WO2020166308A1 - Defrosting device and refrigerator equipped with same - Google Patents

Defrosting device and refrigerator equipped with same Download PDF

Info

Publication number
WO2020166308A1
WO2020166308A1 PCT/JP2020/002659 JP2020002659W WO2020166308A1 WO 2020166308 A1 WO2020166308 A1 WO 2020166308A1 JP 2020002659 W JP2020002659 W JP 2020002659W WO 2020166308 A1 WO2020166308 A1 WO 2020166308A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooler
accumulator
film
refrigerant
water
Prior art date
Application number
PCT/JP2020/002659
Other languages
French (fr)
Japanese (ja)
Inventor
元康 市場
雅至 中川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020166308A1 publication Critical patent/WO2020166308A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays

Definitions

  • the present disclosure relates to a defrosting device that improves the efficiency of defrosting in a cooler and a refrigerator including the defrosting device.
  • this type of defrosting device is a defrosting unit (hereinafter referred to as a defrosting heater) configured by an accumulator provided above a cooler and connected to a refrigerant pipe, and a glass tube heater provided below the cooler. Called).
  • a defrosting heater configured by an accumulator provided above a cooler and connected to a refrigerant pipe, and a glass tube heater provided below the cooler. Called).
  • This cooler, the accumulator, the compressor, the condenser, and the cooler that has become low temperature by the operation of the cooling cycle configured by annularly connecting the depressurizing means, and the air, heat exchanges with the cool air. It is generated and cooled by a cooling device such as a refrigerator.
  • air containing humidity generally becomes low temperature by exchanging heat with a cooler. Then, when the air drops to below the dew point temperature, condensed droplets are generated on the surface of the cooler.
  • the refrigerant temperature is 0°C or lower, and the condensed droplets freeze to form frost. Therefore, the heat exchange area in the cooler is reduced, and as a result, the cooling performance of the cooler is reduced. Therefore, the defrost heater is energized at preset time intervals, and the heat from the defrost heater melts the frost adhering to the cooler during the cooling operation to defrost and suppress a decrease in cooling performance. ing.
  • the molten water remains on the surfaces of the fins and the like. For this reason, if the melted water is recooled and frozen after restarting the cooling operation, the heat exchange area of the cooler is reduced and the cooling performance of the cooler is reduced.
  • the remaining melted water is repeatedly frozen and thawed each time a cooling operation and a defrosting operation are performed. Therefore, unnecessary power is consumed, and as a result, the power consumption of the refrigerator increases.
  • a compound having an alkoxysilane structure, and a paint composed of a primary amine or a secondary amine are arranged on the fin surface of the cooler. It is considered to do so (for example, refer to Patent Document 1).
  • FIG. 3 is a sectional view showing a conventional refrigerator described in Patent Document 1.
  • the refrigerator 300 has a refrigerating room 303 and a freezing room 304 which are vertically divided by a horizontal partition 302.
  • a duct 305 is arranged behind the refrigerator compartment 303.
  • the refrigerator 300 has a cooler 310.
  • the cooler 310 includes a refrigerant pipe 314 that is bent in a meandering shape and has a plurality of stages, and a large number of fins 315 that are orthogonally attached to the refrigerant pipe 314.
  • the fin 315 has a film for improving the hydrophilic property of the surface of the fin 315.
  • an accumulator 316 connected to the refrigerant pipe 314 is arranged above the cooler 310.
  • the compressor, the condenser, the pressure reducing means, the cooler 310, and the accumulator 316 are annularly connected to each other, and the cooler has a low temperature due to the operation of the refrigeration cycle. Heat exchange between the 310 and the accumulator 316 and the surrounding air generates low-temperature cold air.
  • the cool air is supplied to the refrigerating chamber 303 and the freezing chamber 304 by the cooling fan 318.
  • the outside air enters the refrigerator room 303 and the freezer room 304. Also, outside air enters the inside of the refrigerating chamber 303 and the freezing chamber 304 through the gap of a gasket (not shown) that seals the gap between each room and the door. Therefore, the air inside the refrigerator compartment 303 and the freezer compartment 304 has a relatively high humidity. The high-humidity air is sucked from the return air passage 308 and the slit and exchanges heat with the cooler 310 and the accumulator 316 having a low temperature, so that frost is attached to the cooler 310 and the accumulator 316.
  • frost is formed mainly on the lower part of the cooler 310, but over time, the upper part of the cooler 310 and the accumulator 316 are also frosted.
  • frost adheres to the cooler 310 and the accumulator 316 the heat exchange area between the cooler 310 and the accumulator 316 and the air decreases, and the cooling capacity decreases. Therefore, the defrost heater 311 provided below the cooler 310 is energized at preset time intervals to melt the frost adhering to the cooler 310 and the accumulator 316.
  • the frost attached to the bottom of the cooler 310 is first warmed from the outer surface.
  • the melted water generated by warming the outer surface of the cooler 310 penetrates toward the root side (fin side) of frost, which is a fine structure, by a capillary phenomenon, and the entire frost is in a uniform water-containing state.
  • the frost that has become water-containing is warmed from the outer surface by the warm air rising inside the cooler chamber 307, the frost that has adhered to the cooler 310 gradually changes to molten water.
  • the frost adhering to the lower portion of the cooler 310 is melted and then heating is further continued, the liquid refrigerant in the refrigerant pipe 314 under the cooler 310 is evaporated.
  • the evaporated refrigerant passes through the inside of the refrigerant pipe 314 and moves upward.
  • frost still adheres to the central part of the cooler 310
  • the evaporated refrigerant and the frost in the central part of the cooler 310 exchange heat via the refrigerant pipes 314 and the fins 315.
  • the evaporated refrigerant releases heat to the frost, is condensed into a liquid refrigerant, and moves to the lower part of the cooler 310.
  • frost absorbs heat and is melted. That is, during the defrosting operation, there are two actions, namely, heating from the outside such as radiation and convection, and a thermosiphon effect in which the refrigerant repeatedly evaporates and condenses to transport the heat to the upper part.
  • the heat generated from the defrost heater 311 is transferred to the upper part of the cooler 310 by these two actions. As a result, the frost attached to the cooler 310 and the accumulator 316 is heated and melted.
  • the molten water exists in the state of being separated into multiple water droplets. Therefore, the self-weight of the melted water is small, and the melted water remains on the fin surface even after completely melting.
  • the fin 315 has a hydrophilic film, the contact area between the water droplets of the molten water and the fin 315 is larger than that in the case where the fin 315 is not covered with the film. Therefore, adjacent droplets of the melted water on the surface of the fin 315 come into contact with each other, and the melted water becomes one large lump. As a result, the weight of one water drop becomes large and it easily falls. This enhances the drainage performance during the defrosting operation.
  • the heating of the accumulator is promoted to reduce the power consumption of the device and improve the reliability.
  • a defrosting device comprising a cooler having a refrigerant pipe and a plurality of fins, an accumulator connected to the refrigerant pipe and storing a liquid refrigerant, and a defrost heater provided below the cooler.
  • the frost device further includes an outlet pipe that communicates with a portion of the refrigerant pipe located below the cooler.
  • the accumulator is connected to the refrigerant pipe through the outlet pipe and is arranged above the cooler, and the plurality of fins have a film.
  • the refrigerant evaporated in the lower refrigerant pipe of the cooler passes through the outlet pipe and reaches the accumulator, so while maintaining the characteristics of the film provided on the fins, during the defrosting operation, the frost attached to the accumulator Can be melted in a short time, and the entire accumulator can be heated uniformly.
  • FIG. 1 is a cross-sectional view in the center of the refrigerator when the refrigerator according to Embodiment 1 of the present disclosure is viewed from the right side.
  • FIG. 2 is a sectional view taken along the line II-II of the refrigerator in FIG.
  • FIG. 3 is a sectional view showing a conventional refrigerator.
  • a defrosting device having a refrigerant pipe and a plurality of fins, an accumulator connected to the refrigerant pipe to store a liquid refrigerant, and a defrost heater provided below the cooler.
  • the defrosting device further includes: an outlet pipe that communicates with a portion of the refrigerant pipe located below the cooler.
  • the accumulator is connected to the refrigerant pipe through the outlet pipe and is arranged above the cooler, and the plurality of fins have a film.
  • the refrigerant evaporated in the refrigerant pipe below the cooler passes through the outlet pipe and reaches the accumulator. Therefore, it is possible to melt the frost adhering to the accumulator in a short time during the defrosting operation while maintaining the characteristics of the film arranged on the fins. Further, since the entire accumulator can be heated uniformly, energy saving performance and reliability can be improved.
  • the film may be composed of a hydrophilic film and a water-sliding film.
  • the contact area between the molten water and the fins increases due to the hydrophilic properties of the film, and the self-weight of the molten water increases.
  • the water-sliding property of the film makes it easier for the molten water to slip off. For this reason, it becomes possible to improve the drainage characteristic during the defrosting operation, and it is possible to further improve the energy saving performance.
  • the film may be composed of a water repellent film and a water sliding film.
  • the contact area between the molten water and the fin is reduced due to the water-repellent property of the film, and the adhesive force between the molten water and the fin is reduced.
  • the water-sliding property of the film makes it easier for the molten water to slip off. For this reason, it becomes possible to improve the drainage characteristic during the defrosting operation, and it is possible to further improve the energy saving performance.
  • the film is formed of one of a hydrophilic film, a water-sliding film, and a water-repellent film.
  • the coating can be made of a general-purpose material, the defrosting device can be constructed at a lower cost, and energy saving and reliability can be improved.
  • the outlet pipe may be arranged on the bent end side of any one of the two bent ends of the refrigerant pipe.
  • the outlet pipe is located outside the cooling air passage in the cooler, so the air passage resistance can be reduced. Therefore, the cooling capacity of the cooler can be increased, and the energy saving performance can be further improved.
  • FIG. 1 is a cross-sectional view of the center of the refrigerator when the refrigerator is viewed from the right.
  • FIG. 2 is a sectional view taken along the line II-II of the refrigerator in FIG.
  • the refrigerator 100 has a refrigerating room 103 and a freezing room 104 that are vertically divided by a horizontal partition 102.
  • a duct 105 and a cooling chamber 109 which is provided on the rear surface of the freezing chamber and is divided into a cooler chamber 107 and a return air passage 108 by a vertical partition 106, are arranged behind the refrigerating chamber 103.
  • the cooler 3 is arranged in the cooler chamber 107.
  • the cooler 3 constitutes a part of a cold building cycle together with an accumulator 4 (see FIG. 2), a compressor (not shown), a condenser (not shown), and a pressure reducing means (not shown), which will be described later. ..
  • the front of the cooler 3 is covered with a freezer compartment cover 117.
  • a cooling fan 118 is arranged above the freezer compartment cover 117.
  • the refrigerator 100 also includes a refrigerating compartment door 119 provided in front of the refrigerating compartment 103 and a freezing compartment door 120 provided in front of the freezing compartment 104.
  • a defrost heater 111 is arranged below the cooler 3. Between the cooler room 107 and the refrigerating room 103, the discharge port 112 which connects these is arrange
  • the cooler 3 is composed of a refrigerant pipe 1 and fins 2.
  • the refrigerant pipe 1 has a shape bent in a plurality of steps so as to meander.
  • the fins 2 are attached to the refrigerant pipe 1 in a state orthogonal to the refrigerant pipe 1.
  • the fins 2 are arranged in parallel at a predetermined interval so that an air flow path is formed.
  • the accumulator 4 is connected to the refrigerant pipe 1 located below the cooler 3 via the outlet pipe 5 of the cooler 3.
  • the outlet pipe 5 is connected to the refrigerant pipe 1 located under the cooler 3 and extends vertically upward.
  • the outlet pipe 5 is arranged on one of the two bent ends (the left and right ends of the refrigerant pipe 1 in FIG. 2) of the refrigerant pipe 1 (the right end side of the refrigerant pipe 1 in FIG. 2). ing.
  • the accumulator 4 is arranged above the cooler 3. Moreover, the pipe length of the outlet pipe 5 is shorter than the pipe length of the refrigerant pipe 1.
  • the surface of the fin 2 of the cooler 3 is covered with the film 6.
  • a hydrophilic film made of acrylic resin can be used as the film.
  • the film is formed by immersing the fins 2 in a hydrophilic paint composed of a substance having an alkoxysilane structure and a primary amine, a secondary amine, or the like, or the hydrophilic paint is finned by a roll coater or the like. It may be formed by drying the fins 2 after being painted on.
  • the coating may be a hydrophilic coating and a water-sliding coating.
  • the coating may be a water repellent coating and a water sliding coating.
  • the film may be any of a hydrophilic film, a water-sliding film, and a water-repellent film.
  • the defrosting device 200 is configured to include the cooler 3, the accumulator 4, the defrosting heater 111, and the outlet pipe 5.
  • the cooler 3 and the accumulator are operated by the operation of the refrigeration cycle configured by the compressor, the condenser, the pressure reducing means, the cooler 3, and the accumulator 4 connected in an annular shape. 4 becomes a low temperature state. Then, cool air generated by heat exchange between the cooler 3 and the accumulator 4 that have become low temperature and the air is supplied to the refrigerating chamber 103 and the freezing chamber 104 by the cooling fan 118.
  • Cold air flows from the outlet 112 through the duct 105 and is supplied to the refrigerating chamber 103. After cooling the refrigerating chamber 103, the cool air flows through the suction port 113, the return air passage 108, and is sucked into the cooler chamber 107 from the lower side surface of the cooler chamber 107.
  • the cold air flows through the upper part of the freezer compartment cover 117 and is supplied to the freezer compartment 104.
  • the air after cooling the freezing compartment 104 passes through a slit provided in the lower portion of the freezing compartment cover 117 (see FIG. 1) and is sucked into the cooler compartment 107.
  • the sucked air is again heat-exchanged with the cooler 3 and the accumulator 4 to be cooled and supplied to the refrigerating room 103 and the freezing room 104.
  • the low-temperature low-pressure liquid refrigerant is passing through the refrigerant pipe 1.
  • the refrigerant flows through the return air passage 108 and is sucked from the lower side surface of the cooler chamber 107, passes through the relatively high temperature air, and the slits provided in the lower portion of the freezer compartment cover 117 to pass through the cooler chamber 107.
  • Air having a temperature higher than that of the cooler 3 sucked in is exchanged with heat via the refrigerant tubes 1 and the fins 2.
  • the low-temperature low-pressure liquid refrigerant absorbs heat from the surroundings and evaporates, and the air passing through the surroundings releases the heat to a low temperature.
  • the liquid refrigerant that has not completely evaporated in the cooler is stored in the accumulator 4, and in the accumulator 4 as well as the cooler 3, heat is exchanged with air to evaporate the refrigerant. For this reason, the accumulator 4 is also maintained at a low temperature comparable to that of the cooler 3.
  • outside air enters the refrigerator compartment 103 and the freezer compartment 104.
  • outside air enters the inside of the refrigerating chamber 103 and the freezing chamber 104 through the gap of a gasket (not shown) that seals the gap between each room and the door. Therefore, the air inside the refrigerator compartment 103 and the freezer compartment 104 has a relatively high humidity.
  • Frost is attached to the cooler 3 and the accumulator 4 by sucking the high-humidity air from the return air passage 108 and the slits and exchanging heat with the cooler 3 and the accumulator 4 having a low temperature.
  • frost is formed mainly on the lower part of the cooler 3, but over time, the upper part of the cooler 3 and the accumulator 4 are also frosted.
  • frost adheres to the cooler 3 and the accumulator 4 the heat exchange area between the cooler 3 and the accumulator 4 and the air decreases, and the cooling capacity decreases. Therefore, the defrosting heater 111 provided below the cooler 3 is energized at preset time intervals to melt the frost attached to the cooler 3 and the accumulator 4.
  • the warm air generated by the heat of the defrost heater 111 is higher in temperature than the air in the cooler chamber 107, so natural convection occurs in the cooler chamber 107. Therefore, starting from the vicinity of the defrost heater 111, the entire inside of the cooler chamber 107 is warmed. That is, the frost attached to the lower portion of the cooler 3 near the defrost heater 111 is first warmed from the outer surface and melted.
  • the liquid refrigerant in the refrigerant pipe 1 below the cooler 3 is evaporated.
  • the evaporated refrigerant passes through the inside of the refrigerant pipe 1 and moves toward the upper side of the cooler 3.
  • frost still adheres to the central portion of the cooler 3
  • the evaporated refrigerant and the frost in the central portion of the cooler 3 exchange heat via the refrigerant pipes 1 and the fins 2.
  • the evaporated refrigerant releases heat to frost, condenses into liquid refrigerant, and moves to the bottom of the cooler 3.
  • frost absorbs heat and is melted. Therefore, when the refrigerant pipe 1 and the accumulator 4 in the upper part of the cooler 3 are connected, it takes time until the frost attached to the upper part of the cooler 3 and the accumulator 4 starts to melt. Therefore, in order to melt the frost attached to the upper part of the cooler 3 and the accumulator 4, the lower part of the cooler 3 and the lower part of the cooler chamber 107 are wastefully heated.
  • the accumulator 4 is connected to the refrigerant pipe 1 located below the cooler 3 via the outlet pipe 5 of the cooler 3 (right side of the cooler in FIG. 2).
  • the outlet pipe 5 is connected to the refrigerant pipe 1 located under the cooler 3 and extends vertically upward.
  • the accumulator 4 is arranged above the cooler 3. Further, the surface of the fin 2 is covered with the film 6.
  • the film for example, a hydrophilic film made of acrylic resin is used.
  • the warm air generated by the heat of the defrosting heater 111 evaporates the liquid refrigerant in the refrigerant pipe 1 below the cooler 3.
  • the evaporated refrigerant passes through the inside of the refrigerant pipe 1 and moves upward, part of the evaporated refrigerant moves toward the outlet pipe 5 and moves upward inside the outlet pipe 5.
  • the refrigerant that has moved upward in the outlet pipe 5 exchanges heat with the frost adhering to the surface of the outlet pipe 5. As a result, the refrigerant releases heat to the frost and condenses to become a liquid refrigerant and moves to the lower portion of the cooler 3, and the frost absorbs heat from the refrigerant and is melted.
  • the liquid refrigerant that has moved to the lower portion of the cooler 3 is warmed by the warm air generated by the heat of the defrost heater 111, and a series of phenomena that moves upward again is repeated until the frost is completely melted. ..
  • the outlet pipe 5 is shorter than the refrigerant pipe 1. Therefore, the evaporated refrigerant can reach the accumulator 4 in a short time. Therefore, it is possible to shorten the time until the frost in the accumulator 4 is completely melted.
  • the accumulator 4 since the time until the frost in the accumulator 4 is melted is shortened, even if the fin 2 is covered with a hydrophilic film to improve the drainage performance of the fin 2 during the defrosting operation, the accumulator It is possible to prevent the frost remaining state in which the frost remains in No. 4.
  • the accumulator 4 is connected to the refrigerant pipe 1 located in the lower portion of the cooler 3 via the outlet pipe 5 of the cooler 3 (right side of the refrigerant pipe 1 in FIG. 2). Has been done.
  • the outlet pipe 5 is connected to the refrigerant pipe 1 located under the cooler 3 and extends vertically upward.
  • the accumulator 4 is arranged above the cooler 3.
  • the fin 2 has a hydrophilic film. Therefore, the drainage performance during the defrosting operation can be improved.
  • the configuration in which the fin 2 has a film has been described, but the same effect can be obtained even when the film 6 is provided on the refrigerant pipe 1 or the accumulator 4 in addition to the fin 2.
  • the present disclosure can improve the drainage performance of the cooler during defrosting operation, reduce power consumption, and prevent frost residue from the accumulator. Therefore, the present invention can be applied to a cooling device such as a refrigerator of various types and sizes for home use and commercial use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Defrosting Systems (AREA)
  • Removal Of Water From Condensation And Defrosting (AREA)

Abstract

A defrosting device (200) comprises: a cooler (3) that has a refrigerant pipe (1) and a plurality of fins (2); an accumulator (4) that is connected to the refrigerant pipe (1) and stores a liquid refrigerant; and a defrosting heater (111) that is provided below the cooler (3). The defrosting device (200) also has an outlet pipe (5) that communicates with the portion of the refrigerant pipe (1) located at the bottom of the cooler (3). The accumulator (4) is connected to the refrigerant pipe (1) through the outlet pipe (5) and disposed above the cooler (3). The fins (2) have a coating.

Description

除霜装置およびこれを備えた冷蔵庫Defrosting device and refrigerator equipped with the same
 本開示は、冷却器における除霜の効率を向上させる除霜装置およびこれを備えた冷蔵庫に関する。 The present disclosure relates to a defrosting device that improves the efficiency of defrosting in a cooler and a refrigerator including the defrosting device.
 従来、この種の除霜装置は、冷却器より上方に設けられ冷媒管に接続されたアキュームレータと、冷却器の下方に設けられガラス管ヒータ等で構成された除霜手段(以下、除霜ヒータと称す)を有する。この冷却器と、アキュームレータと、圧縮機と、凝縮器と、減圧手段とが環状に接続されて構成された冷却サイクルの運転によって低温となった冷却器と、空気とが熱交換して冷気が生成され、冷蔵庫等の冷却装置による冷却が行われる。 Conventionally, this type of defrosting device is a defrosting unit (hereinafter referred to as a defrosting heater) configured by an accumulator provided above a cooler and connected to a refrigerant pipe, and a glass tube heater provided below the cooler. Called). This cooler, the accumulator, the compressor, the condenser, and the cooler that has become low temperature by the operation of the cooling cycle configured by annularly connecting the depressurizing means, and the air, heat exchanges with the cool air. It is generated and cooled by a cooling device such as a refrigerator.
 このような除霜装置およびこれを備えた冷蔵庫では、一般に、湿度を含んだ空気が冷却器と熱交換することにより低温になる。そして、当該空気が露点温度以下まで低下すると、冷却器の表面に凝縮液滴が発生する。 In such a defrosting device and a refrigerator equipped with such a defrosting device, air containing humidity generally becomes low temperature by exchanging heat with a cooler. Then, when the air drops to below the dew point temperature, condensed droplets are generated on the surface of the cooler.
 特に冷蔵庫では、冷媒温度が0℃以下であり、凝縮液滴が凍結して霜を形成する。このため、冷却器における熱交換面積が減少し、その結果、冷却器の冷却性能が低下する。そのため、あらかじめ設定された時間ごとに除霜ヒータに通電して、除霜ヒータによる熱により、冷却運転中に冷却器に付着した霜を融解させることで除霜し、冷却性能の低下を抑制している。しかしながら、除霜運転を実施してフィン等に付着した霜を融かした後であっても、フィン等の表面には融解水が残留する。このため、その融解水が冷却運転再開後に再冷却されて凍結すると、冷却器の熱交換面積が減少し、冷却器の冷却性能が低下する。 Especially in a refrigerator, the refrigerant temperature is 0°C or lower, and the condensed droplets freeze to form frost. Therefore, the heat exchange area in the cooler is reduced, and as a result, the cooling performance of the cooler is reduced. Therefore, the defrost heater is energized at preset time intervals, and the heat from the defrost heater melts the frost adhering to the cooler during the cooling operation to defrost and suppress a decrease in cooling performance. ing. However, even after performing the defrosting operation to melt the frost adhering to the fins and the like, the molten water remains on the surfaces of the fins and the like. For this reason, if the melted water is recooled and frozen after restarting the cooling operation, the heat exchange area of the cooler is reduced and the cooling performance of the cooler is reduced.
 さらに、残留した融解水は、冷却運転と除霜運転が行われるごとに、凍結と融解を繰り返す。このため、不要な電力を消費することになり、その結果として冷蔵庫の消費電力量が増加することになる。 Furthermore, the remaining melted water is repeatedly frozen and thawed each time a cooling operation and a defrosting operation are performed. Therefore, unnecessary power is consumed, and as a result, the power consumption of the refrigerator increases.
 そこで、冷却フィン表面の親水性を高めて排水性能を高めるため、アルコキシシラン構造を有する化合物、及び、第一級アミン又は第二級アミン等により構成された塗料を、冷却器のフィン表面に配置することが考えられている(例えば特許文献1参照)。 Therefore, in order to enhance the hydrophilicity of the cooling fin surface and enhance the drainage performance, a compound having an alkoxysilane structure, and a paint composed of a primary amine or a secondary amine are arranged on the fin surface of the cooler. It is considered to do so (for example, refer to Patent Document 1).
 図3は、特許文献1に記載された、従来の冷蔵庫を示す断面図である。 FIG. 3 is a sectional view showing a conventional refrigerator described in Patent Document 1.
 図3に示すように、冷蔵庫300は、横仕切り302により上下に分割された冷蔵室303と冷凍室304とを有する。冷蔵室303の後方にはダクト305が配置されている。 As shown in FIG. 3, the refrigerator 300 has a refrigerating room 303 and a freezing room 304 which are vertically divided by a horizontal partition 302. A duct 305 is arranged behind the refrigerator compartment 303.
 また、冷蔵庫300は、冷却器310を有する。冷却器310は、蛇行状に折曲され複数の段数を有する冷媒管314と、冷媒管314に直交状に装着された多数のフィン315から構成される。フィン315は、フィン315の表面の親水特性を高めるための皮膜を有している。 Further, the refrigerator 300 has a cooler 310. The cooler 310 includes a refrigerant pipe 314 that is bent in a meandering shape and has a plurality of stages, and a large number of fins 315 that are orthogonally attached to the refrigerant pipe 314. The fin 315 has a film for improving the hydrophilic property of the surface of the fin 315.
 また、冷却器310の上方には、冷媒管314に接続されたアキュームレータ316が配置されている。 Further, an accumulator 316 connected to the refrigerant pipe 314 is arranged above the cooler 310.
 冷蔵庫300の冷却運転の際には、圧縮機と、凝縮器と、減圧手段と、冷却器310と、アキュームレータ316とが環状に接続されて構成された冷凍サイクルの運転により低温となった冷却器310およびアキュームレータ316と、周辺の空気とが熱交換することで、低温の冷気が発生する。冷気は、冷却ファン318により、冷蔵室303及び冷凍室304へと供給される。 During the cooling operation of the refrigerator 300, the compressor, the condenser, the pressure reducing means, the cooler 310, and the accumulator 316 are annularly connected to each other, and the cooler has a low temperature due to the operation of the refrigeration cycle. Heat exchange between the 310 and the accumulator 316 and the surrounding air generates low-temperature cold air. The cool air is supplied to the refrigerating chamber 303 and the freezing chamber 304 by the cooling fan 318.
 冷蔵室扉及び冷凍室扉の開閉時には、外気が冷蔵室303及び冷凍室304の内部に侵入する。また、それぞれの部屋と扉の隙間をシールするガスケット(図示せず)の隙間から外気が冷蔵室303及び冷凍室304の内部に侵入する。このため、冷蔵室303及び冷凍室304の内部の空気は、比較的高い湿度を有する。この湿度の高い空気が戻り風路308及びスリットから吸い込まれて、低温である冷却器310及びアキュームレータ316と熱交換することで、冷却器310及びアキュームレータ316には霜が付着する。 When the refrigerator door and the freezer door are opened and closed, the outside air enters the refrigerator room 303 and the freezer room 304. Also, outside air enters the inside of the refrigerating chamber 303 and the freezing chamber 304 through the gap of a gasket (not shown) that seals the gap between each room and the door. Therefore, the air inside the refrigerator compartment 303 and the freezer compartment 304 has a relatively high humidity. The high-humidity air is sucked from the return air passage 308 and the slit and exchanges heat with the cooler 310 and the accumulator 316 having a low temperature, so that frost is attached to the cooler 310 and the accumulator 316.
 冷却運転の開始後は、冷却器310の下部を中心に着霜していくが、時間の経過と共に冷却器310の上部及びアキュームレータ316へも着霜していく。冷却器310及びアキュームレータ316に霜が付着すると、冷却器310及びアキュームレータ316と空気との熱交換面積が減少して冷却能力が低下する。このため、冷却器310の下方に設けられた除霜ヒータ311を、あらかじめ設定された時間毎に通電することにより、冷却器310及びアキュームレータ316に付着した霜の融解が行われる。 After the cooling operation starts, frost is formed mainly on the lower part of the cooler 310, but over time, the upper part of the cooler 310 and the accumulator 316 are also frosted. When frost adheres to the cooler 310 and the accumulator 316, the heat exchange area between the cooler 310 and the accumulator 316 and the air decreases, and the cooling capacity decreases. Therefore, the defrost heater 311 provided below the cooler 310 is energized at preset time intervals to melt the frost adhering to the cooler 310 and the accumulator 316.
 除霜ヒータ311で発生した熱により、冷却器310下部に付着した霜が最初に外表面から暖められる。冷却器310の外表面が暖めることにより発生した融解水は、微細構造である霜の根元側(フィン側)へ向かって毛細管現象により浸透していき、霜全体は均一な含水状態となる。 By the heat generated by the defrost heater 311, the frost attached to the bottom of the cooler 310 is first warmed from the outer surface. The melted water generated by warming the outer surface of the cooler 310 penetrates toward the root side (fin side) of frost, which is a fine structure, by a capillary phenomenon, and the entire frost is in a uniform water-containing state.
 また、含水状態となった霜は、冷却器室307内を上昇する暖気により外表面から暖められるため、冷却器310に付着した霜は、徐々に融解水へと変化していく。冷却器310の下部に付着した霜が融解した後に、さらに加熱が続けられると、冷却器310の下部の冷媒管314内の液冷媒が蒸発する。 Also, since the frost that has become water-containing is warmed from the outer surface by the warm air rising inside the cooler chamber 307, the frost that has adhered to the cooler 310 gradually changes to molten water. When the frost adhering to the lower portion of the cooler 310 is melted and then heating is further continued, the liquid refrigerant in the refrigerant pipe 314 under the cooler 310 is evaporated.
 蒸発した冷媒は、冷媒管314内を通過して上方に移動する。ここで、冷却器310の中部にはまだ霜が付着しているため、蒸発した冷媒と、冷却器310中部の霜とが、冷媒管314及びフィン315を介して熱交換する。熱交換の際には、蒸発した冷媒は霜に熱を放出して、液冷媒に凝縮し、冷却器310の下部へと移動する。 The evaporated refrigerant passes through the inside of the refrigerant pipe 314 and moves upward. Here, since frost still adheres to the central part of the cooler 310, the evaporated refrigerant and the frost in the central part of the cooler 310 exchange heat via the refrigerant pipes 314 and the fins 315. At the time of heat exchange, the evaporated refrigerant releases heat to the frost, is condensed into a liquid refrigerant, and moves to the lower part of the cooler 310.
 また、霜は熱を吸収して融解される。つまり、除霜運転時には、輻射や対流といった外側からの加熱と、冷媒が蒸発及び凝縮を繰り返して熱を上部に輸送するサーモサイフォン効果の2つの作用が働く。そしてこの二つの作用により、除霜ヒータ311から発生した熱が冷却器310の上部に伝達される。これにより、冷却器310及びアキュームレータ316に付着した霜は熱せられて融解していく。 Also, frost absorbs heat and is melted. That is, during the defrosting operation, there are two actions, namely, heating from the outside such as radiation and convection, and a thermosiphon effect in which the refrigerant repeatedly evaporates and condenses to transport the heat to the upper part. The heat generated from the defrost heater 311 is transferred to the upper part of the cooler 310 by these two actions. As a result, the frost attached to the cooler 310 and the accumulator 316 is heated and melted.
 通常、90℃前後の接触角を有するアルミ製のフィン表面では、融解水は複数の水滴に分離した状態で存在する。このため、融解水の自重が小さく、完全に融解した後も融解水がフィン表面に留まる。しかし、フィン315は親水性皮膜を有しているため、皮膜で覆われていない場合と比べて融解水の水滴とフィン315との接触面積が大きくなる。そのため、フィン315の表面上で隣接する融解水の水滴同士が接触して、融解水が1つの大きな塊となる。その結果、一つの水滴の自重が大きくなり、落下しやすくなる。これによって、除霜運転時の排水性能が高められている。 Normally, on the aluminum fin surface with a contact angle of around 90°C, the molten water exists in the state of being separated into multiple water droplets. Therefore, the self-weight of the melted water is small, and the melted water remains on the fin surface even after completely melting. However, since the fin 315 has a hydrophilic film, the contact area between the water droplets of the molten water and the fin 315 is larger than that in the case where the fin 315 is not covered with the film. Therefore, adjacent droplets of the melted water on the surface of the fin 315 come into contact with each other, and the melted water becomes one large lump. As a result, the weight of one water drop becomes large and it easily falls. This enhances the drainage performance during the defrosting operation.
 しかしながら、特許文献1に記載の構成では、冷却器310の下方に除霜ヒータが配置されているため、上方に設けられたアキュームレータ316の表面に付着した霜を完全に融解するまでに時間がかかる。このため、アキュームレータ316の除霜のために、冷却器310の下部を余分に暖めることになり、エネルギが余分に消費される。さらに、フィン315は、フィン315の排水特性を高める親水性皮膜を有しているため、フィン315に付着した霜は融解しやすい。従って、フィン315に付着した霜が融解しているにも関わらず、アキュームレータ316には、霜が残存する霜残りの状態が発生しやすい。 However, in the configuration described in Patent Document 1, since the defrost heater is arranged below the cooler 310, it takes time to completely melt the frost adhering to the surface of the accumulator 316 provided above. .. Therefore, the defrosting of the accumulator 316 causes the lower portion of the cooler 310 to be additionally warmed, which consumes extra energy. Further, since the fin 315 has a hydrophilic film that enhances the drainage property of the fin 315, the frost attached to the fin 315 is easily melted. Therefore, even though the frost attached to the fins 315 is melted, the accumulator 316 is likely to have a frost residual state in which frost remains.
特開2016-222787号公報JP, 2016-222787, A
 本開示は、除霜装置について、除霜運転時のフィンの排水特性を維持しつつ、アキュームレータの加熱を促進して、装置の消費電力量の低減と信頼性向上の両立を図る。 In the present defrosting device, while maintaining the drainage characteristics of the fins during the defrosting operation, the heating of the accumulator is promoted to reduce the power consumption of the device and improve the reliability.
 冷媒管及び複数のフィンを有する冷却器と、冷媒管に接続され、液冷媒を貯蔵するアキュームレータと、冷却器の下方に設けられた除霜ヒータと、を備えた除霜装置であって、除霜装置は、冷媒管の、冷却器の下部に位置する部分と連通する出口配管をさらに有する。アキュームレータは、出口配管を介して冷媒管に接続されており、且つ、冷却器よりも上方に配置され、複数のフィンは皮膜を有する。 A defrosting device comprising a cooler having a refrigerant pipe and a plurality of fins, an accumulator connected to the refrigerant pipe and storing a liquid refrigerant, and a defrost heater provided below the cooler. The frost device further includes an outlet pipe that communicates with a portion of the refrigerant pipe located below the cooler. The accumulator is connected to the refrigerant pipe through the outlet pipe and is arranged above the cooler, and the plurality of fins have a film.
 これによって、冷却器の下部の冷媒管で蒸発した冷媒が出口配管を通過してアキュームレータに到達するため、フィンに設けられた皮膜の特性を維持しつつ、除霜運転時に、アキュームレータに付着した霜を短時間で融解することが可能となり、アキュームレータ全体を均一に加熱することができる。 Thereby, the refrigerant evaporated in the lower refrigerant pipe of the cooler passes through the outlet pipe and reaches the accumulator, so while maintaining the characteristics of the film provided on the fins, during the defrosting operation, the frost attached to the accumulator Can be melted in a short time, and the entire accumulator can be heated uniformly.
図1は、本開示の実施の形態1における冷蔵庫を右側から視た、冷蔵庫の中央における断面図である。FIG. 1 is a cross-sectional view in the center of the refrigerator when the refrigerator according to Embodiment 1 of the present disclosure is viewed from the right side. 図2は、図1における冷蔵庫のII-II切断線による断面図である。FIG. 2 is a sectional view taken along the line II-II of the refrigerator in FIG. 図3は、従来の冷蔵庫を示す断面図である。FIG. 3 is a sectional view showing a conventional refrigerator.
 本開示の一態様に係る除霜装置は、冷媒管及び複数のフィンを有する冷却器と、冷媒管に接続され、液冷媒を貯蔵するアキュームレータと、冷却器の下方に設けられた除霜ヒータと、を備えた除霜装置であって、除霜装置は、冷媒管の、冷却器の下部に位置する部分と連通する出口配管をさらに有する。アキュームレータは、出口配管を介して冷媒管に接続されており、且つ、冷却器よりも上方に配置され、複数のフィンは皮膜を有する。 A defrosting device according to an aspect of the present disclosure, a cooler having a refrigerant pipe and a plurality of fins, an accumulator connected to the refrigerant pipe to store a liquid refrigerant, and a defrost heater provided below the cooler. The defrosting device further includes: an outlet pipe that communicates with a portion of the refrigerant pipe located below the cooler. The accumulator is connected to the refrigerant pipe through the outlet pipe and is arranged above the cooler, and the plurality of fins have a film.
 このような構成により、冷却器の下部の冷媒管で蒸発した冷媒が出口配管を通過してアキュームレータに到達する。従って、フィンに配置された皮膜の特性を維持しつつ、アキュームレータに付着した霜を除霜運転時に短時間で融解することが可能となる。また、アキュームレータ全体を均一に加熱することができるので、省エネルギ性能及び信頼性を高めることができる。 With this configuration, the refrigerant evaporated in the refrigerant pipe below the cooler passes through the outlet pipe and reaches the accumulator. Therefore, it is possible to melt the frost adhering to the accumulator in a short time during the defrosting operation while maintaining the characteristics of the film arranged on the fins. Further, since the entire accumulator can be heated uniformly, energy saving performance and reliability can be improved.
 本開示の他の一態様に係る除霜装置は、皮膜が、親水性皮膜及び滑水性皮膜で構成されていてもよい。 In the defrosting device according to another aspect of the present disclosure, the film may be composed of a hydrophilic film and a water-sliding film.
 このような構成により、皮膜の親水特性により融解水とフィンとの接触面積が大きくなり、融解水の自重が増加する。また、皮膜の滑水特性により融解水が滑落しやすくなる。このため、除霜運転時の排水特性を高めることが可能となり、より省エネルギ性能を高めることができる。 With such a configuration, the contact area between the molten water and the fins increases due to the hydrophilic properties of the film, and the self-weight of the molten water increases. In addition, the water-sliding property of the film makes it easier for the molten water to slip off. For this reason, it becomes possible to improve the drainage characteristic during the defrosting operation, and it is possible to further improve the energy saving performance.
 本開示の他の一態様に係る除霜装置は、皮膜が、撥水性皮膜及び滑水性皮膜で構成されていてもよい。 In the defrosting device according to another aspect of the present disclosure, the film may be composed of a water repellent film and a water sliding film.
 このような構成により、皮膜の撥水特性により融解水とフィンとの接触面積が小さくなり、融解水とフィンとの間の付着力が低下する。また、皮膜の滑水特性により融解水が滑落しやすくなる。このため、除霜運転時の排水特性を高めることが可能となり、より省エネルギ性能を高めることができる。 Due to such a structure, the contact area between the molten water and the fin is reduced due to the water-repellent property of the film, and the adhesive force between the molten water and the fin is reduced. In addition, the water-sliding property of the film makes it easier for the molten water to slip off. For this reason, it becomes possible to improve the drainage characteristic during the defrosting operation, and it is possible to further improve the energy saving performance.
 本開示の他の一態様に係る除霜装置は、皮膜が、親水性皮膜、滑水性皮膜及び撥水性皮膜のいずれか一方で構成している。 In the defrosting device according to another aspect of the present disclosure, the film is formed of one of a hydrophilic film, a water-sliding film, and a water-repellent film.
 このような構成により、親水性皮膜が用いられた場合には、融解水とフィンとの接触面積が大きくなり、隣接する融解水と接触して融解水の自重が増加することで融解水が滑落しやすくなる。また、滑水性皮膜が用いられた場合には、滑水特性により融解水が滑落しやすくなる。また、撥水性皮膜が用いられた場合には、融解水とフィンとの接触面積が小さく、融解水とフィンの付着力が低下することで融解水が滑落しやすくなる。従って、皮膜を汎用材料で構成することが可能となり、より安価に除霜装置を構成できるとともに、省エネルギ性及び信頼性を高めることができる。 With such a structure, when a hydrophilic film is used, the contact area between the molten water and the fins becomes large, and the molten water slides down due to contact with the adjacent molten water and an increase in the weight of the molten water. Easier to do. Further, when a water-sliding film is used, the molten water is likely to slip off due to the water-sliding property. Further, when a water-repellent coating is used, the contact area between the molten water and the fin is small, and the adhesive force between the molten water and the fin is reduced, so that the molten water is likely to slip off. Therefore, the coating can be made of a general-purpose material, the defrosting device can be constructed at a lower cost, and energy saving and reliability can be improved.
 本開示の他の一態様に係る除霜装置は、出口配管が、冷媒管の二つの折り曲げ端のうちのいずれか一つの折り曲げ端側に配置されていてもよい。 In the defrosting device according to another aspect of the present disclosure, the outlet pipe may be arranged on the bent end side of any one of the two bent ends of the refrigerant pipe.
 このような構成により、出口配管が冷却器における冷却風路の外側に位置することになるため、風路抵抗を低減することができる。従って、冷却器による冷却能力を大きくすることが可能となり、より省エネルギ性能を高めることができる。 With such a configuration, the outlet pipe is located outside the cooling air passage in the cooler, so the air passage resistance can be reduced. Therefore, the cooling capacity of the cooler can be increased, and the energy saving performance can be further improved.
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本開示が限定されるものではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The present disclosure is not limited to this embodiment.
 (実施の形態1)
 [1-1.構成]
 図1は、冷蔵庫を右から視た、冷蔵庫の中央における断面図である。図2は、図1における冷蔵庫のII-II切断線による断面図である。
(Embodiment 1)
[1-1. Constitution]
FIG. 1 is a cross-sectional view of the center of the refrigerator when the refrigerator is viewed from the right. FIG. 2 is a sectional view taken along the line II-II of the refrigerator in FIG.
 図1及び図2に示すように、冷蔵庫100は、横仕切り102により上下に分割された、冷蔵室103及び冷凍室104を有する。冷蔵室103の後方には、ダクト105と、冷凍室背面に設けられ、縦仕切り106によって冷却器室107と戻り風路108とに左右に分割された冷却室109とが配置されている。冷却器室107内には、冷却器3が配置されている。冷却器3は、後述のアキュームレータ4(図2参照)、圧縮機(図示せず)、凝縮器(図示せず)、及び減圧手段(図示せず)と共に、冷棟サイクルの一部を構成する。 As shown in FIGS. 1 and 2, the refrigerator 100 has a refrigerating room 103 and a freezing room 104 that are vertically divided by a horizontal partition 102. A duct 105 and a cooling chamber 109, which is provided on the rear surface of the freezing chamber and is divided into a cooler chamber 107 and a return air passage 108 by a vertical partition 106, are arranged behind the refrigerating chamber 103. The cooler 3 is arranged in the cooler chamber 107. The cooler 3 constitutes a part of a cold building cycle together with an accumulator 4 (see FIG. 2), a compressor (not shown), a condenser (not shown), and a pressure reducing means (not shown), which will be described later. ..
 冷却器3の前面は冷凍室カバー117で覆われている。冷凍室カバー117の上部には、冷却ファン118が配置されている。また、冷蔵庫100は、冷蔵室103の前面に設けられた冷蔵室扉119と、冷凍室104の前面に設けた冷凍室扉120とを備える。 The front of the cooler 3 is covered with a freezer compartment cover 117. A cooling fan 118 is arranged above the freezer compartment cover 117. The refrigerator 100 also includes a refrigerating compartment door 119 provided in front of the refrigerating compartment 103 and a freezing compartment door 120 provided in front of the freezing compartment 104.
 また、冷却器3の下方には、除霜ヒータ111が配置されている。冷却器室107と冷蔵室103との間には、これらを連通する吐出口112が配置されている。また、冷蔵室103と戻り風路108との間には、これらを連通する吸込口113が配置されている。 Further, a defrost heater 111 is arranged below the cooler 3. Between the cooler room 107 and the refrigerating room 103, the discharge port 112 which connects these is arrange|positioned. Further, between the refrigerating chamber 103 and the return air passage 108, a suction port 113 that connects them is arranged.
 図1及び図2に示すように、冷却器3は、冷媒管1と、フィン2とにより構成される。冷媒管1は、蛇行するように複数段に折り曲げられた形状を有する。フィン2は、冷媒管1に対して直交する状態で冷媒管1に装着されている。空気流路が形成されるように、フィン2は所定の間隔で多数平行に並べられている。 As shown in FIGS. 1 and 2, the cooler 3 is composed of a refrigerant pipe 1 and fins 2. The refrigerant pipe 1 has a shape bent in a plurality of steps so as to meander. The fins 2 are attached to the refrigerant pipe 1 in a state orthogonal to the refrigerant pipe 1. The fins 2 are arranged in parallel at a predetermined interval so that an air flow path is formed.
 図2に示すように、アキュームレータ4は、冷却器3の下部に位置する冷媒管1と、冷却器3の出口配管5を介して接続されている。出口配管5は、冷却器3の下部に位置する冷媒管1に接続されており、鉛直上方向に延設されている。出口配管5は、冷媒管1の二つの折り曲げ端(図2における、冷媒管1の左右端)のうちのいずれか一つの折り曲げ端側(図2における、冷媒管1の右端側)に配置されている。アキュームレータ4は、冷却器3よりも上方に配置されている。また、出口配管5の配管長は、冷媒管1の配管長よりも短い。 As shown in FIG. 2, the accumulator 4 is connected to the refrigerant pipe 1 located below the cooler 3 via the outlet pipe 5 of the cooler 3. The outlet pipe 5 is connected to the refrigerant pipe 1 located under the cooler 3 and extends vertically upward. The outlet pipe 5 is arranged on one of the two bent ends (the left and right ends of the refrigerant pipe 1 in FIG. 2) of the refrigerant pipe 1 (the right end side of the refrigerant pipe 1 in FIG. 2). ing. The accumulator 4 is arranged above the cooler 3. Moreover, the pipe length of the outlet pipe 5 is shorter than the pipe length of the refrigerant pipe 1.
 冷却器3のフィン2の表面は、皮膜6で覆われている。皮膜としては、例えばアクリル系樹脂で構成された親水性皮膜を用いることができる。皮膜は、アルコキシシラン構造を有する物質と、第一級アミン又は第二級アミン等と、により構成された親水性塗料にフィン2が浸漬され、又は、当該親水性塗料がロールコータ等によってフィン2に塗装された後、フィン2を乾燥させることで形成されてもよい。皮膜は、親水性皮膜及び滑水性皮膜であってもよい。皮膜は、撥水性皮膜及び滑水性皮膜であってもよい。また、皮膜は、親水性皮膜、滑水性皮膜、及び、撥水性皮膜のいずれかであってもよい。 The surface of the fin 2 of the cooler 3 is covered with the film 6. As the film, for example, a hydrophilic film made of acrylic resin can be used. The film is formed by immersing the fins 2 in a hydrophilic paint composed of a substance having an alkoxysilane structure and a primary amine, a secondary amine, or the like, or the hydrophilic paint is finned by a roll coater or the like. It may be formed by drying the fins 2 after being painted on. The coating may be a hydrophilic coating and a water-sliding coating. The coating may be a water repellent coating and a water sliding coating. Further, the film may be any of a hydrophilic film, a water-sliding film, and a water-repellent film.
 本実施の形態において、除霜装置200は、冷却器3、アキュームレータ4、除霜ヒータ111及び出口配管5を含んで構成される。 In the present embodiment, the defrosting device 200 is configured to include the cooler 3, the accumulator 4, the defrosting heater 111, and the outlet pipe 5.
 [1-2.冷蔵庫の動作及び作用]
 以上のように構成された除霜装置200、及びこれを備えた冷蔵庫100について、以下その動作及び作用を説明する。
[1-2. Operation and action of refrigerator]
The operation and action of the defroster 200 configured as described above and the refrigerator 100 including the defroster 200 will be described below.
 冷蔵庫100の冷却運転の際には、圧縮機と、凝縮器と、減圧手段と、冷却器3と、アキュームレータ4とが環状に接続されて構成された冷凍サイクルの運転により、冷却器3およびアキュームレータ4は低温状態になる。そして、低温状態となった冷却器3及びアキュームレータ4と空気とが熱交換することで生成された冷気が、冷却ファン118により冷蔵室103及び冷凍室104に供給される。 During the cooling operation of the refrigerator 100, the cooler 3 and the accumulator are operated by the operation of the refrigeration cycle configured by the compressor, the condenser, the pressure reducing means, the cooler 3, and the accumulator 4 connected in an annular shape. 4 becomes a low temperature state. Then, cool air generated by heat exchange between the cooler 3 and the accumulator 4 that have become low temperature and the air is supplied to the refrigerating chamber 103 and the freezing chamber 104 by the cooling fan 118.
 冷気は、吐出口112からダクト105を流れて冷蔵室103へ供給される。また、冷気は、冷蔵室103を冷却した後、吸込口113を通過して戻り風路108を流れ、冷却器室107の側面下側から、冷却器室107内へ吸い込まれる。 Cold air flows from the outlet 112 through the duct 105 and is supplied to the refrigerating chamber 103. After cooling the refrigerating chamber 103, the cool air flows through the suction port 113, the return air passage 108, and is sucked into the cooler chamber 107 from the lower side surface of the cooler chamber 107.
 また、冷気は、冷凍室カバー117上部を流れて冷凍室104へ供給される。冷凍室104を冷却した後の空気は、冷凍室カバー117(図1参照)の下部に設けられたスリットを通過して冷却器室107へ吸い込まれる。吸い込まれた空気は再度、冷却器3及びアキュームレータ4と熱交換して冷却され、冷蔵室103及び冷凍室104に供給される。 Further, the cold air flows through the upper part of the freezer compartment cover 117 and is supplied to the freezer compartment 104. The air after cooling the freezing compartment 104 passes through a slit provided in the lower portion of the freezing compartment cover 117 (see FIG. 1) and is sucked into the cooler compartment 107. The sucked air is again heat-exchanged with the cooler 3 and the accumulator 4 to be cooled and supplied to the refrigerating room 103 and the freezing room 104.
 この際、低温低圧の液冷媒が冷媒管1を通過している。この冷媒は、戻り風路108を流れて冷却器室107の側面下側から吸い込まれた、比較的高温の空気、及び、冷凍室カバー117下部に設けられたスリットを通過して冷却器室107へ吸い込まれた、冷却器3よりも高温の空気と、冷媒管1及びフィン2を介して熱交換される。 At this time, the low-temperature low-pressure liquid refrigerant is passing through the refrigerant pipe 1. The refrigerant flows through the return air passage 108 and is sucked from the lower side surface of the cooler chamber 107, passes through the relatively high temperature air, and the slits provided in the lower portion of the freezer compartment cover 117 to pass through the cooler chamber 107. Air having a temperature higher than that of the cooler 3 sucked in is exchanged with heat via the refrigerant tubes 1 and the fins 2.
 熱交換の際には、低温低圧となった液冷媒は周囲から熱を吸収して蒸発し、周囲を通過する空気は熱を放出して低温となる。冷却器において蒸発しきれなかった液冷媒は、アキュームレータ4に貯蔵されるが、アキュームレータ4でも、冷却器3と同様に空気と熱交換して冷媒の蒸発行われる。このため、アキュームレータ4も冷却器3と同程度の低温に保たれる。 During heat exchange, the low-temperature low-pressure liquid refrigerant absorbs heat from the surroundings and evaporates, and the air passing through the surroundings releases the heat to a low temperature. The liquid refrigerant that has not completely evaporated in the cooler is stored in the accumulator 4, and in the accumulator 4 as well as the cooler 3, heat is exchanged with air to evaporate the refrigerant. For this reason, the accumulator 4 is also maintained at a low temperature comparable to that of the cooler 3.
 冷蔵室扉119及び冷凍室扉120の開閉時には、外気が冷蔵室103及び冷凍室104の内部に侵入する。また、それぞれの部屋と扉の隙間をシールするガスケット(図示せず)の隙間から外気が冷蔵室103及び冷凍室104の内部に侵入する。このため、冷蔵室103及び冷凍室104の内部の空気は、比較的高い湿度を有する。 When the refrigerator compartment door 119 and the freezer compartment door 120 are opened and closed, outside air enters the refrigerator compartment 103 and the freezer compartment 104. In addition, outside air enters the inside of the refrigerating chamber 103 and the freezing chamber 104 through the gap of a gasket (not shown) that seals the gap between each room and the door. Therefore, the air inside the refrigerator compartment 103 and the freezer compartment 104 has a relatively high humidity.
 この湿度の高い空気が、戻り風路108及びスリットから吸い込まれて、低温である冷却器3及びアキュームレータ4と熱交換することで、冷却器3及びアキュームレータ4には霜が付着する。 Frost is attached to the cooler 3 and the accumulator 4 by sucking the high-humidity air from the return air passage 108 and the slits and exchanging heat with the cooler 3 and the accumulator 4 having a low temperature.
 冷却運転の開始後は、冷却器3の下部を中心に着霜していくが、時間の経過と共に冷却器3の上部及びアキュームレータ4へも着霜していく。冷却器3及びアキュームレータ4に霜が付着すると、冷却器3及びアキュームレータ4と空気との熱交換面積が減少して冷却能力が低下する。このため、冷却器3の下方に設けられた除霜ヒータ111を、あらかじめ設定された時間毎に通電することにより、冷却器3及びアキュームレータ4に付着した霜の融解が行われる。 After the cooling operation starts, frost is formed mainly on the lower part of the cooler 3, but over time, the upper part of the cooler 3 and the accumulator 4 are also frosted. When frost adheres to the cooler 3 and the accumulator 4, the heat exchange area between the cooler 3 and the accumulator 4 and the air decreases, and the cooling capacity decreases. Therefore, the defrosting heater 111 provided below the cooler 3 is energized at preset time intervals to melt the frost attached to the cooler 3 and the accumulator 4.
 除霜ヒータ111の熱により発生した暖気は、冷却器室107内の空気と比べて高温であるため、冷却器室107内で自然対流が発生する。従って、除霜ヒータ111近傍から始まって、冷却器室107内の全体が温められる。すなわち、除霜ヒータ111の近傍である冷却器3の下部に付着した霜が最初に外表面から暖められて融解する。 The warm air generated by the heat of the defrost heater 111 is higher in temperature than the air in the cooler chamber 107, so natural convection occurs in the cooler chamber 107. Therefore, starting from the vicinity of the defrost heater 111, the entire inside of the cooler chamber 107 is warmed. That is, the frost attached to the lower portion of the cooler 3 near the defrost heater 111 is first warmed from the outer surface and melted.
 冷却器3の下部の霜が融解した後に、冷却器3の上部及びアキュームレータ4の霜を融解するために加熱が続けられると、冷却器3の下部の冷媒管1内の液冷媒が蒸発する。蒸発した冷媒は、冷媒管1内を通過して冷却器3の上方側に向けて移動する。この際、冷却器3の中部にはまだ霜が付着しているため、蒸発した冷媒と冷却器3の中部の霜とが、冷媒管1及びフィン2を介して熱交換する。 After the frost in the lower part of the cooler 3 is melted, if the heating is continued to melt the frost in the upper part of the cooler 3 and the accumulator 4, the liquid refrigerant in the refrigerant pipe 1 below the cooler 3 is evaporated. The evaporated refrigerant passes through the inside of the refrigerant pipe 1 and moves toward the upper side of the cooler 3. At this time, since frost still adheres to the central portion of the cooler 3, the evaporated refrigerant and the frost in the central portion of the cooler 3 exchange heat via the refrigerant pipes 1 and the fins 2.
 熱交換の際には、蒸発した冷媒は霜に対して熱を放出して、液冷媒に凝縮し、冷却器3の下部へと移動する。また、霜は熱を吸収して融解される。このため、冷却器3の上部における冷媒管1とアキュームレータ4とが接続された場合には、冷却器3の上部及びアキュームレータ4に付着した霜の融解が始まるまでに時間がかかる。従って、冷却器3の上部及びアキュームレータ4に付着した霜を融解させるためには、冷却器3の下部及び冷却器室107の下部が無駄に加熱されることになる。 During heat exchange, the evaporated refrigerant releases heat to frost, condenses into liquid refrigerant, and moves to the bottom of the cooler 3. In addition, frost absorbs heat and is melted. Therefore, when the refrigerant pipe 1 and the accumulator 4 in the upper part of the cooler 3 are connected, it takes time until the frost attached to the upper part of the cooler 3 and the accumulator 4 starts to melt. Therefore, in order to melt the frost attached to the upper part of the cooler 3 and the accumulator 4, the lower part of the cooler 3 and the lower part of the cooler chamber 107 are wastefully heated.
 そこで本実施の形態では、アキュームレータ4は、冷却器3の下部に位置する冷媒管1と、冷却器3の出口配管5(図2における冷却器の右側)を介して接続されている。出口配管5は、冷却器3の下部に位置する冷媒管1に接続されており、鉛直上方向に延設されている。アキュームレータ4は、冷却器3よりも上方に配置されている。さらにフィン2の表面は、皮膜6で覆われている。皮膜としては、例えばアクリル系樹脂で構成された親水性皮膜が用いられる。 Therefore, in the present embodiment, the accumulator 4 is connected to the refrigerant pipe 1 located below the cooler 3 via the outlet pipe 5 of the cooler 3 (right side of the cooler in FIG. 2). The outlet pipe 5 is connected to the refrigerant pipe 1 located under the cooler 3 and extends vertically upward. The accumulator 4 is arranged above the cooler 3. Further, the surface of the fin 2 is covered with the film 6. As the film, for example, a hydrophilic film made of acrylic resin is used.
 これにより、除霜ヒータ111の熱により発生した暖気が、冷却器3の下部の冷媒管1内の液冷媒を蒸発させる。そして蒸発された冷媒が冷媒管1内を通過して上方に移動する際に、蒸発した冷媒の一部が出口配管5側へ移動し、出口配管5内を上方に移動する。 Thereby, the warm air generated by the heat of the defrosting heater 111 evaporates the liquid refrigerant in the refrigerant pipe 1 below the cooler 3. When the evaporated refrigerant passes through the inside of the refrigerant pipe 1 and moves upward, part of the evaporated refrigerant moves toward the outlet pipe 5 and moves upward inside the outlet pipe 5.
 出口配管5内を上方に移動した冷媒は、出口配管5の表面に付着した霜と熱交換する。これにより、冷媒は霜に熱を放出して凝縮して液冷媒となって冷却器3の下部へと移動し、霜は冷媒から熱を吸収して融解される。 The refrigerant that has moved upward in the outlet pipe 5 exchanges heat with the frost adhering to the surface of the outlet pipe 5. As a result, the refrigerant releases heat to the frost and condenses to become a liquid refrigerant and moves to the lower portion of the cooler 3, and the frost absorbs heat from the refrigerant and is melted.
 そして、冷却器3の下部へと移動した液冷媒が、除霜ヒータ111の熱により発生した暖気により暖められて、再び上方へ移動する一連の現象が、霜が完全に融解されるまで繰り返される。 Then, the liquid refrigerant that has moved to the lower portion of the cooler 3 is warmed by the warm air generated by the heat of the defrost heater 111, and a series of phenomena that moves upward again is repeated until the frost is completely melted. ..
 出口配管5は、冷媒管1と比べて短く構成されている。このため、短時間で、蒸発した冷媒がアキュームレータ4に到達することが可能となる。従って、アキュームレータ4の霜が完全に融解するまでの時間を短縮することができる。 The outlet pipe 5 is shorter than the refrigerant pipe 1. Therefore, the evaporated refrigerant can reach the accumulator 4 in a short time. Therefore, it is possible to shorten the time until the frost in the accumulator 4 is completely melted.
 また、アキュームレータ4の霜を融解するまでの時間が短縮化されることで、フィン2を親水性皮膜で覆うことで除霜運転時のフィン2の排水性能を高めた構成であっても、アキュームレータ4に霜が残存する、霜残りの状態を防ぐことができる。 Further, since the time until the frost in the accumulator 4 is melted is shortened, even if the fin 2 is covered with a hydrophilic film to improve the drainage performance of the fin 2 during the defrosting operation, the accumulator It is possible to prevent the frost remaining state in which the frost remains in No. 4.
 以上のように、本実施の形態においては、アキュームレータ4は、冷却器3の下部に位置する冷媒管1と、冷却器3の出口配管5(図2における冷媒管1の右側)を介して接続されている。出口配管5は、冷却器3の下部に位置する冷媒管1に接続されており、鉛直上方向に延設されている。アキュームレータ4は、冷却器3よりも上方に配置されている。 As described above, in the present embodiment, the accumulator 4 is connected to the refrigerant pipe 1 located in the lower portion of the cooler 3 via the outlet pipe 5 of the cooler 3 (right side of the refrigerant pipe 1 in FIG. 2). Has been done. The outlet pipe 5 is connected to the refrigerant pipe 1 located under the cooler 3 and extends vertically upward. The accumulator 4 is arranged above the cooler 3.
 これにより、アキュームレータ4の霜残りを防ぐことができ、省エネ性と信頼性の高い冷蔵庫を提供することができる。 With this, it is possible to prevent frost residue from the accumulator 4 and provide a refrigerator with high energy efficiency and high reliability.
 また、フィン2は親水性皮膜を有する。従って、除霜運転時の排水性能を高めることができる。 Also, the fin 2 has a hydrophilic film. Therefore, the drainage performance during the defrosting operation can be improved.
 なお、本実施の形態においては、フィン2が皮膜を有する構成について説明したが、フィン2に加え、冷媒管1又はアキュームレータ4に皮膜6が設けられた場合でも、同様の効果が得られる。 In the present embodiment, the configuration in which the fin 2 has a film has been described, but the same effect can be obtained even when the film 6 is provided on the refrigerant pipe 1 or the accumulator 4 in addition to the fin 2.
 本開示は、除霜運転時の冷却器における排水性を高めて、消費電力量を低減しつつ、アキュームレータの霜残りを防ぐことができる。従って、家庭用及び業務用等の、様々な種類及び大きさの間冷式の冷蔵庫等の冷却装置に適用することができる。 The present disclosure can improve the drainage performance of the cooler during defrosting operation, reduce power consumption, and prevent frost residue from the accumulator. Therefore, the present invention can be applied to a cooling device such as a refrigerator of various types and sizes for home use and commercial use.
 1 冷媒管
 2 フィン
 3 冷却器
 4 アキュームレータ
 5 出口配管
 6 皮膜
 100 冷蔵庫
 102 横仕切り
 103 冷蔵室
 104 冷凍室
 105 ダクト
 106 縦仕切り
 107 冷却器室
 108 戻り風路
 109 冷却室
 111 除霜ヒータ
 112 吐出口
 113 吸込口
 117 冷凍室カバー
 118 冷却ファン
 200 除霜装置
1 Refrigerant Pipe 2 Fin 3 Cooler 4 Accumulator 5 Outlet Pipe 6 Film 100 Refrigerator 102 Horizontal Partition 103 Refrigerator Room 104 Freezer Chamber 105 Duct 106 Vertical Partition 107 Cooler Room 108 Return Airway 109 Cooling Room 111 Defrost Heater 112 Discharge Port 113 Suction port 117 Freezer compartment cover 118 Cooling fan 200 Defrosting device

Claims (9)

  1.  冷媒管及び複数のフィンを有する冷却器と、
     前記冷媒管に接続され、液冷媒を貯蔵するアキュームレータと、
     前記冷却器の下方に設けられた除霜ヒータと、
    を備えた除霜装置であって、
     前記除霜装置は、前記冷媒管の、前記冷却器の下部に位置する部分と連通する出口配管をさらに有し、
     前記アキュームレータは、前記出口配管を介して前記冷媒管に接続されており、且つ、前記冷却器よりも上方に配置され、
     前記複数のフィンは皮膜を有する、
    除霜装置。
    A cooler having a refrigerant pipe and a plurality of fins;
    An accumulator connected to the refrigerant pipe and storing a liquid refrigerant,
    A defrost heater provided below the cooler,
    A defrosting device comprising:
    The defrosting device further has an outlet pipe that communicates with a portion of the refrigerant pipe located below the cooler,
    The accumulator is connected to the refrigerant pipe through the outlet pipe, and is arranged above the cooler,
    The fins have a coating,
    Defroster.
  2.  前記出口配管は、前記冷却器の下部から鉛直上方向に延設されている、
    請求項1に記載の除霜装置。
    The outlet pipe extends vertically upward from the lower portion of the cooler,
    The defrosting apparatus according to claim 1.
  3.  前記出口配管の配管長は、前記冷媒管の配管長よりも短い、
    請求項1に記載の除霜装置。
    The pipe length of the outlet pipe is shorter than the pipe length of the refrigerant pipe,
    The defrosting apparatus according to claim 1.
  4.  前記皮膜は、親水性皮膜及び滑水性皮膜である、
    請求項1に記載の除霜装置。
    The film is a hydrophilic film and a water-sliding film,
    The defrosting apparatus according to claim 1.
  5.  前記皮膜は、撥水性皮膜及び滑水性皮膜である、
    請求項1に記載の除霜装置。
    The film is a water-repellent film and a water-sliding film,
    The defrosting apparatus according to claim 1.
  6.  前記皮膜は、親水性皮膜、滑水性皮膜、及び、撥水性皮膜のいずれかである、
    請求項1に記載の除霜装置。
    The film is any one of a hydrophilic film, a water-sliding film, and a water-repellent film,
    The defrosting apparatus according to claim 1.
  7.  前記出口配管は、前記冷媒管の二つの折り曲げ端のうちのいずれか一つの折り曲げ端側に配置された、
    請求項1から6のいずれか1項に記載の除霜装置。
    The outlet pipe is arranged on the side of one of the two bent ends of the refrigerant pipe,
    The defrosting device according to any one of claims 1 to 6.
  8. 請求項1から7のいずれか1項に記載の除霜装置を備えた冷蔵庫。 A refrigerator provided with the defrosting device according to any one of claims 1 to 7.
  9.  前記除霜装置は、前記冷蔵庫の庫内の背部に配置されている、
    請求項8に記載の冷蔵庫。
    The defrosting device is arranged on the back of the refrigerator inside the refrigerator,
    The refrigerator according to claim 8.
PCT/JP2020/002659 2019-02-14 2020-01-27 Defrosting device and refrigerator equipped with same WO2020166308A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-024074 2019-02-14
JP2019024074A JP2020133933A (en) 2019-02-14 2019-02-14 Defrosting device and refrigerator including the same

Publications (1)

Publication Number Publication Date
WO2020166308A1 true WO2020166308A1 (en) 2020-08-20

Family

ID=72044838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002659 WO2020166308A1 (en) 2019-02-14 2020-01-27 Defrosting device and refrigerator equipped with same

Country Status (2)

Country Link
JP (1) JP2020133933A (en)
WO (1) WO2020166308A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023102851A (en) * 2022-01-13 2023-07-26 パナソニックIpマネジメント株式会社 Heat exchange system and application apparatus comprising the same
JP2023155726A (en) * 2022-04-11 2023-10-23 パナソニックIpマネジメント株式会社 Heat exchange system and application equipment provided with the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234842A (en) * 1999-02-15 2000-08-29 Toshiba Corp Refrigerator
JP2002005557A (en) * 2000-06-22 2002-01-09 Mitsubishi Electric Corp Refrigerator
JP2002071295A (en) * 2000-08-30 2002-03-08 Hitachi Ltd Evaporator
JP2003148846A (en) * 2001-11-13 2003-05-21 Matsushita Refrig Co Ltd Refrigerator
JP2009127925A (en) * 2007-11-22 2009-06-11 Panasonic Corp Cooler with defrosting heater and article storage device
JP2010249376A (en) * 2009-04-14 2010-11-04 Mitsubishi Electric Corp Refrigerator
JP2015045437A (en) * 2013-08-28 2015-03-12 パナソニックIpマネジメント株式会社 Refrigerator
US20170343270A1 (en) * 2014-12-15 2017-11-30 Lg Electronics Inc. Refrigerator having defrosting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234842A (en) * 1999-02-15 2000-08-29 Toshiba Corp Refrigerator
JP2002005557A (en) * 2000-06-22 2002-01-09 Mitsubishi Electric Corp Refrigerator
JP2002071295A (en) * 2000-08-30 2002-03-08 Hitachi Ltd Evaporator
JP2003148846A (en) * 2001-11-13 2003-05-21 Matsushita Refrig Co Ltd Refrigerator
JP2009127925A (en) * 2007-11-22 2009-06-11 Panasonic Corp Cooler with defrosting heater and article storage device
JP2010249376A (en) * 2009-04-14 2010-11-04 Mitsubishi Electric Corp Refrigerator
JP2015045437A (en) * 2013-08-28 2015-03-12 パナソニックIpマネジメント株式会社 Refrigerator
US20170343270A1 (en) * 2014-12-15 2017-11-30 Lg Electronics Inc. Refrigerator having defrosting device

Also Published As

Publication number Publication date
JP2020133933A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
CN106196826B (en) Wind cooling refrigerator and its dehumanization method
CN102538297B (en) Outdoor heat exchanger and heat pump having the same
CN106196843A (en) Wind cooling refrigerator and dehumanization method thereof
JP5178771B2 (en) Freezer refrigerator
WO2020166308A1 (en) Defrosting device and refrigerator equipped with same
JP2004309123A (en) Defrosting device for heat exchanger, and its manufacturing method
JP6019386B2 (en) refrigerator
CN108344206A (en) Evaporator assemblies and refrigerator
WO2017129109A1 (en) Parallel flow heat exchanger and air conditioner
US8438866B2 (en) Defrosting apparatus of refrigerator
CN109373669B (en) Refrigerator with a refrigerator body
WO2013088462A1 (en) Refrigerator
CN109974376A (en) The return air grid and refrigerator of refrigerator
JP2014163633A (en) Cooler and refrigerator
US10921045B2 (en) Roll-bonded evaporator and method of forming the evaporator
US20210278112A1 (en) Evaporator and refrigerator having same
CN211041530U (en) Refrigerator with air conditioning and humidifying device
CN104823010A (en) Refrigerator
KR101788095B1 (en) Defrosting device of heat-exchanger for a cooler
CN210014485U (en) Air condensing units and have its air conditioner
JP2017053589A (en) refrigerator
CN110849041B (en) Refrigerator condenser assembly and refrigerator
JPH09152229A (en) Refrigerator
KR20030068931A (en) Evaporator
JP2012180980A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20756441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20756441

Country of ref document: EP

Kind code of ref document: A1