WO2020170934A1 - Film-forming composition and method for producing semiconductor substrate - Google Patents

Film-forming composition and method for producing semiconductor substrate Download PDF

Info

Publication number
WO2020170934A1
WO2020170934A1 PCT/JP2020/005574 JP2020005574W WO2020170934A1 WO 2020170934 A1 WO2020170934 A1 WO 2020170934A1 JP 2020005574 W JP2020005574 W JP 2020005574W WO 2020170934 A1 WO2020170934 A1 WO 2020170934A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
silicon
carbon atoms
forming composition
group
Prior art date
Application number
PCT/JP2020/005574
Other languages
French (fr)
Japanese (ja)
Inventor
智昭 瀬古
達也 ▲葛▼西
智也 田路
博允 田中
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2021501910A priority Critical patent/JP7342939B2/en
Priority to KR1020217026165A priority patent/KR20210132038A/en
Publication of WO2020170934A1 publication Critical patent/WO2020170934A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/16Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/16Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the present invention relates to a film forming composition and a method for manufacturing a semiconductor substrate.
  • patterning is performed, for example, by performing etching using a resist pattern obtained by exposing and developing a resist film laminated on the substrate via an organic lower layer film, a silicon-containing film, etc. as a mask.
  • a semiconductor lithography process or the like for forming the formed substrate is used.
  • a method for forming a pattern on a substrate using a composition containing a polysilane compound as a composition for forming a silicon-containing film has been studied (see Japanese Patent Application Laid-Open No. 11-256106 and International Publication No. 2009/028511).
  • a film forming composition is required to be able to sufficiently embed these patterns and to have excellent flatness. Has been done. Further, the film-forming composition is also required to have excellent resistance to oxygen-based gas etching. However, the above-mentioned conventional film-forming composition cannot satisfy these requirements.
  • the present invention has been made based on the above circumstances, and an object thereof is a film-forming composition capable of forming a silicon-containing film excellent in embedding property, flatness, and oxygen-based gas etching resistance, and It is to provide a method for manufacturing a semiconductor substrate.
  • the invention made to solve the above problems contains polysilane (hereinafter, also referred to as “[A] polysilane”) and a solvent (hereinafter, also referred to as “[B] solvent”), and the above [A] polysilane.
  • R 1 is a hydrogen atom or a monovalent chain organic group having 1 to 20 carbon atoms.
  • R 2 is a hydrogen atom, a hydroxy group or a monovalent chain having 1 to 20 carbon atoms. It is a chain organic group.
  • Another invention made to solve the above problems is a method for manufacturing a semiconductor substrate, which comprises a step of directly or indirectly coating the film forming composition on the substrate.
  • silicon-containing which is excellent in embedding property, flatness and oxygen-based gas etching resistance, and further excellent in organic solvent resistance, acid solution releasability and pattern formability.
  • a film can be formed. Therefore, these can be suitably used for manufacturing semiconductor devices, which are expected to be further miniaturized in the future.
  • FIG. 1 is a schematic cross-sectional view for explaining the flatness evaluation method.
  • the film forming composition contains [A] polysilane and a [B] solvent.
  • the film forming composition contains a siloxane compound (hereinafter, also referred to as “[C] siloxane compound”) and/or an acid generator (hereinafter, also referred to as “[D] acid generator”) as suitable components. May be contained, and other optional components may be contained within a range not impairing the effects of the present invention.
  • the film forming composition contains [A] polysilane and [B] solvent, it has excellent embedding properties, flatness, and oxygen-based gas etching resistance, and further has organic solvent resistance, acid solution peeling property, and pattern formation. It is possible to form a silicon-containing film having excellent properties (hereinafter collectively referred to as “characteristics of silicon-containing film”).
  • Characteristics of silicon-containing film The reason why the film-forming composition has the above-mentioned effects to achieve the above-mentioned effects is not necessarily clear, but can be inferred as follows, for example.
  • [A] polysilane since [A] polysilane has two or more structural units (I) having a specific structure, it has organic solvent resistance, and the Si—Si structure is changed to a Si—O—Si structure by heating in the atmosphere. By doing so, it is considered that thermal contraction is suppressed, and the flatness is improved. Further, the [A] polysilane having the above-mentioned specific structure is considered to be a structure which is hardly decomposed by oxygen plasma, and the oxygen-based gas etching resistance is improved. Furthermore, the [A] polysilane having the above-mentioned specific structure is changed in the Si—Si structure to the Si—O—Si structure by heating in the air, and is excellent in the acid solution peeling property.
  • Polysilane refers to a polymer having a Si—Si bond in the main chain.
  • Polymer refers to a compound having two or more structural units.
  • [A] Polysilane has two or more structural units (I). That is, [A] polysilane is a compound having the structural unit (I) as a repeating unit.
  • the lower limit of the number of structural units (I) in [A] polysilane is 2, 5, is preferable, 10 is more preferable, and 15 is particularly preferable.
  • the upper limit of the number is, for example, 50, preferably 40, and more preferably 30.
  • the [A] polysilane may have a second structural unit represented by the formula (2) described later (hereinafter, also referred to as “structural unit (II)”) in addition to the structural unit (I). It may have a structural unit other than the unit (I) and the structural unit (II).
  • structural unit (II) in addition to the structural unit (I). It may have a structural unit other than the unit (I) and the structural unit (II).
  • Polysilane may have one kind or two or more kinds of each structural unit. Hereinafter, each structural unit will be described.
  • the structural unit (I) is a structural unit represented by the following formula (1).
  • R 1 is a hydrogen atom or a monovalent chain organic group having 1 to 20 carbon atoms.
  • R 2 is a hydrogen atom, a hydroxy group or a monovalent chain organic group having 1 to 20 carbon atoms.
  • Organic group means a group containing at least one carbon atom. “Chain” means not containing a ring structure, and includes both linear and branched chains.
  • the monovalent chain organic group having 1 to 20 carbon atoms represented by R 1 and R 2 includes, for example, monovalent chain hydrocarbon group having 1 to 20 carbon atoms and carbon of the chain hydrocarbon group.
  • -A monovalent group ( ⁇ 1) containing a divalent heteroatom-containing group between carbons, a part or all of the hydrogen atoms contained in the chain hydrocarbon group and the group ( ⁇ 1) is a monovalent heteroatom-containing group Examples thereof include a substituted monovalent group ( ⁇ 1), the chain hydrocarbon group, the group ( ⁇ 1) or a monovalent group ( ⁇ 1) obtained by combining the group ( ⁇ 1) with a divalent hetero atom-containing group.
  • Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include chain chains such as alkanes such as methane, ethane, propane and butane, alkenes such as ethene, propene and butene, and alkynes such as ethyne, propyne and butyne. Examples thereof include groups excluding one hydrogen atom contained in hydrocarbon.
  • hetero atom constituting the divalent or monovalent hetero atom-containing group
  • oxygen atom nitrogen atom, sulfur atom, phosphorus atom, silicon atom, halogen atom and the like.
  • divalent hetero atom-containing group examples include -O-, -CO-, -S-, -CS-, -NR'-, and groups in which two or more of these are combined.
  • R' is a hydrogen atom or a monovalent chain hydrocarbon group. Among these, -O- or -S- is preferable, and -O- is more preferable.
  • Examples of the monovalent hetero atom-containing group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, amino group and sulfanyl group.
  • R 1 is preferably a hydrogen atom or a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, more preferably a hydrogen atom or a monovalent chain hydrocarbon group having 1 to 6 carbon atoms, and more preferably a hydrogen atom or a carbon atom.
  • the alkyl groups of the numbers 1 to 6 are more preferable, and the methyl group or the ethyl group is particularly preferable.
  • R A is a hydrogen atom or a monovalent chain organic group having 1 to 20 carbon atoms.
  • Examples of the monovalent chain organic group having 1 to 20 carbon atoms represented by R A include the same groups as those exemplified as the monovalent chain organic group having 1 to 20 carbon atoms for R 1. Etc.
  • R A a hydrogen atom or a monovalent chain hydrocarbon group having 1 to 20 carbon atoms is preferable, a hydrogen atom or a monovalent chain hydrocarbon group having 1 to 6 carbon atoms is more preferable, and a hydrogen atom or carbon atom.
  • the alkyl groups of the numbers 1 to 6 are more preferable, and the methyl group or the ethyl group is particularly preferable.
  • structural unit (I) examples include structural units represented by the following formulas (1-1) to (1-9) (hereinafter, also referred to as “structural units (I-1) to (I-9)”) and the like. Is mentioned.
  • the structural unit (I) is preferably the structural unit (I-1), (I-2) or (I-6).
  • the lower limit of the content ratio of the structural unit (I) 1 mol% is preferable, 10 mol% is more preferable, 30 mol% is further more preferable, and 50 mol% is all the structural units constituting the [A] polysilane. Is particularly preferred, 70 mol% is even more preferred, and 90 mol% is most preferred.
  • the upper limit of the content ratio may be 100 mol %.
  • the structural unit (II) is a structural unit represented by the following formula (2).
  • R 3 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • R 4 is a monovalent organic group having a ring structure and having 3 to 20 carbon atoms.
  • the monovalent organic group having 1 to 20 carbon atoms represented by R 3 is, for example, a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a divalent hetero atom between carbon and carbon of the hydrocarbon group.
  • Examples thereof include a hydrogen group, a group ( ⁇ 2) or a monovalent group ( ⁇ 2) obtained by combining a group ( ⁇ 2) and a divalent hetero atom-containing group.
  • the divalent and monovalent hetero atom-containing groups include the same groups as the groups exemplified as the divalent and monovalent hetero atom-containing groups in the organic groups of R 1 and R 2 .
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and 6 carbon atoms. Examples include monovalent aromatic hydrocarbon groups of 20 to 20.
  • Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include the same groups as the monovalent chain hydrocarbon group having 1 to 20 carbon atoms exemplified as R 1 and R 2 .
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include cycloalkanes such as cyclopentane and cyclohexane, and alicyclic saturated hydrocarbons such as bridged ring saturated hydrocarbons such as norbornane, adamantane and tricyclodecane. Hydrogen, cyclopentene, cyclohexene and other cycloalkenes, norbornene, tricyclodecene and other bridged ring unsaturated hydrocarbons and other alicyclic unsaturated hydrocarbons and other alicyclic hydrocarbons, excluding one hydrogen atom Groups and the like.
  • the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms is, for example, one on the aromatic ring or alkyl group of an arene such as benzene, toluene, ethylbenzene, xylene, naphthalene, methylnaphthalene, anthracene or methylanthracene.
  • R 3 is preferably a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms, more preferably a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms, and more preferably a hydrogen atom or 1 to 6 carbon atoms. Is more preferable, and a methyl group or an ethyl group is particularly preferable.
  • the “ring structure” is a concept including an alicyclic structure, an aromatic carbocyclic structure, an aliphatic heterocyclic structure and an aromatic heterocyclic structure.
  • Examples of the monovalent organic group having 3 to 20 carbon atoms containing a ring structure represented by R 4 include monovalent alicyclic hydrocarbon groups having 3 to 20 carbon atoms and monovalent monovalent groups having 6 to 20 carbon atoms.
  • An aromatic hydrocarbon group a monovalent group ( ⁇ 3) containing a divalent heteroatom-containing group between carbon and carbon of the alicyclic hydrocarbon group and the aromatic hydrocarbon group, the alicyclic hydrocarbon group, Monovalent group ( ⁇ 3) obtained by substituting a part or all of hydrogen atoms of the aromatic hydrocarbon group and the group ( ⁇ 3) with a monovalent hetero atom-containing group, the alicyclic hydrocarbon group, and aromatic hydrocarbon.
  • Examples thereof include a group, a group ( ⁇ 3) or a monovalent group ( ⁇ 3) in which a group ( ⁇ 3) and a divalent hetero atom-containing group are combined.
  • the divalent and monovalent hetero atom-containing groups include the same groups as the groups exemplified as the divalent and monovalent hetero atom-containing groups in the organic groups of R 1 and R 2 .
  • R 4 is preferably a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms, and a monovalent alicyclic group having 3 to 20 carbon atoms
  • a saturated hydrocarbon group or an aryl group having 6 to 20 carbon atoms is more preferable, an aryl group having 6 to 20 carbon atoms is further preferable, and a phenyl group or a tolyl group is particularly preferable.
  • structural unit (II) examples include structural units represented by the following formulas (2-1) to (2-6) (hereinafter, also referred to as “structural units (II-1) to (II-6)”) and the like. Is mentioned.
  • the structural unit (II) is preferably the structural unit (II-1).
  • the lower limit of the content ratio of the structural unit (II) is preferably 1 mol% with respect to all the structural units constituting the [A] polysilane, and 2 mol% Is more preferable, 5 mol% is further preferable, and 10 mol% is particularly preferable.
  • the upper limit of the content is preferably 50 mol, more preferably 40 mol%, further preferably 30 mol%, particularly preferably 20 mol%.
  • the upper limit of the content of the other structural units is preferably 20 mol%, more preferably 10 mol%.
  • the lower limit of the content ratio is, for example, 0.1 mol %.
  • the lower limit of the polystyrene-reduced weight average molecular weight (Mw) of [A] polysilane is preferably 300, more preferably 700, further preferably 1,000, and particularly preferably 1,500.
  • Mw weight average molecular weight
  • 100,000 is preferable, 10,000 is more preferable, 5,000 is further preferable, and 3,000 is particularly preferable.
  • a GPC column (two "G2000HXL”, one "G3000HXL” and one “G4000HXL” from Tosoh Corporation) is used, and a flow rate: 1.0 mL/min, an elution solvent: tetrahydrofuran, It is a value measured by gel permeation chromatography (detector: differential refractometer) using monodisperse polystyrene as a standard under analysis conditions of column temperature: 40°C.
  • the lower limit of the content ratio of [A] polysilane is preferably 30% by mass, more preferably 50% by mass, further preferably 80% by mass, and particularly preferably 90% by mass, based on all components other than the solvent [B]. ..
  • the upper limit of the content ratio may be 100% by mass.
  • the lower limit of the content ratio of [A] polysilane in the film-forming composition is preferably 0.1% by mass, more preferably 0.5% by mass, further preferably 1% by mass, and particularly preferably 5% by mass.
  • the upper limit of the content ratio is preferably 50% by mass, more preferably 30% by mass, further preferably 20% by mass, and particularly preferably 15% by mass.
  • the polysilane [A] one type or two or more types can be used.
  • the [A] polysilane includes, for example, a monomer that provides the structural unit (I) such as trichlorosilane and methyldichlorosilane, and, if necessary, a monomer that provides the structural unit (II) such as phenyldichlorosilane.
  • the solvent [B] is not particularly limited as long as it is a solvent that can dissolve or disperse the [A] polysilane and optional components contained as necessary.
  • Examples of the [B] solvent include alcohol solvents, ketone solvents, ether solvents, ester solvents, nitrogen-containing solvents, water and the like.
  • the solvent [B] one type or two or more types can be used.
  • alcohol solvents include monoalcohol solvents such as methanol, ethanol, n-propanol, iso-propanol, n-butanol, and iso-butanol, ethylene glycol, 1,2-propylene glycol, diethylene glycol, dipropylene glycol, etc.
  • monoalcohol solvents such as methanol, ethanol, n-propanol, iso-propanol, n-butanol, and iso-butanol, ethylene glycol, 1,2-propylene glycol, diethylene glycol, dipropylene glycol, etc.
  • polyhydric alcohol solvents examples include polyhydric alcohol solvents.
  • ketone-based solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-iso-butyl ketone, cyclohexanone and the like.
  • ether solvents include ethyl ether, iso-propyl ether, ethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, Tetrahydrofuran etc. are mentioned.
  • ester solvents include ethyl acetate, ⁇ -butyrolactone, n-butyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, and acetic acid.
  • Examples include propylene glycol monoethyl ether, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, ethyl propionate, n-butyl propionate, methyl lactate, ethyl lactate and the like.
  • nitrogen-containing solvent examples include N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone and the like.
  • ether-based solvents and/or ester-based solvents are preferable, and ether-based solvents and/or ester-based solvents having a glycol structure are more preferable because they have excellent film-forming properties.
  • Examples of the ether solvent and ester solvent having a glycol structure include propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and propylene glycol monopropyl acetate.
  • Examples include ether and the like. Of these, propylene glycol monomethyl ether acetate is particularly preferable.
  • the lower limit of the content of the glycol-structured ether solvent and ester solvent in the solvent [B] is preferably 20% by mass, more preferably 60% by mass, further preferably 90% by mass, and particularly preferably 100% by mass. ..
  • the lower limit of the content of the [B] solvent is preferably 100 parts by mass, more preferably 200 parts by mass, further preferably 500 parts by mass, and particularly preferably 1,000 parts by mass with respect to 100 parts by mass of [A] polysilane. preferable.
  • the upper limit of the content is preferably 100,000 parts by mass, more preferably 50,000 parts by mass, further preferably 20,000 parts by mass, particularly preferably 10,000 parts by mass.
  • the lower limit of the content ratio of the [B] solvent in the film-forming composition is preferably 50% by mass, more preferably 70% by mass, and further preferably 80% by mass. As a maximum of the above-mentioned content rate, 99.9 mass% is preferred and 99.5 mass% is more preferred.
  • the [C] siloxane compound is a compound having a Si—O bond.
  • [C] siloxane compound examples include polysiloxane (hereinafter, also referred to as “[C1] polysiloxane”), siloxane monomer (hereinafter, also referred to as “[C2] siloxane monomer”), and the like.
  • Polysiloxane refers to a polymer having a Si—O—Si bond in the main chain.
  • Siloxane monomer refers to a monomer having a Si—O bond.
  • [C1] polysiloxane for example, a structural unit represented by the following formula (3) (hereinafter, also referred to as “structural unit (A)”) and/or a structural unit represented by the following formula (4) (hereinafter, And a compound having a “structural unit (B)”.
  • R A is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • m is an integer of 1 to 3.
  • R A's are the same or different from each other.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R A include the same groups as those exemplified as the monovalent organic group having 1 to 20 carbon atoms for R 3 .
  • a monovalent hydrocarbon group having 1 to 20 carbon atoms is preferable, and a monovalent chain hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms is used. More preferably, an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms is more preferable, and a methyl group or a phenyl group is particularly preferable.
  • n 1 or 2 is preferable, and 1 is more preferable.
  • the lower limit of the content ratio of the structural unit (A) 1 mol% is preferable, 10 mol% is more preferable, 20 mol% is further preferable, and 30 mol% with respect to all the structural units constituting [C1] polysiloxane. % Is particularly preferred.
  • the upper limit of the content ratio is preferably 99 mol%, more preferably 90 mol%, further preferably 80 mol%, particularly preferably 70 mol%.
  • the lower limit of the content ratio of the structural unit (B) 1 mol% is preferable, 10 mol% is more preferable, 20 mol% is further preferable, and 30 mol% is based on all the structural units constituting the [C1] polysiloxane. % Is particularly preferred.
  • the upper limit of the content ratio is preferably 99 mol%, more preferably 90 mol%, further preferably 80 mol%, particularly preferably 70 mol%.
  • Examples of the [C2] siloxane monomer include alkyltrialkoxysilanes such as dodecyltrimethoxysilane and hexyltriethoxysilane, and dialkyldialkoxysilanes such as didodecyldimethoxysilane and dihexyldiethoxysilane.
  • the lower limit of the content of the [C] siloxane compound is preferably 0.1 parts by mass, more preferably 1 part by mass, further preferably 3 parts by mass, and 10 parts by mass with respect to 100 parts by mass of the [A] polysilane. Particularly preferred. As a maximum of the above-mentioned content, 100 mass parts is preferred, 30 mass parts is more preferred, 20 mass parts is still more preferred, and 10 mass parts is especially preferred.
  • the acid generator [D] is a component that generates an acid upon exposure or heating.
  • the condensation reaction of the [A] polysilane can be promoted even at a relatively low temperature (including normal temperature).
  • Examples of the acid generator [D] that generates an acid upon exposure include, for example, the acid generators described in paragraphs [0077] to [0081] of JP-A-2004-168748. Etc.
  • thermo acid generator an onium salt-based acid generator exemplified as a photoacid generator in the above patent documents, Examples include 2,4,4,6-tetrabromocyclohexadienone, benzoin tosylate, 2-nitrobenzyl tosylate, and alkyl sulfonates.
  • the lower limit of the content of the [D] acid generator is preferably 0.1 part by mass relative to 100 parts by mass of the [A] polysilane. , 0.5 part by mass is more preferable, and 1 part by mass is further preferable.
  • the upper limit of the content is preferably 20 parts by mass, more preferably 10 parts by mass, further preferably 5 parts by mass.
  • Optional optional ingredients include, for example, basic compounds (including base generators), radical generators, surfactants, colloidal silica, colloidal alumina, organic polymers and the like. Each of the other optional components may be used alone or in combination of two or more.
  • the basic compound accelerates the curing reaction of the film forming composition, and as a result, improves the strength and the like of the formed silicon-containing film. Further, the basic compound improves the releasability of the silicon-containing film with the acidic liquid.
  • the basic compound include a compound having a basic amino group, a base generator which generates a compound having a basic amino group by the action of an acid or the action of heat, and the like.
  • Examples of the compound having a basic amino group include amine compounds.
  • the base generator include amide group-containing compounds, urea compounds, nitrogen-containing heterocyclic compounds, and the like. Specific examples of the amine compound, the amide group-containing compound, the urea compound and the nitrogen-containing heterocyclic compound include the compounds described in paragraphs [0079] to [0082] of JP-A-2016-27370. ..
  • the upper limit of the content of the basic compound is preferably 50 parts by mass with respect to 100 parts by mass of [A] polysilane.
  • the lower limit of the content is, for example, 1 part by mass.
  • the film-forming composition contains a surfactant, colloidal silica, colloidal alumina and/or organic polymer
  • the upper limit of the content of each of these components is 100 parts by mass of [A] polysilane.
  • 2 parts by mass is preferable, and 1 part by mass is more preferable.
  • the lower limit of the content is, for example, 0.1 part by mass.
  • Method for preparing film-forming composition for example, a solution of [A] polysilane and a solvent of [B], and optional components are mixed at a predetermined ratio, and the resulting mixed solution is preferably used for the pore size. It can be prepared by filtering with a filter of 0.2 ⁇ m or less.
  • the method for producing a semiconductor substrate includes a step of applying the film forming composition directly or indirectly to the substrate (hereinafter, also referred to as “application step”).
  • the film forming composition described above since the film forming composition described above is used, the embedding property, the flatness and the oxygen-based gas etching resistance are excellent, and further, the organic solvent resistance, the acid solution peeling property and the pattern formability are improved. It is possible to form an excellent silicon-containing film.
  • the method for manufacturing the semiconductor substrate can further include a step of etching at least a part of the silicon-containing film formed by the coating step (hereinafter, also referred to as “etching step”) after the coating step. Thereby, the silicon-containing film can be patterned.
  • the manufacturing method of the semiconductor substrate after the coating step, a step of directly or indirectly applying a resist composition to the silicon-containing film formed by the coating step (hereinafter, also referred to as "resist composition coating step” And a step of exposing the resist film formed by the resist composition coating step (hereinafter, also referred to as “exposure step (I)”), and a step of developing the exposed resist film (hereinafter, “ Further, a developing step (I)”) and a step of etching the silicon-containing film using the resist pattern formed in the developing step (I) as a mask (hereinafter, also referred to as "silicon-containing film etching step”).
  • resist composition coating step a step of directly or indirectly applying a resist composition to the silicon-containing film formed by the coating step
  • exposure step (I) a step of exposing the resist film formed by the resist composition coating step
  • a developing step (I) a step of developing the exposed resist film
  • silicon-containing film can be patterned.
  • a step of exposing the silicon-containing film formed by the coating step to radiation (hereinafter, also referred to as “exposure step (II)”)
  • the method may further include a step of developing the silicon-containing film (hereinafter, also referred to as “developing step (II)”). This makes it possible to form a pattern of the silicon-containing film by exhibiting excellent pattern formability.
  • the manufacturing method of the semiconductor substrate, the coating step, a step of treating the silicon-containing film formed by the coating step with oxygen gas (hereinafter, also referred to as “oxygen gas treatment step"), the oxygen gas treatment step
  • the method may further include a subsequent step of removing the silicon-containing film with an acid solution (hereinafter, also referred to as “removal step”). This makes it possible to easily remove the silicon-containing film by exhibiting excellent acid liquid removability.
  • the manufacturing method of the semiconductor substrate is a step of etching the substrate using the silicon-containing film as a mask after the etching step, the silicon-containing film etching step or the developing step (II) (hereinafter, also referred to as “substrate etching step”). Can be further provided. Thereby, the substrate pattern can be formed.
  • the semiconductor substrate manufacturing method may further include a step of directly or indirectly forming an organic underlayer film on the substrate before the coating step. Each step will be described below.
  • Organic underlayer film forming step In this step, the organic underlayer film is formed directly or indirectly on the substrate.
  • the coating step described below is performed after the organic underlayer film forming step.
  • the silicon-containing film is formed by coating the film forming composition on the organic underlayer film.
  • the above organic underlayer film is different from the silicon-containing film formed from the film forming composition.
  • the organic underlayer film may contain a silicon atom.
  • the organic underlayer film has a predetermined function (for example, antireflection) required in order to further supplement the function of the silicon-containing film and/or the resist film in the formation of the resist pattern or to obtain the function which these films do not have.
  • Examples of the organic lower layer film include an antireflection film and the like.
  • Examples of the antireflection film-forming composition include "NFC HM8006" by JSR Corporation.
  • the organic underlayer film can be formed by applying a composition for forming an organic underlayer film by a spin coating method or the like to form a coating film, and then heating.
  • the substrate examples include a silicon wafer, an insulating film of silicon oxide, silicon nitride, silicon oxynitride, polysiloxane, and the like, a resin substrate, and the like.
  • an interlayer insulating film such as a wafer covered with a low dielectric insulating film formed of "Black Diamond” manufactured by AMAT, "Silk” manufactured by Dow Chemical, "LKD5109” manufactured by JSR Corporation. it can.
  • a substrate on which a pattern such as a wiring groove (trench) or a plug groove (via) is formed may be used.
  • the film-forming composition is applied directly or indirectly to the substrate.
  • a coating film of the film forming composition is formed on the substrate directly or through another layer such as an organic underlayer film.
  • the method for applying the film forming composition is not particularly limited, and examples thereof include known methods such as spin coating.
  • a silicon-containing film is formed by curing a coating film formed by coating the film-forming composition on a substrate or the like, usually by exposing and/or heating.
  • Examples of the radiation used for the above-mentioned exposure include electromagnetic waves such as visible light, ultraviolet rays, far ultraviolet rays, X-rays and ⁇ rays, particle beams such as electron beams, molecular beams and ion beams.
  • the lower limit of the temperature for heating the coating film is preferably 90°C, more preferably 150°C, even more preferably 200°C.
  • the upper limit of the temperature is preferably 550°C, more preferably 450°C, and even more preferably 350°C.
  • As a minimum of the average thickness of the formed silicon-containing film 1 nm is preferable, 3 nm is more preferable, and 5 nm is further preferable.
  • the upper limit of the average thickness is preferably 1,000 nm, more preferably 500 nm, even more preferably 300 nm.
  • the lower limit of the absorption coefficient (k value) at 193 nm of the formed silicon-containing film is preferably more than 0.2, more preferably 0.25, and even more preferably 0.3.
  • the upper limit of the k value is preferably 1.0, more preferably 0.7, and even more preferably 0.5.
  • the lower limit of the water contact angle on the surface of the formed silicon-containing film is preferably 50°, more preferably 60°, even more preferably 65°.
  • the upper limit of the water contact angle is preferably 90°, more preferably 88°, even more preferably 86°.
  • the above etching may be dry etching or wet etching, but dry etching is preferable.
  • Dry etching can be performed using, for example, a known dry etching apparatus.
  • the etching gas used for dry etching can be appropriately selected depending on the elemental composition of the silicon-containing film to be etched, and for example, CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 , SF 6 or the like.
  • Reducing gases such as C 2 H 6 , C 3 H 4 , C 3 H 6 , C 3 H 8 , HF, HI, HBr, HCl, NO, NH 3 , BCl 3 and He, N 2 , Ar and the like.
  • Inert gas or the like is used. These gases may be mixed and used.
  • a fluorine-based gas is usually used for dry etching of the silicon-containing film, and a mixture of this with an oxygen-based gas and an inert gas is preferably used.
  • resist composition coating process In this step, the resist composition is directly or indirectly applied to the silicon-containing film formed by the above coating step. By this step, a resist film is formed on the silicon-containing film formed in the above coating step directly or through another layer.
  • the resist composition examples include a radiation-sensitive resin composition (chemically amplified resist composition) containing a polymer having an acid-dissociable group and a radiation-sensitive acid generator, an alkali-soluble resin and a quinonediazide-based photosensitizer. And a negative resist composition containing an alkali-soluble resin and a crosslinking agent.
  • the radiation sensitive resin composition is preferable.
  • a positive type pattern can be formed by developing with an alkali developing solution
  • a negative type pattern can be formed by developing with an organic solvent developing solution.
  • a double patterning method, a double exposure method or the like, which is a method of forming a fine pattern, may be appropriately used for forming the resist pattern.
  • the polymer contained in the radiation-sensitive resin composition is, for example, a structural unit containing an lactone structure, a cyclic carbonate structure and/or a sultone structure, a structural unit containing an alcoholic hydroxyl group, in addition to the structural unit containing an acid dissociable group. It may have a structural unit containing a phenolic hydroxyl group, a structural unit containing a fluorine atom, and the like.
  • the polymer has a structural unit containing a phenolic hydroxyl group and/or a structural unit containing a fluorine atom, the sensitivity can be improved when extreme ultraviolet rays or electron beams are used as the radiation during exposure.
  • the lower limit of the content ratio of all components other than the solvent of the resist composition is preferably 0.1% by mass, and preferably 1% by mass.
  • the upper limit of the content ratio is preferably 50% by mass, more preferably 30% by mass.
  • the resist composition one obtained by filtering with a filter having a pore size of 0.2 ⁇ m can be preferably used.
  • a commercially available resist composition can be used as it is as the resist composition.
  • a coating method of the resist composition for example, a conventional method such as a spin coating method can be mentioned.
  • the amount of the resist composition to be applied is adjusted so that the obtained resist film has a predetermined film thickness.
  • the resist film can be formed by prebaking the coating film of the resist composition to volatilize the solvent in the coating film.
  • the pre-baking temperature is appropriately adjusted depending on the type of resist composition used and the like, but the lower limit of the pre-baking temperature is preferably 30°C, and more preferably 50°C.
  • the upper limit of the temperature is preferably 200°C, more preferably 150°C.
  • Exposure step (I) In this step, the resist film formed in the resist composition coating step is exposed. This exposure is performed by selectively irradiating radiation with a mask, for example.
  • the radiation include visible rays, ultraviolet rays, far ultraviolet rays, extreme ultraviolet rays, electromagnetic waves such as X-rays and ⁇ rays, and charged particle rays such as electron rays and ⁇ rays.
  • far ultraviolet rays, extreme ultraviolet rays or electron beams are preferable, and extreme ultraviolet rays or electron beams are more preferable.
  • Step (I) In this step, the exposed resist film is developed. By this step, a resist pattern is formed on the silicon-containing film formed by the coating step directly or through another layer.
  • the developing method may be an alkali developing method using an alkali developing solution or an organic solvent developing method using an organic solvent developing solution.
  • a predetermined resist pattern corresponding to the photomask used in the exposure step is formed by carrying out development with various developing solutions and then preferably washing and drying.
  • the silicon-containing film etching process In this step, after the developing step (I), the silicon-containing film is etched using the resist pattern formed by the developing step as a mask. More specifically, the silicon-containing film is patterned by one or more times of etching using the resist pattern formed in the developing step (I) as a mask.
  • the above etching may be dry etching or wet etching, but dry etching is preferable.
  • the dry etching method is, for example, the same as the dry etching method in the above etching step.
  • Exposure step (II) the silicon-containing film formed in the above coating step is exposed to radiation.
  • This exposure is performed by selectively irradiating radiation with a mask, for example.
  • the radiation include visible rays, ultraviolet rays, far ultraviolet rays, extreme ultraviolet rays, electromagnetic waves such as X-rays and ⁇ rays, and charged particle rays such as electron rays and ⁇ rays.
  • far ultraviolet rays, extreme ultraviolet rays or electron beams are preferable, and extreme ultraviolet rays or electron beams are more preferable.
  • the exposed silicon-containing film is developed.
  • the pattern of the silicon-containing film is formed. Examples of the pattern include a line and space pattern and a hole pattern.
  • the developing method may be an alkali developing method using an alkali developing solution or an organic solvent developing method using an organic solvent developing solution, but the organic solvent developing method is preferable.
  • a predetermined silicon-containing film pattern corresponding to the photomask used in the exposure step (II) is formed by performing development with various developers and then preferably washing and drying. According to the method for producing a semiconductor substrate, since the above-mentioned film forming composition is used, the pattern forming property of the silicon-containing film is excellent.
  • the silicon-containing film formed in the above coating step is treated with oxygen gas.
  • This oxygen gas treatment can be performed by heating the silicon-containing film in air or the like.
  • 100 °C is preferred and 150 °C is more preferred.
  • 300 °C is preferred and 250 °C is more preferred.
  • the lower limit of the heating time is preferably 50 seconds, more preferably 10 seconds.
  • the upper limit of the heating time is preferably 1 hour, more preferably 5 minutes.
  • the silicon-containing film after the oxygen gas treatment step is removed with an acid solution.
  • the acidic liquid include a liquid containing acid and water, a liquid obtained by mixing acid, hydrogen peroxide and water, and the like.
  • the acid include sulfuric acid, hydrofluoric acid, hydrochloric acid and the like.
  • Specific examples of the acidic liquid include a liquid obtained by mixing hydrofluoric acid and water, a liquid obtained by mixing sulfuric acid, hydrogen peroxide and water, and a liquid obtained by mixing hydrochloric acid, hydrogen peroxide and water. And the like. Among these, a liquid obtained by mixing hydrofluoric acid and water is preferable.
  • the lower limit of the temperature in the removing step is preferably 20°C, more preferably 40°C.
  • the upper limit of the temperature is preferably 100°C, more preferably 70°C.
  • the lower limit of the time in the removing step is preferably 10 seconds, more preferably 1 minute.
  • the upper limit of the above time is preferably 1 hour, more preferably 10 minutes.
  • the substrate is etched using the pattern of the silicon-containing film as a mask. More specifically, the silicon-containing film obtained in the etching step, the silicon-containing film etching step or the developing step (II) is patterned by performing one or more etchings using the pattern formed on the silicon-containing film as a mask. Get the substrate.
  • a step of etching the organic underlayer film using the pattern of the silicon-containing film as a mask is provided.
  • a pattern is formed on the substrate by etching the substrate using the organic underlayer film pattern formed in the organic underlayer film etching step as a mask.
  • the etching may be dry etching or wet etching, but dry etching is preferable. Dry etching for forming a pattern on the organic underlayer film can be performed using a known dry etching apparatus.
  • the etching gas used for dry etching can be appropriately selected depending on the elemental composition of the silicon-containing film and the organic lower layer film to be etched, and for example, CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 , SF 6 and other fluorine-based gases, Cl 2 and BCl 3 and other chlorine-based gases, O 2 , O 3 , and H 2 O and other oxygen-based gases, H 2 , NH 3 , CO, CH 4 , and C 2 H 2 , C 2 H 4 , C 2 H 6 , C 3 H 4 , C 3 H 6 , C 3 H 8 , HF, HI, HBr, HCl, NO, NH 3 , BCl 3 and other reducing gases, He, N 2 , an
  • Dry etching when etching the substrate using the organic underlayer film pattern as a mask can be performed using a known dry etching apparatus.
  • the etching gas used for the dry etching can be appropriately selected depending on the elemental composition of the organic underlayer film and the substrate to be etched, and is similar to those exemplified as the etching gas used for the dry etching of the organic underlayer film, for example. Etching gas and the like.
  • the etching may be performed by using different etching gases a plurality of times.
  • the weight average molecular weight (Mw), the concentration of [A] polysilane in the solution, and the average thickness of the film in this example were measured by the following methods.
  • Average thickness of silicon-containing film The average thickness of the silicon-containing film was measured using a spectroscopic ellipsometer (“M2000D” manufactured by JA WOLLAM).
  • propylene glycol monomethyl ether acetate 84 g of propylene glycol monomethyl ether acetate and 2.7 g of trimethyl orthoformate were added to the obtained residue to obtain a propylene glycol monomethyl ether acetate solution of polysilane represented by the following formula (A-1).
  • concentration of polysilane (A-1) in the propylene glycol monomethyl ether acetate solution was 4% by mass.
  • the Mw of the polysilane (A-1) was 2,500.
  • the concentration of the siloxane compound (C-1) in the propylene glycol monoethyl ether solution was 11% by mass.
  • the Mw of the siloxane compound (C-1) was 1,900.
  • B-1 Propylene glycol monomethyl ether acetate
  • B-2 Propylene glycol monoethyl ether
  • D-1 1-(4-n-butoxynaphthalen-1-yl)tetrahydrothiophenium nonafluoro-n-butane-1-sulfonate (compound represented by the following formula (D-1))
  • Example 1 1.00 parts by weight of (A-1) as [A] polysilane (excluding solvent) and 99.00 parts by weight of (B-1) as solvent [B] (included in solution of [A] polysilane (Including (B-1) as a solvent) and the resulting solution was filtered with a filter having a pore size of 0.2 ⁇ m to prepare a film-forming composition (J-1).
  • Examples 2 to 14 and Comparative Examples 1 to 6 The film forming compositions (J-2) to (J-14) and (j-1) were prepared in the same manner as in Example 1, except that the components shown in Table 2 below were used. ⁇ (j-6) were prepared.
  • a silicon-containing film was formed by the following method.
  • the embedding property, flatness, oxygen-based gas etching resistance, organic solvent resistance, extinction coefficient (k value), water contact angle, acid solution releasability and pattern formability of the formed silicon-containing film were evaluated by the following methods.
  • the evaluation results are shown in Tables 3 to 5 below. "-" in Tables 3 to 5 indicates that the corresponding evaluation was not performed.
  • the above-prepared film-forming composition was applied onto a silicon nitride substrate on which a trench pattern having a depth of 300 nm and a width of 30 nm was formed, by a spin coating method using a spin coater (“CLEAN TRACK ACT8” manufactured by Tokyo Electron Ltd.). I worked.
  • the spin-coating rotation speed was 30° C. at 30° C. after coating the above-prepared film-forming composition on a silicon wafer by the spin-coating method using the spin coater and heating at 300° C. for 60 seconds in a nitrogen atmosphere. It was the same as the case of forming a silicon-containing film having an average thickness of 200 nm by cooling for 2 seconds.
  • the substrate on which the silicon-containing film was formed was obtained by heating at 300° C. for 60 seconds in a nitrogen atmosphere and then cooling at 23° C. for 30 seconds.
  • the cross section of the obtained substrate was observed with a scanning electron microscope (“S-4800” manufactured by Hitachi High-Technologies Corporation) to confirm the embedding property.
  • S-4800 scanning electron microscope
  • the embeddability was evaluated as "A” (good) when no embedding failure (void) was observed and "B" (defect) when embedding failure was observed.
  • a spin coater (“CLEAN TRACK ACT8” manufactured by Tokyo Electron Ltd.) was applied onto a silicon substrate 1 on which a trench pattern having a depth of 100 nm and a width of 10 ⁇ m was formed, as shown in FIG. ) was applied by the spin coating method.
  • the spin speed of spin coating was 23° C. after coating the prepared film-forming composition on a silicon wafer by the spin coating method using the spin coater and heating at 300° C. for 60 seconds in the atmosphere. It was the same as the case of forming a silicon-containing film having an average thickness of 200 nm by cooling for 30 seconds. Then, after heating in an air atmosphere at 300° C. for 60 seconds, it is cooled at 23° C.
  • the flatness was evaluated as “A” (good) when the ⁇ FT was less than 40 nm, “B” (somewhat good) when the ⁇ FT was 40 nm or more and less than 60 nm, and “C” (poor) when the ⁇ FT was 60 nm or more. .. Note that the height difference shown in FIG. 1 is exaggerated from the actual one.
  • the water contact angle of the above-mentioned substrate with a silicon-containing film having an average thickness of 15 nm was measured at a temperature of 23° C. and a humidity of 45% using a contact angle meter (“DSA-10” manufactured by KRUSS).
  • the water contact angle is the contact angle of water immediately after contacting 10 ⁇ L of water droplets on the silicon-containing film.
  • the silicon-containing film formed by the film-forming composition in the examples had good embeddability, flatness, oxygen-based gas etching resistance, and organic solvent resistance.
  • the silicon-containing film formed by the film-forming composition in Comparative Example was inferior in flatness and oxygen-based gas etching resistance, and in some cases inferior in organic solvent resistance.
  • the silicon-containing film formed from the film-forming composition in the Examples had good pattern formability in both electron beam exposure and extreme ultraviolet exposure.
  • the silicon-containing film formed from the film-forming composition in Comparative Example had poor pattern formability.
  • silicon-containing which is excellent in embedding property, flatness and oxygen-based gas etching resistance, and further excellent in organic solvent resistance, acid solution releasability and pattern formability.
  • a film can be formed. Therefore, these can be suitably used for manufacturing semiconductor devices, which are expected to be further miniaturized in the future.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials For Photolithography (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

The purpose of the present invention is to provide: a film-forming composition capable of forming a silicon-containing film excellent in terms of filling property, flatness, and resistance to etching with oxygen-containing gases; and a method for producing a semiconductor substrate. The film-forming composition of the present invention comprises a polysilane and a solvent, wherein the polysilane has two or more first structural units, which are represented by formula (1). In formula (1), R1 is a hydrogen atom or a monovalent organic chain group having 1-20 carbon atoms. R2 is a hydrogen atom, a hydroxy group, or a monovalent organic chain group having 1-20 carbon atoms. It is preferable that R2 in formula (1) be -ORA and RA be a hydrogen atom or a monovalent organic chain group having 1-20 carbon atoms. It is preferable that RA be a hydrogen atom or a monovalent hydrocarbon chain group having 1-20 carbon atoms.

Description

膜形成用組成物及び半導体基板の製造方法Film forming composition and method for manufacturing semiconductor substrate
 本発明は、膜形成用組成物及び半導体基板の製造方法に関する。 The present invention relates to a film forming composition and a method for manufacturing a semiconductor substrate.
 半導体基板の製造におけるパターン形成には、例えば、基板に有機下層膜、ケイ素含有膜等を介して積層されたレジスト膜を露光及び現像して得られたレジストパターンをマスクとしてエッチングを行うことでパターニングされた基板を形成する半導体リソグラフィープロセス等が用いられる。 For pattern formation in the manufacture of a semiconductor substrate, patterning is performed, for example, by performing etching using a resist pattern obtained by exposing and developing a resist film laminated on the substrate via an organic lower layer film, a silicon-containing film, etc. as a mask. A semiconductor lithography process or the like for forming the formed substrate is used.
 ケイ素含有膜形成用組成物として、ポリシラン化合物を含有するものを用いて基板にパターンを形成する方法の検討がなされている(特開平11-256106号公報及び国際公開第2009/028511号参照)。 A method for forming a pattern on a substrate using a composition containing a polysilane compound as a composition for forming a silicon-containing film has been studied (see Japanese Patent Application Laid-Open No. 11-256106 and International Publication No. 2009/028511).
特開平11-256106号公報Japanese Patent Laid-Open No. 11-256106 国際公開第2009/028511号International Publication No. 2009/028511
 最近では、トレンチ、ビア等のパターンが形成された基板を用いられることが多くなっており、膜形成用組成物には、これらのパターンを十分に埋め込むことができ、平坦性に優れることが要求されている。また、膜形成用組成物には、酸素系ガスエッチング耐性に優れることも求められている。しかし、上記従来の膜形成用組成物ではこれらの要求を満たすことはできていない。 Recently, substrates on which patterns such as trenches and vias are formed are often used, and a film forming composition is required to be able to sufficiently embed these patterns and to have excellent flatness. Has been done. Further, the film-forming composition is also required to have excellent resistance to oxygen-based gas etching. However, the above-mentioned conventional film-forming composition cannot satisfy these requirements.
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、埋め込み性、平坦性及び酸素系ガスエッチング耐性に優れるケイ素含有膜を形成することができる膜形成用組成物及び半導体基板の製造方法を提供することにある。 The present invention has been made based on the above circumstances, and an object thereof is a film-forming composition capable of forming a silicon-containing film excellent in embedding property, flatness, and oxygen-based gas etching resistance, and It is to provide a method for manufacturing a semiconductor substrate.
 上記課題を解決するためになされた発明は、ポリシラン(以下、「[A]ポリシラン」ともいう)と、溶媒(以下、「[B]溶媒」ともいう)とを含有し、上記[A]ポリシランが2以上の下記式(1)で表される第1構造単位(以下、「構造単位(I)」ともいう)を有する膜形成用組成物である。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、Rは、水素原子又は炭素数1~20の1価の鎖状の有機基である。Rは、水素原子、ヒドロキシ基又は炭素数1~20の1価の鎖状の有機基である。)
The invention made to solve the above problems contains polysilane (hereinafter, also referred to as “[A] polysilane”) and a solvent (hereinafter, also referred to as “[B] solvent”), and the above [A] polysilane. Is a film-forming composition having 2 or more first structural units represented by the following formula (1) (hereinafter, also referred to as “structural unit (I)”).
Figure JPOXMLDOC01-appb-C000003
(In the formula (1), R 1 is a hydrogen atom or a monovalent chain organic group having 1 to 20 carbon atoms. R 2 is a hydrogen atom, a hydroxy group or a monovalent chain having 1 to 20 carbon atoms. It is a chain organic group.)
 上記課題を解決するためになされた別の発明は、基板に直接又は間接に当該膜形成用組成物を塗工する工程を備える半導体基板の製造方法である。 Another invention made to solve the above problems is a method for manufacturing a semiconductor substrate, which comprises a step of directly or indirectly coating the film forming composition on the substrate.
 本発明の膜形成用組成物及び半導体基板の製造方法によれば、埋め込み性、平坦性及び酸素系ガスエッチング耐性に優れ、さらに有機溶媒耐性、酸性液剥離性及びパターン形成性にも優れるケイ素含有膜を形成することができる。従って、これらは今後さらに微細化が進行すると予想される半導体デバイスの製造等に好適に用いることができる。 According to the film-forming composition and the method for producing a semiconductor substrate of the present invention, silicon-containing which is excellent in embedding property, flatness and oxygen-based gas etching resistance, and further excellent in organic solvent resistance, acid solution releasability and pattern formability. A film can be formed. Therefore, these can be suitably used for manufacturing semiconductor devices, which are expected to be further miniaturized in the future.
図1は、平坦性の評価方法を説明するための模式的断面図である。FIG. 1 is a schematic cross-sectional view for explaining the flatness evaluation method.
<膜形成用組成物>
 当該膜形成用組成物は、[A]ポリシランと、[B]溶媒とを含有する。当該膜形成用組成物は、好適成分として、シロキサン化合物(以下、「[C]シロキサン化合物」ともいう)及び/又は酸発生剤(以下、「[D]酸発生剤」ともいう)を含有していてもよく、本発明の効果を損なわない範囲において、その他の任意成分を含有していてもよい。
<Film forming composition>
The film forming composition contains [A] polysilane and a [B] solvent. The film forming composition contains a siloxane compound (hereinafter, also referred to as “[C] siloxane compound”) and/or an acid generator (hereinafter, also referred to as “[D] acid generator”) as suitable components. May be contained, and other optional components may be contained within a range not impairing the effects of the present invention.
 当該膜形成用組成物は、[A]ポリシランと[B]溶媒とを含有することで、埋め込み性、平坦性及び酸素系ガスエッチング耐性に優れ、さらに有機溶媒耐性、酸性液剥離性及びパターン形成性(以下、これらの特性をまとめて「ケイ素含有膜諸特性」ともいう)にも優れるケイ素含有膜を形成することができる。当該膜形成用組成物が上記構成を備えることで上記効果を奏する理由については必ずしも明確ではないが、例えば以下のように推察することができる。すなわち、[A]ポリシランは特定構造の構造単位(I)を2以上有するので、有機溶媒耐性を有し、また、大気中での加熱により、Si-Si構造がSi-O-Si構造に変化することで、熱収縮が抑制されると考えられ、平坦性が向上する。また、上記特定構造の[A]ポリシランは酸素プラズマにより分解されにくい構造であると考えられ、酸素系ガスエッチング耐性が向上する。さらに、上記特定構造の[A]ポリシランは、大気中での加熱により、Si-Si構造がSi-O-Si構造に変化し、酸性液剥離性に優れる。上記特定構造の[A]ポリシランは、電子線又は極端紫外線露光等によって物性が変化するので、現像処理によりケイ素含有膜のパターンを形成することができる。
 以下、各成分について説明する。
Since the film forming composition contains [A] polysilane and [B] solvent, it has excellent embedding properties, flatness, and oxygen-based gas etching resistance, and further has organic solvent resistance, acid solution peeling property, and pattern formation. It is possible to form a silicon-containing film having excellent properties (hereinafter collectively referred to as “characteristics of silicon-containing film”). The reason why the film-forming composition has the above-mentioned effects to achieve the above-mentioned effects is not necessarily clear, but can be inferred as follows, for example. That is, since [A] polysilane has two or more structural units (I) having a specific structure, it has organic solvent resistance, and the Si—Si structure is changed to a Si—O—Si structure by heating in the atmosphere. By doing so, it is considered that thermal contraction is suppressed, and the flatness is improved. Further, the [A] polysilane having the above-mentioned specific structure is considered to be a structure which is hardly decomposed by oxygen plasma, and the oxygen-based gas etching resistance is improved. Furthermore, the [A] polysilane having the above-mentioned specific structure is changed in the Si—Si structure to the Si—O—Si structure by heating in the air, and is excellent in the acid solution peeling property. Since the physical properties of [A] polysilane having the above-mentioned specific structure are changed by exposure to an electron beam or extreme ultraviolet rays, a pattern of a silicon-containing film can be formed by a development treatment.
Hereinafter, each component will be described.
<[A]ポリシラン>
 「ポリシラン」とは、主鎖にSi-Si結合を有する重合体をいう。「重合体」とは、2以上の構造単位を有する化合物をいう。[A]ポリシランは、2以上の構造単位(I)を有する。すなわち、[A]ポリシランは、構造単位(I)を繰り返し単位として有する化合物である。
<[A] polysilane>
“Polysilane” refers to a polymer having a Si—Si bond in the main chain. "Polymer" refers to a compound having two or more structural units. [A] Polysilane has two or more structural units (I). That is, [A] polysilane is a compound having the structural unit (I) as a repeating unit.
 [A]ポリシランにおける構造単位(I)の数の下限としては、2であり、5が好ましく、10がさらに好ましく、15が特に好ましい。上記数の上限としては、例えば50であり、40が好ましく、30がより好ましい。 The lower limit of the number of structural units (I) in [A] polysilane is 2, 5, is preferable, 10 is more preferable, and 15 is particularly preferable. The upper limit of the number is, for example, 50, preferably 40, and more preferably 30.
 [A]ポリシランは、構造単位(I)以外に、後述する式(2)で表される第2構造単位(以下、「構造単位(II)」ともいう)を有していてもよく、構造単位(I)及び構造単位(II)以外のその他の構造単位を有していてもよい。[A]ポリシランは、各構造単位を1種又は2種以上有していてもよい。
 以下、各構造単位について説明する。
The [A] polysilane may have a second structural unit represented by the formula (2) described later (hereinafter, also referred to as “structural unit (II)”) in addition to the structural unit (I). It may have a structural unit other than the unit (I) and the structural unit (II). [A] Polysilane may have one kind or two or more kinds of each structural unit.
Hereinafter, each structural unit will be described.
[構造単位(I)]
 構造単位(I)は、下記式(1)で表される構造単位である。
[Structural unit (I)]
The structural unit (I) is a structural unit represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(1)中、Rは、水素原子又は炭素数1~20の1価の鎖状の有機基である。Rは、水素原子、ヒドロキシ基又は炭素数1~20の1価の鎖状の有機基である。 In the above formula (1), R 1 is a hydrogen atom or a monovalent chain organic group having 1 to 20 carbon atoms. R 2 is a hydrogen atom, a hydroxy group or a monovalent chain organic group having 1 to 20 carbon atoms.
 「有機基」とは、少なくとも1個の炭素原子を含む基をいう。「鎖状」とは、環構造を含まないことを意味し、直鎖状及び分岐鎖状の両方を含む。 “Organic group” means a group containing at least one carbon atom. “Chain” means not containing a ring structure, and includes both linear and branched chains.
 R及びRで表される炭素数1~20の1価の鎖状の有機基としては、例えば炭素数1~20の1価の鎖状炭化水素基、この鎖状炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を含む1価の基(α1)、上記鎖状炭化水素基及び基(α1)が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した1価の基(β1)、上記鎖状炭化水素基、基(α1)又は基(β1)と2価のヘテロ原子含有基とを組み合わせた1価の基(γ1)などが挙げられる。 The monovalent chain organic group having 1 to 20 carbon atoms represented by R 1 and R 2 includes, for example, monovalent chain hydrocarbon group having 1 to 20 carbon atoms and carbon of the chain hydrocarbon group. -A monovalent group (α1) containing a divalent heteroatom-containing group between carbons, a part or all of the hydrogen atoms contained in the chain hydrocarbon group and the group (α1) is a monovalent heteroatom-containing group Examples thereof include a substituted monovalent group (β1), the chain hydrocarbon group, the group (α1) or a monovalent group (γ1) obtained by combining the group (β1) with a divalent hetero atom-containing group.
 炭素数1~20の1価の鎖状炭化水素基としては、例えばメタン、エタン、プロパン、ブタン等のアルカン、エテン、プロペン、ブテン等のアルケン、エチン、プロピン、ブチン等のアルキンなどの鎖状炭化水素が有する1個の水素原子を除いた基等が挙げられる。 Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include chain chains such as alkanes such as methane, ethane, propane and butane, alkenes such as ethene, propene and butene, and alkynes such as ethyne, propyne and butyne. Examples thereof include groups excluding one hydrogen atom contained in hydrocarbon.
 2価又は1価のヘテロ原子含有基を構成するヘテロ原子としては、例えば酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、ハロゲン原子等が挙げられる。 Examples of the hetero atom constituting the divalent or monovalent hetero atom-containing group include oxygen atom, nitrogen atom, sulfur atom, phosphorus atom, silicon atom, halogen atom and the like.
 2価のヘテロ原子含有基としては、例えば-O-、-CO-、-S-、-CS-、-NR’-、これらのうちの2つ以上を組み合わせた基等が挙げられる。R’は、水素原子又は1価の鎖状炭化水素基である。これらの中で、-O-又は-S-が好ましく、-O-がより好ましい。 Examples of the divalent hetero atom-containing group include -O-, -CO-, -S-, -CS-, -NR'-, and groups in which two or more of these are combined. R'is a hydrogen atom or a monovalent chain hydrocarbon group. Among these, -O- or -S- is preferable, and -O- is more preferable.
 1価のヘテロ原子含有基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、アミノ基、スルファニル基等が挙げられる。 Examples of the monovalent hetero atom-containing group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, amino group and sulfanyl group.
 Rとしては、水素原子又は炭素数1~20の1価の鎖状炭化水素基が好ましく、水素原子又は炭素数1~6の1価の鎖状炭化水素基がより好ましく、水素原子又は炭素数1~6のアルキル基がさらに好ましく、メチル基又はエチル基が特に好ましい。 R 1 is preferably a hydrogen atom or a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, more preferably a hydrogen atom or a monovalent chain hydrocarbon group having 1 to 6 carbon atoms, and more preferably a hydrogen atom or a carbon atom. The alkyl groups of the numbers 1 to 6 are more preferable, and the methyl group or the ethyl group is particularly preferable.
 Rとしては、-ORが好ましい。Rは、水素原子又は炭素数1~20の1価の鎖状の有機基である。Rで表される炭素数1~20の1価の鎖状の有機基としては、例えば上記Rの炭素数1~20の1価の鎖状の有機基として例示した基と同様の基等が挙げられる。Rとしては、水素原子又は炭素数1~20の1価の鎖状炭化水素基が好ましく、水素原子又は炭素数1~6の1価の鎖状炭化水素基がより好ましく、水素原子又は炭素数1~6のアルキル基がさらに好ましく、メチル基又はエチル基が特に好ましい。 As R 2 , —OR A is preferable. R A is a hydrogen atom or a monovalent chain organic group having 1 to 20 carbon atoms. Examples of the monovalent chain organic group having 1 to 20 carbon atoms represented by R A include the same groups as those exemplified as the monovalent chain organic group having 1 to 20 carbon atoms for R 1. Etc. As R A , a hydrogen atom or a monovalent chain hydrocarbon group having 1 to 20 carbon atoms is preferable, a hydrogen atom or a monovalent chain hydrocarbon group having 1 to 6 carbon atoms is more preferable, and a hydrogen atom or carbon atom. The alkyl groups of the numbers 1 to 6 are more preferable, and the methyl group or the ethyl group is particularly preferable.
 構造単位(I)としては、例えば下記式(1-1)~(1-9)で表される構造単位(以下、「構造単位(I-1)~(I-9)」ともいう)等が挙げられる。 Examples of the structural unit (I) include structural units represented by the following formulas (1-1) to (1-9) (hereinafter, also referred to as “structural units (I-1) to (I-9)”) and the like. Is mentioned.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 構造単位(I)としては、構造単位(I-1)、(I-2)又は(I-6)が好ましい。 The structural unit (I) is preferably the structural unit (I-1), (I-2) or (I-6).
 構造単位(I)の含有割合の下限としては、[A]ポリシランを構成する全構造単位に対して、1モル%が好ましく、10モル%がより好ましく、30モル%がさらに好ましく、50モル%が特に好ましく、70モル%がさらに特に好ましく、90モル%が最も好ましい。上記含有割合の上限は、100モル%であってもよい。構造単位(I)の含有割合を上記範囲とすることで、ケイ素含有膜諸特性をより向上させることができる。 As the lower limit of the content ratio of the structural unit (I), 1 mol% is preferable, 10 mol% is more preferable, 30 mol% is further more preferable, and 50 mol% is all the structural units constituting the [A] polysilane. Is particularly preferred, 70 mol% is even more preferred, and 90 mol% is most preferred. The upper limit of the content ratio may be 100 mol %. By setting the content ratio of the structural unit (I) within the above range, various characteristics of the silicon-containing film can be further improved.
[構造単位(II)]
 構造単位(II)は、下記式(2)で表される構造単位である。
[Structural unit (II)]
The structural unit (II) is a structural unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記式(2)中、Rは、水素原子又は炭素数1~20の1価の有機基である。Rは、環構造を含む炭素数3~20の1価の有機基である。 In the above formula (2), R 3 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. R 4 is a monovalent organic group having a ring structure and having 3 to 20 carbon atoms.
 Rで表される炭素数1~20の1価の有機基としては、例えば炭素数1~20の1価の炭化水素基、上記炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を含む1価の基(α2)、上記炭化水素基及び基(α2)が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した1価の基(β2)、上記炭化水素基、基(α2)又は基(β2)と2価のヘテロ原子含有基とを組み合わせた1価の基(γ2)などが挙げられる。2価及び1価のヘテロ原子含有基としては、上記R及びRの有機基における2価及び1価のヘテロ原子含有基として例示した基と同様の基等が挙げられる。 The monovalent organic group having 1 to 20 carbon atoms represented by R 3 is, for example, a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a divalent hetero atom between carbon and carbon of the hydrocarbon group. A monovalent group (α2) containing a group, a monovalent group (β2) obtained by substituting a part or all of the hydrogen atoms of the hydrocarbon group and the group (α2) with a monovalent hetero atom-containing group, the above carbon Examples thereof include a hydrogen group, a group (α2) or a monovalent group (γ2) obtained by combining a group (β2) and a divalent hetero atom-containing group. Examples of the divalent and monovalent hetero atom-containing groups include the same groups as the groups exemplified as the divalent and monovalent hetero atom-containing groups in the organic groups of R 1 and R 2 .
 炭素数1~20の1価の炭化水素基としては、例えば炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。 Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and 6 carbon atoms. Examples include monovalent aromatic hydrocarbon groups of 20 to 20.
 炭素数1~20の1価の鎖状炭化水素基としては、例えば上記R及びRとして例示した炭素数1~20の1価の鎖状炭化水素基と同様の基等が挙げられる。 Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include the same groups as the monovalent chain hydrocarbon group having 1 to 20 carbon atoms exemplified as R 1 and R 2 .
 炭素数3~20の1価の脂環式炭化水素基としては、例えばシクロペンタン、シクロヘキサン等のシクロアルカン、ノルボルナン、アダマンタン、トリシクロデカン等の橋かけ環飽和炭化水素などの脂環式飽和炭化水素、シクロペンテン、シクロヘキセン等のシクロアルケン、ノルボルネン、トリシクロデセン等の橋かけ環不飽和炭化水素などの脂環式不飽和炭化水素などの脂環式炭化水素が有する1個の水素原子を除いた基などが挙げられる。 Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include cycloalkanes such as cyclopentane and cyclohexane, and alicyclic saturated hydrocarbons such as bridged ring saturated hydrocarbons such as norbornane, adamantane and tricyclodecane. Hydrogen, cyclopentene, cyclohexene and other cycloalkenes, norbornene, tricyclodecene and other bridged ring unsaturated hydrocarbons and other alicyclic unsaturated hydrocarbons and other alicyclic hydrocarbons, excluding one hydrogen atom Groups and the like.
 炭素数6~20の1価の芳香族炭化水素基としては、例えばベンゼン、トルエン、エチルベンゼン、キシレン、ナフタレン、メチルナフタレン、アントラセン、メチルアントラセン等のアレーンが有する芳香環上又はアルキル基上の1個の水素原子を除いた基などが挙げられる。 The monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms is, for example, one on the aromatic ring or alkyl group of an arene such as benzene, toluene, ethylbenzene, xylene, naphthalene, methylnaphthalene, anthracene or methylanthracene. Groups excluding the hydrogen atom of
 Rとしては、水素原子又は炭素数1~20の1価の炭化水素基が好ましく、水素原子又は炭素数1~6の1価の炭化水素基がより好ましく、水素原子又は炭素数1~6のアルキル基がさらに好ましく、メチル基又はエチル基が特に好ましい。 R 3 is preferably a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms, more preferably a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms, and more preferably a hydrogen atom or 1 to 6 carbon atoms. Is more preferable, and a methyl group or an ethyl group is particularly preferable.
 「環構造」とは、脂環構造、芳香族炭素環構造、脂肪族複素環構造及び芳香族複素環構造を含む概念である。Rで表される環構造を含む炭素数3~20の1価の有機基としては、例えば炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基、上記脂環式炭化水素基及び芳香族炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を含む1価の基(α3)、上記脂環式炭化水素基、芳香族炭化水素基及び基(α3)が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した1価の基(β3)、上記脂環式炭化水素基、芳香族炭化水素基、基(α3)又は基(β3)と2価のヘテロ原子含有基とを組み合わせた1価の基(γ3)等が挙げられる。2価及び1価のヘテロ原子含有基としては、上記R及びRの有機基における2価及び1価のヘテロ原子含有基として例示した基と同様の基等が挙げられる。 The “ring structure” is a concept including an alicyclic structure, an aromatic carbocyclic structure, an aliphatic heterocyclic structure and an aromatic heterocyclic structure. Examples of the monovalent organic group having 3 to 20 carbon atoms containing a ring structure represented by R 4 include monovalent alicyclic hydrocarbon groups having 3 to 20 carbon atoms and monovalent monovalent groups having 6 to 20 carbon atoms. An aromatic hydrocarbon group, a monovalent group (α3) containing a divalent heteroatom-containing group between carbon and carbon of the alicyclic hydrocarbon group and the aromatic hydrocarbon group, the alicyclic hydrocarbon group, Monovalent group (β3) obtained by substituting a part or all of hydrogen atoms of the aromatic hydrocarbon group and the group (α3) with a monovalent hetero atom-containing group, the alicyclic hydrocarbon group, and aromatic hydrocarbon. Examples thereof include a group, a group (α3) or a monovalent group (γ3) in which a group (β3) and a divalent hetero atom-containing group are combined. Examples of the divalent and monovalent hetero atom-containing groups include the same groups as the groups exemplified as the divalent and monovalent hetero atom-containing groups in the organic groups of R 1 and R 2 .
 Rとしては、炭素数3~20の1価の脂環式炭化水素基又は炭素数6~20の1価の芳香族炭化水素基が好ましく、炭素数3~20の1価の脂環式飽和炭化水素基又は炭素数6~20のアリール基がより好ましく、炭素数6~20のアリール基がさらに好ましく、フェニル基又はトリル基が特に好ましい。 R 4 is preferably a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms, and a monovalent alicyclic group having 3 to 20 carbon atoms A saturated hydrocarbon group or an aryl group having 6 to 20 carbon atoms is more preferable, an aryl group having 6 to 20 carbon atoms is further preferable, and a phenyl group or a tolyl group is particularly preferable.
 構造単位(II)としては、例えば下記式(2-1)~(2-6)で表される構造単位(以下、「構造単位(II-1)~(II-6)」ともいう)等が挙げられる。 Examples of the structural unit (II) include structural units represented by the following formulas (2-1) to (2-6) (hereinafter, also referred to as “structural units (II-1) to (II-6)”) and the like. Is mentioned.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 構造単位(II)としては、構造単位(II-1)が好ましい。 The structural unit (II) is preferably the structural unit (II-1).
 [A]ポリシランが構造単位(II)を有する場合、構造単位(II)の含有割合の下限としては、[A]ポリシランを構成する全構造単位に対して、1モル%が好ましく、2モル%がより好ましく、5モル%がさらに好ましく、10モル%が特に好ましい。上記含有割合の上限としては、50モルが好ましく、40モル%がより好ましく、30モル%がさらに好ましく、20モル%が特に好ましい。構造単位(II)の含有割合を上記範囲とすることで、ケイ素含有膜諸特性をより向上させることができる。 When the [A] polysilane has the structural unit (II), the lower limit of the content ratio of the structural unit (II) is preferably 1 mol% with respect to all the structural units constituting the [A] polysilane, and 2 mol% Is more preferable, 5 mol% is further preferable, and 10 mol% is particularly preferable. The upper limit of the content is preferably 50 mol, more preferably 40 mol%, further preferably 30 mol%, particularly preferably 20 mol%. By setting the content ratio of the structural unit (II) within the above range, various characteristics of the silicon-containing film can be further improved.
[その他の構造単位]
 その他の構造単位としては、例えば(-Si(R)-)で表される構造単位(Rは、それぞれ独立して、置換又は非置換の炭素数1~20の1価の炭化水素基である)等が挙げられる。
[Other structural units]
As the other structural unit, for example, a structural unit represented by (—Si(R) 2 —) (R is independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms) There is) etc.
 [A]ポリシランがその他の構造単位を有する場合、その他の構造単位の含有割合の上限としては、20モル%が好ましく、10モル%がより好ましい。上記含有割合の下限としては、例えば0.1モル%である。 When [A] polysilane has other structural units, the upper limit of the content of the other structural units is preferably 20 mol%, more preferably 10 mol%. The lower limit of the content ratio is, for example, 0.1 mol %.
 [A]ポリシランのポリスチレン換算重量平均分子量(Mw)の下限としては、300が好ましく、700がより好ましく、1,000がさらに好ましく、1,500が特に好ましい。上記Mwの上限としては、100,000が好ましく、10,000がより好ましく、5,000がさらに好ましく、3,000が特に好ましい。 The lower limit of the polystyrene-reduced weight average molecular weight (Mw) of [A] polysilane is preferably 300, more preferably 700, further preferably 1,000, and particularly preferably 1,500. As the upper limit of the Mw, 100,000 is preferable, 10,000 is more preferable, 5,000 is further preferable, and 3,000 is particularly preferable.
 本明細書におけるMwは、GPCカラム(東ソー(株)の「G2000HXL」2本、「G3000HXL」1本及び「G4000HXL」1本)を使用し、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(検出器:示差屈折計)により測定した値である。 As the Mw in the present specification, a GPC column (two "G2000HXL", one "G3000HXL" and one "G4000HXL" from Tosoh Corporation) is used, and a flow rate: 1.0 mL/min, an elution solvent: tetrahydrofuran, It is a value measured by gel permeation chromatography (detector: differential refractometer) using monodisperse polystyrene as a standard under analysis conditions of column temperature: 40°C.
 [A]ポリシランの含有割合の下限としては、[B]溶媒以外の全成分に対して、30質量%が好ましく、50質量%がより好ましく、80質量%がさらに好ましく、90質量%が特に好ましい。上記含有割合の上限は、100質量%であってもよい。 The lower limit of the content ratio of [A] polysilane is preferably 30% by mass, more preferably 50% by mass, further preferably 80% by mass, and particularly preferably 90% by mass, based on all components other than the solvent [B]. .. The upper limit of the content ratio may be 100% by mass.
 当該膜形成用組成物における[A]ポリシランの含有割合の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましく、5質量%が特に好ましい。上記含有割合の上限としては、50質量%が好ましく、30質量%がより好ましく、20質量%がさらに好ましく、15質量%が特に好ましい。[A]ポリシランは1種又は2種以上を用いることができる。 The lower limit of the content ratio of [A] polysilane in the film-forming composition is preferably 0.1% by mass, more preferably 0.5% by mass, further preferably 1% by mass, and particularly preferably 5% by mass. The upper limit of the content ratio is preferably 50% by mass, more preferably 30% by mass, further preferably 20% by mass, and particularly preferably 15% by mass. As the polysilane [A], one type or two or more types can be used.
[[A]ポリシランの合成方法]
 [A]ポリシランは、例えばトリクロロシラン、メチルジクロロシラン等の構造単位(I)を与える単量体と、必要に応じて、フェニルジクロロシラン等の構造単位(II)を与える単量体等とを、トリエチルアミン等の塩基存在下、テトラヒドロフラン等の溶媒中で脱ハロゲン化水素縮合重合反応を行った後、得られた重合体に、トリエチルアミン等の塩基存在下、テトラヒドロフラン等の溶媒中で、メタノール、エタノール等の炭素数1~20の1価の鎖状の有機基(R)を与える化合物を反応させることにより得ることができる。
[[A] Polysilane Synthesis Method]
The [A] polysilane includes, for example, a monomer that provides the structural unit (I) such as trichlorosilane and methyldichlorosilane, and, if necessary, a monomer that provides the structural unit (II) such as phenyldichlorosilane. , In the presence of a base such as triethylamine, after performing a dehydrohalogenation condensation polymerization reaction in a solvent such as tetrahydrofuran, the resulting polymer, in the presence of a base such as triethylamine, in a solvent such as tetrahydrofuran, methanol, ethanol It can be obtained by reacting a compound which gives a monovalent chain organic group (R 1 ) having 1 to 20 carbon atoms.
<[B]溶媒>
 [B]溶媒は、[A]ポリシラン及び必要に応じて含有される任意成分を溶解又は分散できる溶媒であれば特に制限されない。
<[B] solvent>
The solvent [B] is not particularly limited as long as it is a solvent that can dissolve or disperse the [A] polysilane and optional components contained as necessary.
 [B]溶媒としては、例えばアルコール系溶媒、ケトン系溶媒、エーテル系溶媒、エステル系溶媒、含窒素系溶媒、水等が挙げられる。[B]溶媒は、1種又は2種以上を用いることができる。 Examples of the [B] solvent include alcohol solvents, ketone solvents, ether solvents, ester solvents, nitrogen-containing solvents, water and the like. As the solvent [B], one type or two or more types can be used.
 アルコール系溶媒としては、例えばメタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、iso-ブタノール等のモノアルコール系溶媒、エチレングリコール、1,2-プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等の多価アルコール系溶媒などが挙げられる。 Examples of alcohol solvents include monoalcohol solvents such as methanol, ethanol, n-propanol, iso-propanol, n-butanol, and iso-butanol, ethylene glycol, 1,2-propylene glycol, diethylene glycol, dipropylene glycol, etc. Examples thereof include polyhydric alcohol solvents.
 ケトン系溶媒としては、例えばアセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-iso-ブチルケトン、シクロヘキサノン等が挙げられる。 Examples of the ketone-based solvent include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-iso-butyl ketone, cyclohexanone and the like.
 エーテル系溶媒としては、例えばエチルエーテル、iso-プロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、テトラヒドロフラン等が挙げられる。 Examples of ether solvents include ethyl ether, iso-propyl ether, ethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, Tetrahydrofuran etc. are mentioned.
 エステル系溶媒としては、例えば酢酸エチル、γ-ブチロラクトン、酢酸n-ブチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、プロピオン酸エチル、プロピオン酸n-ブチル、乳酸メチル、乳酸エチル等が挙げられる。 Examples of ester solvents include ethyl acetate, γ-butyrolactone, n-butyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, and acetic acid. Examples include propylene glycol monoethyl ether, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, ethyl propionate, n-butyl propionate, methyl lactate, ethyl lactate and the like.
 含窒素系溶媒としては、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。 Examples of the nitrogen-containing solvent include N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone and the like.
 これらの中でも、エーテル系溶媒及び/又はエステル系溶媒が好ましく、成膜性に優れるため、グリコール構造を有するエーテル系溶媒及び/又はエステル系溶媒がより好ましい。 Among these, ether-based solvents and/or ester-based solvents are preferable, and ether-based solvents and/or ester-based solvents having a glycol structure are more preferable because they have excellent film-forming properties.
 グリコール構造を有するエーテル系溶媒及びエステル系溶媒としては、例えばプロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル等が挙げられる。これらの中でも、特に、酢酸プロピレングリコールモノメチルエーテルが好ましい。 Examples of the ether solvent and ester solvent having a glycol structure include propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and propylene glycol monopropyl acetate. Examples include ether and the like. Of these, propylene glycol monomethyl ether acetate is particularly preferable.
 [B]溶媒におけるグリコール構造を有するエーテル系溶媒及びエステル系溶媒の含有割合の下限としては、20質量%が好ましく、60質量%がより好ましく、90質量%がさらに好ましく、100質量%が特に好ましい。 The lower limit of the content of the glycol-structured ether solvent and ester solvent in the solvent [B] is preferably 20% by mass, more preferably 60% by mass, further preferably 90% by mass, and particularly preferably 100% by mass. ..
 [B]溶媒の含有量の下限としては、[A]ポリシラン100質量部に対して、100質量部が好ましく、200質量部がより好ましく、500質量部がさらに好ましく、1,000質量部が特に好ましい。上記含有量の上限としては、100,000質量部が好ましく、50,000質量部がより好ましく、20,000質量部がさらに好ましく、10,000質量部が特に好ましい。 The lower limit of the content of the [B] solvent is preferably 100 parts by mass, more preferably 200 parts by mass, further preferably 500 parts by mass, and particularly preferably 1,000 parts by mass with respect to 100 parts by mass of [A] polysilane. preferable. The upper limit of the content is preferably 100,000 parts by mass, more preferably 50,000 parts by mass, further preferably 20,000 parts by mass, particularly preferably 10,000 parts by mass.
 当該膜形成用組成物における[B]溶媒の含有割合の下限としては、50質量%が好ましく、70質量%がより好ましく、80質量%がさらに好ましい。上記含有割合の上限としては、99.9質量%が好ましく、99.5質量%がより好ましい。 The lower limit of the content ratio of the [B] solvent in the film-forming composition is preferably 50% by mass, more preferably 70% by mass, and further preferably 80% by mass. As a maximum of the above-mentioned content rate, 99.9 mass% is preferred and 99.5 mass% is more preferred.
<[C]シロキサン化合物>
 [C]シロキサン化合物は、Si-O結合を有する化合物である。
<[C] siloxane compound>
The [C] siloxane compound is a compound having a Si—O bond.
 [C]シロキサン化合物としては、例えばポリシロキサン(以下、「[C1]ポリシロキサン」ともいう)、シロキサンモノマー(以下、「[C2]シロキサンモノマー」ともいう)等が挙げられる。「ポリシロキサン」とは、主鎖にSi-O-Si結合を有する重合体をいう。「シロキサンモノマー」とは、Si-O結合を有する単量体をいう。 Examples of the [C] siloxane compound include polysiloxane (hereinafter, also referred to as “[C1] polysiloxane”), siloxane monomer (hereinafter, also referred to as “[C2] siloxane monomer”), and the like. “Polysiloxane” refers to a polymer having a Si—O—Si bond in the main chain. “Siloxane monomer” refers to a monomer having a Si—O bond.
 [C1]ポリシロキサンとしては、例えば下記式(3)で表される構造単位(以下、「構造単位(A)」ともいう)及び/又は下記式(4)で表される構造単位(以下、「構造単位(B)」ともいう)を有する化合物等が挙げられる。 As the [C1] polysiloxane, for example, a structural unit represented by the following formula (3) (hereinafter, also referred to as “structural unit (A)”) and/or a structural unit represented by the following formula (4) (hereinafter, And a compound having a “structural unit (B)”.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記式(3)中、Rは、水素原子又は炭素数1~20の1価の有機基である。mは、1~3の整数である。mが2以上の場合、複数のRは互いに同一又は異なる。 In the above formula (3), R A is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. m is an integer of 1 to 3. When m is 2 or more, R A's are the same or different from each other.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 Rで表される炭素数1~20の1価の有機基としては、例えば上記Rの炭素数1~20の1価の有機基として例示した基と同様の基等が挙げられる。 Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R A include the same groups as those exemplified as the monovalent organic group having 1 to 20 carbon atoms for R 3 .
 Rとしては、炭素数1~20の1価の炭化水素基が好ましく、炭素数1~20の1価の鎖状炭化水素基又は炭素数6~20の1価の芳香族炭化水素基がより好ましく、炭素数1~10のアルキル基又は炭素数6~10のアリール基がさらに好ましく、メチル基又はフェニル基が特に好ましい。 As R A , a monovalent hydrocarbon group having 1 to 20 carbon atoms is preferable, and a monovalent chain hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms is used. More preferably, an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms is more preferable, and a methyl group or a phenyl group is particularly preferable.
 mとしては、1又は2が好ましく、1がより好ましい。 As m, 1 or 2 is preferable, and 1 is more preferable.
 構造単位(A)の含有割合の下限としては、[C1]ポリシロキサンを構成する全構造単位に対して、1モル%が好ましく、10モル%がより好ましく、20モル%がさらに好ましく、30モル%が特に好ましい。上記含有割合の上限としては、99モル%が好ましく、90モル%がより好ましく、80モル%がさらに好ましく、70モル%が特に好ましい。 As the lower limit of the content ratio of the structural unit (A), 1 mol% is preferable, 10 mol% is more preferable, 20 mol% is further preferable, and 30 mol% with respect to all the structural units constituting [C1] polysiloxane. % Is particularly preferred. The upper limit of the content ratio is preferably 99 mol%, more preferably 90 mol%, further preferably 80 mol%, particularly preferably 70 mol%.
 構造単位(B)の含有割合の下限としては、[C1]ポリシロキサンを構成する全構造単位に対して、1モル%が好ましく、10モル%がより好ましく、20モル%がさらに好ましく、30モル%が特に好ましい。上記含有割合の上限としては、99モル%が好ましく、90モル%がより好ましく、80モル%がさらに好ましく、70モル%が特に好ましい。 As the lower limit of the content ratio of the structural unit (B), 1 mol% is preferable, 10 mol% is more preferable, 20 mol% is further preferable, and 30 mol% is based on all the structural units constituting the [C1] polysiloxane. % Is particularly preferred. The upper limit of the content ratio is preferably 99 mol%, more preferably 90 mol%, further preferably 80 mol%, particularly preferably 70 mol%.
 [C2]シロキサンモノマーとしては、例えばドデシルトリメトキシシラン、ヘキシルトリエトキシシラン等のアルキルトリアルコキシシラン、ジドデシルジメトキシシラン、ジヘキシルジエトキシシラン等のジアルキルジアルコキシシランなどが挙げられる。 Examples of the [C2] siloxane monomer include alkyltrialkoxysilanes such as dodecyltrimethoxysilane and hexyltriethoxysilane, and dialkyldialkoxysilanes such as didodecyldimethoxysilane and dihexyldiethoxysilane.
 [C]シロキサン化合物の含有量の下限としては、[A]ポリシラン100質量部に対して、0.1質量部が好ましく、1質量部がより好ましく、3質量部がさらに好ましく、10質量部が特に好ましい。上記含有量の上限としては、100質量部が好ましく、30質量部がより好ましく、20質量部がさらに好ましく、10質量部が特に好ましい。[C]シロキサン化合物の含有量を上記範囲とすることで、ケイ素含有膜諸特性をより向上させることができる。 The lower limit of the content of the [C] siloxane compound is preferably 0.1 parts by mass, more preferably 1 part by mass, further preferably 3 parts by mass, and 10 parts by mass with respect to 100 parts by mass of the [A] polysilane. Particularly preferred. As a maximum of the above-mentioned content, 100 mass parts is preferred, 30 mass parts is more preferred, 20 mass parts is still more preferred, and 10 mass parts is especially preferred. By setting the content of the [C] siloxane compound within the above range, various characteristics of the silicon-containing film can be further improved.
<[D]酸発生剤>
 [D]酸発生剤は、露光又は加熱により酸を発生する成分である。当該膜形成用組成物が[D]酸発生剤を含有すると、比較的低温(常温を含む)においても[A]ポリシランの縮合反応を促進することができる。
<[D] acid generator>
The acid generator [D] is a component that generates an acid upon exposure or heating. When the film-forming composition contains the [D] acid generator, the condensation reaction of the [A] polysilane can be promoted even at a relatively low temperature (including normal temperature).
 露光により酸を発生する[D]酸発生剤(以下、「光酸発生剤」ともいう)としては、例えば特開2004-168748号公報における段落[0077]~[0081]に記載の酸発生剤等が挙げられる。 Examples of the acid generator [D] that generates an acid upon exposure (hereinafter, also referred to as “photo-acid generator”) include, for example, the acid generators described in paragraphs [0077] to [0081] of JP-A-2004-168748. Etc.
 また、加熱により酸を発生する[D]酸発生剤(以下、「熱酸発生剤」ともいう)としては、上記特許文献において光酸発生剤として例示されているオニウム塩系酸発生剤や、2,4,4,6-テトラブロモシクロヘキサジエノン、ベンゾイントシレート、2-ニトロベンジルトシレート、アルキルスルホネート類等が挙げられる。 Further, as the [D] acid generator that generates an acid by heating (hereinafter, also referred to as “thermal acid generator”), an onium salt-based acid generator exemplified as a photoacid generator in the above patent documents, Examples include 2,4,4,6-tetrabromocyclohexadienone, benzoin tosylate, 2-nitrobenzyl tosylate, and alkyl sulfonates.
 当該膜形成用組成物が[D]酸発生剤を含有する場合、[D]酸発生剤の含有量の下限としては、[A]ポリシラン100質量部に対して、0.1質量部が好ましく、0.5質量部がより好ましく、1質量部がさらに好ましい。上記含有量の上限としては、20質量部が好ましく、10質量部がより好ましく、5質量部がさらに好ましい。 When the film-forming composition contains the [D] acid generator, the lower limit of the content of the [D] acid generator is preferably 0.1 part by mass relative to 100 parts by mass of the [A] polysilane. , 0.5 part by mass is more preferable, and 1 part by mass is further preferable. The upper limit of the content is preferably 20 parts by mass, more preferably 10 parts by mass, further preferably 5 parts by mass.
<その他の任意成分>
 その他の任意成分としては、例えば塩基性化合物(塩基発生剤を含む)、ラジカル発生剤、界面活性剤、コロイド状シリカ、コロイド状アルミナ、有機ポリマー等が挙げられる。その他の任意成分は、それぞれ1種単独で又は2種以上を組み合わせて用いることができる。
<Other optional ingredients>
Other optional components include, for example, basic compounds (including base generators), radical generators, surfactants, colloidal silica, colloidal alumina, organic polymers and the like. Each of the other optional components may be used alone or in combination of two or more.
[塩基性化合物]
 塩基性化合物は、当該膜形成用組成物の硬化反応を促進し、その結果、形成されるケイ素含有膜の強度等を向上する。また、塩基性化合物は、ケイ素含有膜の酸性液による剥離性を向上する。塩基性化合物としては、例えば塩基性アミノ基を有する化合物、酸の作用又は熱の作用により塩基性アミノ基を有する化合物を発生する塩基発生剤等が挙げられる。塩基性アミノ基を有する化合物としては、例えばアミン化合物等が挙げられる。塩基発生剤としては、例えばアミド基含有化合物、ウレア化合物、含窒素複素環化合物等が挙げられる。上記アミン化合物、アミド基含有化合物、ウレア化合物及び含窒素複素環化合物の具体例としては、例えば特開2016-27370号公報の段落[0079]~[0082]に記載されている化合物等が挙げられる。
[Basic compound]
The basic compound accelerates the curing reaction of the film forming composition, and as a result, improves the strength and the like of the formed silicon-containing film. Further, the basic compound improves the releasability of the silicon-containing film with the acidic liquid. Examples of the basic compound include a compound having a basic amino group, a base generator which generates a compound having a basic amino group by the action of an acid or the action of heat, and the like. Examples of the compound having a basic amino group include amine compounds. Examples of the base generator include amide group-containing compounds, urea compounds, nitrogen-containing heterocyclic compounds, and the like. Specific examples of the amine compound, the amide group-containing compound, the urea compound and the nitrogen-containing heterocyclic compound include the compounds described in paragraphs [0079] to [0082] of JP-A-2016-27370. ..
 当該膜形成用組成物が塩基性化合物を含有する場合、塩基性化合物の含有量の上限としては、[A]ポリシラン100質量部に対して、50質量部が好ましい。上記含有量の下限としては、例えば1質量部である。 When the film-forming composition contains a basic compound, the upper limit of the content of the basic compound is preferably 50 parts by mass with respect to 100 parts by mass of [A] polysilane. The lower limit of the content is, for example, 1 part by mass.
 当該膜形成用組成物が界面活性剤、コロイド状シリカ、コロイド状アルミナ及び/又は有機ポリマーを含有する場合、これらの成分の1種類毎の含有量の上限としては、[A]ポリシラン100質量部に対して、2質量部が好ましく、1質量部がより好ましい。上記含有量の下限としては、例えば0.1質量部である。 When the film-forming composition contains a surfactant, colloidal silica, colloidal alumina and/or organic polymer, the upper limit of the content of each of these components is 100 parts by mass of [A] polysilane. On the other hand, 2 parts by mass is preferable, and 1 part by mass is more preferable. The lower limit of the content is, for example, 0.1 part by mass.
[膜形成用組成物の調製方法]
 当該膜形成用組成物の調製方法としては、例えば[A]ポリシランの溶液及び[B]溶媒と、必要に応じて任意成分とを所定の割合で混合し、好ましくは得られた混合溶液を孔径0.2μm以下のフィルター等でろ過することにより調製することができる。
[Method for preparing film-forming composition]
As a method for preparing the film-forming composition, for example, a solution of [A] polysilane and a solvent of [B], and optional components are mixed at a predetermined ratio, and the resulting mixed solution is preferably used for the pore size. It can be prepared by filtering with a filter of 0.2 μm or less.
<半導体基板の製造方法>
 当該半導体基板の製造方法は、基板に直接又は間接に当該膜形成用組成物を塗工する工程(以下、「塗工工程」ともいう)を備える。
<Method of manufacturing semiconductor substrate>
The method for producing a semiconductor substrate includes a step of applying the film forming composition directly or indirectly to the substrate (hereinafter, also referred to as “application step”).
 当該半導体基板の製造方法によれば、上述の当該膜形成用組成物を用いるので、埋め込み性、平坦性及び酸素系ガスエッチング耐性に優れ、さらに有機溶媒耐性、酸性液剥離性及びパターン形成性にも優れるケイ素含有膜を形成することができる。 According to the method for manufacturing a semiconductor substrate, since the film forming composition described above is used, the embedding property, the flatness and the oxygen-based gas etching resistance are excellent, and further, the organic solvent resistance, the acid solution peeling property and the pattern formability are improved. It is possible to form an excellent silicon-containing film.
 当該半導体基板の製造方法は、上記塗工工程後に、上記塗工工程により形成されたケイ素含有膜の少なくとも一部をエッチングする工程(以下、「エッチング工程」ともいう)をさらに備えることができる。これにより、ケイ素含有膜をパターニングすることができる。 The method for manufacturing the semiconductor substrate can further include a step of etching at least a part of the silicon-containing film formed by the coating step (hereinafter, also referred to as “etching step”) after the coating step. Thereby, the silicon-containing film can be patterned.
 当該半導体基板の製造方法は、上記塗工工程後に、上記塗工工程により形成されたケイ素含有膜に直接又は間接にレジスト組成物を塗工する工程(以下、「レジスト組成物塗工工程」ともいう)と、上記レジスト組成物塗工工程により形成されたレジスト膜を露光する工程(以下、「露光工程(I)」ともいう)と、上記露光されたレジスト膜を現像する工程(以下、「現像工程(I)」ともいう)と、上記現像工程(I)により形成されたレジストパターンをマスクとして上記ケイ素含有膜をエッチングする工程(以下、「ケイ素含有膜エッチング工程」ともいう)とをさらに備えることができる。これにより、ケイ素含有膜をパターニングすることができる。 The manufacturing method of the semiconductor substrate, after the coating step, a step of directly or indirectly applying a resist composition to the silicon-containing film formed by the coating step (hereinafter, also referred to as "resist composition coating step" And a step of exposing the resist film formed by the resist composition coating step (hereinafter, also referred to as "exposure step (I)"), and a step of developing the exposed resist film (hereinafter, " Further, a developing step (I)") and a step of etching the silicon-containing film using the resist pattern formed in the developing step (I) as a mask (hereinafter, also referred to as "silicon-containing film etching step"). Can be prepared. Thereby, the silicon-containing film can be patterned.
 当該半導体基板の製造方法は、上記塗工工程後に、上記塗工工程により形成されたケイ素含有膜を放射線により露光する工程(以下、「露光工程(II)」ともいう)と、上記露光されたケイ素含有膜を現像する工程(以下、「現像工程(II)」ともいう)とをさらに備えることができる。これにより、優れたパターン形成性を発揮して、ケイ素含有膜のパターンを形成することができる。 In the method for manufacturing a semiconductor substrate, after the coating step, a step of exposing the silicon-containing film formed by the coating step to radiation (hereinafter, also referred to as “exposure step (II)”) The method may further include a step of developing the silicon-containing film (hereinafter, also referred to as “developing step (II)”). This makes it possible to form a pattern of the silicon-containing film by exhibiting excellent pattern formability.
 当該半導体基板の製造方法は、上記塗工工程後に、上記塗工工程により形成されたケイ素含有膜を酸素ガス処理する工程(以下、「酸素ガス処理工程」ともいう)と、上記酸素ガス処理工程後のケイ素含有膜を酸性液により除去する工程(以下、「除去工程」ともいう)とをさらに備えることができる。これにより、優れた酸性液除去性を発揮して、ケイ素含有膜を容易に除去することができる。 The manufacturing method of the semiconductor substrate, the coating step, a step of treating the silicon-containing film formed by the coating step with oxygen gas (hereinafter, also referred to as "oxygen gas treatment step"), the oxygen gas treatment step The method may further include a subsequent step of removing the silicon-containing film with an acid solution (hereinafter, also referred to as “removal step”). This makes it possible to easily remove the silicon-containing film by exhibiting excellent acid liquid removability.
 当該半導体基板の製造方法は、上記エッチング工程、ケイ素含有膜エッチング工程又は現像工程(II)の後に、上記ケイ素含有膜をマスクとして、基板をエッチングする工程(以下、「基板エッチング工程」ともいう)をさらに備えることができる。これにより、基板パターンを形成することができる。 The manufacturing method of the semiconductor substrate is a step of etching the substrate using the silicon-containing film as a mask after the etching step, the silicon-containing film etching step or the developing step (II) (hereinafter, also referred to as “substrate etching step”). Can be further provided. Thereby, the substrate pattern can be formed.
 当該半導体基板の製造方法は、上記塗工工程前に、基板に直接又は間接に有機下層膜を形成する工程をさらに備えることができる。
 以下、各工程について説明する。
The semiconductor substrate manufacturing method may further include a step of directly or indirectly forming an organic underlayer film on the substrate before the coating step.
Each step will be described below.
[有機下層膜形成工程]
 本工程では、基板に直接又は間接に有機下層膜を形成する。
[Organic underlayer film forming step]
In this step, the organic underlayer film is formed directly or indirectly on the substrate.
 当該半導体基板の製造方法において、有機下層膜形成工程を行う場合、有機下層膜形成工程後に、後述する塗工工程を行う。この場合、塗工工程において、有機下層膜上に当該膜形成用組成物を塗工することによりケイ素含有膜を形成する。 In the method of manufacturing a semiconductor substrate, when the organic underlayer film forming step is performed, the coating step described below is performed after the organic underlayer film forming step. In this case, in the coating step, the silicon-containing film is formed by coating the film forming composition on the organic underlayer film.
 上記有機下層膜は、当該膜形成用組成物から形成されるケイ素含有膜とは異なるものである。但し、上記有機下層膜は、ケイ素原子を含有していてもよい。有機下層膜は、レジストパターン形成において、ケイ素含有膜及び/又はレジスト膜が有する機能をさらに補ったり、これらが有していない機能を得るために、必要とされる所定の機能(例えば、反射防止性、塗工膜平坦性、フッ素系ガスに対する高エッチング耐性)を付与したりする膜のことである。 The above organic underlayer film is different from the silicon-containing film formed from the film forming composition. However, the organic underlayer film may contain a silicon atom. The organic underlayer film has a predetermined function (for example, antireflection) required in order to further supplement the function of the silicon-containing film and/or the resist film in the formation of the resist pattern or to obtain the function which these films do not have. Property, coating film flatness, and high etching resistance to fluorine-based gas).
 有機下層膜としては、例えば反射防止膜等が挙げられる。反射防止膜形成用組成物としては、例えばJSR(株)の「NFC HM8006」等が挙げられる。 Examples of the organic lower layer film include an antireflection film and the like. Examples of the antireflection film-forming composition include "NFC HM8006" by JSR Corporation.
 有機下層膜は、有機下層膜形成用組成物を回転塗工法等により塗工して塗膜を形成した後、加熱することにより形成することができる。 The organic underlayer film can be formed by applying a composition for forming an organic underlayer film by a spin coating method or the like to form a coating film, and then heating.
 上記基板としては、例えばシリコンウェハ、酸化シリコン、窒化シリコン、酸窒化シリコン、ポリシロキサン等の絶縁膜、樹脂基板等が挙げられる。例えば、AMAT社の「ブラックダイヤモンド」、ダウケミカル社の「シルク」、JSR(株)の「LKD5109」等により形成される低誘電体絶縁膜で被覆したウェハ等の層間絶縁膜を使用することができる。この基板としては配線溝(トレンチ)、プラグ溝(ビア)等のパターンが形成された基板を用いてもよい。 Examples of the substrate include a silicon wafer, an insulating film of silicon oxide, silicon nitride, silicon oxynitride, polysiloxane, and the like, a resin substrate, and the like. For example, it is possible to use an interlayer insulating film such as a wafer covered with a low dielectric insulating film formed of "Black Diamond" manufactured by AMAT, "Silk" manufactured by Dow Chemical, "LKD5109" manufactured by JSR Corporation. it can. As this substrate, a substrate on which a pattern such as a wiring groove (trench) or a plug groove (via) is formed may be used.
[塗工工程]
 本工程では、基板に直接又は間接に、当該膜形成用組成物を塗工する。本工程により、基板に直接又は有機下層膜等の他の層を介して当該膜形成用組成物の塗膜が形成される。基板としてパターンが形成された基板を用い、当該膜形成用組成物を上記基板のパターン側に直接塗工する場合は、パターンが形成された基板に対する埋め込み性及び平坦性を発揮することができる。当該膜形成用組成物の塗工方法は特に限定されないが、例えば回転塗工法等の公知の方法が挙げられる。
[Coating process]
In this step, the film-forming composition is applied directly or indirectly to the substrate. By this step, a coating film of the film forming composition is formed on the substrate directly or through another layer such as an organic underlayer film. When a substrate on which a pattern is formed is used as the substrate and the film forming composition is directly applied to the pattern side of the substrate, the embedding property and the flatness of the substrate on which the pattern is formed can be exhibited. The method for applying the film forming composition is not particularly limited, and examples thereof include known methods such as spin coating.
 当該膜形成用組成物を基板等に塗工して形成された塗膜を、通常、露光及び/又は加熱することにより硬化等させることによって、ケイ素含有膜が形成される。 A silicon-containing film is formed by curing a coating film formed by coating the film-forming composition on a substrate or the like, usually by exposing and/or heating.
 上記露光に用いられる放射線としては、例えば可視光線、紫外線、遠紫外線、X線、γ線等の電磁波、電子線、分子線、イオンビーム等の粒子線などが挙げられる。 Examples of the radiation used for the above-mentioned exposure include electromagnetic waves such as visible light, ultraviolet rays, far ultraviolet rays, X-rays and γ rays, particle beams such as electron beams, molecular beams and ion beams.
 塗膜を加熱する際の温度の下限としては、90℃が好ましく、150℃がより好ましく、200℃がさらに好ましい。上記温度の上限としては、550℃が好ましく、450℃がより好ましく、350℃がさらに好ましい。形成されるケイ素含有膜の平均厚みの下限としては、1nmが好ましく、3nmがより好ましく、5nmがさらに好ましい。上記平均厚みの上限としては、1,000nmが好ましく、500nmがより好ましく、300nmがさらに好ましい。 The lower limit of the temperature for heating the coating film is preferably 90°C, more preferably 150°C, even more preferably 200°C. The upper limit of the temperature is preferably 550°C, more preferably 450°C, and even more preferably 350°C. As a minimum of the average thickness of the formed silicon-containing film, 1 nm is preferable, 3 nm is more preferable, and 5 nm is further preferable. The upper limit of the average thickness is preferably 1,000 nm, more preferably 500 nm, even more preferably 300 nm.
 形成されるケイ素含有膜の193nmにおける吸光係数(k値)の下限としては、0.2超が好ましく、0.25がより好ましく、0.3がさらに好ましい。上記k値の上限としては、1.0が好ましく、0.7がより好ましく、0.5がさらに好ましい。 The lower limit of the absorption coefficient (k value) at 193 nm of the formed silicon-containing film is preferably more than 0.2, more preferably 0.25, and even more preferably 0.3. The upper limit of the k value is preferably 1.0, more preferably 0.7, and even more preferably 0.5.
 形成されるケイ素含有膜の表面における水接触角の下限としては、50°が好ましく、60°がより好ましく、65°がさらに好ましい。上記水接触角の上限としては、90°が好ましく、88°がより好ましく、86°がさらに好ましい。 The lower limit of the water contact angle on the surface of the formed silicon-containing film is preferably 50°, more preferably 60°, even more preferably 65°. The upper limit of the water contact angle is preferably 90°, more preferably 88°, even more preferably 86°.
[エッチング工程]
 本工程では、上記塗工工程により形成されたケイ素含有膜の少なくとも一部をエッチングする。これにより、ケイ素含有膜をパターニングすることができる。
[Etching process]
In this step, at least a part of the silicon-containing film formed in the coating step is etched. Thereby, the silicon-containing film can be patterned.
 上記エッチングは、ドライエッチングでもウェットエッチングでもよいが、ドライエッチングが好ましい。 The above etching may be dry etching or wet etching, but dry etching is preferable.
 ドライエッチングは、例えば公知のドライエッチング装置を用いて行うことができる。ドライエッチングに使用するエッチングガスとしては、エッチングされるケイ素含有膜の元素組成等により、適宜選択することができ、例えばCHF、CF、C、C、SF等のフッ素系ガス、Cl、BCl等の塩素系ガス、O、O、HO等の酸素系ガス、H、NH、CO、CH、C、C、C、C、C、C、HF、HI、HBr、HCl、NO、NH、BCl等の還元性ガス、He、N、Ar等の不活性ガスなどが用いられる。これらのガスは混合して用いることもできる。ケイ素含有膜のドライエッチングには、通常フッ素系ガスが用いられ、これに酸素系ガスと不活性ガスとを混合したものが好適に用いられる。 Dry etching can be performed using, for example, a known dry etching apparatus. The etching gas used for dry etching can be appropriately selected depending on the elemental composition of the silicon-containing film to be etched, and for example, CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 , SF 6 or the like. Fluorine gas, chlorine gas such as Cl 2 and BCl 3 , oxygen gas such as O 2 , O 3 and H 2 O, H 2 , NH 3 , CO, CH 4 , C 2 H 2 and C 2 H 4. , Reducing gases such as C 2 H 6 , C 3 H 4 , C 3 H 6 , C 3 H 8 , HF, HI, HBr, HCl, NO, NH 3 , BCl 3 and He, N 2 , Ar and the like. Inert gas or the like is used. These gases may be mixed and used. A fluorine-based gas is usually used for dry etching of the silicon-containing film, and a mixture of this with an oxygen-based gas and an inert gas is preferably used.
[レジスト組成物塗工工程]
 本工程では、上記塗工工程により形成されたケイ素含有膜に直接又は間接にレジスト組成物を塗工する。本工程により、上記塗工工程で形成されたケイ素含有膜に直接又は他の層を介してレジスト膜が形成される。
[Resist composition coating process]
In this step, the resist composition is directly or indirectly applied to the silicon-containing film formed by the above coating step. By this step, a resist film is formed on the silicon-containing film formed in the above coating step directly or through another layer.
 レジスト組成物としては、例えば酸解離性基を有する重合体及び感放射線性酸発生剤を含有する感放射線性樹脂組成物(化学増幅型レジスト組成物)、アルカリ可溶性樹脂とキノンジアジド系感光剤とからなるポジ型レジスト組成物、アルカリ可溶性樹脂と架橋剤とを含有するネガ型レジスト組成物等が挙げられる。これらの中で、感放射線性樹脂組成物が好ましい。感放射線性樹脂組成物を用いた場合、アルカリ現像液で現像することでポジ型パターンを形成することができ、有機溶媒現像液で現像することでネガ型パターンを形成することができる。レジストパターンの形成には、微細パターンを形成する手法であるダブルパターニング法、ダブルエクスポージャー法等を適宜用いてもよい。 Examples of the resist composition include a radiation-sensitive resin composition (chemically amplified resist composition) containing a polymer having an acid-dissociable group and a radiation-sensitive acid generator, an alkali-soluble resin and a quinonediazide-based photosensitizer. And a negative resist composition containing an alkali-soluble resin and a crosslinking agent. Among these, the radiation sensitive resin composition is preferable. When the radiation-sensitive resin composition is used, a positive type pattern can be formed by developing with an alkali developing solution, and a negative type pattern can be formed by developing with an organic solvent developing solution. A double patterning method, a double exposure method or the like, which is a method of forming a fine pattern, may be appropriately used for forming the resist pattern.
 感放射線性樹脂組成物に含有される重合体は、酸解離性基を含む構造単位以外にも、例えばラクトン構造、環状カーボネート構造及び/又はスルトン構造を含む構造単位、アルコール性水酸基を含む構造単位、フェノール性水酸基を含む構造単位、フッ素原子を含む構造単位等を有していてもよい。上記重合体が、フェノール性水酸基を含む構造単位及び/又はフッ素原子を含む構造単位を有すると、露光における放射線として極端紫外線又は電子線を用いる場合の感度を向上させることができる。 The polymer contained in the radiation-sensitive resin composition is, for example, a structural unit containing an lactone structure, a cyclic carbonate structure and/or a sultone structure, a structural unit containing an alcoholic hydroxyl group, in addition to the structural unit containing an acid dissociable group. It may have a structural unit containing a phenolic hydroxyl group, a structural unit containing a fluorine atom, and the like. When the polymer has a structural unit containing a phenolic hydroxyl group and/or a structural unit containing a fluorine atom, the sensitivity can be improved when extreme ultraviolet rays or electron beams are used as the radiation during exposure.
 レジスト組成物の溶媒以外の全成分の含有割合の下限としては、0.1質量%が好ましく、1質量%が好ましい。上記含有割合の上限としては、50質量%が好ましく、30質量%がより好ましい。レジスト組成物としては、孔径0.2μmのフィルター等を用いてろ過したものを好適に用いることができる。当該半導体基板の製造方法においては、レジスト組成物として、市販品のレジスト組成物をそのまま使用することもできる。 The lower limit of the content ratio of all components other than the solvent of the resist composition is preferably 0.1% by mass, and preferably 1% by mass. The upper limit of the content ratio is preferably 50% by mass, more preferably 30% by mass. As the resist composition, one obtained by filtering with a filter having a pore size of 0.2 μm can be preferably used. In the method for producing a semiconductor substrate, a commercially available resist composition can be used as it is as the resist composition.
 レジスト組成物の塗工方法としては、例えば回転塗工法等の従来の方法などが挙げられる。レジスト組成物を塗工する際には、得られるレジスト膜が所定の膜厚となるように、塗工するレジスト組成物の量を調整する。 As a coating method of the resist composition, for example, a conventional method such as a spin coating method can be mentioned. When applying the resist composition, the amount of the resist composition to be applied is adjusted so that the obtained resist film has a predetermined film thickness.
 レジスト膜は、レジスト組成物の塗膜をプレベークすることにより、塗膜中の溶媒を揮発させて形成することができる。プレベークの温度は、使用するレジスト組成物の種類等に応じて適宜調整されるが、プレベークの温度の下限としては、30℃が好ましく、50℃がより好ましい。上記温度の上限としては、200℃が好ましく、150℃がより好ましい。 The resist film can be formed by prebaking the coating film of the resist composition to volatilize the solvent in the coating film. The pre-baking temperature is appropriately adjusted depending on the type of resist composition used and the like, but the lower limit of the pre-baking temperature is preferably 30°C, and more preferably 50°C. The upper limit of the temperature is preferably 200°C, more preferably 150°C.
[露光工程(I)]
 本工程では、上記レジスト組成物塗工工程により形成されたレジスト膜を露光する。この露光は、例えばマスクにより選択的に放射線を照射して行う。放射線としては、例えば可視光線、紫外線、遠紫外線、極端紫外線、X線、γ線等の電磁波、電子線、α線等の荷電粒子線などが挙げられる。これらの中で、遠紫外線、極端紫外線又は電子線が好ましく、極端紫外線又は電子線がより好ましい。
[Exposure step (I)]
In this step, the resist film formed in the resist composition coating step is exposed. This exposure is performed by selectively irradiating radiation with a mask, for example. Examples of the radiation include visible rays, ultraviolet rays, far ultraviolet rays, extreme ultraviolet rays, electromagnetic waves such as X-rays and γ rays, and charged particle rays such as electron rays and α rays. Among these, far ultraviolet rays, extreme ultraviolet rays or electron beams are preferable, and extreme ultraviolet rays or electron beams are more preferable.
[現像工程(I)]
 本工程では、上記露光されたレジスト膜を現像する。本工程により、上記塗工工程により形成されたケイ素含有膜に直接又は他の層を介してレジストパターンが形成される。現像方法としては、アルカリ現像液を用いたアルカリ現像法でも有機溶媒現像液を用いた有機溶媒現像法でもよい。本工程では、各種現像液で現像を行った後、好ましくは洗浄及び乾燥させることによって、露光工程で使用したフォトマスクに対応した所定のレジストパターンが形成される。
[Development step (I)]
In this step, the exposed resist film is developed. By this step, a resist pattern is formed on the silicon-containing film formed by the coating step directly or through another layer. The developing method may be an alkali developing method using an alkali developing solution or an organic solvent developing method using an organic solvent developing solution. In this step, a predetermined resist pattern corresponding to the photomask used in the exposure step is formed by carrying out development with various developing solutions and then preferably washing and drying.
[ケイ素含有膜エッチング工程]
 本工程では、上記現像工程(I)後に、上記現像工程により形成されたレジストパターンをマスクとして、上記ケイ素含有膜をエッチングする。より具体的には、上記現像工程(I)により形成されたレジストパターンをマスクとした1又は複数回のエッチングによって、ケイ素含有膜がパターニングされる。
[Silicon-containing film etching process]
In this step, after the developing step (I), the silicon-containing film is etched using the resist pattern formed by the developing step as a mask. More specifically, the silicon-containing film is patterned by one or more times of etching using the resist pattern formed in the developing step (I) as a mask.
 上記エッチングは、ドライエッチングでもウェットエッチングでもよいが、ドライエッチングが好ましい。ドライエッチングの方法としては、例えば上記エッチング工程におけるドライエッチングの方法と同様である。 The above etching may be dry etching or wet etching, but dry etching is preferable. The dry etching method is, for example, the same as the dry etching method in the above etching step.
[露光工程(II)]
 本工程では、上記塗工工程により形成されたケイ素含有膜を放射線により露光する。この露光は、例えばマスクにより選択的に放射線を照射して行う。放射線としては、例えば可視光線、紫外線、遠紫外線、極端紫外線、X線、γ線等の電磁波、電子線、α線等の荷電粒子線などが挙げられる。これらの中で、遠紫外線、極端紫外線又は電子線が好ましく、極端紫外線又は電子線がより好ましい。
[Exposure step (II)]
In this step, the silicon-containing film formed in the above coating step is exposed to radiation. This exposure is performed by selectively irradiating radiation with a mask, for example. Examples of the radiation include visible rays, ultraviolet rays, far ultraviolet rays, extreme ultraviolet rays, electromagnetic waves such as X-rays and γ rays, and charged particle rays such as electron rays and α rays. Among these, far ultraviolet rays, extreme ultraviolet rays or electron beams are preferable, and extreme ultraviolet rays or electron beams are more preferable.
[現像工程(II)]
 本工程では、上記露光されたケイ素含有膜を現像する。本工程により、ケイ素含有膜のパターンが形成される。上記パターンとしては、例えばラインアンドスペースパターン、ホールパターン等が挙げられる。現像方法としては、アルカリ現像液を用いたアルカリ現像法でも有機溶媒現像液を用いた有機溶媒現像法でもよいが、有機溶媒現像法が好ましい。本工程では、各種現像液で現像を行った後、好ましくは洗浄及び乾燥させることによって、露光工程(II)で使用したフォトマスクに対応した所定のケイ素含有膜パターンが形成される。当該半導体基板の製造方法によれば、上述の当該膜形成用組成物を用いるので、ケイ素含有膜のパターン形成性に優れる。
[Development step (II)]
In this step, the exposed silicon-containing film is developed. By this step, the pattern of the silicon-containing film is formed. Examples of the pattern include a line and space pattern and a hole pattern. The developing method may be an alkali developing method using an alkali developing solution or an organic solvent developing method using an organic solvent developing solution, but the organic solvent developing method is preferable. In this step, a predetermined silicon-containing film pattern corresponding to the photomask used in the exposure step (II) is formed by performing development with various developers and then preferably washing and drying. According to the method for producing a semiconductor substrate, since the above-mentioned film forming composition is used, the pattern forming property of the silicon-containing film is excellent.
[酸素ガス処理工程]
 本工程では、上記塗工工程により形成されたケイ素含有膜を酸素ガス処理する。この酸素ガス処理は、ケイ素含有膜を空気中等で加熱することなどにより行うことができる。加熱温度の下限としては、100℃が好ましく、150℃がより好ましい。加熱温度の上限としては、300℃が好ましく、250℃がより好ましい。加熱時間の下限としては、50秒が好ましく、10秒がより好ましい。加熱時間の上限としては、1時間が好ましく、5分がより好ましい。
[Oxygen gas treatment process]
In this step, the silicon-containing film formed in the above coating step is treated with oxygen gas. This oxygen gas treatment can be performed by heating the silicon-containing film in air or the like. As a minimum of heating temperature, 100 °C is preferred and 150 °C is more preferred. As a maximum of heating temperature, 300 °C is preferred and 250 °C is more preferred. The lower limit of the heating time is preferably 50 seconds, more preferably 10 seconds. The upper limit of the heating time is preferably 1 hour, more preferably 5 minutes.
[除去工程]
 本工程では、上記酸素ガス処理工程後のケイ素含有膜を酸性液により除去する。酸性液としては、例えば酸及び水を含む液、酸、過酸化水素及び水の混合により得られる液等が挙げられる。酸としては、例えば硫酸、フッ化水素酸、塩酸等が挙げられる。酸性液としては、より具体的には、例えばフッ化水素酸及び水の混合により得られる液、硫酸、過酸化水素及び水の混合により得られる液、塩酸、過酸化水素及び水の混合により得られる液等が挙げられる。これらの中で、フッ化水素酸及び水の混合により得られる液が好ましい。
[Removal process]
In this step, the silicon-containing film after the oxygen gas treatment step is removed with an acid solution. Examples of the acidic liquid include a liquid containing acid and water, a liquid obtained by mixing acid, hydrogen peroxide and water, and the like. Examples of the acid include sulfuric acid, hydrofluoric acid, hydrochloric acid and the like. Specific examples of the acidic liquid include a liquid obtained by mixing hydrofluoric acid and water, a liquid obtained by mixing sulfuric acid, hydrogen peroxide and water, and a liquid obtained by mixing hydrochloric acid, hydrogen peroxide and water. And the like. Among these, a liquid obtained by mixing hydrofluoric acid and water is preferable.
 除去工程における温度の下限としては、20℃が好ましく、40℃がより好ましい。上記温度の上限としては、100℃が好ましく、70℃がより好ましい。除去工程における時間の下限としては、10秒が好ましく、1分がより好ましい。上記時間の上限としては、1時間が好ましく、10分がより好ましい。 The lower limit of the temperature in the removing step is preferably 20°C, more preferably 40°C. The upper limit of the temperature is preferably 100°C, more preferably 70°C. The lower limit of the time in the removing step is preferably 10 seconds, more preferably 1 minute. The upper limit of the above time is preferably 1 hour, more preferably 10 minutes.
[基板エッチング工程]
 本工程では、上記ケイ素含有膜のパターンをマスクとして、基板をエッチングする。より具体的には、上記エッチング工程、ケイ素含有膜エッチング工程又は現像工程(II)で得られたケイ素含有膜に形成されたパターンをマスクとした1又は複数回のエッチングを行って、パターニングされた基板を得る。
[Substrate etching process]
In this step, the substrate is etched using the pattern of the silicon-containing film as a mask. More specifically, the silicon-containing film obtained in the etching step, the silicon-containing film etching step or the developing step (II) is patterned by performing one or more etchings using the pattern formed on the silicon-containing film as a mask. Get the substrate.
 基板に有機下層膜を形成した場合には、上記ケイ素含有膜のパターンをマスクとして有機下層膜をエッチングする工程を備える。有機下層膜エッチング工程により形成された有機下層膜パターンをマスクとして基板をエッチングすることにより、基板にパターンを形成する。 When the organic underlayer film is formed on the substrate, a step of etching the organic underlayer film using the pattern of the silicon-containing film as a mask is provided. A pattern is formed on the substrate by etching the substrate using the organic underlayer film pattern formed in the organic underlayer film etching step as a mask.
 上記エッチングは、ドライエッチングでもウェットエッチングでもよいが、ドライエッチングが好ましい。有機下層膜にパターンを形成する際のドライエッチングは、公知のドライエッチング装置を用いて行うことができる。ドライエッチングに使用するエッチングガスとしては、ケイ素含有膜及びエッチングされる有機下層膜の元素組成等により、適宜選択することができ、例えば、CHF、CF、C、C、SF等のフッ素系ガス、Cl、BCl等の塩素系ガス、O、O、HO等の酸素系ガス、H、NH、CO、CH、C、C、C、C、C、C、HF、HI、HBr、HCl、NO、NH、BCl等の還元性ガス、He、N、Ar等の不活性ガス等が用いられ、これらのガスは混合して用いることもできる。ケイ素含有膜パターンをマスクとした有機下層膜のドライエッチングには、通常、酸素系ガスが用いられる。 The etching may be dry etching or wet etching, but dry etching is preferable. Dry etching for forming a pattern on the organic underlayer film can be performed using a known dry etching apparatus. The etching gas used for dry etching can be appropriately selected depending on the elemental composition of the silicon-containing film and the organic lower layer film to be etched, and for example, CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 , SF 6 and other fluorine-based gases, Cl 2 and BCl 3 and other chlorine-based gases, O 2 , O 3 , and H 2 O and other oxygen-based gases, H 2 , NH 3 , CO, CH 4 , and C 2 H 2 , C 2 H 4 , C 2 H 6 , C 3 H 4 , C 3 H 6 , C 3 H 8 , HF, HI, HBr, HCl, NO, NH 3 , BCl 3 and other reducing gases, He, N 2 , an inert gas such as Ar, or the like is used, and these gases can be mixed and used. Oxygen-based gas is usually used for dry etching of the organic underlayer film using the silicon-containing film pattern as a mask.
 有機下層膜パターンをマスクとして基板をエッチングする際のドライエッチングは、公知のドライエッチング装置を用いて行うことができる。ドライエッチングに使用するエッチングガスとしては、有機下層膜及びエッチングされる基板の元素組成等により、適宜選択することができ、例えば上記有機下層膜のドライエッチングに用いられるエッチングガスとして例示したものと同様のエッチングガス等が挙げられる。複数回の異なるエッチングガスにより、エッチングを行ってもよい。 Dry etching when etching the substrate using the organic underlayer film pattern as a mask can be performed using a known dry etching apparatus. The etching gas used for the dry etching can be appropriately selected depending on the elemental composition of the organic underlayer film and the substrate to be etched, and is similar to those exemplified as the etching gas used for the dry etching of the organic underlayer film, for example. Etching gas and the like. The etching may be performed by using different etching gases a plurality of times.
 以下、実施例を説明する。なお、以下に示す実施例は、本発明の代表的な実施例の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。 An example will be described below. In addition, the following embodiment shows an example of a typical embodiment of the present invention, and the scope of the present invention is not narrowly interpreted by this.
 本実施例における重量平均分子量(Mw)、[A]ポリシランの溶液中の濃度、及び膜の平均厚みの測定は下記方法により行った。 The weight average molecular weight (Mw), the concentration of [A] polysilane in the solution, and the average thickness of the film in this example were measured by the following methods.
[重量平均分子量(Mw)]
 GPCカラム(東ソー(株)の「G2000HXL」2本、「G3000HXL」1本、「G4000HXL」1本)を使用し、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(検出器:示差屈折計)により測定した。
[Weight average molecular weight (Mw)]
Analysis using GPC column (2 pieces of "G2000HXL", 1 piece of "G3000HXL", 1 piece of "G4000HXL" from Tosoh Corp.), flow rate: 1.0 mL/min, elution solvent: tetrahydrofuran, column temperature: 40°C Under the conditions, it was measured by gel permeation chromatography (detector: differential refractometer) using monodisperse polystyrene as a standard.
[[A]ポリシランの溶液中の濃度]
 [A]ポリシランの溶液0.5gを250℃で30分間焼成した後の残渣の質量を測定し、この残渣の質量を[A]ポリシランの溶液の質量で除することにより、[A]ポリシランの溶液中の濃度(質量%)を算出した。
[Concentration of [A] Polysilane in Solution]
By measuring the mass of the residue after baking 0.5 g of the solution of [A] polysilane for 30 minutes at 250° C. and dividing the mass of this residue by the mass of the solution of [A] polysilane, The concentration (mass %) in the solution was calculated.
[ケイ素含有膜の平均厚み]
 ケイ素含有膜の平均厚みは、分光エリプソメータ(J.A.WOOLLAM社の「M2000D」)を用いて測定した。
[Average thickness of silicon-containing film]
The average thickness of the silicon-containing film was measured using a spectroscopic ellipsometer (“M2000D” manufactured by JA WOLLAM).
<[A]ポリシラン及び[C]シロキサン化合物の合成>
 [A]ポリシラン及び[C]シロキサン化合物の合成に使用した単量体を以下に示す。
<Synthesis of [A] Polysilane and [C] Siloxane Compound>
The monomers used for the synthesis of [A] polysilane and [C] siloxane compound are shown below.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[合成例1](ポリシラン(A-1)の合成)
 窒素充填置換した反応容器において、上記式(H-1)で表される化合物27.09g及びテトラヒドロフラン44gを加え、氷冷して5℃以下に冷却した。次に、トリエチルアミン20.24gをテトラヒドロフラン44gに溶解し、滴下用溶液を調製した。攪拌しながら上記滴下用溶液を1時間かけて滴下した。滴下終了を反応の開始時間とし、重合反応を40℃で1時間、その後60℃で1時間実施した。反応終了後、テトラヒドロフラン267gを添加し、重合反応液を氷冷して10℃以下に冷却した。冷却した重合反応液に、トリエチルアミン60.71gを加えた後、撹拌しながら、滴下ロートからメタノール19.22gを10分かけて滴下した。滴下終了を反応の開始時間とし、反応を20℃で1時間実施した。反応液中に析出した塩をろ別した。次に、エバポレーターを用いて、ろ液中のテトラヒドロフラン、余剰のトリエチルアミン及び余剰のメタノールを除去した。得られた残渣に、酢酸プロピレングリコールモノメチルエーテル84g及びオルトギ酸トリメチル2.7gを添加し、下記式(A-1)で表されるポリシランの酢酸プロピレングリコールモノメチルエーテル溶液を得た。ポリシラン(A-1)の酢酸プロピレングリコールモノメチルエーテル溶液中の濃度は4質量%であった。ポリシラン(A-1)のMwは2,500であった。
[Synthesis Example 1] (Synthesis of polysilane (A-1))
In a reaction vessel filled with nitrogen and substituted, 27.09 g of the compound represented by the formula (H-1) and 44 g of tetrahydrofuran were added, and the mixture was ice-cooled and cooled to 5°C or lower. Next, 20.24 g of triethylamine was dissolved in 44 g of tetrahydrofuran to prepare a dropping solution. The above solution for dropping was added dropwise over 1 hour while stirring. The polymerization reaction was carried out at 40° C. for 1 hour and then at 60° C. for 1 hour, with the end of dropping being the reaction start time. After completion of the reaction, 267 g of tetrahydrofuran was added, and the polymerization reaction solution was ice-cooled and cooled to 10°C or lower. After 60.71 g of triethylamine was added to the cooled polymerization reaction liquid, 19.22 g of methanol was added dropwise from the dropping funnel over 10 minutes while stirring. The reaction was carried out at 20° C. for 1 hour, with the completion of the dropping as the reaction start time. The salt precipitated in the reaction solution was filtered off. Next, using an evaporator, tetrahydrofuran, excess triethylamine, and excess methanol in the filtrate were removed. 84 g of propylene glycol monomethyl ether acetate and 2.7 g of trimethyl orthoformate were added to the obtained residue to obtain a propylene glycol monomethyl ether acetate solution of polysilane represented by the following formula (A-1). The concentration of polysilane (A-1) in the propylene glycol monomethyl ether acetate solution was 4% by mass. The Mw of the polysilane (A-1) was 2,500.
[合成例2](ポリシラン(A-2)の合成)
 メタノールの代わりにエタノールを使用した以外は、合成例1と同様にして、下記式(A-2)で表されるポリシランの酢酸プロピレングリコールモノメチルエーテル溶液を得た。ポリシラン(A-2)の酢酸プロピレングリコールモノメチルエーテル溶液中の濃度は4質量%であった。ポリシラン(A-2)のMwは2,600であった。
[Synthesis Example 2] (Synthesis of polysilane (A-2))
A propylene glycol monomethyl ether acetate solution of polysilane represented by the following formula (A-2) was obtained in the same manner as in Synthesis Example 1 except that ethanol was used instead of methanol. The concentration of polysilane (A-2) in the propylene glycol monomethyl ether acetate solution was 4% by mass. The Mw of the polysilane (A-2) was 2,600.
[合成例3~5](ポリシラン(A-3)~(A-5)の合成)
 下記表1に示す種類及び使用量の各単量体を使用した以外は、合成例1と同様にして、下記式(A-3)~(A-5)で表されるポリシランの酢酸プロピレングリコールモノメチルエーテル溶液を得た。表1中の「-」は、該当する単量体を使用しなかったことを示す。得られた[A]ポリシランのMw及び[A]ポリシランの溶液中の濃度(質量%)を表1に合わせて示す。
[Synthesis Examples 3 to 5] (Synthesis of polysilanes (A-3) to (A-5))
Propylene glycol acetate of polysilane represented by the following formulas (A-3) to (A-5) in the same manner as in Synthesis Example 1 except that each type and amount of each monomer shown in Table 1 below was used. A monomethyl ether solution was obtained. "-" in Table 1 indicates that the corresponding monomer was not used. The Mw of the obtained [A] polysilane and the concentration (mass %) of the [A] polysilane in the solution are shown in Table 1 together.
[合成例6](ポリシラン(a-1)の合成)
 窒素充填置換した反応容器において、金属ナトリウム11.95gをキシレン88gに添加し、攪拌しながら加熱することにより、金属ナトリウムのキシレン分散液を調製した。撹拌しながら上記式(M-1)で表される化合物55.00gを、還流下3時間で滴下した。滴下終了を反応の開始時間とし、重合反応を還流下で1時間実施した。反応終了後、キシレン352gを添加し、重合反応液を氷冷して10℃以下に冷却した。冷却した重合反応液に、トリエチルアミン52.62gを加えた後、撹拌しながら、滴下ロートからメタノール16.66gを10分かけて滴下した。滴下終了を反応の開始時間とし、反応を20℃で1時間実施した。反応液中に析出した塩をろ別した。次に、エバポレーターを用いて、ろ液中のキシレン、余剰のトリエチルアミン及び余剰のメタノールを除去した。得られた残渣に、酢酸プロピレングリコールモノメチルエーテル177g及びオルトギ酸トリメチル5.3gを添加し、下記式(a-1)で表されるポリシランの酢酸プロピレングリコールモノメチルエーテル溶液を得た。ポリシラン(a-1)の酢酸プロピレングリコールモノメチルエーテル溶液中の濃度は10質量%であった。ポリシラン(a-1)のMwは2,000であった。
[Synthesis Example 6] (Synthesis of polysilane (a-1))
In a reaction vessel filled with nitrogen, 11.95 g of sodium metal was added to 88 g of xylene, and the mixture was heated with stirring to prepare a xylene dispersion of sodium metal. With stirring, 55.00 g of the compound represented by the above formula (M-1) was added dropwise under reflux for 3 hours. The polymerization reaction was carried out under reflux for 1 hour with the completion of the dropping as the reaction start time. After completion of the reaction, 352 g of xylene was added, and the polymerization reaction solution was ice-cooled and cooled to 10°C or lower. After adding 52.62 g of triethylamine to the cooled polymerization reaction liquid, 16.66 g of methanol was added dropwise from a dropping funnel over 10 minutes while stirring. The reaction was carried out at 20° C. for 1 hour, with the end of dropping being the start time of the reaction. The salt precipitated in the reaction solution was filtered off. Next, using an evaporator, xylene, excess triethylamine and excess methanol in the filtrate were removed. To the obtained residue, 177 g of propylene glycol monomethyl ether acetate and 5.3 g of trimethyl orthoformate were added to obtain a propylene glycol monomethyl ether acetate solution of polysilane represented by the following formula (a-1). The concentration of polysilane (a-1) in the propylene glycol monomethyl ether acetate solution was 10% by mass. The Mw of the polysilane (a-1) was 2,000.
[合成例7](シロキサン化合物(C-1)の合成)
 反応容器内において、上記式(S-1)で表される化合物14.74g及び上記式(S-2)で表される化合物9.64gをプロピレングリコールモノエチルエーテル64gに溶解し、単量体溶液を調製した。上記反応容器内を35℃とし、撹拌しながら7.7質量%シュウ酸水溶液12gを20分間かけて滴下した。滴下終了時を反応の開始時間とし、4時間反応させた後、30℃以下に冷却した。エバポレーターを用いて、水、反応により生成したアルコール類及び余剰のプロピレングリコールモノエチルエーテルを除去し、下記式(C-1)で表されるシロキサン化合物のプロピレングリコールモノエチルエーテル溶液を得た。シロキサン化合物(C-1)のプロピレングリコールモノエチルエーテル溶液中の濃度は11質量%であった。シロキサン化合物(C-1)のMwは1,900であった。
[Synthesis Example 7] (Synthesis of siloxane compound (C-1))
In a reaction vessel, 14.74 g of the compound represented by the above formula (S-1) and 9.64 g of the compound represented by the above formula (S-2) were dissolved in 64 g of propylene glycol monoethyl ether to prepare a monomer. A solution was prepared. The temperature inside the reaction vessel was set to 35° C., and 12 g of a 7.7 mass% oxalic acid aqueous solution was added dropwise over 20 minutes while stirring. The reaction was started at the end of the dropping, and the reaction was continued for 4 hours, followed by cooling to 30°C or lower. Water, alcohols produced by the reaction and excess propylene glycol monoethyl ether were removed using an evaporator to obtain a propylene glycol monoethyl ether solution of a siloxane compound represented by the following formula (C-1). The concentration of the siloxane compound (C-1) in the propylene glycol monoethyl ether solution was 11% by mass. The Mw of the siloxane compound (C-1) was 1,900.
[合成例8](シロキサン化合物(C-2)の合成)
 下記表1に示す種類及び使用量の各単量体を使用した以外は、合成例7と同様にして、下記式(C-2)で表されるシロキサン化合物のプロピレングリコールモノエチルエーテル溶液を得た。表1中の「-」は、該当する単量体を使用しなかったことを示す。得られた[C]シロキサン化合物のMw及び[C]シロキサン化合物の溶液中の濃度(質量%)を表1に合わせて示す。
[Synthesis Example 8] (Synthesis of siloxane compound (C-2))
A propylene glycol monoethyl ether solution of a siloxane compound represented by the following formula (C-2) was obtained in the same manner as in Synthesis Example 7, except that each type and amount of each monomer shown in Table 1 below was used. It was "-" in Table 1 indicates that the corresponding monomer was not used. The Mw of the obtained [C] siloxane compound and the concentration (mass %) of the [C] siloxane compound in the solution are also shown in Table 1.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
<膜形成用組成物の調製>
 膜形成用組成物の調製に用いた[B]溶媒、[C]シロキサン化合物及び[D]酸発生剤について以下に示す。
<Preparation of film forming composition>
The solvent [B], the siloxane compound [C] and the acid generator [D] used for the preparation of the film-forming composition are shown below.
[[B]溶媒]
 B-1:酢酸プロピレングリコールモノメチルエーテル
 B-2:プロピレングリコールモノエチルエーテル
[[B] solvent]
B-1: Propylene glycol monomethyl ether acetate B-2: Propylene glycol monoethyl ether
[[C]シロキサン化合物]
 C-1:上記合成したシロキサン化合物(C-1)
 C-2:上記合成したシロキサン化合物(C-2)
 C-3:n-ドデシルトリメトキシシラン(下記式(C-3)で表される化合物)
[[C] Siloxane compound]
C-1: The siloxane compound (C-1) synthesized above
C-2: the siloxane compound (C-2) synthesized above
C-3: n-dodecyltrimethoxysilane (compound represented by the following formula (C-3))
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[[D]酸発生剤]
 D-1:1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムノナフルオロ-n-ブタン-1-スルホネート(下記式(D-1)で表される化合物)
[[D] acid generator]
D-1: 1-(4-n-butoxynaphthalen-1-yl)tetrahydrothiophenium nonafluoro-n-butane-1-sulfonate (compound represented by the following formula (D-1))
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[実施例1]
 [A]ポリシランとしての(A-1)1.00質量部(但し、溶媒を除く)と、[B]溶媒としての(B-1)99.00質量部([A]ポリシランの溶液に含まれる溶媒としての(B-1)も含む)とを混合し、得られた溶液を孔径0.2μmのフィルターでろ過して、膜形成用組成物(J-1)を調製した。
[Example 1]
1.00 parts by weight of (A-1) as [A] polysilane (excluding solvent) and 99.00 parts by weight of (B-1) as solvent [B] (included in solution of [A] polysilane (Including (B-1) as a solvent) and the resulting solution was filtered with a filter having a pore size of 0.2 μm to prepare a film-forming composition (J-1).
[実施例2~14及び比較例1~6]
 下記表2に示す種類及び配合量の各成分を用いた以外は、実施例1と同様に操作して、膜形成用組成物(J-2)~(J-14)及び(j-1)~(j-6)を調製した。
[Examples 2 to 14 and Comparative Examples 1 to 6]
The film forming compositions (J-2) to (J-14) and (j-1) were prepared in the same manner as in Example 1, except that the components shown in Table 2 below were used. ~(j-6) were prepared.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
<評価>
 上記調製した膜形成用組成物を用いて、下記方法によりケイ素含有膜を形成した。形成されたケイ素含有膜について、埋め込み性、平坦性、酸素系ガスエッチング耐性、有機溶媒耐性、吸光係数(k値)、水接触角、酸性液剥離性及びパターン形成性を下記方法により評価した。評価結果を下記表3~表5に示す。表3~表5中の「-」は、該当する評価を行わなかったことを示す。
<Evaluation>
Using the film-forming composition prepared above, a silicon-containing film was formed by the following method. The embedding property, flatness, oxygen-based gas etching resistance, organic solvent resistance, extinction coefficient (k value), water contact angle, acid solution releasability and pattern formability of the formed silicon-containing film were evaluated by the following methods. The evaluation results are shown in Tables 3 to 5 below. "-" in Tables 3 to 5 indicates that the corresponding evaluation was not performed.
[埋め込み性]
 上記調製した膜形成用組成物を、深さ300nm、幅30nmのトレンチパターンが形成された窒化ケイ素基板上に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT8」)による回転塗工法により塗工した。スピンコートの回転速度は、シリコンウェハ上に上記調製した膜形成用組成物を上記スピンコーターによる回転塗工法により塗工し、窒素雰囲気下にて300℃で60秒間加熱した後、23℃で30秒間冷却することにより、平均厚み200nmのケイ素含有膜を形成する場合と同じとした。次いで、窒素雰囲気下にて300℃で60秒間加熱した後、23℃で30秒間冷却することにより、ケイ素含有膜が形成された基板を得た。上記得られた基板の断面について、走査電子顕微鏡((株)日立ハイテクノロジーズの「S-4800」)を用いて観察し、埋め込み性を確認した。埋め込み性は、埋め込み不良(ボイド)が見られなかった場合は「A」(良好)と、埋め込み不良が見られた場合は「B」(不良)と評価した。
[Embedding]
The above-prepared film-forming composition was applied onto a silicon nitride substrate on which a trench pattern having a depth of 300 nm and a width of 30 nm was formed, by a spin coating method using a spin coater (“CLEAN TRACK ACT8” manufactured by Tokyo Electron Ltd.). I worked. The spin-coating rotation speed was 30° C. at 30° C. after coating the above-prepared film-forming composition on a silicon wafer by the spin-coating method using the spin coater and heating at 300° C. for 60 seconds in a nitrogen atmosphere. It was the same as the case of forming a silicon-containing film having an average thickness of 200 nm by cooling for 2 seconds. Then, the substrate on which the silicon-containing film was formed was obtained by heating at 300° C. for 60 seconds in a nitrogen atmosphere and then cooling at 23° C. for 30 seconds. The cross section of the obtained substrate was observed with a scanning electron microscope (“S-4800” manufactured by Hitachi High-Technologies Corporation) to confirm the embedding property. The embeddability was evaluated as "A" (good) when no embedding failure (void) was observed and "B" (defect) when embedding failure was observed.
[平坦性]
 上記調製した膜形成用組成物を、図1に示すように、深さ100nm、幅10μmのトレンチパターンが形成されたシリコン基板1上に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT8」)による回転塗工法により塗工した。スピンコートの回転速度は、シリコンウェハ上に、上記調製した膜形成用組成物を上記スピンコーターによる回転塗工法により塗工し、大気雰囲気下にて300℃で60秒間加熱した後、23℃で30秒間冷却することにより、平均厚み200nmのケイ素含有膜を形成する場合と同じとした。次いで、大気雰囲気下にて300℃で60秒間加熱した後、23℃で30秒間冷却することにより、非トレンチパターンの部分における平均厚み200nmのケイ素含有膜2を形成し、ケイ素含有膜付き基板を得た。
 得られた基板の断面形状を走査型電子顕微鏡((株)日立ハイテクノロジーズの「S-4800」)を用いて観察し、このケイ素含有膜2の上記トレンチパターンの中央部分bにおける高さと、上記トレンチパターンの端から5μmの場所の非トレンチパターンの部分aにおける高さとの差(ΔFT)を平坦性の指標とした。平坦性は、このΔFTが40nm未満の場合は「A」(良好)と、40nm以上60nm未満の場合は「B」(やや良好)と、60nm以上の場合は「C」(不良)と評価した。なお、図1で示す高さの差は、実際よりも誇張して記載している。
[Flatness]
As shown in FIG. 1, a spin coater (“CLEAN TRACK ACT8” manufactured by Tokyo Electron Ltd.) was applied onto a silicon substrate 1 on which a trench pattern having a depth of 100 nm and a width of 10 μm was formed, as shown in FIG. ) Was applied by the spin coating method. The spin speed of spin coating was 23° C. after coating the prepared film-forming composition on a silicon wafer by the spin coating method using the spin coater and heating at 300° C. for 60 seconds in the atmosphere. It was the same as the case of forming a silicon-containing film having an average thickness of 200 nm by cooling for 30 seconds. Then, after heating in an air atmosphere at 300° C. for 60 seconds, it is cooled at 23° C. for 30 seconds to form a silicon-containing film 2 having an average thickness of 200 nm in the non-trench pattern portion, to obtain a substrate with a silicon-containing film. Obtained.
The cross-sectional shape of the obtained substrate was observed using a scanning electron microscope (“S-4800” manufactured by Hitachi High-Technologies Corporation), and the height of the silicon-containing film 2 at the central portion b of the trench pattern and the above The difference (ΔFT) from the height at the portion a of the non-trench pattern at a position 5 μm from the end of the trench pattern was used as an index of flatness. The flatness was evaluated as “A” (good) when the ΔFT was less than 40 nm, “B” (somewhat good) when the ΔFT was 40 nm or more and less than 60 nm, and “C” (poor) when the ΔFT was 60 nm or more. .. Note that the height difference shown in FIG. 1 is exaggerated from the actual one.
<ケイ素含有膜の形成>
[実施例1~9及び比較例1~3]
 シリコンウェハ上に、上記調製した膜形成用組成物をスピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT8」)による回転塗工法により塗工し、窒素雰囲気下にて300℃で60秒間加熱した後、23℃で30秒間冷却することにより平均厚み15nmのケイ素含有膜を形成し、平均厚み15nmのケイ素含有膜付き基板を得た。
<Formation of silicon-containing film>
[Examples 1 to 9 and Comparative Examples 1 to 3]
The above-prepared composition for film formation was applied onto a silicon wafer by a spin coating method using a spin coater (“CLEAN TRACK ACT8” manufactured by Tokyo Electron Ltd.) and heated at 300° C. for 60 seconds in a nitrogen atmosphere. After that, a silicon-containing film having an average thickness of 15 nm was formed by cooling at 23° C. for 30 seconds to obtain a substrate with a silicon-containing film having an average thickness of 15 nm.
[酸素系ガスエッチング耐性]
 上記平均厚み15nmのケイ素含有膜付き基板を、エッチング装置(東京エレクトロン(株)の「Tactras-Vigus」)を用いて、O=400sccm、PRESS.=25mT、HF RF(プラズマ生成用高周波電力)=200W、LF RF(バイアス用高周波電力)=0W、DCS=0V、RDC(ガスセンタ流量比)=50%、60secの条件にてエッチング処理し、処理前後の平均膜みからエッチング速度(nm/分)を算出し、酸素系ガスエッチング耐性を評価した。酸素系ガスエッチング耐性は、エッチング速度が5.0nm/分未満の場合は「A」(良好)と、5.0nm/分以上の場合は「B」(不良)と評価した。
[Oxygen gas etching resistance]
The silicon-containing film-coated substrate of the average thickness 15 nm, using an etching apparatus (Tokyo Electron Ltd. "Tactras-Vigus"), O 2 = 400sccm, PRESS . =25 mT, HF RF (high-frequency power for plasma generation)=200 W, LF RF (high-frequency power for bias)=0 W, DCS=0 V, RDC (gas center flow rate ratio)=50%, etching treatment under the conditions of 60 sec, and processing The etching rate (nm/min) was calculated from the average film thickness before and after, and the oxygen-based gas etching resistance was evaluated. The oxygen-based gas etching resistance was evaluated as "A" (good) when the etching rate was less than 5.0 nm/min and "B" (poor) when the etching rate was 5.0 nm/min or more.
[有機溶媒耐性]
 上記平均厚み15nmのケイ素含有膜付き基板を、シクロヘキサノン(20℃~25℃)に10秒間浸漬した後、乾燥させた。浸漬前後におけるケイ素含有膜の平均厚みを測定した。浸漬前におけるケイ素含有膜の平均厚みをTと、浸漬後におけるケイ素含有膜の平均厚みをTとした場合における膜厚変化率(%)を下記式により求めた。有機溶媒耐性は、膜厚変化率が1%未満の場合は「A」(良好)と、1%以上の場合は「B」(不良)と評価した。
 膜厚変化率(%)=|T-T|×100/T
[Organic solvent resistance]
The substrate with a silicon-containing film having an average thickness of 15 nm was immersed in cyclohexanone (20° C. to 25° C.) for 10 seconds and then dried. The average thickness of the silicon-containing film before and after the immersion was measured. The film thickness change rate (%) when the average thickness of the silicon-containing film before immersion was T 0 and the average thickness of the silicon-containing film after immersion was T 1 was calculated by the following formula. The organic solvent resistance was evaluated as "A" (good) when the film thickness change rate was less than 1% and "B" (bad) when the film thickness change rate was 1% or more.
Thickness change rate (%)=|T 1 −T 0 |×100/T 0
[吸光係数(k値、193nm)]
 上記平均厚み15nmのケイ素含有膜付き基板について、分光エリプソメータ(J.A.WOOLLAM社の「M2000D」)を用いてk値(193nm)を測定した。
[Extinction coefficient (k value, 193 nm)]
The k value (193 nm) of the substrate with a silicon-containing film having an average thickness of 15 nm was measured using a spectroscopic ellipsometer (“M2000D” manufactured by JA WOLLAM).
[水接触角]
 上記平均厚み15nmのケイ素含有膜付き基板について、接触角計(KRUSS社の「DSA-10」)を用いて、温度23℃、湿度45%で水接触角を測定した。水接触角は、上記ケイ素含有膜上に10μLの水滴を接触させた直後の水の接触角である。
[Water contact angle]
The water contact angle of the above-mentioned substrate with a silicon-containing film having an average thickness of 15 nm was measured at a temperature of 23° C. and a humidity of 45% using a contact angle meter (“DSA-10” manufactured by KRUSS). The water contact angle is the contact angle of water immediately after contacting 10 μL of water droplets on the silicon-containing film.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表3の結果から分かるように、実施例における膜形成用組成物により形成されるケイ素含有膜は、埋め込み性、平坦性、酸素系ガスエッチング耐性及び有機溶媒耐性のいずれも良好であった。これに対し、比較例における膜形成用組成物により形成されるケイ素含有膜は、平坦性及び酸素系ガスエッチング耐性が劣っており、有機溶媒耐性が劣っているものもあった。 As can be seen from the results in Table 3, the silicon-containing film formed by the film-forming composition in the examples had good embeddability, flatness, oxygen-based gas etching resistance, and organic solvent resistance. On the other hand, the silicon-containing film formed by the film-forming composition in Comparative Example was inferior in flatness and oxygen-based gas etching resistance, and in some cases inferior in organic solvent resistance.
[酸性液剥離性]
 上記平均厚み15nmのケイ素含有膜について、酸素ガス処理の有無それぞれの場合における酸性液剥離性を下記方法により評価した。
[Removability of acidic liquid]
With respect to the silicon-containing film having an average thickness of 15 nm, the acid liquid releasability was evaluated by the following method with and without oxygen gas treatment.
(酸素ガス処理)
 上記ケイ素含有膜付き基板を、清浄空気中、200℃で60秒間加熱した。
(Oxygen gas treatment)
The silicon-containing film-coated substrate was heated at 200° C. for 60 seconds in clean air.
(ケイ素含有膜の除去)
 上記得られた酸素ガス処理無し基板及び酸素ガス処理有り基板を、50℃に加温した除去液(50質量%フッ化水素酸/水=1/5(体積比)混合水溶液)に5分間浸漬した。浸漬後のケイ素含有膜の平均厚みを、分光エリプソメータ(J.A.WOOLLAM社の「M2000D」)を用いて測定した。
(Removal of silicon-containing film)
The obtained substrate without oxygen gas treatment and substrate with oxygen gas treatment obtained above were immersed in a removing solution (50 mass% hydrofluoric acid/water=1/5 (volume ratio) mixed aqueous solution) heated to 50° C. for 5 minutes. did. The average thickness of the silicon-containing film after immersion was measured using a spectroscopic ellipsometer ("M2000D" manufactured by JA WOLLAM).
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表4の結果から、実施例における膜形成用組成物により形成されたケイ素含有膜は、酸素ガス処理を行うことにより、酸性液剥離性に優れるものとなることが分かる。これに対し、比較例における膜形成用組成物から形成されたケイ素含有膜は、酸素ガス処理の有無によって酸性液剥離性は変化しないことが分かる。 From the results in Table 4, it can be seen that the silicon-containing film formed by the film-forming composition in the example becomes excellent in acid solution peeling property by the oxygen gas treatment. On the other hand, it can be seen that the silicon-containing film formed from the film-forming composition in Comparative Example does not change the acid solution peeling property depending on the presence or absence of oxygen gas treatment.
[パターン形成性]
(電子線露光)
 上記平均厚み15nmのケイ素含有膜付き基板に、100μC/cm(出力:50KeV、電流密度:5.0アンペア/cm)の条件で電子線を暴露した。装置は、(株)日立製作所の「HL800D」を用いた。暴露後、イソプロピルアルコールで60秒間現像した。得られた基板の断面形状を走査型電子顕微鏡((株)日立ハイテクノロジーズの「S-4800」)にて観察し、線幅200nmの1対1ラインアンドスペースパターンが形成されている場合は「A」(良好)と、上記パターンが形成されていない場合は「B」(不良)と評価した。
[Pattern formability]
(Electron beam exposure)
The substrate with a silicon-containing film having an average thickness of 15 nm was exposed to an electron beam under the conditions of 100 μC/cm 2 (output: 50 KeV, current density: 5.0 amps/cm 2 ). As the device, "HL800D" manufactured by Hitachi, Ltd. was used. After the exposure, it was developed with isopropyl alcohol for 60 seconds. The cross-sectional shape of the obtained substrate was observed with a scanning electron microscope (“S-4800” manufactured by Hitachi High-Technologies Corporation), and when a 1:1 line-and-space pattern with a line width of 200 nm was formed, It was evaluated as "A" (good) and "B" (bad) when the above pattern was not formed.
(極端紫外線露光)
 上記平均厚み15nmのケイ素含有膜付き基板に、200mJ/cmの条件で極端紫外線を暴露した。装置は、兵庫県立大学高度産業科学技術研究所ニュースバル放射光施設の極端紫外線リソグラフィービームラインを用いた。暴露後、イソプロピルアルコールで60秒間現像した。得られた基板の断面形状を走査型電子顕微鏡((株)日立ハイテクノロジーズの「S-4800」)にて観察し、線幅約8mmの1対1ラインアンドスペースパターンが形成されている場合は「A」(良好)と、上記パターンが形成されていない場合は「B」(不良)と評価した。
(Extreme UV exposure)
The substrate with a silicon-containing film having an average thickness of 15 nm was exposed to extreme ultraviolet rays under the condition of 200 mJ/cm 2 . The equipment used was the extreme ultraviolet lithography beam line of the New Subaru Synchrotron Radiation Facility, Institute of Advanced Industrial Science and Technology, University of Hyogo. After the exposure, it was developed with isopropyl alcohol for 60 seconds. The cross-sectional shape of the obtained substrate was observed with a scanning electron microscope (“S-4800” manufactured by Hitachi High-Technologies Corporation), and when a 1:1 line and space pattern with a line width of about 8 mm was formed, It was evaluated as "A" (good) and "B" (bad) when the pattern was not formed.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表5の結果から、実施例における膜形成用組成物から形成されたケイ素含有膜は、電子線露光及び極端紫外線露光のいずれの場合でも、パターン形成性が良好であった。これに対し、比較例における膜形成用組成物から形成されたケイ素含有膜は、パターン形成性が不良であった。 From the results of Table 5, the silicon-containing film formed from the film-forming composition in the Examples had good pattern formability in both electron beam exposure and extreme ultraviolet exposure. On the other hand, the silicon-containing film formed from the film-forming composition in Comparative Example had poor pattern formability.
 本発明の膜形成用組成物及び半導体基板の製造方法によれば、埋め込み性、平坦性及び酸素系ガスエッチング耐性に優れ、さらに有機溶媒耐性、酸性液剥離性及びパターン形成性にも優れるケイ素含有膜を形成することができる。従って、これらは今後さらに微細化が進行すると予想される半導体デバイスの製造等に好適に用いることができる。 According to the film-forming composition and the method for producing a semiconductor substrate of the present invention, silicon-containing which is excellent in embedding property, flatness and oxygen-based gas etching resistance, and further excellent in organic solvent resistance, acid solution releasability and pattern formability. A film can be formed. Therefore, these can be suitably used for manufacturing semiconductor devices, which are expected to be further miniaturized in the future.
1 シリコン基板
2 ケイ素含有膜
1 Silicon substrate 2 Silicon-containing film

Claims (10)

  1.  ポリシランと、溶媒とを含有し、
     上記ポリシランが2以上の下記式(1)で表される第1構造単位を有する膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、水素原子又は炭素数1~20の1価の鎖状の有機基である。Rは、水素原子、ヒドロキシ基又は炭素数1~20の1価の鎖状の有機基である。)
    Contains polysilane and a solvent,
    A film-forming composition in which the polysilane has two or more first structural units represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), R 1 is a hydrogen atom or a monovalent chain organic group having 1 to 20 carbon atoms. R 2 is a hydrogen atom, a hydroxy group or a monovalent chain having 1 to 20 carbon atoms. It is a chain organic group.)
  2.  上記式(1)のRが-ORであり、Rが水素原子又は炭素数1~20の1価の鎖状の有機基である請求項1に記載の膜形成用組成物。 The film-forming composition according to claim 1, wherein R 2 in the formula (1) is —OR A , and R A is a hydrogen atom or a monovalent chain organic group having 1 to 20 carbon atoms.
  3.  上記Rが水素原子又は炭素数1~20の1価の鎖状炭化水素基である請求項2に記載の膜形成用組成物。 The film-forming composition according to claim 2, wherein R A is a hydrogen atom or a monovalent chain hydrocarbon group having 1 to 20 carbon atoms.
  4.  上記式(1)のRが水素原子又は炭素数1~20の1価の鎖状炭化水素基である請求項1、請求項2又は請求項3に記載の膜形成用組成物。 The film-forming composition according to claim 1, claim 2 or claim 3, wherein R 1 in the above formula (1) is a hydrogen atom or a monovalent chain hydrocarbon group having 1 to 20 carbon atoms.
  5.  上記ポリシランが下記式(2)で表される第2構造単位をさらに有する請求項1から請求項4のいずれか1項に記載の膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Rは、水素原子又は炭素数1~20の1価の有機基である。Rは、環構造を含む炭素数3~20の1価の有機基である。)
    The film-forming composition according to any one of claims 1 to 4, wherein the polysilane further has a second structural unit represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (2), R 3 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. R 4 is a monovalent organic group having 3 to 20 carbon atoms and containing a ring structure. )
  6.  基板に直接又は間接に請求項1から請求項5のいずれか1項に記載の膜形成用組成物を塗工する工程
     を備える半導体基板の製造方法。
    A method of manufacturing a semiconductor substrate, comprising a step of directly or indirectly coating the film-forming composition according to claim 1 on the substrate.
  7.  上記基板がパターンが形成された基板であり、上記塗工工程において、上記膜形成用組成物を上記基板のパターン側に直接塗工する請求項6に記載の半導体基板の製造方法。 The method for producing a semiconductor substrate according to claim 6, wherein the substrate is a substrate on which a pattern is formed, and in the coating step, the film forming composition is directly coated on the pattern side of the substrate.
  8.  上記塗工工程後に、
     上記塗工工程により形成されたケイ素含有膜の少なくとも一部をエッチングする工程
     をさらに備える請求項6又は請求項7に記載の半導体基板の製造方法。
    After the coating process,
    The method for manufacturing a semiconductor substrate according to claim 6, further comprising: a step of etching at least a part of the silicon-containing film formed by the coating step.
  9.  上記塗工工程後に、
     上記塗工工程により形成されたケイ素含有膜に直接又は間接にレジスト組成物を塗工する工程と、
     上記レジスト組成物塗工工程により形成されたレジスト膜を露光する工程と、
     上記露光されたレジスト膜を現像する工程と、
     上記現像工程により形成されたレジストパターンをマスクとして上記ケイ素含有膜をエッチングする工程と
     をさらに備える請求項6、請求項7又は請求項8に記載の半導体基板の製造方法。
    After the coating process,
    A step of directly or indirectly applying a resist composition to the silicon-containing film formed by the coating step,
    A step of exposing the resist film formed by the resist composition coating step,
    Developing the exposed resist film,
    9. The method of manufacturing a semiconductor substrate according to claim 6, further comprising the step of etching the silicon-containing film using the resist pattern formed by the developing step as a mask.
  10.  上記塗工工程後に、
     上記塗工工程により形成されたケイ素含有膜を放射線により露光する工程と、
     上記露光されたケイ素含有膜を現像する工程と
     をさらに備える請求項6、請求項7又は請求項8に記載の半導体基板の製造方法。
    After the coating process,
    A step of exposing the silicon-containing film formed by the coating step to radiation,
    9. The method for manufacturing a semiconductor substrate according to claim 6, further comprising the step of developing the exposed silicon-containing film.
PCT/JP2020/005574 2019-02-22 2020-02-13 Film-forming composition and method for producing semiconductor substrate WO2020170934A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021501910A JP7342939B2 (en) 2019-02-22 2020-02-13 Film-forming composition and semiconductor substrate manufacturing method
KR1020217026165A KR20210132038A (en) 2019-02-22 2020-02-13 Film-forming composition and method for manufacturing a semiconductor substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-031044 2019-02-22
JP2019031044 2019-02-22

Publications (1)

Publication Number Publication Date
WO2020170934A1 true WO2020170934A1 (en) 2020-08-27

Family

ID=72144968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005574 WO2020170934A1 (en) 2019-02-22 2020-02-13 Film-forming composition and method for producing semiconductor substrate

Country Status (4)

Country Link
JP (1) JP7342939B2 (en)
KR (1) KR20210132038A (en)
TW (1) TW202035530A (en)
WO (1) WO2020170934A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI809528B (en) * 2021-10-14 2023-07-21 財團法人工業技術研究院 Composition, packaging structure, and method of disassembling packaging structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003261681A (en) * 2002-03-07 2003-09-19 Osaka Gas Co Ltd Photopolymerizable polysilane compound and its production method
JP2004026894A (en) * 2002-06-21 2004-01-29 Osaka Gas Co Ltd Fluorine-containing polysilane compound
WO2004019136A1 (en) * 2002-07-23 2004-03-04 Osaka Gas Co., Ltd. Electrophotographic photoreceptor and electrophoto- graphic apparatus equipped with the same
JP2008052203A (en) * 2006-08-28 2008-03-06 Nissan Chem Ind Ltd Composition for forming resist underlay film containing polycarbosilane
JP2008075089A (en) * 2007-11-08 2008-04-03 Osaka Gas Co Ltd Method for producing fluorine-containing polysilane compound
JP2011191546A (en) * 2010-03-15 2011-09-29 Fuji Xerox Co Ltd Carrier for electrostatic charge image development, developer for electrostatic charge image development, and image forming apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256106A (en) 1998-03-09 1999-09-21 Hitachi Chem Co Ltd Coating liquid for silica-based film formation, production of silica-based film, silica-based film and semiconductor device
JP5158382B2 (en) 2007-08-27 2013-03-06 日産化学工業株式会社 Lithographic resist underlayer film forming composition and method for manufacturing semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003261681A (en) * 2002-03-07 2003-09-19 Osaka Gas Co Ltd Photopolymerizable polysilane compound and its production method
JP2004026894A (en) * 2002-06-21 2004-01-29 Osaka Gas Co Ltd Fluorine-containing polysilane compound
WO2004019136A1 (en) * 2002-07-23 2004-03-04 Osaka Gas Co., Ltd. Electrophotographic photoreceptor and electrophoto- graphic apparatus equipped with the same
JP2008052203A (en) * 2006-08-28 2008-03-06 Nissan Chem Ind Ltd Composition for forming resist underlay film containing polycarbosilane
JP2008075089A (en) * 2007-11-08 2008-04-03 Osaka Gas Co Ltd Method for producing fluorine-containing polysilane compound
JP2011191546A (en) * 2010-03-15 2011-09-29 Fuji Xerox Co Ltd Carrier for electrostatic charge image development, developer for electrostatic charge image development, and image forming apparatus

Also Published As

Publication number Publication date
JPWO2020170934A1 (en) 2021-12-16
KR20210132038A (en) 2021-11-03
JP7342939B2 (en) 2023-09-12
TW202035530A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
TWI642698B (en) Stable metal compounds as hardmasks and filling materials, their compositions and methods of use
KR101339763B1 (en) Antireflective hard mask compositions
JP5327217B2 (en) Anti-reflective coating composition containing fused aromatic ring
KR101820263B1 (en) Antireflective coating compositions and processes thereof
JP5842841B2 (en) Pattern formation method
KR101820195B1 (en) Antireflective coating composition and process thereof
JP5696428B2 (en) Reverse pattern forming method and polysiloxane resin composition
TWI737870B (en) Compositions of spin-on materials containing metal oxide nanoparticles and an organic polymer
WO2012008538A1 (en) Polysiloxane composition and method of pattern formation
US9126231B2 (en) Insulation pattern-forming method and insulation pattern-forming material
WO2020170934A1 (en) Film-forming composition and method for producing semiconductor substrate
JP6787206B2 (en) Silicon-containing film forming composition for resist process, silicon-containing film and pattern forming method
JP7048903B2 (en) Silicon-containing film forming composition for pattern forming method and EUV lithography
JP6897071B2 (en) Film forming material for resist process, pattern forming method and polymer
KR102611256B1 (en) Film forming composition for semiconductor lithography process, silicon-containing film and resist pattern forming method
JPWO2018155377A1 (en) Film forming material for resist process, pattern forming method, and polysiloxane
WO2021193030A1 (en) Composition for forming resist underlayer film for electron beam or extreme ultraviolet light lithography, resist underlayer film for electron beam or extreme ultraviolet light lithography, and method for producing semiconductor substrate
WO2020066669A1 (en) Method for processing semiconductor substrate
WO2018159356A1 (en) Composition for silicon-containing-film formation, silicon-containing film, pattern formation method, and polysiloxane
JP7342953B2 (en) Composition, silicon-containing film, method for forming silicon-containing film, and method for processing semiconductor substrate
WO2021235273A1 (en) Silicon-containing composition and method for producing semiconductor substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501910

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20759670

Country of ref document: EP

Kind code of ref document: A1