WO2020164036A1 - Methods and apparatus of interruption at srs antenna switching in new radio system - Google Patents

Methods and apparatus of interruption at srs antenna switching in new radio system Download PDF

Info

Publication number
WO2020164036A1
WO2020164036A1 PCT/CN2019/075034 CN2019075034W WO2020164036A1 WO 2020164036 A1 WO2020164036 A1 WO 2020164036A1 CN 2019075034 W CN2019075034 W CN 2019075034W WO 2020164036 A1 WO2020164036 A1 WO 2020164036A1
Authority
WO
WIPO (PCT)
Prior art keywords
scs
carrier
slots
interrupt
victim
Prior art date
Application number
PCT/CN2019/075034
Other languages
French (fr)
Inventor
Zhixun Tang
Tsang-Wei Yu
Original Assignee
Mediatek Singapore Pte. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Singapore Pte. Ltd. filed Critical Mediatek Singapore Pte. Ltd.
Priority to PCT/CN2019/075034 priority Critical patent/WO2020164036A1/en
Priority to CN202080001242.6A priority patent/CN111837443B/en
Priority to EP20754894.2A priority patent/EP3915320A4/en
Priority to TW109104753A priority patent/TWI722795B/en
Priority to PCT/CN2020/075270 priority patent/WO2020164589A1/en
Priority to CN202410272533.9A priority patent/CN118019131A/en
Priority to US17/430,458 priority patent/US20220116172A1/en
Publication of WO2020164036A1 publication Critical patent/WO2020164036A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0604Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching with predefined switching scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time

Definitions

  • the present disclosure relates to wireless communications, and particularly relates to SRS antenna switching processing in a New Radio system.
  • the 5G New Radio (NR) system is designed to transmit SRS in the last several symbols in one slot.
  • the SRS transmission could be used as antenna switching for acquire full DL channel information at gNB through channel reciprocity when the UE has fewer transmitting chains than receiving chains.
  • the SRS transmission in one carrier will possible impact other carriers’ transmission/receiving process based on the RF design in each band combination.
  • the 5G New Radio (NR) system is designed to make use of SSB (Synchronization Signal Block) to execute the cell identification, measurement and beam management etc. .
  • SSB Synchronization Signal Block
  • the SSB is periodical transmission based on its SMTC (SSB Based RRM Measurement Timing Configuration) periodicity.
  • SMTC periodicity is one of the values among ⁇ 5, 10, 20, 40, 80, 160 ⁇ ms.
  • aspects of the disclosure provide a method for process SRS antenna switching procedure in a wireless communication network.
  • the method could include a SRS antenna switching impact table/signaling for each band combination which will check whether the configured SRS transmission for antenna switching will impact other carriers in other bands.
  • the method also includes a scheduling searching to check whether SSB receiving happens at the same time.
  • the method will decide how many slots UE will interrupt for each carriers DL/UL based on a searching table or UE’s capability signaling or real decision system based on the numerology of victim carrier (s) and aggressor carrier.
  • Fig. 1 shows a wireless communication system according to an embodiment of the disclosure
  • Fig. 2 shows an example of UE process procedure when receiving configured SRS antenna switching according to an embodiment of the disclosure
  • Fig. 3 to Fig. 10 show different examples of interruption slots for different numerology according to embodiments of the disclosure
  • Fig. 11 shows an exemplary block diagram of a user equipment (UE) according to an embodiment of the disclosure.
  • Fig. 1 shows a wireless communication system 100 according to an embodiment of the disclosure.
  • the system 100 can include a user equipment (UE) 110 and a base station (BS) 120.
  • the system 100 can be a cellular network, and employ the New Radio (NR) technologies and the LTE technologies developed by the 3rd Generation Partnership Project (3GPP) for wireless communications between the UE 110 and the BS 120.
  • the UE 110 can be a mobile phone, a laptop computer, a device carried in a vehicle, and the like.
  • the BS 120 can be an implementation of a gNB specified in NR standards. Accordingly, the UE 110 can communicate with the base station 120 through a wireless communication channel according to communication protocols specified in respective communication standards. Please note that the invention is not limited by this.
  • the UE 110 and the base station 120 are configured to employ carrier aggregation (CA) or dual-connection (DC) techniques to enhance UE’s throughput.
  • UE could support multiple bands such as 130, 140, 150.
  • band A 130 can be configured between the UE 110 and the base station 120.
  • UE can deploy multiple carriers 131-133 in band #A130.
  • UE can also deploy multiple carriers 141-143, 151-153 in band #B 140 to band #K 150 based on UE’s capability.
  • Fig. 2 shows an example of UE process procedure 200 when receiving configured SRS antenna switching.
  • UE receives the higher layer (e.g., RRC) signaling to configure SRS transmission with antenna switching command in carrier #0.
  • UE checks whether SRS antenna switching in carrier #0 band #Awill impact other bands’ DL/UL based on UE capability. If not, in step 230, the carrier in band #i will not be affected. It will process its DL/UL signals normally. If yes, in step 240, the UE will check whether at least one carrier in band #i will receive SSB at the same time with SRS antenna switching in carrier #0 band #0. If yes, in step 250, the UE will drop the SRS antenna switching at this slot.
  • RRC Radio Resource Control
  • step 250 the UE will only drop the SRS symbols which collide with SSB and transmit other SRS symbols.
  • step 260 the UE will check other collision rules for SRS transmission. If other collision rules are met, for example, SRS transmission has lower priority than other signals’ process, in step 270, the UE will drop the SRS antenna switching at this slot.
  • step 280 the UE will check whether all processing bands are finished. If not, the UE will continue the process from step 220.
  • step 290 the UE will decide how many slots will be interrupted in carrier #j band #i based on the numerology, UL TA number, CA or DC, synchronization or asynchronization DC etc. parameters.
  • step 2100 the UE will stop the DL or/and UL processing for interrupted slots in carrier #j in band #i.
  • step 2110 the UE will transmit SRS with antenna switching in carrier #0 band #Abased on the configured time slot/symbols. According to different design requirement, this step may be proceeded after step 290 or step 2100.
  • the SRS antenna switching process time 310 includes 2*Tx/Rx antenna switching time plus the SRS transmission time in the aggressor cell.
  • the victim cell SCS 15khz
  • the interrupted slot will be slot #n and slot #n+1.
  • the victim cell SCS 30khz
  • the interrupted slot will be slot #n+1, and slot #n+2.
  • the victim cell SCS 60khz
  • the interrupted slot will be slot #n+2, slot #n+3 and slot #n+4.
  • the victim cell which is not in the same frequency range with aggressor cell will have no interruption when UE supports per-FR gap capability.
  • SRS antenna switching process time 410 includes 2*Tx/Rx antenna switching time plus the SRS transmission time in aggressor cell. The interruption length starting from slot #n and end in slot #n because of UL TA.
  • the victim cell SCS 15khz
  • the interrupted slot will be slot #n.
  • the victim cell SCS 30khz
  • the interrupted slot will be slot #n+1.
  • the victim cell SCS 60khz
  • the interrupted slot will be slot #n+2, slot #n+3.
  • the victim cell SCS 120khz
  • the interrupted slot will be from slot #n+4 to slot #n+7.
  • the victim cell which is not in the same frequency range with aggressor cell will have no interruption when UE supports per-FR gap capability.
  • the SRS antenna switching process time 510 includes 2*Tx/Rx antenna switching time plus the SRS transmission time in aggressor cell.
  • the interruption length starting from slot #n+1 but end in slot #n+2.
  • the victim cell SCS 15khz
  • the interrupted slot will be slot #n and slot #n+1.
  • the victim cell SCS 30khz
  • the interrupted slot will be slot #n+1, and slot #n+2.
  • the victim cell SCS 60khz
  • the interrupted slot will be slot #n+3 and slot #n+4.
  • the victim cell which is not in the same frequency range with aggressor cell will have no interruption when UE supports per-FR gap capability.
  • SRS antenna switching process time 610 includes 2*Tx/Rx antenna switching time plus the SRS transmission time in aggressor cell. The interruption length starting from slot #n+1 and end in slot #n+1 because of UL TA.
  • the victim cell which is not in the same frequency range with aggressor cell will have no interruption when UE supports per-FR gap capability.
  • the SRS antenna switching process time 710 includes 2*Tx/Rx antenna switching time plus the SRS transmission time in aggressor cell.
  • the interruption length starting from slot #n+3 but end in slot #n+4.
  • the victim cell SCS 15khz
  • the interrupted slot will be slot #n and slot #n+1.
  • the victim cell SCS 30khz
  • the interrupted slot will be slot #n+1, and slot #n+2.
  • the victim cell SCS 60khz
  • the interrupted slot will be slot #n+3 and slot #n+4.
  • the victim cell SCS 120khz
  • the interrupted slot will be slot #n+7, and slot #n+8.
  • the victim cell which is not in the same frequency range with aggressor cell will have no interruption when UE supports per-FR gap capability.
  • SRS antenna switching process time 810 includes 2*Tx/Rx antenna switching time plus the SRS transmission time in aggressor cell.
  • the victim cell which is not in the same frequency range with aggressor cell will have no interruption when UE supports per-FR gap capability.
  • the SRS antenna switching process time 910 includes 2*Tx/Rx antenna switching time plus the SRS transmission time in aggressor cell.
  • the interruption length starting from slot #n+7 but end in slot #n+8.
  • the victim cell SCS 15khz
  • the interrupted slot will be slot #n and slot #n+1.
  • the victim cell SCS 30khz
  • the interrupted slot will be slot #n+1, and slot #n+2.
  • the victim cell SCS 60khz
  • the interrupted slot will be slot #n+3 and slot #n+4.
  • the victim cell SCS 120khz
  • the interrupted slot will be slot #n+7, and slot #n+8.
  • the victim cell which is not in the same frequency range with aggressor cell will have no interruption when UE supports per-FR gap capability.
  • SRS antenna switching process time 1010 includes 2*Tx/Rx antenna switching time plus the SRS transmission time in aggressor cell. The interruption length starting from slot #n+7 and end in slot #n+7 because of UL TA.
  • the victim cell which is not in the same frequency range with aggressor cell will have no interruption when UE supports per-FR gap capability.
  • the interrupted slots may be different from the embodiments illustrated above.
  • Fig. 11 shows an exemplary block diagram of a UE 1100 according to an embodiment of the disclosure.
  • the UE 1100 can be configured to implement various embodiments of the disclosure described herein.
  • the UE 1100 can include a processor 1110, a memory 1120, and a radio frequency (RF) module 1130 that are coupled together as shown in Fig. 11.
  • RF radio frequency
  • the UE 1100 can be a mobile phone, a tablet computer, a desktop computer, a vehicle carried device, and the like.
  • the processor 1110 can be configured to perform various functions of the UE 120 described above with reference to Figs. 1-10.
  • the processor 1110 can include signal processing circuitry to process received or to be transmitted data according to communication protocols specified in, for example, LTE and NR standards. Additionally, the processor 1110 may execute program instructions, for example, stored in the memory 1120, to perform functions related with different communication protocols.
  • the processor 1110 can be implemented with suitable hardware, software, or a combination thereof.
  • the processor 1110 can be implemented with application specific integrated circuits (ASIC) , field programmable gate arrays (FPGA) , and the like, that includes circuitry.
  • ASIC application specific integrated circuits
  • FPGA field programmable gate arrays
  • the circuitry can be configured to perform various functions of the processor 1110.
  • the memory 1120 can store program instructions that, when executed by the processor 1110, cause the processor 1110 to perform various functions as described herein.
  • the memory 1120 can include a read only memory (ROM) , a random access memory (RAM) , a flash memory, a solid state memory, a hard disk drive, and the like.
  • the RF module 1130 can be configured to receive a digital signal from the processor 1110 and accordingly transmit a signal to a base station in a wireless communication network via an antenna 1140.
  • the RF module 1130 can be configured to receive a wireless signal from a base station and accordingly generate a digital signal which is provided to the processor 1110.
  • the RF module 1130 can include digital to analog/analog to digital converters (DAC/ADC) , frequency down/up converters, filters, and amplifiers for reception and transmission operations.
  • DAC/ADC digital to analog/analog to digital converters
  • the RF module 1130 can include converter circuits, filter circuits, amplification circuits, and the like, for processing signals on different carriers or bandwidth parts.
  • the UE 1100 can optionally include other components, such as input and output devices, additional CPU or signal processing circuitry, and the like. Accordingly, the UE 1100 may be capable of performing other additional functions, such as executing application programs, and processing alternative communication protocols.
  • the processes and functions described herein can be implemented as a computer program which, when executed by one or more processors, can cause the one or more processors to perform the respective processes and functions.
  • the computer program may be stored or distributed on a suitable medium, such as an optical storage medium or a solid-state medium supplied together with, or as part of, other hardware.
  • the computer program may also be distributed in other forms, such as via the Internet or other wired or wireless telecommunication systems.
  • the computer program can be obtained and loaded into an apparatus, including obtaining the computer program through physical medium or distributed system, including, for example, from a server connected to the Internet.
  • the computer program may be accessible from a computer-readable medium providing program instructions for use by or in connection with a computer or any instruction execution system.
  • a computer readable medium may include any apparatus that stores, communicates, propagates, or transports the computer program for use by or in connection with an instruction execution system, apparatus, or device.
  • the computer-readable medium can be magnetic, optical, electronic, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium.
  • the computer-readable medium may include a computer-readable non-transitory storage medium such as a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM) , a read-only memory (ROM) , a magnetic disk and an optical disk, and the like.
  • the computer-readable non-transitory storage medium can include all types of computer readable medium, including magnetic storage medium, optical storage medium, flash medium and solid state storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This invention proposes a mechanism of processing SRS antenna switching in a wireless communication network. The method could include a SRS antenna switching impact table/signaling for each band combination which will check whether the configured SRS transmission for antenna switching will impact other carriers in other bands. The method also includes a scheduling searching to check whether SSB receiving in other band (s) happen at the same time. The method will decide how many slots UE will interrupt for each carriers DL/UL based on a searching table or UE's capability signaling or real decision system based on the numerology of victim carrier (s) and aggressor carrier.

Description

METHODS AND APPARATUS OF INTERRUPTION AT SRS ANTENNA SWITCHING IN NEW RADIO SYSTEM TECHNICAL FIELD
The present disclosure relates to wireless communications, and particularly relates to SRS antenna switching processing in a New Radio system.
BACKGROUND
The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent the work is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
The 5G New Radio (NR) system is designed to transmit SRS in the last several symbols in one slot. The SRS transmission could be used as antenna switching for acquire full DL channel information at gNB through channel reciprocity when the UE has fewer transmitting chains than receiving chains. The SRS transmission in one carrier will possible impact other carriers’ transmission/receiving process based on the RF design in each band combination.
The 5G New Radio (NR) system is designed to make use of SSB (Synchronization Signal Block) to execute the cell identification, measurement and beam management etc. . Considering the importance for SSB receiving in DL, there is collision rule for UE to handle when antenna switching SRS transmission colliding with SSB. The SSB is periodical transmission based on its SMTC (SSB Based RRM Measurement Timing Configuration) periodicity. SMTC periodicity is one of the values among {5, 10, 20, 40, 80, 160} ms.
Accordingly, it is important for the UE to properly handle the SRS transmission with antenna switching base on above configuration.
SUMMARY
Aspects of the disclosure provide a method for process SRS antenna switching procedure in a wireless communication network. The method could include a SRS antenna switching impact table/signaling for each band combination which will check whether the configured SRS transmission for antenna switching will impact other carriers in other bands. The method also includes a scheduling searching to check whether SSB receiving happens at the same time. The method will decide how many slots UE will interrupt for each carriers DL/UL based on a searching table or UE’s capability signaling or real decision system based on the numerology of victim carrier (s) and aggressor carrier.
BRIEF DESCRIPTION OF THE DRAWINGS
Various embodiments of this disclosure that are proposed as examples will be described in detail with reference to the following figures, wherein like numerals reference like elements, and wherein:
Fig. 1 shows a wireless communication system according to an embodiment of the disclosure;
Fig. 2 shows an example of UE process procedure when receiving configured SRS antenna switching according to an embodiment of the disclosure;
Fig. 3 to Fig. 10 show different examples of interruption slots for different numerology according to embodiments of the disclosure;
Fig. 11 shows an exemplary block diagram of a user equipment (UE) according to an embodiment of the disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Fig. 1 shows a wireless communication system 100 according to an embodiment of the disclosure. The system 100 can include a user equipment (UE) 110 and a base station (BS) 120. The system 100 can be a cellular network, and employ the New Radio (NR) technologies and the LTE technologies developed by the 3rd Generation Partnership Project (3GPP) for wireless communications between the UE 110 and the BS 120. The UE 110 can be a mobile phone, a laptop computer, a device carried in a vehicle, and the like. The BS 120 can be an implementation of a gNB specified in NR standards. Accordingly, the UE 110 can communicate with the base station 120 through a wireless communication channel according to communication protocols specified in respective communication standards. Please note that the invention is not limited by this.
In one example, the UE 110 and the base station 120 are configured to employ carrier aggregation (CA) or dual-connection (DC) techniques to enhance UE’s throughput. UE could support multiple bands such as 130, 140, 150. Accordingly, band A 130 can be configured between the UE 110 and the base station 120. UE can deploy multiple carriers 131-133 in band #A130. At the same time, UE can also deploy multiple carriers 141-143, 151-153 in band #B 140 to band #K 150 based on UE’s capability.
Fig. 2 shows an example of UE process procedure 200 when receiving configured SRS antenna switching. In step 210, UE receives the higher layer (e.g., RRC) signaling to configure SRS transmission with antenna switching command in carrier #0. In step 220, UE checks whether SRS antenna switching in carrier #0 band #Awill impact other bands’ DL/UL based on UE capability. If not, in step 230, the carrier in band #i will not be affected. It will process its DL/UL signals normally. If yes, in step 240, the UE will check whether at least one carrier in band #i will receive SSB at the same time with SRS antenna switching in carrier #0 band #0. If yes, in step 250, the UE will drop the SRS antenna switching at this slot.
Alternatively, in step 250, the UE will only drop the SRS symbols which collide with SSB and transmit other SRS symbols.
In step 260, the UE will check other collision rules for SRS transmission. If other collision rules are met, for example, SRS transmission has lower priority than other signals’ process, in step 270, the UE will drop the SRS antenna switching at this slot.
In step 280, the UE will check whether all processing bands are finished. If not, the UE will continue the process from step 220.
If yes, in step 290, the UE will decide how many slots will be interrupted in carrier #j band #i based on the numerology, UL TA number, CA or DC, synchronization or asynchronization DC etc. parameters.
In step 2100, the UE will stop the DL or/and UL processing for interrupted slots in carrier #j in band #i.
In step 2110, the UE will transmit SRS with antenna switching in carrier #0 band #Abased on the configured time slot/symbols. According to different design requirement, this step may be proceeded after step 290 or step 2100.
Fig. 3 shows an example 300 of victim cells for different numerology with aggressor cell’s sub-carrier spacing (SCS) =15khz. The SRS antenna switching process time 310 includes 2*Tx/Rx antenna switching time plus the SRS transmission time in the aggressor cell. The interruption length starting from slot #n but end in slot #n+1.
In one embodiment, the victim cell SCS=15khz, the interrupted slot will be slot #n and slot #n+1. In another embodiment, the victim cell SCS=30khz, the interrupted slot will be slot #n+1, and slot #n+2. In another embodiment, the victim cell SCS=60khz, the interrupted slot will be slot #n+2, slot #n+3 and slot #n+4. In yet another embodiment, the victim cell SCS=120khz, the interrupted slot will be from slot #n+4 to slot #n+8.
Alternatively, the UE will have the same interrupted slots number in victim cell (s) for aggressor cell with SCS=15khz in DC scenario.
Alternatively, the victim cell which is not in the same frequency range with aggressor cell will have no interruption when UE supports per-FR gap capability.
Fig. 4 shows an example 400 of victim cells for different numerology with aggressor cell’s sub-carrier spacing (SCS) =15khz and uplink (UL) time advance (TA) in aggressor cell. The SRS antenna switching process time 410 includes 2*Tx/Rx antenna switching time plus the SRS transmission time in aggressor cell. The interruption length starting from slot #n and end in slot #n because of UL TA.
In one embodiment, the victim cell SCS=15khz, the interrupted slot will be slot #n. In another embodiment, the victim cell SCS=30khz, the interrupted slot will be slot #n+1. In another embodiment, the victim cell SCS=60khz, the interrupted slot will be slot #n+2, slot #n+3. In yet another embodiment , the victim cell SCS=120khz, the interrupted slot will be from slot #n+4 to slot #n+7.
Alternatively, the UE will have the same interrupted slots number in victim cell (s) for aggressor cell with SCS=15khz in asynchronization DC scenario.
Alternatively, the victim cell which is not in the same frequency range with aggressor cell will have no interruption when UE supports per-FR gap capability.
Fig. 5 shows a CA example 500 of victim cells for different numerology with aggressor cell’s sub-carrier spacing (SCS) =30khz. The SRS antenna switching process time 510 includes 2*Tx/Rx antenna switching  time plus the SRS transmission time in aggressor cell. The interruption length starting from slot #n+1 but end in slot #n+2.
In one embodiment, the victim cell SCS=15khz, the interrupted slot will be slot #n and slot #n+1. In another embodiment, the victim cell SCS=30khz, the interrupted slot will be slot #n+1, and slot #n+2. In another embodiment, the victim cell SCS=60khz, the interrupted slot will be slot #n+3 and slot #n+4. In yet another embodiment, the victim cell SCS=120khz, the interrupted slot will be from slot #n+6, to slot #n+8.
Alternatively, the UE will have the same interrupted slots number in victim cell (s) for aggressor cell with SCS=30khz in DC scenario.
Alternatively, the victim cell which is not in the same frequency range with aggressor cell will have no interruption when UE supports per-FR gap capability.
Fig. 6 shows an example 600 of victim cells for different numerology with aggressor cell’s sub-carrier spacing (SCS) =30khz and uplink (UL) time advance (TA) in aggressor cell. The SRS antenna switching process time 610 includes 2*Tx/Rx antenna switching time plus the SRS transmission time in aggressor cell. The interruption length starting from slot #n+1 and end in slot #n+1 because of UL TA.
In one embodiment, the victim cell SCS=15khz, the interrupted slot will be slot #n. In another embodiment, the victim cell SCS=30khz, the interrupted slot will be slot #n+1. In another embodiment, the victim cell SCS=60khz, the interrupted slot will be slot #n+2, slot #n+3. In yet another embodiment, the victim cell SCS=120khz, the interrupted slot will be from slot #n+5 to slot #n+7.
Alternatively, the UE will have the same interrupted slots number in victim cell (s) for aggressor cell with SCS=30khz in asynchronization DC scenario.
Alternatively, the victim cell which is not in the same frequency range with aggressor cell will have no interruption when UE supports per-FR gap capability.
Fig. 7 shows a CA example 700 of victim cells for different numerology with aggressor cell’s sub-carrier spacing (SCS) =60khz. The SRS antenna switching process time 710 includes 2*Tx/Rx antenna switching time plus the SRS transmission time in aggressor cell. The interruption length starting from slot #n+3 but end in slot #n+4.
In one embodiment, the victim cell SCS=15khz, the interrupted slot will be slot #n and slot #n+1. In another embodiment, the victim cell SCS=30khz, the interrupted slot will be slot #n+1, and slot #n+2. In another embodiment, the victim cell SCS=60khz, the interrupted slot will be slot #n+3 and slot #n+4. In yet another embodiment, the victim cell SCS=120khz, the interrupted slot will be slot #n+7, and slot #n+8.
Alternatively, the UE will have the same interrupted slots number in victim cell (s) for aggressor cell with SCS=60khz in DC scenario.
Alternatively, the victim cell which is not in the same frequency range with aggressor cell will have no interruption when UE supports per-FR gap capability.
Fig. 8 shows an example 800 of victim cells for different numerology with aggressor cell’s sub-carrier spacing (SCS) =60khz and uplink (UL) time advance (TA) in aggressor cell. The SRS antenna switching process  time 810 includes 2*Tx/Rx antenna switching time plus the SRS transmission time in aggressor cell. The interruption length starting from slot #n+3 and end in slot #n+3 because of UL TA.
In one embodiment, the victim cell SCS=15khz, the interrupted slot will be slot #n. In another embodiment, the victim cell SCS=30khz, the interrupted slot will be slot #n+1. In another embodiment, the victim cell SCS=60khz, the interrupted slot will be slot #n+3. In yet another embodiment, the victim cell SCS=120khz, the interrupted slot will be slot #n+6, and slot #n+7.
Alternatively, the UE will have the same interrupted slots number in victim cell (s) for aggressor cell with SCS=60khz in asynchronization DC scenario.
Alternatively, the victim cell which is not in the same frequency range with aggressor cell will have no interruption when UE supports per-FR gap capability.
Fig. 9 shows a CA example 900 of victim cells for different numerology with aggressor cell’s sub-carrier spacing (SCS) =120khz. The SRS antenna switching process time 910 includes 2*Tx/Rx antenna switching time plus the SRS transmission time in aggressor cell. The interruption length starting from slot #n+7 but end in slot #n+8.
In one embodiment, the victim cell SCS=15khz, the interrupted slot will be slot #n and slot #n+1. In another embodiment, the victim cell SCS=30khz, the interrupted slot will be slot #n+1, and slot #n+2. In another embodiment, the victim cell SCS=60khz, the interrupted slot will be slot #n+3 and slot #n+4. In yet another embodiment, the victim cell SCS=120khz, the interrupted slot will be slot #n+7, and slot #n+8.
Alternatively, the UE will have the same interrupted slots number in victim cell (s) for aggressor cell with SCS=120khz in DC scenario.
Alternatively, the victim cell which is not in the same frequency range with aggressor cell will have no interruption when UE supports per-FR gap capability.
Fig. 10 shows an example 1000 of victim cells for different numerology with aggressor cell’s sub-carrier spacing (SCS) =120khz and uplink (UL) time advance (TA) in aggressor cell. The SRS antenna switching process time 1010 includes 2*Tx/Rx antenna switching time plus the SRS transmission time in aggressor cell. The interruption length starting from slot #n+7 and end in slot #n+7 because of UL TA.
In one embodiment, the victim cell SCS=15khz, the interrupted slot will be slot #n. In another embodiment, the victim cell SCS=30khz, the interrupted slot will be slot #n+1. In another embodiment, the victim cell SCS=60khz, the interrupted slot will be slot #n+3. In yet another embodiment, the victim cell SCS=120khz, the interrupted slot will be slot #n+6, and slot #n+7.
Alternatively, the UE will have the same interrupted slots number in victim cell (s) for aggressor cell with SCS=120khz in asynchronization DC scenario.
Alternatively, the victim cell which is not in the same frequency range with aggressor cell will have no interruption when UE supports per-FR gap capability.
Please note that based on different numerology/UE design, the interrupted slots may be different from the embodiments illustrated above.
Fig. 11 shows an exemplary block diagram of a UE 1100 according to an embodiment of the disclosure. The UE 1100 can be configured to implement various embodiments of the disclosure described herein. The UE 1100 can include a processor 1110, a memory 1120, and a radio frequency (RF) module 1130 that are coupled together as shown in Fig. 11. In different examples, the UE 1100 can be a mobile phone, a tablet computer, a desktop computer, a vehicle carried device, and the like.
The processor 1110 can be configured to perform various functions of the UE 120 described above with reference to Figs. 1-10. The processor 1110 can include signal processing circuitry to process received or to be transmitted data according to communication protocols specified in, for example, LTE and NR standards. Additionally, the processor 1110 may execute program instructions, for example, stored in the memory 1120, to perform functions related with different communication protocols. The processor 1110 can be implemented with suitable hardware, software, or a combination thereof. For example, the processor 1110 can be implemented with application specific integrated circuits (ASIC) , field programmable gate arrays (FPGA) , and the like, that includes circuitry. The circuitry can be configured to perform various functions of the processor 1110.
In one example, the memory 1120 can store program instructions that, when executed by the processor 1110, cause the processor 1110 to perform various functions as described herein. The memory 1120 can include a read only memory (ROM) , a random access memory (RAM) , a flash memory, a solid state memory, a hard disk drive, and the like.
The RF module 1130 can be configured to receive a digital signal from the processor 1110 and accordingly transmit a signal to a base station in a wireless communication network via an antenna 1140. In addition, the RF module 1130 can be configured to receive a wireless signal from a base station and accordingly generate a digital signal which is provided to the processor 1110. The RF module 1130 can include digital to analog/analog to digital converters (DAC/ADC) , frequency down/up converters, filters, and amplifiers for reception and transmission operations. For example, the RF module 1130 can include converter circuits, filter circuits, amplification circuits, and the like, for processing signals on different carriers or bandwidth parts.
The UE 1100 can optionally include other components, such as input and output devices, additional CPU or signal processing circuitry, and the like. Accordingly, the UE 1100 may be capable of performing other additional functions, such as executing application programs, and processing alternative communication protocols.
The processes and functions described herein can be implemented as a computer program which, when executed by one or more processors, can cause the one or more processors to perform the respective processes and functions. The computer program may be stored or distributed on a suitable medium, such as an optical storage medium or a solid-state medium supplied together with, or as part of, other hardware. The computer program may also be distributed in other forms, such as via the Internet or other wired or wireless telecommunication systems. For example, the computer program can be obtained and loaded into an apparatus, including obtaining the computer program through physical medium or distributed system, including, for example, from a server connected to the Internet.
The computer program may be accessible from a computer-readable medium providing program instructions for use by or in connection with a computer or any instruction execution system. A computer readable medium may include any apparatus that stores, communicates, propagates, or transports the computer program for use by or in connection with an instruction execution system, apparatus, or device. The computer-readable medium can be magnetic, optical, electronic, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium. The computer-readable medium may include a computer-readable non-transitory storage medium such as a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM) , a read-only memory (ROM) , a magnetic disk and an optical disk, and the like. The computer-readable non-transitory storage medium can include all types of computer readable medium, including magnetic storage medium, optical storage medium, flash medium and solid state storage medium.
While aspects of the present disclosure have been described in conjunction with the specific embodiments thereof that are proposed as examples, alternatives, modifications, and variations to the examples may be made. Accordingly, embodiments as set forth herein are intended to be illustrative and not limiting. There are changes that may be made without departing from the scope of the claims set forth below.

Claims (13)

  1. A method, comprising:
    receiving SRS antenna switching impact table/signalling for each band combination which will check whether the configured SRS transmission for antenna switching will impact other carriers in other bands;
    scheduling searching to check whether SSB receiving happens at the same time; and
    deciding how many slots UE will interrupt for each carriers DL/UL based on a searching table or UE’s capability signaling or real decision system for the combination about the numerology and interruption slots.
  2. The method of claim 1, further comprising:
    deciding drop SRS transmission mechanism by detect the collision with SSB receiving at the same time in the carrier (s) which will be impacted by SRS transmission carrier.
  3. The method of claim 2, further comprising:
    scheduling the victim carrier (s) which impacted by the SRS transmission aggressor carrier.
  4. The method of claim 1, further comprising:
    interrupting victim carrier (s) based on the numerology of victim carrier (s) and aggressor carrier.
  5. The method of claim 3, further comprising:
    When the UE is in CA or DC deployment, and the aggressor carrier with SRS transmission’s SCS is 15KHz;
    The victim carrier (s) of SCS=15KHz will interrupt 2 slots;
    The victim carrier (s) of SCS=30KHz will interrupt 2 slots;
    The victim carrier (s) of SCS=60KHz will interrupt 3 slots;
    The victim carrier (s) of SCS=120KHz will interrupt 5 slots.
  6. The method of claim 3, further comprising:
    When the UE is in CA with UL TA or DC deployment with UL TA or asynchronization DC, and the aggressor carrier with SRS transmission’s SCS is 15KHz;
    When SRS transmission length and RF retuning length all base on one aggressor carrier slot,
    The victim carrier (s) of SCS=15KHz will interrupt 1 slots;
    The victim carrier (s) of SCS=30KHz will interrupt 1 slots;
    The victim carrier (s) of SCS=60KHz will interrupt 2 slots;
    The victim carrier (s) of SCS=120KHz will interrupt 4 slots.
  7. The method of claim 3, further comprising:
    When the UE is in CA or DC deployment, and the aggressor carrier with SRS transmission’s SCS is 30KHz;
    The victim carrier (s) of SCS=15KHz will interrupt 2 slots;
    The victim carrier (s) of SCS=30KHz will interrupt 2 slots;
    The victim carrier (s) of SCS=60KHz will interrupt 2 slots;
    The victim carrier (s) of SCS=120KHz will interrupt 3 slots.
  8. The method of claim 3, further comprising:
    When the UE is in CA with UL TA or DC deployment with UL TA or asynchronization DC, and the aggressor carrier with SRS transmission’s SCS is 30KHz;
    When SRS transmission length and RF retuning length all base on one aggressor carrier slot,
    The victim carrier (s) of SCS=15KHz will interrupt 1 slots;
    The victim carrier (s) of SCS=30KHz will interrupt 1 slots;
    The victim carrier (s) of SCS=60KHz will interrupt 2 slots;
    The victim carrier (s) of SCS=120KHz will interrupt 3 slots.
  9. The method of claim 3, further comprising:
    When the UE is in CA or DC deployment, and the aggressor carrier with SRS transmission’s SCS is 60KHz;
    The victim carrier (s) of SCS=15KHz will interrupt 2 slots;
    The victim carrier (s) of SCS=30KHz will interrupt 2 slots;
    The victim carrier (s) of SCS=60KHz will interrupt 2 slots;
    The victim carrier (s) of SCS=120KHz will interrupt 2 slots.
  10. The method of claim 3, further comprising:
    When the UE is in CA with UL TA or DC deployment with UL TA or asynchronization DC, and the aggressor carrier with SRS transmission’s SCS is 60KHz;
    When SRS transmission length and RF retuning length all base on one aggressor carrier slot,
    The victim carrier (s) of SCS=15KHz will interrupt 1 slots;
    The victim carrier (s) of SCS=30KHz will interrupt 1 slots;
    The victim carrier (s) of SCS=60KHz will interrupt 1 slots;
    The victim carrier (s) of SCS=120KHz will interrupt 2 slots.
  11. The method of claim 3, further comprising:
    When the UE is in CA or DC deployment, and the aggressor carrier with SRS transmission’s SCS is 120KHz;
    The victim carrier (s) of SCS=15KHz will interrupt 2 slots;
    The victim carrier (s) of SCS=30KHz will interrupt 2 slots;
    The victim carrier (s) of SCS=60KHz will interrupt 2 slots;
    The victim carrier (s) of SCS=120KHz will interrupt 2 slots.
  12. The method of claim 3, further comprising:
    When the UE is in CA with UL TA or DC deployment with UL TA or asynchronization DC, and the aggressor carrier with SRS transmission’s SCS is 120KHz;
    When SRS transmission length and RF retuning length all base on one aggressor carrier slot,
    The victim carrier (s) of SCS=15KHz will interrupt 1 slots;
    The victim carrier (s) of SCS=30KHz will interrupt 1 slots;
    The victim carrier (s) of SCS=60KHz will interrupt 1 slots;
    The victim carrier (s) of SCS=120KHz will interrupt 1 slots.
  13. The method of claim 3, further comprising:
    When UE support per-FR gap, the interruption on the SRS transmission with antenna switching in the victim cell (s) will only be caused by the aggressor cell in the same FR.
PCT/CN2019/075034 2019-02-14 2019-02-14 Methods and apparatus of interruption at srs antenna switching in new radio system WO2020164036A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2019/075034 WO2020164036A1 (en) 2019-02-14 2019-02-14 Methods and apparatus of interruption at srs antenna switching in new radio system
CN202080001242.6A CN111837443B (en) 2019-02-14 2020-02-14 Method for switching transmission of sounding reference signal and electronic equipment thereof
EP20754894.2A EP3915320A4 (en) 2019-02-14 2020-02-14 Electronic devices and methods for sounding reference signal (srs) transmission switching
TW109104753A TWI722795B (en) 2019-02-14 2020-02-14 Electronic devices and methods for sounding reference signal (srs) transmission switching
PCT/CN2020/075270 WO2020164589A1 (en) 2019-02-14 2020-02-14 Electronic devices and methods for sounding reference signal (srs) transmission switching
CN202410272533.9A CN118019131A (en) 2019-02-14 2020-02-14 Method for switching transmission of sounding reference signal and electronic equipment thereof
US17/430,458 US20220116172A1 (en) 2019-02-14 2020-02-14 Electronic devices and methods for sounding reference signal (srs) transmission switching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075034 WO2020164036A1 (en) 2019-02-14 2019-02-14 Methods and apparatus of interruption at srs antenna switching in new radio system

Publications (1)

Publication Number Publication Date
WO2020164036A1 true WO2020164036A1 (en) 2020-08-20

Family

ID=72044297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075034 WO2020164036A1 (en) 2019-02-14 2019-02-14 Methods and apparatus of interruption at srs antenna switching in new radio system

Country Status (1)

Country Link
WO (1) WO2020164036A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022046518A1 (en) * 2020-08-27 2022-03-03 Qualcomm Incorporated Radio frequency shared path information

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108401533A (en) * 2017-11-30 2018-08-14 北京小米移动软件有限公司 Information indicating method and device, base station and user equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108401533A (en) * 2017-11-30 2018-08-14 北京小米移动软件有限公司 Information indicating method and device, base station and user equipment

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "On identification of aggressor and victim gNBs", 3GPP TSG RAN WG1 MEETING #95,R1-1812627, 16 November 2018 (2018-11-16), XP051554583, DOI: 20191030171505A *
MCC SUPPORT: "Draft Report of 3GPP TSG RAN WG1 #95 v0.3.0", 3GPP TSG RAN WG1 MEETING #96, 16 November 2018 (2018-11-16), DOI: 20191030165103A *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022046518A1 (en) * 2020-08-27 2022-03-03 Qualcomm Incorporated Radio frequency shared path information

Similar Documents

Publication Publication Date Title
KR102476242B1 (en) 2-step random access
US11202259B2 (en) Apparatus, system, and method for mobile station power saving
US20220116172A1 (en) Electronic devices and methods for sounding reference signal (srs) transmission switching
WO2020164115A1 (en) Methods and apparatus of scell activation in new radio system
CN111937339B (en) Method and apparatus for cellular communication synchronization within unlicensed spectrum bands
WO2022141638A1 (en) Methods and apparatus of multiple concurrent gap configuration
KR20210056945A (en) Channel access mechanisms in wireless communication
US20230033872A1 (en) System and Method for Determining PDCCH Monitoring Capability per Component Carriers in a Carrier Aggregation for Span Based PDCCH Monitoring
US20190313458A1 (en) Apparatus, System, and Method for Preambles for Unlicensed Access
US20210321482A1 (en) System and Method for Simultaneous UL Cancellation and UL CI Monitoring
US11395282B2 (en) Cellular burst detection in unlicensed spectrum
WO2020164036A1 (en) Methods and apparatus of interruption at srs antenna switching in new radio system
US20240015795A1 (en) Physical Random Access Channel Enhancements in New Radio
US20230232290A1 (en) Rach configuration in l1/l2 mobility
US20240107388A1 (en) Timing advance in layer 1/layer 2 intercell mobility
CN114731530B (en) Uplink transmission for dual active protocol stack handover
WO2020164093A1 (en) Methods and apparatus of interruption at srs carrier switchingin new radio system
US11963058B2 (en) Dual active protocol stack handovers above 24 GHz
US20230361967A1 (en) Counting active resources for ue processing complexity related capability
WO2021159292A1 (en) Methods and apparatus of spatial relation switching for nr communication
WO2022027382A1 (en) Systems and methods for base station configuration of pdcch monitoring in a wireless device
US20230155794A1 (en) System and methods for pdcch monitoring in new radio new radio
CN117223311A (en) Enhancement of high speed train measurement and signaling
JP2015002467A (en) Radio communication system and radio communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915337

Country of ref document: EP

Kind code of ref document: A1