WO2020170352A1 - Base station apparatus, terminal apparatus, and communication system - Google Patents

Base station apparatus, terminal apparatus, and communication system Download PDF

Info

Publication number
WO2020170352A1
WO2020170352A1 PCT/JP2019/006249 JP2019006249W WO2020170352A1 WO 2020170352 A1 WO2020170352 A1 WO 2020170352A1 JP 2019006249 W JP2019006249 W JP 2019006249W WO 2020170352 A1 WO2020170352 A1 WO 2020170352A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
uplink
base station
control unit
radio
Prior art date
Application number
PCT/JP2019/006249
Other languages
French (fr)
Japanese (ja)
Inventor
大出高義
河▲崎▼義博
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2019/006249 priority Critical patent/WO2020170352A1/en
Priority to JP2021501195A priority patent/JP7277818B2/en
Publication of WO2020170352A1 publication Critical patent/WO2020170352A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Definitions

  • the present invention relates to a base station device, a terminal device, and a communication system.
  • the traffic of mobile terminals (smartphones and future phones) occupy most of the network resources. Also, the traffic used by mobile terminals tends to continue to grow.
  • Non-Patent Documents 1 to 11 in the communication standard of 5th generation mobile communication (5G or NR (New Radio)
  • 5G or NR New Radio
  • 3GPP for example, TSG-RAN WG1, TSG-RAN WG2, etc.
  • the first edition of the standard was issued at the end of 2017.
  • 5G is classified into eMBB (Enhanced Mobile BroadBand), Massive MTC (Machine Type Communications), and URLLC (Ultra-Reliable and Low Latency Communication). It is expected to support many use cases.
  • eMBB Enhanced Mobile BroadBand
  • Massive MTC Machine Type Communications
  • URLLC Ultra-Reliable and Low Latency Communication
  • 5G for example, we are considering communication using higher frequencies, such as 28GHz, which is higher than the frequencies of 800MHz and 5GHz used in LTE (Long Term Evolution).
  • the propagation loss is proportional to the magnitude of the frequency, for example, in the communication using the high frequency, the propagation loss may be larger than that in the case of 800 MHz.
  • 5G will introduce SUL (Supplementary UpLink).
  • SUL uses, for example, an uplink frequency and a downlink frequency as a set and uses the uplink frequency and the downlink communication, respectively
  • the base station apparatus uses a different uplink frequency instead of the paired uplink frequency.
  • the terminal device to communicate.
  • 2155 MHz is the down frequency
  • 1745 MHz is the up frequency
  • 900 MHz is used as the frequency (or SUL frequency) of the up communication, etc.
  • SUL is defined in, for example, Non-Patent Document 20 below.
  • the UE User Equipment
  • SUL carrier SUL frequency
  • FIG. 26(A) is a diagram showing the coverage range of the base station 300
  • FIG. 26(B) is a diagram showing examples of utilization frequencies.
  • the high frequency radio wave transmitted from the base station 300 reaches the terminal 400, but the high frequency radio wave transmitted from the terminal 400 is smaller than the transmission power of the base station 300. However, it may not reach the base station 300. Therefore, as shown in FIG. 26A, the coverage range in which both downlink communication and uplink communication can be performed may be smaller than the coverage range in the case of downlink communication alone.
  • SUL frequency the frequency used in SUL
  • the coverage range when SUL is used can be made the same as the coverage range when only downlink communication is performed.
  • FIG. 27 is a diagram showing an example of frequencies used as SUL in a frequency range (450 MHz to 6000 MHz) in FR (Frequency Range) 1 (Table 5.2-1 of Non-Patent Document 39). As shown in FIG. 27, it is understood that, within the range of FR1, a high frequency is not used so much as the frequency used as SUL.
  • SIB1 System Information Block Type 1
  • SRS Sounding RS
  • RS Reference Signals, reference signals or pilots
  • PUSCH Physical Uplink Shared Channel
  • Such an RS is transmitted together with data and control signals and cannot be transmitted without the data and control signals.
  • SRS is transmitted even when, for example, a wireless line (wireless channel) is not set (for example, RRC (Radio Resource Control) is not set, RA (Random Access) is not completed) If conditions are met, the UE can transmit and can transmit without data or control signals.
  • a wireless line wireless channel
  • RRC Radio Resource Control
  • RA Random Access
  • 3GPPTS36.211V15.4.0 (2018-12) 3GPP TS36.212 V15.4.0 (2018-12) 3GPP TS36.213 V15.4.0 (2018-12) 3GPP TS36.300 V15.4.0 (2018-12) 3GPP TS36.321 V15.4.0 (2018-12) 3GPP TS36.322 V15.1.0 (2018-07) 3GPP TS36.323 V15.2.0 (2018-12) 3GPP TS36.331V15.4.0 (2018-12) 3GPP TS36.413 V15.4.0 (2018-12) 3GPP TS36.423 V15.4.0 (2018-06) 3GPP TS36.425 V15.0.0 (2018-06) 3GPP TS37.340 V15.4.0 (2018-12) 3GPP TS38.201V15.0.0 (2017-12) 3GPP TS38.202V15.4.0 (2018-12) 3GPP TS38.211 V15.4.0 (2018-12) 3GPP TS38.212 V15.4.0
  • whether to use the upstream frequency or the SUL frequency is determined by comparing the measurement quality of the downstream frequency to be paired with the threshold value.
  • the downlink frequency measurement quality and the uplink frequency measurement quality do not always match. For example, even when the measurement quality of the downlink frequency of the pair is smaller than the threshold value, the measurement quality of the SUL frequency may be deteriorated. Alternatively, for example, even when the measurement quality of the downlink frequency of the set is equal to or more than the threshold value, the measurement quality of the uplink frequency of the set may be deteriorated. Therefore, in uplink communication, transmission delay may increase and throughput may decrease.
  • URLLC may be required depending on the type of service. A decrease in throughput may not be able to meet such demands.
  • the SUL frequency is commonly set as a system as shown in FIG.
  • the communication environment of each terminal device differs from one terminal device to another, and the radio channel quality between the terminal device and the base station device may also differ from one terminal device to another. Therefore, when a terminal device uses SUL for communication, the SUL frequency is not always optimal for that terminal device. Moreover, since the SUL frequency is predetermined as a system, the terminal device cannot individually change the SUL frequency. Therefore, the transmission delay may increase in the upstream communication and the throughput may decrease.
  • one disclosure is to provide a base station device, a terminal device, and a communication system capable of improving the throughput in uplink communication.
  • a wireless communication with a terminal device is performed by using a first uplink frequency that forms a pair with a downlink frequency, a second uplink frequency different from the first uplink frequency, and the downlink frequency.
  • the uplink reference signal transmission request for requesting transmission of the first and second uplink reference signals using the first and second uplink frequencies, respectively, and the first and second uplinks.
  • a radio control unit for transmitting control information regarding a reference signal to the terminal device, and transmitting frequency control information for the first or second upstream frequency to the terminal device; and the first and second radio control units from the terminal device.
  • a receiving unit that receives the first and second uplink reference signals transmitted using the respective uplink frequencies.
  • throughput in upstream communication can be improved.
  • FIG. 1 is a diagram showing a configuration example of a communication system.
  • FIG. 2 is a diagram illustrating a configuration example of the base station device.
  • FIG. 3A is a diagram showing a configuration example of a radio control unit of a base station device
  • FIG. 3B is a diagram showing a configuration example of a radio control unit of a terminal device.
  • FIG. 4 is a diagram illustrating a configuration example of the terminal device.
  • 5A is a diagram showing an example of the SUL frequency in the case of FDD
  • FIG. 5B is a diagram showing an example of the SUL frequency in the case of TDD.
  • FIG. 6 is a diagram illustrating a sequence example of the operation example 1.
  • FIG. 7 is a diagram illustrating a sequence example of the operation example 1.
  • FIG. 1 is a diagram showing a configuration example of a communication system.
  • FIG. 2 is a diagram illustrating a configuration example of the base station device.
  • FIG. 3A is a diagram showing a
  • FIG. 8A and FIG. 8B are diagrams showing an example of SRS transmission.
  • FIG. 9 is a diagram illustrating a sequence example of the operation example 2.
  • FIG. 10 is a diagram showing a configuration example of a MAC payload of RAR.
  • FIG. 11 is a diagram illustrating a sequence example of the operation example 3.
  • FIG. 12 is a diagram illustrating a sequence example of the operation example 3.
  • FIG. 13 is a diagram illustrating a sequence example of the operation example 4-1.
  • FIG. 14 is a diagram illustrating a sequence example of the operation example 4-1.
  • FIG. 15 is a diagram showing a sequence example of the operation example 4-2.
  • FIG. 16 is a diagram illustrating a sequence example of the operation example 4-2.
  • FIG. 17A and 17B are diagrams showing an example of GAP and SRS transmission in the case of TDD
  • FIGS. 17C to 17F are diagrams showing an example of GAP and SRS transmission in the case of FDD. is there.
  • 18A and 18B are diagrams showing an example of GAP and SRS transmission in the case of TDD
  • FIGS. 18C to 18F are diagrams showing examples of GAP and SRS transmission in the case of FDD. is there.
  • FIG. 19 is a flowchart showing an operation example in the base station device.
  • FIG. 20 is a flowchart showing an operation example in the base station device.
  • FIG. 21 is a flowchart showing an operation example in the base station device.
  • FIG. 22 is a flowchart showing an operation example in the base station device.
  • FIG. 23 is a flowchart showing an operation example in the base station device.
  • FIG. 24 is a flowchart showing an operation example in the base station device.
  • FIG. 25 is a diagram showing a configuration example of a communication system.
  • FIG. 26(A) is a diagram showing an example of a coverage range, and
  • FIG. 26(B) is a diagram showing an example of frequency allocation.
  • FIG. 27 is a diagram showing an example of the SUL frequency.
  • FIG. 1 is a diagram illustrating a configuration example of a communication system 10 according to the first embodiment.
  • the communication system 10 includes a base station device (hereinafter sometimes referred to as “base station”) 100 and terminal devices (hereinafter sometimes referred to as “terminal”) 200-1 and 200-2.
  • base station a base station device
  • terminal terminal devices
  • the base station 100 is, for example, a communication device that wirelessly communicates with the terminals 200-1 and 200-2.
  • the base station 100 wirelessly communicates with the terminals 200-1 and 200-2 located in the service available range (or cell range) of the base station 100 to provide various services such as a call service and a Web browsing service. ..
  • the base station 100 may be, for example, a gNB (next generation Node B) defined by 5G or an eNB (evolved Node B) defined by 4G. Below, the base station 100 may be described as gNB.
  • the terminals 200-1 and 200-2 are communication devices such as feature phones, smartphones, personal computers, tablet terminals, and game devices.
  • the terminals 200-1 and 200-2 can be provided with various services within the service available range of the base station 100.
  • the number of terminals 200-1 and 200-2 is two, but it may be one or three or more.
  • the terminals 200-1 and 200-2 may be referred to as the terminal 200.
  • the communication from the base station 100 to the terminal 200 may be referred to as downlink communication or DL (Down Link), and the communication from the terminal 200 to the base station 100 may be referred to as uplink communication or UL (Up Link).
  • DL Down Link
  • UL Up Link
  • a frequency used in downlink communication may be referred to as a downlink frequency
  • a frequency used in uplink communication may be referred to as an uplink frequency
  • the frequency may have a certain bandwidth.
  • the case where the frequency has such a constant bandwidth and the case where the frequency itself does not have the bandwidth may be used without distinction.
  • the terminal 200 can perform uplink communication with the base station 100 using SUL.
  • the frequency used when the terminal 200 performs uplink communication using SUL may be referred to as the SUL frequency, for example.
  • the terminal 200 can perform upstream communication and downstream communication with the base station 100 by using a combination of upstream frequency and downstream frequency.
  • a combination of upstream frequency and downstream frequency for example, there is a relationship between the downlink frequency when using as PDCCH (Physical Downlink Control Channel) and the uplink frequency when using PUSCH.
  • the base station 100 transmits the control signal using the downlink frequency (PDCCH), and the terminal 200 receives the uplink frequency (PUSCH) indicated by the UL grant included in the control signal transmitted using the PDCCH. ) Is used to send user data, and so on.
  • PDCCH Physical Downlink Control Channel
  • the frequency in which “Duplex Mode” is used as “FDD” or “TDD” is a frequency that is a set
  • the frequency used as “SUL” is the SUL frequency.
  • the upstream frequency and the downstream frequency are used as a group for upstream communication and downstream communication
  • the upstream frequency may be referred to as a group upstream frequency
  • the downstream frequency may be referred to as a group downstream frequency, respectively.
  • the set up frequency and the set down frequency may be collectively referred to as a set frequency.
  • FIG. 5(A) shows an example of the relationship between the group frequency and the SUL frequency in the case of FDD (Frequency Division Duplex), and FIG. 5(B) shows the relationship between the group frequency in the case of TDD (Time Division Duplex). It is a figure showing the example of a relationship with a SUL frequency.
  • the upstream frequency that is a set may be all or part of the frequencies included in “UL” in the figure, and the downstream frequency that is a set may be It may be all or part of the frequencies included in "DL” in the figure.
  • a plurality of upstream frequencies may be a set of frequencies for a plurality of downstream frequencies.
  • the upstream frequency and the downstream frequency forming a pair may be the same frequency.
  • the two frequencies can be said to be exactly the same frequency.
  • the “uplink frequency to be a pair” and the “downlink frequency to be a pair” are different Sometimes expressed.
  • the SUL frequency a frequency different from the set frequency is used.
  • the SUL frequency may be lower or higher than the set of frequencies.
  • two ULs can be formed for one DL in the same cell.
  • one is a set of upstream frequencies and one is a SUL frequency.
  • the “SUL frequency” may be used by the base station 100 or the terminal 200 as a “group” in relation to the “downstream frequency to be a group”. Therefore, in such a relationship, the "SUL frequency” can be included in the "set". However, in the first embodiment, since the frequencies used are different between the SUL frequency and the group of frequencies, the “SUL frequency” and the “group of frequencies” may be described separately.
  • FIG. 2 is a diagram illustrating a configuration example of the base station 100.
  • the base station 100 includes an antenna 101, a reception radio unit 102, a reception baseband processing unit 103, a control information extraction unit 104, a radio quality measurement unit 105, a radio control unit 106, a memory 107, a control signal creation unit 108, and a transmission baseband.
  • the processing unit 109 and the transmission wireless unit 110 are provided.
  • the base station 100 includes a receiver 120, a controller 130, and a transmitter 140.
  • the reception unit 120 includes a reception radio unit 102, a reception baseband processing unit 103, a control information extraction unit 104, and a radio quality measurement unit 105.
  • the control unit 130 also includes the wireless control unit 106.
  • the transmission unit 140 includes a control signal creation unit 108, a transmission baseband processing unit 109, and a transmission wireless unit 110.
  • control unit 130 can realize the function of the wireless control unit 106 by reading and executing the program stored in the memory 107.
  • the control unit 130 may be, for example, a controller or a processor such as a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and an FPGA (Field Programmable Gate Array).
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • the antenna 101 receives the wireless signal transmitted from the terminal 200 and outputs the received wireless signal to the reception wireless unit 102. In this case, uplink communication is performed. Further, the antenna 101 transmits the radio signal output from the transmission radio unit 110 to the terminal 200. In this case, downlink communication is used.
  • the reception wireless unit 102 performs A/D (Analogue to Digital) conversion, frequency conversion, and the like on the wireless signal output from the antenna 101, and converts the wireless signal in the wireless band into a received signal in the baseband ( Down-convert).
  • the reception wireless unit 102 may include an A/D conversion circuit and a frequency conversion circuit.
  • the reception radio unit 102 performs reception processing such as frequency conversion using the instructed downlink frequency so that the radio signal of the downlink frequency instructed (or set) by the radio control unit 106 can be received.
  • the reception baseband processing unit 103 performs demodulation processing, error correction decoding processing, and the like on the reception signal output from the reception wireless unit 102 to extract (or reproduce) user data, control signals, SRS, and the like.
  • the reception baseband processing unit 103 outputs the extracted user data and control signals to UPF (User Plane Function) and AMF (Access and Mobility Management Function), respectively. Further, the reception baseband processing unit 103 outputs control information such as downlink radio channel quality information measured by the terminal 200 to the control information extraction unit 104. Furthermore, the reception baseband processing unit 103 outputs the reference signal (or reference signal) to the wireless quality measuring unit 105.
  • SRS is used as the reference signal.
  • the SRS is a reference signal that can be transmitted/received even when the wireless line setting is not made, and is a reference signal that can be transmitted without the transmission of data or control signals. is there.
  • other reference signals for example, Demodulation RS for PUSCH, Phase-tracking RS for PUSCH, or Demodulation RS for PUCCH (Physical Uplink Control Channel) may be used.
  • the control information extraction unit 104 extracts control information from the signal output from the reception baseband processing unit 103. As such control information, for example, as described above, there is information about the wireless channel quality in the downlink communication measured by the terminal 200. The control information extraction unit 104 outputs the extracted control information to the wireless control unit 106.
  • the wireless quality measuring unit 105 uses the SRS output from the reception baseband processing unit 103 to measure the quality of the wireless line with the terminal 200.
  • the SRSs output from the reception baseband processing unit 103 include SRSs transmitted using a pair of upstream frequencies and SRSs transmitted using a SUL frequency. In addition, there is an SRS transmitted using each of the plurality of SUL frequencies.
  • the wireless quality measuring unit 105 measures the wireless quality of the SUL frequency by measuring the wireless quality using the SRS transmitted using the SUL frequency. Further, the wireless quality measuring unit 105 measures the wireless quality using the SRS transmitted using the upstream frequency that is a group, and thereby measures the wireless quality of the upstream frequency that is a group. Further, the wireless quality measuring unit 105 measures the wireless quality using the SRS transmitted using each of the plurality of SUL frequencies, thereby measuring the wireless quality of each of the plurality of SUL frequencies. In this way, the radio quality measuring unit 105 can directly measure the radio frequency quality of the uplink frequency by using the SRS.
  • the wireless quality measuring unit 105 may measure the wireless line quality by measuring RSRP (reference Signal Received Power) based on the received SRS, for example.
  • the wireless quality measuring unit 105 may measure the wireless channel quality by, for example, RSRQ (Reference Signal Received Quality) obtained by comparing the SRS created by the wireless quality measuring unit 105 with the received SRS.
  • the wireless quality measuring unit 105 outputs the measurement result to the wireless control unit 106.
  • the wireless control unit 106 controls the wireless line. For example, the wireless control unit 106 performs the following processing.
  • the wireless control unit 106 exchanges control information (message) related to the wireless line setting with the terminal 200, sets the wireless line, and sets the frequency used in the set wireless line to the transmission wireless unit 110 and the receiving wireless unit. It is output to the unit 102.
  • the radio control unit 106 uses an uplink frequency and a SUL frequency that are a pair, respectively, to request transmission of the first and second SRSs (or an uplink reference signal transmission request), and a first and a second. 2 and control information related to SRS transmission.
  • the radio control unit 106 transmits the created information to the terminal 200 via the control signal creation unit 108 using the downlink frequency.
  • the wireless control unit 106 transmits, to the terminal 200, an SRS transmission request for requesting transmission of each SRS using each of a plurality of SUL frequencies and control information regarding each SRS transmission.
  • the wireless control unit 106 selects one of the upstream frequencies and the SUL frequencies that are paired, which is used for wireless communication with the terminal 200. Further, the wireless control unit 106 selects one of the SUL frequencies to be used for wireless communication with the terminal 200, from among the plurality of SUL frequencies.
  • the radio control unit 106 outputs the selection result (or frequency control information regarding the uplink frequency) to the control signal creation unit 108 as the uplink frequency setting information.
  • the radio control unit 106 may use the measurement result from the radio quality measurement unit 105 to make the selection. Details of selection and the like will be described in an operation example.
  • FIG. 3A is a diagram showing a configuration example of the wireless control unit 106.
  • the radio control unit 106 includes an uplink frequency control unit 1060, a system information setting management unit 1061, a radio control unit 1062, a random access control unit 1063, a HO (Hand Over) control unit 1064, and a radio resource control unit 1065.
  • the upstream frequency control unit 1060 controls the upstream frequency.
  • the uplink frequency control unit 1060 performs the following processing. That is, the upstream frequency control unit 1060 selects and selects an upstream frequency (either the SUL frequency or a pair of upstream frequencies, or one SUL frequency from a plurality of SUL frequencies) used for wireless communication with the terminal 200. The result is output to the control signal creation unit 108 as the uplink frequency setting information. Further, the uplink frequency control unit 1060 outputs the selected uplink frequency to the reception radio unit 102. As a result, the base station 100 can perform uplink communication with the terminal 200 at the uplink frequency selected by the uplink frequency control unit 1060.
  • the system information setting management unit 1061 creates and sets system information. For example, the system information setting management unit 1061 performs the following processing. That is, the system information setting management unit 1061 creates system information including information about one or more SUL frequencies used as SUL, and outputs the created system information to the control signal creation unit 108. Further, the system information setting management unit 1061 may create the SRS transmission request and the control information related to the SRS transmission, and may create the system information including these pieces of information. Details will be described in an operation example. Furthermore, the system information setting management unit 1061 creates system information including various kinds of information such as information about adjacent base stations, and outputs the system information to the control signal creation unit 108.
  • the wireless control unit 1062 controls wireless lines.
  • the wireless control unit 1062 performs the following processing.
  • the wireless control unit 1062 creates an SRS transmission request and control information related to SRS transmission, and outputs the created SRS transmission request and control information related to SRS transmission to the control signal creation unit 108.
  • the control information regarding SRS transmission includes, for example, a parameter used when the terminal 200 creates an SRS sequence and a parameter used when the terminal 200 calculates a radio resource used for SRS transmission.
  • Radio control section 1062 outputs the created SRS transmission request and control information related to SRS transmission to control signal creation section 108.
  • the radio control unit 1062 may create control information about SRS transmission without creating an SRS transmission request, and may output the created control information about SRS transmission to the control signal creation unit 108.
  • the wireless control unit 1062 creates a reference signal for downlink communication. Radio control section 1062 outputs the created reference signal to control signal creation section 108.
  • the random access control unit 1063 controls the wireless line setting. For example, the random access control unit 1063 exchanges control information (message) related to random access with the terminal 200. Such control information includes, for example, a message specified in a random access procedure (procedure) such as “Contention based Random Access” and “Non-contention based Random Access” defined in LTE and 5G.
  • the random access control unit 1063 can set a wireless line of a specific frequency by exchanging messages according to such a random access procedure.
  • the random access control unit 1063 outputs the set frequency to the transmission wireless unit 110 and the reception wireless unit 102 (or instructs to perform the transmission process and the reception process at the set frequency). As a result, thereafter, the base station 100 and the terminal 200 can wirelessly communicate with each other at the set frequency.
  • SRS transmission may be performed during the random access procedure, and upstream frequency selection may be performed at the stage of the random access procedure. Details will be described in an operation example.
  • the HO control unit 1064 controls the terminal 200 when performing a handover. For example, the HO control unit 1064 exchanges control information (message) related to handover with the terminal 200.
  • control information messages
  • the radio resource control unit 1065 allocates radio resources to the terminal 200, for example, based on the downlink radio channel quality information output from the control information extraction unit 104. Such allocation of radio resources may be referred to as scheduling. Radio resource control section 1065 outputs scheduling information indicating the scheduling result to control signal creation section 108.
  • the memory 107 stores, for example, information used when the wireless control unit 106 performs processing.
  • the memory 107 may store control information regarding SRS transmission, and in this case, the wireless control unit 106 can read this control information from the memory 107 as appropriate.
  • the control signal creation unit 108 creates a control signal including information output from the wireless control unit 106, and outputs the created control signal to the transmission baseband processing unit 109.
  • the information output from the radio control unit 106 includes, for example, an SRS transmission request, control information regarding SRS transmission, uplink frequency setting information, scheduling information, and the like.
  • control signal creation unit 108 does not use the system information output from the system information setting management unit 1061 or the reference signal output from the wireless control unit 1062 as the system information or the reference signal, instead of the control signal. You may output to the band process part 109.
  • the transmission baseband processing unit 109 performs error correction coding processing, modulation processing, and the like on the user data and control signals output from the UPF and APF, the control signals and system information output from the control signal creation unit 108, and the like. Then, these data and signals are converted into baseband signals. The transmission baseband processing unit 109 outputs the converted baseband signal to the transmission wireless unit 110.
  • the transmission wireless unit 110 performs D/A (Digital to Analog) conversion, frequency conversion processing, and the like on the baseband signal to convert the baseband signal in the baseband band into a wireless signal in the wireless band (upconversion). ) Do.
  • the transmission radio unit 110 performs a transmission process such as frequency conversion so that the radio signal has the downlink frequency instructed (or set) by the radio control unit 106.
  • the transmission radio unit 110 outputs a radio signal to the antenna 101.
  • FIG. 4 is a diagram illustrating a configuration example of the terminal 200.
  • the terminal 200 includes an antenna 201, a reception radio section 202, a reception baseband processing section 203, a control signal extraction section 204, a radio quality measurement section 205, a radio control section 206, and a memory 207. Further, the terminal 200 includes a control information creation unit 208, an SRS creation unit 209, a transmission baseband processing unit 210, and a transmission wireless unit 211.
  • the terminal 200 includes a receiving unit 220, a control unit 230, and a transmitting unit 240.
  • the reception unit 220 includes a reception radio unit 202, a reception baseband processing unit 203, a control signal extraction unit 204, and a radio quality measurement unit 205.
  • the control unit 230 also includes a wireless control unit 206.
  • the transmission unit 240 includes a control information creation unit 208, an SRS creation unit 209, a transmission baseband processing unit 210, and a transmission wireless unit 211.
  • control unit 230 can realize the function of the wireless control unit 206 by reading and executing the program stored in the memory 207.
  • the control unit 230 may be, for example, a controller such as a CPU, DSP, or FPGA, or a processor.
  • the antenna 201 receives the radio signal transmitted from the base station 100 and outputs the received radio signal to the reception radio unit 202. In this case, downlink communication is used. Further, the antenna 201 transmits the radio signal output from the transmission radio unit 211 to the base station 100. In this case, uplink communication is performed.
  • the reception radio unit 202 performs A/D conversion, frequency conversion, and the like on the radio signal output from the antenna 201, and converts (down-converts) the radio signal in the radio band into a reception signal in the baseband.
  • the reception wireless unit 202 may include an A/D conversion circuit, a frequency conversion circuit, and the like.
  • the reception wireless unit 202 is set so as to be able to receive the radio signal of the downlink frequency designated (or set) by the radio control unit 206, and the radio signal transmitted from the base station 100 is set using the set downlink frequency.
  • reception processing such as frequency conversion is performed.
  • Reception radio section 202 outputs the converted reception signal to reception baseband processing section 203.
  • the reception baseband processing unit 203 performs demodulation processing, error correction decoding processing, and the like on the reception signal output from the reception wireless unit 202 to extract (or reproduce) user data, control signals, reference signals, and the like. ..
  • the reception baseband processing unit 203 outputs the extracted user data and the like to the upper layer.
  • the reception baseband processing unit 203 outputs the extracted control signal and the like to the control signal extraction unit 204.
  • the reception baseband processing unit 203 outputs the extracted reference signal to the wireless quality measuring unit 205.
  • the control signal extraction unit 204 extracts, from the control signal output from the reception baseband processing unit 203, SRS transmission request, control information regarding SRS transmission, upstream frequency setting information, scheduling information, and the like.
  • the control signal extraction unit 204 outputs the extracted information to the wireless control unit 206. Further, the control signal extraction unit 204 receives the system information output from the reception baseband processing unit 203 and outputs the system information to the wireless control unit 206.
  • the wireless quality measurement unit 205 measures the wireless line quality of downlink communication based on the reference signal output from the reception baseband processing unit 203.
  • the wireless quality measuring unit 205 may measure the wireless line quality by measuring RSRP or RSRQ, for example.
  • the wireless control unit 206 controls the wireless line.
  • FIG. 3B is a diagram showing a configuration example of the wireless control unit 206.
  • the radio control unit 206 includes an SRS transmission control unit 2060, a system information setting management unit 2061, a radio control unit 2062, a random access control unit 2063, a HO control unit 2064, and a radio resource control unit 2065.
  • the SRS transmission control unit 2060 controls SRS transmission.
  • the SRS transmission control unit 2060 performs the following processing. That is, when the SRS transmission control unit 2060 receives the SRS transmission request and the control information related to the SRS transmission from the control signal extraction unit 204, the SRS transmission control unit 2060 creates the SRS according to the parameters for the SRS creation included in the control information related to the SRS transmission, The SRS creating unit 209 is instructed. At this time, the SRS transmission control unit 2060 outputs this SRS creation parameter to the SRS creation unit 209. Further, the control information regarding SRS transmission includes a parameter for calculating a radio resource used for SRS transmission. The SRS transmission control unit 2060 uses this parameter to calculate the radio resource used for SRS transmission. When transmitting the SRS, the SRS transmission control unit 2060 instructs the transmission wireless unit 211 to transmit using the calculated wireless resource.
  • the system information setting management unit 2061 makes settings and the like according to the system information transmitted from the base station 100. For example, when the system information setting management unit 2061 receives the information about the adjacent base station as the system information, the system information setting management unit 2061 notifies the wireless control unit 2062 of this system information.
  • the terminal 200 may receive the SRS transmission request and the control information related to the SRS transmission included in the system information. In this case, the system information setting management unit 2061 notifies the SRS transmission control unit 2060 of this information.
  • the wireless control unit 2062 controls the wireless line. For example, the wireless control unit 2062 performs the following processing. That is, when the radio control unit 2062 receives the uplink frequency setting information output from the control signal extracting unit 204, the radio control unit 2062 outputs the uplink frequency included in the uplink frequency setting information to the transmission radio unit 211. As a result, the radio control unit 2062 sets the uplink frequency, and thereafter the transmission radio unit 211 performs radio communication at the set uplink frequency. The radio control unit 2062 also outputs the measurement result of the downlink radio channel quality output from the radio quality measurement unit 205 to the control information creation unit 208.
  • the random access control unit 2063 controls the wireless line setting. For example, the random access control unit 2063 exchanges control information (message) regarding the random access procedure with the base station 100. As described above, the random access control unit 2063 exchanges the messages specified by “Contention based Random Access” and “Non-contention based Random Access”.
  • the random access control unit 2063 may set a wireless line of a specific frequency according to a random access procedure. In that case, the set frequency (for example, the frequency not used in the random access procedure) is notified to the reception wireless unit 202 and the transmission wireless unit 211. As a result, the terminal 200 can wirelessly communicate with the base station 100 at the frequency set in the wireless line setting.
  • the HO control unit 2064 controls the terminal 200 when performing a handover. For example, the HO control unit 2064 exchanges control information (message) regarding handover with the base station 100.
  • the radio resource control unit 2065 receives the scheduling information output from the control signal extraction unit 204. Then, the radio resource control unit 2065 controls the reception radio unit 202 and the transmission radio unit 211 so that the terminal 200 can perform transmission and reception by using the radio resources allocated to the terminal 200 included in the scheduling result. To do. For example, the wireless resource control unit 2065 outputs information regarding wireless resources to the reception wireless unit 202 and the transmission wireless unit 211. As a result, the terminal 200 can transmit and receive user data to and from the terminal 200 using the assigned wireless resource.
  • the memory 207 stores, for example, information used when the wireless control unit 206 performs processing.
  • the wireless control unit 206 can appropriately read these pieces of information from the memory 207 and perform processing.
  • the control information creation unit 208 creates control information including the information output from the wireless control unit 206, and outputs the created control information to the transmission baseband processing unit 210.
  • the information output from the wireless control unit 206 includes, for example, wireless communication quality of downlink communication.
  • the SRS creating unit 209 creates an SRS based on the parameters included in the control information related to the SRS transmission according to the instruction from the wireless control unit 206.
  • the SRS creation unit 209 outputs the created SRS to the transmission baseband processing unit 210.
  • the transmission baseband processing unit 210 outputs user data output from an upper layer (for example, MAC: Media Access Control, see Non-Patent Document 21), control information output from the control information creation unit 208, and output from the SRS creation unit 209. Error correction coding processing, modulation processing, and the like are performed on the generated SRS and the like, and these signals and the like are converted to baseband signals.
  • the transmission baseband processing unit 210 outputs the converted baseband signal to the transmission wireless unit 211.
  • the transmission wireless unit 211 converts the baseband signal in the baseband band into a wireless signal in the wireless band by performing D/A conversion processing and frequency conversion processing on the baseband signal. At this time, the transmission wireless unit 211 performs conversion into a wireless signal so that the signal has the upstream frequency instructed by the wireless control unit 206. The transmission wireless unit 211 outputs a wireless signal to the antenna 101.
  • the transmission wireless unit 211 transmits the SRS that has undergone processing such as modulation at the upstream frequency instructed by the SRS transmission control unit 2060, for example.
  • the instructed upstream frequencies include a pair of upstream frequencies and a SUL frequency. Accordingly, for example, the transmission wireless unit 211 can transmit the SRS using the upstream frequency and the SRS using the SUL frequency that form a pair. Further, the SRS transmission control unit 2060 can transmit a plurality of SRSs that respectively use a plurality of SUL frequencies.
  • Operation example 1 Uplink frequency selection using uplink radio channel quality 2) Operation example 2 Uplink frequency selection in random access procedure 3) Operation example 3 Setting of SUL frequency for each terminal 4) Operation example 4 Random access procedure failed In this case, setting of SUL frequency for each terminal 5) Operation example 5 SRS transmission using measurement gap
  • an operation example will be described in this order.
  • Operation Example 1 Uplink Frequency Selection Using Uplink Radio Channel Quality> 6 and 7 are diagrams showing a sequence example of the operation example 1.
  • the base station (gNB) 100 transmits an SRS transmission request (or an uplink reference signal transmission request) using the uplink frequency f0u and the SUL frequency f1u, which are a set, and control information related to SRS transmission, It transmits to the terminal (UE) 200 using the downlink frequency f0d which is a set (S10).
  • the base station 100 performs the following processing. That is, the radio control unit 1062 creates an SRS transmission request using the upstream frequency f0u and the SUL frequency f1u, which are a set, and control information regarding SRS transmission. At this time, the radio control unit 1062 creates, as radio resources for SRS transmission, control information related to SRS transmission including a parameter for calculating the upstream frequency f0u and a parameter for calculating the SUL frequency f1u. Radio control section 1062 outputs the created SRS transmission request and control information related to SRS transmission to control signal creation section 108.
  • the radio control unit 1062 controls the transmission radio unit 110 to transmit the SRS transmission request and the control information regarding the SRS transmission using the downlink frequency f0d that is a set.
  • the transmission radio unit 110 transmits the SRS transmission request using the upstream frequency f0u and the SUL frequency f1u of the set and the control information regarding the SRS transmission to the terminal 200 by using the downstream frequency f0d of the set. It becomes possible to do.
  • the terminal 200 transmits the SRS using the upstream frequency f0u which is a set (S11).
  • the terminal 200 transmits the SRS by using the uplink frequency f0u which is a group according to the SRS transmission request of the uplink frequency f0u which is a group.
  • the terminal 200 performs the following processing. That is, the SRS transmission control unit 2060 calculates the uplink frequency f0u of the set according to the parameter included in the control information regarding the SRS transmission received in S10. The SRS transmission control unit 2060 outputs the calculated set of uplink frequencies f0u to the transmission wireless unit 211.
  • the SRS creating unit 209 creates an SRS according to a parameter included in the control information regarding SRS transmission according to an instruction from the radio control unit 206, and transmits the created SRS via the transmission baseband processing unit 210 to a transmission radio unit. Output to 211.
  • the transmission wireless unit 211 can transmit the SRS using the upstream frequency f0u which is a set.
  • FIG. 8A shows an example of SRS transmission using a pair of upstream frequencies f0u.
  • the terminal 200 can transmit the SRS using the uplink frequency f0u.
  • the base station 100 measures the uplink radio channel quality (S12).
  • the wireless quality measuring unit 105 measures the upstream wireless channel quality by using the SRS transmitted using the paired upstream frequency f0u.
  • the terminal 200 transmits the SRS using the SUL frequency f1u (S13).
  • the terminal 200 transmits the SRS in accordance with the SRS transmission request using the SUL frequency f1u in S10.
  • the terminal 200 performs the following processing. That is, the SRS transmission control unit 2060 calculates the SUL frequency f1u according to the parameter included in the control information regarding SRS transmission received in S10. The SRS transmission control unit 2060 outputs the calculated SUL frequency f1u to the transmission wireless unit 211.
  • the SRS creating unit 209 creates an SRS using parameters included in the control information related to SRS transmission according to an instruction from the radio control unit 206, and transmits the created SRS via the transmission baseband processing unit 210. Output to the wireless unit 211. Thereby, the transmission wireless unit 211 can transmit the SRS using the SUL frequency f0u.
  • FIG. 8(A) shows an example of SRS transmission using the SUL frequency f1u.
  • the terminal 200 can transmit the SRS using the SUL frequency f1u.
  • the base station 100 measures the uplink radio channel quality (S14).
  • the wireless quality measuring unit 105 measures the upstream wireless channel quality by using the SRS transmitted using the SUL frequency f1u.
  • the base station 100 selects an upstream frequency (S15).
  • the uplink frequency control unit 1060 selects based on the radio channel quality measurement result for the uplink frequency f0u and the radio channel quality measurement result for the SUL frequency f1u, which are output from the radio quality measuring unit 105.
  • the upstream frequency control unit 1060 selects the upstream frequency with the better wireless channel quality.
  • the upstream frequency control unit 1060 will be described below assuming that the SUL frequency f1u is selected.
  • the base station 100 transmits the selected upstream frequency f1u to the terminal 200 (S16).
  • the uplink frequency control unit 1060 transmits information regarding the selected SUL frequency f1u to the terminal 200 using the downlink frequency via the control signal creation unit 108 and the like.
  • the base station 100 and the terminal 200 set up a wireless link using the upstream frequency f1u and the paired downstream frequency f0d (S17). For example, a random access procedure is executed between the random access control unit 1063 of the base station 100 and the random access control unit 2063 of the terminal 200, and control information (messages) related to random access is exchanged. As a result, a wireless line using the up frequency f1u and the down frequency f0d is set, and thereafter, wireless communication using these frequencies becomes possible.
  • the base station 100 transmits control information regarding SRS transmission on the SUL frequency f1u to the terminal 200 (S18).
  • the process after S18 is, for example, a process for selecting a radio resource within the SUL frequency f1u (in band) for use in transmitting uplink user data (uplink data).
  • FIG. 8B is a diagram showing an example of PUSCH (uplink radio shared channel or uplink radio data channel) and PUCCH (uplink radio control channel) in the SUL frequency f1u.
  • the terminal 200 transmits the SRS included in the PUSCH, and the base station 100 selects the radio resource of the PUSCH in the SUL frequency f1u based on the SRS and allocates it to the terminal 200.
  • the base station 100 selects the radio resource of the PUSCH in the SUL frequency f1u based on the SRS and allocates it to the terminal 200.
  • the base station 100 transmits control information regarding SRS transmission in order to cause the terminal 200 to transmit the SRS for wireless resource selection.
  • the radio control unit 1062 creates control information regarding SRS transmission including parameters that become the frequency f1u when the radio resource is calculated, and transmits the created control information to the terminal 200. Good.
  • control information related to SRS transmission when the base station 100 causes the terminal 200 to perform SRS transmission for wireless resource selection may be referred to as “SRS transmission control information #2”.
  • control information regarding SRS transmission when the base station 100 causes the terminal 200 to perform SRS transmission for upstream frequency selection may be referred to as “SRS transmission control information #1”.
  • the SRS transmission control information #2 is for selecting a radio resource to be used from the radio resources within the selected frequency (frequency having a bandwidth) after selecting the uplink frequency
  • the SRS transmission control information #1 is for selecting the uplink frequency. Since they are choices, they are clearly distinguished.
  • the terminal 200 transmits the SRS by using the SUL frequency (S19).
  • the terminal 200 performs the following processing. That is, the SRS creating unit 209 creates an SRS according to an instruction from the wireless control unit 206 and outputs the SRS to the transmission wireless unit 211.
  • the SRS transmission control unit 2060 creates the SUL frequency f1u as a resource for SRS transmission using the parameter included in the SRS transmission control information #2 (S18), and outputs the SUL frequency f1u to the transmission wireless unit 211.
  • the transmission wireless unit 211 can transmit the SRS by using f1u.
  • the base station 100 measures the uplink radio channel quality (S20 in FIG. 7).
  • the wireless quality measuring unit 105 measures the wireless line quality of the upstream frequency f1u using the SRS received in S19.
  • the base station 100 selects the uplink radio resource of the terminal 200 (S21).
  • the radio resource control unit 1065 receives the measurement result from the radio quality measurement unit 105, and selects the radio resource in the upstream communication for the terminal 200 based on the received measurement result.
  • the base station 100 transmits the uplink transmission radio resource to the terminal 200 (S22).
  • the radio resource control unit 1065 transmits the selected radio resource in the uplink communication to the terminal 200 via the control signal creation unit 108 and the like.
  • the terminal 200 transmits user data to the base station 100 by using the received uplink transmission radio resource (S23).
  • the terminal 200 performs the following processing. That is, the radio resource control unit 2065 extracts the uplink transmission radio resource from the control signal, and instructs the transmission radio unit 211 to transmit the user data using the extracted radio resource. According to the instruction, the transmission wireless unit 211 transmits the user data output from the upper layer to the base station 100.
  • the terminal 200 transmits to the base station 100 the SRS using the upstream frequency and the SRS using the SUL frequency, which are a pair. Then, the base station 100 selects a pair of upstream frequency or SUL frequency. Therefore, the base station 100 can measure the two radio channel qualities of the uplink frequency and the SUL frequency, which are a set, by using the two SRSs, and select one of the uplink frequencies according to the result. It becomes possible.
  • the uplink frequency is selected by using the radio channel quality of the downlink frequency, for example, the frequency in which the radio channel quality of the uplink communication is deteriorated is not used. It is possible to select a frequency with good uplink communication line quality. Therefore, in the communication system 10, it is possible to improve the transmission rate in uplink communication and improve the throughput of uplink communication.
  • FIG. 9 is a diagram illustrating a sequence example of the operation example 2.
  • the operation example 2 is an operation example in which the uplink frequency can be selected for the terminal 200 to which the wireless link is not set.
  • the sequence example shown in FIG. 9 corresponds to a random access procedure based on “Non-contention based Random Access”.
  • the system information includes, for example, an SRS transmission request, a pair of upstream frequencies, a plurality of SUL frequency candidates, control information regarding SRS transmission, an SRS transmission preamble (or an upstream control signal transmission preamble), and the like.
  • the control information related to SRS transmission includes a parameter that allows the terminal 200 to create a radio resource used for SRS transmission.
  • the control information regarding SRS transmission includes, for example, a parameter that allows a plurality of radio resources to be created in the terminal 200. That is, this control information includes, for example, a parameter capable of creating a radio resource of a pair of uplink frequencies and a parameter capable of creating a radio resource of one or a plurality of SUL frequencies.
  • the random access procedure (S30 to S35) shown in FIG. 9 may be performed multiple times. At this time, in order to transmit the SRS at different frequencies every time, the base station 100 transmits, as the system information, control information regarding the SRS transmission including a parameter that allows a plurality of radio resources.
  • the system information includes a preamble for SRS transmission.
  • the preamble for SRS transmission is, for example, a preamble used when the terminal 200 transmits the SRS and the base station 100 selects the uplink frequency in the random access procedure.
  • the preamble for SRS transmission is, for example, distinguishable from the preamble used in the normal random access procedure, and is a preamble that can be used individually by the terminal 200 or by a plurality of terminals 200.
  • the base station 100 and the terminal 200 perform the following processing, for example. That is, the system information setting management unit 1061 of the base station 100 reads out a set of upstream frequencies, a plurality of SUL frequency candidates, control information regarding SRS transmission, an SRS transmission preamble, and the like from the memory 107, and creates the SRS transmission. Create system information including requests and. Then, the system information setting management unit 1061 transmits (or informs (transmits as common information to unspecified number of terminals or specified number of terminals)) the created system information.
  • the system information setting management unit 1061 of the base station 100 reads out a set of upstream frequencies, a plurality of SUL frequency candidates, control information regarding SRS transmission, an SRS transmission preamble, and the like from the memory 107, and creates the SRS transmission. Create system information including requests and. Then, the system information setting management unit 1061 transmits (or informs (transmits as common information to unspecified number of terminals or specified number of terminals)) the created
  • the system information setting management unit 2061 of the terminal 200 receives this system information, and stores the SRS transmission request, a pair of upstream frequencies, a plurality of SUL frequency candidates, control information regarding SRS transmission, a preamble for SRS transmission, and the like in the memory 207.
  • the system information is transmitted using broadcast or multicast.
  • the terminal 200 After transmitting/receiving the system information, the terminal 200 transmits a Random Access Preamble (RAP) (or Message 1) to the base station 100 (S30).
  • RAP Random Access Preamble
  • the random access control unit 2063 reads the SRS transmission preamble stored in the memory 107 and transmits it.
  • RAR Random Access Response
  • Message 2 the base station 100 transmits a Random Access Response (RAR) (Message 2) including the SRS request (or SRS transmission request) to the terminal 200 (S31).
  • RAR represents, for example, a line setting request.
  • FIG. 10 is a diagram showing a configuration example of the payload area in the MAC (Media Access Control) layer of RAR.
  • the RAR has an “R” area representing a Reserved bit (or a reserved (or reserved) bit).
  • this “R” area is used to indicate the presence/absence of SRS Request. For example, when the "R" area is "1", there is SRS Request, and when it is "0", there is no SRS Request.
  • the random access control unit 1063 creates an SRS including “1” in the “R” area as a response.
  • the information about the wireless resource used when the terminal 200 transmits a subsequent Scheduled Transmission (Message 3) (hereinafter, may be referred to as “Message 3”) to the RAR. Is included in "UL grant”.
  • the base station 100 transmits, as the system information, the control information regarding the SRS transmission including the parameters capable of creating a plurality of radio resources. Therefore, in the base station 100, the information about the selected radio resource from the plurality of radio resources is included in the “UL Grant”.
  • the Message 3 is also an RRC (Radio Resource Control) connection request message (or connection request), for example.
  • the terminal 200 transmits Message 3 and SRS (S32). For example, the terminal 200 performs the following processing.
  • the random access control unit 2063 checks the bits included in the “R” area to confirm that the RAR includes the SRS transmission request. Then, the random access control unit 2063 reads out the control information regarding the SRS transmission from the memory 207, and instructs the SRS creating unit 209 to create the SRS according to the parameter included in the control information. Also, the random access control unit 2063 calculates the radio resource used for SRS transmission according to this parameter. At this time, as described above, the random access control unit 2063 can calculate a plurality of radio resources.
  • the random access control unit 2063 confirms, among the plurality of radio resources, whether or not there is a radio resource matching the radio resource indicated by “UL grant” included in the RAR received in S31. Upon confirming that they match, the random access control unit 2063 instructs the transmission wireless unit 211 to transmit the Message 3 and the SRS by using the wireless resource. The random access control unit 2063 also creates Message 3 and outputs it to the transmission wireless unit 211. Further, the SRS creation unit 209 creates an SRS according to the instruction from the random access control unit 2063, and outputs it to the transmission wireless unit 211. From the transmission wireless unit 211, the Message 3 and the SRS are transmitted using the designated wireless resource. In this case, the SRS may be transmitted using, for example, the last symbol of the PUSCH used for transmitting the Message 3.
  • the base station 100 measures the uplink radio channel quality (S33).
  • the wireless quality measuring unit 105 measures the wireless line quality using the SRS received in S32. Since the SRS is transmitted using the parameter of the radio resource included in the control information regarding SRS transmission, it is the SRS transmitted using a certain specific frequency. Therefore, the wireless quality measuring unit 105 can measure the wireless channel quality of the uplink frequency by measuring the wireless channel quality for the SRS transmitted using that frequency.
  • the base station 100 selects an upstream frequency (S34).
  • the uplink frequency control unit 1060 may make a selection depending on whether or not the uplink radio channel quality measured in S33 is equal to or higher than the required quality (or threshold value).
  • the required quality or threshold value.
  • the base station 100 transmits a Contention Resolution (Message 4) (hereinafter, sometimes referred to as “Message 4”) including an up link frequency change request to the terminal 200 (S35).
  • the up link frequency change request is, for example, an SRS transmission frequency change request message requesting a change in the frequency for transmitting the SRS.
  • the up link frequency change request causes the base station 100 to request the terminal 200 to transmit the SRS using an uplink frequency different from the uplink frequency used for the SRS transmission in S32.
  • the up link frequency change request includes, for example, the changed SRS transmission frequency.
  • the uplink frequency control unit 1060 when the uplink frequency control unit 1060 confirms that the uplink radio line quality is less than the threshold value, it reads the changed uplink frequency information from the memory 107 and creates an up link frequency change request including this information. And transmits it to the terminal 200.
  • the uplink frequency is, for example, the frequency included in the radio resource created by the radio resource creation parameter in the control information related to SRS transmission, which is transmitted by the base station 100 as system information.
  • the Message 4 is also an RRC connection setting request (or connection setup message), for example.
  • the process shifts to S30 again. That is, the terminal 200 transmits the SRS transmission preamble to the base station 100 (S30).
  • the base station 100 transmits the RAR including the SRS request to the terminal 200 (S31).
  • the “UL grant” of the RAR includes, for example, information on the same radio resource as the SRS transmission frequency transmitted in S35.
  • the random access control unit 1063 may select such a radio resource and insert it into the “UL grant” area of the RAR.
  • the terminal 200 transmits Message 3 and SRS at the upstream frequency designated in S35 (S32).
  • the base station 100 measures the uplink radio channel quality using the received SRS (S33) and selects the uplink frequency (S34).
  • the base station 100 determines that the uplink radio channel quality is equal to or higher than the threshold and satisfies the required quality.
  • the base station 100 creates an up link frequency change request including an upstream frequency that satisfies the required quality. Then, the base station 100 transmits the Message 4 including the up link frequency change request to the terminal 200 (S35). For example, when the uplink frequency control unit 1060 determines that the uplink radio channel quality is equal to or higher than the threshold value, the uplink frequency used when the SRS is received in S32 (or the uplink frequency specified in S35, or “UL Grant” in S31). Select the transmitted uplink frequency).
  • the base station 100 determines that the uplink radio channel quality by the uplink frequency of the group does not satisfy the required quality.
  • the base station 100 determines that the uplink radio channel quality at the SUL frequency satisfies the required quality. In this case, the base station 100 and the terminal 200 will set the wireless channel using the SUL frequency.
  • the terminal 200 can transmit the SRS using the upstream frequency and the SRS using the SUL frequency in the random access procedure. Then, in the random access procedure, the base station 100 can select either the uplink frequency or the SUL frequency that is a set.
  • the two uplink radio channel qualities are measured by the SRS transmitted using the two frequencies, and the uplink frequency with good radio channel quality is selected. It becomes possible to do. Therefore, it is possible to improve the throughput of uplink communication as compared with the case where the uplink frequency is selected from the downlink radio channel quality.
  • the process of S30 to S35 was repeated twice.
  • the processing from S30 to S35 may be repeated three times or more.
  • the base station 100 changes the transmission frequency of the SRS transmitted in S32 every time so that the terminal 200 transmits the SRS at a different transmission frequency.
  • the base station 100 may measure the uplink radio channel quality each time and select the best uplink frequency among all the uplink frequencies.
  • the base station 100 may select the uplink frequency when the threshold is exceeded.
  • the base station 100 and the terminal 200 perform the processing from S30 to S35 only once, and when the uplink radio channel quality at that time is equal to or higher than the threshold value, the uplink frequency (for example, a pair of uplink frequencies) May be selected.
  • the random access preamble for SRS transmission was explained.
  • the random access preamble for SRS transmission may be, for example, one preamble for each terminal 200 or a plurality of preambles.
  • the terminal 200 selects any one of the plurality of random access preambles for SRS transmission transmitted as the system information, and transmits it (S30).
  • the example in which the SRS is transmitted in S32 has been described.
  • the SRS may be transmitted together with the random access preamble for SRS transmission.
  • the terminal 200 calculates the radio resource by using the parameter included in the control information related to the SRS transmission received in the system information, and transmits the RAP and the SRS by using the calculated radio resource.
  • the terminal 200 performs the following processing, for example. That is, the SRS transmission control unit 2060 calculates radio resources using the parameters included in the control information regarding SRS transmission, and instructs the transmission radio unit 211. Also, the random access control unit 2063 creates a RAP and outputs it to the transmission wireless unit 211. Further, the SRS creation unit 209 creates an SRS according to the instruction of the SRS transmission control unit 2060 and outputs it to the transmission wireless unit 211. The transmission wireless unit 211 transmits the RAP and the SRS using the designated wireless resource.
  • Operation example 3 SUL frequency setting for each terminal> 11 and 12 are diagrams showing a sequence example in the operation example 3. Operation example 3 is an operation example of setting the SUL frequency for each terminal 200, for example.
  • the terminal 200 selects the base station 100 by cell selection (S40).
  • the base station 100 transmits system information including the paired up frequency fx and the paired down frequency fy (S41).
  • the system information setting management unit 1061 reads the two frequencies fx and fy from the memory 107, creates system information including these frequencies, and transmits the system information.
  • the terminal 200 receives the system information transmitted from the base station 100.
  • the base station 100 and the terminal 200 perform wireless line setting based on the paired up frequency fx and the paired down frequency fy (S42).
  • the base station 100 and the terminal 200 set up a wireless channel with two frequencies fx and fy according to a normal random access procedure.
  • the base station 100 transmits control information (“SRS transmission control information #2”) related to SRS transmission at the uplink frequency fx to the terminal 200 (S43).
  • the base station 100 may transmit an SRS transmission request using the uplink frequency fx to the terminal 200 together with control information regarding SRS transmission.
  • the terminal 200 uses the control information relating to the SRS transmission received in S43 to create the SRS, calculates the upstream frequency fx, and transmits the created SRS using the upstream frequency fx (S44).
  • the SRS in this case is for selecting a radio resource within the uplink frequency fx in the base station 100, as shown in FIG. 8B, for example.
  • the base station 100 measures the uplink radio channel quality (S45).
  • the radio quality measurement unit 105 measures the uplink radio channel quality using the SRS transmitted using the uplink frequency fx.
  • the base station 100 selects an upstream radio resource (S46).
  • the radio resource control unit 1065 receives the uplink radio channel quality from the radio quality measurement unit 105, and if the uplink radio channel quality is equal to or higher than a threshold value (or required quality), selects the uplink frequency fx used in S44, If not, the upstream frequency fx is not selected.
  • the radio resource control unit 1065 will be described below assuming that the uplink frequency fx is not selected because the uplink radio channel quality is lower than the threshold value.
  • the wireless line quality of the uplink frequency fx is at a level at which the random access procedure can be successful, but is not at a level at which user data is transmitted (QoS (Quality of Service) etc.). Therefore, the threshold may be a value corresponding to this QoS.
  • the base station 100 transmits a plurality of SUL frequency candidate (f1, f2, f3,%) Notifications when the uplink radio channel quality by the pair of uplink frequencies fx does not satisfy the required quality (S47).
  • the wireless control unit 1062 reads a plurality of SUL frequency candidates from the memory 107, creates a SUL frequency candidate notification, and transmits the SUL frequency candidate notification to the terminal 200.
  • the radio control unit 1062 instructs the transmission radio unit 110 to transmit the SUL frequency candidate notification using the downlink frequency fy set in S42.
  • the transmission wireless unit 110 transmits the SUL frequency candidate notification using the downlink frequency fy.
  • the base station 100 transmits control information regarding SRS transmission in the SUL frequency candidates f1, f2,... To the terminal 200 (S48).
  • the base station 100 may include, for example, the SRS transmission terminal identifier that identifies the terminal 200 in the control information regarding SRS transmission.
  • an RNTI Radio Network Temporary Identification
  • an RNTI for SRS transmission is used as an SRS transmission terminal identifier.
  • the base station 100 in the subsequent SRS transmission, it is possible to identify the plurality of SRSs transmitted from the terminal 200 and the plurality of SRSs transmitted from other terminals.
  • the base station 100 may transmit the SRS transmission request to the terminal 200 together with the control information regarding the SRS transmission.
  • the base station 100 performs the following processing. That is, the radio control unit 1062 reads, from the memory 107, control information regarding SRS transmission in the SUL frequency candidate f1 and control information regarding SRS transmission in the SUL frequency candidate f2. Further, the wireless control unit 1062 reads the SRS transmission RNTI from the memory 107. Radio control section 1062 creates control information relating to SRS transmission including RNTI for SRS transmission, and transmits it to terminal 200. Further, the wireless control unit 1062 may create an SRS transmission request and transmit it to the terminal 200 together with the control information. It should be noted that the value of the RNTI for SRS transmission may be different for the SUL frequency or the downlink frequency fy that is a pair with the uplink frequency fx, or may be the same value for at least some frequencies. Good.
  • the terminal 200 transmits the SRS using each of the plurality of SUL frequency candidates (S49).
  • the SRS transmission control unit 2060 transmits the SRS of the SUL frequency candidate f1 by using the control information (S48) regarding the SUL frequency candidate f1, and uses the control information (S48) regarding the SUL frequency candidate f2 by using the SUL.
  • the SRS of the frequency candidate f2 is transmitted.
  • the terminal 200 may have a frequency that the terminal 200 does not support (or cannot transmit) among the plurality of SUL frequency candidates f1, f2,.... In this case, the terminal 200 does not have to transmit the SRS using the unsupported SUL frequency, and may transmit the SRS using the corresponding SUL frequency.
  • the base station 100 measures a plurality of uplink radio channel qualities by using the SRS transmitted using each of the plurality of SUL frequency candidates (S50).
  • the base station 100 selects the upstream frequency from the plurality of SUL frequency candidates (S51). For example, the uplink frequency control unit 1060 selects the SUL frequency candidate having the best uplink radio channel quality from the plurality of uplink radio channel qualities. In the example of FIG. 11, the upstream frequency control unit 1060 selects the SUL frequency candidate f2. After that, the SUL frequency candidate f2 is used as the SUL frequency f2, not as a candidate.
  • the base station 100 transmits a frequency change notification to the terminal 200 (S52 in FIG. 12).
  • the upstream frequency is changed from the upstream frequency fx, which is a set of the wireless channels set in S42, to the SUL frequency f2 selected in S51.
  • the uplink frequency control unit 1060 transmits the SUL frequency f2 selected in S51 as the changed frequency to the terminal 200 via the control signal generation unit 108 and the like.
  • the base station 100 and the terminal 200 perform wireless line setting using the changed upstream frequency (SUL frequency f2) and the downstream frequency fy as a pair (S53).
  • SUL frequency f2 changed upstream frequency
  • fy downstream frequency
  • a normal random access procedure using the SUL frequency f2 and the downlink frequency fy may be performed to set the wireless line.
  • S54 to S56 are, for example, the process for selecting the uplink radio resource described in FIG. 8B.
  • the base station 100 transmits the control information regarding the SRS transmission on the SUL frequency f2 (“SRS transmission control information #2”) to the terminal 200 (S54). At this time, the base station 100 may transmit the SRS transmission request together with the control information.
  • the terminal 200 transmits the SRS using the SUL frequency f2 by using the received control information regarding the SRS (S55).
  • the base station 100 uses the received SRS to select an uplink radio resource within the SUL frequency f2 (S56). Then, the base station 100 transmits an uplink transmission radio resource including the selected uplink radio resource to the terminal 200 as the scheduling result (S57).
  • the terminal 200 transmits the user data to the base station 100 by using the uplink transmission radio resource (S58).
  • the base station 100 sets the SUL frequency for each terminal 200 from the plurality of SUL frequency candidates. It is possible to do. In the example of FIG. 11, the base station 100 sets the SUL frequency f2 for the terminal 200, but may set another SUL frequency from the SUL frequency candidates f1, f2,.... Further, the base station 100 may set any SUL frequency from the SUL frequency candidates f1, f2,... For other terminals.
  • the SRS transmitted using the pair of the up frequency fx (S44) and the SUL frequency (S49) allows the up frequency with good radio channel quality to be obtained. Can be selected.
  • the base station 100 can select the SUL frequency from a plurality of SUL frequencies. Further, the base station 100 and the terminal 200 change the SUL frequency, and uplink communication is possible using the changed SUL frequency. At this time, the base station 100 can select the optimal SUL frequency by using the SRS for each terminal 200, and can control the SUL frequency for each terminal 200 individually.
  • the communication system 10 in the present operation example 3 it is possible to improve the throughput of the upstream communication as compared with the case where the upstream frequency is selected from the downlink wireless line quality.
  • operation example 4 has two operation examples.
  • the first is an example (operation example 4-1) in which the base station 100 sets the SUL frequency from the plurality of SUL frequency candidates f1, f2,....
  • operation example 4-2 since the base station 100 does not satisfy the required quality after setting the wireless channel with the SUL frequency f1, an example of setting the SUL frequency from a plurality of other SUL frequency candidates f2, f3,... (Operation example 4-2) ).
  • operation example 4-1 will be described.
  • the terminal 200 selects the base station 100 by cell selection (S60).
  • the base station 100 transmits (or notifies) system information including the SUL frequency candidates f1, f2, f3,... (S61).
  • the terminal 200 receives this system information.
  • the system information setting management unit 1061 of the base station 100 reads the SUL frequency candidates f1, f2, f3,... From the memory 107, creates system information including these, and transmits the system information to the terminal 200.
  • the system information setting management unit 2061 of the terminal 200 receives the system information transmitted from the base station 100.
  • the base station 100 and the terminal 200 perform wireless line setting by the normal random access procedure, but fail the random access procedure (S62).
  • the frequency for which the wireless line setting is attempted is the upstream frequency fx and the downstream frequency fy in the case of FDD, and the frequency fx in the case of TDD.
  • the base station 100 transmits control information (“SRS transmission control information #1”) regarding SRS transmission in the plurality of SUL frequency candidates f1, f2,... To the terminal 200 (S63). Also in this case, the base station 100 includes the control information about SRS transmission including the SRS transmission RNTI as the SRS transmission terminal identifier in order to identify each terminal 200, as in the operation example 3 (S48 in FIG. 11). To send. The base station 100 may also transmit the SRS transmission request together with the control information.
  • SRS transmission control information #1 control information regarding SRS transmission in the plurality of SUL frequency candidates f1, f2,...
  • the terminal 200 transmits the SRS using each of the plurality of SUL frequency candidates (S64).
  • the base station 100 measures the quality of each uplink radio channel based on the transmitted SRS using each SUL frequency candidate (S65) and selects the uplink frequency (S66). Also in this case, the base station 100 may select the SUL frequency candidate having the best quality among the plurality of uplink radio channel qualities. In the example of FIG. 13, the base station 100 selects the SUL frequency candidate f2.
  • the base station 100 transmits the selected SUL frequency (f2) to the terminal 200 (S67).
  • the base station 100 and the terminal 200 perform wireless line setting for the SUL frequency f2 (S68).
  • the frequency for which the wireless line is set is the SUL frequency f2 and the downlink frequency fy, which is the set
  • the SUL frequency f2 and the downlink frequency fx which is the set.
  • S69 to S71 of FIG. 14 are processes for selecting a wireless resource within the SUL frequency f2. That is, the base station 100 transmits the control information (“SRS transmission control information #2”) regarding the SRS transmission on the SUL frequency f2 to the terminal 200 (S69). At this time, the base station 100 may transmit the SRS transmission request together with the control information. Next, the terminal 200 transmits the SRS to the base station 100 using the SUL frequency f2 (S70). The base station 100 may transmit the SRS transmission request together with the control information. Then, the base station 100 selects an uplink radio resource in the SUL frequency f2 based on the SRS (S71 in FIG. 14) and transmits the selected uplink radio resource to the terminal 200 as an uplink transmission radio resource ( S72). The terminal 200 transmits user data by using the SUL frequency f2 (S73).
  • the terminal 200 selects the base station 100 by cell selection (S80).
  • the base station 100 transmits (or notifies) the system information (S81).
  • the system information includes the SUL frequency f1 and the set frequency (the set up frequency fx and the set down frequency fy).
  • the system information includes the SUL frequency f1 and the frequency fx.
  • the system information setting management unit 1061 may read the information regarding these frequencies from the memory 107, and include the information in the system information for transmission.
  • the terminal 200 receives the system information transmitted from the base station 100.
  • the target frequency of the wireless line setting is an upstream frequency fx and a downstream frequency fy in the case of FDD, and a frequency fx in the case of TDD.
  • the frequency fx in the case of TDD can be a downlink frequency and an uplink frequency depending on the timing, for example, so the frequency fx can be divided into a downlink frequency that is a set and an uplink frequency that is a set.
  • the base station 100 and the terminal 200 perform wireless line setting by a random access procedure using SUL (S83).
  • the target frequency of the wireless line setting is the downlink frequency fy which is a combination with the SUL frequency in the case of FDD, and the downlink frequency fx which is a combination with the SUL frequency in the case of TDD.
  • the process for selecting the upstream radio resource for the SUL frequency f1 for which the radio line is set is performed. That is, the base station 100 transmits control information (“SRS transmission control information #2”) related to SRS transmission on the SUL frequency f1 to the terminal 200 (S84). At this time, the base station 100 may transmit the SRS transmission request together with the control information. Next, the terminal 200 transmits the SRS using the SUL frequency f1 based on this control information (S85). Then, the base station 100 measures the uplink radio channel quality based on the received SRS (S86) and selects the uplink radio resource within the SUL frequency f1 (S87). However, in the example of FIG. 15, the base station 100 determines that the SUL frequency f1 cannot satisfy the required quality and the SUL frequency f1 cannot be selected.
  • SRS transmission control information #2 control information related to SRS transmission on the SUL frequency f1 to the terminal 200
  • the base station 100 may transmit the SRS transmission request together with the control information.
  • the terminal 200 transmits
  • the base station 100 transmits a plurality of SUL frequency candidates f2, f3,... (S88). Further, the base station 100 transmits control information (“SRS transmission control information #1”) regarding SRS transmission in the plurality of SUL frequency candidates f2, f3,... (S89). At this time, the base station 100 may transmit the SRS transmission request together with the control information. Next, the terminal 200 transmits the SRS using each frequency of the plurality of SUL frequency candidates f2, f3,... (S90).
  • SRS transmission control information #1 regarding SRS transmission in the plurality of SUL frequency candidates f2, f3,...
  • the base station 100 measures a plurality of uplink radio channel qualities based on a plurality of SRSs (S91) and selects a SUL frequency from SUL frequency candidates (S92 in FIG. 16). In the example of FIG. 16, the base station 100 selects the SUL frequency f2.
  • the base station 100 transmits the changed SUL frequency f2 (S93).
  • the base station 100 and the terminal 200 perform wireless line setting using the changed SUL frequency f2 (S94).
  • the target frequency of the wireless link setting is the SUL frequency f2 for the upstream frequency
  • the frequency fy for the downstream frequency is a set
  • the frequency for the TDD is the SUL frequency f2 for the downstream
  • the frequency fy is the frequency for the downstream.
  • the processing is for selecting a wireless resource within the SUL frequency f2 after the change. That is, the base station 100 transmits control information (“SRS transmission control information #2”) related to SRS transmission on the SUL frequency f2 to the terminal 200 (S95). At this time, the base station 100 may transmit the SRS transmission request together with the control information.
  • the terminal 200 transmits the SRS using the SUL frequency f2 (S96). Based on the received SRS, the base station 100 determines that the SUL frequency f2 satisfies the required quality, selects the uplink radio resource within the SUL frequency f2 (S97), and transmits the uplink transmission radio resource to the terminal 200 ( S98).
  • the terminal 200 transmits user data using the SUL frequency f2 (S99).
  • the base station 100 can set the SUL frequency for each terminal 200 from the plurality of SUL frequency candidates. Become. At that time, the base station 100 transmits control information regarding SRS transmission in a plurality of SUL frequency candidates, and the terminal 200 transmits an SRS using each of the plurality of SUL frequency candidates. Then, the base station 100 selects the SUL frequency from the plurality of SUL frequency candidates.
  • the base station 100 can select the SUL frequency from a plurality of SUL frequencies, for example.
  • the base station 100 and the terminal 200 change the SUL frequency, and uplink communication is possible with the changed SUL frequency.
  • the base station 100 can select the optimum SUL frequency using the SRS for each terminal 200, and can set the SUL frequency for each terminal 200.
  • the communication system 10 in the present operation example 3 it is possible to improve the throughput of the upstream communication as compared with the case where the upstream frequency is selected from the downlink wireless line quality.
  • the upstream frequency can be considered as a handover to a different frequency.
  • a measurement gap (measurement gap) is set in order to measure downlink radio channel quality with the other base station.
  • a so-called no-communication period (GAP) is set.
  • the terminal 200 receives a signal transmitted from another base station and measures the communication quality thereof during the non-communication period.
  • a non-communication period (new GAP) is provided.
  • the terminal 200 transmits the SRS using the frequency to be measured during the non-communication period.
  • the frequencies to be measured include, for example, a pair of upstream frequency and SUL frequency.
  • the conventional (LTE) measurement gap is a non-communication period for the terminal 200 to measure downlink radio channel quality, but here, since the base station 100 measures uplink radio channel quality, the terminal 200 uses the SRS. Is the period for sending. It can also be said to be a non-communication period because the communication with the base station 100 being connected (connected) is stopped.
  • FIG. 17(A) and FIG. 17(B) are diagrams showing a setting example of the non-communication period in the case of TDD.
  • 17A shows a setting example at the frequency fa during communication
  • FIG. 17B shows a setting example at the measurement target frequency fb.
  • one frame in FIG. 17A or the like represents a subframe (period), for example.
  • the base station 100 uses downlink communication at a certain timing to transmit control information regarding SRS transmission, and the terminal 200 receives control information regarding SRS transmission.
  • the base station 100 transmits to the terminal 200 the control information related to the SRS transmission including the information about the non-communication period such as the start time and the length of the non-communication period.
  • the terminal 200 transmits the SRS using the measurement target frequency fb during the non-communication period (GAP).
  • the base station 100 performs the following processing, for example. That is, the radio control unit 1062 creates control information regarding SRS transmission including a parameter with which the frequency fb to be measured can be calculated and information regarding the non-communication period.
  • the radio control unit 1062 controls the transmission radio unit 110 to transmit control information regarding SRS transmission during a certain downlink communication period at the frequency fa during communication.
  • the SRS transmission control unit 2060 of the terminal 200 creates the SRS based on the control information regarding the SRS transmission, calculates the measurement frequency fb, and transmits the SRS using the measurement frequency fb.
  • FIG. 17C to FIG. 17F are diagrams showing setting examples of the non-communication period in the case of FDD.
  • FIG. 17C and FIG. 17D respectively show setting examples of downlink communication (fa_dl) and uplink communication (fa_ul) at the frequency fa during communication.
  • FIGS. 17E and 17F respectively show setting examples of downlink communication (fb_dl) and uplink communication (fb_ul) at the measurement frequency fb.
  • the base station 100 transmits control information regarding SRS transmission to the terminal 200 using the frequency fa during communication.
  • the control information includes information about the non-communication period such as the start time and length of the non-communication period.
  • the terminal 200 creates the SRS based on the control information regarding the SRS transmission, calculates the upstream frequency fb for measurement, and uses the upstream frequency fb in the upstream communication period. Then, the SRS is transmitted.
  • the base station 100 can set the measurement frequency fb to the upstream frequency or the SUL frequency as a set.
  • the terminal 200 transmits the SRS using the uplink frequency that is a pair in the set no-communication period, and transmits the SRS using the SUL frequency in the next set no-communication period. It becomes possible to do.
  • the base station 100 may measure the uplink radio channel quality based on, for example, the SRS, and select the uplink frequency or the SUL frequency as a set.
  • the upstream frequency is changed between the upstream frequency and the SUL frequency that are a set has been described, but it is also possible to similarly change the upstream frequency between a plurality of SUL frequencies.
  • 18A to 18F show other setting examples of the non-communication period.
  • the control information is transmitted using the frequency fa during communication.
  • 18A to 18F show an example in which control information is transmitted using the frequency fb to be measured.
  • the base station 100 transmits control information regarding SRS transmission using the frequency fb (or fb_dl) to be measured. Then, in the next non-communication period, the terminal 200 transmits the SRS by using the frequency fb (or fb_ul). Also in this case, by setting the measurement target frequency fb to the upstream frequency or the SUL frequency that is a group, the terminal 200 can transmit the SRS using the upstream frequency or the SUL frequency that is the group.
  • 19 and 20 are flowcharts showing an operation example in the base station 100.
  • the base station 100 When the base station 100 starts processing (S100), it transmits system information (S101).
  • the system information includes a set of upstream frequencies fu_0, a plurality of SUL frequencies fu_1,..., Fu_k, random access control information, control information regarding SRS transmission, and the like.
  • n is the number of repetitions (1 ⁇ n ⁇ k)
  • RSRP_max represents the maximum value of uplink radio channel quality.
  • the wireless line quality for example, RSRP is used.
  • the random access control unit 1063 receives the RAP.
  • the base station 100 transmits the RAR using the downlink frequency fd_0 that is a pair (S104).
  • the random access control unit 1063 transmits “RAR” by including “1” in the “R” area in the MAC payload of RAR.
  • the base station 100 receives the Message 3 and the SRS transmitted from the terminal 200, using the pair of upstream frequencies fu_0 (S105). This corresponds to S32 in FIG.
  • the random access control unit 1063 receives the SRS with the frequency fu_0.
  • the base station 100 measures the wireless line quality (S106). This corresponds to S33 of FIG.
  • the uplink frequency control unit 1060 measures RSRP based on the SRS received in S105, and stores it in the memory 107 as radio line quality RSRP_fu_0.
  • the base station 100 determines whether or not the measured wireless line quality RSRP_fu_0 is greater than the maximum wireless line quality value RSRP_max (S107).
  • the uplink frequency control unit 1060 may read out the measured wireless channel quality RSRP_fu_0 and the maximum wireless channel quality RSRP_max from the memory 107 and compare them.
  • fu represents, for example, an upstream frequency number.
  • the base station 100 shifts to S109 in FIG. 20 without performing the process of S108.
  • the base station 100 determines whether or not the number of repetitions n has become “k” when S108 of FIG. 19 is ended or when it is determined No in S107 (S109 of FIG. 20).
  • the base station 100 uses the downlink frequency fd_0 to transmit the Message 4 including the up link frequency change request (S110).
  • the upstream frequency change request includes, for example, the changed upstream frequency fu_1 and the SRS transmission request. Then, the process again moves to S103 in FIG. 19 and the random access procedure using the changed uplink frequency fu_1 is performed (S103 to S105).
  • the maximum value of the wireless channel quality is stored in the memory 107 as RSRP_max, and the number n of the upstream frequency when the wireless channel quality becomes the maximum value is stored in the memory 107.
  • the base station 100 confirms the number n stored in the memory 107 to set the uplink frequency.
  • the SUL frequencies fu_1,..., Fu_k are set to the upstream frequency fu_n.
  • the uplink frequency control unit 1060 outputs the set uplink frequency fu_n to the transmission wireless unit 110.
  • the base station 100 transmits the Message 4 and the set upstream frequency fu_n to the terminal 200 (S112). Then, the base station 100 ends the wireless line setting (S113) and ends the series of processes (S114).
  • FIGS. 19 and 20 represent an operation example in the case of selecting the upstream frequency fu_n having the best upstream wireless channel quality.
  • 21 and 22 are also flowcharts showing an operation example of the base station 100 in the operation example 2.
  • 21 and 22 show an example in which the base station 100 sets the measured radio channel quality larger than the threshold to the upstream frequency fu_n.
  • the base station 100 shifts to S103 and repeats the above-described processing (loop from S103 to S110).
  • Such determination (S122) and setting of the upstream frequency fu_n (S123, S111 of FIG. 22) are performed by the upstream frequency control unit 1060, for example.
  • 23 and 24 are also flowcharts showing an operation example in the base station 100 in the operation example 2.
  • 23 and 24 show an example in which the base station 100 selects the uplink frequency with the best uplink radio channel quality and equal to or higher than the threshold.
  • the base station 100 measures the wireless channel quality (S106), and determines whether the measured wireless channel quality RSRP_fu_n is larger than the maximum wireless channel quality value RSRP_max and larger than the threshold value RSRP_th (S131). ).
  • Such determination (S131) and setting (S108, S111) are performed by the upstream frequency control unit 1060, for example.
  • FIG. 25 is a diagram showing a configuration example of the communication system 10.
  • the communication system 10 includes a base station 100 and a terminal 200.
  • the base station 100 is a wireless communication device that provides services to the terminals 200 located in the cell range.
  • the terminal 200 is a wireless communication device such as a smartphone, a feature phone, or a tablet terminal.
  • the base station 100 and the terminal 200 perform wireless communication using the first uplink frequency that forms a pair with the downlink frequency, the second uplink frequency that is different from the first uplink frequency, and the downlink frequency. Is possible.
  • the base station 100 includes a first wireless controller 150 and a first receiver 155.
  • the first radio control unit 150 requests the uplink reference signal transmission requesting to transmit the first and second uplink reference signals using the first and second uplink frequencies, respectively, and the first and second uplinks.
  • the control information regarding the reference signal is transmitted to the terminal 200.
  • the first radio control unit 150 transmits frequency control information regarding the first or second upstream frequency to the terminal 200.
  • the first receiving unit 155 receives the first and second uplink reference signals transmitted from the terminal 200 using the first and second uplink frequencies, respectively.
  • the terminal 200 includes a second receiving unit 250 and a second wireless control unit 255.
  • the second receiving unit 250 receives the uplink reference signal transmission request and the control information regarding the first and second uplink reference signals transmitted from the base station 100.
  • the second receiving unit 250 also receives the frequency control information.
  • the second radio control unit 255 transmits the first and second uplink control signals to the base station 100 based on the uplink reference signal transmission request and the control information, using the first and second uplink frequencies, respectively.
  • the base station 100 causes the terminal 200 to transmit the first and second uplink reference signals using the first and second uplink frequencies, respectively.
  • the base station 100 uses the first reference signal using the pair of uplink frequencies and the SUL frequency.
  • the second reference signal is transmitted from the terminal 200.
  • the base station 100 receives the first and second reference signals and selects the first upstream frequency or the second upstream frequency.
  • the base station 100 can measure the radio channel quality at the first uplink frequency and the radio channel quality at the second uplink frequency from the two reference signals, and based on these two measurement results, It becomes possible to select the first or second upstream frequency.
  • the communication system 10 causes the terminal 200 to transmit the first and second uplink reference signals by using the first and second uplink frequencies, respectively, the uplink frequency is selected using these. It becomes possible. Therefore, the communication system 10 can improve the throughput of uplink communication as compared with the case of selecting the uplink frequency from the downlink radio channel quality.
  • the first wireless control unit 150 and the first receiving unit 155 correspond to the wireless control unit 106 and the receiving unit 120 in the first embodiment, respectively. Further, the second wireless control unit 255 and the second receiving unit 250 respectively correspond to the wireless control unit 206 and the receiving unit 220 in the first embodiment, for example.
  • Non-Patent Document 39 is used for setting the upstream frequency and the downstream frequency, but other frequencies may be used. For example, when a new frequency band is defined, that frequency may be used.
  • 10 communication system 100: base station device (base station) 105: Radio quality measuring unit 106: Radio control unit 1060: Uplink frequency control unit 1061: System information setting management unit 1062: Radio control unit 1063: Random access control unit 1064: HO control unit 1065: Radio resource control unit 107: Memory 108 : Control signal creation unit 120: reception unit 130: control unit 140: transmission unit 200 (200-1, 200-2): terminal device (terminal) 204: control signal extraction unit 205: wireless quality measurement unit 206: wireless control unit 2060: SRS transmission control unit 2061: system information setting management unit 2062: wireless control unit 2063: random access control unit 2064: HO control unit 2065: wireless resource Controller 220: Receiver 230: Controller 240: Transmitter

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A base station apparatus that wirelessly communicates with a terminal apparatus by use of either a first uplink frequency paired with a downlink frequency or a second uplink frequency different from the first uplink frequency and by use of the downlink frequency, is provided with: a radio control unit that transmits, to the terminal apparatus, an uplink reference signal transmission request for requesting the transmissions of first and second uplink reference signals using the first and second uplink frequencies, respectively, and control information related to the first and second uplink reference signals and that also transmits, to the terminal apparatus, frequency control information related to the first or second uplink frequency; and a reception unit that receives the first and second uplink reference signals transmitted from the terminal apparatus by use of the first and second uplink frequencies, respectively.

Description

基地局装置、端末装置、及び通信システムBase station device, terminal device, and communication system
 本発明は、基地局装置、端末装置、及び通信システムに関する。 The present invention relates to a base station device, a terminal device, and a communication system.
 現在のネットワークは、モバイル端末(スマートフォンやフューチャーホン)のトラフィックがネットワークのリソースの大半を占めている。また、モバイル端末が使うトラフィックは、今後も拡大していく傾向にある。 In the current network, the traffic of mobile terminals (smartphones and future phones) occupy most of the network resources. Also, the traffic used by mobile terminals tends to continue to grow.
 一方で、IoT(Internet of things)サービス(例えば、交通システム、スマートメータ、装置等の監視システム)の展開にあわせて、多様な要求条件を持つサービスに対応することが求められている。そのため、第5世代移動体通信(5Gまたは、NR(New Radio))の通信規格では、4G(第4世代移動体通信)の標準技術(例えば、非特許文献1~11)に加えて、さらなる高データレート化、大容量化、低遅延化を実現する技術が求められている。なお、第5世代通信規格については、3GPPの作業部会(例えば、TSG-RAN WG1、TSG-RAN WG2等)で技術検討が進められており、2017年の末に標準規格書の初版が出されている(非特許文献12~39)。 On the other hand, along with the development of IoT (Internet of things) services (for example, monitoring systems for transportation systems, smart meters, devices, etc.), it is required to support services with various requirements. Therefore, in addition to the standard technology of 4G (4th generation mobile communication) (for example, Non-Patent Documents 1 to 11) in the communication standard of 5th generation mobile communication (5G or NR (New Radio)), There is a demand for a technology that realizes a high data rate, a large capacity, and a low delay. Regarding the 5th generation communication standard, technical studies are being carried out by a working group of 3GPP (for example, TSG-RAN WG1, TSG-RAN WG2, etc.), and the first edition of the standard was issued at the end of 2017. (Non-Patent Documents 12 to 39).
 上記で述べたように、多種多様なサービスに対応するために、5Gでは、eMBB(Enhanced Mobile Broad Band)、Massive MTC(Machine Type Communications)、およびURLLC(Ultra-Reliable and Low Latency Communication)に分類される多くのユースケースのサポートを想定している。 As mentioned above, in order to support a wide variety of services, 5G is classified into eMBB (Enhanced Mobile BroadBand), Massive MTC (Machine Type Communications), and URLLC (Ultra-Reliable and Low Latency Communication). It is expected to support many use cases.
 また、5Gでは、例えば、28GHzなど、LTE(Long Term Evolution)などで用いられた800MHzや5GHzの周波数よりも更に高い高周波を用いた通信について検討している。 In 5G, for example, we are considering communication using higher frequencies, such as 28GHz, which is higher than the frequencies of 800MHz and 5GHz used in LTE (Long Term Evolution).
 このような高周波を用いた通信では、800MHzや5GHzなどと比較して、あまり利用されていないため、帯域幅を広くとって、広帯域化が可能である、という利点がある。そのため、高周波を用いた通信では、800MHzなどを用いた通信と比較して、伝送速度の改善や回線容量の増加などが可能となる。 ㆍIn such communication using high frequency, compared with 800MHz and 5GHz, since it is not used much, there is an advantage that it is possible to widen the bandwidth by widening the bandwidth. Therefore, in the communication using the high frequency, it is possible to improve the transmission speed and increase the line capacity as compared with the communication using the 800 MHz or the like.
 一方、このような高周波数を用いた通信では、電波の直進性が強く、反射波や透過波を使用することができない場合がある。また、伝搬損失は、例えば、周波数の大きさに比例するため、高周波を用いた通信では、800MHzの場合と比較して、伝搬損失が大きくなる場合がある。 On the other hand, in communications using such high frequencies, there are cases in which the straightness of radio waves is so strong that reflected waves and transmitted waves cannot be used. Further, since the propagation loss is proportional to the magnitude of the frequency, for example, in the communication using the high frequency, the propagation loss may be larger than that in the case of 800 MHz.
 そのため 5Gでは、SUL(Supplementary Up Link)を導入することとなった。SULは、例えば、上り周波数と下り周波数とを組として、上り通信と下り通信に夫々利用する場合、組となる上り周波数に替えて、その上り周波数とは異なる上り周波数を用いて、基地局装置と端末装置が通信を行うことである。例えば、2155MHzが下り周波数、1745MHzが上り周波数で、これらが組となって通信が行われているとき、1745MHzに替えて、SULとして、900MHzを上り通信の周波数(又はSUL周波数)として用いる、などである。SULは、例えば、以下の非特許文献20などに規定されている。 Therefore, 5G will introduce SUL (Supplementary UpLink). When the SUL uses, for example, an uplink frequency and a downlink frequency as a set and uses the uplink frequency and the downlink communication, respectively, the base station apparatus uses a different uplink frequency instead of the paired uplink frequency. And the terminal device to communicate. For example, when 2155 MHz is the down frequency and 1745 MHz is the up frequency, and when these are paired and communication is performed, instead of 1745 MHz, 900 MHz is used as the frequency (or SUL frequency) of the up communication, etc. Is. SUL is defined in, for example, Non-Patent Document 20 below.
 このSULに関して、5Gでは、下り通信における測定品質(measured quality of the DL)が閾値(broadcast threshold)より低い場合、UE(User Equipment)がSUL周波数(SUL carrier)を選択することとしている(例えば、以下の非特許文献20の”9.2.6”)。従って、上記の例では、下り周波数である2155MHzの測定品質が閾値より低い場合に、上り周波数である1745MHzに替えて、SUL周波数として、900MHzを用いる、ことになる。このように、組となる上り周波数を用いるか、SUL周波数を用いるかは、下り周波数における測定品質の結果で選択されることになる。 Regarding this SUL, in 5G, when the measured quality of downlink communication (measured quality of DL) is lower than a threshold (broadcast threshold), the UE (User Equipment) is supposed to select the SUL frequency (SUL carrier) (for example, Non-Patent Document 20 below, “9.2.6”). Therefore, in the above example, when the measurement quality of the downlink frequency of 2155 MHz is lower than the threshold value, 900 MHz is used as the SUL frequency instead of the uplink frequency of 1745 MHz. As described above, whether to use the paired upstream frequency or the SUL frequency is selected according to the result of the measurement quality in the downstream frequency.
 SULを導入することによる利点について説明すると、例えば、以下となる。すなわち、図26(A)は、基地局300のカバレッジ範囲、図26(B)は利用周波数の例を夫々表す図である。上述した高周波を利用した通信では、例えば、基地局300から送信された高周波の電波は端末400に届くが、端末400から送信された高周波数の電波は、基地局300の送信電力よりも小さいため、基地局300へ届かない場合がある。そのため、図26(A)に示すように、下り通信と上り通信の双方を行うことが可能なカバレッジ範囲が、下り通信単独の場合のカバレッジ範囲よりも小さくなる場合がある。 Explaining the advantages of introducing SUL, for example, they are as follows. That is, FIG. 26(A) is a diagram showing the coverage range of the base station 300, and FIG. 26(B) is a diagram showing examples of utilization frequencies. In the communication using the high frequency described above, for example, the high frequency radio wave transmitted from the base station 300 reaches the terminal 400, but the high frequency radio wave transmitted from the terminal 400 is smaller than the transmission power of the base station 300. However, it may not reach the base station 300. Therefore, as shown in FIG. 26A, the coverage range in which both downlink communication and uplink communication can be performed may be smaller than the coverage range in the case of downlink communication alone.
 これに対して、SULを導入することで、例えば、高周波を利用した通信に対して、上り通信におけるカバレッジ範囲を改善させることが可能となる。すなわち、上述したように周波数が低くなればなるほど、伝搬損失も小さくなる。そのため、例えば、図26(B)に示すように、高周波数の上り周波数と下り周波数の組に対して、低い周波数を、SULの際に用いる。この場合、SULで利用される周波数(以下、「SUL周波数」と称する場合がある。)は、組の周波数よりも低いため、伝搬損失を低くすることができ、例えば、図26(A)に示すように、SULを利用した場合のカバレッジ範囲を、下り通信単独の場合のカバレッジ範囲と同じ大きさにすることが可能となる。 On the other hand, by introducing SUL, it becomes possible to improve the coverage range in upstream communication, for example, for communication using high frequencies. That is, as described above, the lower the frequency, the smaller the propagation loss. Therefore, for example, as shown in FIG. 26(B), a low frequency is used at the time of SUL for a combination of a high frequency upstream frequency and a downstream frequency. In this case, the frequency used in SUL (hereinafter, may be referred to as “SUL frequency”) is lower than the frequency of the set, so that the propagation loss can be reduced. For example, as shown in FIG. As shown, the coverage range when SUL is used can be made the same as the coverage range when only downlink communication is performed.
 図27は、FR(Frequency Range)1における周波数範囲(450MHz~6000MHz)において、SULとして利用される周波数の例を表す図である(非特許文献39のTable 5.2-1)。図27に示すように、FR1の範囲内においては、SULとして用いられる周波数としては、それほど高周波数が用いられてないことが理解される。 FIG. 27 is a diagram showing an example of frequencies used as SUL in a frequency range (450 MHz to 6000 MHz) in FR (Frequency Range) 1 (Table 5.2-1 of Non-Patent Document 39). As shown in FIG. 27, it is understood that, within the range of FR1, a high frequency is not used so much as the frequency used as SUL.
 なお、5Gにおいては、SULとして用いられる周波数は、SIB1(System Information Block Type 1)を利用して送信(又は報知)されることも規定される(例えば、以下の非特許文献24)。 In 5G, it is also specified that the frequency used as SUL is transmitted (or notified) using SIB1 (System Information Block Type 1) (for example, Non-Patent Document 24 below).
 他方、上り通信で利用されるRS(Reference Signal、参照信号又はパイロット)の一つとして、SRS(Sounding RS)がある。RSとしては、SRS以外にも、Demodulation RS for PUSCH(Physical Uplink Shared Channel)などがある。このようなRSは、データや制御信号と一緒に送信され、データや制御信号がなければ送信することができない。しかし、SRSは、例えば、無線回線(無線チャネル)が設定されていないとき(例えば、RRC(Radio Resource Control)が設定されていない状態、RA(Random Access)が完了していない状態)でも、送信条件が整えば、UEが送信することが可能であり、データや制御信号がなくでも送信することが可能である。なお、SRSは、LTEから導入され、5Gにおいても、規定されている(例えば、非特許文献15)。 On the other hand, SRS (Sounding RS) is one of RSs (Reference Signals, reference signals or pilots) used in uplink communication. As RS, in addition to SRS, there is Demodulation RS for PUSCH (Physical Uplink Shared Channel). Such an RS is transmitted together with data and control signals and cannot be transmitted without the data and control signals. However, SRS is transmitted even when, for example, a wireless line (wireless channel) is not set (for example, RRC (Radio Resource Control) is not set, RA (Random Access) is not completed) If conditions are met, the UE can transmit and can transmit without data or control signals. Note that SRS is introduced from LTE and is specified even in 5G (for example, Non-Patent Document 15).
 5Gの仕様では、上述したように、上り周波数を用いるか、SUL周波数を用いるかは、組となる下り周波数の測定品質を閾値と比較して判断している。 In the 5G specification, as described above, whether to use the upstream frequency or the SUL frequency is determined by comparing the measurement quality of the downstream frequency to be paired with the threshold value.
 しかし、下り周波数の測定品質と、上り周波数の測定品質は、一致するとは限らない。例えば、組の下り周波数の測定品質が閾値より小さいときでも、SUL周波数の測定品質が劣化している場合がある。或いは、例えば、組の下り周波数の測定品質が閾値以上の場合でも、組の上り周波数の測定品質が劣化している場合がある。そのため、上り通信において、伝送遅延が増加し、スループットが低下する場合がある。 However, the downlink frequency measurement quality and the uplink frequency measurement quality do not always match. For example, even when the measurement quality of the downlink frequency of the pair is smaller than the threshold value, the measurement quality of the SUL frequency may be deteriorated. Alternatively, for example, even when the measurement quality of the downlink frequency of the set is equal to or more than the threshold value, the measurement quality of the uplink frequency of the set may be deteriorated. Therefore, in uplink communication, transmission delay may increase and throughput may decrease.
 5Gでは、サービスの種類によっては、URLLCが要求される場合がある。スループットの低下は、このような要求を満たすことができなくなる場合がある。 In 5G, URLLC may be required depending on the type of service. A decrease in throughput may not be able to meet such demands.
 また、SUL周波数は、例えば、図27に示すように、システムとして端末共通に決められている。各端末装置の通信環境は、端末装置ごとに異なり、端末装置と基地局装置との間の無線回線品質も端末装置ごとに異なる場合がある。従って、端末装置がSULを用いて通信を行う場合、SUL周波数がその端末装置にとって最適であるとは限らない。また、SUL周波数は、システムとして予め決められているため、端末装置が個別にSUL周波数を変更することができない。そのため、上り通信で伝送遅延が増加し、スループットが低下する場合がある。 Also, the SUL frequency is commonly set as a system as shown in FIG. The communication environment of each terminal device differs from one terminal device to another, and the radio channel quality between the terminal device and the base station device may also differ from one terminal device to another. Therefore, when a terminal device uses SUL for communication, the SUL frequency is not always optimal for that terminal device. Moreover, since the SUL frequency is predetermined as a system, the terminal device cannot individually change the SUL frequency. Therefore, the transmission delay may increase in the upstream communication and the throughput may decrease.
 そこで、一開示は、上り通信におけるスループットを改善することが可能な基地局装置、端末装置、及び通信システムを提供することにある。 Therefore, one disclosure is to provide a base station device, a terminal device, and a communication system capable of improving the throughput in uplink communication.
 一態様によれば、下り周波数と組となる第1の上り周波数と、前記第1の上り周波数とは異なる第2の上り周波数の何れかと、前記下り周波数とを用いて、端末装置と無線通信を行う基地局装置において、前記第1及び第2の上り周波数をそれぞれ用いて第1及び第2の上り参照信号を送信することを要求する上り参照信号送信要求と前記第1及び第2の上り参照信号に関する制御情報とを前記端末装置へ送信し、前記第1又は第2の上り周波数に関する周波数制御情報を前記端末装置へ送信する無線制御部と、前記端末装置から前記第1及び第2の上り周波数をそれぞれ用いて送信された前記第1及び第2の上り参照信号を受信する受信部とを備える。 According to one aspect, a wireless communication with a terminal device is performed by using a first uplink frequency that forms a pair with a downlink frequency, a second uplink frequency different from the first uplink frequency, and the downlink frequency. In the base station apparatus for performing the above, the uplink reference signal transmission request for requesting transmission of the first and second uplink reference signals using the first and second uplink frequencies, respectively, and the first and second uplinks. A radio control unit for transmitting control information regarding a reference signal to the terminal device, and transmitting frequency control information for the first or second upstream frequency to the terminal device; and the first and second radio control units from the terminal device. And a receiving unit that receives the first and second uplink reference signals transmitted using the respective uplink frequencies.
 一開示によれば、上り通信におけるスループットを改善することができる。 According to one disclosure, throughput in upstream communication can be improved.
図1は通信システムの構成例を表す図である。FIG. 1 is a diagram showing a configuration example of a communication system. 図2は基地局装置の構成例を表す図である。FIG. 2 is a diagram illustrating a configuration example of the base station device. 図3(A)は基地局装置の無線制御部、図3(B)は端末装置の無線制御部の構成例を夫々表す図である。FIG. 3A is a diagram showing a configuration example of a radio control unit of a base station device, and FIG. 3B is a diagram showing a configuration example of a radio control unit of a terminal device. 図4は端末装置の構成例を表す図である。FIG. 4 is a diagram illustrating a configuration example of the terminal device. 図5(A)はFDD、図5(B)はTDDの場合におけるSUL周波数の例を夫々表す図である。5A is a diagram showing an example of the SUL frequency in the case of FDD, and FIG. 5B is a diagram showing an example of the SUL frequency in the case of TDD. 図6は動作例1のシーケンス例を表す図である。FIG. 6 is a diagram illustrating a sequence example of the operation example 1. 図7は動作例1のシーケンス例を表す図である。FIG. 7 is a diagram illustrating a sequence example of the operation example 1. 図8(A)と図8(B)はSRSの送信の例を表す図である。FIG. 8A and FIG. 8B are diagrams showing an example of SRS transmission. 図9は動作例2のシーケンス例を表す図である。FIG. 9 is a diagram illustrating a sequence example of the operation example 2. 図10はRARのMACペイロードの構成例を表す図である。FIG. 10 is a diagram showing a configuration example of a MAC payload of RAR. 図11は動作例3のシーケンス例を表す図である。FIG. 11 is a diagram illustrating a sequence example of the operation example 3. 図12は動作例3のシーケンス例を表す図である。FIG. 12 is a diagram illustrating a sequence example of the operation example 3. 図13は動作例4-1のシーケンス例を表す図である。FIG. 13 is a diagram illustrating a sequence example of the operation example 4-1. 図14は動作例4-1のシーケンス例を表す図である。FIG. 14 is a diagram illustrating a sequence example of the operation example 4-1. 図15は動作例4-2のシーケンス例を表す図である。FIG. 15 is a diagram showing a sequence example of the operation example 4-2. 図16は動作例4-2のシーケンス例を表す図である。FIG. 16 is a diagram illustrating a sequence example of the operation example 4-2. 図17(A)と図17(B)はTDDの場合におけるGAPとSRS送信の例、図17(C)から図17(F)はFDDの場合におけるGAPとSRS送信の例を夫々表す図である。17A and 17B are diagrams showing an example of GAP and SRS transmission in the case of TDD, and FIGS. 17C to 17F are diagrams showing an example of GAP and SRS transmission in the case of FDD. is there. 図18(A)と図18(B)はTDDの場合におけるGAPとSRS送信の例、図18(C)から図18(F)はFDDの場合におけるGAPとSRS送信の例を夫々表す図である。18A and 18B are diagrams showing an example of GAP and SRS transmission in the case of TDD, and FIGS. 18C to 18F are diagrams showing examples of GAP and SRS transmission in the case of FDD. is there. 図19は基地局装置における動作例を表すフローチャートである。FIG. 19 is a flowchart showing an operation example in the base station device. 図20は基地局装置における動作例を表すフローチャートである。FIG. 20 is a flowchart showing an operation example in the base station device. 図21は基地局装置における動作例を表すフローチャートである。FIG. 21 is a flowchart showing an operation example in the base station device. 図22は基地局装置における動作例を表すフローチャートである。FIG. 22 is a flowchart showing an operation example in the base station device. 図23は基地局装置における動作例を表すフローチャートである。FIG. 23 is a flowchart showing an operation example in the base station device. 図24は基地局装置における動作例を表すフローチャートである。FIG. 24 is a flowchart showing an operation example in the base station device. 図25は通信システムの構成例を表す図である。FIG. 25 is a diagram showing a configuration example of a communication system. 図26(A)はカバレッジ範囲の例、図26(B)は周波数配置の例を夫々表す図である。FIG. 26(A) is a diagram showing an example of a coverage range, and FIG. 26(B) is a diagram showing an example of frequency allocation. 図27はSUL周波数の例を表す図である。FIG. 27 is a diagram showing an example of the SUL frequency.
 以下、本実施の形態について図面を参照して詳細に説明する。本明細書における課題及び実施例は一例であり、本願の権利範囲を限定するものではない。特に、記載の表現が異なっていたとしても技術的に同等であれば、異なる表現であっても本願の技術を適用可能であり、権利範囲を限定するものではない。そして、各実施の形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。 Hereinafter, the present embodiment will be described in detail with reference to the drawings. The problems and examples in this specification are examples, and do not limit the scope of rights of the present application. In particular, even if the described expressions are different, as long as they are technically equivalent, the technology of the present application can be applied even if the expressions are different, and the scope of rights is not limited. Then, the respective embodiments can be appropriately combined within a range in which the processing content is not inconsistent.
 また、本明細書で使用している用語や記載した技術的内容は、3GPPなど通信に関する規格として仕様書や寄書に記載された用語や技術的内容が適宜用いられてもよい。このような仕様書としては、例えば、上述した3GPP TS 38.211 V15.4.0(2018-12)がある。 The terms and technical contents described in the present specification may appropriately use the terms and technical contents described in specifications and contributions as a standard for communication such as 3GPP. An example of such a specification is 3GPP TS 38.211 V15.4.0 (2018-12) mentioned above.
 なお、3GPPの仕様書は、随時、更新される。従って、上述した仕様書は、本願出願時における最新の仕様書が用いられてよい。 Note that the 3GPP specifications will be updated from time to time. Therefore, the latest specification at the time of filing the present application may be used as the above-mentioned specification.
 以下に、本願の開示する基地局、端末、及び通信システムの実施例を、図面に基づいて詳細に説明する。なお、以下の実施例は開示の技術を限定するものではない。 The embodiments of the base station, terminal, and communication system disclosed in the present application will be described in detail below with reference to the drawings. The following embodiments do not limit the disclosed technology.
 [第1の実施の形態]
 <通信システムの構成例>
 図1は、第1の実施の形態における通信システム10の構成例を表す図である。
[First Embodiment]
<Example of configuration of communication system>
FIG. 1 is a diagram illustrating a configuration example of a communication system 10 according to the first embodiment.
 通信システム10は、基地局装置(以下、「基地局」と称する場合がある。)100と、端末装置(以下、「端末」と称する場合がある。)200-1,200-2を備える。 The communication system 10 includes a base station device (hereinafter sometimes referred to as “base station”) 100 and terminal devices (hereinafter sometimes referred to as “terminal”) 200-1 and 200-2.
 基地局100は、例えば、端末200-1,200-2と無線通信を行う通信装置である。基地局100は、自局のサービス提供可能範囲(又はセル範囲)に在圏する端末200-1,200-2と無線通信を行って、通話サービスやWeb閲覧サービスなど、種々のサービスを提供する。基地局100は、例えば、5Gで規定されるgNB(next generation Node B)であってもよいし、4Gで規定されるeNB(evolved Node B)であってもよい。以下では、基地局100は、gNBとして説明する場合がある。 The base station 100 is, for example, a communication device that wirelessly communicates with the terminals 200-1 and 200-2. The base station 100 wirelessly communicates with the terminals 200-1 and 200-2 located in the service available range (or cell range) of the base station 100 to provide various services such as a call service and a Web browsing service. .. The base station 100 may be, for example, a gNB (next generation Node B) defined by 5G or an eNB (evolved Node B) defined by 4G. Below, the base station 100 may be described as gNB.
 端末200-1,200-2は、例えば、フィーチャーフォン、スマートフォン、パーソナルコンピュータ、タブレット端末、ゲーム装置などの通信装置である。端末200-1,200-2は、基地局100のサービス提供可能範囲で様々なサービスの提供を受けることが可能である。 The terminals 200-1 and 200-2 are communication devices such as feature phones, smartphones, personal computers, tablet terminals, and game devices. The terminals 200-1 and 200-2 can be provided with various services within the service available range of the base station 100.
 なお、図1の例では、端末200-1,200-2の台数は、2台の例を表しているが、1台でもよいし、3台以上でもよい。以下では、端末200-1,200-2を、端末200と称する場合がある。 In the example of FIG. 1, the number of terminals 200-1 and 200-2 is two, but it may be one or three or more. Hereinafter, the terminals 200-1 and 200-2 may be referred to as the terminal 200.
 基地局100から端末200への通信を、下り通信又はDL(Down Link)、端末200から基地局100への通信を、上り通信又はUL(Up Link)と称する場合がある。 The communication from the base station 100 to the terminal 200 may be referred to as downlink communication or DL (Down Link), and the communication from the terminal 200 to the base station 100 may be referred to as uplink communication or UL (Up Link).
 また、例えば、下り通信で利用される周波数を下り周波数、上り通信で利用される周波数を上り周波数とそれぞれ称する場合がある。 Further, for example, a frequency used in downlink communication may be referred to as a downlink frequency, and a frequency used in uplink communication may be referred to as an uplink frequency.
 さらに、例えば、周波数は、一定の帯域幅を有していてもよい。本第1の実施の形態においては、周波数に関して、例えば、そのような一定の帯域幅を有する場合と、帯域幅を有しないその周波数そのものである場合とで、区別しないで用いる場合がある。 Further, for example, the frequency may have a certain bandwidth. In the first embodiment, with respect to the frequency, for example, the case where the frequency has such a constant bandwidth and the case where the frequency itself does not have the bandwidth may be used without distinction.
 本第1の実施の形態における端末200は、SULを利用して基地局100と上り通信を行うことが可能である。端末200がSULを利用して上り通信を行う際に使用する周波数のことを、例えば、SUL周波数と称する場合がある。 The terminal 200 according to the first embodiment can perform uplink communication with the base station 100 using SUL. The frequency used when the terminal 200 performs uplink communication using SUL may be referred to as the SUL frequency, for example.
 また、本第1の実施の形態における端末200は、上り周波数と下り周波数とを組みとして、基地局100との間で、上り通信と下り通信とをそれぞれ行うことが可能である。このような組の例としては、例えば、PDCCH(Physical Downlink Control Channel)として利用する場合の下り周波数と、PUSCHを利用する場合の上り周波数との関係がある。この場合、基地局100は、制御信号を下り周波数(PDCCH)を利用して送信し、端末200は、PDCCHを利用して送信された制御信号に含まれるULグラントにより示された上り周波数(PUSCH)を利用してユーザーデータを送信する、などである。 Further, the terminal 200 according to the first embodiment can perform upstream communication and downstream communication with the base station 100 by using a combination of upstream frequency and downstream frequency. As an example of such a set, for example, there is a relationship between the downlink frequency when using as PDCCH (Physical Downlink Control Channel) and the uplink frequency when using PUSCH. In this case, the base station 100 transmits the control signal using the downlink frequency (PDCCH), and the terminal 200 receives the uplink frequency (PUSCH) indicated by the UL grant included in the control signal transmitted using the PDCCH. ) Is used to send user data, and so on.
 例えば、図27の例では、「Duplex Mode」が「FDD」や「TDD」として用いられる周波数は、組である周波数であり、「SUL」として用いられる周波数は、SUL周波数となる。 For example, in the example of FIG. 27, the frequency in which “Duplex Mode” is used as “FDD” or “TDD” is a frequency that is a set, and the frequency used as “SUL” is the SUL frequency.
 以下では、上り周波数と下り周波数とが組となって上り通信と下り通信に用いられる場合において、上り周波数を、組である上り周波数、下り周波数を、組である下り周波数とそれぞれ称する場合がある。組である上り周波数と組である下り周波数とを、合わせて、組の周波数、と称する場合がある。 In the following, in the case where the upstream frequency and the downstream frequency are used as a group for upstream communication and downstream communication, the upstream frequency may be referred to as a group upstream frequency, and the downstream frequency may be referred to as a group downstream frequency, respectively. .. The set up frequency and the set down frequency may be collectively referred to as a set frequency.
 図5(A)は、FDD(Frequency Division Duplex)の場合における、組の周波数とSUL周波数との関係例を表し、図5(B)は、TDD(Time Division Duplex)の場合における組の周波数とSUL周波数との関係例を表す図である。 FIG. 5(A) shows an example of the relationship between the group frequency and the SUL frequency in the case of FDD (Frequency Division Duplex), and FIG. 5(B) shows the relationship between the group frequency in the case of TDD (Time Division Duplex). It is a figure showing the example of a relationship with a SUL frequency.
 図5(A)と図5(B)に示すように、組である上り周波数は、図中「UL」内に含まれる全部又は一部の周波数であってよく、組である下り周波数は、図中「DL」内に含まれる全部又は一部の周波数であってよい。組となる周波数は、1つの上り周波数に対して、複数の下り周波数があってもよいし、1つの下り周波数に対して、複数の上り周波数があってもよい。或いは、複数の下り周波数に対して複数の上り周波数が組の周波数となっていてもよい。 As shown in FIG. 5(A) and FIG. 5(B), the upstream frequency that is a set may be all or part of the frequencies included in “UL” in the figure, and the downstream frequency that is a set may be It may be all or part of the frequencies included in "DL" in the figure. There may be a plurality of downlink frequencies for one uplink frequency, or a plurality of uplink frequencies for one downlink frequency. Alternatively, a plurality of upstream frequencies may be a set of frequencies for a plurality of downstream frequencies.
 なお、図5(B)に示すように、TDDの場合、組となる上り周波数と下り周波数は、同一の周波数となる場合がある。この場合、2つの周波数は、厳密には同一の周波数と言うことができる。しかし、本第1の実施の形態では、利用されるタイミングが異なることなどを考慮して、同一の周波数であっても、「組となる上り周波数」と「組となる下り周波数」と、異なる表現で表す場合がある。 Note that, as shown in FIG. 5B, in the case of TDD, the upstream frequency and the downstream frequency forming a pair may be the same frequency. In this case, the two frequencies can be said to be exactly the same frequency. However, in the first embodiment, considering that the timings to be used are different, even if the frequencies are the same, the “uplink frequency to be a pair” and the “downlink frequency to be a pair” are different Sometimes expressed.
 また、図5(A)や図5(B)に示すように、SUL周波数は、組の周波数とは異なる周波数が用いられる。この場合、SUL周波数は、組の周波数よりも低くてもよいし、高くてもよい。 Also, as shown in FIG. 5(A) and FIG. 5(B), as the SUL frequency, a frequency different from the set frequency is used. In this case, the SUL frequency may be lower or higher than the set of frequencies.
 さらに、SULを用いることで、例えば、同一セルにおいて、1つのDLに対して2つのULが形成可能である。2つのULのうち、例えば、1つが組である上り周波数であり、1つがSUL周波数である。 Furthermore, by using SUL, for example, two ULs can be formed for one DL in the same cell. Of the two ULs, for example, one is a set of upstream frequencies and one is a SUL frequency.
 SULが用いられる場合、「SUL周波数」も、「組となる下り周波数」との関係では、2つの周波数が「組」となって、基地局100や端末200で用いられる場合がある。従って、そのような関係の中においては、「SUL周波数」も「組」に含めることも可能である。しかし、本第1の実施の形態では、SUL周波数と組の周波数とで、利用される周波数が異なるため、「SUL周波数」と「組の周波数」とを区別して説明する場合がある。 When SUL is used, the “SUL frequency” may be used by the base station 100 or the terminal 200 as a “group” in relation to the “downstream frequency to be a group”. Therefore, in such a relationship, the "SUL frequency" can be included in the "set". However, in the first embodiment, since the frequencies used are different between the SUL frequency and the group of frequencies, the “SUL frequency” and the “group of frequencies” may be described separately.
 <基地局の構成例>
 図2は、基地局100の構成例を表す図である。
<Example of base station configuration>
FIG. 2 is a diagram illustrating a configuration example of the base station 100.
 基地局100は、アンテナ101と、受信無線部102、受信ベースバンド処理部103、制御情報抽出部104、無線品質測定部105、無線制御部106、メモリ107、制御信号作成部108、送信ベースバンド処理部109、及び送信無線部110を備える。 The base station 100 includes an antenna 101, a reception radio unit 102, a reception baseband processing unit 103, a control information extraction unit 104, a radio quality measurement unit 105, a radio control unit 106, a memory 107, a control signal creation unit 108, and a transmission baseband. The processing unit 109 and the transmission wireless unit 110 are provided.
 なお、基地局100は、受信部120、制御部130、及び送信部140を含む。受信部120は、受信無線部102、受信ベースバンド処理部103、制御情報抽出部104、及び無線品質測定部105を含む。また、制御部130は、無線制御部106を含む。さらに、送信部140は、制御信号作成部108、送信ベースバンド処理部109、及び送信無線部110を含む。 The base station 100 includes a receiver 120, a controller 130, and a transmitter 140. The reception unit 120 includes a reception radio unit 102, a reception baseband processing unit 103, a control information extraction unit 104, and a radio quality measurement unit 105. The control unit 130 also includes the wireless control unit 106. Further, the transmission unit 140 includes a control signal creation unit 108, a transmission baseband processing unit 109, and a transmission wireless unit 110.
 例えば、制御部130は、メモリ107に記憶されたプログラムを読み出して実行することで、無線制御部106の機能を実現することが可能である。制御部130は、例えば、CPU(Central Processing Unit)やDSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)などのコントローラやプロセッサであってもよい。 For example, the control unit 130 can realize the function of the wireless control unit 106 by reading and executing the program stored in the memory 107. The control unit 130 may be, for example, a controller or a processor such as a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and an FPGA (Field Programmable Gate Array).
 アンテナ101は、端末200から送信された無線信号を受信し、受信した無線信号を受信無線部102へ出力する。この場合、上り通信となる。また、アンテナ101は、送信無線部110から出力された無線信号を、端末200へ送信する。この場合、下り通信となる。 The antenna 101 receives the wireless signal transmitted from the terminal 200 and outputs the received wireless signal to the reception wireless unit 102. In this case, uplink communication is performed. Further, the antenna 101 transmits the radio signal output from the transmission radio unit 110 to the terminal 200. In this case, downlink communication is used.
 受信無線部102は、アンテナ101から出力された無線信号に対して、A/D(Analogue to Digital)変換や周波数変換などを行い、無線帯域の無線信号を、ベースバンド帯域の受信信号へ変換(ダウンコンバート)する。受信無線部102には、A/D変換回路や周波数変換回路などが含まれてもよい。受信無線部102は、無線制御部106により指示(又は設定)された下り周波数の無線信号を受信できるように、指示された下り周波数を用いて、周波数変換などの受信処理を行う。 The reception wireless unit 102 performs A/D (Analogue to Digital) conversion, frequency conversion, and the like on the wireless signal output from the antenna 101, and converts the wireless signal in the wireless band into a received signal in the baseband ( Down-convert). The reception wireless unit 102 may include an A/D conversion circuit and a frequency conversion circuit. The reception radio unit 102 performs reception processing such as frequency conversion using the instructed downlink frequency so that the radio signal of the downlink frequency instructed (or set) by the radio control unit 106 can be received.
 受信ベースバンド処理部103は、受信無線部102から出力された受信信号に対して、復調処理や誤り訂正復号処理などを施して、ユーザーデータや制御信号、SRSなどを抽出(又は再生)する。受信ベースバンド処理部103は、抽出したユーザーデータや制御信号をUPF(User Plane Function)やAMF(Access and Mobility Management Function)へそれぞれ出力する。また、受信ベースバンド処理部103は、端末200で測定された下り通信の無線回線品質情報などの制御情報を制御情報抽出部104へ出力する。さらに、受信ベースバンド処理部103は、参照信号(又はリファレンス信号)を無線品質測定部105へ出力する。 The reception baseband processing unit 103 performs demodulation processing, error correction decoding processing, and the like on the reception signal output from the reception wireless unit 102 to extract (or reproduce) user data, control signals, SRS, and the like. The reception baseband processing unit 103 outputs the extracted user data and control signals to UPF (User Plane Function) and AMF (Access and Mobility Management Function), respectively. Further, the reception baseband processing unit 103 outputs control information such as downlink radio channel quality information measured by the terminal 200 to the control information extraction unit 104. Furthermore, the reception baseband processing unit 103 outputs the reference signal (or reference signal) to the wireless quality measuring unit 105.
 本第1の実施の形態では、参照信号として、SRSが用いられる。上述したように、SRSは、無線回線設定がなされていない場合であっても、送受信することが可能な参照信号であって、データや制御信号の送信がなくても、送信可能な参照信号である。ただし、他の参照信号、例えば、Demodulation RS for PUSCHや、Phase-tracking RS for PUSCH、或いはDemodulation RS for PUCCH(Physical Uplink Control Channel)が用いられてもよい。 In the first embodiment, SRS is used as the reference signal. As described above, the SRS is a reference signal that can be transmitted/received even when the wireless line setting is not made, and is a reference signal that can be transmitted without the transmission of data or control signals. is there. However, other reference signals, for example, Demodulation RS for PUSCH, Phase-tracking RS for PUSCH, or Demodulation RS for PUCCH (Physical Uplink Control Channel) may be used.
 制御情報抽出部104は、受信ベースバンド処理部103から出力された信号から制御情報を抽出する。このような制御情報としては、例えば、上述したように、端末200で測定された下り通信における無線回線品質に関する情報などがある。制御情報抽出部104は、抽出した制御情報を無線制御部106へ出力する。 The control information extraction unit 104 extracts control information from the signal output from the reception baseband processing unit 103. As such control information, for example, as described above, there is information about the wireless channel quality in the downlink communication measured by the terminal 200. The control information extraction unit 104 outputs the extracted control information to the wireless control unit 106.
 無線品質測定部105は、受信ベースバンド処理部103から出力されたSRSを利用して、端末200との間の無線回線の品質を測定する。受信ベースバンド処理部103から出力されるSRSには、組となる上り周波数を利用して送信されたSRSと、SUL周波数を利用して送信されたSRSがある。また、複数のSUL周波数の各々の周波数を利用して送信されたSRSがある。 The wireless quality measuring unit 105 uses the SRS output from the reception baseband processing unit 103 to measure the quality of the wireless line with the terminal 200. The SRSs output from the reception baseband processing unit 103 include SRSs transmitted using a pair of upstream frequencies and SRSs transmitted using a SUL frequency. In addition, there is an SRS transmitted using each of the plurality of SUL frequencies.
 無線品質測定部105では、SUL周波数を用いて送信されたSRSを利用して無線品質を測定することで、SUL周波数の無線品質を測定する。また、無線品質測定部105は、組である上り周波数を用いて送信されたSRSを利用して無線品質を測定することで、組である上り周波数の無線品質を測定する。さらに、無線品質測定部105は、複数のSUL周波数の各々を用いて送信されたSRSを利用して無線品質を測定することで、複数のSUL周波数の各々の無線品質を測定する。このように、無線品質測定部105は、SRSを利用して、上り周波数の無線回線品質を直接測定することが可能である。 The wireless quality measuring unit 105 measures the wireless quality of the SUL frequency by measuring the wireless quality using the SRS transmitted using the SUL frequency. Further, the wireless quality measuring unit 105 measures the wireless quality using the SRS transmitted using the upstream frequency that is a group, and thereby measures the wireless quality of the upstream frequency that is a group. Further, the wireless quality measuring unit 105 measures the wireless quality using the SRS transmitted using each of the plurality of SUL frequencies, thereby measuring the wireless quality of each of the plurality of SUL frequencies. In this way, the radio quality measuring unit 105 can directly measure the radio frequency quality of the uplink frequency by using the SRS.
 なお、無線品質測定部105は、例えば、受信したSRSに基づいて、RSRP(reference Signal Received Power)を測定することで、無線回線品質を測定してもよい。或いは、無線品質測定部105は、例えば、無線品質測定部105が作成したSRSと受信したSRSとを比較して得たRSRQ(Reference Signal Received Quality)により、無線回線品質を測定してもよい。無線品質測定部105は、測定結果を、無線制御部106へ出力する。 Note that the wireless quality measuring unit 105 may measure the wireless line quality by measuring RSRP (reference Signal Received Power) based on the received SRS, for example. Alternatively, the wireless quality measuring unit 105 may measure the wireless channel quality by, for example, RSRQ (Reference Signal Received Quality) obtained by comparing the SRS created by the wireless quality measuring unit 105 with the received SRS. The wireless quality measuring unit 105 outputs the measurement result to the wireless control unit 106.
 無線制御部106は、無線回線に関する制御を行う。例えば、無線制御部106は、以下の処理を行う。 The wireless control unit 106 controls the wireless line. For example, the wireless control unit 106 performs the following processing.
 すなわち、無線制御部106は、無線回線設定に関する制御情報(メッセージ)を端末200との間で交換して、無線回線を設定し、設定した無線回線で用いる周波数を、送信無線部110と受信無線部102へ出力する。 That is, the wireless control unit 106 exchanges control information (message) related to the wireless line setting with the terminal 200, sets the wireless line, and sets the frequency used in the set wireless line to the transmission wireless unit 110 and the receiving wireless unit. It is output to the unit 102.
 また、無線制御部106は、組である上り周波数とSUL周波数とをそれぞれ用いて第1及び第2のSRSの送信を要求するSRS送信要求(又は上り参照信号送信要求)と、第1及び第2のSRS送信に関する制御情報とを作成する。無線制御部106は、作成したこれらの情報を、制御信号作成部108を介して、下り周波数を用いて端末200へ送信する。 Further, the radio control unit 106 uses an uplink frequency and a SUL frequency that are a pair, respectively, to request transmission of the first and second SRSs (or an uplink reference signal transmission request), and a first and a second. 2 and control information related to SRS transmission. The radio control unit 106 transmits the created information to the terminal 200 via the control signal creation unit 108 using the downlink frequency.
 さらに、無線制御部106は、複数のSUL周波数を各々用いて各SRSの送信を要求するSRS送信要求と、各SRS送信に関する制御情報とを、端末200へ送信する。 Further, the wireless control unit 106 transmits, to the terminal 200, an SRS transmission request for requesting transmission of each SRS using each of a plurality of SUL frequencies and control information regarding each SRS transmission.
 また、無線制御部106は、組である上り周波数とSUL周波数のうち、端末200との無線通信に使用するいずれか一方の上り周波数を選択する。さらに、無線制御部106は、複数のSUL周波数のうち、端末200との無線通信に使用する、いずれかのSUL周波数を選択する。無線制御部106は、選択結果(又は上り周波数に関する周波数制御情報)を、上り周波数設定情報として、制御信号作成部108へ出力する。無線制御部106は、上り周波数選択に際して、無線品質測定部105からの測定結果を利用して、選択してもよい。選択の詳細などについては、動作例で説明する。 Further, the wireless control unit 106 selects one of the upstream frequencies and the SUL frequencies that are paired, which is used for wireless communication with the terminal 200. Further, the wireless control unit 106 selects one of the SUL frequencies to be used for wireless communication with the terminal 200, from among the plurality of SUL frequencies. The radio control unit 106 outputs the selection result (or frequency control information regarding the uplink frequency) to the control signal creation unit 108 as the uplink frequency setting information. When selecting the uplink frequency, the radio control unit 106 may use the measurement result from the radio quality measurement unit 105 to make the selection. Details of selection and the like will be described in an operation example.
 図3(A)は、無線制御部106の構成例を表す図である。 FIG. 3A is a diagram showing a configuration example of the wireless control unit 106.
 無線制御部106は、上り周波数制御部1060と、システム情報設定管理部1061、無線制御部1062、ランダムアクセス制御部1063、HO(Hand Over)制御部1064、及び無線リソース制御部1065を含む。 The radio control unit 106 includes an uplink frequency control unit 1060, a system information setting management unit 1061, a radio control unit 1062, a random access control unit 1063, a HO (Hand Over) control unit 1064, and a radio resource control unit 1065.
 上り周波数制御部1060は、上り周波数に関する制御を行う。例えば、上り周波数制御部1060は、以下の処理を行う。すなわち、上り周波数制御部1060は、端末200との無線通信に利用する上り周波数(SUL周波数か組となる上り周波数か、或いは、複数のSUL周波数の中から1つのSUL周波数)を選択し、選択結果を、上り周波数設定情報として、制御信号作成部108へ出力する。また、上り周波数制御部1060は、選択した上り周波数を、上り周波数を受信無線部102へ出力する。これにより、上り周波数制御部1060で選択した上り周波数で、基地局100は端末200と上り通信が可能となる。 The upstream frequency control unit 1060 controls the upstream frequency. For example, the uplink frequency control unit 1060 performs the following processing. That is, the upstream frequency control unit 1060 selects and selects an upstream frequency (either the SUL frequency or a pair of upstream frequencies, or one SUL frequency from a plurality of SUL frequencies) used for wireless communication with the terminal 200. The result is output to the control signal creation unit 108 as the uplink frequency setting information. Further, the uplink frequency control unit 1060 outputs the selected uplink frequency to the reception radio unit 102. As a result, the base station 100 can perform uplink communication with the terminal 200 at the uplink frequency selected by the uplink frequency control unit 1060.
 システム情報設定管理部1061は、システム情報の作成や設定などを行う。例えば、システム情報設定管理部1061は、以下の処理を行う。すなわち、システム情報設定管理部1061は、SULとして使用する1又は複数のSUL周波数に関する情報を含むシステム情報を作成し、作成したシステム情報を制御信号作成部108へ出力する。また、システム情報設定管理部1061は、SRS送信要求とSRS送信に関する制御情報を作成し、これらの情報を含むシステム情報を作成する場合がある。詳細は、動作例で説明する。さらに、システム情報設定管理部1061は、例えば、隣接する基地局に関する情報など、種々の情報を含むシステム情報を作成し、制御信号作成部108へ出力する。 The system information setting management unit 1061 creates and sets system information. For example, the system information setting management unit 1061 performs the following processing. That is, the system information setting management unit 1061 creates system information including information about one or more SUL frequencies used as SUL, and outputs the created system information to the control signal creation unit 108. Further, the system information setting management unit 1061 may create the SRS transmission request and the control information related to the SRS transmission, and may create the system information including these pieces of information. Details will be described in an operation example. Furthermore, the system information setting management unit 1061 creates system information including various kinds of information such as information about adjacent base stations, and outputs the system information to the control signal creation unit 108.
 無線制御部1062は、無線回線に関する制御を行う。例えば、無線制御部1062は、以下の処理を行う。 The wireless control unit 1062 controls wireless lines. For example, the wireless control unit 1062 performs the following processing.
 すなわち、無線制御部1062は、SRSの送信要求とSRS送信に関する制御情報を作成し、作成したSRS送信要求とSRS送信に関する制御情報を、制御信号作成部108へ出力する。SRS送信に関する制御情報としては、例えば、端末200においてSRSシーケンスを作成するときに用いられるパラメータと、端末200においてSRS送信に用いる無線リソースを算出するときに用いられるパラメータがある。無線制御部1062は、作成したSRS送信要求とSRS送信に関する制御情報とを制御信号作成部108へ出力する。なお、無線制御部1062は、SRS送信要求を作成しないで、SRS送信に関する制御情報を作成し、作成したSRS送信に関する制御情報を制御信号作成部108へ出力する場合がある。また、無線制御部1062は、下り通信用の参照信号を作成する。無線制御部1062は、作成した参照信号を制御信号作成部108へ出力する。 That is, the wireless control unit 1062 creates an SRS transmission request and control information related to SRS transmission, and outputs the created SRS transmission request and control information related to SRS transmission to the control signal creation unit 108. The control information regarding SRS transmission includes, for example, a parameter used when the terminal 200 creates an SRS sequence and a parameter used when the terminal 200 calculates a radio resource used for SRS transmission. Radio control section 1062 outputs the created SRS transmission request and control information related to SRS transmission to control signal creation section 108. The radio control unit 1062 may create control information about SRS transmission without creating an SRS transmission request, and may output the created control information about SRS transmission to the control signal creation unit 108. Also, the wireless control unit 1062 creates a reference signal for downlink communication. Radio control section 1062 outputs the created reference signal to control signal creation section 108.
 ランダムアクセス制御部1063は、無線回線設定に関する制御を行う。例えば、ランダムアクセス制御部1063は、端末200との間で、ランダムアクセスに関する制御情報(メッセージ)を交換する。このような制御情報としては、例えば、LTEや5Gなどで規定されている「Contention based Random Access」や「Non-contention based Random Access」などのランダムアクセス手順(procedure)に規定されたメッセージがある。ランダムアクセス制御部1063は、このようなランダムアクセス手順によりメッセージを交換することで、ある特定の周波数の無線回線を設定することが可能となる。ランダムアクセス制御部1063は、設定した周波数を、送信無線部110と受信無線部102へ出力(又は設定した周波数で送信処理と受信処理とを行うように指示)する。これにより、以後、設定された周波数で基地局100と端末200は無線通信が可能となる。 The random access control unit 1063 controls the wireless line setting. For example, the random access control unit 1063 exchanges control information (message) related to random access with the terminal 200. Such control information includes, for example, a message specified in a random access procedure (procedure) such as “Contention based Random Access” and “Non-contention based Random Access” defined in LTE and 5G. The random access control unit 1063 can set a wireless line of a specific frequency by exchanging messages according to such a random access procedure. The random access control unit 1063 outputs the set frequency to the transmission wireless unit 110 and the reception wireless unit 102 (or instructs to perform the transmission process and the reception process at the set frequency). As a result, thereafter, the base station 100 and the terminal 200 can wirelessly communicate with each other at the set frequency.
 なお、本第1の実施の形態においては、ランダムアクセス手順の際に、SRS送信が行われ、ランダムアクセス手順の段階で上り周波数選択が行われる場合がある。詳細は動作例で説明する。 Note that in the first embodiment, SRS transmission may be performed during the random access procedure, and upstream frequency selection may be performed at the stage of the random access procedure. Details will be described in an operation example.
 HO制御部1064は、端末200がハンドオーバを行う際の制御を行う。例えば、HO制御部1064は、ハンドオーバに関する制御情報(メッセージ)を端末200との間で交換する。 The HO control unit 1064 controls the terminal 200 when performing a handover. For example, the HO control unit 1064 exchanges control information (message) related to handover with the terminal 200.
 無線リソース制御部1065は、例えば、制御情報抽出部104から出力された下り無線回線品質情報に基づいて、端末200に対して無線リソースの割り当てなどを行う。このような無線リソースの割り当てのことをスケジューリングと称する場合がある。無線リソース制御部1065は、スケジューリング結果を表すスケジューリング情報を、制御信号作成部108へ出力する。 The radio resource control unit 1065 allocates radio resources to the terminal 200, for example, based on the downlink radio channel quality information output from the control information extraction unit 104. Such allocation of radio resources may be referred to as scheduling. Radio resource control section 1065 outputs scheduling information indicating the scheduling result to control signal creation section 108.
 図2に戻り、メモリ107は、例えば、無線制御部106において処理を行う際に利用される情報が記憶される。例えば、メモリ107には、SRS送信に関する制御情報などが記憶されてもよく、この場合、無線制御部106は、メモリ107からこの制御情報を適宜読み出すことが可能である。 Returning to FIG. 2, the memory 107 stores, for example, information used when the wireless control unit 106 performs processing. For example, the memory 107 may store control information regarding SRS transmission, and in this case, the wireless control unit 106 can read this control information from the memory 107 as appropriate.
 制御信号作成部108は、無線制御部106から出力された情報などを含む制御信号を作成し、作成した制御信号を送信ベースバンド処理部109へ出力する。無線制御部106から出力される情報としては、例えば、SRS送信要求、SRS送信に関する制御情報、上り周波数設定情報、スケジューリング情報などがある。 The control signal creation unit 108 creates a control signal including information output from the wireless control unit 106, and outputs the created control signal to the transmission baseband processing unit 109. The information output from the radio control unit 106 includes, for example, an SRS transmission request, control information regarding SRS transmission, uplink frequency setting information, scheduling information, and the like.
 なお、制御信号作成部108は、システム情報設定管理部1061から出力されたシステム情報や無線制御部1062から出力された参照信号については、制御信号としてではなく、そのままシステム情報や参照信号として送信ベースバンド処理部109へ出力してもよい。 Note that the control signal creation unit 108 does not use the system information output from the system information setting management unit 1061 or the reference signal output from the wireless control unit 1062 as the system information or the reference signal, instead of the control signal. You may output to the band process part 109.
 送信ベースバンド処理部109は、UPFやAPFから出力されたユーザーデータや制御信号、制御信号作成部108から出力された制御信号やシステム情報などに対して、誤り訂正符号化処理や変調処理などを施し、これらのデータや信号などをベースバンド信号へ変換する。送信ベースバンド処理部109は、変換後のベースバンド信号を送信無線部110へ出力する。 The transmission baseband processing unit 109 performs error correction coding processing, modulation processing, and the like on the user data and control signals output from the UPF and APF, the control signals and system information output from the control signal creation unit 108, and the like. Then, these data and signals are converted into baseband signals. The transmission baseband processing unit 109 outputs the converted baseband signal to the transmission wireless unit 110.
 送信無線部110は、ベースバンド信号に対して、D/A(Digital to Analogue)変換や周波数変換処理などを施すことで、ベースバンド帯域のベースバンド信号を無線帯域の無線信号へ変換(アップコンバート)する。送信無線部110は、無線制御部106により指示(又は設定)された下り周波数の無線信号となるように、周波数変換などの送信処理を行う。送信無線部110は、無線信号をアンテナ101へ出力する。 The transmission wireless unit 110 performs D/A (Digital to Analog) conversion, frequency conversion processing, and the like on the baseband signal to convert the baseband signal in the baseband band into a wireless signal in the wireless band (upconversion). ) Do. The transmission radio unit 110 performs a transmission process such as frequency conversion so that the radio signal has the downlink frequency instructed (or set) by the radio control unit 106. The transmission radio unit 110 outputs a radio signal to the antenna 101.
 <端末の構成例>
 図4は、端末200の構成例を表す図である。
<Example of terminal configuration>
FIG. 4 is a diagram illustrating a configuration example of the terminal 200.
 端末200は、アンテナ201と、受信無線部202、受信ベースバンド処理部203、制御信号抽出部204、無線品質測定部205、無線制御部206、メモリ207を備える。また、端末200は、制御情報作成部208、SRS作成部209、送信ベースバンド処理部210、及び送信無線部211を備える。 The terminal 200 includes an antenna 201, a reception radio section 202, a reception baseband processing section 203, a control signal extraction section 204, a radio quality measurement section 205, a radio control section 206, and a memory 207. Further, the terminal 200 includes a control information creation unit 208, an SRS creation unit 209, a transmission baseband processing unit 210, and a transmission wireless unit 211.
 なお、端末200は、受信部220、制御部230、送信部240を含む。受信部220は、受信無線部202、受信ベースバンド処理部203、制御信号抽出部204、及び無線品質測定部205を含む。また、制御部230は、無線制御部206を含む。さらに、送信部240は、制御情報作成部208、SRS作成部209、送信ベースバンド処理部210、及び送信無線部211を含む。 Note that the terminal 200 includes a receiving unit 220, a control unit 230, and a transmitting unit 240. The reception unit 220 includes a reception radio unit 202, a reception baseband processing unit 203, a control signal extraction unit 204, and a radio quality measurement unit 205. The control unit 230 also includes a wireless control unit 206. Further, the transmission unit 240 includes a control information creation unit 208, an SRS creation unit 209, a transmission baseband processing unit 210, and a transmission wireless unit 211.
 例えば、制御部230は、メモリ207に記憶されたプログラムを読み出して実行することで、無線制御部206の機能を実現することが可能である。制御部230は、例えば、CPUやDSP、FPGAなどのコントローラやプロセッサであってもよい。 For example, the control unit 230 can realize the function of the wireless control unit 206 by reading and executing the program stored in the memory 207. The control unit 230 may be, for example, a controller such as a CPU, DSP, or FPGA, or a processor.
 アンテナ201は、基地局100から送信された無線信号を受信し、受信した無線信号を受信無線部202へ出力する。この場合、下り通信となる。また、アンテナ201は、送信無線部211から出力された無線信号を、基地局100へ送信する。この場合、上り通信となる。 The antenna 201 receives the radio signal transmitted from the base station 100 and outputs the received radio signal to the reception radio unit 202. In this case, downlink communication is used. Further, the antenna 201 transmits the radio signal output from the transmission radio unit 211 to the base station 100. In this case, uplink communication is performed.
 受信無線部202は、アンテナ201から出力された無線信号に対して、A/D変換や周波数変換などを行い、無線帯域の無線信号を、ベースバンド帯域の受信信号へ変換(ダウンコンバート)する。受信無線部202には、A/D変換回路や周波数変換回路などが含まれてもよい。また、受信無線部202は、無線制御部206により指示(又は設定)された下り周波数の無線信号を受信できるように設定し、設定した下り周波数を用いて基地局100から送信された無線信号に対して周波数変換などの受信処理を行う。受信無線部202は、変換後の受信信号を受信ベースバンド処理部203へ出力する。 The reception radio unit 202 performs A/D conversion, frequency conversion, and the like on the radio signal output from the antenna 201, and converts (down-converts) the radio signal in the radio band into a reception signal in the baseband. The reception wireless unit 202 may include an A/D conversion circuit, a frequency conversion circuit, and the like. In addition, the reception wireless unit 202 is set so as to be able to receive the radio signal of the downlink frequency designated (or set) by the radio control unit 206, and the radio signal transmitted from the base station 100 is set using the set downlink frequency. On the other hand, reception processing such as frequency conversion is performed. Reception radio section 202 outputs the converted reception signal to reception baseband processing section 203.
 受信ベースバンド処理部203は、受信無線部202から出力された受信信号に対して、復調処理や誤り訂正復号処理などを施して、ユーザーデータや制御信号、参照信号などを抽出(又は再生)する。受信ベースバンド処理部203は、抽出したユーザーデータなどを上位レイヤへ出力する。また、受信ベースバンド処理部203は、抽出した制御信号などを制御信号抽出部204へ出力する。さらに、受信ベースバンド処理部203は、抽出した参照信号を、無線品質測定部205へ出力する。 The reception baseband processing unit 203 performs demodulation processing, error correction decoding processing, and the like on the reception signal output from the reception wireless unit 202 to extract (or reproduce) user data, control signals, reference signals, and the like. .. The reception baseband processing unit 203 outputs the extracted user data and the like to the upper layer. In addition, the reception baseband processing unit 203 outputs the extracted control signal and the like to the control signal extraction unit 204. Further, the reception baseband processing unit 203 outputs the extracted reference signal to the wireless quality measuring unit 205.
 制御信号抽出部204は、受信ベースバンド処理部203から出力された制御信号から、SRS送信要求やSRS送信に関する制御情報、上り周波数設定情報、スケジューリング情報などを抽出する。制御信号抽出部204は、抽出したこれらの情報を無線制御部206へ出力する。また、制御信号抽出部204は、受信ベースバンド処理部203から出力されたシステム情報を受け取り、システム情報を無線制御部206へ出力する。 The control signal extraction unit 204 extracts, from the control signal output from the reception baseband processing unit 203, SRS transmission request, control information regarding SRS transmission, upstream frequency setting information, scheduling information, and the like. The control signal extraction unit 204 outputs the extracted information to the wireless control unit 206. Further, the control signal extraction unit 204 receives the system information output from the reception baseband processing unit 203 and outputs the system information to the wireless control unit 206.
 無線品質測定部205は、受信ベースバンド処理部203から出力された参照信号に基づいて、下り通信の無線回線品質を測定する。無線品質測定部205は、例えば、RSRPやRSRQを測定することで、無線回線品質を測定してもよい。 The wireless quality measurement unit 205 measures the wireless line quality of downlink communication based on the reference signal output from the reception baseband processing unit 203. The wireless quality measuring unit 205 may measure the wireless line quality by measuring RSRP or RSRQ, for example.
 無線制御部206は、無線回線に関する制御を行う。 The wireless control unit 206 controls the wireless line.
 図3(B)は無線制御部206の構成例を表す図である。 FIG. 3B is a diagram showing a configuration example of the wireless control unit 206.
 無線制御部206は、SRS送信制御部2060と、システム情報設定管理部2061、無線制御部2062、ランダムアクセス制御部2063、HO制御部2064、及び無線リソース制御部2065を含む。 The radio control unit 206 includes an SRS transmission control unit 2060, a system information setting management unit 2061, a radio control unit 2062, a random access control unit 2063, a HO control unit 2064, and a radio resource control unit 2065.
 SRS送信制御部2060は、SRSの送信を制御する。例えば、SRS送信制御部2060は、以下の処理を行う。すなわち、SRS送信制御部2060は、SRS送信要求とSRS送信に関する制御情報を、制御信号抽出部204から受け取ると、SRS送信に関する制御情報に含まれるSRS作成用のパラメータに従って、SRSを作成するよう、SRS作成部209へ指示する。この際、SRS送信制御部2060は、このSRS作成用のパラメータをSRS作成部209へ出力する。また、SRS送信に関する制御情報には、SRS送信に利用する無線リソースを算出するためのパラメータが含まれる。SRS送信制御部2060は、このパラメータを用いて、SRS送信に用いる無線リソースを算出する。SRS送信制御部2060は、SRSを送信するときは、算出した無線リソースで送信するように、送信無線部211へ指示する。 The SRS transmission control unit 2060 controls SRS transmission. For example, the SRS transmission control unit 2060 performs the following processing. That is, when the SRS transmission control unit 2060 receives the SRS transmission request and the control information related to the SRS transmission from the control signal extraction unit 204, the SRS transmission control unit 2060 creates the SRS according to the parameters for the SRS creation included in the control information related to the SRS transmission, The SRS creating unit 209 is instructed. At this time, the SRS transmission control unit 2060 outputs this SRS creation parameter to the SRS creation unit 209. Further, the control information regarding SRS transmission includes a parameter for calculating a radio resource used for SRS transmission. The SRS transmission control unit 2060 uses this parameter to calculate the radio resource used for SRS transmission. When transmitting the SRS, the SRS transmission control unit 2060 instructs the transmission wireless unit 211 to transmit using the calculated wireless resource.
 システム情報設定管理部2061は、基地局100から送信されたシステム情報に従って、設定などを行う。例えば、システム情報設定管理部2061は、隣接基地局に関する情報などをシステム情報として受け取ったときは、このシステム情報を無線制御部2062へ通知する。なお、端末200は、SRS送信要求とSRS送信に関する制御情報もシステム情報に含まれて受信する場合がある。この場合、システム情報設定管理部2061は、これらの情報を、SRS送信制御部2060へ通知する。 The system information setting management unit 2061 makes settings and the like according to the system information transmitted from the base station 100. For example, when the system information setting management unit 2061 receives the information about the adjacent base station as the system information, the system information setting management unit 2061 notifies the wireless control unit 2062 of this system information. The terminal 200 may receive the SRS transmission request and the control information related to the SRS transmission included in the system information. In this case, the system information setting management unit 2061 notifies the SRS transmission control unit 2060 of this information.
 無線制御部2062は、無線回線に関する制御を行う。例えば、無線制御部2062は、以下の処理を行う。すなわち、無線制御部2062は、制御信号抽出部204から出力された上り周波数設定情報を受け取ると、上り周波数設定情報に含まれる上り周波数を、送信無線部211へ出力する。これにより、無線制御部2062は、上り周波数の設定を行い、以後、送信無線部211は設定された上り周波数で無線通信を行う。また、無線制御部2062は、無線品質測定部205から出力された下り無線回線品質の測定結果を、制御情報作成部208へ出力する。 The wireless control unit 2062 controls the wireless line. For example, the wireless control unit 2062 performs the following processing. That is, when the radio control unit 2062 receives the uplink frequency setting information output from the control signal extracting unit 204, the radio control unit 2062 outputs the uplink frequency included in the uplink frequency setting information to the transmission radio unit 211. As a result, the radio control unit 2062 sets the uplink frequency, and thereafter the transmission radio unit 211 performs radio communication at the set uplink frequency. The radio control unit 2062 also outputs the measurement result of the downlink radio channel quality output from the radio quality measurement unit 205 to the control information creation unit 208.
 ランダムアクセス制御部2063は、無線回線設定に関する制御を行う。例えば、ランダムアクセス制御部2063は、基地局100との間で、ランダムアクセス手順に関する制御情報(メッセージ)を交換する。上述したように、ランダムアクセス制御部2063は、「Contention based Random Access」や「Non-contention based Random Access」で規定されたメッセージを交換する。ランダムアクセス制御部2063は、ランダムアクセス手順によって、ある特定の周波数の無線回線を設定しても良い。その場合、設定した周波数(例えば、ランダムアクセス手順で用いていない周波数)を受信無線部202と送信無線部211へ通知する。これにより、無線回線設定で設定された周波数で、端末200は基地局100と無線通信が可能となる。 The random access control unit 2063 controls the wireless line setting. For example, the random access control unit 2063 exchanges control information (message) regarding the random access procedure with the base station 100. As described above, the random access control unit 2063 exchanges the messages specified by “Contention based Random Access” and “Non-contention based Random Access”. The random access control unit 2063 may set a wireless line of a specific frequency according to a random access procedure. In that case, the set frequency (for example, the frequency not used in the random access procedure) is notified to the reception wireless unit 202 and the transmission wireless unit 211. As a result, the terminal 200 can wirelessly communicate with the base station 100 at the frequency set in the wireless line setting.
 HO制御部2064は、端末200がハンドオーバを行う際の制御を行う。例えば、HO制御部2064は、ハンドオーバに関する制御情報(メッセージ)を基地局100と交換する。 The HO control unit 2064 controls the terminal 200 when performing a handover. For example, the HO control unit 2064 exchanges control information (message) regarding handover with the base station 100.
 無線リソース制御部2065は、制御信号抽出部204から出力されたスケジューリング情報を受け取る。そして、無線リソース制御部2065は、スケジューリング結果に含まれる、端末200に割り当てられた無線リソースを利用して、端末200において送信や受信が行われるよう、受信無線部202や送信無線部211を制御する。例えば、無線リソース制御部2065は、無線リソースに関する情報を受信無線部202や送信無線部211へ出力する。これにより、端末200は、割り当てられた無線リソースで端末200との間でユーザーデータの送受信などを行うことが可能となる。 The radio resource control unit 2065 receives the scheduling information output from the control signal extraction unit 204. Then, the radio resource control unit 2065 controls the reception radio unit 202 and the transmission radio unit 211 so that the terminal 200 can perform transmission and reception by using the radio resources allocated to the terminal 200 included in the scheduling result. To do. For example, the wireless resource control unit 2065 outputs information regarding wireless resources to the reception wireless unit 202 and the transmission wireless unit 211. As a result, the terminal 200 can transmit and receive user data to and from the terminal 200 using the assigned wireless resource.
 図4に戻り、メモリ207は、例えば、無線制御部206が処理を行う際に利用する情報などが記憶される。無線制御部206は、これらの情報などをメモリ207から適宜読み出して、処理を行うことが可能である。 Returning to FIG. 4, the memory 207 stores, for example, information used when the wireless control unit 206 performs processing. The wireless control unit 206 can appropriately read these pieces of information from the memory 207 and perform processing.
 制御情報作成部208は、無線制御部206から出力された情報を含む制御情報を作成し、作成した制御情報を送信ベースバンド処理部210へ出力する。無線制御部206から出力される情報としては、例えば、下り通信の無線回線品質などがある。 The control information creation unit 208 creates control information including the information output from the wireless control unit 206, and outputs the created control information to the transmission baseband processing unit 210. The information output from the wireless control unit 206 includes, for example, wireless communication quality of downlink communication.
 SRS作成部209は、無線制御部206からの指示に従って、SRS送信に関する制御情報に含まれるパラメータに基づいて、SRSを作成する。SRS作成部209は、作成したSRSを送信ベースバンド処理部210へ出力する。 The SRS creating unit 209 creates an SRS based on the parameters included in the control information related to the SRS transmission according to the instruction from the wireless control unit 206. The SRS creation unit 209 outputs the created SRS to the transmission baseband processing unit 210.
 送信ベースバンド処理部210は、上位レイヤ(例えば、MAC:Media Access Control、非特許文献21参照)から出力されたユーザーデータ、制御情報作成部208から出力された制御情報、SRS作成部209から出力されたSRSなどに対して、誤り訂正符号化処理や変調処理などを施し、これらの信号などをベースバンド信号へ変換する。送信ベースバンド処理部210は、変換後のベースバンド信号を送信無線部211へ出力する。 The transmission baseband processing unit 210 outputs user data output from an upper layer (for example, MAC: Media Access Control, see Non-Patent Document 21), control information output from the control information creation unit 208, and output from the SRS creation unit 209. Error correction coding processing, modulation processing, and the like are performed on the generated SRS and the like, and these signals and the like are converted to baseband signals. The transmission baseband processing unit 210 outputs the converted baseband signal to the transmission wireless unit 211.
 送信無線部211は、ベースバンド信号に対して、D/A変換処理や周波数変換処理などを施すことで、ベースバンド帯域のベースバンド信号を無線帯域の無線信号へ変換する。この際、送信無線部211は、無線制御部206から指示された上り周波数の信号となるように無線信号への変換を行う。送信無線部211は、無線信号をアンテナ101へ出力する。 The transmission wireless unit 211 converts the baseband signal in the baseband band into a wireless signal in the wireless band by performing D/A conversion processing and frequency conversion processing on the baseband signal. At this time, the transmission wireless unit 211 performs conversion into a wireless signal so that the signal has the upstream frequency instructed by the wireless control unit 206. The transmission wireless unit 211 outputs a wireless signal to the antenna 101.
 なお、送信無線部211は、例えば、SRS送信制御部2060から指示された上り周波数で、変調等の処理が行われたSRSを送信する。指示される上り周波数としては、組となる上り周波数やSUL周波数がある。これにより、例えば、送信無線部211からは、組となる上り周波数を用いたSRSと、SUL周波数を用いたSRSと送信することが可能となる。また、SRS送信制御部2060は、複数のSUL周波数をそれぞれ用いた複数のSRSを送信することが可能となる。 Note that the transmission wireless unit 211 transmits the SRS that has undergone processing such as modulation at the upstream frequency instructed by the SRS transmission control unit 2060, for example. The instructed upstream frequencies include a pair of upstream frequencies and a SUL frequency. Accordingly, for example, the transmission wireless unit 211 can transmit the SRS using the upstream frequency and the SRS using the SUL frequency that form a pair. Further, the SRS transmission control unit 2060 can transmit a plurality of SRSs that respectively use a plurality of SUL frequencies.
 <動作例>
 動作例は、以下の4つがある。
<Operation example>
There are the following four operation examples.
 1)動作例1 上り無線回線品質を用いた上り周波数選択
 2)動作例2 ランダムアクセス手順における上り周波数選択
 3)動作例3 SUL周波数の端末毎の設定
 4)動作例4 ランダムアクセス手順が失敗した場合のSUL周波数の端末毎の設定
 5)動作例5 測定ギャップを利用したSRS送信
 以下では、この順番で動作例を説明する。
1) Operation example 1 Uplink frequency selection using uplink radio channel quality 2) Operation example 2 Uplink frequency selection in random access procedure 3) Operation example 3 Setting of SUL frequency for each terminal 4) Operation example 4 Random access procedure failed In this case, setting of SUL frequency for each terminal 5) Operation example 5 SRS transmission using measurement gap Hereinafter, an operation example will be described in this order.
 <1.動作例1 上り無線回線品質を用いた上り周波数選択>
 図6と図7は動作例1のシーケンス例を表す図である。
<1. Operation Example 1 Uplink Frequency Selection Using Uplink Radio Channel Quality>
6 and 7 are diagrams showing a sequence example of the operation example 1.
 図6に示すように、基地局(gNB)100は、組である上り周波数f0uとSUL周波数f1uとを用いたSRS送信要求(又は上り参照信号送信要求)と、SRS送信に関する制御情報とを、組である下り周波数f0dを用いて、端末(UE)200へ送信する(S10)。 As shown in FIG. 6, the base station (gNB) 100 transmits an SRS transmission request (or an uplink reference signal transmission request) using the uplink frequency f0u and the SUL frequency f1u, which are a set, and control information related to SRS transmission, It transmits to the terminal (UE) 200 using the downlink frequency f0d which is a set (S10).
 例えば、基地局100は、以下の処理を行う。すなわち、無線制御部1062は、組である上り周波数f0uとSUL周波数f1uとを用いたSRS送信要求と、SRS送信に関する制御情報とを作成する。この際、無線制御部1062は、SRS送信の無線リソースとして、組である上り周波数f0uが算出されるパラメータと、SUL周波数f1uが算出されるパラメータとを含む、SRS送信に関する制御情報を作成する。無線制御部1062は、作成したSRS送信要求とSRS送信に関する制御情報とを制御信号作成部108へ出力する。そして、無線制御部1062は、送信無線部110に対して、組である下り周波数f0dを用いて、SRS送信要求とSRS送信に関する制御情報を送信するように制御する。これにより、送信無線部110からは、組の上り周波数f0uとSUL周波数f1uとを用いたSRS送信要求と、SRS送信に関する制御情報とを、組である下り周波数f0dを用いて、端末200へ送信することが可能となる。 For example, the base station 100 performs the following processing. That is, the radio control unit 1062 creates an SRS transmission request using the upstream frequency f0u and the SUL frequency f1u, which are a set, and control information regarding SRS transmission. At this time, the radio control unit 1062 creates, as radio resources for SRS transmission, control information related to SRS transmission including a parameter for calculating the upstream frequency f0u and a parameter for calculating the SUL frequency f1u. Radio control section 1062 outputs the created SRS transmission request and control information related to SRS transmission to control signal creation section 108. Then, the radio control unit 1062 controls the transmission radio unit 110 to transmit the SRS transmission request and the control information regarding the SRS transmission using the downlink frequency f0d that is a set. As a result, the transmission radio unit 110 transmits the SRS transmission request using the upstream frequency f0u and the SUL frequency f1u of the set and the control information regarding the SRS transmission to the terminal 200 by using the downstream frequency f0d of the set. It becomes possible to do.
 次に、端末200は、組である上り周波数f0uを用いてSRSを送信する(S11)。端末200では、組である上り周波数f0uのSRS送信要求に従って、組である上り周波数f0uを用いてSRSを送信する。 Next, the terminal 200 transmits the SRS using the upstream frequency f0u which is a set (S11). The terminal 200 transmits the SRS by using the uplink frequency f0u which is a group according to the SRS transmission request of the uplink frequency f0u which is a group.
 例えば、端末200は、以下の処理を行う。すなわち、SRS送信制御部2060は、S10で受信した、SRS送信に関する制御情報に含まれるパラメータに従って、組の上り周波数f0uを算出する。SRS送信制御部2060は、算出した組の上り周波数f0uを、送信無線部211へ出力する。また、SRS作成部209は、無線制御部206からの指示に従って、SRS送信に関する制御情報に含まれるパラメータに従って、SRSを作成し、作成したSRSを、送信ベースバンド処理部210を介して送信無線部211へ出力する。これにより、送信無線部211からは、組である上り周波数f0uを用いてSRSを送信することが可能となる。 For example, the terminal 200 performs the following processing. That is, the SRS transmission control unit 2060 calculates the uplink frequency f0u of the set according to the parameter included in the control information regarding the SRS transmission received in S10. The SRS transmission control unit 2060 outputs the calculated set of uplink frequencies f0u to the transmission wireless unit 211. In addition, the SRS creating unit 209 creates an SRS according to a parameter included in the control information regarding SRS transmission according to an instruction from the radio control unit 206, and transmits the created SRS via the transmission baseband processing unit 210 to a transmission radio unit. Output to 211. As a result, the transmission wireless unit 211 can transmit the SRS using the upstream frequency f0u which is a set.
 図8(A)は、組である上り周波数f0uを用いたSRS送信の例を表している。このように、端末200は、上り周波数f0uを用いてSRSを送信することが可能である。 FIG. 8A shows an example of SRS transmission using a pair of upstream frequencies f0u. In this way, the terminal 200 can transmit the SRS using the uplink frequency f0u.
 図6に戻り、次に、基地局100は、上り無線回線品質を測定する(S12)。例えば、無線品質測定部105は、組である上り周波数f0uを用いて送信されたSRSを利用して、上り無線回線品質を測定する。 Returning to FIG. 6, next, the base station 100 measures the uplink radio channel quality (S12). For example, the wireless quality measuring unit 105 measures the upstream wireless channel quality by using the SRS transmitted using the paired upstream frequency f0u.
 次に、端末200は、SUL周波数f1uを用いてSRSを送信する(S13)。端末200では、S10における、SUL周波数f1uを用いたSRS送信要求に従って、SRSを送信する。 Next, the terminal 200 transmits the SRS using the SUL frequency f1u (S13). The terminal 200 transmits the SRS in accordance with the SRS transmission request using the SUL frequency f1u in S10.
 例えば、端末200では、以下の処理を行う。すなわち、SRS送信制御部2060は、S10で受信した、SRS送信に関する制御情報に含まれるパラメータに従って、SUL周波数f1uを算出する。SRS送信制御部2060は、算出したSUL周波数f1uを、送信無線部211へ出力する。また、SRS作成部209は、無線制御部206からの指示に従って、SRS送信に関する制御情報に含まれるパラメータを用いて、SRSを作成し、作成したSRSを、送信ベースバンド処理部210を介して送信無線部211へ出力する。これにより、送信無線部211は、SUL周波数f0uを用いてSRSを送信することが可能となる。 For example, the terminal 200 performs the following processing. That is, the SRS transmission control unit 2060 calculates the SUL frequency f1u according to the parameter included in the control information regarding SRS transmission received in S10. The SRS transmission control unit 2060 outputs the calculated SUL frequency f1u to the transmission wireless unit 211. In addition, the SRS creating unit 209 creates an SRS using parameters included in the control information related to SRS transmission according to an instruction from the radio control unit 206, and transmits the created SRS via the transmission baseband processing unit 210. Output to the wireless unit 211. Thereby, the transmission wireless unit 211 can transmit the SRS using the SUL frequency f0u.
 図8(A)は、SUL周波数f1uを用いたSRS送信の例を表している。このように、端末200は、SUL周波数f1uを用いてSRSを送信することが可能である。 FIG. 8(A) shows an example of SRS transmission using the SUL frequency f1u. In this way, the terminal 200 can transmit the SRS using the SUL frequency f1u.
 図6に戻り、次に、基地局100は、上り無線回線品質を測定する(S14)。例えば、無線品質測定部105は、SUL周波数f1uを用いて送信されたSRSを利用して、上り無線回線品質を測定する。 Returning to FIG. 6, next, the base station 100 measures the uplink radio channel quality (S14). For example, the wireless quality measuring unit 105 measures the upstream wireless channel quality by using the SRS transmitted using the SUL frequency f1u.
 次に、基地局100は、上り周波数を選択する(S15)。例えば、上り周波数制御部1060は、無線品質測定部105から出力された、組である上り周波数f0uに対する無線回線品質測定結果とSUL周波数f1uに対する無線回線品質測定結果とに基づいて、選択する。例えば、上り周波数制御部1060は、無線回線品質の良い方の上り周波数を選択する。ここでは、上り周波数制御部1060は、SUL周波数f1uを選択したものとして、以下説明する。 Next, the base station 100 selects an upstream frequency (S15). For example, the uplink frequency control unit 1060 selects based on the radio channel quality measurement result for the uplink frequency f0u and the radio channel quality measurement result for the SUL frequency f1u, which are output from the radio quality measuring unit 105. For example, the upstream frequency control unit 1060 selects the upstream frequency with the better wireless channel quality. Here, the upstream frequency control unit 1060 will be described below assuming that the SUL frequency f1u is selected.
 次に、基地局100は、選択した上り周波数f1uを端末200へ送信する(S16)。例えば、上り周波数制御部1060は、選択したSUL周波数f1uに関する情報を、制御信号作成部108などを介して、下り周波数を用いて端末200へ送信する。 Next, the base station 100 transmits the selected upstream frequency f1u to the terminal 200 (S16). For example, the uplink frequency control unit 1060 transmits information regarding the selected SUL frequency f1u to the terminal 200 using the downlink frequency via the control signal creation unit 108 and the like.
 次に、基地局100と端末200は、上り周波数f1uと、組である下り周波数f0dとを用いた無線回線を設定する(S17)。例えば、基地局100のランダムアクセス制御部1063と、端末200のランダムアクセス制御部2063との間で、ランダムアクセス手順が実行され、ランダムアクセスに関する制御情報(メッセージ)が交換される。これにより、上り周波数f1uと下り周波数f0dを用いた無線回線が設定され、以後、これらの周波数を用いた無線通信が可能となる。 Next, the base station 100 and the terminal 200 set up a wireless link using the upstream frequency f1u and the paired downstream frequency f0d (S17). For example, a random access procedure is executed between the random access control unit 1063 of the base station 100 and the random access control unit 2063 of the terminal 200, and control information (messages) related to random access is exchanged. As a result, a wireless line using the up frequency f1u and the down frequency f0d is set, and thereafter, wireless communication using these frequencies becomes possible.
 次に、基地局100は、SUL周波数f1uにおけるSRS送信に関する制御情報を端末200へ送信する(S18)。S18以降の処理は、例えば、上りユーザデータ(上りデータ)を送信するために使用するためにSUL周波数f1u内(帯域内)における無線リソースを選択するための処理である。 Next, the base station 100 transmits control information regarding SRS transmission on the SUL frequency f1u to the terminal 200 (S18). The process after S18 is, for example, a process for selecting a radio resource within the SUL frequency f1u (in band) for use in transmitting uplink user data (uplink data).
 図8(B)は、SUL周波数f1u内におけるPUSCH(上り無線共有チャネル又は上り無線データチャネル)とPUCCH(上り無線制御チャネル)の例を表す図である。S18以降の処理では、PUSCHに含まれるSRSを、端末200が送信し、基地局100では、そのSRSに基づいて、SUL周波数f1u内のPUSCHの無線リソースを選択して、端末200に割り当てることになる。 FIG. 8B is a diagram showing an example of PUSCH (uplink radio shared channel or uplink radio data channel) and PUCCH (uplink radio control channel) in the SUL frequency f1u. In the processing of S18 and thereafter, the terminal 200 transmits the SRS included in the PUSCH, and the base station 100 selects the radio resource of the PUSCH in the SUL frequency f1u based on the SRS and allocates it to the terminal 200. Become.
 本処理(S18)では、基地局100は、無線リソース選択のためのSRSを端末200から送信させるために、SRS送信に関する制御情報を送信する。この場合も、S10と同様に、無線制御部1062は、無線リソースの算出の際に周波数f1uとなるパラメータなどを含むSRS送信に関する制御情報を作成し、作成した制御情報を、端末200へ送信すればよい。 In this process (S18), the base station 100 transmits control information regarding SRS transmission in order to cause the terminal 200 to transmit the SRS for wireless resource selection. In this case as well, as in S10, the radio control unit 1062 creates control information regarding SRS transmission including parameters that become the frequency f1u when the radio resource is calculated, and transmits the created control information to the terminal 200. Good.
 なお、基地局100が端末200に対して、無線リソース選択のためにSRS送信を行わせる場合のSRS送信に関する制御情報を「SRS送信制御情報#2」と称する場合がある。また、S10のように、基地局100が端末200に対して、上り周波数選択のためにSRS送信を行わせる場合のSRS送信に関する制御情報を「SRS送信制御情報#1」と称する場合がある。なお、SRS送信制御情報#2は、上り周波数選択後に選択した周波数(帯域幅を持つ周波数)内の無線リソースから使用する無線リソースを選択するものであり、SRS送信制御情報#1は上り周波数を選択するものであることから、両者は明確に区別される。 Note that the control information related to SRS transmission when the base station 100 causes the terminal 200 to perform SRS transmission for wireless resource selection may be referred to as “SRS transmission control information #2”. Further, as in S10, the control information regarding SRS transmission when the base station 100 causes the terminal 200 to perform SRS transmission for upstream frequency selection may be referred to as “SRS transmission control information #1”. The SRS transmission control information #2 is for selecting a radio resource to be used from the radio resources within the selected frequency (frequency having a bandwidth) after selecting the uplink frequency, and the SRS transmission control information #1 is for selecting the uplink frequency. Since they are choices, they are clearly distinguished.
 図6に戻り、次に、端末200は、SUL周波数を利用してSRSを送信する(S19)。例えば、端末200では、以下の処理を行う。すなわち、SRS作成部209は、無線制御部206の指示により、SRSを作成し、送信無線部211へ出力する。また、SRS送信制御部2060は、SRS送信制御情報#2(S18)に含まれるパラメータを利用して、SRS送信のリソースとして、SUL周波数f1uを作成し、送信無線部211へ出力する。送信無線部211は、f1uを利用して、SRSを送信することができる。 Returning to FIG. 6, next, the terminal 200 transmits the SRS by using the SUL frequency (S19). For example, the terminal 200 performs the following processing. That is, the SRS creating unit 209 creates an SRS according to an instruction from the wireless control unit 206 and outputs the SRS to the transmission wireless unit 211. In addition, the SRS transmission control unit 2060 creates the SUL frequency f1u as a resource for SRS transmission using the parameter included in the SRS transmission control information #2 (S18), and outputs the SUL frequency f1u to the transmission wireless unit 211. The transmission wireless unit 211 can transmit the SRS by using f1u.
 次に、基地局100は、上り無線回線品質を測定する(図7のS20)。例えば、無線品質測定部105は、S19で受信したSRSを用いて、上り周波数f1uの無線回線品質を測定する。 Next, the base station 100 measures the uplink radio channel quality (S20 in FIG. 7). For example, the wireless quality measuring unit 105 measures the wireless line quality of the upstream frequency f1u using the SRS received in S19.
 次に、基地局100は、端末200の上り無線リソースを選択する(S21)。例えば、無線リソース制御部1065は、無線品質測定部105から測定結果を受け取り、受け取った測定結果に基づいて、端末200に対する、上り通信における無線リソースを選択する。 Next, the base station 100 selects the uplink radio resource of the terminal 200 (S21). For example, the radio resource control unit 1065 receives the measurement result from the radio quality measurement unit 105, and selects the radio resource in the upstream communication for the terminal 200 based on the received measurement result.
 次に、基地局100は、上り送信用無線リソースを、端末200へ送信する(S22)。例えば、無線リソース制御部1065は、選択した上り通信における無線リソースを、制御信号作成部108などを介して、端末200へ送信する。 Next, the base station 100 transmits the uplink transmission radio resource to the terminal 200 (S22). For example, the radio resource control unit 1065 transmits the selected radio resource in the uplink communication to the terminal 200 via the control signal creation unit 108 and the like.
 次に、端末200は、受信した上り送信用無線リソースを利用して、ユーザーデータを基地局100へ送信する(S23)。例えば、端末200では、以下の処理を行う。すなわち、無線リソース制御部2065は、制御信号から、上り送信用無線リソースを抽出し、抽出した無線リソースでユーザーデータを送信するように、送信無線部211へ指示する。送信無線部211は、その指示に従って、上位レイヤから出力されたユーザーデータを、基地局100へ送信する。 Next, the terminal 200 transmits user data to the base station 100 by using the received uplink transmission radio resource (S23). For example, the terminal 200 performs the following processing. That is, the radio resource control unit 2065 extracts the uplink transmission radio resource from the control signal, and instructs the transmission radio unit 211 to transmit the user data using the extracted radio resource. According to the instruction, the transmission wireless unit 211 transmits the user data output from the upper layer to the base station 100.
 このように動作例1では、端末200は、組である上り周波数を使用したSRSとSUL周波数を使用したSRSを基地局100へ送信する。そして、基地局100は、組である上り周波数又はSUL周波数を選択するようにしている。従って、基地局100は、2つのSRSを用いて、組である上り周波数とSUL周波数の2つの無線回線品質を測定することができ、その結果に応じて、いずれか一方の上り周波数を選択することが可能となる。 As described above, in the operation example 1, the terminal 200 transmits to the base station 100 the SRS using the upstream frequency and the SRS using the SUL frequency, which are a pair. Then, the base station 100 selects a pair of upstream frequency or SUL frequency. Therefore, the base station 100 can measure the two radio channel qualities of the uplink frequency and the SUL frequency, which are a set, by using the two SRSs, and select one of the uplink frequencies according to the result. It becomes possible.
 よって、本通信システム10では、下り周波数の無線回線品質を利用して、上り周波数を選択する場合と比較して、例えば、上り通信の無線回線品質が劣化している周波数を利用することがなくなり、上り通信の無線回線品質の良い周波数を選択することが可能となる。そのため、本通信システム10では、上り通信における伝送速度を改善させ、上り通信のスループットを改善させることが可能となる。 Therefore, in the communication system 10, compared with the case where the uplink frequency is selected by using the radio channel quality of the downlink frequency, for example, the frequency in which the radio channel quality of the uplink communication is deteriorated is not used. It is possible to select a frequency with good uplink communication line quality. Therefore, in the communication system 10, it is possible to improve the transmission rate in uplink communication and improve the throughput of uplink communication.
 <2.動作例2 ランダムアクセス手順における上り周波数選択>
 図9は動作例2のシーケンス例を表す図である。動作例2では、無線回線未設定の端末200に対して、上り周波数の選択を可能とする動作例である。図9に示すシーケンス例は、「Non-contention based Random Access」によるランダムアクセス手順に対応する。
<2. Operation Example 2 Uplink Frequency Selection in Random Access Procedure>
FIG. 9 is a diagram illustrating a sequence example of the operation example 2. The operation example 2 is an operation example in which the uplink frequency can be selected for the terminal 200 to which the wireless link is not set. The sequence example shown in FIG. 9 corresponds to a random access procedure based on “Non-contention based Random Access”.
 ただし、図9に示すシーケンスが行われる前に、システム情報が基地局100から送信(又は報知)され、端末200においてシステム情報を受信したものとする。システム情報には、例えば、SRS送信要求と、組となる上り周波数、複数のSUL周波数候補、SRS送信に関する制御情報、SRS送信用プリアンブル(又は上り制御信号送信用プリアンブル)などが含まれる。 However, it is assumed that the system information is transmitted (or broadcast) from the base station 100 and the system information is received by the terminal 200 before the sequence shown in FIG. 9 is performed. The system information includes, for example, an SRS transmission request, a pair of upstream frequencies, a plurality of SUL frequency candidates, control information regarding SRS transmission, an SRS transmission preamble (or an upstream control signal transmission preamble), and the like.
 上述したように、SRS送信に関する制御情報には、SRS送信に利用される無線リソースを端末200において作成することが可能なパラメータが含まれる。本動作例2では、SRS送信に関する制御情報には、例えば、複数の無線リソースが端末200において作成可能なパラメータが含まれる。すなわち、この制御情報には、例えば、組となる上り周波数の無線リソースが作成可能なパラメータと、1又は複数のSUL周波数の無線リソースが作成可能なパラメータとが含まれる。後述するが、図9に示すランダムアクセス手順(S30~S35)は、複数回行われる場合がある。このとき、毎回、異なる周波数でSRSが送信されるようにするために、基地局100では、システム情報として、複数の無線リソースが可能なパラメータを含むSRS送信に関する制御情報を送信する。 As described above, the control information related to SRS transmission includes a parameter that allows the terminal 200 to create a radio resource used for SRS transmission. In the second operation example, the control information regarding SRS transmission includes, for example, a parameter that allows a plurality of radio resources to be created in the terminal 200. That is, this control information includes, for example, a parameter capable of creating a radio resource of a pair of uplink frequencies and a parameter capable of creating a radio resource of one or a plurality of SUL frequencies. As will be described later, the random access procedure (S30 to S35) shown in FIG. 9 may be performed multiple times. At this time, in order to transmit the SRS at different frequencies every time, the base station 100 transmits, as the system information, control information regarding the SRS transmission including a parameter that allows a plurality of radio resources.
 また、システム情報には、SRS送信用プリアンブルが含まれる。SRS送信用プリアンブルは、例えば、ランダムアクセス手順において、端末200からSRSを送信させて、基地局100において上り周波数を選択させる場合において利用されるプリアンブルとなっている。SRS送信用プリアンブルは、例えば、通常のランダムアクセス手順において用いられるプリアンブルとは識別可能となっており、端末200に対して個別、又は複数の端末200で使用可能なプリアンブルである。 Also, the system information includes a preamble for SRS transmission. The preamble for SRS transmission is, for example, a preamble used when the terminal 200 transmits the SRS and the base station 100 selects the uplink frequency in the random access procedure. The preamble for SRS transmission is, for example, distinguishable from the preamble used in the normal random access procedure, and is a preamble that can be used individually by the terminal 200 or by a plurality of terminals 200.
 このようなシステム情報の送受信に関して、基地局100と端末200は、例えば、以下の処理を行う。すなわち、基地局100のシステム情報設定管理部1061は、組となる上り周波数と、複数のSUL周波数候補、SRS送信に関する制御情報、SRS送信用プリアンブルなどを、メモリ107から読み出して、作成したSRS送信要求とを含むシステム情報を作成する。そして、システム情報設定管理部1061は、作成したシステム情報を送信(又は報知(不特定多数又は特定多数の端末に対して共通情報として送信))する。端末200のシステム情報設定管理部2061は、このシステム情報を受信し、SRS送信要求と、組となる上り周波数、複数のSUL周波数候補、SRS送信に関する制御情報、SRS送信用プリアンブルなどを、メモリ207に記憶する。なお、システム情報の送信は、ブロードキャストまたはマルチキャストを用いて送信される。 Regarding the transmission and reception of such system information, the base station 100 and the terminal 200 perform the following processing, for example. That is, the system information setting management unit 1061 of the base station 100 reads out a set of upstream frequencies, a plurality of SUL frequency candidates, control information regarding SRS transmission, an SRS transmission preamble, and the like from the memory 107, and creates the SRS transmission. Create system information including requests and. Then, the system information setting management unit 1061 transmits (or informs (transmits as common information to unspecified number of terminals or specified number of terminals)) the created system information. The system information setting management unit 2061 of the terminal 200 receives this system information, and stores the SRS transmission request, a pair of upstream frequencies, a plurality of SUL frequency candidates, control information regarding SRS transmission, a preamble for SRS transmission, and the like in the memory 207. Remember. The system information is transmitted using broadcast or multicast.
 システム情報送受信後、端末200は、Random Access Preamble(RAP)(又はMessage 1)を基地局100へ送信する(S30)。例えば、ランダムアクセス制御部2063は、メモリ107に記憶されたSRS送信用プリアンブルを読み出して、これを、送信する。 After transmitting/receiving the system information, the terminal 200 transmits a Random Access Preamble (RAP) (or Message 1) to the base station 100 (S30). For example, the random access control unit 2063 reads the SRS transmission preamble stored in the memory 107 and transmits it.
 次に、基地局100は、SRS request(又はSRS送信要求)を含むRandom Access Response(RAR)(Message 2)を端末200へ送信する(S31)。RARは、例えば、回線設定要求を表している。 Next, the base station 100 transmits a Random Access Response (RAR) (Message 2) including the SRS request (or SRS transmission request) to the terminal 200 (S31). RAR represents, for example, a line setting request.
 図10は、RARのMAC(Media Access Control)レイヤにおけるペイロード領域の構成例を表す図である。図10に示すように、RARには、Reserved bit(又は予約(又は予備)ビット)を表す「R」領域がある。本第1の実施の形態では、この「R」領域を利用して、SRS Requestの有無を表すようにする。例えば、「R」領域が「1」のときは、SRS Requestあり、「0」のときは、SRS Requestなし、とする。例えば、ランダムアクセス制御部1063は、RAPを受信すると、その応答として、「R」領域に「1」を含むSRSを作成する。 FIG. 10 is a diagram showing a configuration example of the payload area in the MAC (Media Access Control) layer of RAR. As shown in FIG. 10, the RAR has an “R” area representing a Reserved bit (or a reserved (or reserved) bit). In the first embodiment, this “R” area is used to indicate the presence/absence of SRS Request. For example, when the "R" area is "1", there is SRS Request, and when it is "0", there is no SRS Request. For example, when receiving the RAP, the random access control unit 1063 creates an SRS including “1” in the “R” area as a response.
 なお、図10に示すように、RARには、その後のScheduled Transmission(Message 3)(以下では、「Message 3」と称する場合がある。)を端末200が送信するときに利用する無線リソースに関する情報が「UL grant」に含まれる。基地局100では、複数の無線リソースが作成可能なパラメータを含むSRS送信に関する制御情報をシステム情報として送信した。そのため、基地局100では、この複数の無線リソースの中から、選択した無線リソースに関する情報を、「UL Ggrant」に含めるようにする。これにより、端末200がMessage 3を送信する際に、Message 3の送信に利用する無線リソースと、SRSの送信に利用する無線リソースとを、基地局100において一致させるようにすることが可能となる。なお、Message 3は、例えば、RRC(Radio Resource Control)接続要求メッセージ(又は接続要求)でもある。 Note that, as shown in FIG. 10, the information about the wireless resource used when the terminal 200 transmits a subsequent Scheduled Transmission (Message 3) (hereinafter, may be referred to as “Message 3”) to the RAR. Is included in "UL grant". The base station 100 transmits, as the system information, the control information regarding the SRS transmission including the parameters capable of creating a plurality of radio resources. Therefore, in the base station 100, the information about the selected radio resource from the plurality of radio resources is included in the “UL Grant”. As a result, when the terminal 200 transmits the Message 3, the radio resource used for the transmission of the Message 3 and the radio resource used for the transmission of the SRS can be matched in the base station 100. .. Note that the Message 3 is also an RRC (Radio Resource Control) connection request message (or connection request), for example.
 図9に戻り、次に、端末200は、Message 3とSRSとを送信する(S32)。例えば、端末200は、以下の処理を行う。 Returning to FIG. 9, next, the terminal 200 transmits Message 3 and SRS (S32). For example, the terminal 200 performs the following processing.
 すなわち、ランダムアクセス制御部2063は、SRS Requestを含むRARを受信すると、「R」領域に含まれるビットを確認して、RARにSRS送信要求が含まれることを確認する。そして、ランダムアクセス制御部2063は、メモリ207から、SRS送信に関する制御情報を読み出して、この制御情報に含まれるパラメータに従ったSRS作成を、SRS作成部209へ指示する。また、ランダムアクセス制御部2063は、このパラメータに従って、SRS送信に利用する無線リソースを算出する。この際、上述したように、ランダムアクセス制御部2063は、複数の無線リソースを算出することが可能である。ランダムアクセス制御部2063は、複数の無線リソースの中で、S31で受信したRARに含まれる「UL grant」により示された無線リソースと一致する無線リソースがあるか否かを確認する。ランダムアクセス制御部2063は、一致することを確認すると、その無線リソースを利用して、Message 3とSRSとを送信するように送信無線部211へ指示する。また、ランダムアクセス制御部2063は、Message 3を作成して、送信無線部211へ向けて出力する。また、SRS作成部209は、ランダムアクセス制御部2063からの指示に従って、SRSを作成し、送信無線部211へ向けて出力する。送信無線部211からは、指示された無線リソースを利用して、Message 3とSRSとが送信される。この場合、SRSは、例えば、Message 3の送信に利用されるPUSCHの最後のシンボルを用いて送信されてもよい。 That is, when the RAR including the SRS Request is received, the random access control unit 2063 checks the bits included in the “R” area to confirm that the RAR includes the SRS transmission request. Then, the random access control unit 2063 reads out the control information regarding the SRS transmission from the memory 207, and instructs the SRS creating unit 209 to create the SRS according to the parameter included in the control information. Also, the random access control unit 2063 calculates the radio resource used for SRS transmission according to this parameter. At this time, as described above, the random access control unit 2063 can calculate a plurality of radio resources. The random access control unit 2063 confirms, among the plurality of radio resources, whether or not there is a radio resource matching the radio resource indicated by “UL grant” included in the RAR received in S31. Upon confirming that they match, the random access control unit 2063 instructs the transmission wireless unit 211 to transmit the Message 3 and the SRS by using the wireless resource. The random access control unit 2063 also creates Message 3 and outputs it to the transmission wireless unit 211. Further, the SRS creation unit 209 creates an SRS according to the instruction from the random access control unit 2063, and outputs it to the transmission wireless unit 211. From the transmission wireless unit 211, the Message 3 and the SRS are transmitted using the designated wireless resource. In this case, the SRS may be transmitted using, for example, the last symbol of the PUSCH used for transmitting the Message 3.
 次に、基地局100は、上り無線回線品質を測定する(S33)。例えば、無線品質測定部105は、S32で受信したSRSを利用して無線回線品質を測定する。SRSは、SRS送信に関する制御情報に含まれる無線リソースのパラメータを用いて送信されているため、ある特定の周波数を利用して送信されたSRSとなっている。そのため、無線品質測定部105は、その周波数を用いて送信されたSRSに対する無線回線品質を測定することで、その上り周波数の無線回線品質を測定することが可能となる。 Next, the base station 100 measures the uplink radio channel quality (S33). For example, the wireless quality measuring unit 105 measures the wireless line quality using the SRS received in S32. Since the SRS is transmitted using the parameter of the radio resource included in the control information regarding SRS transmission, it is the SRS transmitted using a certain specific frequency. Therefore, the wireless quality measuring unit 105 can measure the wireless channel quality of the uplink frequency by measuring the wireless channel quality for the SRS transmitted using that frequency.
 次に、基地局100は、上り周波数を選択する(S34)。例えば、上り周波数制御部1060が、S33で測定した上り無線回線品質が所要品質(又は閾値)以上となっているか否かにより選択してもよい。ここでは、上り無線回線品質が閾値未満となり、所要品質を満たさないとして、以下説明する。 Next, the base station 100 selects an upstream frequency (S34). For example, the uplink frequency control unit 1060 may make a selection depending on whether or not the uplink radio channel quality measured in S33 is equal to or higher than the required quality (or threshold value). Here, it is assumed that the uplink radio channel quality is less than the threshold value and does not satisfy the required quality.
 次に、基地局100は、up link frequecy change requestを含むContention Resolution(Message 4)(以下、「Message 4」と称する場合がある。)を、端末200へ送信する(S35)。up link frequecy change requestは、例えば、SRSを送信する周波数の変更を要求するSRS送信周波数変更要求メッセージである。S32で、端末200が送信したSRSに関し、そのSRS送信に用いた上り周波数の無線回線品質は、所要品質を満たさなかった。そのため、up link frequecy change requestにより、S32でSRS送信に用いた上り周波数と異なる上り周波数を用いてSRSを送信することを、基地局100が端末200に要求するようにしている。up link frequecy change requestには、例えば、変更後のSRS送信周波数が含まれる。例えば、上り周波数制御部1060は、上り無線回線品質が閾値未満であることを確認すると、メモリ107から、変更後の上り周波数の情報を読み出して、この情報を含むup link frequecy change requestを作成して、端末200へ送信する。この場合も、上り周波数は、例えば、システム情報として基地局100が送信した、SRS送信に関する制御情報において無線リソース作成のパラメータにより作成される無線リソースに含まれる周波数となっている。なお、Message 4は、例えば、RRC接続設定要求(又は接続セットアップメッセージ)でもある。 Next, the base station 100 transmits a Contention Resolution (Message 4) (hereinafter, sometimes referred to as “Message 4”) including an up link frequency change request to the terminal 200 (S35). The up link frequency change request is, for example, an SRS transmission frequency change request message requesting a change in the frequency for transmitting the SRS. Regarding the SRS transmitted by the terminal 200 in S32, the radio channel quality of the uplink frequency used for the SRS transmission did not satisfy the required quality. Therefore, the up link frequency change request causes the base station 100 to request the terminal 200 to transmit the SRS using an uplink frequency different from the uplink frequency used for the SRS transmission in S32. The up link frequency change request includes, for example, the changed SRS transmission frequency. For example, when the uplink frequency control unit 1060 confirms that the uplink radio line quality is less than the threshold value, it reads the changed uplink frequency information from the memory 107 and creates an up link frequency change request including this information. And transmits it to the terminal 200. Also in this case, the uplink frequency is, for example, the frequency included in the radio resource created by the radio resource creation parameter in the control information related to SRS transmission, which is transmitted by the base station 100 as system information. Note that the Message 4 is also an RRC connection setting request (or connection setup message), for example.
 そして、処理は、再び、S30へ移行する。すなわち、端末200は、SRS送信用プリアンブルを、基地局100へ送信する(S30)。 Then, the process shifts to S30 again. That is, the terminal 200 transmits the SRS transmission preamble to the base station 100 (S30).
 次に、基地局100は、SRS requestを含むRARを、端末200へ送信する(S31)。この際、RARの「UL grant」には、例えば、S35で送信したSRS送信周波数と同じ無線リソースに関する情報が含まれる。例えば、ランダムアクセス制御部1063は、このような無線リソースを選択して、RARの「UL grant」領域に挿入すればよい。 Next, the base station 100 transmits the RAR including the SRS request to the terminal 200 (S31). At this time, the “UL grant” of the RAR includes, for example, information on the same radio resource as the SRS transmission frequency transmitted in S35. For example, the random access control unit 1063 may select such a radio resource and insert it into the “UL grant” area of the RAR.
 次に、端末200は、S35で指定された上り周波数で、Message 3とSRSを送信する(S32)。 Next, the terminal 200 transmits Message 3 and SRS at the upstream frequency designated in S35 (S32).
 次に、基地局100は、受信したSRSを利用して上り無線回線品質を測定し(S33)、上り周波数を選択する(S34)。ここでは、例えば、基地局100は、上り無線回線品質は閾値以上であり、所要品質を満たすと判断する。 Next, the base station 100 measures the uplink radio channel quality using the received SRS (S33) and selects the uplink frequency (S34). Here, for example, the base station 100 determines that the uplink radio channel quality is equal to or higher than the threshold and satisfies the required quality.
 次に、基地局100は、所要品質を満たす上り周波数を含むup link frequecy change requestを作成する。そして、基地局100は、up link frequecy change requestを含むMessage 4を、端末200へ送信する(S35)。例えば、上り周波数制御部1060は、上り無線回線品質が閾値以上と判断したとき、S32でSRSを受信した際に用いた上り周波数(又はS35で指定した上り周波数、或いはS31で「UL Ggrant」で送信した上り周波数)を選択する。 Next, the base station 100 creates an up link frequency change request including an upstream frequency that satisfies the required quality. Then, the base station 100 transmits the Message 4 including the up link frequency change request to the terminal 200 (S35). For example, when the uplink frequency control unit 1060 determines that the uplink radio channel quality is equal to or higher than the threshold value, the uplink frequency used when the SRS is received in S32 (or the uplink frequency specified in S35, or “UL Grant” in S31). Select the transmitted uplink frequency).
 例えば、1回目のS32でSRSを送信した周波数が、組の上り周波数のとき、基地局100では、組の上り周波数による上り無線回線品質は所要品質を満たさないと判断する。 For example, when the frequency at which the SRS is transmitted in S32 for the first time is the uplink frequency of the group, the base station 100 determines that the uplink radio channel quality by the uplink frequency of the group does not satisfy the required quality.
 一方、例えば、2回目のS32でSRSを送信した周波数が、SUL周波数のとき、基地局100では、SUL周波数による上り無線回線品質は所要品質を満たすと判断する。この場合、基地局100と端末200は、SUL周波数を用いた無線回線の設定を行うことになる。 On the other hand, for example, when the frequency at which the SRS is transmitted in the second S32 is the SUL frequency, the base station 100 determines that the uplink radio channel quality at the SUL frequency satisfies the required quality. In this case, the base station 100 and the terminal 200 will set the wireless channel using the SUL frequency.
 このように、本動作例2では、ランダムアクセス手順において、組となる上り周波数を用いたSRSと、SUL周波数を用いたSRSとを、端末200が送信することが可能となっている。そして、ランダムアクセス手順において、基地局100は、組である上り周波数かSUL周波数かいずれかを選択することができる。 As described above, in the second operation example, the terminal 200 can transmit the SRS using the upstream frequency and the SRS using the SUL frequency in the random access procedure. Then, in the random access procedure, the base station 100 can select either the uplink frequency or the SUL frequency that is a set.
 これにより、例えば、動作例2においても、動作例1と同様に、2つの周波数を利用して送信されたSRSにより、2つの上り無線回線品質を測定し、無線回線品質のよい上り周波数を選択することが可能となる。従って、下り無線回線品質から上り周波数を選択する場合と比較して、上り通信のスループットを改善させることが可能となる。 Thereby, for example, also in the operation example 2, as in the operation example 1, the two uplink radio channel qualities are measured by the SRS transmitted using the two frequencies, and the uplink frequency with good radio channel quality is selected. It becomes possible to do. Therefore, it is possible to improve the throughput of uplink communication as compared with the case where the uplink frequency is selected from the downlink radio channel quality.
 なお、上述した例は、S30からS35の処理を2回繰り返した例について説明した。例えば、S30からS35の処理を3回以上繰り返してもよい。この場合、基地局100は、毎回、S32において送信されるSRSの送信周波数を変更し、異なる送信周波数で端末200からSRSを送信させるようにする。基地局100では、毎回、上り無線回線品質を測定し、全ての上り周波数の中で、最良となる上り周波数を選択してもよい。或いは、基地局100は、閾値を超えたときの上り周波数を選択するようにしてもよい。或いは、基地局100と端末200は、S30からS35の処理を1回だけ行い、そのときの上り無線回線品質が閾値以上となっているときは、その上り周波数(例えば、組となる上り周波数)を選択するようにしてもよい。 In the above example, the process of S30 to S35 was repeated twice. For example, the processing from S30 to S35 may be repeated three times or more. In this case, the base station 100 changes the transmission frequency of the SRS transmitted in S32 every time so that the terminal 200 transmits the SRS at a different transmission frequency. The base station 100 may measure the uplink radio channel quality each time and select the best uplink frequency among all the uplink frequencies. Alternatively, the base station 100 may select the uplink frequency when the threshold is exceeded. Alternatively, the base station 100 and the terminal 200 perform the processing from S30 to S35 only once, and when the uplink radio channel quality at that time is equal to or higher than the threshold value, the uplink frequency (for example, a pair of uplink frequencies) May be selected.
 また、上述した例では、SRS送信用のランダムアクセスプリアンブルについて説明した。このSRS送信用のランダムアクセスプリアンブルは、例えば、端末200個別に1つのプリアンブルであってもよいし、複数のプリアンブルであってもよい。複数の場合、端末200は、システム情報として送信された、複数のSRS送信用ランダムアクセスプリアンブルから任意の1つを選択して、送信する(S30)ことになる。 Also, in the above example, the random access preamble for SRS transmission was explained. The random access preamble for SRS transmission may be, for example, one preamble for each terminal 200 or a plurality of preambles. In the case of a plurality of terminals, the terminal 200 selects any one of the plurality of random access preambles for SRS transmission transmitted as the system information, and transmits it (S30).
 さらに、上述した例では、SRSがS32で送信される例を説明した。例えば、S30により、SRS送信用のランダムアクセスプリアンブルとともにSRSが送信されてもよい。この場合、端末200は、例えば、システム情報で受信した、SRS送信に関する制御情報に含まれるパラメータを利用して無線リソースを算出し、算出した無線リソースを用いて、RAPとSRSを送信する。 Furthermore, in the above-mentioned example, the example in which the SRS is transmitted in S32 has been described. For example, in S30, the SRS may be transmitted together with the random access preamble for SRS transmission. In this case, the terminal 200 calculates the radio resource by using the parameter included in the control information related to the SRS transmission received in the system information, and transmits the RAP and the SRS by using the calculated radio resource.
 具体的には、端末200では、例えば、以下の処理を行う。すなわち、SRS送信制御部2060は、SRS送信に関する制御情報に含まれるパラメータを利用して無線リソースを算出して、送信無線部211へ指示する。また、ランダムアクセス制御部2063は、RAPを作成して、送信無線部211へ向けて出力する。さらに、SRS作成部209は、SRS送信制御部2060の指示に従って、SRSを作成して、送信無線部211へ向けて出力する。送信無線部211からは、指示された無線リソースを利用して、RAPとSRSが送信される。 Specifically, the terminal 200 performs the following processing, for example. That is, the SRS transmission control unit 2060 calculates radio resources using the parameters included in the control information regarding SRS transmission, and instructs the transmission radio unit 211. Also, the random access control unit 2063 creates a RAP and outputs it to the transmission wireless unit 211. Further, the SRS creation unit 209 creates an SRS according to the instruction of the SRS transmission control unit 2060 and outputs it to the transmission wireless unit 211. The transmission wireless unit 211 transmits the RAP and the SRS using the designated wireless resource.
 <3.動作例3 SUL周波数の端末毎の設定>
 図11と図12は、動作例3におけるシーケンス例を表す図である。動作例3は、例えば、SUL周波数を端末200毎に設定する動作例である。
<3. Operation example 3 SUL frequency setting for each terminal>
11 and 12 are diagrams showing a sequence example in the operation example 3. Operation example 3 is an operation example of setting the SUL frequency for each terminal 200, for example.
 図11に示すように、端末200は、セル選択により、基地局100を選択する(S40)。 As shown in FIG. 11, the terminal 200 selects the base station 100 by cell selection (S40).
 次に、基地局100は、組である上り周波数fxと、組である下り周波数fyを含むシステム情報を送信する(S41)。例えば、システム情報設定管理部1061は、メモリ107から2つの周波数fx,fyを読み出し、これらの周波数を含むシステム情報を作成して送信する。端末200は、基地局100から送信されたシステム情報を受信する。 Next, the base station 100 transmits system information including the paired up frequency fx and the paired down frequency fy (S41). For example, the system information setting management unit 1061 reads the two frequencies fx and fy from the memory 107, creates system information including these frequencies, and transmits the system information. The terminal 200 receives the system information transmitted from the base station 100.
 次に、基地局100と端末200は、組である上り周波数fxと、組である下り周波数fyとによる無線回線設定を行う(S42)。基地局100と端末200は、通常のランダムアクセス手順に従って、2つの周波数fx,fyによる無線回線を設定する。 Next, the base station 100 and the terminal 200 perform wireless line setting based on the paired up frequency fx and the paired down frequency fy (S42). The base station 100 and the terminal 200 set up a wireless channel with two frequencies fx and fy according to a normal random access procedure.
 次に、基地局100は、上り周波数fxにおけるSRS送信に関する制御情報(「SRS送信制御情報#2」)を、端末200へ送信する(S43)。基地局100は、SRS送信に関する制御情報とともに、上り周波数fxを用いたSRS送信要求を端末200へ送信してもよい。 Next, the base station 100 transmits control information (“SRS transmission control information #2”) related to SRS transmission at the uplink frequency fx to the terminal 200 (S43). The base station 100 may transmit an SRS transmission request using the uplink frequency fx to the terminal 200 together with control information regarding SRS transmission.
 次に、端末200は、S43で受信したSRS送信に関する制御情報を利用して、SRSを作成し、上り周波数fxを算出し、作成したSRSを上り周波数fxを用いて送信する(S44)。この場合のSRSは、例えば、図8(B)に示すように、上り周波数fx内の無線リソースを基地局100において選択するためのものである。 Next, the terminal 200 uses the control information relating to the SRS transmission received in S43 to create the SRS, calculates the upstream frequency fx, and transmits the created SRS using the upstream frequency fx (S44). The SRS in this case is for selecting a radio resource within the uplink frequency fx in the base station 100, as shown in FIG. 8B, for example.
 図11に戻り、次に、基地局100は、上り無線回線品質を測定する(S45)。例えば、無線品質測定部105は、上り周波数fxを用いて送信されたSRSを用いて、上り無線回線品質を測定する。 Returning to FIG. 11, next, the base station 100 measures the uplink radio channel quality (S45). For example, the radio quality measurement unit 105 measures the uplink radio channel quality using the SRS transmitted using the uplink frequency fx.
 次に、基地局100は、上り無線リソースを選択する(S46)。例えば、無線リソース制御部1065は、上り無線回線品質を無線品質測定部105から受け取り、上り無線回線品質が閾値(又は所要品質)以上であれば、S44で用いた上り周波数fxを選択し、そうでないときは、上り周波数fxを選択しない。ここでは、無線リソース制御部1065は、上り無線回線品質が閾値より低いため、上り周波数fxを選択しないものとして、以下説明する。 Next, the base station 100 selects an upstream radio resource (S46). For example, the radio resource control unit 1065 receives the uplink radio channel quality from the radio quality measurement unit 105, and if the uplink radio channel quality is equal to or higher than a threshold value (or required quality), selects the uplink frequency fx used in S44, If not, the upstream frequency fx is not selected. Here, the radio resource control unit 1065 will be described below assuming that the uplink frequency fx is not selected because the uplink radio channel quality is lower than the threshold value.
 例えば、上り周波数fxの無線回線品質は、ランダムアクセス手順が成功できるレベルではあるものの、ユーザーデータを送信するレベル(QoS(Quality of Service)など)ではない場合となっている。従って、閾値は、このQoSに対応する値であってもよい。 For example, the wireless line quality of the uplink frequency fx is at a level at which the random access procedure can be successful, but is not at a level at which user data is transmitted (QoS (Quality of Service) etc.). Therefore, the threshold may be a value corresponding to this QoS.
 基地局100は、組である上り周波数fxによる上り無線回線品質が所要品質を満たさない場合、複数のSUL周波数候補(f1,f2,f3,…)通知を送信する(S47)。例えば、無線制御部1062は、メモリ107から、複数のSUL周波数候補を読み出して、SUL周波数候補通知を作成し、端末200へ向けて送信する。この際、無線制御部1062は、S42で設定した下り周波数fyを用いてSUL周波数候補通知を送信するように、送信無線部110へ指示する。これにより、送信無線部110からは、SUL周波数候補通知が下り周波数fyを用いて送信される。 The base station 100 transmits a plurality of SUL frequency candidate (f1, f2, f3,...) Notifications when the uplink radio channel quality by the pair of uplink frequencies fx does not satisfy the required quality (S47). For example, the wireless control unit 1062 reads a plurality of SUL frequency candidates from the memory 107, creates a SUL frequency candidate notification, and transmits the SUL frequency candidate notification to the terminal 200. At this time, the radio control unit 1062 instructs the transmission radio unit 110 to transmit the SUL frequency candidate notification using the downlink frequency fy set in S42. As a result, the transmission wireless unit 110 transmits the SUL frequency candidate notification using the downlink frequency fy.
 次に、基地局100は、SUL周波数候補f1,f2,…におけるSRS送信に関する制御情報を端末200へ送信する(S48)。このとき、基地局100は、例えば、端末200を識別するSRS送信用端末識別子を、SRS送信に関する制御情報に含めてもよい。図11では、SRS送信用端末識別子として、RNTI(Radio Network Temporary Identification)(又はSRS送信用RNTI)を用いている。これにより、例えば、基地局100では、後段のSRS送信において、端末200から送信された複数のSRSと、他の端末から送信された複数のSRSとを識別することが可能となる。なお、基地局100は、SRS送信に関する制御情報とともに、SRS送信要求を、端末200へ送信してもよい。 Next, the base station 100 transmits control information regarding SRS transmission in the SUL frequency candidates f1, f2,... To the terminal 200 (S48). At this time, the base station 100 may include, for example, the SRS transmission terminal identifier that identifies the terminal 200 in the control information regarding SRS transmission. In FIG. 11, an RNTI (Radio Network Temporary Identification) (or an RNTI for SRS transmission) is used as an SRS transmission terminal identifier. Thereby, for example, in the base station 100, in the subsequent SRS transmission, it is possible to identify the plurality of SRSs transmitted from the terminal 200 and the plurality of SRSs transmitted from other terminals. In addition, the base station 100 may transmit the SRS transmission request to the terminal 200 together with the control information regarding the SRS transmission.
 例えば、基地局100では、以下の処理を行う。すなわち、無線制御部1062は、メモリ107から、SUL周波数候補f1におけるSRS送信に関する制御情報、SUL周波数候補f2におけるSRS送信に関する制御情報などを読み出す。また、無線制御部1062は、メモリ107から、SRS送信用RNTIを読み出す。無線制御部1062は、SRS送信用RNTIを含むSRS送信に関する制御情報を作成し、端末200へ向けて送信する。さらに、無線制御部1062は、SRS送信要求を作成し、制御情報とともに、端末200へ送信してもよい。なお、SRS送信用RNTIの値は、SUL周波数や上り周波数fxと組である下り周波数fyに対してそれぞれ異なる値であってもよいし、少なくとも一部の周波数に対して同一の値であってもよい。 For example, the base station 100 performs the following processing. That is, the radio control unit 1062 reads, from the memory 107, control information regarding SRS transmission in the SUL frequency candidate f1 and control information regarding SRS transmission in the SUL frequency candidate f2. Further, the wireless control unit 1062 reads the SRS transmission RNTI from the memory 107. Radio control section 1062 creates control information relating to SRS transmission including RNTI for SRS transmission, and transmits it to terminal 200. Further, the wireless control unit 1062 may create an SRS transmission request and transmit it to the terminal 200 together with the control information. It should be noted that the value of the RNTI for SRS transmission may be different for the SUL frequency or the downlink frequency fy that is a pair with the uplink frequency fx, or may be the same value for at least some frequencies. Good.
 次に、端末200は、複数のSUL周波数候補を各々用いてSRSを送信する(S49)。例えば、SRS送信制御部2060は、SUL周波数候補f1に関する制御情報(S48)を利用して、SUL周波数候補f1のSRSを送信し、SUL周波数候補f2に関する制御情報(S48)を利用して、SUL周波数候補f2のSRSを送信する。 Next, the terminal 200 transmits the SRS using each of the plurality of SUL frequency candidates (S49). For example, the SRS transmission control unit 2060 transmits the SRS of the SUL frequency candidate f1 by using the control information (S48) regarding the SUL frequency candidate f1, and uses the control information (S48) regarding the SUL frequency candidate f2 by using the SUL. The SRS of the frequency candidate f2 is transmitted.
 なお、端末200は、複数のSUL周波数候補f1,f2,…のうち、端末200において対応していない(又は送信することができない)周波数が存在する場合がある。この場合、端末200は、対応していないSUL周波数を用いたSRSを送信しなくてもよく、対応するSUL周波数を用いて、SRSを送信すればよい。 The terminal 200 may have a frequency that the terminal 200 does not support (or cannot transmit) among the plurality of SUL frequency candidates f1, f2,.... In this case, the terminal 200 does not have to transmit the SRS using the unsupported SUL frequency, and may transmit the SRS using the corresponding SUL frequency.
 次に、基地局100は、複数のSUL周波数候補を各々用いて送信されたSRSを利用して、複数の上り無線回線品質を測定する(S50)。 Next, the base station 100 measures a plurality of uplink radio channel qualities by using the SRS transmitted using each of the plurality of SUL frequency candidates (S50).
 そして、基地局100は、複数のSUL周波数候補の中から、上り周波数を選択する(S51)。例えば、上り周波数制御部1060は、複数の上り無線回線品質のうち、最良の上り無線回線品質を有するSUL周波数候補を選択する。図11の例では、上り周波数制御部1060は、SUL周波数候補f2を選択する。以後、SUL周波数候補f2は、候補ではなく、SUL周波数f2として用いられる。 Then, the base station 100 selects the upstream frequency from the plurality of SUL frequency candidates (S51). For example, the uplink frequency control unit 1060 selects the SUL frequency candidate having the best uplink radio channel quality from the plurality of uplink radio channel qualities. In the example of FIG. 11, the upstream frequency control unit 1060 selects the SUL frequency candidate f2. After that, the SUL frequency candidate f2 is used as the SUL frequency f2, not as a candidate.
 次に、基地局100は、周波数変更通知を端末200へ送信する(図12のS52)。上り周波数は、図12の例では、S42で無線回線設定した、組である上り周波数fxから、S51で選択したSUL周波数f2へ変更される。例えば、上り周波数制御部1060は、S51で選択したSUL周波数f2を変更後の周波数として、制御信号作成部108などを介して、端末200へ送信する。 Next, the base station 100 transmits a frequency change notification to the terminal 200 (S52 in FIG. 12). In the example of FIG. 12, the upstream frequency is changed from the upstream frequency fx, which is a set of the wireless channels set in S42, to the SUL frequency f2 selected in S51. For example, the uplink frequency control unit 1060 transmits the SUL frequency f2 selected in S51 as the changed frequency to the terminal 200 via the control signal generation unit 108 and the like.
 次に、基地局100と端末200は、変更後の上り周波数(SUL周波数f2)と、組である下り周波数fyとを用いた無線回線設定を行う(S53)。ここでは、例えば、SUL周波数f2と下り周波数fyとを用いた通常のランダムアクセス手順を行って、無線回線設定を行えばよい。 Next, the base station 100 and the terminal 200 perform wireless line setting using the changed upstream frequency (SUL frequency f2) and the downstream frequency fy as a pair (S53). Here, for example, a normal random access procedure using the SUL frequency f2 and the downlink frequency fy may be performed to set the wireless line.
 以降、S54からS56までは、例えば、図8(B)で説明した上り無線リソースの選択のための処理である。 After that, S54 to S56 are, for example, the process for selecting the uplink radio resource described in FIG. 8B.
 すなわち、基地局100は、SUL周波数f2におけるSRS送信に関する制御情報(「SRS送信制御情報#2」)を端末200へ送信する(S54)。この際、基地局100は、SRS送信要求を、制御情報とともに送信してもよい。端末200は、受信したSRSに関する制御情報を利用して、SUL周波数f2を用いてSRSを送信する(S55)。基地局100は、受信したSRSを利用して、SUL周波数f2内における上り無線リソースを選択する(S56)。そして、基地局100は、スケジューリング結果として、選択した上り無線リソースを含む上り送信用無線リソースを端末200へ送信する(S57)。端末200は、上り送信用無線リソースを利用して、ユーザーデータを基地局100へ送信する(S58)。 That is, the base station 100 transmits the control information regarding the SRS transmission on the SUL frequency f2 (“SRS transmission control information #2”) to the terminal 200 (S54). At this time, the base station 100 may transmit the SRS transmission request together with the control information. The terminal 200 transmits the SRS using the SUL frequency f2 by using the received control information regarding the SRS (S55). The base station 100 uses the received SRS to select an uplink radio resource within the SUL frequency f2 (S56). Then, the base station 100 transmits an uplink transmission radio resource including the selected uplink radio resource to the terminal 200 as the scheduling result (S57). The terminal 200 transmits the user data to the base station 100 by using the uplink transmission radio resource (S58).
 このように本動作例3では、無線回線設定した、組である上り周波数fxが所要品質を満たさないとき、基地局100は、複数のSUL周波数候補の中から、端末200毎にSUL周波数を設定することが可能となっている。図11の例では、基地局100は、端末200に対しては、SUL周波数f2を設定したが、SUL周波数候補f1,f2,…の中から、他のSUL周波数を設定してもよい。また、基地局100は、他の端末に対しても、SUL周波数候補f1,f2,…の中から、いずれかのSUL周波数を設定するようにしてもよい。 As described above, in the present operation example 3, when the uplink frequency fx, which is a set of wireless channels, does not satisfy the required quality, the base station 100 sets the SUL frequency for each terminal 200 from the plurality of SUL frequency candidates. It is possible to do. In the example of FIG. 11, the base station 100 sets the SUL frequency f2 for the terminal 200, but may set another SUL frequency from the SUL frequency candidates f1, f2,.... Further, the base station 100 may set any SUL frequency from the SUL frequency candidates f1, f2,... For other terminals.
 従って、例えば、動作例3においても、動作例1と同様に、組である上り周波数fx(S44)とSUL周波数(S49)とを利用して送信されたSRSにより、無線回線品質の良い上り周波数を選択することが可能となる。 Therefore, for example, also in the operation example 3, as in the operation example 1, the SRS transmitted using the pair of the up frequency fx (S44) and the SUL frequency (S49) allows the up frequency with good radio channel quality to be obtained. Can be selected.
 また、本動作例3では、基地局100では、複数のSUL周波数の中から、SUL周波数を選択することが可能である。さらに、基地局100と端末200は、SUL周波数を変更し、変更後のSUL周波数を用いて上り通信が可能となる。この際、基地局100では、端末200毎に、SRSを用いて、最適なSUL周波数を選択することができ、端末200個別にSUL周波数を制御することが可能である。 In addition, in this operation example 3, the base station 100 can select the SUL frequency from a plurality of SUL frequencies. Further, the base station 100 and the terminal 200 change the SUL frequency, and uplink communication is possible using the changed SUL frequency. At this time, the base station 100 can select the optimal SUL frequency by using the SRS for each terminal 200, and can control the SUL frequency for each terminal 200 individually.
 よって、本動作例3における通信システム10では、下り無線回線品質から上り周波数を選択する場合と比較して、上り通信のスループット改善を図ることが可能となる。 Therefore, in the communication system 10 in the present operation example 3, it is possible to improve the throughput of the upstream communication as compared with the case where the upstream frequency is selected from the downlink wireless line quality.
 <4.動作例4 ランダムアクセス手順が失敗した場合のSUL周波数の端末毎の設定>
 動作例3では、ランダムアクセス手順が成功した場合の例について説明した。動作例4では、ランダムアクセス手順が失敗した場合のSUL周波数の端末毎の設定について説明する。
<4. Operation Example 4 Setting of SUL Frequency for Each Terminal When Random Access Procedure Fails>
In the operation example 3, the example in which the random access procedure is successful has been described. In operation example 4, setting of the SUL frequency for each terminal when the random access procedure fails will be described.
 なお、動作例4には、2つの動作例がある。1番目は、基地局100が複数のSUL周波数候補f1,f2,…の中からSUL周波数を設定する例(動作例4-1)である。2番目は、基地局100がSUL周波数f1による無線回線を設定後、所要品質を満たさないため、他の複数のSUL周波数候補f2,f3,…からSUL周波数を設定する例(動作例4-2)である。最初に動作例4-1を説明する。 Note that operation example 4 has two operation examples. The first is an example (operation example 4-1) in which the base station 100 sets the SUL frequency from the plurality of SUL frequency candidates f1, f2,.... Secondly, since the base station 100 does not satisfy the required quality after setting the wireless channel with the SUL frequency f1, an example of setting the SUL frequency from a plurality of other SUL frequency candidates f2, f3,... (Operation example 4-2) ). First, the operation example 4-1 will be described.
 <4.1 動作例4-1>
 図13と図14は動作例4-1のシーケンス例を表す図である。
<4.1 Operation Example 4-1>
13 and 14 are diagrams showing a sequence example of the operation example 4-1.
 図13に示すように、端末200は、セル選択により、基地局100を選択する(S60)。 As shown in FIG. 13, the terminal 200 selects the base station 100 by cell selection (S60).
 次に、基地局100は、SUL周波数候補f1,f2,f3,…を含むシステム情報を送信(又は報知)する(S61)。端末200は、このシステム情報を受信する。 Next, the base station 100 transmits (or notifies) system information including the SUL frequency candidates f1, f2, f3,... (S61). The terminal 200 receives this system information.
 例えば、基地局100のシステム情報設定管理部1061は、メモリ107からSUL周波数候補f1,f2,f3,…を読み出し、これらを含むシステム情報を作成して、端末200へ送信する。また、例えば、端末200のシステム情報設定管理部2061は、基地局100から送信されたシステム情報を受信する。 For example, the system information setting management unit 1061 of the base station 100 reads the SUL frequency candidates f1, f2, f3,... From the memory 107, creates system information including these, and transmits the system information to the terminal 200. In addition, for example, the system information setting management unit 2061 of the terminal 200 receives the system information transmitted from the base station 100.
 次に、基地局100と端末200は、通常のランダムアクセス手順により無線回線設定を行うが、ランダムアクセス手順を失敗する(S62)。この場合に無線回線設定を行おうとした周波数は、FDDの場合、組である上り周波数fxと組みである下り周波数fy、TDDの場合、周波数fxである。 Next, the base station 100 and the terminal 200 perform wireless line setting by the normal random access procedure, but fail the random access procedure (S62). In this case, the frequency for which the wireless line setting is attempted is the upstream frequency fx and the downstream frequency fy in the case of FDD, and the frequency fx in the case of TDD.
 次に、基地局100は、複数のSUL周波数候補f1,f2,…におけるSRS送信に関する制御情報(「SRS送信制御情報#1」)を、端末200へ送信する(S63)。この場合も、基地局100は、動作例3(図11のS48)と同様に、各端末200を識別するために、SRS送信用端末識別子として、SRS送信用RNTIを含む、SRS送信に関する制御情報を送信する。また、基地局100は、SRS送信要求も、制御情報とともに送信してもよい。 Next, the base station 100 transmits control information (“SRS transmission control information #1”) regarding SRS transmission in the plurality of SUL frequency candidates f1, f2,... To the terminal 200 (S63). Also in this case, the base station 100 includes the control information about SRS transmission including the SRS transmission RNTI as the SRS transmission terminal identifier in order to identify each terminal 200, as in the operation example 3 (S48 in FIG. 11). To send. The base station 100 may also transmit the SRS transmission request together with the control information.
 次に、端末200は、複数のSUL周波数候補の各々を用いてSRSを送信する(S64)。 Next, the terminal 200 transmits the SRS using each of the plurality of SUL frequency candidates (S64).
 次に、基地局100は、各SUL周波数候補を用いた送信されたSRSに基づいて、各上り無線回線品質を測定し(S65)、上り周波数を選択する(S66)。この場合も、基地局100は、複数の上り無線回線品質のうち最良の品質を有するSUL周波数候補を選択してもよい。図13の例では、基地局100は、SUL周波数候補f2を選択する。 Next, the base station 100 measures the quality of each uplink radio channel based on the transmitted SRS using each SUL frequency candidate (S65) and selects the uplink frequency (S66). Also in this case, the base station 100 may select the SUL frequency candidate having the best quality among the plurality of uplink radio channel qualities. In the example of FIG. 13, the base station 100 selects the SUL frequency candidate f2.
 次に、基地局100は、選択したSUL周波数(f2)を端末200へ送信する(S67)。 Next, the base station 100 transmits the selected SUL frequency (f2) to the terminal 200 (S67).
 そして、基地局100と端末200は、SUL周波数f2に対する無線回線設定を行う(S68)。無線回線設定対象の周波数は、FDDの場合、SUL周波数f2と、組である下り周波数fy、TDDの場合、SUL周波数f2と組みである下り周波数fxとなる。 Then, the base station 100 and the terminal 200 perform wireless line setting for the SUL frequency f2 (S68). In the case of FDD, the frequency for which the wireless line is set is the SUL frequency f2 and the downlink frequency fy, which is the set, and in the case of TDD, the SUL frequency f2 and the downlink frequency fx, which is the set.
 以降、S69から図14のS71は、SUL周波数f2内における無線リソース選択のための処理となる。すなわち、基地局100は、SUL周波数f2におけるSRS送信に関する制御情報(「SRS送信制御情報#2」)を、端末200へ送信する(S69)。この際、基地局100は、制御情報とともに、SRS送信要求を送信してもよい。次に、端末200は、SUL周波数f2を用いてSRSを、基地局100へ送信する(S70)。基地局100は、制御情報とともに、SRS送信要求を送信してもよい。そして、基地局100は、SRSに基づいて、SUL周波数f2内における上り無線リソースを選択し(図14のS71)、選択した上り無線リソースを、上り送信用無線リソースとして、端末200へ送信する(S72)。端末200は、SUL周波数f2を用いて、ユーザーデータを送信する(S73)。 Thereafter, S69 to S71 of FIG. 14 are processes for selecting a wireless resource within the SUL frequency f2. That is, the base station 100 transmits the control information (“SRS transmission control information #2”) regarding the SRS transmission on the SUL frequency f2 to the terminal 200 (S69). At this time, the base station 100 may transmit the SRS transmission request together with the control information. Next, the terminal 200 transmits the SRS to the base station 100 using the SUL frequency f2 (S70). The base station 100 may transmit the SRS transmission request together with the control information. Then, the base station 100 selects an uplink radio resource in the SUL frequency f2 based on the SRS (S71 in FIG. 14) and transmits the selected uplink radio resource to the terminal 200 as an uplink transmission radio resource ( S72). The terminal 200 transmits user data by using the SUL frequency f2 (S73).
 <4.2 動作例4-2>
 図15と図16は、動作例4-2のシーケンス例を表す図である。
<4.2 Operation Example 4-2>
15 and 16 are diagrams showing a sequence example of the operation example 4-2.
 図15に示すように、端末200は、セル選択により、基地局100を選択する(S80)。 As shown in FIG. 15, the terminal 200 selects the base station 100 by cell selection (S80).
 次に、基地局100は、システム情報を送信(又は報知)する(S81)。FDDの場合、システム情報には、SUL周波数f1と、組の周波数(組である上り周波数fxと組みである下り周波数fy)とが含まれる。また、TDDの場合、システム情報には、SUL周波数f1と、周波数fxとが含まれる。例えば、システム情報設定管理部1061は、メモリ107からこれらの周波数に関する情報を読み出して、システム情報に含めて送信すればよい。端末200は、基地局100から送信されたシステム情報を受信する。 Next, the base station 100 transmits (or notifies) the system information (S81). In the case of FDD, the system information includes the SUL frequency f1 and the set frequency (the set up frequency fx and the set down frequency fy). In the case of TDD, the system information includes the SUL frequency f1 and the frequency fx. For example, the system information setting management unit 1061 may read the information regarding these frequencies from the memory 107, and include the information in the system information for transmission. The terminal 200 receives the system information transmitted from the base station 100.
 次に、基地局100と端末200は、通常の無線回線設定を行うが、失敗する(S82)。無線回線設定の対象周波数は、FDDの場合、組である上り周波数fxと組みである下り周波数fy、TDDの場合、周波数fxである。 Next, the base station 100 and the terminal 200 perform normal wireless line setting, but the setting fails (S82). The target frequency of the wireless line setting is an upstream frequency fx and a downstream frequency fy in the case of FDD, and a frequency fx in the case of TDD.
 なお、TDDの場合の周波数fxは、例えば、そのタイミングによって、下り周波数と上り周波数となり得るため、周波数fxは、組である下り周波数と、組である上り周波数に分けることも可能である。 Note that the frequency fx in the case of TDD can be a downlink frequency and an uplink frequency depending on the timing, for example, so the frequency fx can be divided into a downlink frequency that is a set and an uplink frequency that is a set.
 次に、基地局100と端末200は、SULを用いたランダムアクセス手順により無線回線設定を行う(S83)。この場合、無線回線設定の対象周波数は、FDDの場合、SUL周波数と組みである下り周波数fy、TDDの場合、SUL周波数と組みである下り周波数fxとなる。 Next, the base station 100 and the terminal 200 perform wireless line setting by a random access procedure using SUL (S83). In this case, the target frequency of the wireless line setting is the downlink frequency fy which is a combination with the SUL frequency in the case of FDD, and the downlink frequency fx which is a combination with the SUL frequency in the case of TDD.
 S84からS87までは、無線回線設定されたSUL周波数f1に対する、上り無線リソース選択のための処理となる。すなわち、基地局100は、SUL周波数f1におけるSRS送信に関する制御情報(「SRS送信制御情報#2」)を端末200へ送信する(S84)。この際、基地局100は、制御情報とともにSRS送信要求を送信してもよい。次に、端末200は、この制御情報に基づいて、SUL周波数f1を用いて、SRSを送信する(S85)。そして、基地局100は、受信したSRSに基づいて、上り無線回線品質を測定し(S86)、SUL周波数f1内の上り無線リソースを選択する(S87)。しかし、基地局100は、図15の例では、SUL周波数f1が所要品質を満たすことができず、SUL周波数f1を選択することができないと判断する。 From S84 to S87, the process for selecting the upstream radio resource for the SUL frequency f1 for which the radio line is set is performed. That is, the base station 100 transmits control information (“SRS transmission control information #2”) related to SRS transmission on the SUL frequency f1 to the terminal 200 (S84). At this time, the base station 100 may transmit the SRS transmission request together with the control information. Next, the terminal 200 transmits the SRS using the SUL frequency f1 based on this control information (S85). Then, the base station 100 measures the uplink radio channel quality based on the received SRS (S86) and selects the uplink radio resource within the SUL frequency f1 (S87). However, in the example of FIG. 15, the base station 100 determines that the SUL frequency f1 cannot satisfy the required quality and the SUL frequency f1 cannot be selected.
 次に、基地局100は、複数のSUL周波数候補f2,f3,…を送信する(S88)。また、基地局100は、複数のSUL周波数候補f2,f3,…におけるSRS送信に関する制御情報(「SRS送信制御情報#1」)を送信する(S89)。このとき、基地局100は、制御情報とともに、SRS送信要求を送信してもよい。次に、端末200は、複数のSUL周波数候補f2,f3,…の各々の周波数を用いてSRSを送信する(S90)。 Next, the base station 100 transmits a plurality of SUL frequency candidates f2, f3,... (S88). Further, the base station 100 transmits control information (“SRS transmission control information #1”) regarding SRS transmission in the plurality of SUL frequency candidates f2, f3,... (S89). At this time, the base station 100 may transmit the SRS transmission request together with the control information. Next, the terminal 200 transmits the SRS using each frequency of the plurality of SUL frequency candidates f2, f3,... (S90).
 基地局100は、複数のSRSに基づいて、複数の上り無線回線品質を測定し(S91)、SUL周波数候補からSUL周波数を選択する(図16のS92)。図16の例では、基地局100は、SUL周波数f2を選択する。 The base station 100 measures a plurality of uplink radio channel qualities based on a plurality of SRSs (S91) and selects a SUL frequency from SUL frequency candidates (S92 in FIG. 16). In the example of FIG. 16, the base station 100 selects the SUL frequency f2.
 次に、基地局100は、変更後のSUL周波数f2を送信する(S93)。 Next, the base station 100 transmits the changed SUL frequency f2 (S93).
 そして、基地局100と端末200は変更後のSUL周波数f2を用いた無線回線設定を行う(S94)。この場合、無線回線設定の対象周波数は、FDDの場合、上り周波数はSUL周波数f2、下り周波数は組である周波数fy、TDDの場合、上り周波数はSUL周波数f2、下り周波数は組である周波数fyとなる。 Then, the base station 100 and the terminal 200 perform wireless line setting using the changed SUL frequency f2 (S94). In this case, in the case of FDD, the target frequency of the wireless link setting is the SUL frequency f2 for the upstream frequency, the frequency fy for the downstream frequency is a set, and the frequency for the TDD is the SUL frequency f2 for the downstream, and the frequency fy is the frequency for the downstream. Becomes
 以降は、変更後のSUL周波数f2内における無線リソース選択のための処理となる。すなわち、基地局100は、SUL周波数f2におけるSRS送信に関する制御情報(「SRS送信制御情報#2」)を端末200へ送信する(S95)。このとき、基地局100は、制御情報とともに、SRS送信要求を送信してもよい。端末200は、SUL周波数f2を用いてSRSを送信する(S96)。基地局100は、受信したSRSに基づいて、SUL周波数f2が所要品質を満たすものとして、SUL周波数f2内の上り無線リソースを選択し(S97)、上り送信用無線リソースを端末200へ送信する(S98)。端末200は、SUL周波数f2を用いて、ユーザーデータを送信する(S99)。 After that, the processing is for selecting a wireless resource within the SUL frequency f2 after the change. That is, the base station 100 transmits control information (“SRS transmission control information #2”) related to SRS transmission on the SUL frequency f2 to the terminal 200 (S95). At this time, the base station 100 may transmit the SRS transmission request together with the control information. The terminal 200 transmits the SRS using the SUL frequency f2 (S96). Based on the received SRS, the base station 100 determines that the SUL frequency f2 satisfies the required quality, selects the uplink radio resource within the SUL frequency f2 (S97), and transmits the uplink transmission radio resource to the terminal 200 ( S98). The terminal 200 transmits user data using the SUL frequency f2 (S99).
 動作例4-1,4-2においては、通常のランダムアクセス手順が失敗した場合、基地局100は、複数のSUL周波数候補の中から、端末200毎に、SUL周波数を設定することが可能となる。その際、基地局100は、複数のSUL周波数候補におけるSRS送信に関する制御情報を送信し、端末200は、複数のSUL周波数候補の各々を利用したSRSを送信する。そして、基地局100は、複数のSUL周波数候補の中からSUL周波数を選択している。 In operation examples 4-1 and 4-2, when the normal random access procedure fails, the base station 100 can set the SUL frequency for each terminal 200 from the plurality of SUL frequency candidates. Become. At that time, the base station 100 transmits control information regarding SRS transmission in a plurality of SUL frequency candidates, and the terminal 200 transmits an SRS using each of the plurality of SUL frequency candidates. Then, the base station 100 selects the SUL frequency from the plurality of SUL frequency candidates.
 従って、動作例4-1,4-2においても、基地局100は、例えば、複数のSUL周波数の中から、SUL周波数を選択することが可能となる。また、基地局100と端末200は、SUL周波数を変更し、変更後のSUL周波数で上り通信が可能となる。この際、基地局100では、端末200毎に、SRSを用いて、最適なSUL周波数を選択することが可能となり、端末200個別にSUL周波数を設定することが可能となる。 Therefore, also in the operation examples 4-1 and 4-2, the base station 100 can select the SUL frequency from a plurality of SUL frequencies, for example. In addition, the base station 100 and the terminal 200 change the SUL frequency, and uplink communication is possible with the changed SUL frequency. At this time, the base station 100 can select the optimum SUL frequency using the SRS for each terminal 200, and can set the SUL frequency for each terminal 200.
 よって、本動作例3における通信システム10では、下り無線回線品質から上り周波数を選択する場合と比較して、上り通信のスループット改善を図ることが可能となる。 Therefore, in the communication system 10 in the present operation example 3, it is possible to improve the throughput of the upstream communication as compared with the case where the upstream frequency is selected from the downlink wireless line quality.
 なお、動作例4-1,4-2は、例えば、下り周波数を変更することなく上り周波数を変更しているため、上り周波数については、異周波数へのハンドオーバと考えることも可能である。 Note that, in the operation examples 4-1 and 4-2, for example, since the upstream frequency is changed without changing the downstream frequency, the upstream frequency can be considered as a handover to a different frequency.
 <5.動作例5 測定ギャップを利用したSRS送信>
 LTEでは、例えば、端末200が接続先の基地局100ではなく他の基地局へハンドオーバするとき、他の基地局との間の下り無線回線品質を測定するために、測定ギャップ(measurement gap)と呼ばれる無通信期間(GAP)が設定されている。端末200は、無通信期間を利用して、他の基地局から送信された信号を受信して、その通信品質を測定する。
<5. Operation example 5 SRS transmission using measurement gap>
In LTE, for example, when the terminal 200 is handed over to another base station instead of the connection destination base station 100, a measurement gap (measurement gap) is set in order to measure downlink radio channel quality with the other base station. A so-called no-communication period (GAP) is set. The terminal 200 receives a signal transmitted from another base station and measures the communication quality thereof during the non-communication period.
 本動作例5では、例えば、無通信期間(new GAP)を設ける。端末200は、無通信期間で、測定対象の周波数を利用してSRSを送信する。測定対象の周波数としては、例えば、組である上り周波数とSUL周波数がある。従来の(LTEの)測定ギャップは、端末200が下り無線回線品質を測定するための無通信期間であるが、ここでは、基地局100が上り無線回線品質を測定するために、端末200がSRSを送信するための期間である。接続中(接続先)の基地局100との通信を停止することから無通信期間とも言える。 In this operation example 5, for example, a non-communication period (new GAP) is provided. The terminal 200 transmits the SRS using the frequency to be measured during the non-communication period. The frequencies to be measured include, for example, a pair of upstream frequency and SUL frequency. The conventional (LTE) measurement gap is a non-communication period for the terminal 200 to measure downlink radio channel quality, but here, since the base station 100 measures uplink radio channel quality, the terminal 200 uses the SRS. Is the period for sending. It can also be said to be a non-communication period because the communication with the base station 100 being connected (connected) is stopped.
 図17(A)と図17(B)はTDDの場合の無通信期間の設定例を表す図である。図17(A)は通信中の周波数faにおける設定例、図17(B)は測定対象の周波数fbにおける設定例をそれぞれ表す。なお、図17(A)などにおける1つの枠は、例えば、サブフレーム(期間)を表す。 FIG. 17(A) and FIG. 17(B) are diagrams showing a setting example of the non-communication period in the case of TDD. 17A shows a setting example at the frequency fa during communication, and FIG. 17B shows a setting example at the measurement target frequency fb. Note that one frame in FIG. 17A or the like represents a subframe (period), for example.
 図17(A)に示すように、基地局100は、あるタイミングで下り通信を利用して、SRS送信に関する制御情報を送信し、端末200は、SRS送信に関する制御情報を受信する。 As shown in FIG. 17A, the base station 100 uses downlink communication at a certain timing to transmit control information regarding SRS transmission, and the terminal 200 receives control information regarding SRS transmission.
 基地局100は、SRS送信に関する制御情報に、無通信期間の開始時間や長さなど、無通信期間に関する情報を含めて、端末200へ送信する。これにより、図17(B)に示すように、無通信期間(GAP)において、端末200は、測定対象周波数fbを用いてSRSを送信する。 The base station 100 transmits to the terminal 200 the control information related to the SRS transmission including the information about the non-communication period such as the start time and the length of the non-communication period. As a result, as illustrated in FIG. 17B, the terminal 200 transmits the SRS using the measurement target frequency fb during the non-communication period (GAP).
 基地局100では、例えば、以下の処理を行う。すなわち、無線制御部1062は、測定対象の周波数fbが算出可能なパラメータと、無通信期間に関する情報などを含む、SRS送信に関する制御情報を作成する。無線制御部1062は、送信無線部110を制御して、通信中の周波数faにおける、ある下り通信の期間において、SRS送信に関する制御情報を送信する。一方、端末200のSRS送信制御部2060では、SRS送信に関する制御情報に基づいて、SRSを作成し、測定周波数fbを算出し、測定周波数fbを用いてSRSを送信する。 The base station 100 performs the following processing, for example. That is, the radio control unit 1062 creates control information regarding SRS transmission including a parameter with which the frequency fb to be measured can be calculated and information regarding the non-communication period. The radio control unit 1062 controls the transmission radio unit 110 to transmit control information regarding SRS transmission during a certain downlink communication period at the frequency fa during communication. On the other hand, the SRS transmission control unit 2060 of the terminal 200 creates the SRS based on the control information regarding the SRS transmission, calculates the measurement frequency fb, and transmits the SRS using the measurement frequency fb.
 図17(C)から図17(F)はFDDの場合の無通信期間の設定例を表す図である。このうち、図17(C)と図17(D)は、通信中の周波数faにおける下り通信(fa_dl)と上り通信(fa_ul)の設定例をそれぞれ表す。また、図17(E)と図17(F)は、測定周波数fbにおける下り通信(fb_dl)と上り通信(fb_ul)の設定例をそれぞれ表す。 FIG. 17C to FIG. 17F are diagrams showing setting examples of the non-communication period in the case of FDD. Of these, FIG. 17C and FIG. 17D respectively show setting examples of downlink communication (fa_dl) and uplink communication (fa_ul) at the frequency fa during communication. Further, FIGS. 17E and 17F respectively show setting examples of downlink communication (fb_dl) and uplink communication (fb_ul) at the measurement frequency fb.
 図17(C)に示すように、基地局100は、通信中の周波数faを用いて、SRS送信に関する制御情報を端末200へ送信する。制御情報には、TDDの場合と同様に、無通信期間の開始時間や長さなど、無通信期間に関する情報が含まれる。そして、図17(F)に示すように、端末200は、SRS送信に関する制御情報に基づいて、SRSを作成し、測定用の上り周波数fbを算出し、上り通信期間において、上り周波数fbを用いて、SRSを送信する。 As shown in FIG. 17(C), the base station 100 transmits control information regarding SRS transmission to the terminal 200 using the frequency fa during communication. As in the case of TDD, the control information includes information about the non-communication period such as the start time and length of the non-communication period. Then, as illustrated in FIG. 17F, the terminal 200 creates the SRS based on the control information regarding the SRS transmission, calculates the upstream frequency fb for measurement, and uses the upstream frequency fb in the upstream communication period. Then, the SRS is transmitted.
 TDDの場合でも、FDDの場合でも、基地局100は、測定周波数fbを、組である上り周波数やSUL周波数とすることが可能である。これにより、端末200は、端末200は、設定された無通信期間において、組である上り周波数を用いてSRSを送信し、次の設定された無通信期間において、SUL周波数を用いてSRSを送信することが可能となる。以後、動作例1などと同様に、基地局100は、例えば、SRSに基づいて上り無線回線品質を測定し、組である上り周波数又はSUL周波数を選択すればよい。なお、上記では、組である上り周波数とSUL周波数の間で上り周波数を変更する場合で説明したが、同様に複数のSUL周波数間で上り周波数を変更することも可能である。 In both the case of TDD and the case of FDD, the base station 100 can set the measurement frequency fb to the upstream frequency or the SUL frequency as a set. As a result, the terminal 200 transmits the SRS using the uplink frequency that is a pair in the set no-communication period, and transmits the SRS using the SUL frequency in the next set no-communication period. It becomes possible to do. After that, as in the operation example 1 and the like, the base station 100 may measure the uplink radio channel quality based on, for example, the SRS, and select the uplink frequency or the SUL frequency as a set. In the above description, the case where the upstream frequency is changed between the upstream frequency and the SUL frequency that are a set has been described, but it is also possible to similarly change the upstream frequency between a plurality of SUL frequencies.
 図18(A)から図18(F)は、無通信期間の他の設定例を表す。図17(A)から図17(F)では、通信中の周波数faを用いて、制御情報を送信した。図18(A)から図18(F)では、測定対象の周波数fbを用いて、制御情報を送信する例を表している。 18A to 18F show other setting examples of the non-communication period. In FIGS. 17A to 17F, the control information is transmitted using the frequency fa during communication. 18A to 18F show an example in which control information is transmitted using the frequency fb to be measured.
 すなわち、最初の無通信期間で、基地局100が、SRS送信に関する制御情報を、測定対象の周波数fb(又はfb_dl)を利用して送信する。そして、次の無通信期間で、端末200が、周波数fb(又はfb_ul)を利用して、SRSを送信する。この場合も、測定対象周波数fbを、組である上り周波数やSUL周波数とすることで、端末200では、組である上り周波数やSUL周波数を用いてSRSを送信することが可能となる。 That is, in the first non-communication period, the base station 100 transmits control information regarding SRS transmission using the frequency fb (or fb_dl) to be measured. Then, in the next non-communication period, the terminal 200 transmits the SRS by using the frequency fb (or fb_ul). Also in this case, by setting the measurement target frequency fb to the upstream frequency or the SUL frequency that is a group, the terminal 200 can transmit the SRS using the upstream frequency or the SUL frequency that is the group.
 以上、動作例1~5まで説明した。 Above, operation examples 1 to 5 have been explained.
 <6.動作例2における基地局の動作例>
 次に、動作例2の基地局100における動作例について説明する。動作例2は説明したため、主に、上り周波数選択の処理(図9のS34)について説明する。
<6. Operation Example of Base Station in Operation Example 2>
Next, an operation example of the base station 100 of the operation example 2 will be described. Since the operation example 2 has been described, the upstream frequency selection process (S34 in FIG. 9) will be mainly described.
 図19と図20は、基地局100における動作例を表すフローチャートである。 19 and 20 are flowcharts showing an operation example in the base station 100.
 基地局100は、処理を開始すると(S100)、システム情報を送信する(S101)。システム情報には、組である上り周波数fu_0と、複数のSUL周波数fu_1,…,fu_k、ランダムアクセス制御情報、及びSRS送信に関する制御情報等が含まれる。 When the base station 100 starts processing (S100), it transmits system information (S101). The system information includes a set of upstream frequencies fu_0, a plurality of SUL frequencies fu_1,..., Fu_k, random access control information, control information regarding SRS transmission, and the like.
 次に、基地局100は、nに「0」を設定し(n=0)、RSRP_maxに「0」を設定する(S102)。ここで、例えば、nは、繰り返し回数(1≦n≦k)であり、RSRP_maxは、上り無線回線品質の最大値をそれぞれ表す。無線回線品質としては、例えば、RSRPを用いる。例えば、ランダムアクセス制御部1063は、メモリ107に、n=0とRSRP_max=0を記憶する。 Next, the base station 100 sets n to “0” (n=0) and sets RSRP_max to “0” (S102). Here, for example, n is the number of repetitions (1≦n≦k), and RSRP_max represents the maximum value of uplink radio channel quality. As the wireless line quality, for example, RSRP is used. For example, the random access control unit 1063 stores n=0 and RSRP_max=0 in the memory 107.
 次に、基地局100は、組である上り周波数fu_0(fu_nにおいて、n=0)を用いて、端末200から送信されたRAPを受信する(S103)。図9のS30に対応する処理である。例えば、ランダムアクセス制御部1063が、RAPを受信する。 Next, the base station 100 receives the RAP transmitted from the terminal 200 using the pair of upstream frequencies fu_0 (n=0 in fu_n) (S103). This is processing corresponding to S30 in FIG. For example, the random access control unit 1063 receives the RAP.
 図19に戻り、次に、基地局100は、組である下り周波数fd_0を用いて、RARを送信する(S104)。図9のS31で説明したように、例えば、ランダムアクセス制御部1063は、RARのMACペイロードにおける「R」領域に「1」を含ませて、RARを送信する。 Returning to FIG. 19, next, the base station 100 transmits the RAR using the downlink frequency fd_0 that is a pair (S104). As described in S31 of FIG. 9, for example, the random access control unit 1063 transmits “RAR” by including “1” in the “R” area in the MAC payload of RAR.
 図19に戻り、次に、基地局100は、組である上り周波数fu_0を用いて、端末200から送信された、Message 3とSRSを受信する(S105)。図9のS32に対応する。例えば、ランダムアクセス制御部1063は、周波数fu_0でSRSを受信する。 Returning to FIG. 19, next, the base station 100 receives the Message 3 and the SRS transmitted from the terminal 200, using the pair of upstream frequencies fu_0 (S105). This corresponds to S32 in FIG. For example, the random access control unit 1063 receives the SRS with the frequency fu_0.
 図19に戻り、次に、基地局100は、無線回線品質を測定する(S106)。図9のS33に対応する。例えば、上り周波数制御部1060は、S105で受信したSRSに基づいて、RSRPを測定し、無線回線品質RSRP_fu_0として、メモリ107に記憶する。 Returning to FIG. 19, next, the base station 100 measures the wireless line quality (S106). This corresponds to S33 of FIG. For example, the uplink frequency control unit 1060 measures RSRP based on the SRS received in S105, and stores it in the memory 107 as radio line quality RSRP_fu_0.
 次に、基地局100は、測定した無線回線品質RSRP_fu_0が、無線回線品質の最大値RSRP_maxより大きいか否かを判定する(S107)。例えば、上り周波数制御部1060は、メモリ107から、測定した無線回線品質RSRP_fu_0と、無線回線品質の最大値RSRP_maxとを読み出して、比較すればよい。 Next, the base station 100 determines whether or not the measured wireless line quality RSRP_fu_0 is greater than the maximum wireless line quality value RSRP_max (S107). For example, the uplink frequency control unit 1060 may read out the measured wireless channel quality RSRP_fu_0 and the maximum wireless channel quality RSRP_max from the memory 107 and compare them.
 基地局100は、測定した無線回線品質RSRP_fu_0が無線回線品質の最大値RSRP_maxよりも大きいとき(S107でYes)、無線回線品質の最大値RSRP_maxを、測定した無線回線品質RSRP_fu_0とし、fu=0とする(S108)。ここで、fuは、例えば、上り周波数の番号を表す。例えば、上り周波数制御部1060は、無線回線品質の最大値RSRP_maxに測定した無線回線品質RSRP_fu_0を代入し、RSRP_max=RSRP_fu_0と、fu=0とをメモリ107に記憶する。 When the measured wireless channel quality RSRP_fu_0 is larger than the maximum wireless channel quality value RSRP_max (Yes in S107), the base station 100 sets the maximum wireless channel quality value RSRP_max to the measured wireless channel quality RSRP_fu_0, and fu=0. (S108). Here, fu represents, for example, an upstream frequency number. For example, the uplink frequency control unit 1060 substitutes the measured wireless line quality RSRP_fu_0 into the maximum value RSRP_max of the wireless line quality, and stores RSRP_max=RSRP_fu_0 and fu=0 in the memory 107.
 一方、基地局100は、測定した無線回線品質RSRP_fu_0が無線回線品質の最大値RSRP_max以下のとき(S107でNo)、S108の処理を行うことなく、図20のS109へ移行する。 On the other hand, when the measured wireless channel quality RSRP_fu_0 is less than or equal to the maximum wireless channel quality value RSRP_max (No in S107), the base station 100 shifts to S109 in FIG. 20 without performing the process of S108.
 基地局100は、図19のS108を終了したとき、又は、S107でNoと判定したとき、繰り返し回数nが「k」になったか否かを判定する(図20のS109)。 The base station 100 determines whether or not the number of repetitions n has become “k” when S108 of FIG. 19 is ended or when it is determined No in S107 (S109 of FIG. 20).
 基地局100は、繰り返し回数n=kではないとき(S109でNo)、下り周波数fd_0を用いて、up link frequency change requestを含むMessage 4を送信する(S110)。上り周波数変更要求には、例えば、変更後の上り周波数fu_1とSRS送信要求とが含まれる。そして、再び、図19のS103へ移行して、変更後の上り周波数fu_1によるランダムアクセス手順を行う(S103~S105)。 When the number of repetitions is not n=k (No in S109), the base station 100 uses the downlink frequency fd_0 to transmit the Message 4 including the up link frequency change request (S110). The upstream frequency change request includes, for example, the changed upstream frequency fu_1 and the SRS transmission request. Then, the process again moves to S103 in FIG. 19 and the random access procedure using the changed uplink frequency fu_1 is performed (S103 to S105).
 そして、基地局100は、上り周波数fu_1で送信されたSRSを利用して、無線回線品質を測定し(S106)、測定した無線回線品質RSRP_fu_1が無線回線品質の最大値RSRP_maxを超えるか否かを判定する(S107)。基地局100は、超えると(S107でYes)、無線回線品質の最大値RSRP_maxを、測定した無線回線品質RSRP_fu_1とするとともに、fu=1に設定し(S108)、そうでないと(S107でNo)、無線回線品質の最大値RSRP_maxを維持する。 Then, the base station 100 measures the wireless channel quality by using the SRS transmitted at the uplink frequency fu_1 (S106), and determines whether the measured wireless channel quality RSRP_fu_1 exceeds the maximum value RSRP_max of the wireless channel quality. A determination is made (S107). When exceeding (Yes in S107), the base station 100 sets the maximum value RSRP_max of the wireless channel quality to the measured wireless channel quality RSRP_fu_1 and sets fu=1 (S108), and otherwise (No in S107). , The maximum value RSRP_max of the wireless channel quality is maintained.
 以後、このように、SUL周波数候補の全て(n=k)について、無線回線品質を測定し、最良の周波数を上り周波数として選択する(図20のS111)。 After that, the wireless channel quality is measured for all the SUL frequency candidates (n=k), and the best frequency is selected as the upstream frequency (S111 in FIG. 20).
 例えば、図19のS108により、無線回線品質の最大値が、RSRP_maxとしてメモリ107に記憶され、無線回線品質が最大値となるときの上り周波数の番号nがメモリ107に記憶される。基地局100は、メモリ107に記憶された番号nを確認することで、上り周波数を設定する。 For example, in S108 of FIG. 19, the maximum value of the wireless channel quality is stored in the memory 107 as RSRP_max, and the number n of the upstream frequency when the wireless channel quality becomes the maximum value is stored in the memory 107. The base station 100 confirms the number n stored in the memory 107 to set the uplink frequency.
 すなわち、基地局100は、fu=nの番号を持つ上り周波数fu_nを、上り周波数に設定する。例えば、上り周波数制御部1060は、メモリ107から、fu=nを読み出して、n=0のとき、組の上り周波数fu_0を上り周波数fu=n、n≠0のとき、無線回線品質が最良のSUL周波数fu_1,…,fu_kを上り周波数fu_nに設定する。上り周波数制御部1060は、設定した上り周波数fu_nを送信無線部110へ出力する。 That is, the base station 100 sets the upstream frequency fu_n having the number fu=n as the upstream frequency. For example, the upstream frequency control unit 1060 reads fu=n from the memory 107, and when n=0, sets the upstream frequency fu_0 to the upstream frequency fu=n, and when n≠0, the wireless channel quality is the best. The SUL frequencies fu_1,..., Fu_k are set to the upstream frequency fu_n. The uplink frequency control unit 1060 outputs the set uplink frequency fu_n to the transmission wireless unit 110.
 次に、基地局100は、Message 4と、設定した上り周波数fu_nとを、端末200へ送信する(S112)。そして、基地局100は、無線回線設定を終了し(S113)、一連の処理を終了する(S114)。 Next, the base station 100 transmits the Message 4 and the set upstream frequency fu_n to the terminal 200 (S112). Then, the base station 100 ends the wireless line setting (S113) and ends the series of processes (S114).
 このように、図19及び図20の例は、最良の上り無線回線品質を有する上り周波数fu_nを選択する場合の動作例を表している。 As described above, the examples of FIGS. 19 and 20 represent an operation example in the case of selecting the upstream frequency fu_n having the best upstream wireless channel quality.
 図21と図22も、動作例2における基地局100の動作例を表すフローチャートである。図21と図22では、基地局100が、閾値よりも大きい測定無線回線品質を上り周波数fu_nに設定する例を表している。 21 and 22 are also flowcharts showing an operation example of the base station 100 in the operation example 2. 21 and 22 show an example in which the base station 100 sets the measured radio channel quality larger than the threshold to the upstream frequency fu_n.
 すなわち、基地局100は、n=0に設定し(S121)、一連のランダムアクセス手順を行って(S103~S105)、無線回線品質を測定し(S106)、測定無線回線品質RSRP_fu_nが、閾値RSRP_thよりも大きいか否かを判定する(S122)。 That is, the base station 100 sets n=0 (S121), performs a series of random access procedures (S103 to S105), measures the radio channel quality (S106), and the measured radio channel quality RSRP_fu_n is the threshold RSRP_th. It is determined whether it is larger than (S122).
 基地局100は、測定無線回線品質RSRP_fu_nが、閾値RSRP_thよりも大きいとき(S122でYes)、fu=nに設定し(S123)、fu=nの番号を持つ上り周波数fu_nを、上り周波数に設定する(S111)。 When the measured radio channel quality RSRP_fu_n is larger than the threshold RSRP_th (Yes in S122), the base station 100 sets fu=n (S123) and sets the uplink frequency fu_n having the number fu=n to the uplink frequency. Yes (S111).
 一方、基地局100は、測定無線回線品質RSRP_fu_nが、閾値RSRP_th以下のとき(S122でNo)、S103へ移行して、上述した処理を繰り返す(S103からS110のループ)。 On the other hand, when the measured wireless channel quality RSRP_fu_n is less than or equal to the threshold RSRP_th (No in S122), the base station 100 shifts to S103 and repeats the above-described processing (loop from S103 to S110).
 このような判定(S122)や上り周波数fu_nの設定(S123,図22のS111)などは、例えば、上り周波数制御部1060で行われる。 Such determination (S122) and setting of the upstream frequency fu_n (S123, S111 of FIG. 22) are performed by the upstream frequency control unit 1060, for example.
 図23と図24も、動作例2における基地局100における動作例を表すフローチャートである。図23と図24では、基地局100が、上り無線回線品質が最良で、かつ、閾値以上の上り周波数を選択する例を表している。 23 and 24 are also flowcharts showing an operation example in the base station 100 in the operation example 2. 23 and 24 show an example in which the base station 100 selects the uplink frequency with the best uplink radio channel quality and equal to or higher than the threshold.
 すなわち、基地局100は、無線回線品質を測定し(S106)、測定無線回線品質RSRP_fu_nが、無線回線品質の最大値RSRP_maxよりも大きく、かつ、閾値RSRP_thよりも大きいか否かを判定する(S131)。 That is, the base station 100 measures the wireless channel quality (S106), and determines whether the measured wireless channel quality RSRP_fu_n is larger than the maximum wireless channel quality value RSRP_max and larger than the threshold value RSRP_th (S131). ).
 基地局100は、測定無線回線品質RSRP_fu_nが、無線回線品質の最大値RSRP_maxよりも大きく、かつ、閾値RSRP_thよりも大きいとき(S131でYes)、最大値RSRP_maxを、測定無線回線品質RSRP_fu_nにする。また、基地局100は、fu=nに設定する(S108)。そうでないとき(S131でNo)、無線回線品質の最大値RSRP_maxとfuとを維持する。 The base station 100 sets the maximum value RSRP_max to the measured wireless line quality RSRP_fu_n when the measured wireless line quality RSRP_fu_n is larger than the maximum value RSRP_max of the wireless line quality and larger than the threshold value RSRP_th (Yes in S131). In addition, the base station 100 sets fu=n (S108). Otherwise (No in S131), the maximum values RSRP_max and fu of the wireless channel quality are maintained.
 そして、基地局100は、全てのSUL周波数fu_1,…,fu_kまで、繰り返し(S109でYes)、上り周波数fu_nを設定する。すなわち、基地局100は、n=0のとき、組となる上り周波数fu_0を上り周波数fu_nに設定する。また、基地局100は、n≠0のとき、最良のSUL周波数fu_1,…,fu_kを上り周波数fu_0に設定する(S111)。 Then, the base station 100 repeatedly sets the up frequency fu_n until all the SUL frequencies fu_1,..., Fu_k (Yes in S109). That is, the base station 100 sets the paired up frequency fu_0 to the up frequency fu_n when n=0. Further, when n≠0, the base station 100 sets the best SUL frequencies fu_1,..., Fu_k to the upstream frequency fu_0 (S111).
 このような判定(S131)や設定(S108,S111)は、例えば、上り周波数制御部1060で行われる。 Such determination (S131) and setting (S108, S111) are performed by the upstream frequency control unit 1060, for example.
 [その他の実施の形態]
 次に、その他の実施の形態について説明する。
[Other Embodiments]
Next, other embodiments will be described.
 図25は、通信システム10の構成例を表す図である。 FIG. 25 is a diagram showing a configuration example of the communication system 10.
 通信システム10は、基地局100と端末200とを備える。基地局100は、セル範囲に在圏する端末200に対してサービスを提供する無線通信装置である。一方、端末200は、スマートフォンやフィーチャーフォン、タブレット端末などの無線通信装置である。基地局100と端末200は、下り周波数と組となる第1の上り周波数と、第1の上り周波数とは異なる第2の上り周波数の何れかと、下り周波数とを用いて、無線通信を行うことが可能である。 The communication system 10 includes a base station 100 and a terminal 200. The base station 100 is a wireless communication device that provides services to the terminals 200 located in the cell range. On the other hand, the terminal 200 is a wireless communication device such as a smartphone, a feature phone, or a tablet terminal. The base station 100 and the terminal 200 perform wireless communication using the first uplink frequency that forms a pair with the downlink frequency, the second uplink frequency that is different from the first uplink frequency, and the downlink frequency. Is possible.
 基地局100は、第1の無線制御部150と第1の受信部155とを備える。 The base station 100 includes a first wireless controller 150 and a first receiver 155.
 第1の無線制御部150は、第1及び第2の上り周波数をそれぞれ用いて第1及び第2の上り参照信号を送信することを要求する上り参照信号送信要求と第1及び第2の上り参照信号に関する制御情報とを端末200へ送信する。また、第1の無線制御部150は、第1又は第2の上り周波数に関する周波数制御情報を端末200へ送信する。 The first radio control unit 150 requests the uplink reference signal transmission requesting to transmit the first and second uplink reference signals using the first and second uplink frequencies, respectively, and the first and second uplinks. The control information regarding the reference signal is transmitted to the terminal 200. In addition, the first radio control unit 150 transmits frequency control information regarding the first or second upstream frequency to the terminal 200.
 第1の受信部155は、端末200から第1及び第2の上り周波数をそれぞれ用いて送信された第1及び第2の上り参照信号を受信する。 The first receiving unit 155 receives the first and second uplink reference signals transmitted from the terminal 200 using the first and second uplink frequencies, respectively.
 端末200は、第2の受信部250と第2の無線制御部255を備える。 The terminal 200 includes a second receiving unit 250 and a second wireless control unit 255.
 第2の受信部250は、基地局100から送信された、上り参照信号送信要求と第1及び第2の上り参照信号に関する制御情報とを受信する。また、第2の受信部250は、周波数制御情報を受信する。 The second receiving unit 250 receives the uplink reference signal transmission request and the control information regarding the first and second uplink reference signals transmitted from the base station 100. The second receiving unit 250 also receives the frequency control information.
 第2の無線制御部255は、上り参照信号送信要求と制御情報に基づいて、第1及び第2の上り周波数をそれぞれ用いて第1及び第2の上り制御信号を基地局100へ送信する。 The second radio control unit 255 transmits the first and second uplink control signals to the base station 100 based on the uplink reference signal transmission request and the control information, using the first and second uplink frequencies, respectively.
 このように、本実施の形態では、基地局100は、第1及び第2の上り周波数をそれぞれ用いて第1及び第2の上り参照信号を端末200から送信させるようにしている。例えば、第1の上り周波数が組となる上り周波数、第2の上り周波数がSUL周波数の場合、基地局100は、組となる上り周波数を用いた第1の参照信号と、SUL周波数を用いた第2の参照信号とを、端末200から送信させている。この場合、基地局100は、第1及び第2の参照信号を受信して、第1の上り周波数又は第2の上り周波数を選択するようにしている。そして、基地局100は、2つの参照信号から、第1の上り周波数における無線回線品質と、第2の上り周波数における無線回線品質を測定することが可能となり、この2つの測定結果に基づいて、第1又は第2の上り周波数を選択することが可能となる。 As described above, in the present embodiment, the base station 100 causes the terminal 200 to transmit the first and second uplink reference signals using the first and second uplink frequencies, respectively. For example, when the first uplink frequency is a pair of uplink frequencies and the second uplink frequency is a SUL frequency, the base station 100 uses the first reference signal using the pair of uplink frequencies and the SUL frequency. The second reference signal is transmitted from the terminal 200. In this case, the base station 100 receives the first and second reference signals and selects the first upstream frequency or the second upstream frequency. Then, the base station 100 can measure the radio channel quality at the first uplink frequency and the radio channel quality at the second uplink frequency from the two reference signals, and based on these two measurement results, It becomes possible to select the first or second upstream frequency.
 よって、本通信システム10は、第1及び第2の上り周波数をそれぞれ用いて第1及び第2の上り参照信号を端末200から送信させているため、これらを利用して、上り周波数を選択することが可能となる。したがって、本通信システム10は、下り無線回線品質から上り周波数を選択する場合と比較して、上り通信のスループット改善を図ることが可能となる。 Therefore, since the communication system 10 causes the terminal 200 to transmit the first and second uplink reference signals by using the first and second uplink frequencies, respectively, the uplink frequency is selected using these. It becomes possible. Therefore, the communication system 10 can improve the throughput of uplink communication as compared with the case of selecting the uplink frequency from the downlink radio channel quality.
 なお、第1の無線制御部150と第1の受信部155は、例えば、第1の実施の形態における無線制御部106と受信部120にそれぞれ対応する。また、第2の無線制御部255と第2の受信部250は、例えば、第1の実施の形態における無線制御部206と受信部220にそれぞれ対応する。 The first wireless control unit 150 and the first receiving unit 155 correspond to the wireless control unit 106 and the receiving unit 120 in the first embodiment, respectively. Further, the second wireless control unit 255 and the second receiving unit 250 respectively correspond to the wireless control unit 206 and the receiving unit 220 in the first embodiment, for example.
 なお、上り周波数および下り周波数の設定は、例えば、非特許文献39に記載の周波数を用いることが想定されるがそれ以外の周波数でもよい。例えば、新たな周波数帯が定義された場合は、その周波数を用いてもよい。 Note that it is assumed that the frequencies described in Non-Patent Document 39 are used for setting the upstream frequency and the downstream frequency, but other frequencies may be used. For example, when a new frequency band is defined, that frequency may be used.
10:通信システム         100:基地局装置(基地局)
105:無線品質測定部       106:無線制御部
1060:上り周波数制御部     1061:システム情報設定管理部
1062:無線制御部        1063:ランダムアクセス制御部
1064:HO制御部        1065:無線リソース制御部
107:メモリ           108:制御信号作成部
120:受信部           130:制御部
140:送信部
200(200-1,200-2):端末装置(端末)
204:制御信号抽出部       205:無線品質測定部
206:無線制御部         2060:SRS送信制御部
2061:システム情報設定管理部  2062:無線制御部
2063:ランダムアクセス制御部  2064:HO制御部
2065:無線リソース制御部    220:受信部
230:制御部           240:送信部
10: communication system 100: base station device (base station)
105: Radio quality measuring unit 106: Radio control unit 1060: Uplink frequency control unit 1061: System information setting management unit 1062: Radio control unit 1063: Random access control unit 1064: HO control unit 1065: Radio resource control unit 107: Memory 108 : Control signal creation unit 120: reception unit 130: control unit 140: transmission unit 200 (200-1, 200-2): terminal device (terminal)
204: control signal extraction unit 205: wireless quality measurement unit 206: wireless control unit 2060: SRS transmission control unit 2061: system information setting management unit 2062: wireless control unit 2063: random access control unit 2064: HO control unit 2065: wireless resource Controller 220: Receiver 230: Controller 240: Transmitter

Claims (20)

  1.  下り周波数と組となる第1の上り周波数と、前記第1の上り周波数とは異なる第2の上り周波数の何れかと、前記下り周波数とを用いて、端末装置と無線通信を行う基地局装置において、
     前記第1及び第2の上り周波数をそれぞれ用いて第1及び第2の上り参照信号を送信することを要求する上り参照信号送信要求と前記第1及び第2の上り参照信号に関する制御情報とを前記端末装置へ送信し、前記第1又は第2の上り周波数に関する周波数制御情報を前記端末装置へ送信する無線制御部と、
     前記端末装置から前記第1及び第2の上り周波数をそれぞれ用いて送信された前記第1及び第2の上り参照信号を受信する受信部と
     を備えることを特徴とする基地局装置。
    In a base station device that performs wireless communication with a terminal device using a first uplink frequency that forms a pair with a downlink frequency, a second uplink frequency different from the first uplink frequency, and the downlink frequency ,
    An uplink reference signal transmission request that requests transmission of the first and second uplink reference signals using the first and second uplink frequencies, respectively, and control information related to the first and second uplink reference signals. A radio controller for transmitting to the terminal device and transmitting frequency control information about the first or second upstream frequency to the terminal device;
    And a receiving unit that receives the first and second uplink reference signals transmitted from the terminal device using the first and second uplink frequencies, respectively.
  2.  更に、前記第1及び第2の上り参照信号から第1及び第2の上り無線回線品質をそれぞれ測定する無線品質測定部を備え、
     前記無線制御部は、前記第1及び第2の上り無線回線品質に応じて、前記第1又は第2の上り周波数を選択することを特徴とする請求項1記載の基地局装置。
    Furthermore, a radio quality measuring unit is provided for measuring the first and second uplink radio channel qualities from the first and second uplink reference signals, respectively.
    The base station apparatus according to claim 1, wherein the radio control unit selects the first or second uplink frequency according to the first and second uplink radio channel qualities.
  3.  前記無線制御部は、前記第1及び第2の上り参照信号に関する制御情報を含むシステム情報を報知することを特徴とする請求項1記載の基地局装置。 The base station apparatus according to claim 1, wherein the radio control unit broadcasts system information including control information regarding the first and second uplink reference signals.
  4.  前記無線制御部は、前記上り参照信号送信要求を含む回線設定要求を前記端末装置へ送信することを特徴とする請求項1記載の基地局装置。 The base station device according to claim 1, wherein the radio control unit transmits a line setting request including the uplink reference signal transmission request to the terminal device.
  5.  前記受信部は、前記端末装置から前記第1の上り周波数を利用して送信された接続要求と前記第1の上り参照信号とを受信し、前記端末装置から前記第2の上り周波数を利用して送信された前記接続要求と前記第2の上り参照信号とを受信することを特徴とする請求項1記載の基地局装置。 The receiving unit receives the connection request and the first uplink reference signal transmitted from the terminal device using the first uplink frequency, and uses the second uplink frequency from the terminal device. The base station apparatus according to claim 1, wherein the base station apparatus receives the connection request and the second uplink reference signal transmitted by transmitting the connection request.
  6.  前記無線制御部は、前記周波数制御情報、又は上り周波数変更要求を前記端末装置へ送信することを特徴とする請求項1記載の基地局装置。 The base station apparatus according to claim 1, wherein the radio control unit transmits the frequency control information or an uplink frequency change request to the terminal apparatus.
  7.  前記無線制御部は、接続設定要求と、前記周波数制御情報又は前記上り周波数変更要求とを前記端末装置へ送信することを特徴とする請求項6記載の基地局装置。 The base station apparatus according to claim 6, wherein the wireless control unit transmits a connection setting request and the frequency control information or the upstream frequency change request to the terminal apparatus.
  8.  前記無線制御部は、前記端末装置から送信されるユーザーデータの送信に用いる周波数を、前記第1の上り周波数から前記第2の上り周波数へ変更することを特徴とする請求項1記載の基地局装置。 The base station according to claim 1, wherein the radio control unit changes a frequency used for transmitting user data transmitted from the terminal device from the first uplink frequency to the second uplink frequency. apparatus.
  9.  前記無線制御部は、前記第2の上り周波数と、前記第1及び第2の上り周波数とは異なる第3の上り周波数とを、前記端末装置へ送信することを特徴とする請求項1記載の基地局装置。 The radio control unit transmits the second uplink frequency and a third uplink frequency different from the first and second uplink frequencies to the terminal device. Base station device.
  10.  前記無線制御部は、前記1乃至第3の上り周波数をそれぞれ用いた前記第1乃至第3の上り参照信号の送信の要求を含む前記上り参照信号送信要求と、前記第1乃至第3の上り参照信号に関する前記制御情報とを、前記端末装置へ送信することを特徴とする請求項9記載の基地局装置。 The radio control unit includes the uplink reference signal transmission request including a request for transmitting the first to third uplink reference signals respectively using the first to third uplink frequencies, and the first to third uplinks. The base station device according to claim 9, wherein the control information regarding the reference signal is transmitted to the terminal device.
  11.  前記無線制御部は、更に、前記端末装置から送信される前記第2及び第3の上り参照信号を他の端末装置から送信される前記第2及び第3の上り参照信号と識別する上り参照信号送信用端末識別子を前記端末装置へ送信することを特徴とする請求項10記載の基地局装置。 The radio control unit further identifies the second and third uplink reference signals transmitted from the terminal device from the second and third uplink reference signals transmitted from another terminal device. 11. The base station device according to claim 10, wherein a transmission terminal identifier is transmitted to the terminal device.
  12.  前記無線制御部は、前記第2又は前記第3の上り周波数を選択することを特徴とする請求項9記載の基地局装置。 The base station device according to claim 9, wherein the radio control unit selects the second or the third uplink frequency.
  13.  更に、前記第1乃至前記第3の上り参照信号から第1乃至第3の上り無線回線品質をそれぞれ測定する無線品質測定部を備え、
     前記無線制御部は、無線回線品質の良い前記第2又は第3の上り無線回線品質をそれぞれ有する前記第2又は第3の上り周波数を選択することを特徴とする請求項12記載の基地局装置。
    Furthermore, a radio quality measuring unit for respectively measuring first to third uplink radio channel qualities from the first to third uplink reference signals is provided,
    13. The base station apparatus according to claim 12, wherein the radio control unit selects the second or third uplink frequency having the second or third uplink radio channel quality with good radio channel quality, respectively. ..
  14.  前記無線制御部は、変更後の前記第2の上り周波数を前記端末装置へ送信することを特徴とする請求項8記載の基地局装置。 The base station device according to claim 8, wherein the radio control unit transmits the changed second uplink frequency to the terminal device.
  15.  前記無線制御部は、前記第2の上り周波数と、前記第1及び第2の上り周波数とは異なる第3の上り周波数とを含むシステム情報を報知することを特徴とする請求項1記載の基地局装置。 The base station according to claim 1, wherein the radio control unit broadcasts system information including the second uplink frequency and a third uplink frequency different from the first and second uplink frequencies. Station equipment.
  16.  前記無線制御部は、前記第1及び第2の上り周波数を含むシステム情報を報知することを特徴とする請求項1記載の基地局装置。 The base station device according to claim 1, wherein the radio control unit broadcasts system information including the first and second upstream frequencies.
  17.  下り周波数と組となる第1の上り周波数と、前記第1の上り周波数とは異なる第2の上り周波数の何れかと、前記下り周波数とを用いて、基地局装置と無線通信を行う端末装置において、
     前記基地局装置から送信された、前記第1及び第2の上り周波数をそれぞれ用いて第1及び第2の上り参照信号を送信することを要求する上り参照信号送信要求と前記第1及び第2の上り参照信号に関する制御情報とを受信し、前記第1又は第2の上り周波数に関する周波数制御情報を受信する受信部と、
     前記上り参照信号送信要求と前記第1及び第2の上り参照信号に関する制御情報に基づいて、前記第1及び第2の上り周波数を用いて前記第1及び第2の上り参照信号を前記基地局装置へ送信する無線制御部と
     を備えることを特徴とする端末装置。
    In a terminal device that wirelessly communicates with a base station device by using a first uplink frequency paired with a downlink frequency, a second uplink frequency different from the first uplink frequency, and the downlink frequency ,
    Uplink reference signal transmission request for requesting transmission of first and second uplink reference signals using the first and second uplink frequencies, respectively, transmitted from the base station device, and the first and second uplink reference signals. And a receiving unit that receives the control information about the uplink reference signal and receive the frequency control information about the first or second uplink frequency,
    The base station transmits the first and second uplink reference signals using the first and second uplink frequencies based on the uplink reference signal transmission request and control information about the first and second uplink reference signals. And a wireless control unit for transmitting to the device.
  18.  前記受信部は、前記基地局装置から送信された、前記上り参照信号送信要求を含む回線設定要求を受信し、
     前記無線制御部は、前記基地局装置に対して前記第1の上り周波数を利用して、接続要求と前記第1の上り参照信号とを送信する、又は前記第2の上り周波数を利用して、前記接続要求と前記第2の上り参照信号とを送信する
     ことを特徴とする請求項17記載の端末装置。
    The receiving unit receives a line setting request including the uplink reference signal transmission request transmitted from the base station device,
    The radio control unit transmits the connection request and the first uplink reference signal to the base station device using the first uplink frequency, or uses the second uplink frequency. The terminal device according to claim 17, wherein the connection request and the second uplink reference signal are transmitted.
  19.  前記受信部は、前記基地局装置から送信された、前記接続要求と、前記周波数制御情報又は上り周波数変更要求とを受信し、
     前記無線制御部は、前記第1の上り周波数を利用して、前記接続要求と前記第1の上り参照信号とを前記基地局装置へ送信して、前記上り周波数変更要求を受信したとき、上り周波数を前記第2の上り周波数に変更して、前記第2の上り周波数を利用して、前記接続要求と前記第2の上り参照信号とを前記基地局装置へ送信する
     ことを特徴とする請求項17記載の端末装置。
    The receiving unit receives the connection request and the frequency control information or the uplink frequency change request transmitted from the base station device,
    The radio control unit transmits the connection request and the first uplink reference signal to the base station apparatus using the first uplink frequency, and when the uplink frequency change request is received, A frequency is changed to the second uplink frequency, and the connection request and the second uplink reference signal are transmitted to the base station apparatus by using the second uplink frequency. Item 17. The terminal device according to item 17.
  20.  基地局装置と、
     端末装置とを備え、
     下り周波数と組となる第1の上り周波数と、前記第1の上り周波数とは異なる第2の上り周波数の何れかと、前記下り周波数とを用いて、前記基地局装置と前記端末装置とが無線通信を行う通信システムにおいて、
     前記基地局装置は、
      前記第1及び第2の上り周波数をそれぞれ用いて第1及び第2の上り参照信号の送信を要求する上り参照信号送信要求と前記第1及び第2の上り参照信号に関する制御情報とを前記端末装置へ送信し、前記第1又は第2の上り周波数に関する周波数制御情報を前記端末装置へ送信する第1の無線制御部と、
      前記端末装置から前記第1及び第2の上り周波数をそれぞれ用いて送信された前記第1及び第2の上り参照信号を受信する第1の受信部とを備え、
     前記端末装置は、
      前記基地局装置から送信された、前記上り参照信号送信要求と前記第1及び第2の上り参照信号に関する制御情報、及び前記周波数制御情報を受信する第2の受信部と、
      前記上り参照信号送信要求と前記第1及び第2の上り参照信号に関する制御情報に基づいて、前記第1及び第2の上り周波数を用いて前記第1及び第2の上り参照信号を前記基地局装置へ送信する第2の無線制御部とを備えることを特徴とする通信システム。
    A base station device,
    Equipped with a terminal device,
    The base station device and the terminal device wirelessly communicate with each other by using a first uplink frequency that forms a pair with a downlink frequency, a second uplink frequency different from the first uplink frequency, and the downlink frequency. In a communication system that performs communication,
    The base station device,
    The terminal receives an uplink reference signal transmission request for requesting transmission of first and second uplink reference signals using the first and second uplink frequencies, respectively, and control information related to the first and second uplink reference signals. A first radio controller for transmitting frequency control information regarding the first or second upstream frequency to the terminal device;
    A first receiver that receives the first and second uplink reference signals transmitted from the terminal device using the first and second uplink frequencies, respectively,
    The terminal device,
    A second receiving unit that receives the uplink reference signal transmission request, the control information about the first and second uplink reference signals, and the frequency control information transmitted from the base station device;
    The base station transmits the first and second uplink reference signals by using the first and second uplink frequencies based on the uplink reference signal transmission request and the control information on the first and second uplink reference signals. A communication system comprising: a second wireless control unit for transmitting to a device.
PCT/JP2019/006249 2019-02-20 2019-02-20 Base station apparatus, terminal apparatus, and communication system WO2020170352A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/006249 WO2020170352A1 (en) 2019-02-20 2019-02-20 Base station apparatus, terminal apparatus, and communication system
JP2021501195A JP7277818B2 (en) 2019-02-20 2019-02-20 Base station device, terminal device, and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/006249 WO2020170352A1 (en) 2019-02-20 2019-02-20 Base station apparatus, terminal apparatus, and communication system

Publications (1)

Publication Number Publication Date
WO2020170352A1 true WO2020170352A1 (en) 2020-08-27

Family

ID=72144529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006249 WO2020170352A1 (en) 2019-02-20 2019-02-20 Base station apparatus, terminal apparatus, and communication system

Country Status (2)

Country Link
JP (1) JP7277818B2 (en)
WO (1) WO2020170352A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220124811A1 (en) * 2020-10-16 2022-04-21 Qualcomm Incorporated Srs transmitted with msg4 ack

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015006003A (en) * 2010-01-08 2015-01-08 シャープ株式会社 User equipment, communication method of user equipment, base station device and communication method of base station device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015006003A (en) * 2010-01-08 2015-01-08 シャープ株式会社 User equipment, communication method of user equipment, base station device and communication method of base station device

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CMCC: "Considerations on support of supplementary uplink frequency [ online", 3GPP TSG RAN WG2 #99BIS R2-1711824, 9 October 2017 (2017-10-09), XP051343779, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2-99bis/Docs/R2-1711824.zip> *
HUAWEI ET AL.: "Discussion on RRM impact on uplink sharing [ online", 3GPP TSG RAN WG4 #84BIS R4-1711227, 9 October 2017 (2017-10-09), XP051345964, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG4_Radio/TSGR4_84Bis/Docs/R4-1711227.zip> *
SAMSUNG: "Initial access for supplementary uplink frequency [ online", 3GPP TSG RAN WG2 #99BIS R2-1711807, 9 October 2017 (2017-10-09), XP051343763, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2-99bis/Docs/R2-1711807.zip> *
SAMSUNG: "PUCCH and PUSCH on SUL [ online", 3GPP TSG RAN WG2 #99BIS R2-1711632, 9 October 2017 (2017-10-09), XP055732346, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2-99bis/Docs/R2-1711632.zip> *
VIVO: "Discussion on the simultaneous configuration of grant free type 1/2 [ online", 3GPP TSG RAN WG2 #101 R2-1801990, 26 February 2018 (2018-02-26), XP051399065, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2-101/Docs/R2-1801990.zip> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220124811A1 (en) * 2020-10-16 2022-04-21 Qualcomm Incorporated Srs transmitted with msg4 ack
US11743948B2 (en) * 2020-10-16 2023-08-29 Qualcomm Incorporated SRS transmitted with Msg4 ACK

Also Published As

Publication number Publication date
JPWO2020170352A1 (en) 2021-11-18
JP7277818B2 (en) 2023-05-19

Similar Documents

Publication Publication Date Title
US8914055B2 (en) Dynamic resource selection to reduce interference that results from direct device to device communications
US8914054B2 (en) Dynamic resource selection to reduce interference resulting from direct device to device communications
EP2901774B1 (en) Transmit power adjustment for inter-device communication in wireless communication systems
TWI679912B (en) Device and method of handling carrier aggregation and dual connectivity
CN108886724B (en) System and method for managing connections in a wireless communication system
CN109286956B (en) Device and method for processing switching
CN107113664B (en) Improved reporting for handover in device-to-device communication
US11419016B2 (en) Methods and arrangements for measurement based mobility
EP2678963B1 (en) Communication of data using independent downlink and uplink connections
US10575356B2 (en) Device and method of configuring a secondary node and reporting in dual connectivity
EP3662720B1 (en) Cellular dual connectivity setup
CN112042222A (en) Switching wireless connections based on uplink and downlink signal quality
EP3442255A1 (en) Method of handling measurement and related communication device
US10531378B2 (en) User equipment detection for energy saving cell activation
CN110024436B (en) First network node, second network node and methods therein for handover
WO2020170352A1 (en) Base station apparatus, terminal apparatus, and communication system
US9312931B2 (en) Radio base station, radio terminal, and communication control method
KR20180045727A (en) Method and Apparatus for Selecting Cell based on Service
EP2775763B1 (en) Method of handling selections of base stations
CN108632010B (en) Wireless communication method, device and system
US20210211985A1 (en) Terminal device and transmission power control method
WO2013140437A1 (en) Wireless communication method, wireless communication system, wireless station, and wireless terminal
WO2017122290A1 (en) Wireless communication device, wireless communication system, and processing method
US10506490B2 (en) Method for cell switching in unlicensed band and apparatus using same
US20220337306A1 (en) Method for beam selection, terminal device, and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915853

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501195

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915853

Country of ref document: EP

Kind code of ref document: A1