WO2020170700A1 - Vehicle vicinity monitoring system - Google Patents

Vehicle vicinity monitoring system Download PDF

Info

Publication number
WO2020170700A1
WO2020170700A1 PCT/JP2020/002130 JP2020002130W WO2020170700A1 WO 2020170700 A1 WO2020170700 A1 WO 2020170700A1 JP 2020002130 W JP2020002130 W JP 2020002130W WO 2020170700 A1 WO2020170700 A1 WO 2020170700A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement range
light
measuring device
distance measuring
optical distance
Prior art date
Application number
PCT/JP2020/002130
Other languages
French (fr)
Japanese (ja)
Inventor
利明 長井
木村 禎祐
水野 文明
晶文 植野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020004060A external-priority patent/JP2020134516A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080015186.1A priority Critical patent/CN113454488A/en
Publication of WO2020170700A1 publication Critical patent/WO2020170700A1/en
Priority to US17/406,588 priority patent/US20210382177A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present disclosure relates to a vehicle surroundings monitoring system.
  • An optical range finder is known that measures the distance to an object by irradiating the object with light and measuring the reflected light.
  • Japanese Unexamined Patent Application Publication No. 2017-125790 discloses a vehicle surroundings monitoring system that measures a distance from an object around the entire vehicle by an optical distance measuring device mounted on the vehicle.
  • the range of irradiation light is generally rectangular because the entire circumference of the vehicle is measured by the optical distance measuring device. If the irradiation direction of the irradiation light has a predetermined depression angle with respect to the horizontal direction, the range of the irradiation light expands due to the increase in the distance to the road surface at the horizontal end of the measurement range, so that the vicinity of the vehicle can be efficiently There was a problem that it could not be measured. Further, when such an optical distance measuring device is used in combination with a device oriented in the horizontal direction and a device oriented in the depression angle side, there is a problem that the measurement range overlaps in the vehicle periphery monitoring system and the efficiency deteriorates. was there.
  • the present disclosure has been made to solve at least a part of the above problems, and can be realized as the following modes or application examples.
  • vehicle periphery monitoring systems 200, 200b, 200c are provided.
  • This vehicle periphery monitoring system is an optical distance measuring device 20, 20b, 20c, and is directed toward light emitting units 40, 40b, 40c that emit irradiation light and predetermined measurement ranges 80, 80b, 80c, 80d.
  • a first optical distance measuring device comprising: a measuring unit 100 that measures a distance to an object included in a measurement range, wherein the irradiation light is a cylinder along the vertical direction that surrounds the first optical distance measuring device.
  • the shape of the measurement range when projected along the horizontal direction on a flat plane is such that the width in the vertical direction at the at least one end of the measurement range in the horizontal direction is the width in the vertical direction at the center in the horizontal direction.
  • a second optical distance measuring device Received as the second reflected light, using a signal according to the light receiving state of the second reflected light, a second optical distance measuring device for measuring the distance to the object included in the second measurement range, The second measurement when the second irradiation light projected toward the second measurement range is projected in the horizontal direction on a cylindrical plane along the vertical direction that surrounds the second optical distance measuring device.
  • the shape of the range includes a second optical distance measuring device 22 in which the width in the vertical direction at the horizontal center of the second measurement range is the same as the width in the vertical direction at both ends in the horizontal direction.
  • the depression angle of the irradiation direction LD1 of the irradiation light by the first optical distance measuring device is equal to that of the second irradiation light by the second optical distance measuring device.
  • the vehicle 70 may be arranged so that the depression angle is larger than the irradiation direction LD2.
  • the width in the vertical direction at both end sides in the horizontal direction is larger than the width in the vertical direction at the center in the horizontal direction. It has a narrow narrow end. As a result, it is possible to efficiently detect the object in the vicinity of the first optical distance measuring device. It is possible to reduce the overlapping portion between the first measurement range of the first optical distance measuring device and the second measurement range of the second optical distance measuring device, and it is possible to efficiently detect an object near the vehicle.
  • a vehicle surroundings monitoring method an optical ranging method, a vehicle equipped with a vehicle surroundings monitoring system, a vehicle equipped with an optical ranging device, a control method for controlling the vehicle surroundings monitoring system, a control method for controlling the optical ranging device, etc.
  • a vehicle surroundings monitoring method an optical ranging method, a vehicle equipped with a vehicle surroundings monitoring system, a vehicle equipped with an optical ranging device, a control method for controlling the vehicle surroundings monitoring system, a control method for controlling the optical ranging device, etc.
  • FIG. 1 is a schematic configuration diagram of the optical distance measuring device according to the first embodiment
  • FIG. 2 is a schematic configuration diagram showing an optical system
  • FIG. 3 is an explanatory diagram schematically showing the configuration of the light receiving array
  • FIG. 4 is a schematic configuration diagram of the SPAD operation unit
  • FIG. 5 is an explanatory diagram showing operations in the vertical and horizontal directions of the irradiation direction of the mirror
  • FIG. 6 is an explanatory view showing a combined operation of the irradiation directions of the mirrors
  • FIG. 7 is an explanatory diagram showing a measurement range of the optical distance measuring device according to the first embodiment
  • FIG. 1 is a schematic configuration diagram of the optical distance measuring device according to the first embodiment
  • FIG. 2 is a schematic configuration diagram showing an optical system
  • FIG. 3 is an explanatory diagram schematically showing the configuration of the light receiving array
  • FIG. 4 is a schematic configuration diagram of the SPAD operation unit
  • FIG. 5 is an explanatory diagram showing operations in the vertical and horizontal directions of the
  • FIG. 8 is an explanatory diagram showing a vertical measurement range of the vehicle periphery monitoring system of the first embodiment
  • FIG. 9 is an explanatory view showing the measurement range of the second optical distance measuring device
  • FIG. 10 is an explanatory diagram showing a horizontal measurement range of the vehicle periphery monitoring system
  • FIG. 11 is a schematic configuration diagram of the first optical distance measuring device in the second embodiment
  • FIG. 12 is a schematic configuration diagram showing the configuration of the light emitting element array
  • FIG. 13 is an explanatory diagram showing control of the mirror and the light emitting element array
  • FIG. 14 is an explanatory diagram showing the measurement range of the first optical distance measuring device in the second embodiment
  • FIG. 15 is a schematic configuration diagram of the first optical distance measuring device according to the third embodiment
  • FIG. 16 is an explanatory diagram showing the measurement range of the first optical distance measuring device in the fourth embodiment.
  • FIG. 1 shows an optical distance measuring device 20 included in the vehicle periphery monitoring system 200 of the first embodiment as a first optical distance measuring device.
  • the optical distance measuring device 20 is a device that optically measures a distance.
  • the optical distance measuring device 20 includes an optical system 30 that emits irradiation light for distance measurement to a predetermined measurement range 80 and receives reflected light from an object, and an optical system.
  • the optical system 30 includes a light emitting unit 40 that emits laser light as irradiation light, a projection unit 50 that projects irradiation light toward the measurement range 80, and a light receiving unit 60 that receives reflected light from the measurement range 80.
  • the light emitting unit 40 includes a semiconductor laser element (hereinafter, also simply referred to as a laser element) 41 that emits a laser beam for distance measurement, a circuit board 43 in which a drive circuit for the laser element 41 is incorporated, and a laser element. And a collimator lens 45 for collimating the laser beam emitted from the laser beam 41.
  • the laser element 41 is a laser diode capable of oscillating a so-called short pulse laser, and in the present embodiment, has a laser emission region having a vertically long shape along the vertical direction.
  • the pulse width of the laser light of the laser element 41 is about 5 nsec. The resolution of distance measurement is improved by using a short pulse of 5 nsec.
  • the projection unit 50 is configured by a so-called two-dimensional scanner that scans the irradiation light in the vertical direction and the horizontal direction in the present embodiment.
  • the projection unit 50 includes a mirror 53 that is a reflecting unit that reflects the laser light that is collimated by the collimator lens 45, a rotating frame 52 that supports the mirror 53, a support frame 51 that supports the rotating frame 52, and a first frame.
  • a first rotary solenoid 55 that rotationally drives the rotary shaft AX1 and a second rotary solenoid 57 that rotationally drives the second rotary shaft AX2 are provided.
  • the first rotation axis AX1 is a rotation axis having a V direction parallel to the vertical direction as an axis direction
  • the second rotation axis AX2 is a rotation axis having an H direction parallel to the horizontal direction as an axis direction.
  • the first solenoid 55 receives a control signal Sm1 from the outside and repeats normal rotation and reverse rotation of the rotation axis AX1 within a predetermined rotation angle range. As a result, the mirror 53 rotates relative to the rotating frame 52 within this range.
  • the second solenoid 57 receives the control signal Sm2 from the outside and repeats normal rotation and reverse rotation of the rotation axis AX2 within a predetermined rotation angle range. As a result, the rotary frame 52 holding the mirror 53 rotates relatively to the support frame 51 within this range. That is, the mirror 53 of the projection unit 50 is configured to be rotatable in the V direction and the H direction with respect to the support frame 51 by receiving the control signals Sm1 and Sm2 from the outside. Has been done.
  • the laser light incident from the laser element 41 via the collimator lens 45 is reflected by the mirror 53 and irradiated toward the measurement range 80.
  • the direction in which the laser beam is emitted is scanned within the measurement range 80 by changing the H direction and the V direction by rotating the mirror 53 of the projection unit 50.
  • the direction in which the laser light is emitted by the reflection of the mirror 53 is also referred to as an irradiation direction.
  • the optical system 30 can perform distance measurement within the measurement range 80 defined by the respective angle ranges of the V direction of laser light, that is, the vertical direction and the H direction, that is, the horizontal direction.
  • the laser light output from the optical distance measuring device 20 toward the measurement range 80 is diffusely reflected on the surface of the object, and part of the laser light returns toward the mirror 53 of the projection unit 50. Come on.
  • the reflected light is reflected by the mirror 53, enters the light receiving lens 61 of the light receiving unit 60, is condensed by the light receiving lens 61, and enters the light receiving array 65.
  • the structure of the light receiving array 65 is schematically shown in FIG.
  • the light-receiving array 65 is composed of a plurality of light-receiving elements 68 arranged so as to be H in the horizontal direction and V in the vertical direction.
  • each of the horizontal direction and the vertical direction is composed of five pieces, but may be composed of any number.
  • the light receiving element 68 uses an avalanche photodiode (APD) in order to realize high response and excellent detection ability.
  • APD avalanche photodiode
  • the operation modes of the APD include a linear mode in which the reverse bias voltage is lower than the breakdown voltage and a Geiger mode in which the reverse bias voltage is higher than the breakdown voltage.
  • the output current from the APD is almost proportional to the amount of incident light.
  • the Gaiga mode the avalanche phenomenon can occur even with the incidence of a single photon, so that the detection sensitivity can be further increased.
  • Such an APD operated in the Gaiga mode may be referred to as a single photon avalanche diode (SPAD: Single Photon Avalanche Diode).
  • each light receiving element 68 has a quench resistor Rq and an avalanche diode Da connected in series between a power supply Vcc and a ground line, and the voltage at the connection point is set as a logical operation element. It is input to the inverting element INV, which is one of the two, and is converted into a digital signal whose voltage level is inverted. Since the output of the inverting element INV is connected to one input of the AND circuit SW, if the other input is at the high level H, it is directly output to the outside. The state of the other input of the AND circuit SW can be switched by the selection signal SC.
  • the selection signal SC is used to specify from which light-receiving element 68 of the light-receiving array 65 the signal is to be read out, and therefore may be referred to as an address signal.
  • an analog switch may be used instead of the AND circuit SW.
  • a PIN photodiode may be used instead of the avalanche diode Da.
  • the avalanche diode Da If no light is incident on the light receiving element 68, the avalanche diode Da is kept in a non-conducting state. Therefore, the input side of the inverting element INV is held in the pulled-up state via the quench resistor Rq, that is, the high level H. Therefore, the output of the inverting element INV is kept at the low level L.
  • the avalanche diode Da is turned on by the incident photons (photons). As a result, a large current flows through the quench resistor Rq, the input side of the inverting element INV once becomes low level L, and the output of the inverting element INV is inverted to high level H.
  • the inverting element INV outputs a pulse signal that becomes high level for a very short time when a photon (photon) enters each light receiving element 68.
  • the output signal of the AND circuit SW that is, the output signal Sout from each light receiving element 68, is output from the avalanche diode Da.
  • the digital signal reflects the status.
  • each light receiving element 68 The output signal Sout of each light receiving element 68 is generated when the laser element 41 emits light, and the light is reflected and returned to the object OBJ existing in the scanning range. Therefore, as shown in FIG. 4, after the light emitting unit 40 is driven and the laser light (hereinafter, also referred to as irradiation light pulse) is output, the reflected light pulse reflected by the object OBJ is received by each light receiving unit 60. By measuring the time Tf until the detection by the element 68, the distance to the target can be detected.
  • the object OBJ can be present in various positions from near to far from the optical distance measuring device 20.
  • the light receiving element 68 outputs a pulse signal when receiving the reflected light, as described above.
  • the pulse signal output from the light receiving element 68 is input to the SPAD calculation unit 100.
  • the SPAD calculation unit 100 causes the laser element 41 to emit light to scan the external space, and at the time Tf from the time when the laser element 41 outputs the irradiation light pulse to the time when the light receiving array 65 of the light receiving unit 60 receives the reflected light pulse.
  • the SPAD calculation unit 100 includes a well-known CPU and memory, and executes a program prepared in advance to perform processing required for distance measurement.
  • the SPAD calculation unit 100 includes an addition unit 120, a histogram generation unit 130, a peak detection unit 140, a distance calculation unit 150, and the like, in addition to the control unit 110 that performs overall control.
  • the adding section 120 is a circuit that adds the outputs of a larger number of light receiving elements included in the light receiving element 68 that constitutes the light receiving section 60.
  • N ⁇ N N is an integer of 2 or more
  • light receiving elements are further provided inside the light receiving element 68, and when a reflected light pulse enters one light receiving element 68 forming the light receiving unit 60, N ⁇ N elements operate.
  • 7 ⁇ 7 SPADs are provided in one light receiving element 68. Needless to say, the number and arrangement of SPADs can be variously configured, such as 5 ⁇ 9, other than 7 ⁇ 7.
  • the light receiving element 68 is composed of a plurality of SPADs due to the characteristics of the SPADs.
  • the SPAD can detect only one photon incident, but the detection of the SPAD by the limited light from the object OBJ must be probabilistic.
  • the addition unit 120 of the SPAD calculation unit 100 adds the output signal Sout from the SPAD that can detect the reflected light only stochastically and detects the reflected light.
  • the light receiving element 68 may be composed of a single SPAD.
  • the histogram generation unit 130 receives the reflected light pulse thus obtained.
  • the histogram generation unit 130 adds the addition results of the addition unit 120 a plurality of times to generate a histogram.
  • the signal detected by the light receiving element 68 includes noise due to ambient light, etc.
  • the signal corresponding to the noise is hard to accumulate.
  • the peak detection unit 140 detects the peak of the signal by analyzing the histogram from the histogram generation unit 130.
  • the peak of the signal is nothing but the reflected light pulse from the object OBJ that is the object of distance measurement.
  • the distance calculation unit 150 detects the distance D to the object by detecting the time from the irradiation light pulse to the peak of the reflected light pulse.
  • the detected distance D is output to the vehicle surroundings monitoring system 200 mounted on the vehicle 70 described later.
  • the distance D may be output to, for example, an automatic driving device of an automatic driving vehicle equipped with the optical distance measuring device 20, or mounted on various moving bodies such as a drone, a train, and a ship in addition to the vehicle 70. Alternatively, it may be used alone as a fixed distance measuring device.
  • the control unit 110 generates a histogram in addition to the command signal SL for determining the light emission timing of the laser element 41 to the circuit board 43 of the light emitting unit 40, the address signal SC for determining which light receiving element 68 to activate, and the histogram generation.
  • a signal St for instructing the generation timing of the histogram for the unit 130 and control signals Sm1, Sm2 for the solenoids 55, 57 of the projection unit 50 are output.
  • the SPAD operation unit 100 detects the object OBJ existing in the measurement range 80 together with the distance D to the object OBJ.
  • the mirror 53 of the projection unit 50 is configured to be rotatable in the V direction and the H direction in response to the control signals Sm1 and Sm2 from the control unit 110.
  • the scanning path in the irradiation direction of the mirror 53 is shown by being decomposed into each direction component of the V direction and the H direction.
  • the time axes in the graphs of FIG. 5 are common to each other.
  • the upper graph in the figure shows the change in the rotation angle in the V direction of the irradiation direction of the mirror 53 with respect to the time axis.
  • the irradiation direction of the mirror 53 in the V direction is set in the angle range from the angle ⁇ V1 to the angle +V1.
  • This angle range in the V direction is the maximum range in the vertical direction in which the optical distance measuring device 20 can perform distance measurement, and is also called a vertical optical angle.
  • the lower graph in the figure represents the change in the rotation angle in the H direction of the irradiation direction of the mirror 53 with respect to the time axis.
  • the irradiation direction of the mirror 53 in the H direction is set within the angle range from the angle ⁇ H1 to the angle +H1.
  • This angle range in the H direction is the maximum range in the horizontal direction in which the optical distance measuring device 20 can perform distance measurement, and is also called a horizontal optical angle.
  • the mirror 53 starts rotating the V direction and the H direction to the plus side angles, respectively. ..
  • the angle of the mirror 53 is changed at a constant speed.
  • the time t1 the H direction reaches the angle +H1 and is rotated toward the minus side angle.
  • the time t2 is reached, the angle in the V direction reaches the angle +V1 and is rotated toward the minus side angle.
  • the H direction reaches the angle ⁇ H1 and is rotated again toward the plus side angle, and the rotation directions are reversed at the time t4, the time t5, and the time t7.
  • the irradiation direction of the mirror 53 is reciprocated three times from the angle ⁇ H1 to the angle +H1 in the H direction by the time t8.
  • the single vibration having the amplitude of the angle H1 may be repeated three times in the H direction.
  • the irradiation direction V reaches the time t6, reaches the angle ⁇ V1, is rotated toward the plus side angle, and returns to zero at the time t8.
  • the irradiation direction of the mirror 53 makes one round trip from the angle ⁇ V1 to the angle +V1 in the V direction by the time t8.
  • the single vibration having the amplitude of the angle V1 may be performed once in the V direction.
  • the mirror 53 makes three reciprocations in the H direction while making one reciprocation in the V direction.
  • the vibration frequency of the mirror 53 in the H direction may be set as a single vibration that is three times the vibration frequency in the H direction.
  • FIG. 6 shows a path in the irradiation direction of the mirror 53 by the optical distance measuring device 20. That is, it shows a path in the irradiation direction obtained by synthesizing the angle change in each direction component of the H direction and the V direction of the mirror 53 from time t0 to time t8 shown in FIG.
  • each time t0 to t8 in FIG. 5 is shown at a corresponding position on the route in order to facilitate understanding of the technique.
  • the mirror 53 completes one reciprocating operation from the angle ⁇ V1 to the angle +V1 in the V direction, and completes three reciprocating operations from the angle ⁇ H1 to the angle +H1 in the H direction. Therefore, as shown in FIG.
  • the path in the irradiation direction by the mirror 53 may be a plane figure (also called a Lissajous figure) obtained by synthesizing two vibrations of a V direction component and an H direction component with an amplitude frequency ratio of 1:3.
  • the measurement range 80 is schematically shown on the right side of FIG. 7.
  • the measurement range 80 shown on the right side of FIG. 7 is a state of being projected on a cylindrical screen.
  • the cylindrical screen means a cylindrical flat surface whose axial direction is the V direction, as shown on the left side of FIG. 7.
  • the measurement range 80 is set such that the standard position in the V direction of the irradiation direction of the mirror 53 is set to be parallel to the horizontal direction and is projected on a cylindrical screen surrounding the mirror 53 in the center.
  • the standard position in the V direction of the irradiation direction of the mirror 53 is the center (zero) in the angular range of the V direction.
  • the width in the V direction at both ends in the H direction is the center of the measurement range 80 in the H direction. It is smaller than the width in the V direction.
  • Such a shape is also referred to as an end narrow shape.
  • the narrow end portion shape also includes a shape in which the width in the V direction at at least one end portion in the H direction is smaller than the width in the V direction at the center of the measurement range 80 in the H direction. The reason why the measuring range 80 has such a narrow end shape is that the irradiation light is scanned on the path of the shape shown in FIG.
  • the vehicle periphery monitoring system 200 is a device that is mounted on a vehicle 70, which is an automobile, and detects an object around the vehicle 70.
  • the vehicle surroundings monitoring system 200 will be simply referred to as the monitoring system 200.
  • the monitoring system 200 includes two optical distance measuring devices, namely an optical distance measuring device 20 located on the left side in the traveling direction of the upper part of the vehicle 70 and an optical distance measuring device 22 located in the center of the upper part of the vehicle 70.
  • An optical distance measuring device is provided.
  • the monitoring system 200 receives the distance D of the object detected by each of the optical distance measuring devices 20 and 22, and detects the presence or absence of the object around the vehicle 70.
  • the center optical distance measuring device 22 in the upper part of the vehicle 70 has a measuring range 82 different from the measuring range 80 of the optical distance measuring device 20, but other configurations are the same as the optical distance measuring device 20.
  • the optical distance measuring device 20 is also referred to as a first optical distance measuring device 20, and the optical distance measuring device 22 is also referred to as a second optical distance measuring device 22, and the measurement range 80 of the first optical distance measuring device 20 is referred to as a first measurement range 80.
  • the measurement range 82 of the second optical distance measuring device 22 is also referred to as a second measurement range 82.
  • the irradiation light projected by the second optical distance measuring device 22 onto the second measurement range 82 is also referred to as second irradiation light, and the reflected light reflected from the second measurement range 82 is also referred to as second reflected light.
  • FIG. 9 shows a projection of the measurement range 82 of the second optical distance measuring device 22 on a cylindrical screen.
  • the projection conditions are the same as the measurement range 80 of the first optical distance measuring device 20 described above.
  • the shape of the measurement range 82 of the second optical distance measuring device 22 is a substantially rectangular shape, and the width in the V direction at the center of the measurement range 82 in the H direction and at both ends in the H direction.
  • the width in the V direction is substantially the same.
  • the measurement range 82 has such a shape because the reflected light is scanned in a rectangular shape by the control of the mirror by the control unit of the second optical distance measuring device 22. It may be achieved by scanning the irradiation light having a vertically long light emitting region in the V direction in one direction of the H direction.
  • the detection range of the monitoring system 200 is the combined range of the measurement ranges 80 and 82 of the optical distance measuring devices 20 and 22 that form the monitoring system 200.
  • FIG. 8 is a front view of the detection range in the vertical direction of the monitoring system 200 viewed along the horizontal direction
  • FIG. 10 is a perspective view of the detection system 200 in the horizontal direction centered on the vehicle 70. ..
  • the detection range of the monitoring system 200 is configured such that the measurement range 80 of the first optical ranging device 20 includes a region outside the measurement range 82 of the second optical ranging device 22.
  • FIG. 8 schematically shows the irradiation direction LD1 of the irradiation light measuring range 80 by the first optical distance measuring device 20 and the irradiation direction LD2 of the irradiation light measuring range 82 by the second optical distance measuring device 22. ing.
  • the irradiation direction LD2 of the second optical distance measuring device 22 is set such that the depression angle is slightly smaller than the horizontal direction, but the irradiation direction LD2 of the second optical distance measuring device 22 is parallel to the horizontal direction. The direction may be set to.
  • the “depression angle of the irradiation direction LD2 of the second optical distance measuring device 22” also includes the horizontal direction. Since the measurement range 82 of the second optical distance measuring device 22 has the rectangular shape shown in FIG. 9, it is formed so as to extend in a concentric circle shape except the vicinity of the vehicle 70 on the horizontal plane Hz. By doing so, the second optical distance measuring device 22 detects all directions except the vicinity of the vehicle 70 as shown in FIG. 10.
  • the measurement range 80 of the first optical distance measuring device 20 is set to have a larger depression angle than the irradiation direction LD2 of the second optical distance measuring device 22, as shown in FIG.
  • the irradiation direction LD1 of the first optical distance measuring device 20 is installed so as to be downward with respect to the irradiation direction LD2 of the second optical distance measuring device 22.
  • the angle ⁇ 1 is 20 degrees in the present embodiment.
  • the measurement range 80 of the first optical distance measuring device 20 is shown on the horizontal plane Hz as shown in FIG.
  • the installation direction of the first optical distance measuring device 20 in the horizontal direction is set to be a direction perpendicular to the traveling direction of the vehicle 70 which travels straight.
  • the area 82t shown in FIG. 10 substitutes for this second optical distance measuring device 22.
  • the measurement range is shown in FIG.
  • the region 82t includes a region that is substantially the same as the measurement range 80 of the first optical distance measuring device 20, and further protrudes in a direction away from the second optical distance measuring device 22 toward both ends in the H direction (so-called butterfly shape). Shape) on the horizontal plane Hz.
  • the reason why the shape protrudes toward both ends in the H direction is that the distance from the second optical distance measuring device 22 to the horizontal plane Hz becomes longer toward the both ends in the H direction.
  • the measurement range 80 of the first optical distance measuring device 20 has a shorter protruding distance on both end sides in the H direction than the area 82t. Therefore, the overlapping range with the measurement range 82 of the second optical distance measuring device 22 is smaller than that of the region 82t. This is because the width of the vertical optical angle at both ends in the H direction of the measurement range 80 of the first optical distance measuring device 20 is the same as that at both ends of the measuring range 82 of the second optical distance measuring device 22 in the H direction. This is because the width is set smaller than the width of the vertical optical angle.
  • the width in the vertical direction (V direction) at both ends in the H direction of the measurement range 80 of the first optical distance measuring device 20 is the same as the vertical direction (V direction) at the center in the horizontal direction (H direction). This is because it is set as an end narrower shape that is smaller than the width.
  • the first optical distance measuring device 20 individually scans the irradiation direction of the mirror 53 in each of the H direction and the V direction to thereby measure the measurement range.
  • 80 has an end narrowed shape in which the width in the vertical direction at both ends in the horizontal direction is smaller than the width in the vertical direction at the center in the horizontal direction.
  • the measurement range 82 of the second optical distance measuring device 22 and the measurement range 80 of the first optical distance measuring device 20 in which the measurement directions are all directions of the vehicle 70 overlap.
  • the number of parts can be reduced, and an object near the vehicle 70 can be efficiently detected.
  • the measurement accuracy can be increased by increasing the density of the irradiation light near the vehicle 70.
  • the mirror 53 which is a two-dimensional scanner, is adopted in the projection unit 50 of the first optical distance measuring device 20, so that the V direction and the H direction can be individually controlled easily. be able to. Further, by reducing the number of parts, the first optical distance measuring device 20 can be downsized.
  • the vehicle periphery monitoring system 200b of the second embodiment includes a first optical distance measuring device 20b instead of the first optical distance measuring device 20 of the first embodiment.
  • the optical distance measuring device 20b includes an optical system 30b in place of the optical system 30 of the optical distance measuring device 20 in the first embodiment, and other configurations are the optical measuring device in the first embodiment. It is similar to the distance device 20.
  • the optical system 30b includes a light emitting unit 40b and a projection unit 50b.
  • the projection unit 50b is composed of a so-called one-dimensional scanner.
  • the projection unit 50b includes a mirror 54 that reflects the irradiation light, a rotary solenoid 58, and a rotary unit 56 that rotates the mirror 54 in one direction by a rotary shaft that has the vertical direction as the axial direction by the rotary solenoid 58.
  • the light emitting section 40b differs from the light emitting section 40 in the first embodiment in that the light emitting area of the irradiation light is different.
  • the irradiation region Lx is a vertically long rectangular region including the entire measurement region in the V direction. Therefore, in the present embodiment, it is possible to measure the measurement range 80b at one time only by providing the projection unit 50b that can scan the irradiation light in only one direction.
  • the light emitting section 40b includes a light emitting element array 42 including a plurality of light emitting diodes, as shown in FIG.
  • the light emitting element array 42 is classified into a region La and a region Lb under the control of the control unit 110, and ON/OFF of the light emitting device array 42 is individually switched for each of the regions La and Lb by the control of the control unit 110.
  • the region La is a region corresponding to the upper and lower ends in the V direction of the irradiation region Lx in the light emitting region of the light emitting element array 42, and the region Lb is located between the regions La and in the V direction of the irradiation region Lx.
  • the area corresponding to the center is a region corresponding to the upper and lower ends in the V direction of the irradiation region Lx in the light emitting region of the light emitting element array 42, and the region Lb is located between the regions La and in the V direction of the irradiation region Lx. The area corresponding to the
  • FIG. 13 shows the relationship between the control in the scanning direction of the mirror 54 and the ON/OFF control of the light emitting element array 42 for each of the regions La and Lb.
  • the upper side of FIG. 13 represents a temporal change in the irradiation direction of the mirror 54 of the projection unit 50b in the horizontal direction
  • the lower side of FIG. 13 represents ON/OFF control of the light emitting elements for each of the regions La and Lb. ing.
  • the time axes coincide with each other.
  • the control unit 110 controls the control of the projection unit 50b in the scanning direction and the ON/OFF of the light emitting element array 42 for each of the regions La and Lb in synchronization.
  • the control unit 110 controls the rotary solenoid 58 to rotate the mirror 54 toward the angle +H1 side via the rotating unit 56.
  • the light emitting element array 42 in the region La is OFF and the light emitting element array 42 in the region Lb is ON.
  • the control unit 110 transmits a control signal to turn on the light emitting element array 42 in the region La.
  • the control unit 110 turns off the light emitting element array 42 in the region La.
  • the mirror 54 When the irradiation direction of the mirror 54 reaches the angle +H1 (time t23), the mirror 54 is rotated again toward the angle -H1, and at time t24, the mirror 54 reaches the angle -H1 and makes one round trip in the H direction. Complete the scan. During this period, the light emitting element array 42 in the area La is controlled to be turned on/off at the same timing as the control from the time t20 to the time t23. In the control of one reciprocating scan of the mirror 54, the light emitting element array 42 in the region Lb is always on. Note that the horizontal scanning of the mirror 54 need not be one reciprocal scanning as long as the detection accuracy is high, and may be controlled only during the period from time t20 to time t23.
  • FIG. 14 shows a measurement range 80b formed by controlling the above-described operation of the mirror 54 and ON/OFF of the light emitting element array 42 for each of the regions La and Lb.
  • each time t20 to t24 in FIG. 13 is shown at a corresponding position in order to facilitate understanding of the technique.
  • the measurement range 80b shown in FIG. 14 is projected on a cylindrical screen, like the measurement range 80 in the first embodiment.
  • the range irradiated by the region La of the light emitting element array 42 is defined as a range LaV
  • the range irradiated by the region Lb is defined as a range LbV.
  • the light emitting element arrays 42 belonging to the area La are controlled to be turned off at both ends of the horizontal optical angle of the mirror 54 corresponding to the times t20 to t21 and the times t22 to t23. Therefore, in the measurement range 80b, only the range LbV is formed on both ends of the horizontal optical angle of the mirror 54, and the width in the V direction is shorter by the upper and lower range LaV. In this way, the width in the vertical direction at both ends of the measurement range 80b of the optical distance measuring device 20b in the horizontal direction is narrower than the width in the vertical direction at the center in the horizontal direction.
  • the rotation control of the mirror 54 as the one-dimensional scanner and the synchronous control of ON/OFF of the light emitting element array 42 are performed.
  • the width in the vertical direction at both ends in the H horizontal direction of the measurement range 80b is made narrower at the end portion than the width in the vertical direction at the center in the horizontal direction.
  • FIG. 15 shows the configuration of the first optical distance measuring device 20c included in the vehicle periphery monitoring system 200c of the third embodiment.
  • the optical distance measuring device 20c is different from the first optical distance measuring device 20 in the first embodiment in that the optical system 30c is provided instead of the optical system 30.
  • the optical system 30c is configured by a so-called diffusion optical system, and includes a light emitting unit 40c including a light emitting diode, a light receiving unit 60, and a light diffusing unit 44.
  • the light diffusing unit 44 is a light diffusing plate composed of a microlens array.
  • the irradiation light of surface emission emitted from the light emitting diode of the light emitting section 40c is diffused at a predetermined angle when passing through the light diffusing section 44 to form a measurement range 80c.
  • the shape of the measurement range 80c is the same as the shape of the measurement range 80 of the optical distance measuring device 20 in the first embodiment.
  • the light diffusing unit 44 may be configured by arranging a plurality of lenses, or may be configured by various members such as a flat top diffusion plate, a diffraction grating, a hologram, and a film-shaped diffuser that diffuse the irradiation light from the light emitting unit 40c. Good.
  • the vehicle periphery monitoring system 200c of the present embodiment a simple method is used to measure an end narrowed shape in which the vertical widths at both ends in the horizontal direction are smaller than the vertical width at the center in the horizontal direction. It is possible to obtain the first optical distance measuring device 20c having the range 80c.
  • the path of the mirror 53 in the irradiation direction is formed into a Lissajous figure shape so that the measurement range 80 can be located on the plus side and the minus side in the V direction.
  • the shape is contracted to the zero side, as in the measurement range 80d shown in FIG. 16, the plus side in the V direction is curved and the minus side in the V direction is linear so that the measurement range 80d is horizontal.
  • the width in the vertical direction at both end sides in the direction may be narrower than the width in the vertical direction at the center in the horizontal direction.
  • rotation control of the mirror 54 as a one-dimensional scanner and ON/OFF of the light emitting element arrays 42 in the upper and lower regions La in the V direction are performed. And are synchronously controlled, while ON/OFF of the light emitting element array 42 in the region La only on the upper side in the V direction is synchronously controlled, so that the narrow end shape like the measurement range 80d shown in FIG. May be
  • the path of the irradiation direction by the mirror 53 is the angular range (amplitude) in the V direction and the H direction, and the reciprocation in the V direction and the H direction so that the shape of the measurement range 80 has a narrow end shape.
  • the vibration component such as the number of times (frequency) and the initial phase may be set arbitrarily.
  • the vertical width at the both ends in the horizontal direction of the measurement range 80 can be made easier than the vertical width at the center in the horizontal direction by a simple method. It is possible to obtain a narrow end shape.
  • the measurement range is formed as an end narrowed shape in which the width in the V direction at both ends in the H direction is smaller than the width in the V direction at the center in the H direction.
  • the end narrowed shape may be a shape in which the width in the V direction on one of the end sides in the H direction is smaller than the width in the V direction at the center in the H direction.
  • the installation direction of the first optical distance measuring device 20 installed in the vehicle 70 in the horizontal direction is the traveling direction side or the opposite direction with respect to the direction perpendicular to the traveling direction in which the vehicle 70 travels straight.
  • the width in the V direction corresponding to the end portion side in the H direction that reduces the overlap with the measurement range 82 of the second optical distance measuring device 22 when set to the side in the V direction at the center in the H direction By making the width smaller than the width, it is possible to efficiently detect the object.
  • the rotation axes of the mirror 53 are orthogonal to each other in the horizontal direction and the vertical direction, but may be in an aspect in which they are not orthogonal and intersect at an arbitrary angle.
  • the narrow end portion shape may be formed by changing the shape of the light emitting portion.
  • the vehicle periphery monitoring system includes two optical distance measuring devices, the first optical distance measuring device 20 and the second optical distance measuring device 22.
  • the first optical distance measuring device 20 For example, on the right side of the upper portion of the vehicle 70.
  • the number of optical distance measuring devices is not limited to two, and may be three or more.
  • the present disclosure is not limited to the above-described embodiment, and can be realized with various configurations without departing from the spirit of the present disclosure.
  • the technical features of the embodiment corresponding to the technical features in each mode described in the section of the summary of the invention are to solve some or all of the above problems, or some of the above effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

A first optical distance measurement device 20 in a vehicle vicinity monitoring system 200 comprises: a light emission unit 40 for emitting emission light; a light reception unit 60 for receiving emission light that has been projected toward a measurement range 80 and reflected from the measurement range and outputting a signal corresponding to the light reception state of the reflected light; and a measurement unit 100 for using the signal output from the light reception unit to measure the distance to an object included in the measurement range. The shape of the measurement range when the emission light is projected horizontally onto a vertical cylindrical surface surrounding the first optical distance measurement device may be a narrow-edged shape in which the vertical width of at least one horizontal end of the measurement range is smaller than the vertical width of the horizontal center of the measurement range.

Description

車両周辺監視システムVehicle surroundings monitoring system 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年2月20日に出願された日本出願番号2019-028027号および2020年1月15日に出願された日本出願番号2020-004060号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese application No. 2019-028027 filed on February 20, 2019 and Japanese application No. 2020-004060 filed on January 15, 2020, the description of which is hereby incorporated. Incorporate.
 本開示は、車両周辺監視システムに関する。 The present disclosure relates to a vehicle surroundings monitoring system.
 対象物に光を照射し、反射光を測定することで対象物までの距離を測定する光測距装置が知られている。例えば、特開2017-125790号公報では、車両に搭載された光測距装置によって、車両の全周囲の対象物との距離を測定する車両周辺監視システムが示されている。 An optical range finder is known that measures the distance to an object by irradiating the object with light and measuring the reflected light. For example, Japanese Unexamined Patent Application Publication No. 2017-125790 discloses a vehicle surroundings monitoring system that measures a distance from an object around the entire vehicle by an optical distance measuring device mounted on the vehicle.
 こうした車両周辺監視システムでは、光測距装置によって車両の全周囲を広く測定するため、照射光の範囲は一般に矩形形状をしている。照射光の照射方向が水平方向に対して所定の俯角を有すると、測定範囲の水平方向の端部では路面までの距離が伸びることによって照射光が及ぶ範囲が拡がってしまい、車両近傍を効率良く測定することができないという課題があった。また、こうした光測距装置を、水平方向に向けたものと俯角側に向けたものとで組み合わせて使用する場合、車両周辺監視システムでの測定範囲の重複が大きくなり、効率が悪くなるという問題があった。 In such a vehicle periphery monitoring system, the range of irradiation light is generally rectangular because the entire circumference of the vehicle is measured by the optical distance measuring device. If the irradiation direction of the irradiation light has a predetermined depression angle with respect to the horizontal direction, the range of the irradiation light expands due to the increase in the distance to the road surface at the horizontal end of the measurement range, so that the vicinity of the vehicle can be efficiently There was a problem that it could not be measured. Further, when such an optical distance measuring device is used in combination with a device oriented in the horizontal direction and a device oriented in the depression angle side, there is a problem that the measurement range overlaps in the vehicle periphery monitoring system and the efficiency deteriorates. was there.
 本開示は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。 The present disclosure has been made to solve at least a part of the above problems, and can be realized as the following modes or application examples.
 本開示の一形態によれば、車両周辺監視システム200、200b、200cが提供される。この車両周辺監視システムは、光測距装置20、20b、20cであって、照射光を射出する発光部40、40b、40cと、予め定められた測定範囲80、80b、80c、80dに向けて投射された前記照射光の前記測定範囲からの反射光を受光し、前記反射光の受光状態に応じた信号を出力する受光部60と、前記受光部から出力された前記信号を用いて、前記測定範囲に含まれる対象物までの距離を測定する測定部100と、を備える第一光測距装置であって、前記照射光を、前記第一光測距装置を囲む鉛直方向に沿った円筒状の平面に、水平方向に沿って投射したときの前記測定範囲の形状は、前記測定範囲の水平方向の少なくとも一方の端部での鉛直方向の幅が水平方向の中央での鉛直方向の幅よりも小さい端部狭隘形状である、第一光測距装置20、20b、20cと、予め定められた第二測定範囲82に向けて投射された第二照射光を前記第二測定範囲からの第二反射光として受光し、前記第二反射光の受光状態に応じた信号を用いて、前記第二測定範囲に含まれる対象物までの距離を測定する第二光測距装置であって、前記第二測定範囲に向けて投射される第二照射光を、前記第二光測距装置を囲む鉛直方向に沿った円筒状の平面に、水平方向に沿って投射したときの前記第二測定範囲の形状は、前記第二測定範囲の水平方向の中央での鉛直方向における幅が水平方向の両端での鉛直方向における幅と同じである、第二光測距装置22と、を備える。前記第一光測距装置および前記第二光測距装置は、前記第一光測距装置による前記照射光の照射方向LD1の俯角が、前記第二光測距装置による前記第二照射光の照射方向LD2より大きな俯角となるように車両70に配置されてよい。 According to an aspect of the present disclosure, vehicle periphery monitoring systems 200, 200b, 200c are provided. This vehicle periphery monitoring system is an optical distance measuring device 20, 20b, 20c, and is directed toward light emitting units 40, 40b, 40c that emit irradiation light and predetermined measurement ranges 80, 80b, 80c, 80d. By using the light receiving unit 60 that receives the reflected light from the measurement range of the projected irradiation light and outputs a signal according to the light receiving state of the reflected light, and the signal output from the light receiving unit, A first optical distance measuring device comprising: a measuring unit 100 that measures a distance to an object included in a measurement range, wherein the irradiation light is a cylinder along the vertical direction that surrounds the first optical distance measuring device. The shape of the measurement range when projected along the horizontal direction on a flat plane is such that the width in the vertical direction at the at least one end of the measurement range in the horizontal direction is the width in the vertical direction at the center in the horizontal direction. The narrower end narrower than the first optical distance measuring device 20, 20b, 20c, and the second irradiation light projected toward the predetermined second measurement range 82 from the second measurement range. Received as the second reflected light, using a signal according to the light receiving state of the second reflected light, a second optical distance measuring device for measuring the distance to the object included in the second measurement range, The second measurement when the second irradiation light projected toward the second measurement range is projected in the horizontal direction on a cylindrical plane along the vertical direction that surrounds the second optical distance measuring device. The shape of the range includes a second optical distance measuring device 22 in which the width in the vertical direction at the horizontal center of the second measurement range is the same as the width in the vertical direction at both ends in the horizontal direction. In the first optical distance measuring device and the second optical distance measuring device, the depression angle of the irradiation direction LD1 of the irradiation light by the first optical distance measuring device is equal to that of the second irradiation light by the second optical distance measuring device. The vehicle 70 may be arranged so that the depression angle is larger than the irradiation direction LD2.
 この形態の車両周辺監視システムによれば、第一光測距装置による照射光の測定範囲は、水平方向の両端側での鉛直方向の幅が、水平方向の中央での鉛直方向の幅よりも小さい端部狭隘形状とされる。これにより、第一光測距装置の近傍の対象物を効率良く検出することができる。第一光測距装置の第一測定範囲と、第二光測距装置の第二測定範囲との重複部分を低減することができ、効率良く車両近傍の対象物を検出することができる。 According to the vehicle periphery monitoring system of this aspect, in the measurement range of the irradiation light by the first optical distance measuring device, the width in the vertical direction at both end sides in the horizontal direction is larger than the width in the vertical direction at the center in the horizontal direction. It has a narrow narrow end. As a result, it is possible to efficiently detect the object in the vicinity of the first optical distance measuring device. It is possible to reduce the overlapping portion between the first measurement range of the first optical distance measuring device and the second measurement range of the second optical distance measuring device, and it is possible to efficiently detect an object near the vehicle.
 本開示は、車両周辺監視システム以外の種々の形態で実現することも可能である。例えば、車両周辺監視方法、光測距方法、車両周辺監視システムを搭載する車両、光測距装置を搭載する車両、車両周辺監視システムを制御する制御方法、光測距装置を制御する制御方法等の形態で実現できる。 The present disclosure can be implemented in various forms other than the vehicle periphery monitoring system. For example, a vehicle surroundings monitoring method, an optical ranging method, a vehicle equipped with a vehicle surroundings monitoring system, a vehicle equipped with an optical ranging device, a control method for controlling the vehicle surroundings monitoring system, a control method for controlling the optical ranging device, etc. Can be realized in the form of.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態での光測距装置の概略構成図であり、 図2は、光学系を表す概略構成図であり、 図3は、受光アレイの構成を模式的に示す説明図であり、 図4は、SPAD演算部の概略構成図であり、 図5は、ミラーの照射方向の鉛直方向および水平方向の動作を表す説明図であり、 図6は、ミラーの照射方向の動作を合成して表す説明図であり、 図7は、第1実施形態での光測距装置の測定範囲を表す説明図であり、 図8は、第1実施形態の車両周辺監視システムの鉛直方向の測定範囲を表す説明図であり、 図9は、第二光測距装置の測定範囲を表す説明図であり、 図10は、車両周辺監視システムの水平方向の測定範囲を表す説明図であり、 図11は、第2実施形態での第一光測距装置の概略構成図であり、 図12は、発光素子アレイの構成を表す概略構成図であり、 図13は、ミラーおよび発光素子アレイの制御を表す説明図であり、 図14は、第2実施形態での第一光測距装置の測定範囲を表す説明図であり、 図15は、第3実施形態での第一光測距装置の概略構成図であり、 図16は、第4実施形態での第一光測距装置の測定範囲を表す説明図である。
The above and other objects, features and advantages of the present disclosure will become more apparent by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a schematic configuration diagram of the optical distance measuring device according to the first embodiment, FIG. 2 is a schematic configuration diagram showing an optical system, FIG. 3 is an explanatory diagram schematically showing the configuration of the light receiving array, FIG. 4 is a schematic configuration diagram of the SPAD operation unit, FIG. 5 is an explanatory diagram showing operations in the vertical and horizontal directions of the irradiation direction of the mirror, FIG. 6 is an explanatory view showing a combined operation of the irradiation directions of the mirrors, FIG. 7 is an explanatory diagram showing a measurement range of the optical distance measuring device according to the first embodiment, FIG. 8 is an explanatory diagram showing a vertical measurement range of the vehicle periphery monitoring system of the first embodiment, FIG. 9 is an explanatory view showing the measurement range of the second optical distance measuring device, FIG. 10 is an explanatory diagram showing a horizontal measurement range of the vehicle periphery monitoring system, FIG. 11 is a schematic configuration diagram of the first optical distance measuring device in the second embodiment, FIG. 12 is a schematic configuration diagram showing the configuration of the light emitting element array, FIG. 13 is an explanatory diagram showing control of the mirror and the light emitting element array, FIG. 14 is an explanatory diagram showing the measurement range of the first optical distance measuring device in the second embodiment, FIG. 15 is a schematic configuration diagram of the first optical distance measuring device according to the third embodiment, FIG. 16 is an explanatory diagram showing the measurement range of the first optical distance measuring device in the fourth embodiment.
A.第1実施形態:
 図1には、第1実施形態の車両周辺監視システム200が第一光測距装置として備える光測距装置20が示されている。光測距装置20は、距離を光学的に測距する装置である。光測距装置20は、図1に示すように、予め定められた測定範囲80に対して測距のための照射光を射出して対象物からの反射光を受ける光学系30と、光学系30から得られた信号を処理するSPAD演算部100とを備える。光学系30は、照射光としてのレーザ光を射出する発光部40と、照射光を測定範囲80に向けて投射する投射部50と、測定範囲80からの反射光を受光する受光部60とを備える。
A. First embodiment:
FIG. 1 shows an optical distance measuring device 20 included in the vehicle periphery monitoring system 200 of the first embodiment as a first optical distance measuring device. The optical distance measuring device 20 is a device that optically measures a distance. As shown in FIG. 1, the optical distance measuring device 20 includes an optical system 30 that emits irradiation light for distance measurement to a predetermined measurement range 80 and receives reflected light from an object, and an optical system. And a SPAD calculation unit 100 for processing the signal obtained from The optical system 30 includes a light emitting unit 40 that emits laser light as irradiation light, a projection unit 50 that projects irradiation light toward the measurement range 80, and a light receiving unit 60 that receives reflected light from the measurement range 80. Prepare
 光学系30の詳細を図2に示す。本実施形態において、発光部40は、測距用のレーザ光を射出する半導体レーザ素子(以下、単にレーザ素子とも呼ぶ)41と、レーザ素子41の駆動回路を組み込んだ回路基板43と、レーザ素子41から射出されたレーザ光を平行光にするコリメートレンズ45とを備える。レーザ素子41は、いわゆる短パルスレーザを発振可能なレーザダイオードであり、本実施形態において、鉛直方向に沿って縦長の形状をしたレーザ発光領域を備える。レーザ素子41のレーザ光のパルス幅は、5nsec程度である。5nsecの短パルスを用いることで、測距の分解能を高めている。 The details of the optical system 30 are shown in FIG. In the present embodiment, the light emitting unit 40 includes a semiconductor laser element (hereinafter, also simply referred to as a laser element) 41 that emits a laser beam for distance measurement, a circuit board 43 in which a drive circuit for the laser element 41 is incorporated, and a laser element. And a collimator lens 45 for collimating the laser beam emitted from the laser beam 41. The laser element 41 is a laser diode capable of oscillating a so-called short pulse laser, and in the present embodiment, has a laser emission region having a vertically long shape along the vertical direction. The pulse width of the laser light of the laser element 41 is about 5 nsec. The resolution of distance measurement is improved by using a short pulse of 5 nsec.
 投射部50は、本実施形態において、照射光を鉛直方向と水平方向とに走査する、いわゆる二次元スキャナによって構成される。投射部50は、コリメートレンズ45により平行光とされたレーザ光を反射する反射部であるミラー53と、ミラー53を支持する回転フレーム52と、回転フレーム52を支持する支持フレーム51と、第一回転軸AX1を回転駆動させる第一ロータリソレノイド55と、第二回転軸AX2を回転駆動させる第二ロータリソレノイド57とを備える。以下、第一ロータリソレノイド55を、単に第一ソレノイド55とも呼び、第二ロータリソレノイド57を、単に第二ソレノイド57とも呼ぶ。第一回転軸AX1は、鉛直方向に平行なV方向を軸方向とする回転軸であり、第二回転軸AX2は、水平方向に平行なH方向を軸方向とする回転軸である。 The projection unit 50 is configured by a so-called two-dimensional scanner that scans the irradiation light in the vertical direction and the horizontal direction in the present embodiment. The projection unit 50 includes a mirror 53 that is a reflecting unit that reflects the laser light that is collimated by the collimator lens 45, a rotating frame 52 that supports the mirror 53, a support frame 51 that supports the rotating frame 52, and a first frame. A first rotary solenoid 55 that rotationally drives the rotary shaft AX1 and a second rotary solenoid 57 that rotationally drives the second rotary shaft AX2 are provided. Hereinafter, the first rotary solenoid 55 is also simply referred to as the first solenoid 55, and the second rotary solenoid 57 is also simply referred to as the second solenoid 57. The first rotation axis AX1 is a rotation axis having a V direction parallel to the vertical direction as an axis direction, and the second rotation axis AX2 is a rotation axis having an H direction parallel to the horizontal direction as an axis direction.
 第一ソレノイド55は、外部からの制御信号Sm1を受けて、所定の回転角の範囲内で回転軸AX1の正転および逆転を繰り返す。この結果、ミラー53がこの範囲内で回転フレーム52に対して相対的に回動する。他方、第二ソレノイド57は、外部からの制御信号Sm2を受けて、所定の回転角の範囲内で回転軸AX2の正転および逆転を繰り返す。この結果、ミラー53を保持する回転フレーム52がこの範囲内で支持フレーム51に対して相対的に回動する。すなわち、投射部50のミラー53は、外部からの各制御信号Sm1,Sm2を受けることにより、支持フレーム51に対してV方向と、H方向とのそれぞれの向きに回動可能となるように構成されている。 The first solenoid 55 receives a control signal Sm1 from the outside and repeats normal rotation and reverse rotation of the rotation axis AX1 within a predetermined rotation angle range. As a result, the mirror 53 rotates relative to the rotating frame 52 within this range. On the other hand, the second solenoid 57 receives the control signal Sm2 from the outside and repeats normal rotation and reverse rotation of the rotation axis AX2 within a predetermined rotation angle range. As a result, the rotary frame 52 holding the mirror 53 rotates relatively to the support frame 51 within this range. That is, the mirror 53 of the projection unit 50 is configured to be rotatable in the V direction and the H direction with respect to the support frame 51 by receiving the control signals Sm1 and Sm2 from the outside. Has been done.
 コリメートレンズ45を介してレーザ素子41から入射したレーザ光は、ミラー53によって反射されて測定範囲80に向けて照射される。レーザ光を照射する方位は、投射部50のミラー53の回動により、測定範囲80内でH方向と、V方向とに変更しながら走査される。ミラー53の反射によってレーザ光を照射する方位のことを、以下、照射方向とも呼ぶ。このように、光学系30は、レーザ光のV方向、すなわち鉛直方向と、H方向、すなわち水平方向とのそれぞれの角度範囲で規定される測定範囲80内で、測距を行なうことができる。光測距装置20から測定範囲80に向けて出力されるレーザ光は、人や車などの対象物があると、その表面で乱反射し、その一部は、投射部50のミラー53方向に戻ってくる。この反射光は、ミラー53で反射され、受光部60の受光レンズ61に入射し、受光レンズ61で集光されて受光アレイ65に入射する。 The laser light incident from the laser element 41 via the collimator lens 45 is reflected by the mirror 53 and irradiated toward the measurement range 80. The direction in which the laser beam is emitted is scanned within the measurement range 80 by changing the H direction and the V direction by rotating the mirror 53 of the projection unit 50. The direction in which the laser light is emitted by the reflection of the mirror 53 is also referred to as an irradiation direction. In this way, the optical system 30 can perform distance measurement within the measurement range 80 defined by the respective angle ranges of the V direction of laser light, that is, the vertical direction and the H direction, that is, the horizontal direction. If there is an object such as a person or a car, the laser light output from the optical distance measuring device 20 toward the measurement range 80 is diffusely reflected on the surface of the object, and part of the laser light returns toward the mirror 53 of the projection unit 50. Come on. The reflected light is reflected by the mirror 53, enters the light receiving lens 61 of the light receiving unit 60, is condensed by the light receiving lens 61, and enters the light receiving array 65.
 受光アレイ65の構成を模式的に図3に示す。受光アレイ65は、水平方向にH個、鉛直方向にV個となるように配列された複数の受光素子68から構成されている。本実施形態において、水平方向および鉛直方向においてそれぞれ5個で構成されるが任意の数で構成してもよい。受光素子68は、高い応答性と優れた検出能力とを実現するために、アバランシェフォトダイオード(APD)が用いられる。 The structure of the light receiving array 65 is schematically shown in FIG. The light-receiving array 65 is composed of a plurality of light-receiving elements 68 arranged so as to be H in the horizontal direction and V in the vertical direction. In this embodiment, each of the horizontal direction and the vertical direction is composed of five pieces, but may be composed of any number. The light receiving element 68 uses an avalanche photodiode (APD) in order to realize high response and excellent detection ability.
 APDに反射光の光子(フォトン)が入射すると、電子・正孔対が生成され、電子と正孔とが各々高電界で加速され、次々と衝突電離を引き起こして新たな電子・正孔対が生成される(アバランシェ現象)。このように、APDは、フォトンの入射を増幅できることから、対象物が遠く反射光の強度が小さくなる場合に用いられることが多い。APDの動作モードには、降伏電圧未満の逆バイアス電圧で動作させるリニアモードと、降伏電圧以上の逆バイアス電圧で動作させるガイガモードとがある。リニアモードでは、生成される電子・正孔対よりも高電解領域から出て消滅する電子・正孔対の数が大きく、電子・正孔対の崩壊は自然に止まる。このため、APDからの出力電流は、入射光量にほぼ比例する。他方、ガイガモードでは、単一フォトンの入射でもアバランシェ現象を起こすことができるため、検出感度を更に高めることができる。こうしたガイガモードで動作されるAPDを、シングルフォトンアバランシェダイオード(SPAD:Single Photon Avalanche Diode)と呼ぶことがある。 When a photon (photon) of the reflected light is incident on the APD, an electron/hole pair is generated, and the electron and the hole are accelerated by a high electric field, respectively, causing collision ionization to generate new electron/hole pairs. Generated (avalanche phenomenon). As described above, since the APD can amplify the incident photons, it is often used when the object is far and the intensity of the reflected light is small. The operation modes of the APD include a linear mode in which the reverse bias voltage is lower than the breakdown voltage and a Geiger mode in which the reverse bias voltage is higher than the breakdown voltage. In the linear mode, the number of electron-hole pairs that exit from the high electrolysis region and disappear is larger than the number of generated electron-hole pairs, and the collapse of electron-hole pairs naturally stops. Therefore, the output current from the APD is almost proportional to the amount of incident light. On the other hand, in the Gaiga mode, the avalanche phenomenon can occur even with the incidence of a single photon, so that the detection sensitivity can be further increased. Such an APD operated in the Gaiga mode may be referred to as a single photon avalanche diode (SPAD: Single Photon Avalanche Diode).
 各受光素子68は、図3の等価回路に示すように、電源Vccと接地ラインとの間に直列にクエンチ抵抗器RqとアバランシェダイオードDaを接続し、その接続点の電圧を論理演算素子の一つである反転素子INVに入力し、電圧レベルの反転したデジタル信号に変換している。反転素子INVの出力は、アンド回路SWの一方の入力に接続されているから、他方の入力がハイレベルHになっていれば、外部にそのまま出力される。アンド回路SWの他方の入力の状態は、選択信号SCにより切り換えることができる。選択信号SCは、受光アレイ65のどの受光素子68からの信号を読み出すかを指定するのに用いられることから、アドレス信号と呼ぶことがある。なお、アバランシェダイオードDaをリニアモードで用い、その出力をアナログ信号のまま扱う場合などには、アンド回路SWに代えて、アナログスイッチを用いればよい。また、アバランシェダイオードDaに代えて、PINフォトダイオードを用いることも可能である。 As shown in the equivalent circuit of FIG. 3, each light receiving element 68 has a quench resistor Rq and an avalanche diode Da connected in series between a power supply Vcc and a ground line, and the voltage at the connection point is set as a logical operation element. It is input to the inverting element INV, which is one of the two, and is converted into a digital signal whose voltage level is inverted. Since the output of the inverting element INV is connected to one input of the AND circuit SW, if the other input is at the high level H, it is directly output to the outside. The state of the other input of the AND circuit SW can be switched by the selection signal SC. The selection signal SC is used to specify from which light-receiving element 68 of the light-receiving array 65 the signal is to be read out, and therefore may be referred to as an address signal. When the avalanche diode Da is used in the linear mode and its output is treated as an analog signal, an analog switch may be used instead of the AND circuit SW. A PIN photodiode may be used instead of the avalanche diode Da.
 受光素子68に光が入射していなければ、アバランシェダイオードDaは、非導通状態に保たれる。このため、反転素子INVの入力側は、クエンチ抵抗器Rqを介してプルアップされた状態、つまりハイレベルHに保たれている。従って、反転素子INVの出力はロウレベルLに保たれる。各受光素子68に外部から光が入射すると、アバランシェダイオードDaは、入射した光子(フォトン)により通電状態となる。この結果、クエンチ抵抗器Rqを介して大きな電流が流れ、反転素子INVの入力側は一旦ロウレベルLとなり、反転素子INVの出力はハイレベルHに反転する。クエンチ抵抗器Rqを介して大きな電流が流れた結果、アバランシェダイオードDaに印加される電圧は低下するから、アバランシェダイオードDaへの電力供給は止まり、アバランシェダイオードDaは、非導通状態に復する。この結果、反転素子INVの出力信号も反転してロウレベルLに戻る。結果的に、反転素子INVは、各受光素子68に光子(フォトン)が入射すると、ごく短時間、ハイレベルとなるパルス信号を出力することになる。そこで、各受光素子68が光を受光するタイミングに合わせて、アドレス信号SCをハイレベルHにすれば、アンド回路SWの出力信号、つまり各受光素子68からの出力信号Soutは、アバランシェダイオードDaの状態を反映したデジタル信号となる。 If no light is incident on the light receiving element 68, the avalanche diode Da is kept in a non-conducting state. Therefore, the input side of the inverting element INV is held in the pulled-up state via the quench resistor Rq, that is, the high level H. Therefore, the output of the inverting element INV is kept at the low level L. When light is incident on each of the light receiving elements 68 from the outside, the avalanche diode Da is turned on by the incident photons (photons). As a result, a large current flows through the quench resistor Rq, the input side of the inverting element INV once becomes low level L, and the output of the inverting element INV is inverted to high level H. As a result of the large current flowing through the quench resistor Rq, the voltage applied to the avalanche diode Da drops, so that the power supply to the avalanche diode Da is stopped and the avalanche diode Da returns to the non-conducting state. As a result, the output signal of the inverting element INV is also inverted and returns to the low level L. As a result, the inverting element INV outputs a pulse signal that becomes high level for a very short time when a photon (photon) enters each light receiving element 68. Therefore, if the address signal SC is set to the high level H at the timing when each light receiving element 68 receives light, the output signal of the AND circuit SW, that is, the output signal Sout from each light receiving element 68, is output from the avalanche diode Da. The digital signal reflects the status.
 各受光素子68の出力信号Soutは、レーザ素子41が発光し、その光が走査範囲に存在する対象物OBJに反射して戻ってくることで生じる。従って、図4に示したように、発光部40が駆動されてレーザ光(以下、照射光パルスとも呼ぶ)が出力されてから、対象物OBJによって反射した反射光パルスが受光部60の各受光素子68により検出されるまでの時間Tfを計ることにより、対象までの距離を検出できる。対象物OBJは、光測距装置20の近くから遠くまで、様々な位置に存在し得る。 The output signal Sout of each light receiving element 68 is generated when the laser element 41 emits light, and the light is reflected and returned to the object OBJ existing in the scanning range. Therefore, as shown in FIG. 4, after the light emitting unit 40 is driven and the laser light (hereinafter, also referred to as irradiation light pulse) is output, the reflected light pulse reflected by the object OBJ is received by each light receiving unit 60. By measuring the time Tf until the detection by the element 68, the distance to the target can be detected. The object OBJ can be present in various positions from near to far from the optical distance measuring device 20.
 受光素子68は、以上説明したように、反射光を受けると、パルス信号を出力する。受光素子68が出力するパルス信号は、SPAD演算部100に入力される。SPAD演算部100は、レーザ素子41を発光させて外部の空間を走査しつつ、レーザ素子41が照射光パルスを出力した時点から受光部60の受光アレイ65が反射光パルスを受け取るまでの時間Tfから、対象物OBJまでの距離を演算する測定部である。SPAD演算部100は、周知のCPUやメモリを備え、予め用意されたプログラムを実行することで、測距に必要な処理を行なう。具体的には、SPAD演算部100は、全体の制御を行なう制御部110の他、加算部120、ヒストグラム生成部130、ピーク検出部140、距離演算部150等を備える。 The light receiving element 68 outputs a pulse signal when receiving the reflected light, as described above. The pulse signal output from the light receiving element 68 is input to the SPAD calculation unit 100. The SPAD calculation unit 100 causes the laser element 41 to emit light to scan the external space, and at the time Tf from the time when the laser element 41 outputs the irradiation light pulse to the time when the light receiving array 65 of the light receiving unit 60 receives the reflected light pulse. To a target object OBJ. The SPAD calculation unit 100 includes a well-known CPU and memory, and executes a program prepared in advance to perform processing required for distance measurement. Specifically, the SPAD calculation unit 100 includes an addition unit 120, a histogram generation unit 130, a peak detection unit 140, a distance calculation unit 150, and the like, in addition to the control unit 110 that performs overall control.
 加算部120は、受光部60を構成する受光素子68に含まれる更に多数の受光素子の出力を加算する回路である。受光素子68の内部には、更にN×N個(Nは2以上の整数)の受光素子が設けられており、反射光パルスが受光部60を構成する一つの受光素子68に入射すると、N×N個の素子が動作する。本実施形態では、1つの受光素子68内に7×7個のSPADが設けられている。もとより、SPADの数や配列は、7×7個以外、例えば5×9個など、種々の構成が可能である。 The adding section 120 is a circuit that adds the outputs of a larger number of light receiving elements included in the light receiving element 68 that constitutes the light receiving section 60. N×N (N is an integer of 2 or more) light receiving elements are further provided inside the light receiving element 68, and when a reflected light pulse enters one light receiving element 68 forming the light receiving unit 60, N ×N elements operate. In this embodiment, 7×7 SPADs are provided in one light receiving element 68. Needless to say, the number and arrangement of SPADs can be variously configured, such as 5×9, other than 7×7.
 本実施形態で、受光素子68を複数個のSPADから構成しているのは、SPADの特性による。SPADは、一つのフォトンが入射しただけでこれを検出することが可能であるが、対象物OBJからの限られた光によるSPADの検出は確率的なものにならざるを得ない。SPAD演算部100の加算部120は、確率的にしか反射光を検出し得ないSPADからの出力信号Soutを加算して反射光を検出する。もとより、受光素子68は、単一のSPADで構成してもよい。 In the present embodiment, the light receiving element 68 is composed of a plurality of SPADs due to the characteristics of the SPADs. The SPAD can detect only one photon incident, but the detection of the SPAD by the limited light from the object OBJ must be probabilistic. The addition unit 120 of the SPAD calculation unit 100 adds the output signal Sout from the SPAD that can detect the reflected light only stochastically and detects the reflected light. Of course, the light receiving element 68 may be composed of a single SPAD.
 こうして得られた反射光パルスをヒストグラム生成部130が受け取る。ヒストグラム生成部130は、加算部120の加算結果を複数回足し合せてヒストグラムを生成する。受光素子68が検出する信号には、外乱光などによるノイズも含まれるが、複数個の照射光パルスに対する各受光素子68からの信号を足し合せると、ノイズに対応する信号は累積されにくいのに対し、反射光パルスに対応する信号は累積されるため、反射光パルスに対応する信号が明確になる。そこで、ヒストグラム生成部130からのヒストグラムを解析して、ピーク検出部140が信号のピークを検出する。信号のピークは、測距の対象となっている対象物OBJからの反射光パルスに他ならない。こうしてピークが検出されると、距離演算部150は、照射光パルスから、反射光パルスのピークまでの時間を検出することで、対象物までの距離Dを検出する。検出された距離Dは、後述する車両70に搭載される車両周辺監視システム200に出力される。距離Dは、そのほか、例えば光測距装置20を搭載する自動運転車両の自動運転装置に出力されてもよいし、車両70のほかにドローンや電車、船舶などの種々の移動体に搭載されてもよく、固定された測距装置として単独で用いることも可能である。 The histogram generation unit 130 receives the reflected light pulse thus obtained. The histogram generation unit 130 adds the addition results of the addition unit 120 a plurality of times to generate a histogram. Although the signal detected by the light receiving element 68 includes noise due to ambient light, etc., when the signals from the respective light receiving elements 68 for a plurality of irradiation light pulses are added together, the signal corresponding to the noise is hard to accumulate. On the other hand, since the signals corresponding to the reflected light pulse are accumulated, the signal corresponding to the reflected light pulse becomes clear. Therefore, the peak detection unit 140 detects the peak of the signal by analyzing the histogram from the histogram generation unit 130. The peak of the signal is nothing but the reflected light pulse from the object OBJ that is the object of distance measurement. When the peak is detected in this way, the distance calculation unit 150 detects the distance D to the object by detecting the time from the irradiation light pulse to the peak of the reflected light pulse. The detected distance D is output to the vehicle surroundings monitoring system 200 mounted on the vehicle 70 described later. In addition, the distance D may be output to, for example, an automatic driving device of an automatic driving vehicle equipped with the optical distance measuring device 20, or mounted on various moving bodies such as a drone, a train, and a ship in addition to the vehicle 70. Alternatively, it may be used alone as a fixed distance measuring device.
 制御部110は、発光部40の回路基板43に対してレーザ素子41の発光タイミングを決定する指令信号SLや、いずれの受光素子68をアクティブにするかを決定するアドレス信号SCの他、ヒストグラム生成部130に対するヒストグラムの生成タイミングを指示する信号Stや、投射部50の各ソレノイド55,57に対する制御信号Sm1,Sm2を出力する。制御部110が予め定めたタイミングでこれらの信号を出力することにより、SPAD演算部100は、測定範囲80に存在する対象物OBJを、その対象物OBJまでの距離Dと共に検出する。 The control unit 110 generates a histogram in addition to the command signal SL for determining the light emission timing of the laser element 41 to the circuit board 43 of the light emitting unit 40, the address signal SC for determining which light receiving element 68 to activate, and the histogram generation. A signal St for instructing the generation timing of the histogram for the unit 130 and control signals Sm1, Sm2 for the solenoids 55, 57 of the projection unit 50 are output. When the control unit 110 outputs these signals at a predetermined timing, the SPAD operation unit 100 detects the object OBJ existing in the measurement range 80 together with the distance D to the object OBJ.
 次に、図5から図7を用いて、光測距装置20の測定範囲80の詳細について説明する。上述したように、投射部50のミラー53は、制御部110からの各制御信号Sm1,Sm2を受けてV方向と、H方向とのそれぞれの方向で回動可能に構成されている。図5には、ミラー53の照射方向の走査経路を、V方向とH方向との各方向成分に分解して示されている。図5の各グラフでの時間軸は互いに共通する。 Next, the measurement range 80 of the optical distance measuring device 20 will be described in detail with reference to FIGS. 5 to 7. As described above, the mirror 53 of the projection unit 50 is configured to be rotatable in the V direction and the H direction in response to the control signals Sm1 and Sm2 from the control unit 110. In FIG. 5, the scanning path in the irradiation direction of the mirror 53 is shown by being decomposed into each direction component of the V direction and the H direction. The time axes in the graphs of FIG. 5 are common to each other.
 図中の上側のグラフは、時間軸に対するミラー53の照射方向のV方向での回転角の変化を表している。ミラー53の標準位置をゼロとしたとき、ミラー53のV方向の照射方向は、角度-V1から角度+V1までの角度範囲で設定される。このV方向の角度範囲は、光測距装置20で測距可能な鉛直方向での最大範囲であり、垂直光学角とも呼ばれる。図中の下側のグラフは、時間軸に対するミラー53の照射方向のH方向での回転角の変化を表している。ミラー53の標準位置をゼロとしたとき、ミラー53のH方向の照射方向は、角度-H1から角度+H1までの角度範囲で設定される。このH方向の角度範囲は、光測距装置20で測距可能な水平方向での最大範囲であり、水平光学角とも呼ばれる。 The upper graph in the figure shows the change in the rotation angle in the V direction of the irradiation direction of the mirror 53 with respect to the time axis. When the standard position of the mirror 53 is zero, the irradiation direction of the mirror 53 in the V direction is set in the angle range from the angle −V1 to the angle +V1. This angle range in the V direction is the maximum range in the vertical direction in which the optical distance measuring device 20 can perform distance measurement, and is also called a vertical optical angle. The lower graph in the figure represents the change in the rotation angle in the H direction of the irradiation direction of the mirror 53 with respect to the time axis. When the standard position of the mirror 53 is zero, the irradiation direction of the mirror 53 in the H direction is set within the angle range from the angle −H1 to the angle +H1. This angle range in the H direction is the maximum range in the horizontal direction in which the optical distance measuring device 20 can perform distance measurement, and is also called a horizontal optical angle.
 ミラー53の照射方向を、H方向に角度-H1、V方向をゼロとする時点を時間t0としたとき、ミラー53は、V方向とH方向とをそれぞれプラス側の角度への回転を開始する。本実施形態において、ミラー53の角度変化はすべて一定の速度で行われる。時間t1に到達したときH方向は角度+H1に到達するとともに、マイナス側の角度に向けて回転される。時間t2に到達したとき、V方向の角度は、角度+V1に到達するとともに、マイナス側の角度に向けて回転される。時間t3に到達したとき、H方向は角度-H1に到達するとともに、プラス側の角度に向けて再び回転され、時間t4,時間t5,時間t7でそれぞれ回転方向を反転させる。このように、ミラー53の照射方向は、時間t8に到達するまでに、H方向において角度-H1から角度+H1までを3回往復される。振幅を角度H1とする単振動をH方向に3回繰り返してもよい。他方、照射方向のV方向は、時間t6に到達して角度-V1に到達し、プラス側の角度に向けて回転されて、時間t8でゼロへと戻る。すなわち、ミラー53の照射方向は、時間t8に到達するまでに、V方向において角度-V1から角度+V1までを1往復される。振幅を角度V1とする単振動をV方向に1回行われてもよい。このように、ミラー53はV方向に1往復させる間にH方向に3往復される。ミラー53のH方向の振動数がH方向の振動数に対して3倍となる単振動として設定してもよい。 When the irradiation direction of the mirror 53 is the angle −H1 in the H direction and the time when the V direction is zero is time t0, the mirror 53 starts rotating the V direction and the H direction to the plus side angles, respectively. .. In this embodiment, the angle of the mirror 53 is changed at a constant speed. When the time t1 is reached, the H direction reaches the angle +H1 and is rotated toward the minus side angle. When the time t2 is reached, the angle in the V direction reaches the angle +V1 and is rotated toward the minus side angle. When the time t3 is reached, the H direction reaches the angle −H1 and is rotated again toward the plus side angle, and the rotation directions are reversed at the time t4, the time t5, and the time t7. In this way, the irradiation direction of the mirror 53 is reciprocated three times from the angle −H1 to the angle +H1 in the H direction by the time t8. The single vibration having the amplitude of the angle H1 may be repeated three times in the H direction. On the other hand, the irradiation direction V reaches the time t6, reaches the angle −V1, is rotated toward the plus side angle, and returns to zero at the time t8. That is, the irradiation direction of the mirror 53 makes one round trip from the angle −V1 to the angle +V1 in the V direction by the time t8. The single vibration having the amplitude of the angle V1 may be performed once in the V direction. In this way, the mirror 53 makes three reciprocations in the H direction while making one reciprocation in the V direction. The vibration frequency of the mirror 53 in the H direction may be set as a single vibration that is three times the vibration frequency in the H direction.
 図6に、光測距装置20によるミラー53の照射方向の経路を示した。すなわち、図5に示した時間t0から時間t8までのミラー53のH方向とV方向との各方向成分での角度変化を合成することによって得られる照射方向の経路を示したものである。図中には、技術の理解を容易にするために図5の各時間t0~時間t8を経路上の対応する位置に示した。上述したように、ミラー53は、V方向に角度-V1から角度+V1までの1往復の動作を完了させる間に、H方向に角度-H1から角度+H1までの3往復を完了させる。そのため、図6に示したようにH方向に長尺な菱形の形状を、鉛直方向に3つ並べたような図形となる。ミラー53による照射方向の経路は、振幅周波数比を1:3とするV方向成分とH方向成分との二つの振動を合成して得られる平面図形(リサジュー図形とも呼ばれる)であってもよい。 FIG. 6 shows a path in the irradiation direction of the mirror 53 by the optical distance measuring device 20. That is, it shows a path in the irradiation direction obtained by synthesizing the angle change in each direction component of the H direction and the V direction of the mirror 53 from time t0 to time t8 shown in FIG. In the figure, each time t0 to t8 in FIG. 5 is shown at a corresponding position on the route in order to facilitate understanding of the technique. As described above, the mirror 53 completes one reciprocating operation from the angle −V1 to the angle +V1 in the V direction, and completes three reciprocating operations from the angle −H1 to the angle +H1 in the H direction. Therefore, as shown in FIG. 6, it becomes a figure in which three long rhombus shapes in the H direction are arranged in the vertical direction. The path in the irradiation direction by the mirror 53 may be a plane figure (also called a Lissajous figure) obtained by synthesizing two vibrations of a V direction component and an H direction component with an amplitude frequency ratio of 1:3.
 次に、光測距装置20の測定範囲80の詳細ついて説明する。図7の右側には、測定範囲80が模式的に表されている。図7の右側に示した測定範囲80は、円筒形のスクリーン上に投影した状態である。円筒形のスクリーンとは、図7の左側に示すように、V方向を軸方向とする円筒状の平面のことをいう。測定範囲80は、ミラー53の照射方向のV方向での標準位置を水平方向と平行となるように設置し、ミラー53を中心に囲む円筒形のスクリーン上に投射されたものである。本実施形態において、ミラー53の照射方向のV方向での標準位置は、V方向の角度範囲における中央(ゼロ)である。 Next, details of the measurement range 80 of the optical distance measuring device 20 will be described. The measurement range 80 is schematically shown on the right side of FIG. 7. The measurement range 80 shown on the right side of FIG. 7 is a state of being projected on a cylindrical screen. The cylindrical screen means a cylindrical flat surface whose axial direction is the V direction, as shown on the left side of FIG. 7. The measurement range 80 is set such that the standard position in the V direction of the irradiation direction of the mirror 53 is set to be parallel to the horizontal direction and is projected on a cylindrical screen surrounding the mirror 53 in the center. In the present embodiment, the standard position in the V direction of the irradiation direction of the mirror 53 is the center (zero) in the angular range of the V direction.
 図7の右側に示すように、測定範囲80の形状では、H方向の両端(本実施形態において角度-H1および角度+H1)でのV方向の幅は、測定範囲80のH方向の中央でのV方向の幅よりも小さくなる。このような形状を、端部狭隘形状とも呼ぶ。端部狭隘形状は、H方向の少なくとも一方の端部でのV方向の幅が測定範囲80のH方向の中央でのV方向の幅よりも小さい形状をも含む。測定範囲80がこのような端部狭隘形状となるのは、図6に示す図形状の経路上を照射光が走査されるからである。 As shown on the right side of FIG. 7, in the shape of the measurement range 80, the width in the V direction at both ends in the H direction (angle −H1 and angle +H1 in the present embodiment) is the center of the measurement range 80 in the H direction. It is smaller than the width in the V direction. Such a shape is also referred to as an end narrow shape. The narrow end portion shape also includes a shape in which the width in the V direction at at least one end portion in the H direction is smaller than the width in the V direction at the center of the measurement range 80 in the H direction. The reason why the measuring range 80 has such a narrow end shape is that the irradiation light is scanned on the path of the shape shown in FIG.
 次に、図8から図10を用いて光測距装置20を搭載する第1実施形態の車両周辺監視システム200について説明する。車両周辺監視システム200は、自動車である車両70に搭載され、車両70の周囲の対象物を検知する装置である。車両周辺監視システム200を、以下、単に監視システム200とも呼ぶ。監視システム200は、図8に示すように、車両70の上部のうち進行方向の左側に位置する光測距装置20と、車両70の上部の中央に位置する光測距装置22との二つの光測距装置を備える。監視システム200は、各光測距装置20,22によって検出される対象物の距離Dの入力を受けて、車両70周辺の対象物の有無を検出する。 Next, the vehicle periphery monitoring system 200 of the first embodiment equipped with the optical distance measuring device 20 will be described with reference to FIGS. 8 to 10. The vehicle periphery monitoring system 200 is a device that is mounted on a vehicle 70, which is an automobile, and detects an object around the vehicle 70. Hereinafter, the vehicle surroundings monitoring system 200 will be simply referred to as the monitoring system 200. As shown in FIG. 8, the monitoring system 200 includes two optical distance measuring devices, namely an optical distance measuring device 20 located on the left side in the traveling direction of the upper part of the vehicle 70 and an optical distance measuring device 22 located in the center of the upper part of the vehicle 70. An optical distance measuring device is provided. The monitoring system 200 receives the distance D of the object detected by each of the optical distance measuring devices 20 and 22, and detects the presence or absence of the object around the vehicle 70.
 車両70の上部の中央の光測距装置22は、その測定範囲82が光測距装置20の測定範囲80とは異なるが、それ以外の構成は光測距装置20と同様である。以下、光測距装置20を第一光測距装置20と、光測距装置22を第二光測距装置22とも呼び、第一光測距装置20の測定範囲80を第一測定範囲80とも呼び、第二光測距装置22の測定範囲82を第二測定範囲82とも呼ぶ。また、第二光測距装置22が第二測定範囲82に投射する照射光を第二照射光とも呼び、第二測定範囲82から反射される反射光を第二反射光とも呼ぶ。 The center optical distance measuring device 22 in the upper part of the vehicle 70 has a measuring range 82 different from the measuring range 80 of the optical distance measuring device 20, but other configurations are the same as the optical distance measuring device 20. Hereinafter, the optical distance measuring device 20 is also referred to as a first optical distance measuring device 20, and the optical distance measuring device 22 is also referred to as a second optical distance measuring device 22, and the measurement range 80 of the first optical distance measuring device 20 is referred to as a first measurement range 80. Also, the measurement range 82 of the second optical distance measuring device 22 is also referred to as a second measurement range 82. The irradiation light projected by the second optical distance measuring device 22 onto the second measurement range 82 is also referred to as second irradiation light, and the reflected light reflected from the second measurement range 82 is also referred to as second reflected light.
 第二光測距装置22の測定範囲82を円筒形のスクリーンに投影したものを図9に示す。投影条件は、上述した第一光測距装置20の測定範囲80と同条件である。図9に示すように、第二光測距装置22の測定範囲82の形状は、略矩形状であり、測定範囲82のH方向の中央でのV方向の幅と、H方向の両端でのV方向の幅とが略同一である。測定範囲82がこのような形状となるのは、第二光測距装置22の制御部によるミラーの制御によって、反射光が矩形状に走査されるからである。V方向に縦長の発光領域を有する照射光をH方向の一方向に走査することによって達成してもよい。 FIG. 9 shows a projection of the measurement range 82 of the second optical distance measuring device 22 on a cylindrical screen. The projection conditions are the same as the measurement range 80 of the first optical distance measuring device 20 described above. As shown in FIG. 9, the shape of the measurement range 82 of the second optical distance measuring device 22 is a substantially rectangular shape, and the width in the V direction at the center of the measurement range 82 in the H direction and at both ends in the H direction. The width in the V direction is substantially the same. The measurement range 82 has such a shape because the reflected light is scanned in a rectangular shape by the control of the mirror by the control unit of the second optical distance measuring device 22. It may be achieved by scanning the irradiation light having a vertically long light emitting region in the V direction in one direction of the H direction.
 次に、監視システム200による対象物の検出範囲について説明する。監視システム200の検出範囲は、監視システム200を構成する各光測距装置20,22の測定範囲80,82を合成した範囲である。監視システム200の鉛直方向での検出範囲を水平方向に沿って見る正面図で図8に表し、監視システム200の水平方向での検出範囲を車両70を中心とする斜視図で図10に表した。 Next, the detection range of the object by the monitoring system 200 will be described. The detection range of the monitoring system 200 is the combined range of the measurement ranges 80 and 82 of the optical distance measuring devices 20 and 22 that form the monitoring system 200. FIG. 8 is a front view of the detection range in the vertical direction of the monitoring system 200 viewed along the horizontal direction, and FIG. 10 is a perspective view of the detection system 200 in the horizontal direction centered on the vehicle 70. ..
 図8に示すように、監視システム200の検出範囲では、第一光測距装置20の測定範囲80が第二光測距装置22の測定範囲82外の領域を含むようにして構成される。図8には、第一光測距装置20による照射光の測定範囲80の照射方向LD1と、第二光測距装置22による照射光の測定範囲82の照射方向LD2とが模式的に示されている。本実施形態において、第二光測距装置22の照射方向LD2は、水平方向よりもわずかに俯角となる向きで設定されるが、第二光測距装置22の照射方向LD2は水平方向に平行する向きで設定されてもよい。すなわち、本明細書において、「第二光測距装置22の照射方向LD2の俯角」は、水平方向をも含む。第二光測距装置22の測定範囲82は、図9に示した矩形状であることから、水平面Hz上において車両70の近傍を除く同心円状に拡がるように形成される。このようにすることで、第二光測距装置22は、図10に示すように車両70の近傍を除く全方位を検出している。 As shown in FIG. 8, the detection range of the monitoring system 200 is configured such that the measurement range 80 of the first optical ranging device 20 includes a region outside the measurement range 82 of the second optical ranging device 22. FIG. 8 schematically shows the irradiation direction LD1 of the irradiation light measuring range 80 by the first optical distance measuring device 20 and the irradiation direction LD2 of the irradiation light measuring range 82 by the second optical distance measuring device 22. ing. In the present embodiment, the irradiation direction LD2 of the second optical distance measuring device 22 is set such that the depression angle is slightly smaller than the horizontal direction, but the irradiation direction LD2 of the second optical distance measuring device 22 is parallel to the horizontal direction. The direction may be set to. That is, in the present specification, the “depression angle of the irradiation direction LD2 of the second optical distance measuring device 22” also includes the horizontal direction. Since the measurement range 82 of the second optical distance measuring device 22 has the rectangular shape shown in FIG. 9, it is formed so as to extend in a concentric circle shape except the vicinity of the vehicle 70 on the horizontal plane Hz. By doing so, the second optical distance measuring device 22 detects all directions except the vicinity of the vehicle 70 as shown in FIG. 10.
 他方、第一光測距装置20の測定範囲80は、図8に示すように、第二光測距装置22の照射方向LD2よりも大きな俯角となるように設定される。換言すれば、第一光測距装置20の照射方向LD1は、第二光測距装置22の照射方向LD2に対して下向きとなるように設置される。照射方向LD1と照射方向LD2との間の角度を角度θ1としたとき、本実施形態において、角度θ1は20度である。このようにすることで、第二光測距装置22の測定範囲82の下側の測定範囲外の領域を、第一光測距装置20の測定範囲80がカバーしている。 On the other hand, the measurement range 80 of the first optical distance measuring device 20 is set to have a larger depression angle than the irradiation direction LD2 of the second optical distance measuring device 22, as shown in FIG. In other words, the irradiation direction LD1 of the first optical distance measuring device 20 is installed so as to be downward with respect to the irradiation direction LD2 of the second optical distance measuring device 22. When the angle between the irradiation direction LD1 and the irradiation direction LD2 is an angle θ1, the angle θ1 is 20 degrees in the present embodiment. By doing so, the measurement range 80 of the first optical distance measuring device 20 covers a region outside the measurement range below the measuring range 82 of the second optical distance measuring device 22.
 第一光測距装置20の測定範囲80を水平面Hz上に表すと図10のようになる。第一光測距装置20の水平方向での設置方向は、車両70の直進する進行方向に対して垂直な向きで設定される。ここで、図10に示される領域82tは、仮に監視システム200の第一光測距装置20に代えて第二光測距装置22を備えた場合に、この代替する第二光測距装置22による測定範囲を表したものである。領域82tは、第一光測距装置20の測定範囲80と略同一の領域を含みつつ、さらにH方向の両端側になるほど第二光測距装置22から離れる向きに突出する形状(いわゆるバタフライ状の形状)として水平面Hz上に形成される。H方向の両端側になるほど形状が突出するのは、H方向の両端側になるほど第二光測距装置22から水平面Hzまでの距離が長くなるためである。 The measurement range 80 of the first optical distance measuring device 20 is shown on the horizontal plane Hz as shown in FIG. The installation direction of the first optical distance measuring device 20 in the horizontal direction is set to be a direction perpendicular to the traveling direction of the vehicle 70 which travels straight. Here, in the case where the second optical distance measuring device 22 is provided in place of the first optical distance measuring device 20 of the monitoring system 200, the area 82t shown in FIG. 10 substitutes for this second optical distance measuring device 22. The measurement range is shown in FIG. The region 82t includes a region that is substantially the same as the measurement range 80 of the first optical distance measuring device 20, and further protrudes in a direction away from the second optical distance measuring device 22 toward both ends in the H direction (so-called butterfly shape). Shape) on the horizontal plane Hz. The reason why the shape protrudes toward both ends in the H direction is that the distance from the second optical distance measuring device 22 to the horizontal plane Hz becomes longer toward the both ends in the H direction.
 他方、図10に示すように、第一光測距装置20の測定範囲80は、領域82tと比べてH方向の両端側の突出する距離が短い。したがって、領域82tと比較して第二光測距装置22の測定範囲82との重複範囲は小さくなる。このようになるのは、第一光測距装置20の測定範囲80のH方向の両端側の垂直光学角の幅が、第二光測距装置22の測定範囲82のH方向の両端側の垂直光学角の幅よりも小さく設定されるからである。換言すれば、第一光測距装置20の測定範囲80のH方向の両端側での鉛直方向(V方向)の幅が、水平方向(H方向)の中央での鉛直方向(V方向)の幅よりも小さい端部狭隘形状として設定されているからである。 On the other hand, as shown in FIG. 10, the measurement range 80 of the first optical distance measuring device 20 has a shorter protruding distance on both end sides in the H direction than the area 82t. Therefore, the overlapping range with the measurement range 82 of the second optical distance measuring device 22 is smaller than that of the region 82t. This is because the width of the vertical optical angle at both ends in the H direction of the measurement range 80 of the first optical distance measuring device 20 is the same as that at both ends of the measuring range 82 of the second optical distance measuring device 22 in the H direction. This is because the width is set smaller than the width of the vertical optical angle. In other words, the width in the vertical direction (V direction) at both ends in the H direction of the measurement range 80 of the first optical distance measuring device 20 is the same as the vertical direction (V direction) at the center in the horizontal direction (H direction). This is because it is set as an end narrower shape that is smaller than the width.
 このように、本実施形態の車両周辺監視システム200によれば、第一光測距装置20は、ミラー53の照射方向を、H方向、V方向のそれぞれを個別に走査することによって、測定範囲80は、水平方向の両端側での鉛直方向の幅が、水平方向の中央での鉛直方向の幅よりも小さい端部狭隘形状とされている。これにより、光測距装置20近傍やこれを搭載する車両70近傍の対象物を効率良く検出することができる。また、光測距装置20や車両70近傍での照射光の光量の密度を上げることができ、測定精度を向上させることができる。 As described above, according to the vehicle periphery monitoring system 200 of the present embodiment, the first optical distance measuring device 20 individually scans the irradiation direction of the mirror 53 in each of the H direction and the V direction to thereby measure the measurement range. 80 has an end narrowed shape in which the width in the vertical direction at both ends in the horizontal direction is smaller than the width in the vertical direction at the center in the horizontal direction. As a result, it is possible to efficiently detect an object in the vicinity of the optical distance measuring device 20 or in the vicinity of the vehicle 70 in which the device is mounted. Further, it is possible to increase the density of the amount of irradiation light in the vicinity of the optical distance measuring device 20 and the vehicle 70, and improve the measurement accuracy.
 本実施形態の車両周辺監視システム200によれば、車両70の全方位を測定範囲とする第二光測距装置22の測定範囲82と、第一光測距装置20の測定範囲80との重複部分を低減することができ、効率良く車両70近傍の対象物を検出することができる。また、車両70近傍の照射光の密度を高めることにより、測定精度を高くすることができる。 According to the vehicle surroundings monitoring system 200 of the present embodiment, the measurement range 82 of the second optical distance measuring device 22 and the measurement range 80 of the first optical distance measuring device 20 in which the measurement directions are all directions of the vehicle 70 overlap. The number of parts can be reduced, and an object near the vehicle 70 can be efficiently detected. Further, the measurement accuracy can be increased by increasing the density of the irradiation light near the vehicle 70.
 本実施形態の車両周辺監視システム200によれば、第一光測距装置20の投射部50に二次元スキャナであるミラー53を採用することで、簡易にV方向およびH方向を個別に制御することができる。また、部品点数を減らすことにより、第一光測距装置20の小型化が図れる。 According to the vehicle periphery monitoring system 200 of the present embodiment, the mirror 53, which is a two-dimensional scanner, is adopted in the projection unit 50 of the first optical distance measuring device 20, so that the V direction and the H direction can be individually controlled easily. be able to. Further, by reducing the number of parts, the first optical distance measuring device 20 can be downsized.
B.第2実施形態:
 第2実施形態の車両周辺監視システム200bは、第1実施形態での第一光測距装置20に代えて第一光測距装置20bを備える。光測距装置20bは、図11に示すように、第1実施形態での光測距装置20の光学系30に代えて光学系30bを備え、その他の構成は第1実施形態での光測距装置20と同様である。光学系30bは、発光部40bと、投射部50bとを備える。
B. Second embodiment:
The vehicle periphery monitoring system 200b of the second embodiment includes a first optical distance measuring device 20b instead of the first optical distance measuring device 20 of the first embodiment. As shown in FIG. 11, the optical distance measuring device 20b includes an optical system 30b in place of the optical system 30 of the optical distance measuring device 20 in the first embodiment, and other configurations are the optical measuring device in the first embodiment. It is similar to the distance device 20. The optical system 30b includes a light emitting unit 40b and a projection unit 50b.
 投射部50bは、いわゆる一次元スキャナによって構成される。投射部50bは、照射光を反射するミラー54と、ロータリソレノイド58と、ロータリソレノイド58によって鉛直方向を軸方向とする回転軸でミラー54を一方向に回転させる回転部56とによって構成される。 The projection unit 50b is composed of a so-called one-dimensional scanner. The projection unit 50b includes a mirror 54 that reflects the irradiation light, a rotary solenoid 58, and a rotary unit 56 that rotates the mirror 54 in one direction by a rotary shaft that has the vertical direction as the axial direction by the rotary solenoid 58.
 発光部40bは、照射光の発光領域が異なる点で第1実施形態での発光部40と相違する。図11の下側に示したように、照射領域LxはV方向の測定領域全体を含む縦長の矩形状の領域である。従って、本実施形態では、照射光を一方向にのみ走査可能な投射部50bを備えるだけで、測定範囲80bを一度に測距することが可能となる。 The light emitting section 40b differs from the light emitting section 40 in the first embodiment in that the light emitting area of the irradiation light is different. As shown in the lower side of FIG. 11, the irradiation region Lx is a vertically long rectangular region including the entire measurement region in the V direction. Therefore, in the present embodiment, it is possible to measure the measurement range 80b at one time only by providing the projection unit 50b that can scan the irradiation light in only one direction.
 発光部40bは、図12に示すように、複数の発光ダイオードによって構成される発光素子アレイ42を備える。発光素子アレイ42は、領域Laと、領域Lbとに制御部110の制御上で分類され、制御部110の制御によって領域La,Lbごとに発光素子アレイ42のON/OFFが個別に切り換えられる。領域Laは、発光素子アレイ42の発光領域のうち、照射領域LxのV方向の上端側および下端側に対応する領域であり、領域Lbは、領域La間に位置し照射領域LxのV方向の中央に対応する領域である。 The light emitting section 40b includes a light emitting element array 42 including a plurality of light emitting diodes, as shown in FIG. The light emitting element array 42 is classified into a region La and a region Lb under the control of the control unit 110, and ON/OFF of the light emitting device array 42 is individually switched for each of the regions La and Lb by the control of the control unit 110. The region La is a region corresponding to the upper and lower ends in the V direction of the irradiation region Lx in the light emitting region of the light emitting element array 42, and the region Lb is located between the regions La and in the V direction of the irradiation region Lx. The area corresponding to the center.
 図13に、ミラー54の走査方向の制御と、領域La,Lbごとの発光素子アレイ42のON/OFFの制御との関係を示した。図13の上側は、投射部50bのミラー54の照射方向の水平方向での経時的な変化を表し、図13の下側は、領域La,Lbごとの発光素子のON/OFFの制御を表している。時間軸は互いに一致する。このように、本実施形態では、制御部110によって、投射部50bの走査方向の制御と、領域La,Lbごとの発光素子アレイ42のON/OFFとが同期して制御される。 FIG. 13 shows the relationship between the control in the scanning direction of the mirror 54 and the ON/OFF control of the light emitting element array 42 for each of the regions La and Lb. The upper side of FIG. 13 represents a temporal change in the irradiation direction of the mirror 54 of the projection unit 50b in the horizontal direction, and the lower side of FIG. 13 represents ON/OFF control of the light emitting elements for each of the regions La and Lb. ing. The time axes coincide with each other. As described above, in the present embodiment, the control unit 110 controls the control of the projection unit 50b in the scanning direction and the ON/OFF of the light emitting element array 42 for each of the regions La and Lb in synchronization.
 時間t20でのミラー54の照射方向を角度-H1としたとき、制御部110は、ロータリソレノイド58を制御して回転部56を介してミラー54を角度+H1側に向けて回転させる。このとき、領域Laの発光素子アレイ42はOFFであり、領域Lbの発光素子アレイ42はONである。ミラー54の回転を開始し、時間t21に到達すると、制御部110は制御信号を発信して、領域Laの発光素子アレイ42をONにする。時間t22に到達すると、制御部110は領域Laの発光素子アレイ42をOFFとする。ミラー54の照射方向が角度+H1に到達すると(時間t23)、ミラー54は再び角度-H1に向けて回動され、時間t24で、ミラー54は角度-H1に到達してH方向での一往復の走査を完了する。この間、領域Laの発光素子アレイ42は、時間t20から時間t23までの制御と同じタイミングでON/OFFを制御される。ミラー54の一往復の走査の制御において、領域Lbの発光素子アレイ42は、常時ONの状態である。なお、ミラー54の水平方向の走査は、検出精度が高ければ、一往復の走査でなくともよく、時間t20から時間t23までの期間のみの制御であってもよい。 When the irradiation direction of the mirror 54 at time t20 is the angle −H1, the control unit 110 controls the rotary solenoid 58 to rotate the mirror 54 toward the angle +H1 side via the rotating unit 56. At this time, the light emitting element array 42 in the region La is OFF and the light emitting element array 42 in the region Lb is ON. When the mirror 54 starts rotating and reaches the time t21, the control unit 110 transmits a control signal to turn on the light emitting element array 42 in the region La. When the time t22 is reached, the control unit 110 turns off the light emitting element array 42 in the region La. When the irradiation direction of the mirror 54 reaches the angle +H1 (time t23), the mirror 54 is rotated again toward the angle -H1, and at time t24, the mirror 54 reaches the angle -H1 and makes one round trip in the H direction. Complete the scan. During this period, the light emitting element array 42 in the area La is controlled to be turned on/off at the same timing as the control from the time t20 to the time t23. In the control of one reciprocating scan of the mirror 54, the light emitting element array 42 in the region Lb is always on. Note that the horizontal scanning of the mirror 54 need not be one reciprocal scanning as long as the detection accuracy is high, and may be controlled only during the period from time t20 to time t23.
 図14に、上述したミラー54の動作と、領域La,Lbごとの発光素子アレイ42のON/OFFとの制御によって形成される測定範囲80bを示した。図中には、技術の理解を容易にするために図13の各時間t20~t24を対応する位置に示した。図14に示される測定範囲80bは、第1実施形態での測定範囲80と同様、円筒形のスクリーンに投射されたものである。発光素子アレイ42の領域Laによって照射される範囲を範囲LaVと、領域Lbによって照射される範囲を範囲LbVとする。 FIG. 14 shows a measurement range 80b formed by controlling the above-described operation of the mirror 54 and ON/OFF of the light emitting element array 42 for each of the regions La and Lb. In the figure, each time t20 to t24 in FIG. 13 is shown at a corresponding position in order to facilitate understanding of the technique. The measurement range 80b shown in FIG. 14 is projected on a cylindrical screen, like the measurement range 80 in the first embodiment. The range irradiated by the region La of the light emitting element array 42 is defined as a range LaV, and the range irradiated by the region Lb is defined as a range LbV.
 上述したように、時間t20~t21、時間t22~t23に対応するミラー54の水平光学角の両端側において、領域Laに属する発光素子アレイ42がOFFとなるように制御される。そのため、測定範囲80bにおいて、ミラー54の水平光学角の両端側には、範囲LbVのみが形成され、上下の範囲LaV分だけV方向での幅が短い。このように、光測距装置20bの測定範囲80bの水平方向の両端側での鉛直方向の幅は、水平方向の中央での鉛直方向の幅よりも小さい端部狭隘形状とされる。 As described above, the light emitting element arrays 42 belonging to the area La are controlled to be turned off at both ends of the horizontal optical angle of the mirror 54 corresponding to the times t20 to t21 and the times t22 to t23. Therefore, in the measurement range 80b, only the range LbV is formed on both ends of the horizontal optical angle of the mirror 54, and the width in the V direction is shorter by the upper and lower range LaV. In this way, the width in the vertical direction at both ends of the measurement range 80b of the optical distance measuring device 20b in the horizontal direction is narrower than the width in the vertical direction at the center in the horizontal direction.
 以上のように、第2実施形態の車両周辺監視システム200bでは、第一光測距装置20bにおいて、一次元スキャナとしてのミラー54の回転制御と、発光素子アレイ42のON/OFFとの同期制御をすることによって、測定範囲80bのH水平方向の両端側での鉛直方向の幅は、水平方向の中央での鉛直方向の幅よりも小さい端部狭隘形状とされている。これにより、発光部40bの出力を低減しつつ、第二光測距装置22の測定範囲82と、第一光測距装置20bの測定範囲80bとの重複部分を低減することができ、効率良く車両70近傍の対象物を検出することができる。 As described above, in the vehicle periphery monitoring system 200b of the second embodiment, in the first optical distance measuring apparatus 20b, the rotation control of the mirror 54 as the one-dimensional scanner and the synchronous control of ON/OFF of the light emitting element array 42 are performed. By doing so, the width in the vertical direction at both ends in the H horizontal direction of the measurement range 80b is made narrower at the end portion than the width in the vertical direction at the center in the horizontal direction. As a result, it is possible to reduce the output of the light emitting unit 40b and reduce the overlapping portion between the measurement range 82 of the second optical distance measuring device 22 and the measurement range 80b of the first optical distance measuring device 20b. An object near the vehicle 70 can be detected.
C.第3実施形態:
 第3実施形態の車両周辺監視システム200cが備える第一光測距装置20cの構成を図15に示す。光測距装置20cは、光学系30に代えて光学系30cを備える点で第1実施形態での第一光測距装置20と相違する。光学系30cは、いわゆる拡散光学系によって構成され、発光ダイオードからなる発光部40cと、受光部60と、光拡散部44とによって構成される。
C. Third embodiment:
FIG. 15 shows the configuration of the first optical distance measuring device 20c included in the vehicle periphery monitoring system 200c of the third embodiment. The optical distance measuring device 20c is different from the first optical distance measuring device 20 in the first embodiment in that the optical system 30c is provided instead of the optical system 30. The optical system 30c is configured by a so-called diffusion optical system, and includes a light emitting unit 40c including a light emitting diode, a light receiving unit 60, and a light diffusing unit 44.
 光拡散部44は、マイクロレンズアレイによって構成される光拡散板である。発光部40cの発光ダイオードから射出された面発光の照射光は、光拡散部44を透過する際に予め定められた角度に拡散されて測定範囲80cを形成する。測定範囲80cの形状は、第1実施形態での光測距装置20の測定範囲80の形状と同様である。光拡散部44は、複数のレンズを並べて構成してもよいし、フラットトップ拡散板、回折格子、ホログラム、フィルム状のディフューザといった発光部40cからの照射光を拡散させる種々の部材によって構成されてよい。本実施形態の車両周辺監視システム200cによれば、簡易な方法によって、水平方向の両端側での鉛直方向の幅が、水平方向の中央での鉛直方向の幅よりも小さい端部狭隘形状の測定範囲80cを有する第一光測距装置20cを得ることができる。 The light diffusing unit 44 is a light diffusing plate composed of a microlens array. The irradiation light of surface emission emitted from the light emitting diode of the light emitting section 40c is diffused at a predetermined angle when passing through the light diffusing section 44 to form a measurement range 80c. The shape of the measurement range 80c is the same as the shape of the measurement range 80 of the optical distance measuring device 20 in the first embodiment. The light diffusing unit 44 may be configured by arranging a plurality of lenses, or may be configured by various members such as a flat top diffusion plate, a diffraction grating, a hologram, and a film-shaped diffuser that diffuse the irradiation light from the light emitting unit 40c. Good. According to the vehicle periphery monitoring system 200c of the present embodiment, a simple method is used to measure an end narrowed shape in which the vertical widths at both ends in the horizontal direction are smaller than the vertical width at the center in the horizontal direction. It is possible to obtain the first optical distance measuring device 20c having the range 80c.
D.第4実施形態:
 第1実施形態の車両周辺監視システム200が有する第一光測距装置20では、ミラー53の照射方向の経路をリサジュー図形状にすることにより、測定範囲80のV方向のプラス側とマイナス側の形状をゼロ側へ縮めていたが、図16に示した測定範囲80dのように、V方向のプラス側を曲線状とし、V方向のマイナス側を直線状とすることで、測定範囲80dの水平方向の両端側での鉛直方向の幅が、水平方向の中央での鉛直方向の幅よりも小さい端部狭隘形状としてもよい。また、第2実施形態の車両周辺監視システム200bが有する第一光測距装置20bでは、一次元スキャナとしてのミラー54の回転制御と、V方向上下の領域Laの発光素子アレイ42のON/OFFとが同期制御されるのに対し、V方向の上側のみの領域Laの発光素子アレイ42のON/OFFが同期制御されることによって、図16に示した測定範囲80dのような端部狭隘形状とされてもよい。
D. Fourth Embodiment:
In the first optical distance measuring device 20 included in the vehicle periphery monitoring system 200 of the first embodiment, the path of the mirror 53 in the irradiation direction is formed into a Lissajous figure shape so that the measurement range 80 can be located on the plus side and the minus side in the V direction. Although the shape is contracted to the zero side, as in the measurement range 80d shown in FIG. 16, the plus side in the V direction is curved and the minus side in the V direction is linear so that the measurement range 80d is horizontal. The width in the vertical direction at both end sides in the direction may be narrower than the width in the vertical direction at the center in the horizontal direction. Further, in the first optical distance measuring device 20b included in the vehicle periphery monitoring system 200b of the second embodiment, rotation control of the mirror 54 as a one-dimensional scanner and ON/OFF of the light emitting element arrays 42 in the upper and lower regions La in the V direction are performed. And are synchronously controlled, while ON/OFF of the light emitting element array 42 in the region La only on the upper side in the V direction is synchronously controlled, so that the narrow end shape like the measurement range 80d shown in FIG. May be
E.他の実施形態:
(E1)上記第1実施形態において、ミラー53は、V方向に角度-V1から角度+V1までの1往復の動作を完了させる間に、H方向に角度-H1から角度+H1までの3往復を完了させる。これに対して、ミラー53による照射方向の経路は、測定範囲80の形状が端部狭隘形状となるように、V方向およびH方向の角度範囲(振幅)や、V方向およびH方向での往復回数(振動数)、初期位相といった振動成分を任意に設定してもよい。ミラー53の照射方向の走査経路にリサジュー図形を採用することにより、簡易な方法によって、測定範囲80の水平方向の両端側での鉛直方向の幅を、水平方向の中央での鉛直方向の幅よりも小さい端部狭隘形状を得ることができる。
E. Other embodiments:
(E1) In the first embodiment, the mirror 53 completes one reciprocating motion from the angle −V1 to the angle +V1 in the V direction, while completing three reciprocating motions from the angle −H1 to the angle +H1 in the H direction. Let On the other hand, the path of the irradiation direction by the mirror 53 is the angular range (amplitude) in the V direction and the H direction, and the reciprocation in the V direction and the H direction so that the shape of the measurement range 80 has a narrow end shape. The vibration component such as the number of times (frequency) and the initial phase may be set arbitrarily. By adopting a Lissajous figure in the scanning path in the irradiation direction of the mirror 53, the vertical width at the both ends in the horizontal direction of the measurement range 80 can be made easier than the vertical width at the center in the horizontal direction by a simple method. It is possible to obtain a narrow end shape.
(E2)上記各実施形態において、測定範囲は、H方向の両端でのV方向の幅を、H方向の中央でのV方向の幅よりも小さくした端部狭隘形状として形成される。これに対して、端部狭隘形状は、H方向のいずれか一方の端部側でのV方向の幅がH方向の中央でのV方向の幅よりも小さくされる形状であってもよい。このような態様において、車両70に設置される第一光測距装置20の水平方向での設置方向が、車両70の直進する進行方向に対して垂直な向きに対して進行方向側もしくはその逆側に傾けて設定される場合に、第二光測距装置22の測定範囲82との重複を低減させるH方向の端部側に対応するV方向の幅がH方向の中央でのV方向の幅よりも小さくすることにより、効率良く対象物を検出することができる。 (E2) In each of the above-described embodiments, the measurement range is formed as an end narrowed shape in which the width in the V direction at both ends in the H direction is smaller than the width in the V direction at the center in the H direction. On the other hand, the end narrowed shape may be a shape in which the width in the V direction on one of the end sides in the H direction is smaller than the width in the V direction at the center in the H direction. In such an aspect, the installation direction of the first optical distance measuring device 20 installed in the vehicle 70 in the horizontal direction is the traveling direction side or the opposite direction with respect to the direction perpendicular to the traveling direction in which the vehicle 70 travels straight. The width in the V direction corresponding to the end portion side in the H direction that reduces the overlap with the measurement range 82 of the second optical distance measuring device 22 when set to the side in the V direction at the center in the H direction By making the width smaller than the width, it is possible to efficiently detect the object.
(E3)上記第1実施形態において、ミラー53の回転軸は水平方向と鉛直方向とに互いに直交するが、直交とならず任意の角度で交差する態様であってもよい。 (E3) In the first embodiment, the rotation axes of the mirror 53 are orthogonal to each other in the horizontal direction and the vertical direction, but may be in an aspect in which they are not orthogonal and intersect at an arbitrary angle.
(E4)端部狭隘形状は、発光部の形状を変えることによって形成されてもよい。 (E4) The narrow end portion shape may be formed by changing the shape of the light emitting portion.
(E5)上記各実施形態において、車両周辺監視システムは、第一光測距装置20と第二光測距装置22との二つの光測距装置を備えるが、例えば、車両70の上部の右側に位置する光測距装置を更に備えるなど、二つに限らず3以上の光測距装置を備えてもよい。 (E5) In each of the above embodiments, the vehicle periphery monitoring system includes two optical distance measuring devices, the first optical distance measuring device 20 and the second optical distance measuring device 22. For example, on the right side of the upper portion of the vehicle 70. The number of optical distance measuring devices is not limited to two, and may be three or more.
 本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present disclosure is not limited to the above-described embodiment, and can be realized with various configurations without departing from the spirit of the present disclosure. For example, the technical features of the embodiment corresponding to the technical features in each mode described in the section of the summary of the invention are to solve some or all of the above problems, or some of the above effects. Alternatively, in order to achieve all, it is possible to appropriately replace or combine. If the technical features are not described as essential in the present specification, they can be deleted as appropriate.

Claims (5)

  1.  車両周辺監視システム(200、200b、200c)であって、
     照射光を射出する発光部(40、40b、40c)と、予め定められた測定範囲(80、80b、80c、80d)に向けて投射された前記照射光の前記測定範囲からの反射光を受光し、前記反射光の受光状態に応じた信号を出力する受光部(60)と、前記受光部から出力された前記信号を用いて、前記測定範囲に含まれる対象物までの距離を測定する測定部(100)と、を備える第一光測距装置であって、前記照射光を、前記第一光測距装置を囲む鉛直方向に沿った円筒状の平面に、水平方向に沿って投射したときの前記測定範囲の形状は、前記測定範囲の水平方向の少なくとも一方の端部での鉛直方向の幅が水平方向の中央での鉛直方向の幅よりも小さい端部狭隘形状である、第一光測距装置(20、20b、20c)と、
     予め定められた第二測定範囲(82)に向けて投射された第二照射光を前記第二測定範囲からの第二反射光として受光し、前記第二反射光の受光状態に応じた信号を用いて、前記第二測定範囲に含まれる対象物までの距離を測定する第二光測距装置であって、前記第二測定範囲に向けて投射される第二照射光を、前記第二光測距装置を囲む鉛直方向に沿った円筒状の平面に、水平方向に沿って投射したときの前記第二測定範囲の形状は、前記第二測定範囲の水平方向の中央での鉛直方向における幅が水平方向の両端での鉛直方向における幅と同じである、第二光測距装置(22)と、を備え、
     前記第一光測距装置および前記第二光測距装置は、
      前記第一光測距装置による前記照射光の照射方向(LD1)の俯角が、前記第二光測距装置による前記第二照射光の照射方向(LD2)より大きな俯角となるように車両(70)に配置される、
    車両周辺監視システム。
    A vehicle periphery monitoring system (200, 200b, 200c),
    A light emitting unit (40, 40b, 40c) that emits irradiation light, and receives reflected light from the measurement range of the irradiation light projected toward a predetermined measurement range (80, 80b, 80c, 80d) Then, using the light receiving unit (60) that outputs a signal according to the light receiving state of the reflected light and the signal output from the light receiving unit, the measurement for measuring the distance to the object included in the measurement range. A first optical distance measuring device including a section (100), and the irradiation light is projected in a horizontal direction on a cylindrical plane surrounding the first optical distance measuring device along a vertical direction. When the shape of the measurement range, the width in the vertical direction at least one end in the horizontal direction of the measurement range is an end narrowed shape smaller than the width in the vertical direction at the center in the horizontal direction, the first Optical distance measuring device (20, 20b, 20c),
    The second irradiation light projected toward the predetermined second measurement range (82) is received as the second reflected light from the second measurement range, and a signal corresponding to the light receiving state of the second reflected light is received. A second optical distance measuring device for measuring a distance to an object included in the second measurement range, wherein the second irradiation light projected toward the second measurement range is the second light. The shape of the second measurement range when projected along the horizontal direction on a cylindrical plane along the vertical direction surrounding the distance measuring device has a width in the vertical direction at the horizontal center of the second measurement range. Is the same as the width in the vertical direction at both ends in the horizontal direction, and a second optical distance measuring device (22),
    The first optical distance measuring device and the second optical distance measuring device,
    The vehicle (70) so that the depression angle in the irradiation direction (LD1) of the irradiation light by the first optical distance measuring device is larger than the depression angle in the irradiation direction (LD2) of the second irradiation light by the second optical distance measuring device. ),
    Vehicle surroundings monitoring system.
  2.  前記第一光測距装置は、前記測定範囲に向けて前記照射光を投射する投射部(50)を更に備え、
     前記投射部は、少なくとも2以上の中心軸で回転し前記照射光を反射する反射部(53)、を含む、請求項1に記載の車両周辺監視システム。
    The first optical distance measuring device further includes a projection unit (50) that projects the irradiation light toward the measurement range,
    The vehicle periphery monitoring system according to claim 1, wherein the projection unit includes a reflection unit (53) that rotates about at least two central axes and reflects the irradiation light.
  3.  前記反射部は、互いに直交する2つの中心軸を有し、前記2つの中心軸のそれぞれで振動成分を変えながら回転することによって前記端部狭隘形状を実現する、請求項2に記載の車両周辺監視システム。 The vehicle periphery according to claim 2, wherein the reflecting portion has two central axes that are orthogonal to each other, and realizes the narrow end shape by rotating while changing a vibration component on each of the two central axes. Monitoring system.
  4.  請求項1に記載の車両周辺監視システムであって、
     前記第一光測距装置は、
      一方向に回転しながら前記照射光を反射する反射部(53)を含み、前記測定範囲に向けて水平方向に沿って前記照射光を投射する投射部(50b)、を更に備え、
     前記発光部は、
      個別にON/OFFを切り換え可能であり、前記測定範囲の垂直光学角に対応する向きに配列される複数の発光素子(42)、を備え、
      前記測定範囲の水平方向の少なくとも一方の端部では、前記測定範囲の垂直光学角のうち少なくとも鉛直方向の上側の端部側を含む端部に対応する発光素子をOFFとし、
      前記測定範囲の水平方向の中央では、前記端部に対応する発光素子をONとすることによって前記端部狭隘形状を実現する、
    車両周辺監視システム。
    The vehicle periphery monitoring system according to claim 1,
    The first optical distance measuring device,
    A projection unit (50b) including a reflection unit (53) that reflects the irradiation light while rotating in one direction, and projects the irradiation light along the horizontal direction toward the measurement range;
    The light emitting unit,
    A plurality of light emitting elements (42), which can be individually turned on/off and are arranged in a direction corresponding to the vertical optical angle of the measurement range,
    At least one end in the horizontal direction of the measurement range, the light emitting element corresponding to the end including at least the upper end side in the vertical direction of the vertical optical angles of the measurement range is turned off,
    At the center of the measurement range in the horizontal direction, the end narrowed shape is realized by turning on the light emitting element corresponding to the end.
    Vehicle surroundings monitoring system.
  5.  請求項1に記載の車両周辺監視システムであって、
     前記第一光測距装置は、前記照射光を拡散する光拡散部(44)を更に備え、
     前記光拡散部が、前記測定範囲の水平方向の中央では、前記測定範囲の水平方向の少なくとも一方の端部よりも光を拡散させることによって前記端部狭隘形状を実現する、
    車両周辺監視システム。
    The vehicle periphery monitoring system according to claim 1,
    The first optical distance measuring device further includes a light diffusing unit (44) for diffusing the irradiation light,
    The light diffusing section, in the horizontal center of the measurement range, realizes the narrow end shape by diffusing light more than at least one end in the horizontal direction of the measurement range,
    Vehicle surroundings monitoring system.
PCT/JP2020/002130 2019-02-20 2020-01-22 Vehicle vicinity monitoring system WO2020170700A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080015186.1A CN113454488A (en) 2019-02-20 2020-01-22 Vehicle surroundings monitoring system
US17/406,588 US20210382177A1 (en) 2019-02-20 2021-08-19 System for monitoring surroundings of vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019028027 2019-02-20
JP2019-028027 2019-02-20
JP2020004060A JP2020134516A (en) 2019-02-20 2020-01-15 Vehicle periphery monitoring system
JP2020-004060 2020-01-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/406,588 Continuation US20210382177A1 (en) 2019-02-20 2021-08-19 System for monitoring surroundings of vehicle

Publications (1)

Publication Number Publication Date
WO2020170700A1 true WO2020170700A1 (en) 2020-08-27

Family

ID=72144861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002130 WO2020170700A1 (en) 2019-02-20 2020-01-22 Vehicle vicinity monitoring system

Country Status (1)

Country Link
WO (1) WO2020170700A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117542A1 (en) * 2011-03-02 2012-09-07 トヨタ自動車株式会社 Laser radar device
DE102015109160A1 (en) * 2015-06-10 2016-12-15 Valeo Schalter Und Sensoren Gmbh Driver assistance system for a motor vehicle, motor vehicle and method
JP2017166846A (en) * 2016-03-14 2017-09-21 株式会社デンソー Object recognition device
WO2018046714A1 (en) * 2016-09-10 2018-03-15 Blickfeld GmbH Laser scanner for measuring distances from vehicles
JP2018059847A (en) * 2016-10-06 2018-04-12 オムロンオートモーティブエレクトロニクス株式会社 Laser radar device
DE102017116597A1 (en) * 2017-07-24 2019-01-24 Valeo Schalter Und Sensoren Gmbh Transmission device for a scanning optical detection system of a vehicle, detection system, driver assistance system, method for controlling a beam direction of an optical transmission signal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117542A1 (en) * 2011-03-02 2012-09-07 トヨタ自動車株式会社 Laser radar device
DE102015109160A1 (en) * 2015-06-10 2016-12-15 Valeo Schalter Und Sensoren Gmbh Driver assistance system for a motor vehicle, motor vehicle and method
JP2017166846A (en) * 2016-03-14 2017-09-21 株式会社デンソー Object recognition device
WO2018046714A1 (en) * 2016-09-10 2018-03-15 Blickfeld GmbH Laser scanner for measuring distances from vehicles
JP2018059847A (en) * 2016-10-06 2018-04-12 オムロンオートモーティブエレクトロニクス株式会社 Laser radar device
DE102017116597A1 (en) * 2017-07-24 2019-01-24 Valeo Schalter Und Sensoren Gmbh Transmission device for a scanning optical detection system of a vehicle, detection system, driver assistance system, method for controlling a beam direction of an optical transmission signal

Similar Documents

Publication Publication Date Title
US10305247B2 (en) Radiation source with a small-angle scanning array
CN108226899B (en) Laser radar and working method thereof
JP6111617B2 (en) Laser radar equipment
CN103038664B (en) active illumination scanning imager
JP5653715B2 (en) Laser surveyor
US11561287B2 (en) LIDAR sensors and methods for the same
CN210572728U (en) Laser radar and laser radar system
JP2005121638A (en) Optoelectronic detection apparatus
US20030053041A1 (en) Optical rader apparatus and distance measuring apparatus including the same
US11579259B2 (en) Laser scanner, for example for a LIDAR system of a driver assistance system
US20210382177A1 (en) System for monitoring surroundings of vehicle
WO2020170700A1 (en) Vehicle vicinity monitoring system
JP2019066474A (en) Device and method for optical detection and ranging
CN110967681B (en) Structure galvanometer for three-dimensional scanning and laser radar using same
CN113721220A (en) Method for realizing two-dimensional optical scanning by single-degree-of-freedom rotation
CN111175721A (en) LIDAR sensor and method for a LIDAR sensor
US20210173059A1 (en) Lidar sensor
JPH0943352A (en) Obstacle detector and scanner device
JP6908015B2 (en) Optical ranging device and optical ranging method
US11333880B2 (en) Coaxial macro scanner system
WO2020008863A1 (en) Optical distance measurement device
JP2017125765A (en) Object detection device
JP2021012071A (en) Optical scanner, object detection device, and sensing device
WO2023019513A1 (en) Lidar having invididually addressable, scannable and integratable laser emiiters
JP2023128023A (en) Range finder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20759073

Country of ref document: EP

Kind code of ref document: A1