は、それぞれ、抗体の可変領域のアミノ酸配列(図4、重鎖につきSEQ ID No.: 8、軽鎖につきSEQ ID No.: 10)をもとに、ハムスター発現系に最適化したコドンに基づきデザインした(SEQ ID No.: 7およびSEQ ID No.: 9)。重鎖定常領域部分および軽鎖定常領域部分のアミノ酸配列は、公知のヒト抗体の重鎖定常領域部分および軽鎖定常領域部分のアミノ酸配列またはその改変体を規定するDNA配列を利用することができ、この実施例においては、重鎖定常領域部分および軽鎖定常領域部分のアミノ酸配列としてそれぞれ、ヒトIgG1のCH2領域にL4AおよびL5A置換を有する変異体(IgG1-lala)(SEQ ID No.: 44)、およびヒトIgG kappa(SEQ ID No.: 46)の配列を使用し、このそれぞれのアミノ酸配列をコードするDNA配列を使用した(それぞれSEQ ID No.: 43およびSEQ ID No.: 45)。 The DNA sequences of the heavy chain variable region and the light chain variable region are based on the amino acid sequences of the antibody variable regions (Fig. 4, SEQ ID No.: 8 for heavy chains, SEQ ID No.: 10 for light chains). In addition, it was designed based on the codon optimized for the hamster expression system (SEQ ID No.:7 and SEQ ID No.:9). As the amino acid sequences of the heavy chain constant region portion and the light chain constant region portion, the known amino acid sequences of the heavy chain constant region portion and light chain constant region portion of a human antibody, or a DNA sequence defining a variant thereof can be used. In this example, a variant (IgG1-lala) having the L4A and L5A substitutions in the CH2 region of human IgG1 as the amino acid sequences of the heavy chain constant region portion and the light chain constant region portion (SEQ1 ID No.: 44, respectively) ), and the sequence of human IgG kappa (SEQ ID No.: 46), and the DNA sequences encoding the respective amino acid sequences were used (SEQ ID No.: 43 and SEQ ID No.: 45, respectively).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
 
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
 
 当該プラスミドを、ExpiCHO細胞(invitrogen A2910002)にGibcoTM ExpiCHO TM Expression System(GIbco A29129)を用いてトランスフェクションし、14日間培養して、培養上清を回収した。抗体は、培養上清をプロテインAカラム(MonoSpin ProA, GLサイエンス 7510-11314)を用いて精製することにより取得した。 ExpiCHO cells (invitrogen A2910002) were transfected with the plasmid using the Gibco ExpiCHO Expression System (GIbco A29129), cultured for 14 days, and the culture supernatant was collected. The antibody was obtained by purifying the culture supernatant using a protein A column (MonoSpin ProA, GL Science 7510-11314).
 この得られたキメラ組み換え抗体BP1206キメラ抗体が、in vitroにおいて細胞傷害性を有するかどうかを、実施例1と同じ方法を用いて調べた。陽性対照として抗体LN-3を、陰性対照としてアイソタイプコントロール抗体を、それぞれ用いた。結果を図6に示す。この結果からも示されるように、BP1206キメラ抗体は、抗体LN-3よりも高い細胞傷害性を有することが示された。 Using the same method as in Example 1, it was examined whether the obtained chimeric recombinant antibody BP1206 chimeric antibody had cytotoxicity in vitro. The antibody LN-3 was used as a positive control, and the isotype control antibody was used as a negative control. The results are shown in Figure 6. As also shown by this result, it was shown that the BP1206 chimeric antibody had higher cytotoxicity than the antibody LN-3.
 実施例7:担がんマウスへの薬効(1)
 本実施例においては、実施例6において得られたBP1206キメラ抗体の、生体内における腫瘍に対する抗腫瘍作用を調べた。
Example 7: Drug effect on cancer-bearing mice (1)
In this example, the antitumor effect of the BP1206 chimeric antibody obtained in Example 6 on tumor in vivo was examined.
 マウスNOD/Shi-scid,IL-2RγKO Jic(一般名:NOGマウス, インビボサイエンス)に、ホジキンリンフォーマ細胞株L428細胞(5×10e6 cells)を側腹部皮下に移植した。腫瘍塊が100 mm3になったところで腫瘍径に基づいて群分けし、BP1206キメラ抗体もしくはアイソタイプコントロール抗体を、10 mg/kgとなるように溶液にして、4日に一度の頻度で合計4回、腹腔投与した(n=10)。BP1206キメラ抗体の初回投与日から42日間、体重および腫瘍径を週に2回の頻度で測定した。さらに、42日間の観察期間終了後、腫瘍を摘出してその重量を測定した。 Hodgkin lymphoma cell line L428 cells (5×10e6 cells) were transplanted subcutaneously into the flank of a mouse NOD/Shi-scid, IL-2RγKOJic (generic name: NOG mouse, in vivo science). When the tumor mass reached 100 mm3, it was divided into groups based on the tumor diameter, and the BP1206 chimeric antibody or isotype control antibody was made into a solution at 10 mg/kg, and a total of 4 times at a frequency of once every 4 days. It was intraperitoneally administered (n=10). Body weight and tumor diameter were measured twice a week for 42 days from the first administration day of the BP1206 chimeric antibody. Further, after the observation period of 42 days was over, the tumor was excised and its weight was measured.
 腫瘍径から算出した平均腫瘍体積について評価したところ、アイソタイプコントロール抗体群ではDay 42まで増加し続けたが、一方、BP1206キメラ抗体群では減少し続け、Day 5以降、アイソタイプコントロール抗体群と比較して統計学的に有意な低値を示した(図7(A))。また、BP1206キメラ抗体群のうち一例においては体内の腫瘍細胞が消失した。 When the mean tumor volume calculated from the tumor diameter was evaluated, the isotype control antibody group continued to increase until Day 42, while the BP1206 chimeric antibody group continued to decrease, and compared to the isotype control antibody group after Day 5. It showed a statistically significant low value (Fig. 7(A)). Further, in one example of the BP1206 chimeric antibody group, tumor cells in the body disappeared.
 平均体重値について評価したところ、アイソタイプコントロール抗体群及びBP1206キメラ抗体群ともに増加し、二群間に統計学的に有意な差はみられなかった(図7(B))。しかし、42日間の観察期間終了後の平均腫瘍重量について評価したところ、BP1206キメラ抗体群において、アイソタイプコントロール抗体群と比較して、統計学的に有意な低値を示した(図7(C))。 When the average body weight value was evaluated, both the isotype control antibody group and the BP1206 chimera antibody group increased, and there was no statistically significant difference between the two groups (Fig. 7(B)). However, when the average tumor weight after the observation period of 42 days was evaluated, the BP1206 chimeric antibody group showed a statistically significant low value as compared with the isotype control antibody group (FIG. 7(C)). ).
 実施例8:担がんマウスへの薬効(2)(用量反応性試験)
 本実施例においては、実施例6において得られたBP1206キメラ抗体の、生体内における腫瘍に対する抗腫瘍作用の用量反応性を調べた。
Example 8: Drug effect on cancer-bearing mice (2) (dose-response test)
In this example, the dose-responsiveness of the anti-tumor effect of the BP1206 chimeric antibody obtained in Example 6 on tumor in vivo was examined.
 マウスNOD/Shi-scid,IL-2RγKO Jicにホジキンリンフォーマ細胞株L428細胞(5x10e6 cells)を側腹部皮下に移植した。腫瘍塊が100 mm3になったところで腫瘍径に基づいて群分けし、BP1206キメラ抗体を10 mg/kg、5 mg/kg、1 mg/kg、アイソタイプコントロール抗体を10 mg/kgとなるように溶液にして、4日に一度の頻度で合計4回、腹腔投与した(n=10)。BP1206キメラ抗体の初回投与日から42日間、体重および腫瘍径を週に2回の頻度で測定した。さらに、42日間の観察期間終了後、腫瘍を摘出してその重量を測定した。 Hodgkin lymphoma cell line L428 cells (5x10e6 cells) were transplanted subcutaneously into the flank of mouse NOD/Shi-scid, IL-2RγKOJic. When the tumor mass reaches 100 mm3, divide into groups based on the tumor diameter, and use BP1206 chimeric antibody at 10 mg/kg, 5 mg/kg, 1 mg/kg and isotype control antibody at 10 mg/kg. Then, the rats were intraperitoneally administered once every 4 days for a total of 4 times (n=10). Body weight and tumor diameter were measured twice a week for 42 days from the first administration day of the BP1206 chimeric antibody. Further, after the observation period of 42 days was over, the tumor was excised and its weight was measured.
 腫瘍径から算出した平均腫瘍体積について評価したところ、アイソタイプコントロール抗体群ではDay 42まで増加し続けたが、一方、BP1206キメラ抗体10 mg/kg投与群および5 mg/kg投与群では減少し、アイソタイプコントロール抗体群と比較して統計学的に有意な低値を示した。一方、BP1206キメラ抗体1 mg/kg投与群は観察期間中の35日目において、アイソタイプコントロール抗体群と比較して統計学的に有意な低値を示した(図8(A))。 When the average tumor volume calculated from the tumor diameter was evaluated, the isotype control antibody group continued to increase until Day 42, while it decreased in the BP1206 chimeric antibody 10 mg/kg administration group and 5 mg/kg administration group, and the isotype It showed a statistically significant lower value than the control antibody group. On the other hand, the BP1206 chimeric antibody 1 mg/kg administration group showed a statistically significant low value as compared with the isotype control antibody group on the 35th day during the observation period (FIG. 8(A)).
 平均体重値について評価したところ、全群で増加し、4群間に統計学的に有意な差はみられなかった(図8(B))。一方、42日間の観察期間終了後の平均腫瘍重量について、BP1206キメラ抗体10 mg/kg投与群および5 mg/kg投与群では、アイソタイプコントロール抗体群と比較して統計学的に有意な低値を示し(図8(C))、そのうちBP1206キメラ抗体10 mg/ml投与群のうちの3例では、体内から腫瘍の消失が認められた。 When the average weight value was evaluated, it increased in all groups, and no statistically significant difference was observed among the 4 groups (Fig. 8(B)). On the other hand, the mean tumor weight after the 42-day observation period was statistically significantly lower in the BP1206 chimeric antibody 10 mg/kg and 5 mg/kg groups than in the isotype control antibody group. As shown in FIG. 8(C), the tumor disappeared from the body in 3 of the 10 mg/ml BP1206 chimeric antibody administration groups.
 実施例9:担がんマウスへの薬効(3)(サロゲート抗体を用いた確認)
 本実施例においては、実施例6において得られたBP1206キメラ抗体に対するサロゲート抗体(動物の抗原に交差する抗体、抗マウスMHC class II抗体)を使用して、BP1206キメラ抗体が有するがん細胞に対する効果が、宿主と移植されるがん細胞とのあいだの種差により影響を受けていたかどうかを確認した。
Example 9: Drug effect on cancer-bearing mice (3) (confirmation using surrogate antibody)
In this example, using a surrogate antibody against the BP1206 chimeric antibody obtained in Example 6 (antibody that crosses animal antigen, anti-mouse MHC class II antibody), the effect on cancer cells of the BP1206 chimeric antibody , But was affected by species differences between the host and the transplanted cancer cells.
 マウスC57BL/6(日本クレア、7週齢、メス)に、マウスT細胞リンフォーマ細胞株E.G7細胞変異体(5×10e6 cells)を側腹部皮下に移植した。本実施例において使用した細胞は、EG7細胞(ATCC(登録商標) CRL-2113 TM)に対してMHC Class IIの発現を誘導する転写因子であるCIITAを強制発現させて作製した変異体である。 Mouse C57BL/6 (CLEA Japan, 7 weeks old, female) was subcutaneously implanted with the mouse T cell lymphoma cell line E.G7 cell mutant (5×10e6 cells) in the flank. The cells used in this example are mutants prepared by forcibly expressing CIITA, which is a transcription factor that induces the expression of MHC Class II, in EG7 cells (ATCC (registered trademark) CRL-2113 ).
 E.G7細胞の移植三日後に、一群にはサロゲート抗体である抗マウスMHC class II抗体(M5/114clone, Bioxcell)を、別の一群にはアイソタイプコントロール抗体を、それぞれ10 mg/kgとなるように、4日に一度の頻度で合計4回、腹腔投与した(n=6)。残る一群には、陰性対照として、リン酸緩衝液(PBS)を同スケジュールで投与した。抗マウスMHC class II抗体の初回投与日から21日間、体重および腫瘍径を週に2回の頻度で測定した。 Three days after transplantation of E.G7 cells, one group will receive anti-mouse MHC class II antibody (M5/114 clone, Bioxcell) that is a surrogate antibody, and another group will receive 10 mg/kg of isotype control antibody. The mice were intraperitoneally administered once every 4 days for a total of 4 times (n=6). Phosphate buffer solution (PBS) was administered to the remaining group as a negative control on the same schedule. Body weight and tumor diameter were measured twice a week for 21 days from the first administration of anti-mouse MHC class II antibody.
 腫瘍径から算出した平均腫瘍体積について評価したところ、アイソタイプコントロール抗体投与群およびPBS投与群では、Day 21まで大幅に増加し続けたが、一方、抗マウスMHC class II抗体投与群では体積の上昇が相対的に抑制され、Day 10の時点において、アイソタイプコントロール抗体投与群およびPBS投与群と比較して、統計学的に有意な低値を示した(図9(A))。また、抗マウスMHC class II抗体投与群のうち一例においては体内の腫瘍細胞が消失した。 When the average tumor volume calculated from the tumor diameter was evaluated, the isotype control antibody-administered group and the PBS-administered group continued to increase significantly until Day 21, while the anti-mouse MHC class II antibody-administered group showed an increase in volume. It was relatively suppressed, and showed a statistically significant low value at Day 10 as compared with the isotype control antibody administration group and the PBS administration group (FIG. 9(A)). In addition, tumor cells in the body disappeared in one of the anti-mouse MHC class II antibody-administered groups.
 平均体重値について評価したところ、抗マウスMHC class II抗体投与群、アイソタイプコントロール抗体投与群及びPBS投与群のいずれにおいてもわずかずつ増加し、三群間に統計学的に有意な差はみられなかった(図9(B))。 When we evaluated the mean body weight, it increased slightly in each of the anti-mouse MHC class II antibody administration group, the isotype control antibody administration group, and the PBS administration group, and there was no statistically significant difference between the three groups. (Fig. 9(B)).
 続いて、抗マウスMHC class II抗体投与群のマウス個体体内において腫瘍細胞に対する免疫誘導を調べた。マウスの脾臓を採取し、GentleMacs(ミルテニー)を用いて組織を破砕した後、APC-CMV-tetramer(MBL, TS-0020-2C)、BV421-抗CD3抗体(Biolegend,300434)およびFITC-抗CD8抗体(Biolegend, 300906)を用いて染色し、FACS解析に供試した。CD3およびCD8陽性細胞におけるテトラマー陽性細胞割合に基づき、ペプチド特異的なT細胞誘導を評価した。 Next, we examined the immunity induction against tumor cells in the individual mice of the anti-mouse MHC class II antibody-administered group. After collecting the mouse spleen and disrupting the tissue using GentleMacs (Milteny), APC-CMV-tetramer (MBL, TS-0020-2C), BV421-anti-CD3 antibody (Biolegend, 300434) and FITC-anti-CD8 The cells were stained with an antibody (Biolegend, 300906) and subjected to FACS analysis. Peptide-specific T cell induction was evaluated based on the proportion of tetramer positive cells in CD3 and CD8 positive cells.
 この結果、抗マウスMHC class II抗体投与群のマウス個体体内において、モデル抗原(Ova)に対する免疫誘導(図10(A))が確認された。本免疫誘導は、アイソタイプコントロール抗体投与群と比較して統計的有意性は示されなかったものの、腫瘍の完全消失個体において最も高い免疫誘導が確認され、腫瘍抑制と免疫誘導との相関が示唆された。本結果より、MHC ClassIIの標的としての妥当性が示唆された。 As a result, immunity induction against the model antigen (Ova) (Fig. 10(A)) was confirmed in the individual mice of the anti-mouse MHC class II antibody-administered group. Although this immunity induction did not show statistical significance compared with the isotype control antibody-administered group, the highest immunity induction was confirmed in individuals with complete tumor disappearance, suggesting a correlation between tumor suppression and immunity induction. It was From these results, the validity as a target of MHC Class II was suggested.
 HLA-DRは腫瘍細胞以外に樹状細胞(DC)に発現していることから、本発明の抗体が樹状細胞に与える影響について評価した。DCはcDC1とcDC2に分類することができ、外来抗原を認識してTILを活性化するプロセスには特にcDC1が寄与していることが知られている。本試験では、抗体を投与したマウスにおける、脾臓中の全細胞に対するDCの割合、さらにDCの中でのcDC1細胞の割合、およびcDC2細胞の割合に基づき、抗体投与が脾臓中のDCに与える影響を評価した。マウスから採取した脾臓をGentleMACS(ミルテニー)にて破砕し、DCマーカーであるMHC ClassIIおよびCD11a、cDC1マーカーであるXCR1、cDC2マーカーであるCD172aに対する蛍光標識抗体(それぞれPE-Cy7標識anti-MHC ClassII(biolegend, 107630) FITC標識anti-CD11a(biolegend,117306), APC標識anti-XCR(biolegend,148206), PE標識anti-CD172a(biolegend,144011)を用いて染色し、FACS解析に供試した。HLA-DRおよびCD11a陽性細胞の発現に基づきDC割合を算出し、更にXCR1およびCD172aの発現割合に基づき、DC中のcDC1およびcDC2の割合を算出した。脾臓中の全細胞に対するDCの割合、DCの中でのcDC1細胞の割合、およびcDC2細胞の割合は、アイソタイプコントロール抗体投与群およびサロゲート抗体投与群においてそれぞれ、2.17 ± 0.1%および2.0± 0.1%、70.64 ± 2.6%および73.4 ± 1.3%、11.04 ± 1.3%および11.4 ± 1.3%であった。 Since HLA-DR is expressed in dendritic cells (DC) in addition to tumor cells, the effect of the antibody of the present invention on dendritic cells was evaluated. DC can be classified into cDC1 and cDC2, and it is known that cDC1 particularly contributes to the process of recognizing a foreign antigen and activating TIL. In this study, the effect of antibody administration on DC in spleen was determined based on the ratio of DC to total cells in the spleen, the ratio of cDC1 cells in DC, and the ratio of cDC2 cells in mice treated with antibody. Was evaluated. Spleens collected from mice were disrupted with GentleMACS (Milteny) and fluorescently labeled antibodies against DC markers MHC Class II and CD11a, cDC1 marker XCR1 and cDC2 marker CD172a (PE-Cy7 labeled anti-MHC Class II (respectively). Biolegend, 107630) FITC-labeled anti-CD11a (biolegend, 117306), APC-labeled anti-XCR (biolegend, 148206), PE-labeled anti-CD172a (biolegend, 144011) were used for FACS analysis. -The DC ratio was calculated based on the expression of DR and CD11a-positive cells, and the ratio of cDC1 and cDC2 in DC was calculated based on the expression ratio of XCR1 and CD172a. The percentages of cDC1 cells and cDC2 cells were 2.17 ± 0.1% and 2.0 ± 0.1%, 70.64 ± 2.6% and 73.4 ± 1.3%, 11.04 ± in the isotype control antibody-administered group and the surrogate antibody-administered group, respectively. It was 1.3% and 11.4±1.3%.
 この結果、アイソタイプコントロール抗体投与群と比較して、抗マウスMHC class II抗体投与群において、マウス個体の脾臓中の全細胞に対する樹状細胞(DC)の割合、DCの中でのcDC1細胞の割合、およびcDC2細胞の割合のいずれについても有意差は認められなかった(図10(B))。したがって、投与する抗体の種類による脾臓中DCへの影響は認められず、オンターゲットの毒性は認められないことが明らかになった。 As a result, in the anti-mouse MHC class II antibody-administered group, the ratio of dendritic cells (DC) to the total cells in the mouse spleen and the ratio of cDC1 cells in DC were compared with the isotype control antibody-administered group. , And the proportion of cDC2 cells were not significantly different (FIG. 10(B)). Therefore, it was revealed that the type of antibody to be administered had no effect on DC in the spleen and no on-target toxicity was observed.
 実施例10:正常細胞への影響
 本実施例においては、BP1206キメラ抗体がHLA-DRを発現する正常細胞に対して与える影響について評価した。
Example 10: Effect on normal cells In this example, the effect of the BP1206 chimeric antibody on normal cells expressing HLA-DR was evaluated.
 末梢血単核細胞(PBMC)に含まれるB細胞は、HLA-DRを発現する正常細胞であり、臨床で抗HLA-DR抗体を投与した場合に影響を受けうる細胞と考えられる。このことから、同細胞に与える影響について評価した。比較対照として、HLA-DRを発現していないT細胞への影響も同時に解析した。 B cells included in peripheral blood mononuclear cells (PBMC) are normal cells that express HLA-DR, and are considered to be cells that can be affected clinically when anti-HLA-DR antibody is administered. From this, the effect on the same cells was evaluated. As a comparative control, the effect on T cells that did not express HLA-DR was also analyzed.
 健常者ヒト由来末梢血単核球(PBMC;Precision Bioservices社)を10e8 cells/mlに調製し、フィッシャーチューブに100μlずつ(細胞数では10e7 cellsずつ)分注し、BP1206キメラ抗体を終濃度1μg/mlになるように添加した。37℃のウォーターバスで二時間インキュベートした後、細胞を96 well U底プレートに移して回収し、FITC-CD19(Biolegend 302205)、BV421-CD3(biolegend 300434)、Annexin V APC及び 7-AADにて染色した。フローサイトメトリー解析により、Annexin V APC及び7-AADの染色(アポトーシスを起こした細胞の染色)に基づいて、生細胞を検出した。 Normal human human-derived peripheral blood mononuclear cells (PBMC; Precision Bioservices) were prepared at 10e8 cells/ml, dispensed 100 μl (10e7 cells each in cell number) into a Fischer tube, and BP1206 chimeric antibody at a final concentration of 1 μg/ml. It was added so as to become ml. After incubating for 2 hours in a 37°C water bath, the cells are transferred to a 96 well U bottom plate and collected, and then FITC-CD19 (Biolegend 302205), BV421-CD3 (biolegend 300434), Annexin V APC and 7-AAD Stained. Viable cells were detected by flow cytometric analysis based on Annexin VAPC and 7-AAD staining (staining of apoptotic cells).
 生細胞中のB細胞(CD19陽性細胞)およびT細胞(CD3陽性細胞)それぞれについて、アイソタイプコントロール抗体を添加した場合の細胞数に対する割合を算出した(図11)。BP1206キメラ抗体は、B細胞(CD19陽性細胞)の存在比率を約60%低下させたが、一方でT細胞(CD3陽性細胞)の存在比率には影響を与えなかった。 For each of B cells (CD19 positive cells) and T cells (CD3 positive cells) in living cells, the ratio to the number of cells when the isotype control antibody was added was calculated (Fig. 11). The BP1206 chimeric antibody reduced the abundance of B cells (CD19 positive cells) by about 60%, while not affecting the abundance of T cells (CD3 positive cells).
 なお、上市済の抗体リツキシマブ(抗ヒトCD20ヒト・マウスキメラ抗体からなるモノクローナル抗体)の場合、B細胞の存在比率を90%低下させることが報告されており(Blood. 2010 Jun 24; 115(25): 5180-5190)、BP1206キメラ抗体のB細胞抑制はリツキシマブよりも軽微であることが示唆された。 In addition, it has been reported that the marketed antibody rituximab (a monoclonal antibody consisting of anti-human CD20 human/mouse chimeric antibody) reduces the abundance ratio of B cells by 90% (Blood. 2010 Jun 24; 115(25 ): 5180-5190), suggesting that the B cell suppression of the BP1206 chimeric antibody was less than that of rituximab.
 実施例11:固形癌細胞に対する細胞傷害性の評価(1)
 本実施例においては、BP1206キメラ抗体の、様々な由来の固形癌細胞に対する細胞傷害性効果を調べた。
Example 11: Evaluation of cytotoxicity against solid cancer cells (1)
In this example, the cytotoxic effect of the BP1206 chimeric antibody on solid cancer cells of various origins was examined.
 固形癌細胞として、本実施例においては、二種類のヒトメラノーマ由来細胞株(HT144(ATCC, HTB-63)およびA375(ATCC, CRL-1619))および二種類のヒト肺がん由来細胞株(COR-L105(ECACC、92031918)およびLU65(JCRB、0079))を使用し、これらの細胞に対するBP1206キメラ抗体の細胞傷害性効果を、これらの細胞の培養に適している三次元培養法を用いて評価した。 As solid cancer cells, in this example, two human melanoma-derived cell lines (HT144 (ATCC, HTB-63) and A375 (ATCC, CRL-1619)) and two human lung cancer-derived cell lines (COR- L105 (ECACC, 92031918) and LU65 (JCRB, 0079)) were used to assess the cytotoxic effect of the BP1206 chimeric antibody on these cells using a three-dimensional culture method suitable for culturing these cells. ..
 培地として、それぞれの細胞に対して:
・HT144細胞の培養には、MyCoy's 5A medium(GE, SH30200.01)
・A375細胞の培養には、2 mM GlutaMAX(Thermo, 35050061)、1 mM Sodium Pyruvate (Thermo, 11360070)、1500 mg/L Sodium bicarvonate(Thermo, 25080094)を含むDulbecco's Modified Eagle's Medium (DMEM)(Wako, 045-30285)
・COR-L105の培養には、RPMI1640 (Wako, 189-02025)
・LU65の培養には、RPMI1640 (Wako, 189-02025)
をそれぞれ用い、10%FBS(gibco, 10270-106)を添加して使用した。
As medium, for each cell:
・For culture of HT144 cells, MyCoy's 5A medium (GE, SH30200.01)
・For the culture of A375 cells, Dulbecco's Modified Eagle's Medium (DMEM) (Wako, containing 2 mM GlutaMAX (Thermo, 35050061), 1 mM Sodium Pyruvate (Thermo, 11360070), 1500 mg/L Sodium bicarvonate (Thermo, 25080094) (Wako, 045-30285)
・ RPMI1640 (Wako, 189-02025) for culturing COR-L105
・For culture of LU65, RPMI1640 (Wako, 189-02025)
Was used with 10% FBS (gibco, 10270-106) added.
 コロニー培養は、24 well plateを使用して実施した。0.5% agar含有培地0.3 mLをwellに添加してBed層とし、その上に、細胞および被験物質を含む0.3% agar含有培地0.3 mLを添加し、37℃ 5% CO2インキュベーター内で5日間培養を行った。 Colony culture was performed using a 24-well plate. Add 0.3 mL of 0.5% agar-containing medium to the well to form a Bed layer, and add 0.3 mL of 0.3% agar-containing medium containing cells and test substance on it, and incubate at 37°C in 5% CO 2 incubator for 5 days. I went.
 生細胞の割合を、MTT試薬(Cell Proliferation Kit I , Sigma, 11465007001)またはCalcein-AM(同仁化学, C396)を使用して測定した。MTT測定においては、細胞の培養上清100μlに対して10μlのMTT試薬(Cell Proliferation Kit I , Sigma, 11465007001)を添加し、37℃、5%CO2インキュベーター内で4時間インキュベートした。100μlの可溶化溶液を添加し、37℃、5%CO2インキュベーター内で一晩静置した後、マイクロプレートリーダーにて550 nmの吸収を測定し、生細胞量を算出した。Calcein-AM測定においては、反応後の培養上清にCalcein-AM溶液を終濃度2μMとなるように添加して懸濁し、96well black plateに移して蛍光強度を測定した(ex /em =490/520)。 The ratio of viable cells was measured using MTT reagent (Cell Proliferation Kit I, Sigma, 11465007001) or Calcein-AM (Dojindo, C396). In the MTT measurement, 10 μl of MTT reagent (Cell Proliferation Kit I, Sigma, 11465007001) was added to 100 μl of cell culture supernatant, and the mixture was incubated at 37° C. in a 5% CO 2 incubator for 4 hours. After adding 100 μl of the solubilizing solution and allowing it to stand still at 37° C. in a 5% CO 2 incubator overnight, the absorption at 550 nm was measured by a microplate reader to calculate the viable cell amount. In Calcein-AM measurement, Calcein-AM solution was added to the culture supernatant after the reaction so that the final concentration was 2 μM and suspended, and the fluorescence intensity was measured by transferring to a 96-well black plate (ex /em =490/ 520).
 コロニー培養法を採用した際の結果を図12に示す。本実施例において検討した二種類のヒトメラノーマ由来細胞(HT144およびA375)および二種類のヒト肺がん由来細胞(COR-L105およびLU65)のいずれにおいても、BP1206キメラ抗体の添加により、腫瘍細胞の生存率が低下していることが明らかになった。これらの細胞のうち、特にヒトメラノーマ由来細胞であるHT144細胞に対しては、生細胞の割合を40%程度まで低下させる顕著な効果が示された。 Figure 12 shows the results when the colony culture method was adopted. In both of the two types of human melanoma-derived cells (HT144 and A375) and the two types of human lung cancer-derived cells (COR-L105 and LU65) examined in this Example, the survival rate of tumor cells was obtained by adding the BP1206 chimeric antibody. It has become clear that Among these cells, especially for human melanoma-derived cells, HT144 cells, a remarkable effect of reducing the ratio of viable cells to about 40% was shown.
 実施例12:固形癌細胞に対する細胞傷害性の評価(2)
 本実施例においては、BP1206キメラ抗体の、様々な由来の固形癌細胞に対する細胞傷害性効果および抗がん剤との併用効果を調べた。
Example 12: Evaluation of cytotoxicity against solid cancer cells (2)
In this example, the cytotoxic effect of BP1206 chimeric antibody on solid cancer cells of various origins and the combined effect with anticancer agents were examined.
 固形癌細胞として、本実施例においては、三種類のヒトメラノーマ由来細胞株((Hs 852.T(ATCC CRL-7585)、C32(ATCC CRL-1585)およびSK-MEL-24(ATCC HTB-71))を使用し、これらの細胞に対するBP1206キメラ抗体の細胞傷害性効果を、平面培養または浮遊系を用いて評価した。 As solid cancer cells, in this example, three human melanoma-derived cell lines ((Hs852.T (ATCC CRL-7585), C32 (ATCC CRL-1585) and SK-MEL-24 (ATCC HTB-71) )) was used to evaluate the cytotoxic effect of the BP1206 chimeric antibody on these cells using a flat culture or a suspension system.
 培地として、それぞれの細胞に対して:
・Hs 852.T細胞の培養には、L-Glutamine含有Dulbecco’s Modified Eagle’s Medium(DMEM) ,High Glucose含有(Wako, 044-29765)
・C32細胞の培養には、Eagle's Minimum Essential Medium (EMEM)(Wako, 055-08975)
・SK-MEL-24の培養には、Eagle's Minimum Essential Medium (EMEM)(Wako, 055-08975)
をそれぞれ用い、10%FBS(gibco, 10270-106)を添加して使用した。
As medium, for each cell:
・For culture of Hs 852.T cells, L-Glutamine-containing Dulbecco's Modified Eagle's Medium (DMEM) and High Glucose (Wako, 044-29765)
・For C32 cell culture, Eagle's Minimum Essential Medium (EMEM) (Wako, 055-08975)
・For SK-MEL-24 culture, Eagle's Minimum Essential Medium (EMEM) (Wako, 055-08975)
Was used with 10% FBS (gibco, 10270-106) added.
 平面培養においては、96well plateに各細胞を播種(C32細胞:5×103cells/well、Hs 852.T細胞:7.7×103cells/well)し、そこに各被験薬を添加して4日間培養した後、培養上清を用いてMTT試験およびLDH試験を実施した。
浮遊系においては、接着細胞を培養フラスコから剥がし1×106cells/mLとなるように調製した懸濁液0.1mLに被験薬およびPI(終濃度2μM)を添加し、サーマルサイクラーにて37℃で2時間反応させた。反応液にCalcein-AM溶液(終濃度2μM)を添加して懸濁し、96well black plateに移して蛍光強度を測定した。
In flat culture, seed each cell on a 96-well plate (C32 cells: 5 × 10 3 cells/well, Hs 852.T cells: 7.7 × 10 3 cells/well) and add each test drug there After culturing for one day, MTT test and LDH test were performed using the culture supernatant.
In the suspension system, remove the adherent cells from the culture flask and add 1 × 10 6 cells/mL suspension to 0.1 mL of the test drug and PI (final concentration 2 μM), and use a thermal cycler at 37°C. And reacted for 2 hours. Calcein-AM solution (final concentration 2 μM) was added to the reaction solution to suspend it, and the suspension was transferred to a 96-well black plate to measure the fluorescence intensity.
 C32細胞に対しては、メラノーマの標準治療薬として使用されているベムラフェニブ(SIGMA、S1267)の併用効果を調べた。平面培養の場合、細胞培養開始後24時間後にベムラフェニブ1000 nMを添加した。浮遊系の場合、BP1206キメラ抗体添加と同一のタイミングでベムラフェニブ1000 nMを添加した。 For C32 cells, we investigated the combined effect of Vemurafenib (SIGMA, S1267), which is used as a standard therapeutic drug for melanoma. In the case of flat culture, Vemurafenib 1000 nM was added 24 hours after the start of cell culture. In the case of the suspension system, Vemurafenib 1000 nM was added at the same timing as the addition of the BP1206 chimeric antibody.
 生細胞の割合を、MTT試薬(Cell Proliferation Kit I , Sigma, 11465007001)またはCalcein-AM(同仁化学, C396)を使用して、そして死細胞数についてはPI(Propidium Iodide、同仁化学, P378)またはLDH(同仁化学, CK17)を使用して、それぞれ測定した。MTT試薬またはCalcein-AMを使用した生細胞の割合の測定は実施例11に記載した通り行った。PIを使用した死細胞数の測定は、反応溶液に予めPIを1.5μMとなるように添加し、反応終了後に培養上清を96 well black plateに移して蛍光強度を測定することにより行った(ex /em =535/617)。 The ratio of viable cells was determined using MTT reagent (Cell Proliferation Kit, I, Sigma, 11465007001) or Calcein-AM (Dojindo, C396), and dead cell number was PI (Propidium Iodide, Dojindo, P378) or LDH (Dojindo, CK17) was used for each measurement. Measurement of the percentage of viable cells using MTT reagent or Calcein-AM was performed as described in Example 11. The number of dead cells was measured using PI by adding PI to the reaction solution to 1.5 μM in advance, and after the reaction was completed, the culture supernatant was transferred to a 96 well black plate and the fluorescence intensity was measured ( ex /em =535/617).
 LDH試験は、細胞死に付随する細胞膜傷害により細胞外へ漏れ出すLDH(乳酸脱水素酵素)の活性に基づき、細胞死を定量評価する試験方法である。具体的には、培養上清に対してLDHの基質である乳酸、補因子であるNAD+、および発色基質であるWST-8テトラゾリウム塩を添加し、酵素の触媒過程で生成するNADHによってWST-8テトラゾリウム塩が還元・呈色する原理を用い、呈色後の吸光度(450 nm)から死細胞量を間接的に定量した。 The LDH test is a test method that quantitatively evaluates cell death based on the activity of LDH (lactate dehydrogenase) that leaks out of cells due to cell membrane damage accompanying cell death. Specifically, lactic acid which is a substrate of LDH, NAD+ which is a cofactor, and WST-8 tetrazolium salt which is a chromogenic substrate are added to the culture supernatant, and WST-8 is produced by NADH produced in the catalytic process of the enzyme. The amount of dead cells was indirectly quantified from the absorbance (450 nm) after coloring using the principle that tetrazolium salt was reduced and colored.
 結果を図13に示す。本実施例において検討した三種類のヒトメラノーマ由来細胞株(Hs 852.T細胞、C32細胞およびSK-MEL-24細胞)のいずれにおいても、BP1206キメラ抗体の添加により、腫瘍細胞の生存率が低下していることが明らかになった。さらに、これらの細胞のうち、C32細胞に対しては、BP1206キメラ抗体とベムラフェニブの併用効果を確認したが、この条件では、生細胞の割合が平面培養の際には39%にまで、浮遊培養の際には59%まで低下させる、顕著な効果が示された。 The results are shown in Figure 13. In all of the three human melanoma-derived cell lines (Hs852.T cells, C32 cells and SK-MEL-24 cells) examined in this Example, addition of the BP1206 chimeric antibody reduced the survival rate of tumor cells. It became clear that they are doing. Furthermore, among these cells, we confirmed the combined effect of BP1206 chimeric antibody and vemurafenib on C32 cells, but under these conditions, the proportion of viable cells was up to 39% in flat culture, and suspension culture In the case of, it showed a remarkable effect of reducing it to 59%.
 実施例13:固形癌細胞に対する細胞傷害性の用量反応性評価(3次元培養法)
 本実施例においては、BP1206キメラ抗体の、固形癌細胞に対する細胞傷害性効果の用量反応性を調べた。
Example 13: Evaluation of dose response of cytotoxicity to solid cancer cells (three-dimensional culture method)
In this example, the dose response of the cytotoxic effect of BP1206 chimeric antibody on solid cancer cells was examined.
 固形癌細胞として、二種類のメラノーマ細胞株(HT144(ATCC, HTB-63)およびA375(ATCC, CRL-1619))を使用し、これらの細胞に対するBP1206キメラ抗体の細胞傷害性効果を、より生態環境に近い条件である三次元培養法を用いて評価した。 Using two types of melanoma cell lines (HT144 (ATCC, HTB-63) and A375 (ATCC, CRL-1619)) as solid cancer cells, the cytotoxic effect of the BP1206 chimeric antibody on these cells was further investigated. Evaluation was performed using a three-dimensional culture method, which is a condition close to the environment.
 培地として、HT144細胞の培養には、0.5%Agar(Difco, 526-00054)および10%FBS(gibco, 10270-106)を含むMyCoy's 5A medium(GEヘルスケア、SH30200.01)を用い、A375細胞の培養には、0.5%Agarおよび10%FBSを含むDMEM(和光純薬、044-29765)を用いた。はじめに上記培地を24 well plateに0.3 ml/wellで分注し、4℃で冷やし固めてベッド層とした。常温に戻した後、細胞およびBP1206キメラ抗体をベッド層と同じ培地を用いて6×104 cells/mlになるように調製し、ベッド層の上に0.3 ml/wellで添加した。シスプラチンまたはベムラフェニブの併用効果を調べる場合には、BP1206キメラ抗体とともにシスプラチン(SIGMA、PHR1624、2μM)またはベムラフェニブ(SIGMA、S1267、HT144細胞の場合300 nM、A375細胞の場合600 nM)を指定用量となるように混合し、同様にベッド層の上に0.3 ml/wellで添加した。4℃で冷やし固めた後に常温に戻し、37℃、5%CO2インキュベーター内で5日間培養した。 As culture medium, MyCoy's 5A medium (GE Healthcare, SH30200.01) containing 0.5% Agar (Difco, 526-00054) and 10% FBS (gibco, 10270-106) was used to culture HT144 cells. DMEM (Wako Pure Chemical Industries, 044-29765) containing 0.5% Agar and 10% FBS was used for culturing. First, the above medium was dispensed on a 24-well plate at 0.3 ml/well, cooled at 4° C. and solidified to form a bed layer. After returning to room temperature, cells and BP1206 chimeric antibody were prepared at 6×10 4 cells/ml using the same medium as the bed layer, and added at 0.3 ml/well on the bed layer. When examining the combined effect of cisplatin or vemurafenib, the specified dose is cisplatin (SIGMA, PHR1624, 2 μM) or vemurafenib (SIGMA, S1267, HT144 cells 300 nM, A375 cells 600 nM) together with the BP1206 chimeric antibody. The mixture was mixed in the same manner, and similarly added at 0.3 ml/well on the bed layer. After cooling at 4°C to solidify, the temperature was returned to room temperature, and the cells were cultured at 37°C in a 5% CO 2 incubator for 5 days.
 培地100μlに対して10μlのMTT試薬(Cell Proliferation Kit I , Sigma, 11465007001)を添加し、37℃、5%CO2インキュベーター内で4時間インキュベートした。100μlの可溶化溶液を添加し、37℃、5%CO2インキュベーター内で一晩静置した後、マイクロプレートリーダーにて550 nmの吸収を測定し、生細胞量を算出した。 10 μl of MTT reagent (Cell Proliferation Kit I, Sigma, 11465007001) was added to 100 μl of the medium, and the mixture was incubated at 37° C. in a 5% CO 2 incubator for 4 hours. After adding 100 μl of the solubilizing solution and allowing it to stand still at 37° C. in a 5% CO 2 incubator overnight, the absorption at 550 nm was measured by a microplate reader to calculate the viable cell amount.
 細胞をBP1206キメラ抗体で処理した後の、細胞死誘導(生細胞量測定に基づく相対値)についての結果を図14に示す。この図14において、(A)HT144細胞に対する、BP1206キメラ抗体とシスプラチンの併用、(B)HT144細胞に対する、BP1206キメラ抗体とベムラフェニブの併用、(C)A375細胞に対する、BP1206キメラ抗体とベムラフェニブの併用、により誘導される細胞死比率を示す。BP1206キメラ抗体は、両細胞株に対して用量依存的な生存抑制効果を示した(図14)。また、生存抑制効果は、BP1206キメラ抗体に対してシスプラチンもしくはベムラフェニブを併用することで相加的以上に増強した。 Figure 14 shows the results of cell death induction (relative value based on viable cell mass measurement) after treating cells with the BP1206 chimeric antibody. In this Figure 14, (A) HT144 cells, BP1206 chimeric antibody and cisplatin combination, (B) HT144 cells, BP1206 chimeric antibody and Vemurafenib combination, (C) A375 cells, BP1206 chimeric antibody and Vemurafenib combination, The cell death rate induced by is shown. The BP1206 chimeric antibody showed a dose-dependent survival inhibitory effect on both cell lines (Fig. 14). The survival inhibitory effect was enhanced more than additively by using cisplatin or vemurafenib in combination with the BP1206 chimeric antibody.
 実施例14:細胞死誘導に伴う細胞形態変化の観察
 本実施例においては、BP1206キメラ抗体ががん細胞の細胞死を誘導する際に、がん細胞に対して生じさせる細胞形態変化を示した。
Example 14: Observation of cell morphological change associated with cell death induction In this example, when the BP1206 chimeric antibody induces cell death of cancer cells, cell morphological changes caused by cancer cells were shown. ..
 L428細胞を培地に懸濁し、50,000 cells/50μlの濃度でPCRチューブ(日本ジェネティクス、FG-008FC)に播種した後、BP1206キメラ抗体溶液(50μl)を終濃度10μg/mLとなるように添加して、37℃で1時間インキュベートした。遠心分離処理にて細胞を回収し、1%グルタルアルデヒド溶液(ナカライ、1700392)に懸濁して一晩固定した後、卓上電子顕微鏡Miniscope TM3030Plu(日立)にて細胞形状を解析した(図15)。 L428 cells were suspended in the medium and seeded in a PCR tube (Nippon Genetics, FG-008FC) at a concentration of 50,000 cells/50 μl, and then the BP1206 chimeric antibody solution (50 μl) was added to a final concentration of 10 μg/mL. And incubated at 37°C for 1 hour. The cells were collected by centrifugation, suspended in a 1% glutaraldehyde solution (Nacalai, 1700392) and fixed overnight, and then the cell shape was analyzed with a tabletop electron microscope Miniscope TM3030Plu (Hitachi) (Fig. 15).
 BP1206キメラ抗体の添加による細胞の凝集が観察され、その後細胞死が誘導されたことから、重合が細胞死誘導のトリガーになっている可能性が示唆された。 Aggregation of cells was observed by addition of the BP1206 chimeric antibody, and cell death was induced thereafter, suggesting that polymerization may be a trigger for cell death induction.
 実施例15:免疫学的細胞死(Immunogenic cell death)誘導評価
 本実施例においては、BP1206キメラ抗体を担癌マウスに投与した際の、腫瘍における免疫学的細胞死(Immunogenic cell death、以下ICDとも記載する)マーカーの分泌に基づき、当該抗体のICD誘導能を評価した。
Example 15: Immunological cell death (Immunogenic cell death) induction evaluation In this example, when the BP1206 chimeric antibody was administered to tumor-bearing mice, immunological cell death in tumor (Immunogenic cell death, hereinafter also referred to as ICD) Based on the secretion of the marker (described), the ICD-inducing ability of the antibody was evaluated.
 マウスCB17.Cg-PrkdcscidLystbg-J/CrlCrlj(一般名:SCID-Beige)に、ホジキンリンフォーマ細胞株L428細胞(5×10e6 cells)を側腹部皮下に移植し、腫瘍塊が100 mm3を超えた個体に対して、BP1206キメラ抗体(10 mg/kg)、アイソタイプコントロール抗体(10 mg/kg)またはPBSを1回投与した(投与経路:腹腔、投与剤形:溶液)。実験例数は、BP1206キメラ抗体投与群及びアイソタイプコントロール抗体投与群について3例ずつ、PBS投与群について1例であった。 Mouse CB17.Cg-PrkdcscidLystbg-J/CrlCrlj (generic name: SCID-Beige) was subcutaneously transplanted with Hodgkin lymphoma cell line L428 cells (5×10e6 cells) into the flank, and the tumor mass exceeded 100 mm 3 . BP1206 chimeric antibody (10 mg/kg), isotype control antibody (10 mg/kg) or PBS was administered once to an individual (administration route: intraperitoneal, dosage form: solution). The number of experimental cases was 3 for the BP1206 chimeric antibody administration group and 3 for the isotype control antibody administration group, and 1 for the PBS administration group.
 抗体の最終投与日から4日後に腫瘍を摘出して4%パラホルムアルデヒドに48時間浸漬して固定した後、抗HMGB1抗体及び抗ヒトIgG抗体を用いた免疫染色に供試した。HMGB1は、もともとは核内に存在するタンパク質であるが、細胞死に伴って細胞質に放出されることが知られており、ICDマーカーとなることから、抗HMGB1抗体で染色することによりBP1206キメラ抗体のHMGB1分泌への影響を調べることができる。また、抗ヒトIgG抗体を用いた免疫染色は、BP1206キメラ抗体が動物体内で組織内に実際に浸潤したかどうかを確認する目的で行った。 Tumors were excised 4 days after the last administration of the antibody, immersed in 4% paraformaldehyde for 48 hours for fixation, and then subjected to immunostaining using anti-HMGB1 antibody and anti-human IgG antibody. HMGB1 is a protein that originally exists in the nucleus, but is known to be released into the cytoplasm with cell death, and since it serves as an ICD marker, it can be labeled with an anti-HMGB1 antibody to produce a BP1206 chimeric antibody. The effect on HMGB1 secretion can be investigated. In addition, immunostaining using an anti-human IgG antibody was performed for the purpose of confirming whether the BP1206 chimeric antibody actually infiltrated into the tissue in the animal body.
 染色は以下の手順にて実施した。薄切切片を作製し、BOND Dewax Solution (Reica、AR9222)および100%エタノールに順次浸漬して脱パラフィン処理を行った後、0.01 M PBSで洗浄し、BOND Epitope Retrieval Solution 1(Reica、AR9961)にて98℃で30分抗原賦活化処理を行った。0.01 M PBSで洗浄した後、抗-HMGB1抗体(GeneTex, GTX628834、750倍希釈)もしくはウサギ抗-ヒトIgG (H+L)抗体(Bethyl、A80-118A、10000倍希釈)を用いて室温で30分間反応を行った。 Dyeing was performed according to the following procedure. After preparing thin slices, submerge in BOND Dewax Solution (Reica, AR9222) and 100% ethanol to deparaffinize them, wash with 0.01M PBS, and use BOND Epitope Retrieval Solution1 (Reica, AR9961). Then, the antigen activation treatment was performed at 98°C for 30 minutes. After washing with 0.01M PBS, react with anti-HMGB1 antibody (GeneTex, GTX628834, 750-fold diluted) or rabbit anti-human IgG (H+L) antibody (Bethyl, A80-118A, 10,000-fold diluted) at room temperature for 30 minutes I went.
 0.01 M PBSで洗浄後、Novolink Polymer(Reica、DS9800)で室温で 8分反応させた。0.01 M PBSで洗浄後、Peroxidase Block(RE7101-CE、Reica)で室温で5分反応させた。0.01 M PBSで洗浄後、Mixed DAB Refine(Reica、DS9800)で室温で10分反応させた。0.01 M PBSで洗浄後、へマトキシンで室温で10分反応させ、脱イオン水で洗浄した後、100%エタノールおよびキシレンを用いて脱水処理し、顕微鏡観察に供試した。 After washing with 0.01M PBS, it was reacted with Novolink Polymer (Reica, DS9800) for 8 minutes at room temperature. After washing with 0.01M PBS, it was reacted with Peroxidase Block (RE7101-CE, Reica) for 5 minutes at room temperature. After washing with 0.01M PBS, it was reacted with Mixed DAB Refine (Reica, DS9800) at room temperature for 10 minutes. After washing with 0.01M PBS, reaction with hematoxin for 10 minutes at room temperature, washing with deionized water, dehydration treatment with 100% ethanol and xylene, and microscopic observation.
 結果を図16に示す。図16(A)及び(B)はBP1206キメラ抗体投与マウス、(C)及び(D)はアイソタイプコントロール抗体投与マウス、(E)及び(F)はPBS投与マウスの図であり、(A)、(C)及び(E)は腫瘍全体図、(B)、(D)及び(F)は強染色部位の拡大図である。それぞれの図において、L428細胞皮下移植モデルにおけるBP1206キメラ抗体のHMGB1分泌への影響(左)および腫瘍への浸潤(右)を示す。 The results are shown in Figure 16. 16(A) and (B) are BP1206 chimeric antibody-administered mice, (C) and (D) are isotype control antibody-administered mice, and (E) and (F) are PBS-administered mice, respectively. (C) and (E) are whole tumor views, and (B), (D) and (F) are enlarged views of strongly stained sites. In each figure, the effect of BP1206 chimeric antibody on HMGB1 secretion in the L428 cell subcutaneous transplant model (left) and tumor infiltration (right) are shown.
 この結果から、BP1206キメラ抗体投与マウスにおける組織像(A)及び(B)(拡大図)において、BP1206キメラ抗体投与に起因する腫瘍崩壊(壊死巣)領域でHMGB1の分泌が認められており、BP1206キメラ抗体の投与によりICDが誘導され、細胞核内からHMGB1が放出されたことが確認された。このことから、BP1206キメラ抗体が動物体内で組織内に実際に浸潤したことが示された。一方、アイソタイプコントロール抗体投与マウスにおける組織像(C)及び(D)(拡大図)及びPBS投与マウスにおける組織像(E)及び(F)(拡大図)においては、細胞核内からのHMGB1の放出が生じず、腫瘍崩壊(壊死)が起こっていないことが確認された。 From these results, in the histological images (A) and (B) (enlarged view) of the BP1206 chimera antibody-administered mouse, HMGB1 secretion was observed in the tumor lysis (necrotic focus) region caused by the BP1206 chimera antibody administration. It was confirmed that administration of the chimeric antibody induced ICD and released HMGB1 from the cell nucleus. From this, it was shown that the BP1206 chimeric antibody actually infiltrated into the tissue in the animal body. On the other hand, in the histological images (C) and (D) (enlarged view) of the isotype control antibody-administered mouse and the histological images (E) and (F) (enlarged view) of the PBS-administered mouse, the release of HMGB1 from the cell nucleus was observed. It did not occur and it was confirmed that tumor lysis (necrosis) did not occur.
 実施例16:抗体のヒト化
 本実施例においては、実施例6において作成したBP1206キメラ抗体の構造に基づいて、ヒト化組み換え抗体(以下、BP1206ヒト化抗体という)を設計し、その発現・精製を行った。
Example 16: Humanization of antibody In this example, a humanized recombinant antibody (hereinafter referred to as BP1206 humanized antibody) was designed based on the structure of the BP1206 chimeric antibody prepared in Example 6, and its expression/purification I went.
 抗体のヒト化は、公開ソフトウエアであるTabhu(http://circe.med.uniroma1.it/tabhu/)を用いて設計した。同ソフトを用いBP1206キメラ抗体と配列的・立体構造的に近い特性を有する配列をデータベースより抽出し、5種配列(ヒト抗体配列3種:AF107234、AF107237、3AB363085、ヒト化抗体配列2種:3L7F抗体、3EOA抗体)を候補配列としてピックアップして、これらの抗体のCDR領域以外の配列と、BP1206キメラ抗体のCDR領域の配列とのグラフティングを行った(それぞれの配列のF0系列)。 Humanization of the antibody was designed using Tabhu (http://circe.med.uniroma1.it/tabhu/), which is public software. Using this software, sequences having characteristics similar to those of the BP1206 chimeric antibody in terms of sequence and three-dimensional structure were extracted from the database, and 5 types of sequences (3 types of human antibody: AF107234, AF107237, 3AB363085, 2 types of humanized antibody: 3L7F) Antibodies, 3EOA antibodies) were picked up as candidate sequences, and the sequences other than the CDR regions of these antibodies were graphed with the sequences of the CDR regions of the BP1206 chimeric antibody (F0 series of each sequence).
 次に、5種類の抗体の配列のうち3種類のヒト抗体由来の配列について、一部のアミノ酸残基のマウス配列へのbackmutationを実施した(F1系列)。backmutation 対象のアミノ酸残基は、ヒト化抗体とマウス抗体において構造的差異が大きいこと(TubHuスコア上位)に基づいて、各配列10アミノ酸残基を上限として選定した。詳細は非特許文献(Bioinformatics. 2015 Feb 1;31(3):434-5)に記載の方法に従った。本作業により、合計8種類のBP1206ヒト化抗体配列を作製した(図17)。 Next, we performed backmutation of some of the amino acid residues of the 5 antibody sequences from 3 human antibodies to the mouse sequence (F1 series). The target amino acid residues for backmutation were selected with an upper limit of 10 amino acid residues for each sequence, based on the large structural difference between humanized antibody and mouse antibody (higher TubHu score). The details followed the method described in the non-patent document (Bioinformatics. 2015 Feb 1; 31(3):434-5). Through this work, a total of eight BP1206 humanized antibody sequences were produced (Fig. 17).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
 実施例17:ヒト化抗体の機能評価
 本実施例においては、実施例13で作成した8種類のBP1206ヒト化抗体の、がん細胞に対する細胞傷害活性を明らかにした。
Example 17: Functional evaluation of humanized antibody In this Example, the cytotoxic activity of the eight types of BP1206 humanized antibodies prepared in Example 13 against cancer cells was clarified.
 実施例13において作製したBP1206ヒト化抗体について、ホジキンリンフォーマ細胞株L428細胞に対するin vitroにおける細胞傷害性を評価した。L428細胞を、10%FBSを含むRPMI培地に1×106 cells/mlとなるように調製し、Propidium iodide(PI;DOJINDO, FE159)を終濃度2μMになるように添加後、50,000 cells/50μlの濃度でPCRチューブ(Fast gene, FG-1700)に播種した。それぞれのチューブに対して、実施例13で得られた8種類のBP1206ヒト化抗体の溶液(50μl)をそれぞれ添加し(抗体の終濃度10μg/mL)、37℃で1時間インキュベートした。細胞溶液をピペッティングにより懸濁した後、マイクロプレートリーダーにてPIの蛍光強度を測定し、死細胞割合を測定した(ex/em = 535nm/617nm)。8種類のBP1206ヒト化抗体は、BP1206キメラ抗体の30~70%の細胞死誘導活性を保持することが示された(図18)。 The BP1206 humanized antibody prepared in Example 13 was evaluated for in vitro cytotoxicity against Hodgkin lymphoma cell line L428 cells. L428 cells were prepared in RPMI medium containing 10% FBS at 1×10 6 cells/ml, and Propidium iodide (PI; DOJINDO, FE159) was added to a final concentration of 2 μM, then 50,000 cells/50 μl The cells were seeded in a PCR tube (Fast gene, FG-1700) at the concentration of. Eight types of BP1206 humanized antibody solutions (50 μl) obtained in Example 13 were added to each tube (final antibody concentration 10 μg/mL) and incubated at 37° C. for 1 hour. After suspending the cell solution by pipetting, the fluorescence intensity of PI was measured with a microplate reader to measure the dead cell ratio (ex/em=535 nm/617 nm). Eight types of BP1206 humanized antibodies were shown to retain 30-70% of the cell death-inducing activity of the BP1206 chimeric antibody (FIG. 18).
 実施例18:固形がんの適応症探索
 本実施例においては、本発明において得られたBP1206ヒト化抗体の固形がんの適応症を検索した。
Example 18: Search for indications for solid cancer In this example, indications for solid cancer of the BP1206 humanized antibody obtained in the present invention were searched.
 がん種として、子宮頸がん(n=102)、子宮体がん(n=102)、頭頚部がん(n=102)、卵巣がん(n=102)、肺がん(n=102)、メラノーマ(n=48)を対象として、それぞれの患者由来腫瘍組織におけるHLA-DR抗原の発現を、HLA-DR抗原の発現量とHLA-DRの発現細胞割合の観点から、LN3抗体とマウスIgG2b抗体を使用して検討した。 Cervical cancer (n=102), endometrial cancer (n=102), head and neck cancer (n=102), ovarian cancer (n=102), lung cancer (n=102) , Melanoma (n=48), the expression of HLA-DR antigen in each patient-derived tumor tissue was examined from the viewpoint of HLA-DR antigen expression level and HLA-DR expressing cell ratio. It examined using the antibody.
上記検体をスライドグラス上にスポットした腫瘍組織マイクロアレイ(Pantomics社製)を用いて実施した。Pressure cooker法によりマイクロアレイ上の抗原を賦活化した後、LN3抗体、ペルオキシダーゼ標識ポリマー、および発色基質(ジアミノベンジジン(DAB))と順次反応させ、DABの発色に基づいてHLA-DR抗原の発現を評価した。 The above-mentioned sample was spotted on a slide glass and carried out using a tumor tissue microarray (manufactured by Pantomics). After activating the antigens on the microarray by the pressure cooker method, they are sequentially reacted with the LN3 antibody, peroxidase-labeled polymer, and chromogenic substrate (diaminobenzidine (DAB)), and the expression of HLA-DR antigen is evaluated based on the color development of DAB. did.
 結果を図19に示す。いずれのがん種においても、発現量のばらつきや発現細胞の割合のばらつきはあるものの、半数近くの細胞でHLA-DR抗原の発現がみられることが明らかになった(図19)。 The results are shown in Figure 19. It was revealed that expression of the HLA-DR antigen was observed in nearly half of the cells, although there were variations in the expression amount and the proportion of expressing cells in all cancer types (Fig. 19).
 実施例19:標的の発現と細胞傷害性の相関
 本実施例においては、様々ながん細胞株を使用して、標的であるHLA-DR抗原の発現とその細胞に対して誘導できる細胞傷害性のあいだの相関性を調べた。
Example 19: Correlation between target expression and cytotoxicity In this example, various cancer cell lines are used to express target HLA-DR antigen and cytotoxicity that can be induced against the cells. The correlation between the two was investigated.
 以下の16種類の細胞株:
・Kasumi-1:ヒト急性骨髄性白血病(AML)由来(ATCC CRL-2724);
・OCI-LY-19細胞:ヒトびまん性大細胞型B細胞リンパ腫(DLBCL)由来(DSMZ, ACC 528);
・Nalm-6細胞:ヒト急性リンパ性白血病(ALL)由来(DSMZ, ACC 128);
・KMS-26細胞:ヒト多発性骨髄腫(MM)由来(JCRB1187);
・KG-1細胞:ヒト急性骨髄芽球性白血病(AML)由来(ATCC CCL-246);
・Rmos細胞:ヒトバーキットリンパ腫(BL)由来(DSMZ, ACC-603);
・KMS-11細胞:ヒト多発性骨髄腫(MM)由来(JCRB1179);
・JJN-3細胞:ヒト多発性骨髄腫(MM)由来(DSMZ, ACC 541);
・Mino細胞:ヒトマントル細胞リンパ腫(MCL)由来 (ATCC CRL-3000) ;
・NU-DHL-1細胞:ヒトびまん性大細胞型B細胞リンパ腫(DLBCL)由来(DSMZ, ACC 583);
・MUTZ-5細胞:ヒト急性リンパ性白血病(ALL)由来(DSMZ, ACC 490);
・Daudi細胞:ヒトバーキットリンパ腫(BL)由来(ATCC CRL-213);
・GRANTA-519細胞:ヒトびまん性大細胞型B細胞リンパ腫(DLBCL)由来(DSMZ, ACC 342) ;
・L428細胞:ヒトホジキンリンパ腫(HL)由来(DSMZ、ACC 197);
・Pfeiffer細胞:ヒトびまん性大細胞型B細胞リンパ腫(DLBCL)由来(ATCC CRL-2632) ;
・Raji細胞:ヒトバーキットリンパ腫(BL)由来(JCRB9012);
を使用し、それぞれの細胞におけるHLA-DR抗原の発現量と、BP1206ヒト化抗体を添加した場合の細胞死誘導活性を調べた。
16 cell lines:
・Kasumi-1: Derived from human acute myelogenous leukemia (AML) (ATCC CRL-2724);
・OCI-LY-19 cells: derived from human diffuse large B-cell lymphoma (DLBCL) (DSMZ, ACC 528);
・Nalm-6 cells: derived from human acute lymphocytic leukemia (ALL) (DSMZ, ACC 128);
・KMS-26 cells: derived from human multiple myeloma (MM) (JCRB1187);
・KG-1 cells: derived from human acute myeloblastic leukemia (AML) (ATCC CCL-246);
-Rmos cells: derived from human Burkitt lymphoma (BL) (DSMZ, ACC-603);
・KMS-11 cells: derived from human multiple myeloma (MM) (JCRB1179);
・JJN-3 cells: derived from human multiple myeloma (MM) (DSMZ, ACC 541);
・Mino cells: derived from human mantle cell lymphoma (MCL) (ATCC CRL-3000);
・NU-DHL-1 cells: derived from human diffuse large B-cell lymphoma (DLBCL) (DSMZ, ACC 583);
・MUTZ-5 cells: Human acute lymphocytic leukemia (ALL) origin (DSMZ, ACC 490);
・Daudi cells: derived from human Burkitt lymphoma (BL) (ATCC CRL-213);
・GRANTA-519 cells: derived from human diffuse large B-cell lymphoma (DLBCL) (DSMZ, ACC 342);
-L428 cells: derived from human Hodgkin lymphoma (HL) (DSMZ, ACC 197);
-Pfeiffer cells: derived from human diffuse large B-cell lymphoma (DLBCL) (ATCC CRL-2632);
・Raji cells: derived from human Burkitt lymphoma (BL) (JCRB9012);
Was used to examine the expression level of HLA-DR antigen in each cell and the cell death-inducing activity when the BP1206 humanized antibody was added.
 各細胞は分譲元指定の方法にて培養した。細胞をPBSに懸濁して5×105 cellsをPCRチューブに分取し、BP1206抗体を終濃度10μg/mlとなるように添加して、サーマルサイクラーで37℃で二時間インキュベートした。細胞をPBSで洗浄した後に7-AAD(Biolegend, 400625)で染色し、FACS解析に供試した。7-AAD非染色細胞割合を生細胞割合として算出した。結果を、図20中、棒グラフで示した。 Each cell was cultured by the method specified by the supplier. The cells were suspended in PBS, 5×10 5 cells were collected in a PCR tube, BP1206 antibody was added to a final concentration of 10 μg/ml, and the mixture was incubated at 37° C. for 2 hours in a thermal cycler. The cells were washed with PBS, stained with 7-AAD (Biolegend, 400625), and subjected to FACS analysis. The ratio of 7-AAD unstained cells was calculated as the ratio of viable cells. The results are shown as a bar graph in FIG.
 一方、細胞株の標的HLA-DR抗原発現量は、それぞれの細胞を、標識化抗ヒトHLA-DR抗体(Biolegend、307615)を使用して標識したのち、FACS(BD Verse)により解析した。HLA-DR抗原の発現量を、図20中、点で示した。 On the other hand, the target HLA-DR antigen expression level of the cell line was analyzed by FACS (BD Verse) after labeling each cell with a labeled anti-human HLA-DR antibody (Biolegend, 307615). The expression level of the HLA-DR antigen is shown by dots in FIG.
 この結果、各がん種の細胞株における標的発現量と、BP1206ヒト化抗体の添加による細胞死誘導との間には相関関係が認められ、細胞株の標的HLA-DR抗原発現量が高いほど、細胞死の誘導活性も高いことが分かった。 As a result, a correlation was observed between the target expression level in each cancer cell line and the induction of cell death by the addition of the BP1206 humanized antibody, and the higher the target HLA-DR antigen expression level in the cell line, the higher the expression level. It was also found that the cell death-inducing activity is also high.
 本発明のHLA-DR抗原に対する結合物質、特に抗体またはヒト型抗体誘導体により、HLA-DR抗原を発現するがん細胞に対する治療のため、がん細胞の増殖を阻害するため、腫瘍を縮小・消失させることができる。また、この結合物質、特に抗体またはヒト型抗体誘導体がHLA-DR抗原と結合することができることから、HLA-DR抗原を発現するがん細胞の検査用途として、生体内におけるHLA-DR抗原の免疫学的検出(ELISA,ウエスタンブロッティング、フローサイトメトリー等)のために使用することができる。 The HLA-DR antigen-binding substance of the present invention, particularly an antibody or a humanized antibody derivative, is used to treat HLA-DR antigen-expressing cancer cells, to inhibit the growth of cancer cells, and thus to reduce or eliminate tumors. Can be made. In addition, since this binding substance, particularly an antibody or a human antibody derivative can bind to the HLA-DR antigen, immunization of the HLA-DR antigen in vivo as a test application of cancer cells expressing the HLA-DR antigen. It can be used for biological detection (ELISA, Western blotting, flow cytometry, etc.).
 また、培養条件下で、被験体から採取されたがん細胞と本発明の結合物質、特に抗体またはヒト型抗体誘導体とを接触させ、がん細胞の細胞生存率が低下するかどうか、若しくは免疫活性化物質の分泌が亢進するかどうかを測定することにより、本発明の結合物質、特に抗体またはヒト型抗体誘導体をがん細胞を有する被験体に投与した場合に、その被験体内でがん細胞に対する細胞傷害性をどの程度有するかを調べることができる。 In addition, whether or not the cell viability of the cancer cells is decreased by bringing the cancer cells collected from the subject into contact with the binding substance of the present invention, particularly an antibody or a humanized antibody derivative under culture conditions, or immunity By measuring whether or not the secretion of the activator is enhanced, when the binding substance of the present invention, particularly the antibody or the humanized antibody derivative is administered to a subject having cancer cells, the cancer cells are treated in the subject. It is possible to investigate the degree of cytotoxicity against the.

Claims (15)

  1.  重鎖の相補性決定領域、CDR1(SEQ ID No.: 1)、CDR2(SEQ ID No.: 2)、CDR3(SEQ ID No.: 3)、
     軽鎖の相補性決定領域、CDR1(SEQ ID No.: 4)、CDR2(SEQ ID No.: 5)、CDR3(SEQ ID No.: 6)、
    を含む、HLA-DR抗原に対して結合性を有し、がん細胞に対する傷害性を誘導する、抗体またはヒト型抗体誘導体。
    Heavy chain complementarity determining regions, CDR1 (SEQ ID No.: 1), CDR2 (SEQ ID No.: 2), CDR3 (SEQ ID No.: 3),
    Light chain complementarity determining regions, CDR1 (SEQ ID No.: 4), CDR2 (SEQ ID No.: 5), CDR3 (SEQ ID No.: 6),
    An antibody or a humanized antibody derivative having a binding property to an HLA-DR antigen and inducing toxicity to a cancer cell, comprising:
  2.  ヒト型抗体誘導体が、ヒト化抗体、キメラ抗体、多価抗体、および多重特異性抗体から選択されるヒト型抗体改変体またはその機能的断片から選択される、請求項1に記載の抗体またはヒト型抗体誘導体。 The antibody or human according to claim 1, wherein the humanized antibody derivative is selected from a humanized antibody variant selected from a humanized antibody, a chimeric antibody, a multivalent antibody, and a multispecific antibody, or a functional fragment thereof. Type antibody derivative.
  3.  機能的断片が、F(ab')2である、請求項1または2に記載の抗体またはヒト型抗体誘導体。 The antibody or human antibody derivative according to claim 1 or 2, wherein the functional fragment is F(ab')2.
  4.  抗体またはヒト型抗体誘導体の重鎖可変領域VHドメインのアミノ酸配列が、SEQ ID No.: 8、SEQ ID No.: 12、SEQ ID No.: 16、SEQ ID No.: 20、SEQ ID No.: 24、SEQ ID No.: 28、SEQ ID No.: 32、SEQ ID No.: 36、およびSEQ ID No.: 40から選択される、請求項1~3のいずれか1項に記載の抗体またはヒト型抗体誘導体。 The amino acid sequence of the heavy chain variable region VH domain of the antibody or human antibody derivative is SEQ ID No.:8, SEQ ID No.:12, SEQ ID No.:16, SEQ ID No.:20, SEQ ID No. :, 24, SEQ ID No.: 28, SEQ ID No.: 32, SEQ ID No.: 36, and SEQ ID No. 40, the antibody according to any one of claims 1 to 3. Or a human antibody derivative.
  5.  抗体またはヒト型抗体誘導体の軽鎖可変領域VLドメインのアミノ酸配列が、SEQ ID No.: 10、SEQ ID No.: 14、SEQ ID No.: 18、SEQ ID No.: 22、SEQ ID No.: 26、SEQ ID No.: 30、SEQ ID No.: 34、SEQ ID No.: 38、およびSEQ ID No.: 42から選択される、請求項1~4のいずれか1項に記載の抗体またはヒト型抗体誘導体。 The amino acid sequence of the light chain variable region VL domain of the antibody or humanized antibody derivative is SEQ ID No.: 10, SEQ ID No.: 14, SEQ ID No.: 18, SEQ ID No.: 22, SEQ ID No. :, 26, SEQ ID No.: 30, 30, SEQ ID No.: 34, SEQ ID No.: 38, and SEQ ID No.: 42, The antibody according to any one of claims 1 to 4. Or a human antibody derivative.
  6.  がん細胞に対する細胞傷害性を誘導するが、正常細胞に対する細胞傷害性を誘導しない、請求項1~5のいずれか1項に記載の抗体またはヒト型抗体誘導体。 The antibody or humanized antibody derivative according to any one of claims 1 to 5, which induces cytotoxicity against cancer cells but not normal cells.
  7.  がん細胞が、ホジキンリンパ腫、肺がん、メラノーマからなる群から選択される、請求項1~6のいずれか1項に記載の抗体またはヒト型抗体誘導体。 The antibody or humanized antibody derivative according to any one of claims 1 to 6, wherein the cancer cell is selected from the group consisting of Hodgkin lymphoma, lung cancer, and melanoma.
  8.  薬物と結合され、抗体薬物複合体 (ADC)を形成する、請求項1~7のいずれか1項に記載の抗体またはヒト型抗体誘導体。 The antibody or humanized antibody derivative according to any one of claims 1 to 7, which is bound to a drug to form an antibody drug complex (ADC).
  9.  請求項1~8のいずれか1項に記載の抗体またはヒト型抗体誘導体を含む、がん治療のための医薬組成物。 A pharmaceutical composition for treating cancer, which comprises the antibody or the human antibody derivative according to any one of claims 1 to 8.
  10.  がんが、ホジキンリンパ腫、肺がん、メラノーマからなる群から選択される、請求項9に記載の医薬組成物。 10. The pharmaceutical composition according to claim 9, wherein the cancer is selected from the group consisting of Hodgkin lymphoma, lung cancer and melanoma.
  11.  被験体から採取されたがん細胞を、in vitroにおいて請求項1~8のいずれか1項に記載の抗体またはヒト型抗体誘導体と接触させる工程、
     培養条件下で、がん細胞の細胞生存率が低下するかどうかを測定する工程、若しくは免疫活性化物質の分泌が亢進するかどうかを測定する工程、
    を含む、がん細胞に対する細胞傷害性測定方法。
    A step of contacting a cancer cell collected from a subject with an antibody or a humanized antibody derivative according to any one of claims 1 to 8 in vitro,
    Under culture conditions, a step of measuring whether the cell viability of cancer cells is reduced, or a step of measuring whether the secretion of immunostimulatory substances is enhanced,
    A method for measuring cytotoxicity against cancer cells, which comprises:
  12.  同一被験体の末梢血リンパ球の存在下で、がん細胞の細胞生存率が低下するかどうか、若しくは末梢血リンパ球由来の免疫細胞が活性化するかどうかを測定する、請求項11に記載のがん細胞に対する細胞傷害性測定方法。 In the presence of peripheral blood lymphocytes of the same subject, whether the cell viability of cancer cells is reduced or whether immune cells derived from peripheral blood lymphocytes are activated are measured, The method according to claim 11. For measuring cytotoxicity against cancer cells.
  13.  被験体から採取されたがん細胞のin vitroでの細胞傷害性から、請求項1~8のいずれか1項に記載の抗体またはヒト型抗体誘導体をその被験体に投与した場合のがん細胞に対する細胞傷害性の亢進を測定する、請求項11または12に記載のがん細胞に対する細胞傷害性測定方法。 From the in vitro cytotoxicity of cancer cells collected from a subject, cancer cells when the antibody or humanized antibody derivative according to any one of claims 1 to 8 is administered to the subject. 13. The method for measuring cytotoxicity against cancer cells according to claim 11 or 12, which comprises measuring the increase in cytotoxicity against cancer cells.
  14.  in vitroでの免疫活性化物質の分泌の亢進から、請求項1~8のいずれか1項に記載の抗体またはヒト型抗体誘導体をその被験体に投与した場合のがん細胞に対する細胞傷害性の亢進を測定する、請求項11または12に記載のがん細胞に対する細胞傷害性測定方法。 Due to the enhanced secretion of the immunostimulatory substance in vitro, the cytotoxicity against cancer cells when the antibody or humanized antibody derivative according to any one of claims 1 to 8 is administered to the subject The method for measuring cytotoxicity against cancer cells according to claim 11 or 12, wherein the enhancement is measured.
  15.  請求項1~8のいずれか1項に記載の抗体またはヒト型抗体誘導体の、被験体から採取されたがん細胞に対する細胞傷害性、免疫活性化物質の分泌、若しくは免疫細胞の活性化を、in vitroにおいて測定するための、前記抗体を含む測定キット。

     
    The cytotoxicity of the antibody or humanized antibody derivative according to any one of claims 1 to 8 against cancer cells collected from a subject, the secretion of an immunostimulator, or the activation of immune cells, A measurement kit containing the above antibody for in vitro measurement.

PCT/JP2020/006822 2019-02-22 2020-02-20 Anti-hla-dr antibody, and use thereof for cancer therapy WO2020171171A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021502140A JPWO2020171171A1 (en) 2019-02-22 2020-02-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019031069 2019-02-22
JP2019-031069 2019-02-22

Publications (1)

Publication Number Publication Date
WO2020171171A1 true WO2020171171A1 (en) 2020-08-27

Family

ID=72143813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006822 WO2020171171A1 (en) 2019-02-22 2020-02-20 Anti-hla-dr antibody, and use thereof for cancer therapy

Country Status (2)

Country Link
JP (1) JPWO2020171171A1 (en)
WO (1) WO2020171171A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066655A1 (en) * 2007-11-19 2009-05-28 Kagoshima University Human antibody capable of inducing apoptosis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066655A1 (en) * 2007-11-19 2009-05-28 Kagoshima University Human antibody capable of inducing apoptosis

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "HLA- DRB1 monoclonal antibody, clone LN-3", LABOME, 17 December 2018 (2018-12-17), pages 1 - 2, XP055735526, Retrieved from the Internet <URL:https://www.labome.com/product/Abnova/MAB13305.html> [retrieved on 20200416] *
KOSTELNY, S. A. ET AL.: "Humanization and characterization of the anti-HLA-DR antibody 1D10.", INT. J. CANCER, vol. 93, 2001, pages 556 - 565, XP002962301, DOI: 10.1002/ijc.1366 *
NAGY, Z. A . ET AL.: "Fully human, HLA-DR-specific monoclonal antibodies efficiently induce programmed death of malignant lymphoid cells", NATURE MEDICINE, vol. 8, no. 8, 2002, pages 801 - 807, XP002432676 *

Also Published As

Publication number Publication date
JPWO2020171171A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
KR102610592B1 (en) Antibody specific for glycosylated PD-L1 and method of using the same
US8227578B2 (en) Anti-human dlk-1 antibody showing anti-tumor activity in vivo
JP2022025071A (en) Antibodies specific to glycosylated pd-1 and methods of use thereof
JP2018162257A (en) Dll3 modulators and methods of use
US8017118B2 (en) Anti-hDlk-1 antibody having an antitumor activity in vivo
CN113226471A (en) IL-11RA antibodies
CN113396160A (en) Methods and pharmaceutical compositions for treating cancer resistant to immune checkpoint therapy
US11667700B2 (en) Anti-PCNA monoclonal antibodies and use thereof
JP7165855B2 (en) Use for prevention and treatment of myeloid-derived suppressor cell-related diseases
WO2020171171A1 (en) Anti-hla-dr antibody, and use thereof for cancer therapy
TWI703155B (en) Antibody specifically binding to pauf protein and use thereof
CN117177771A (en) Method for diagnosing and treating T cell lymphoma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20758694

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502140

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20758694

Country of ref document: EP

Kind code of ref document: A1