WO2020153170A1 - Information processing device - Google Patents

Information processing device Download PDF

Info

Publication number
WO2020153170A1
WO2020153170A1 PCT/JP2020/000866 JP2020000866W WO2020153170A1 WO 2020153170 A1 WO2020153170 A1 WO 2020153170A1 JP 2020000866 W JP2020000866 W JP 2020000866W WO 2020153170 A1 WO2020153170 A1 WO 2020153170A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight
information
drone
risk
collision
Prior art date
Application number
PCT/JP2020/000866
Other languages
French (fr)
Japanese (ja)
Inventor
山田 武史
雄一朗 瀬川
康裕 北村
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2020568070A priority Critical patent/JPWO2020153170A1/en
Publication of WO2020153170A1 publication Critical patent/WO2020153170A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D25/00Emergency apparatus or devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/40Transportation

Definitions

  • the present invention relates to a technique for supporting the safe flight of an air vehicle.
  • Patent Document 1 in a moving body system in which a server collects planned trajectories of each moving body and avoids a collision, the load of the server is caused by causing each moving body to generate a self-planned trajectory that does not interfere with another person's planned trajectory.
  • a technique for reducing the above is disclosed.
  • An aircraft such as a drone may transmit information including the position of its own to a management device or the like in order to notify the presence or absence of danger during flight. It is not desirable that the load of the transmission process be too high, because the resources that the weight saving aircraft have are limited. However, when the danger is high, it is important to make sure that the danger is known. Therefore, it is an object of the present invention to reduce the load of transmission processing on an air vehicle and more surely deal with dangers that occur during flight.
  • the present invention transmits an acquisition unit that acquires risk level information that represents the magnitude of danger when a flying object flies, and flight information that indicates the flight status of the flying object. And an instruction unit for instructing the aircraft to transmit the flight information in a manner according to the magnitude of the risk represented by the acquired risk information.
  • a processing device is provided.
  • Diagram showing an example of the item table Diagram showing an example of the destination table The figure showing an example of the frequency table of a modification.
  • Example FIG. 1 shows an example of the overall configuration of an operation management support system 1 according to an example.
  • the operation management support system 1 is a system that supports operation management of a flying object.
  • Flight management refers to managing flight (that is, operation) according to the flight plan of an aircraft such as a drone.
  • the operation management support system 1 includes a network 2, a plurality of server devices 10, a plurality of drones 20, and an integrated management device 30.
  • the network 2 is a communication system including a mobile communication network, the Internet, etc., and relays data exchange between devices that access the own system.
  • the server device 10 and the integrated management device 30 are accessing the network 2 by wired communication (or wireless communication may be used), and the drone 20 is accessing by wireless communication.
  • the drone 20 is a rotary-wing aircraft type flying body that rotates by rotating one or more rotary blades, and is used for various purposes such as imaging, inspection, spraying, security, and transportation.
  • the drone 20 flies according to the operation of the operator.
  • the operation by the operator is performed by using a propo (a controller that performs proportional control (proportional control)) or a flight instruction personal computer (a device that continuously outputs a set flight instruction).
  • the server device 10 Since the drone 20 is used for operation management for the purpose of safe flight and the like, information (flight information) indicating the flight status including at least the position of the aircraft in flight is designated to the server device 10 which controls the aircraft. Transmission is performed using the specified transmission control method. Details of the flight information transmission control will be described later in detail.
  • the server device 10 performs processing for managing the operation of the drone 20 under the jurisdiction of the business entity 3 and its own device, based on the flight information installed and transmitted by the business entity 3 and the flight plan of each drone 20. .. Details of this processing will be described later.
  • the integrated management device 30 collects information (flight plans, flight information, etc.) handled by the plurality of server devices 10 and performs processing for smooth information sharing between the devices. For example, the flight plans of each drone 20 can be shared more efficiently by once being aggregated in the integrated management device 30 and distributed to each server device 10 than by being shared by the server devices 10. However, not all information is shared via the integrated management device 30. Information sharing performed directly between the server devices 10 will also be described later in detail.
  • FIG. 2 shows an example of the hardware configuration of the server device 10 and the integrated management device 30.
  • the server device 10 and the integrated management device 30 may be physically configured as a computer device including a processor 11, a memory 12, a storage 13, a communication device 14, a bus 15, and the like.
  • the word "device” can be read as a circuit, a device, a unit, or the like.
  • each device may include one or more devices, or may not include some devices.
  • the processor 11 operates, for example, an operating system to control the entire computer.
  • the processor 11 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit and the like may be realized by the processor 11. Further, the processor 11 reads a program (program code), a software module, data, and the like from at least one of the storage 13 and the communication device 14 into the memory 12, and executes various processes according to these. As the program, a program that causes a computer to execute at least part of the operations described in the above-described embodiments is used.
  • the various processes described above are executed by one processor 11, they may be executed simultaneously or sequentially by two or more processors 11.
  • the processor 11 may be implemented by one or more chips.
  • the program may be transmitted from the network via an electric communication line.
  • the memory 12 is a computer-readable recording medium.
  • the memory 12 may be configured by at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), a RAM (Random Access Memory), and the like.
  • the memory 12 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 12 can store an executable program (program code), a software module, or the like for implementing the wireless communication method according to the embodiment of the present disclosure.
  • the storage 13 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk). At least one of a (registered trademark) disk, a smart card, a flash memory (for example, a card, a stick, and a key drive), a floppy (registered trademark) disk, a magnetic strip, or the like.
  • an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk).
  • the storage 13 may be called an auxiliary storage device.
  • the above-mentioned storage medium may be, for example, a database including at least one of the memory 12 and the storage 13, a server, or another appropriate medium.
  • the communication device 14 is hardware (transmission/reception device) for performing communication between computers via at least one of a wired network and a wireless network.
  • the transmission/reception antenna, the amplifier unit, the transmission/reception unit, the transmission line interface, and the like described above may be realized by the communication device 14.
  • the transmitter/receiver may be implemented by physically or logically separating the transmitter and the receiver.
  • each device such as the processor 11 and the memory 12 is connected by a bus 15 for communicating information.
  • the bus 15 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • FIG. 3 shows an example of the hardware configuration of the drone 20.
  • the drone 20 may be physically configured as a computer device including a processor 21, a memory 22, a storage 23, a communication device 24, a flight device 25, a sensor device 26, a bus 27, and the like.
  • the hardware having the same name as that shown in FIG. 2 is the same type of hardware as those having different performances and specifications.
  • the communication device 24 has a function (for example, a wireless communication function using radio waves in the 2.4 GHz band) of communicating with the radio in addition to the communication with the network 2.
  • the flying device 25 is a device that includes a motor, a rotor, and the like, and causes the own device to fly. The flying device 25 can move itself in all directions in the air or can make itself stationary (hover).
  • the sensor device 26 is a device having a sensor group that acquires information necessary for flight control.
  • the sensor device 26 is, for example, a position sensor that measures the position (latitude and longitude) of the own device, and the direction in which the own device is facing (the front direction of the own device is set for the drone, and the front direction is A direction sensor for measuring the altitude) and an altitude sensor for measuring the altitude of the player.
  • the sensor device 26 includes a speed sensor that measures the speed of the own device and an inertial measurement sensor (IMU (Inertial Measurement Unit)) that measures the triaxial angular velocity and the acceleration in three directions.
  • IMU Inertial Measurement Unit
  • Each function in each device included in the operation management support system 1 causes a predetermined software (program) to be loaded on hardware such as each processor and memory, so that the processor performs calculation and communication by each communication device is performed. It is realized by controlling or controlling at least one of reading and writing of data in the memory and the storage.
  • Fig. 4 shows the functional configuration realized by each device.
  • two combinations of the server device 10 and the drone 20 are shown, but these are used by different operation management operators to manage the drone 20 and each operation management operator to control the drone 20. This is a combination with the server device 10. Further, since each server device 10 and each drone 20 included in the operation management support system 1 have the function shown in FIG. 4, the other server device 10 and drone 20 are not shown.
  • a device ID for identifying each server device 10 and a drone ID for identifying each drone 20 are defined.
  • the ID and the current time are given to the data exchanged between the devices to identify the source of the information, the target of the information (for example, which drone 20 the flight plan is), the transmission time, and the like. It is like this.
  • various information such as flight plans and flight information are converted into data and exchanged, in the following, transmitting data will also be referred to as simply transmitting information indicated by the data.
  • the server device 10 includes a flight plan transmission unit 101, a flight information acquisition unit 102, an unplanned flight determination unit 103, a flight plan acquisition unit 104, a first collision identification unit 105, an avoidance processing unit 106, and an unplanned flight.
  • the flight notification unit 107, the unplanned notification reception unit 108, the second collision identification unit 109, the collision notification unit 110, and the collision notification reception unit 111 are included.
  • the drone 20 includes a flight control unit 201 and a flight information transmission unit 202.
  • the integrated management device 30 includes a flight plan acquisition unit 301, a flight plan storage unit 302, and a flight plan distribution unit 303.
  • the flight plan transmitting unit 101 of the server device 10 transmits the flight plan of the drone 20 under the jurisdiction of its own device (that is, under the jurisdiction of the operation management business operator using the own device) to the integrated management device 30.
  • the flight plan of the drone 20 is created by an operation management company having jurisdiction over the drone 20, converted into data, and stored in the server device 10.
  • the flight plan is, for example, information indicating a flight airspace in which the drone 20 flies and a time zone in which the flight airspace is flown.
  • the flight plan may be a plan for the day or a plan for the next day or later.
  • the flight plan transmission unit 101 transmits the stored flight plan data to the integrated management device 30.
  • the flight plan acquisition unit 301 of the integrated management apparatus 30 acquires the flight plan indicated by the transmitted flight plan data, that is, the flight plan of the drone 20 that the operation management support system 1 supports.
  • the flight plan acquisition unit 301 supplies the acquired flight plan to the flight plan storage unit 302.
  • the flight plan storage unit 302 stores the supplied flight plan in association with the drone ID of the planned drone 20.
  • the flight control unit 201 of the drone 20 controls the flight of its own aircraft by using the measurement result of each sensor included in the sensor device 26.
  • the flight control unit 201 performs flight control so as to fly on the flight route instructed by the operator using, for example, a radio transmitter.
  • the flight information transmitting unit 202 of the drone 20 transmits the flight information indicating the flight status of the own device to the server device 10 that controls the own device by a designated method.
  • the flight information transmitting unit 202 transmits the flight information at the frequency instructed by the server device 10.
  • the frequency of flight information transmission is specified by, for example, a time interval of transmission or the number of times of transmission in a predetermined period. In either case, if the transmission frequency is determined, the time interval until the next transmission is determined.
  • the flight information transmission unit 202 generates flight information data based on the measurement result of each sensor included in the sensor device 26 at a time interval indicated by the designated frequency, and transmits the flight information data to the server device 10.
  • the flight information acquisition unit 102 of the server device 10 acquires the flight information transmitted from the drone 20 by the specified method as described above.
  • the flight information acquisition unit 102 acquires the flight information to acquire the flight status of the drone 20 belonging to the group under its control.
  • a group of the drone 20 that is under its control is referred to as a “jurisdiction group”
  • a group of drones 20 that is under the control of another server device 10 is referred to as a “non-jurisdiction group”.
  • the flight information acquisition unit 102 acquires the flight status of the drone 20 belonging to the jurisdiction group.
  • Fig. 5 shows an example of flight information.
  • the drone ID the flight time (measurement time of each information), the flight position (for example, latitude and longitude), the flight direction (for example, the numerical value indicating the direction in 360 degrees), and the flight altitude (for example, Flight information including altitude (altitude above sea level) and flight speed is displayed. Since the flight information is repeatedly acquired, a plurality of flight times and the like are associated with one drone ID.
  • the flight information acquisition unit 102 supplies the acquired flight information of the drone 20 belonging to the jurisdiction group to the unplanned flight determination unit 103.
  • the unplanned flight determination unit 103 determines whether the drone 20 belonging to the jurisdiction group is flying out of the flight plan.
  • the unplanned flight determination unit 103 requests the flight plan acquisition unit 104 for all the flight plans of the drones 20 that are scheduled to fly on the same day at the beginning of the day and belong to the jurisdiction group.
  • the flight plan acquisition unit 104 acquires the requested flight plan, that is, the flight plan of the drone 20 belonging to the jurisdiction group scheduled to fly on the day.
  • the flight plan acquisition unit 104 acquires the requested flight plan by reading the corresponding flight plan from the flight plan transmission unit 101 of the own device. The flight plan will be described with reference to FIG.
  • FIG. 6A shows an example of a flight plan.
  • the flight airspace where the drone 20 with the drone ID “D001” is scheduled to fly is shown.
  • the flyable airspace in which the drone 20 can fly is predetermined like a road network. Flyable airspace is airspace that has received the necessary permission for flight, and may include airspace that does not require permission in some cases.
  • the flyable airspace is represented by a cubic space (hereinafter referred to as “cell”) that is spread without any gaps, and each cell is provided with a cell ID that identifies each cell.
  • the altitude of each cell is constant, and the xy coordinates of each cell and the cell ID are represented in correspondence (for example, a cell whose xy coordinates are (x10, y15) is The cell ID is C10_15).
  • the flying airspace R1 includes a divided airspace R11 (which is an airspace into which the flight airspace is divided) from the cell C01_01, which is the starting point of the drone 20, to the cell C20_01 through the cell adjacent in the positive direction of the x-axis, and the y-axis. It includes a divided air space R12 that reaches the cell C20_20 through a cell that is adjacent in the positive direction, and a divided air space R13 that extends from the cell C50_20 that is a destination cell through a cell that is adjacent in the x-axis positive direction.
  • a divided airspace R11 which is an airspace into which the flight airspace is divided
  • FIG. 6B as a flight plan of the drone 20 having a drone ID of “D001”, a cell ID representing a flight airspace and a flight scheduled period in the flight airspace are shown.
  • the cell ID and the scheduled flight period are shown for each divided airspace.
  • a period K11 from a time T111 scheduled to enter the divided airspace R11 to a time T112 scheduled to leave the divided airspace R11 is represented.
  • the drone 20 with the drone ID “D002” shows the flight plan to fly in the flight space A21 from time T21 to T22.
  • the drone 20 is supposed to photograph, for example, a certain site from above, and the flight area A21 is represented by a set of cell IDs of cells located above the site.
  • the route to fly in the flight area A21 is not decided by the plan, but it may be decided in detail.
  • the flight plan acquisition unit 104 supplies the acquired flight plan of the drone 20 belonging to the jurisdiction group to the unplanned flight determination unit 103.
  • the unplanned flight determination unit 103 compares the supplied flight plan with the flight situation indicated by the supplied flight information, and flies at a position separated by a predetermined distance or more from the flight route planned in the flight plan, for example. If it is, the flight is judged to be off the flight plan.
  • the unplanned flight determination unit 103 determines that the flight is out of the flight plan, for example, when it is separated from the flight area represented by the flight plan by two cells or more.
  • the unplanned flight determination unit 103 deviates from the flight plan even if the flight route is a flight route planned by the flight plan when the flight is at a time that is more than a predetermined time away from the scheduled flight time zone. Determined to be flying.
  • the unplanned flight determination unit 103 determines that the flight is out of the flight plan, for example, when it is away from the scheduled flight period represented by the flight plan by 5 minutes or more. Note that the above-described distance and time of two cells and five minutes are examples, and other distances and times may be used.
  • each server device 10 has a group to which the drone 20 belongs.
  • the flight plan acquisition unit 104 acquires not only the drone 20 that belongs to the jurisdiction group that the device owns but also the flight plan of the drone 20 that belongs to a non-jurisdiction group that the other server device 10 has jurisdiction and that is scheduled to fly on the day. ..
  • the flight plan acquisition unit 104 transmits, to the integrated management device 30, request data requesting a flight plan of the drone 20 that belongs to the relevant non-jurisdiction group.
  • the flight plan distribution unit 303 of the integrated management apparatus 30 reads out the flight plan requested by the transmitted request data from the flight plan storage unit 302 and distributes it to the requesting server device 10.
  • the flight plan acquisition unit 104 acquires the delivered flight plan as a flight plan of the drone 20 belonging to the non-jurisdiction group, and supplies the flight plan to the first collision identification unit 105.
  • the flight plan acquisition unit 104 may directly acquire the flight plan of the drone 20 that belongs to the non-jurisdiction group from another server device 10.
  • the first collision identification unit 105 is supplied with flight information of the drone 20 that the unplanned flight determination unit 103 has determined to be flying outside the flight plan.
  • the first collision identifying unit 105 receives the flight information from the unplanned flight determination unit 103, that is, when the flight status of the drone 20 indicating a flight out of the flight plan is acquired, the drone belonging to the jurisdiction group.
  • the drone 20 that may collide with the drone 20 in the flight situation indicating the flight out of the flight plan is identified from among the 20.
  • the first collision identification unit 105 identifies the drone 20 that may have a collision, for example, based on the flight plan of the drone 20 belonging to the jurisdiction group acquired by the flight plan acquisition unit 104.
  • a drone 20 with a possibility of collision means a drone 20 with a possibility of collision with a drone 20 that is flying unplanned.
  • the drone 20 itself may fly unplanned, which may cause a collision.
  • the drone 20 that is flying unplanned and the group to which the drone 20 that has a possibility of collision belong to the jurisdiction group in the above example, but may be the non-jurisdiction group. To).
  • the first collision identifying unit 105 determines, for example, the distance between the position of the drone 20 (the drone 20 performing unplanned flight) included in the supplied flight status and the current position of the drone 20 in the acquired flight plan. Based on this, the drone 20 that is likely to collide is identified. Generally, if the flying positions of two drones approach a certain distance or more, the possibility of collision increases. Therefore, the first collision identifying unit 105 identifies a drone 20 having a distance less than the threshold value with respect to the drone 20 that is flying unplanned as a drone 20 having a possibility of collision.
  • “there is a possibility of collision” means that the possibility of collision has risen to a predetermined level or higher. For example, even if the drones are 100 m or more apart from each other, the possibility of a collision is not 0 if they continue flying, but it is extremely small, so it is not determined that there is a possibility of a collision. On the other hand, when the distance between the drones approaches a certain distance (distance less than the above-mentioned threshold value), there is no doubt that the possibility of collision will increase depending on the flight direction and the flight speed. Therefore, the first collision identifying unit 105 In such a case, the drone 20 having a possibility of collision is specified.
  • the first collision identification unit 105 When the first collision identification unit 105 identifies the drone 20 that may have a collision, the first collision identification unit 105 notifies the avoidance processing unit 106 of the identified drone 20 and the drone 20 that is flying unplanned.
  • the avoidance processing unit 106 performs processing (avoidance processing) for avoiding the collision when the drone 20 belonging to the jurisdiction group is identified as having a possibility of collision.
  • the avoidance processing unit 106 performs, for example, processing for instructing the drone 20 that may collide with the drone 20 that is flying unplanned to stop for a certain period of time as the avoidance processing.
  • the avoidance processing unit 106 performs processing for instructing to change the flight path of the drone 20 to a flight path capable of avoiding a collision as an avoidance processing.
  • the avoidance processing unit 106 performs the same instruction to the drone 20 performing the unplanned flight as the avoidance processing. You can go.
  • the avoidance processing unit 106 transmits instruction data indicating the above instruction to, for example, the drone 20 to be instructed.
  • the flight control unit 201 of the drone 20 to be instructed controls the flight of its own aircraft as instructed.
  • the transmission destination of the instruction data is not limited to this, and may be, for example, a transmitter or personal computer used by the operator. In that case, a radio transmitter, a personal computer, or the like displays the instruction indicated by the instruction data, and the operator looks at it and performs a flight operation according to the instruction. By performing the avoidance process in this manner, it is possible to prevent the drone 20 flying unplanned from colliding with the drone 20 belonging to the same jurisdiction group.
  • the first collision identifying unit 105 performs an unplanned flight from the drones 20 belonging to the non-jurisdiction group based on the flight plan of the drone 20 belonging to the non-jurisdiction group acquired by the flight plan acquisition unit 104.
  • the drone 20 that may collide with the existing drone 20 is identified.
  • the first collision identifying unit 105 targets the drones 20 belonging to the jurisdiction group and targets the drones 20 belonging to the non-jurisdiction group by the same method (method using the distance between the drones 20), for example. Identify the drone 20 that has
  • the first collision identification unit 105 also notifies the avoidance processing unit 106 even when the drone 20 belonging to a group outside the jurisdiction is identified as the drone 20 that may have a collision. Since the avoidance processing unit 106 cannot instruct the drone 20 belonging to the non-jurisdiction group, the avoidance processing unit 106 may, for example, stop the drone 20 performing the unplanned flight (that is, drone 20 belonging to the jurisdiction group) or change the flight route. An avoidance process for instructing at least one is performed.
  • the unplanned flight determination unit 103 also supplies the unplanned flight notification unit 107 with flight information of the drone 20 that is making an unplanned flight.
  • the unplanned flight notification unit 107 transmits the supplied flight information to the other server devices 10 so that the flight status of the drone 20 performing the unplanned flight indicated by the transmitted flight information is displayed in all other server devices. Notify 10.
  • the unplanned notification receiving unit 108 of the server device 10 of the notification destination receives the flight information transmitted, thereby receiving the notification of the flight status of the drone 20 performing the unplanned flight.
  • the unplanned notification receiving unit 108 supplies the flight information received as the notification of the flight status to the second collision identifying unit 109 of the own device.
  • the second collision identification unit 109 When the second collision identifying unit 109 is notified from another server device 10 of the flight status of the drone 20 that is flying unplanned, the second collision identification unit 109 may have a collision with the notified drone 20 and is under the jurisdiction of its own device.
  • the drone 20 belonging to the group to be specified is specified.
  • the flight plan acquisition unit 104 of the own device supplies the second collision identification unit 109 with the flight plan of the drone 20 belonging to the group under the control of the own device among the acquired flight plans.
  • the second collision identification unit 109 performs the notified unplanned flight based on the supplied flight information and flight plan, for example, by the same method as the first collision identification unit 105 (method using the distance between the drones 20).
  • the drone 20 that has a possibility of collision is specified for the drone 20 that is in operation and the drone 20 that belongs to the jurisdiction group.
  • the second collision identification unit 109 When the second collision identification unit 109 identifies the drone 20 that may have a collision from the drones 20 belonging to the jurisdiction group, the second collision identification unit 109 notifies the avoidance processing unit 106 of the own device of the identified drone 20. When the avoidance processing unit 106 receives the notification of the drone 20 having a possibility of collision, the avoidance processing unit 106 performs the avoidance processing. The avoidance processing performed by the avoidance processing unit 106 is the same as the above-described avoidance processing (stop instruction, flight route change instruction, etc.). The second collision identification unit 109 notifies the collision notification unit 110 of the identified drone 20 and the drone 20 that is flying unplanned.
  • the collision notification unit 110 specifies when the notification of the drone 20 performing the unplanned flight is received, that is, when the second collision identification unit 109 identifies the drone 20 belonging to the jurisdiction group in which the collision may occur.
  • the notified flight status of the drone 20 is notified to the server device 10 which is the notification source of the flight status indicating the flight out of the flight plan.
  • the collision notification unit 110 makes the above notification by transmitting flight information indicating the flight status of the identified drone 20 to the above-mentioned server 10 as the notification source.
  • the collision notification receiving unit 111 of the server device 10 of the notification source receives the transmitted flight information, so that there is a possibility of collision with the drone 20 (drone 20 belonging to the jurisdiction group) performing an unplanned flight. Receive notification of flight status of 20 (drone 20 belonging to non-jurisdiction group).
  • the collision notification receiving unit 111 supplies the flight information received as the flight status notification to the avoidance processing unit 106.
  • the supplied flight information indicates that the drone 20 belonging to the jurisdiction group may collide with the drone 20 belonging to the non-jurisdiction group when the unplanned flight is performed.
  • the drone 20 belonging to the non-jurisdiction group may be identified as the drone 20 that may collide with the first collision identification unit 105, but the identification is not necessarily performed.
  • the first collision identifying unit 105 uses the old flight plan and may collide. A certain drone 20 cannot be correctly identified. In that case, the server device 10 that manages the drone 20 whose flight plan has been changed on the day can obtain a new flight plan, and thus the drone 20 that may collide can be correctly identified.
  • the avoidance processing unit 106 may collide with the first collision identifying unit 105.
  • Drones 20 (which belong to the jurisdiction group and are unplanned flights) that may collide with the drone 20 (the drone 20 that belongs to the non-jurisdiction group) in the notified flight status, even if the drone 20 that has the potential The avoidance process for the drone 20) is By performing this avoidance processing, it is possible to prevent a collision from occurring because the drone 20 that may possibly collide for the reason described above could not be correctly identified.
  • the avoidance processing unit 106 transmits flight information (information indicating the flight status of the aircraft itself) to the drone 20 so that the danger is avoided even before the drone 20 that may collide is identified.
  • the avoidance processing unit 106 in this case is an example of the “instruction unit” of the present invention.In the present embodiment, the avoidance processing unit 106 is instructed as the transmission frequency of the flight information.
  • the avoidance processing unit 106 determines the transmission method based on the risk degree information, which is information indicating the magnitude of danger when the drone 20 flies, and instructs the transmission of flight information by the determined transmission method.
  • the danger in the flying drone 20 is, for example, a failure or a crash in which flight control becomes ineffective, resulting in damage to the aircraft itself and damage to people and objects. These dangers arise, for example, because the drones 20 contact or collide with each other.
  • the avoidance processing unit 106 uses the information indicating the density of the drones 20 flying in a certain flight airspace as the risk information of the flight airspace.
  • the density in the flight airspace is represented by, for example, a flight plan and flight information.
  • the flight plan is acquired by the flight plan acquisition unit 104, and the flight information is acquired by the flight information acquisition unit 102.
  • the flight information acquisition unit 102 and the flight plan acquisition unit 104 are examples of the “acquisition unit” in the present invention.
  • the flight plan acquisition unit 104 supplies the acquired flight plans (both the flight plan of the drone 20 belonging to the jurisdiction group and the flight plan of the drone 20 belonging to the non-jurisdiction group) to the avoidance processing unit 106 as risk information.
  • the flight information acquisition unit 102 supplies the acquired flight information (flight information of the drone 20 belonging to the jurisdiction group) to the avoidance processing unit 106 as risk information.
  • the unplanned notification receiving unit 108 acquires the flight status of the drone 20 that is performing an unplanned flight among the drones 20 belonging to the uncontrolled area. For the drone 20 that is flying unplanned, the notified flight status is used rather than the flight plan, so that more accurate density is represented.
  • the unplanned notification receiving unit 108 is also an example of the “acquiring unit” in the present invention.
  • the unplanned notification receiving unit 108 supplies the acquired flight status to the avoidance processing unit 106 as risk level information.
  • All of the above danger level information can represent the level of danger (the density of the drones 20 in this embodiment) for each flight area.
  • the flight airspace mentioned here is, for example, a flight airspace including one or more cells.
  • the drone 20 should be densely packed in the cells where the estimated period of each drone 20 overlaps. become.
  • the avoidance processing unit 106 uses the transmission control method according to the magnitude of the risk in the flight air space represented by the risk information acquired by each of the above units, so that the drone 20 flying in the flight air space can obtain the flight information. Instruct to send.
  • the avoidance processing unit 106 instructs control such that the greater the risk represented by the acquired risk information, the more frequently the flight information is transmitted.
  • the avoidance processing unit 106 gives this instruction using a frequency table in which the density of the drones 20, the degree of danger (the degree of danger represented by the degree of danger information), and the transmission frequency are associated with each other.
  • FIG. 7 shows an example of the frequency table.
  • the density of the drone 20 is “less than Th1,” “th1 or more and less than Th2,” and “th2 or more” (Th1 ⁇ Th2), and risk levels of “low”, “medium”, and “high”.
  • Th1 and Th2 represent the threshold value of the density
  • T1 to T3 represent the time intervals of transmission.
  • the avoidance processing unit 106 first determines the density of the drones 20 in each flight airspace (for example, N (N is a natural number) adjacent cells) from the acquired flight plan and flight conditions (the drone flying in the flight airspace). 20). The avoidance processing unit 106 identifies the degree of risk associated with the calculated congestion degree in the frequency table. The avoidance processing unit 106 determines the transmission frequency associated with the identified risk level in the frequency table as the transmission frequency of the drone 20 that is flying in the flight airspace in which the risk level is identified.
  • the avoidance processing unit 106 instructs the drone 20 to transmit the flight information at the determined transmission frequency. However, it is not necessary to give an instruction each time the transmission frequency is determined. For example, the avoidance processing unit 106 does not instruct the transmission frequency if it has not changed from the previously determined transmission frequency, and instructs the drone 20 to change to the new transmission frequency if the previously determined transmission frequency has changed. ..
  • the avoidance processing unit 106 may instruct the transmission at the determined transmission frequency regardless of whether or not the transmission frequency is changed, but the communication amount of the instruction data can be reduced by only making the change. Upon receiving this instruction, the flight information transmitting unit 202 of the drone 20 starts transmitting flight information at the instructed frequency. The avoidance processing unit 106 gives the above instruction only to the drone 20 under its control.
  • a similar instruction is given to the drone 20 that is flying in a high-risk flight airspace and belongs to a group outside the jurisdiction from the avoidance processing unit 106 of the server device 10 that administers the drone 20.
  • the drone 20 transmits flight information to the server device 10 under its jurisdiction at a frequency according to the degree of danger of the flight airspace in which the drone is flying.
  • the avoidance processing unit 106 can instruct to transmit the flight information at a frequency associated with the calculated congestion degree.
  • Each device included in the operation management support system 1 performs an instruction process for instructing the drone 20 to control the transmission of flight information according to the degree of danger of the flight airspace based on the above configuration.
  • FIG. 8 shows an example of the operation procedure of each device in the instruction processing.
  • the server device 10 and the drone 20 managed by the server device 10 are shown.
  • the operation procedure is started, for example, when a predetermined time before the earliest flight start time of the controlled drone 20 is reached.
  • the server device 10 (flight plan acquisition unit 301) acquires the flight plans of all drones 20 scheduled to fly on the day (step S11).
  • the acquired flight plan is also used as risk information.
  • the drone 20 (flight information transmitting unit 202) generates flight information indicating the flight status of the own aircraft (step S21), and transmits the generated flight information to the server device 10 by the designated transmission control method. (Step S22).
  • the transmission control at this time is transmission in which the time interval is every T3 as shown in FIG. 7, for example.
  • the server device 10 (flight information acquisition unit 102) acquires the flight status indicated by the received flight information (step S23). The acquired flight status is also used as risk information.
  • the server device 10 acquires the flight status of the drone 20 that is flying unplanned (step S24).
  • Step S24 is an operation performed only when the drone 20 belonging to the non-jurisdiction group is flying unplanned. This flight status is also used as risk information.
  • the server device 10 (avoidance processing unit 106) calculates the congestion degree of the drone 20 based on the risk degree information (flight plan and flight status) acquired up to that point (step S31).
  • the server device 10 (avoidance processing unit 106) identifies the transmission control content (transmission frequency in this embodiment) according to the degree of risk represented by the calculated congestion level (step S32). Then, the server device 10 (avoidance processing unit 106) determines whether or not there is the drone 20 whose transmission control content has changed (step S33), and when it determines that there is no (NO) step S22 (receipt of flight information). ) Go back and do the action.
  • the server device 10 determines that there is a drone 20 whose transmission control content has changed (YES)
  • the server device 10 flies based on the transmission control content according to the magnitude of the danger to the drone 20.
  • Instruction data for instructing to transmit information is transmitted (step S34).
  • the drone 20 changes the flight information transmission control content in accordance with the instruction indicated by the received instruction data (step S35).
  • the frequency of flight information transmission is as high as possible and the flight status is acquired in real time. This is because, if the acquired flight status is old, it may happen that the avoidance process does not make it in time and a collision occurs.
  • the drone 20 is lightened for flight, and resources used for information processing such as the processor 11 are also limited.
  • the load of flight information transmission processing is too high.
  • the transmission frequency is reduced to reduce the load of the transmission process as compared with the case where the transmission frequency is always increased for safety.
  • the transmission frequency is increased, so compared to the case where the transmission frequency is always reduced, the flight situation closer to real time is acquired, and the danger occurring during flight is dealt with. Is being carried out more reliably.
  • the flight plan and flight status which are information indicating the density of the drones 20, are used as the risk information.
  • These pieces of information are information that the server device 10 acquires for operation management. Therefore, since it is not necessary to newly add a process for acquiring the risk information, the processing load of the server device 10 can be reduced as compared with the case where other information is acquired as the risk information.
  • modification examples in which different parameters are used to obtain a common value may be combined, and a common value or the like may be obtained using those parameters together. Further, the values or the like obtained individually may be summed according to some rule to obtain a single value or the like. Further, in those cases, different weighting may be performed for each parameter used.
  • the first collision identification unit 105 and the second collision identification unit 109 may identify the drone 20 that may have a collision by a method different from that of the embodiment.
  • the first collision identifying unit 105 may cause a collision when the distance between the position of the drone 20 that is flying unplanned and the current position of the drone 20 in the flight plan is less than a threshold in the embodiment. Identified as drone 20.
  • the first collision identifying unit 105 may change the threshold according to the positional relationship between the drone 20 that is flying unplanned and the other drone 20 and the flight direction. Specifically, the first collision identifying unit 105 decreases the threshold when the positions of both drones 20 are approaching, and increases the threshold when the positions of both drones 20 are moving away from each other. Further, when the flight airspace is represented by cells as in the embodiment, the cells may be utilized for the identification.
  • the first collision identifying unit 105 predicts a flight path for a certain period in the future from the flight direction of the drone 20 that is performing unplanned flight, and the distance to the drone 20 that is performing unplanned flight is in that period.
  • a drone 20 that is scheduled to fly a cell that falls below the threshold value may be identified as a drone 20 that has a possibility of collision.
  • a cell including a flight position included in the flight situation of the drone 20 and a position in the three-dimensional space indicated by the flight altitude indicates an air space in flight of the drone 20.
  • the first collision identifying unit 105 may collide with the drone 20 for which an unplanned flight has been acquired for a flight plan in which the drone 20 is flying in an air space having a predetermined relationship with the air space in which the drone 20 is currently flying. It may be specified as a certain drone 20.
  • the predetermined relationship is, for example, a relationship with the same airspace as the airspace currently in flight. This is because the drones 20 flying in the same airspace may collide with each other.
  • a relationship of the same airspace as the airspace in which the unplanned flight drone 20 is currently flying or an airspace adjacent thereto may be used as the predetermined relationship.
  • the flight direction of the drone 20 is limited, such as a flight route for transportation, air spaces adjacent to each other only in the front and rear in the flight direction may be included in the air spaces having a predetermined relationship. Since the identification based on the cell (flight airspace) is performed in this manner, the process of calculating the distance between the drones 20 becomes unnecessary.
  • the processing load tends to be smaller if it is determined whether the cell contains coordinates (whether the coordinates are within a fixed range) than when the distance between the three-dimensional coordinates is calculated. Therefore, according to the present modification, the processing load when identifying the drone 20 that may have a collision can be reduced as compared to the case where the drone 20 is based on the distance between the drones 20.
  • the possibility of collision varies depending on where you fly in the cell, but it is not possible to judge on the basis of the detailed possibility of collision on a cell-by-cell basis.
  • the drone 20 having a possibility of collision can be specified with higher accuracy as compared with the case where the determination is made in units of cells.
  • the second collision identification unit 109 may also use the same identification method as the above-described first collision identification unit 105. For example, when the second collision identification unit 109 indicates unplanned flight and is notified of the flight status of the drone 20 belonging to the non-jurisdiction group, the second collision identification unit 109 flies in an airspace having a predetermined relationship with the airspace in which the drone 20 is flying. The drone 20 belonging to the interval group for which the flight plan to be acquired is identified as the drone 20 having a possibility of collision.
  • the concept of the prescribed relationship is as described above.
  • the load of the processing (identification processing) when identifying the drone 20 with the possibility of collision can be reduced as compared with the case where the drone 20 is based on the distance between the drones 20.
  • the drone 20 having a possibility of collision can be specified with higher accuracy than in the case where the determination is made in cell units.
  • the first collision identification unit 105 and the second collision identification unit 109 may identify the drone 20 that may have a collision based on the flight direction or the flight speed of the drone 20, for example. In that case, for example, even if the distances between the drones 20 are the same, the identification is performed when the flight directions are opposite to each other as having a higher possibility of collision than in the opposite directions.
  • the first collision identifying unit 105 sets the threshold value of the distance between the drones 20 facing each other in the flight direction (when the distance is less than the threshold value, there is a possibility of collision) to the direction of the opposite flight direction.
  • the drone 20 is set to be larger than the threshold value of the distance between the drones 20 to identify the drone 20 having a possibility of collision.
  • the first collision identifying unit 105 increases the threshold value of the distance between the drones 20 as the flight speed increases.
  • the second collision identifying unit 109 can identify the drone 20 that may have a collision by the same method. In any case, the accuracy of identifying the drone 20 having a possibility of collision can be improved as compared with the case where the flight direction or the flight speed is not used.
  • Flight Information The flight status indicated by the flight information transmitted by the drone 20 may be different from that in the embodiment. For example, since the flight direction and the flight speed can be calculated from the change amount of the flight position and the flight altitude, the flight information does not have to include the flight direction and the flight speed. Further, for example, if it is decided to fly at a certain flight altitude in a certain area, the flight information may not include the flight altitude.
  • the drone 20 has a function of detecting the distance and direction of surrounding flying objects (mainly other drones 20), flight information indicating flight conditions indicating that the flying object exists at the detected distance and direction. May be obtained. This flight situation can also be used to judge the possibility of collision between the drones 20. In short, any information may be included in the flight information as long as it can be utilized for at least one of the determination of unplanned flight and the determination of the possibility of collision between the drones 20.
  • Flight Information Item The flight information transmission control is not limited to the transmission frequency described in the embodiments.
  • the avoidance processing unit 106 may instruct, for example, to increase the number of items of information included in the flight information as the risk represented by the risk information acquired by the flight information acquisition unit 102 or the like increases. In this case, the avoidance processing unit 106 gives this instruction using an item table in which the degree of congestion of the drone 20, the degree of danger, and the item of flight information are associated with each other.
  • FIG. 9 shows an example of the item table.
  • the density of the drone 20 is “less than Th1,” “th1 or more and less than Th2,” and “th2 or more” (Th1 ⁇ Th2), and risk levels of “low”, “medium”, and “high”.
  • Th1 ⁇ Th2 Th1 ⁇ Th2
  • “Flight position, flight time”, “Flight position, flight time, flight direction” and “Flight position, flight time, flight direction, flight speed” are associated with each other.
  • the avoidance processing unit 106 calculates the congestion degree from the flight plan and the flight situation acquired in the same manner as in the embodiment, and sets the flight information items associated with the same degree of danger as the calculated congestion degree in the item table.
  • the flight airspace with the specified risk is determined as an item of flight information of the drone 20 in flight. In this modification, for example, flight information including only “flight position, flight time” is transmitted at the start of flight.
  • the avoidance processing unit 106 associates the drone 20 that is flying in the flight airspace and belongs to the jurisdiction group with the risk “medium”. Instruct to send flight information including “Flight position, flight time, flight direction” as items. In response to this instruction, the drone 20 transmits flight information including items according to the degree of danger of the flight area in which the drone is flying to the server device 10 in its jurisdiction.
  • the flight information includes only the flight position and the flight time
  • the method using the distance between the drones 20 described in the embodiment or the method using the flight airspace during flight described in the modification is used. It is possible to identify the drone 20 that may have a collision.
  • the method using the flight direction or the flight speed described in the above modification such information is required.
  • the drone 20 having a possibility of collision in a flight area having a high degree of risk by a method using a flight direction or a flight speed with higher accuracy.
  • the degree of risk is low, the number of flight information items is reduced to reduce the load of transmission processing.
  • the flight direction and the flight speed can be obtained from the time series changes in the flight position and the flight time, the identification of the drone 20 having the possibility of collision is delayed by the time required for the calculation. In this modification, such a delay can be prevented by including the flight direction and the flight speed in the items.
  • the flight information transmitting unit 202 of the drone 20 transmits the flight information only to the server device 10 in the embodiment, but in the present modification, the flight information is required for two or more external devices that perform processing related to the flight of the own aircraft. Can be transmitted according to The two or more external devices are, for example, the plurality of server devices 10 when the main server device 10 and the sub server device 10 that control the drone 20 exist.
  • the main and sub server devices 10 may be prepared by a business operator who administers the drone 20, or may be prepared by another business operator who assists the jurisdiction of the business operator.
  • the auxiliary business operator is, for example, a business operator who administers another drone 20 or a business operator who operates the integrated management device 30.
  • the purpose of controlling the drone 20 with the plurality of server devices 10 is, for example, to back up when the main server device 10 cannot identify the drone 20 that may collide for some reason (when a specific omission occurs). This is because (to specify instead).
  • the avoidance processing unit 106 instructs that the greater the risk represented by the risk information acquired by the flight information acquisition unit 102, the greater the number of destinations to which the flight information is transmitted.
  • the avoidance processing unit 106 gives this instruction using, for example, a destination table in which the degree of congestion of the drones 20, the degree of danger, and the destination of flight information are associated.
  • FIG. 10 shows an example of the destination table.
  • the density of the drone 20 is “less than Th1,” “greater than or equal to Th1 and less than Th2,” and “greater than or equal to Th2” (Th1 ⁇ Th2), and risks of “low”, “medium”, and “high”.
  • “Main server device”, “main server device + 1 sub server device” and “main server device + 2 sub server devices” are associated with the destinations, respectively.
  • the avoidance processing unit 106 calculates the congestion degree from the flight plan and the flight situation acquired in the same manner as in the embodiment, and determines the transmission destination associated in the transmission destination table with the same degree of danger as the calculated congestion degree.
  • the flight airspace with the specified degree is determined as the destination of the flight information of the drone 20 in flight. In this modification, for example, flight information is transmitted only to the “main server device” at the start of flight.
  • the avoidance processing unit 106 associates the drone 20 that is flying in the flight airspace and belongs to the jurisdiction group with the risk level of "high”. Instructing the transmission of flight information with “main server device+two sub server devices” as the destination. By this instruction, the drone 20 transmits flight information not only to the main server device but also to the two sub server devices.
  • the identification is performed by a plurality of units, and the drone 20 that may have a collision is less likely to be omitted.
  • the degree of risk is low, the number of destinations is reduced to reduce the processing load on the sub server device.
  • Risk information Population density
  • the risk information is not limited to the information (flight plan and flight status) described in the embodiments.
  • information indicating the population density on the ground around the flight airspace may be used as the risk information of the flight airspace.
  • ⁇ Population density is represented by the type of land on the ground, for example.
  • the type of land is, for example, a type in which land is classified according to use, such as residential land, commercial land, industrial land, agricultural land, and forest land. For example, there are many people in a residential area and few people in a forest area, and the type of land indicates the tendency of a large number of people there. Since the time for flying the drone 20 is basically in the daytime, the risk level information only needs to represent the number of people during the day.
  • the server device 10 stores in advance map data representing a map of a region where a flight is scheduled to be carried out according to a flight plan and a type of land in the region.
  • map data representing a map of a region where a flight is scheduled to be carried out according to a flight plan and a type of land in the region.
  • land types for classification of land types, for example, registered land marks may be used, or color coding (color coding of houses, shops, factories, etc.) made on a commercially available map may be used.
  • the avoidance processing unit 106 identifies the position of each flight airspace on the map, and acquires the type of land around that position from the map data as risk information.
  • the avoidance processing unit 106 in this case is an example of the “acquisition unit” of the present invention.
  • the avoidance processing unit 106 associates the type of land on the ground, the density of population, the degree of danger, and the transmission frequency when the transmission frequency is instructed as the transmission control content of the flight information as in the embodiment. This is done using a frequency table.
  • FIG. 11 shows an example of the frequency table of this modification.
  • the types of land such as “agricultural land, forest land”, “industrial land” and “residential area, commercial area”, population density of “low”, “medium” and “high”, and “low” , “Medium” and “high” are associated with the transmission frequencies “every T3", “every T2" and “every T1", respectively.
  • the avoidance processing unit 106 identifies the population density associated in the frequency table with the type of land on the ground acquired for each flight airspace. Then, the avoidance processing unit 106 sets the transmission frequency that is associated with the same degree of risk as the identified population density in the frequency table to the flight in which the type of land on the ground that is associated with the population density is acquired. The airspace is determined as the transmission frequency of the flight information of the drone 20 in flight.
  • the drone 20 that is flying in an area with a low population density has a low transmission frequency to reduce the transmission processing load.
  • the frequency of transmission of the drone 20 that is flying in an area with a high population density is increased so that the danger can be transmitted more reliably. In this way, it is possible to reduce the load of the transmission process and reduce the possibility of injuring a person even if the drone 20 falls.
  • transmission control parameters other than the transmission frequency may be used. Even when those transmission control parameters are used, the effects described in the above-described modified examples (specific realization with higher accuracy and cost burden of the sub server device suppressed) are realized.
  • Risk information weather conditions
  • the risk information is not limited to the above information.
  • information indicating the weather condition in the flight airspace may be used as the risk information of the flight airspace. Since the drone 20 is easily affected by wind and rain, the risk of the drone 20 falling increases as the wind speed and precipitation increase.
  • the avoidance processing unit 106 uses a weather forecast service or the like to acquire information indicating weather conditions.
  • the avoidance processing unit 106 in this case is an example of the “acquisition unit” of the present invention.
  • the transmission frequency is designated as the transmission control parameter of the flight information as in the embodiment, for example, the avoidance processing unit 106 uses a frequency table in which the weather condition in the flight airspace, the degree of danger, and the transmission frequency are associated with each other. Leverage instructions.
  • FIG. 12 shows an example of the frequency table of this modification.
  • wind speeds of “less than Th11”, “Th11 or more and less than Th12”, and “Th12 or more” (Th11 ⁇ Th12), and risk levels of “low”, “medium”, and “high” The transmission frequencies of “every T3”, “every T2”, and “every T1” are associated with each other.
  • the avoidance processing unit 106 determines the transmission frequency associated with the same degree of risk as the wind speed acquired as the weather condition of the flight airspace in the destination table as the transmission frequency of the flight information of the drone 20 in flight in the flight airspace. To do.
  • the precipitation amounts “less than Th21”, “third or more and less than Th22” and “th22 or more” (Th21 ⁇ Th22) and dangers of “low”, “medium” and “high”.
  • the degree and the transmission frequency of “every T3”, “every T2”, and “every T1” are associated with each other.
  • the avoidance processing unit 106 sets the transmission frequency associated in the transmission destination table to the same degree of risk as the amount of precipitation acquired as the weather condition of the flight airspace, as the transmission frequency of the flight information of the drone 20 flying in the flight airspace. decide. In addition, when both the wind speed and the precipitation amount are acquired as the weather condition, the avoidance processing unit 106 determines the transmission frequency associated with the higher risk level.
  • Risk information Airspace altitude
  • the risk information is not limited to the above information. For example, the higher the flight altitude of the drone 20, the greater the impact at the time of dropping, and the greater the degree of damage to people and objects, and the possibility that the drone 20 may fall if flight control becomes impossible due to a failure or the like. There is a greater risk of falling into an unexpected area due to the spread of the area.
  • the altitude of the flight airspace is represented by the flight plan (represented by the altitude of the cell) and the flight condition (represented by the flight altitude of the drone 20) as in the embodiment.
  • the flight information acquisition unit 102, the flight plan acquisition unit 104, and the unplanned notification reception unit 108 are examples of the “acquisition unit” of the present invention.
  • the altitude of the flight airspace is represented by, for example, the lowest position in the flight airspace or the position at the center thereof (as long as the position is represented by a certain rule).
  • the transmission frequency is designated as the transmission control parameter of the flight information as in the embodiment, for example, the avoidance processing unit 106 uses a frequency table in which the altitude of the flight airspace, the degree of danger, and the transmission frequency are associated with each other. Give this instruction.
  • FIG. 13 shows an example of the frequency table of this modification.
  • “Medium” and “high” are associated with transmission frequencies “every T2", “every T3”, “every T2” and “every T1", respectively.
  • the avoidance processing unit 106 sets the transmission frequency associated with the same degree of danger as the altitude of the flight airspace indicated by the acquired risk information in the destination table to the transmission frequency of the flight information of the drone 20 flying in the flight airspace. To decide. For example, if the altitude of the flight airspace is "less than Th31", the risk level is "medium”, so the transmission frequency "every T2" is determined, and if the altitude of the flight airspace is "Th33 or higher", the risk level is "high”. The transmission frequency "every T1" is determined.
  • the transmission frequency is reduced for the drone 20 that is flying in a low-risk flight area to reduce the transmission processing load.
  • the frequency of transmission is increased to enable quick avoidance processing and reduce the possibility of the drone 20 falling.
  • the flight information item and the transmission destination may be used as the transmission control parameters, and the effects described in the above-described modification are realized.
  • the risk information described in each example is the risk of collision of the drones 20 (when the positions of the drones 20 are close to each other) or the risk of falling (when the wind speed or precipitation increases, etc.) ) May be represented.
  • the avoidance processing unit 106 may increase the amount of information to be acquired and utilize it in order to avoid those risks.
  • the avoidance processing unit 106 issues an instruction to cause another drone 20 flying around a position where a collision or a drop is predicted to transmit information (surrounding information) around the predicted position.
  • the avoidance processing unit 106 in this case is an example of the “second instruction unit” in the present invention.
  • the peripheral information is, for example, the flight status of the drone 20 flying around the predicted position.
  • the drone 20 has a function of detecting another flying object (drone, bird, etc.) by an infrared sensor or the like, the detection result is also included in the peripheral information.
  • the avoidance processing unit 106 for example, when the first collision identification unit 105 or the second collision identification unit 109 identifies the drone 20 that may have a collision, the current position, flight direction, and flight speed of the drone 20. From this, the position where the collision is predicted is calculated. The predicted position may be calculated by the first collision identification unit 105 or the second collision identification unit 109. The avoidance processing unit 106 identifies the drone 20 flying around the calculated predicted position (for example, the drone 20 whose distance from the predicted position is less than the threshold).
  • the avoidance processing unit 106 transmits instruction data for instructing transmission of peripheral information to the identified drone 20. Upon receiving this instruction, the flight information transmitting unit 202 of the drone 20 transmits the instructed peripheral information, for example, the flight status of the own aircraft or the detection result of another flight object to the server device 10. When the avoidance processing unit 106 receives the transmitted peripheral information, the avoidance processing unit 106 performs the avoidance processing according to the peripheral situation indicated by the peripheral information.
  • the avoidance processing unit 106 reduces the flight speed of the identified drone 20 to avoid collision and continue flight to some extent. If there are many drones 20, stopping the specified drone 20 more reliably avoids a collision. Further, when the other drone 20 exists on the right side of the predicted position as viewed from the identified drone 20, the avoidance processing unit 106 causes the left side of the predicted position to fly on a route that detours to avoid a collision.
  • the drone 20 that has been given the avoidance instruction will fly differently from the scheduled flight, so there is no guarantee that it will collide with other drones 20.
  • the avoidance process is performed based on the surrounding information as well, so that not only the collision with another drone 20 that may collide is avoided, but also the collision with another air vehicle around the predicted position. Can be avoided.
  • the avoidance processing unit 106 performs the avoidance processing based on the weather condition of the predicted position.
  • the avoidance processing unit 106 stops the drone 20 before the predicted position, just in case, for example, if wind or rain is strong, and if the wind or rain is weak, only avoids the collision by reducing the flight speed. Also in this case, the possibility of collision can be reduced as compared with the case where there is no peripheral information.
  • the avoidance processing unit 106 instructs the drone 20 in flight about the content of the transmission control, but the present invention is not limited to this, and the content of the transmission control is previously instructed before the flight starts. You may keep it. Even before the start of flight, the density of the drone 20 at a certain point in the future in each flight area can be calculated from the flight plan and the flight conditions of other drones 20 that have already started flying.
  • the avoidance processing unit 106 then calculates the congestion degree of the drone 20 in each flight airspace for each future time, and transmits for each flight airspace in which the drone 20 to be instructed will fly according to the calculated congestion degree. Determine the frequency.
  • the avoidance processing unit 106 instructs the drone 20 to be instructed to transmit the flight information at the determined transmission frequency when flying in each flight area. It should be noted that when the density of each flight airspace has changed since the start of flight, the avoidance processing unit 106 may reissue an instruction based on the changed density.
  • the transmission control content is an item of flight information or a destination
  • the information indicating the population density on the ground or the altitude of the flight airspace is used as the risk information.
  • the risk level information indicating the magnitude of the risk for each flight area is used, but the unit is not limited to this.
  • risk degree information indicating the magnitude of danger for each time period may be used.
  • the risk level for each time zone is, for example, low at 9 to 10 o'clock, medium at 10 to 11 o'clock, and high at 11 to 13 o'clock.
  • the avoidance processing unit 106 determines the degree of danger for each time zone based on the number of drones 20 flying in each time zone indicated by the flight plan, for example.
  • risk information indicating the magnitude of danger in each time zone may be used for each flight area.
  • risk information indicating the degree of danger on the day without distinguishing the flight airspace and the time zone (for example, the day) Information indicating only the number of drones 20 flying to the vehicle) may be used. In short, any information may be used as the risk degree information as long as it represents the magnitude of danger when the drone 20 flies.
  • the unplanned flight notification unit 107 notifies all other server devices 10 of the flight status of the drone 20 that is making an unplanned flight. However, the notification destinations are narrowed down. But it's okay.
  • the unplanned flight notification unit 107 may narrow down the notification destinations only to the server device 10 that manages the drone 20 that is identified as having the possibility of collision with the drone 20 that is performing the unplanned flight, for example. By doing so, it is possible to reduce the load of the processing (communication processing, specific processing, etc.) by the notification of the drone 20 that is performing the unplanned flight, as compared with the case where the narrowing is not performed.
  • Flight Plan The way of expressing the flight plan may be different from that of the embodiment.
  • the flight plan may be represented using coordinates in a three-dimensional space without using cells.
  • a mathematical expression expressing a flight route by a line a mathematical expression expressing a boundary surface of a flight airspace, or the like may be used.
  • the flight plan may be represented only by the information of the departure place, the waypoint, and the arrival place instead of the route on the way. Even in that case, if it is decided to move linearly between the respective positions or to move along a predetermined route, it is possible to judge the route to actually fly.
  • the flight plan may be represented in any form as long as it can determine the unplanned flight by comparing it with the flight information.
  • a rotary wing aircraft is used as a vehicle that performs autonomous flight, but the invention is not limited to this.
  • it may be an airplane-type flying body or a helicopter-type flying body.
  • any flying body that can fly by the operation of the operator and has a function of acquiring inspection data may be used.
  • the device that realizes each function shown in FIG. 4 is not limited to the above-mentioned device.
  • the integrated management device 30 may implement part of the functions implemented by the server device 10.
  • a device used by an operator such as a radio transmitter or a personal computer may realize each function of the server device 10.
  • each function shown in FIG. 4 may be realized in the entire operation management support system 1.
  • the present invention relates to an information processing system including these information processing devices and a flying body such as the drone 20 (operation management
  • the support system 1 can also be regarded as an example thereof.
  • the present invention can be understood as an information processing method for realizing the processing executed by those information processing apparatuses, and as a program for causing a computer that controls those information processing apparatuses to function.
  • This program may be provided in the form of a recording medium such as an optical disc having the program stored therein, or may be provided in the form of being downloaded by a computer via a network such as the Internet and installed and made available. May be done.
  • each functional block may be realized by using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.) and may be implemented using these multiple devices.
  • the functional blocks may be realized by combining the one device or the plurality of devices with software.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, observation, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but not limited to these.
  • a functional block (configuration unit) that causes transmission to function is called a transmission unit (transmitting unit) or a transmitter (transmitter).
  • the implementation method is not particularly limited.
  • Input/output direction Information and the like can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input/output may be performed via a plurality of network nodes.
  • the input/output information, etc. may be stored in a specific place (for example, a memory) or may be managed using a management table. Information that is input/output may be overwritten, updated, or added. The output information and the like may be deleted. The input information and the like may be transmitted to another device.
  • Judgment Method The judgment may be performed by a value (0 or 1) represented by 1 bit, a true/false value (Boolean: true or false), or a numerical value. (For example, comparison with a predetermined value) may be performed.
  • the input/output information may be stored in a specific place (for example, a memory) or may be managed by a management table. Information that is input/output may be overwritten, updated, or added. The output information and the like may be deleted. The input information and the like may be transmitted to another device.
  • Software Software whether called software, firmware, middleware, microcode, hardware description language, or any other name, is an instruction, instruction set, code, code segment, program code, program. , Subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., should be broadly construed.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • software may be wired technology (coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, At least one of these wired and wireless technologies are included within the definition of transmission medium when transmitted from a website, server, or other remote source using at least one of the microwaves and the like.
  • “Judgment”, “Decision” The terms “determining” and “determining” as used in this disclosure may encompass a wide variety of actions. “Judgment”, “decision” means, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigating (investigating), searching (looking up, search, inquiry) (Eg, searching in a table, a database, or another data structure), considering ascertaining as “judging” or “deciding”, and the like.
  • “decision” and “decision” include receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), access (accessing) (for example, accessing data in a memory) can be regarded as “judging” and “deciding”.
  • “judgment” and “decision” are resolving, This may include considering selections, selections, establishments, comparisons, etc. as “judgments” and “decisions”. That is, the “judgment” and “decision” may include considering some action as “judgment” and “decision”.
  • “determination (decision)” may be read as "assuming,”"expecting,””considering,” and the like.
  • the notification of the predetermined information (for example, the notification of “being X”) is not limited to the explicit notification, and is performed implicitly (for example, the notification of the predetermined information is not performed). Good.
  • SYMBOLS 1 Operation management support system, 10... Server device, 20... Drone, 30... Integrated management device, 101... Flight plan transmission part, 102... Flight information acquisition part, 103... Unplanned flight determination part, 104... Flight plan acquisition part , 105... First collision identification unit, 106... Avoidance processing unit, 107... Unplanned flight notification unit, 108... Unplanned notification receiving unit, 109... Second collision identification unit, 110... Collision notification unit, 111... Collision notification reception Flight control unit, 202 Flight information transmission unit, 301 Flight plan acquisition unit, 302 Flight plan storage unit, 303 Flight plan distribution unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Computing Systems (AREA)
  • Emergency Management (AREA)
  • Accounting & Taxation (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Traffic Control Systems (AREA)

Abstract

An avoidance processing unit 106 determines transmission control content on the basis of risk level information, which indicates the magnitude of risk when a drone 20 is flying. The avoidance processing unit 106 uses information indicating the density of drones 20 flying in a given flight airspace as risk level information for the flight airspace. The density in the flight airspace is indicated by flight plans and flight information, for example. The avoidance processing unit 106 provides instructions such that drones 20 flying in the flight airspace transmit flight information in response to the magnitude of risk in the flight airspace indicated by risk level information acquired by a flight information acquisition unit 102 or the like. Specifically, the avoidance processing unit 106 provides instructions such that the greater the risk indicated by the acquired risk level information, the greater the frequency of transmission of flight information.

Description

情報処理装置Information processing equipment
 本発明は、飛行体の安全な飛行を支援する技術に関する。 The present invention relates to a technique for supporting the safe flight of an air vehicle.
 特許文献1には、サーバが各移動体の予定軌道を収集して衝突回避する移動体システムにおいて、他者予定軌道と干渉しない自己予定軌道の生成を各移動体に行わせることでサーバの負荷を軽減する技術が開示されている。 In Patent Document 1, in a moving body system in which a server collects planned trajectories of each moving body and avoids a collision, the load of the server is caused by causing each moving body to generate a self-planned trajectory that does not interfere with another person's planned trajectory. A technique for reducing the above is disclosed.
特開2017-130121号公報JP, 2017-130121, A
 ドローン等の飛行体は、飛行中の危険の有無を知らせるために自機の位置等を含む情報を管理装置等に送信することがある。軽量化が必要な飛行体が備えるリソースは限られているため、この送信処理の負荷が高すぎることは望ましくない。しかし、危険が大きいときにはその危険を確実に知らせることが重要になる。
 そこで、本発明は、飛行体における送信処理の負荷を抑えつつ、飛行中に生じる危険への対処がより確実に行われるようにすることを目的とする。
An aircraft such as a drone may transmit information including the position of its own to a management device or the like in order to notify the presence or absence of danger during flight. It is not desirable that the load of the transmission process be too high, because the resources that the weight saving aircraft have are limited. However, when the danger is high, it is important to make sure that the danger is known.
Therefore, it is an object of the present invention to reduce the load of transmission processing on an air vehicle and more surely deal with dangers that occur during flight.
 上記目的を達成するために、本発明は、飛行体が飛行する際の危険の大きさを表す危険度情報を取得する取得部と、飛行体が自機の飛行状況を示す飛行情報を送信する際の態様を指示する指示部であって、取得された前記危険度情報が表す危険の大きさに応じた態様で前記飛行体が前記飛行情報を送信するように指示する指示部とを備える情報処理装置を提供する。 In order to achieve the above object, the present invention transmits an acquisition unit that acquires risk level information that represents the magnitude of danger when a flying object flies, and flight information that indicates the flight status of the flying object. And an instruction unit for instructing the aircraft to transmit the flight information in a manner according to the magnitude of the risk represented by the acquired risk information. A processing device is provided.
 本発明によれば、飛行体における送信処理の負荷を抑えつつ、飛行中に生じる危険への対処がより確実に行われるようにすることができる。 According to the present invention, it is possible to more reliably handle the danger that occurs during flight while suppressing the load of transmission processing on the flying object.
実施例に係る運航管理支援システムの全体構成の一例を表す図The figure showing an example of the whole composition of the operation management support system concerning an example. サーバ装置及び統合管理装置のハードウェア構成の一例を表す図The figure showing an example of the hardware constitutions of a server apparatus and integrated management apparatus. ドローンのハードウェア構成の一例を表す図Diagram showing an example of the hardware configuration of a drone 各装置が実現する機能構成を表す図Diagram showing the functional configuration realized by each device 飛行情報の一例を表す図Figure showing an example of flight information 飛行計画の一例を表す図Figure showing an example of flight plan 頻度テーブルの一例を表す図Diagram showing an example of the frequency table 指示処理における各装置の動作手順の一例を表す図The figure showing an example of the operation procedure of each apparatus in instruction processing. 項目テーブルの一例を表す図Diagram showing an example of the item table 送信先テーブルの一例を表す図Diagram showing an example of the destination table 変形例の頻度テーブルの一例を表す図The figure showing an example of the frequency table of a modification. 変形例の頻度テーブルの一例を表す図The figure showing an example of the frequency table of a modification. 変形例の頻度テーブルの一例を表す図The figure showing an example of the frequency table of a modification.
[1]実施例
 図1は実施例に係る運航管理支援システム1の全体構成の一例を表す。運航管理支援システム1は、飛行体の運航管理を支援するシステムである。運航管理とは、ドローンのような飛行体の飛行計画に則った飛行(すなわち運航)を管理することをいう。本実施例では、運航管理を行う複数の事業者3があり、各事業者3が各々の管轄する飛行体の運航を管理しているものとする。
[1] Example FIG. 1 shows an example of the overall configuration of an operation management support system 1 according to an example. The operation management support system 1 is a system that supports operation management of a flying object. Flight management refers to managing flight (that is, operation) according to the flight plan of an aircraft such as a drone. In the present embodiment, it is assumed that there are a plurality of operators 3 that manage the operation, and each operator 3 manages the operation of the air vehicle under its jurisdiction.
 運航管理支援システム1は、ネットワーク2と、複数のサーバ装置10と、複数のドローン20と、統合管理装置30とを備える。ネットワーク2は、移動体通信網及びインターネット等を含む通信システムであり、自システムにアクセスする装置同士のデータのやり取りを中継する。ネットワーク2には、サーバ装置10及び統合管理装置30が有線通信で(無線通信でもよい)、ドローン20が無線通信でアクセスしている。 The operation management support system 1 includes a network 2, a plurality of server devices 10, a plurality of drones 20, and an integrated management device 30. The network 2 is a communication system including a mobile communication network, the Internet, etc., and relays data exchange between devices that access the own system. The server device 10 and the integrated management device 30 are accessing the network 2 by wired communication (or wireless communication may be used), and the drone 20 is accessing by wireless communication.
 ドローン20は、本実施例では、1以上の回転翼を回転させて飛行する回転翼機型の飛行体であり、撮影、検査、散布、警備及び搬送等の様々な用途に用いられる。ドローン20は、操作者の操作に従って飛行する。操作者による操作は、プロポ(プロポーショナル式の制御(比例制御)を行うコントローラ)又は飛行指示用のパソコン(設定された飛行指示を出し続ける装置)等を用いて行われる。 In the present embodiment, the drone 20 is a rotary-wing aircraft type flying body that rotates by rotating one or more rotary blades, and is used for various purposes such as imaging, inspection, spraying, security, and transportation. The drone 20 flies according to the operation of the operator. The operation by the operator is performed by using a propo (a controller that performs proportional control (proportional control)) or a flight instruction personal computer (a device that continuously outputs a set flight instruction).
 ドローン20は、安全な飛行等を目的とした運航管理に用いるため、飛行中の自機の位置を少なくとも含む飛行状況を示す情報(飛行情報)を、自機を管轄するサーバ装置10に、指定された送信制御方法で送信する。飛行情報の送信制御の詳細については後程詳しく説明する。サーバ装置10は、事業者3によって設置され、送信されてきた飛行情報及び各ドローン20の飛行計画に基づいて、事業者3及び自装置が管轄するドローン20の運航を管理するための処理を行う。この処理の詳細は後述する。 Since the drone 20 is used for operation management for the purpose of safe flight and the like, information (flight information) indicating the flight status including at least the position of the aircraft in flight is designated to the server device 10 which controls the aircraft. Transmission is performed using the specified transmission control method. Details of the flight information transmission control will be described later in detail. The server device 10 performs processing for managing the operation of the drone 20 under the jurisdiction of the business entity 3 and its own device, based on the flight information installed and transmitted by the business entity 3 and the flight plan of each drone 20. .. Details of this processing will be described later.
 統合管理装置30は、複数のサーバ装置10が取り扱う情報(飛行計画及び飛行情報等)を集約し、装置間の円滑な情報共有のための処理等を行う。例えば各ドローン20の飛行計画は、サーバ装置10が相互に共有するよりも、統合管理装置30に一旦集約し、各サーバ装置10に配信した方が効率的に共有することができる。但し、全ての情報共有が統合管理装置30を介して行われる訳ではない。サーバ装置10間で直接行われる情報共有についても後程詳しく説明する。 The integrated management device 30 collects information (flight plans, flight information, etc.) handled by the plurality of server devices 10 and performs processing for smooth information sharing between the devices. For example, the flight plans of each drone 20 can be shared more efficiently by once being aggregated in the integrated management device 30 and distributed to each server device 10 than by being shared by the server devices 10. However, not all information is shared via the integrated management device 30. Information sharing performed directly between the server devices 10 will also be described later in detail.
 図2はサーバ装置10及び統合管理装置30のハードウェア構成の一例を表す。サーバ装置10及び統合管理装置30は、物理的には、プロセッサ11と、メモリ12と、ストレージ13と、通信装置14と、バス15などを含むコンピュータ装置として構成されてもよい。なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。 FIG. 2 shows an example of the hardware configuration of the server device 10 and the integrated management device 30. The server device 10 and the integrated management device 30 may be physically configured as a computer device including a processor 11, a memory 12, a storage 13, a communication device 14, a bus 15, and the like. In the following description, the word "device" can be read as a circuit, a device, a unit, or the like.
 また、各装置は、1つ又は複数含まれていてもよいし、一部の装置が含まれていなくてもよい。プロセッサ11は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ11は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。 Also, each device may include one or more devices, or may not include some devices. The processor 11 operates, for example, an operating system to control the entire computer. The processor 11 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
 例えば、ベースバンド信号処理部等は、プロセッサ11によって実現されてもよい。また、プロセッサ11は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ13及び通信装置14の少なくとも一方からメモリ12に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。 For example, the baseband signal processing unit and the like may be realized by the processor 11. Further, the processor 11 reads a program (program code), a software module, data, and the like from at least one of the storage 13 and the communication device 14 into the memory 12, and executes various processes according to these. As the program, a program that causes a computer to execute at least part of the operations described in the above-described embodiments is used.
 上述の各種処理は、1つのプロセッサ11によって実行される旨を説明してきたが、2以上のプロセッサ11により同時又は逐次に実行されてもよい。プロセッサ11は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。メモリ12は、コンピュータ読み取り可能な記録媒体である。 Although it has been described that the various processes described above are executed by one processor 11, they may be executed simultaneously or sequentially by two or more processors 11. The processor 11 may be implemented by one or more chips. The program may be transmitted from the network via an electric communication line. The memory 12 is a computer-readable recording medium.
 メモリ12は、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ12は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ12は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 12 may be configured by at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), a RAM (Random Access Memory), and the like. The memory 12 may be called a register, a cache, a main memory (main storage device), or the like. The memory 12 can store an executable program (program code), a software module, or the like for implementing the wireless communication method according to the embodiment of the present disclosure.
 ストレージ13は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。 The storage 13 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk). At least one of a (registered trademark) disk, a smart card, a flash memory (for example, a card, a stick, and a key drive), a floppy (registered trademark) disk, a magnetic strip, or the like.
 ストレージ13は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ12及びストレージ13の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。通信装置14は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)である。 The storage 13 may be called an auxiliary storage device. The above-mentioned storage medium may be, for example, a database including at least one of the memory 12 and the storage 13, a server, or another appropriate medium. The communication device 14 is hardware (transmission/reception device) for performing communication between computers via at least one of a wired network and a wireless network.
 例えば、上述の送受信アンテナ、アンプ部、送受信部、伝送路インターフェースなどは、通信装置14によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。また、プロセッサ11、メモリ12などの各装置は、情報を通信するためのバス15によって接続される。バス15は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 For example, the transmission/reception antenna, the amplifier unit, the transmission/reception unit, the transmission line interface, and the like described above may be realized by the communication device 14. The transmitter/receiver may be implemented by physically or logically separating the transmitter and the receiver. Further, each device such as the processor 11 and the memory 12 is connected by a bus 15 for communicating information. The bus 15 may be configured by using a single bus, or may be configured by using a different bus for each device.
 図3はドローン20のハードウェア構成の一例を表す。ドローン20は、物理的には、プロセッサ21と、メモリ22と、ストレージ23と、通信装置24と、飛行装置25と、センサ装置26と、バス27などを含むコンピュータ装置として構成されてもよい。これらのうち図2に同名のハードウェアが表されているものは、性能及び仕様等の違いはあるがそれらと同種のハードウェアである。 FIG. 3 shows an example of the hardware configuration of the drone 20. The drone 20 may be physically configured as a computer device including a processor 21, a memory 22, a storage 23, a communication device 24, a flight device 25, a sensor device 26, a bus 27, and the like. Of these, the hardware having the same name as that shown in FIG. 2 is the same type of hardware as those having different performances and specifications.
 通信装置24は、ネットワーク2との通信に加え、プロポとの通信を行う機能(例えば2.4GHz帯の電波による無線通信機能)を有する。飛行装置25は、モータ及びローター等を備え、自機を飛行させる装置である。飛行装置25は、空中において、あらゆる方向に自機を移動させたり、自機を静止(ホバリング)させたりすることができる。 The communication device 24 has a function (for example, a wireless communication function using radio waves in the 2.4 GHz band) of communicating with the radio in addition to the communication with the network 2. The flying device 25 is a device that includes a motor, a rotor, and the like, and causes the own device to fly. The flying device 25 can move itself in all directions in the air or can make itself stationary (hover).
 センサ装置26は、飛行制御に必要な情報を取得するセンサ群を有する装置である。センサ装置26は、例えば、自機の位置(緯度及び経度)を測定する位置センサと、自機が向いている方向(ドローンには自機の正面方向が定められており、その正面方向が向いている方向)を測定する方向センサと、自機の高度を測定する高度センサとを備える。また、センサ装置26は、自機の速度を測定する速度センサと、3軸の角速度及び3方向の加速度を測定する慣性計測センサ(IMU(Inertial Measurement Unit))とを備える。 The sensor device 26 is a device having a sensor group that acquires information necessary for flight control. The sensor device 26 is, for example, a position sensor that measures the position (latitude and longitude) of the own device, and the direction in which the own device is facing (the front direction of the own device is set for the drone, and the front direction is A direction sensor for measuring the altitude) and an altitude sensor for measuring the altitude of the player. In addition, the sensor device 26 includes a speed sensor that measures the speed of the own device and an inertial measurement sensor (IMU (Inertial Measurement Unit)) that measures the triaxial angular velocity and the acceleration in three directions.
 運航管理支援システム1が備える各装置における各機能は、各々のプロセッサ、メモリなどのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサが演算を行い、各々の通信装置による通信を制御したり、メモリ及びストレージにおけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in each device included in the operation management support system 1 causes a predetermined software (program) to be loaded on hardware such as each processor and memory, so that the processor performs calculation and communication by each communication device is performed. It is realized by controlling or controlling at least one of reading and writing of data in the memory and the storage.
 図4は各装置が実現する機能構成を表す。図4では、サーバ装置10及びドローン20の組合せが2つ表されているが、これらは異なる運航管理事業者が管轄するドローン20と、各運航管理事業者がドローン20を管轄するために使用するサーバ装置10との組合せである。また、運航管理支援システム1が備える各サーバ装置10及び各ドローン20は、いずれも図4に表す機能を備えているので、他のサーバ装置10及びドローン20は図示を省略している。 Fig. 4 shows the functional configuration realized by each device. In FIG. 4, two combinations of the server device 10 and the drone 20 are shown, but these are used by different operation management operators to manage the drone 20 and each operation management operator to control the drone 20. This is a combination with the server device 10. Further, since each server device 10 and each drone 20 included in the operation management support system 1 have the function shown in FIG. 4, the other server device 10 and drone 20 are not shown.
 運航管理支援システム1においては、各サーバ装置10を識別する装置IDと、各ドローン20を識別するドローンIDとが定められている。装置間でやり取りされるデータにはそれらのID及び現在時刻が付与されることで、情報の送信元、情報の対象(例えばどのドローン20の飛行計画であるのか)及び送信時刻等が識別されるようになっている。なお、飛行計画及び飛行情報等の各種の情報はデータ化してやり取りされるが、以下では、データを送信することを単にそのデータが示す情報を送信するとも言う。 In the operation management support system 1, a device ID for identifying each server device 10 and a drone ID for identifying each drone 20 are defined. The ID and the current time are given to the data exchanged between the devices to identify the source of the information, the target of the information (for example, which drone 20 the flight plan is), the transmission time, and the like. It is like this. Although various information such as flight plans and flight information are converted into data and exchanged, in the following, transmitting data will also be referred to as simply transmitting information indicated by the data.
 サーバ装置10は、飛行計画送信部101と、飛行情報取得部102と、計画外飛行判定部103と、飛行計画取得部104と、第1衝突特定部105と、回避処理部106と、計画外飛行通知部107と、計画外通知受取部108と、第2衝突特定部109と、衝突通知部110と、衝突通知受取部111とを備える。ドローン20は、飛行制御部201と、飛行情報送信部202とを備える。統合管理装置30は、飛行計画取得部301と、飛行計画記憶部302と、飛行計画配信部303とを備える。 The server device 10 includes a flight plan transmission unit 101, a flight information acquisition unit 102, an unplanned flight determination unit 103, a flight plan acquisition unit 104, a first collision identification unit 105, an avoidance processing unit 106, and an unplanned flight. The flight notification unit 107, the unplanned notification reception unit 108, the second collision identification unit 109, the collision notification unit 110, and the collision notification reception unit 111 are included. The drone 20 includes a flight control unit 201 and a flight information transmission unit 202. The integrated management device 30 includes a flight plan acquisition unit 301, a flight plan storage unit 302, and a flight plan distribution unit 303.
 サーバ装置10の飛行計画送信部101は、自装置が管轄する(自装置を使用する運航管理事業者が管轄するということ)ドローン20の飛行計画を統合管理装置30に送信する。ドローン20の飛行計画は、そのドローン20を管轄する運航管理事業者が作成してデータ化し、サーバ装置10に格納する。飛行計画は、例えば、ドローン20が飛行する飛行空域と、その飛行空域を飛行する時間帯とを示す情報である。飛行計画は、当日の計画の場合もあるし、翌日以降の計画の場合もある。飛行計画送信部101は、格納された飛行計画データを統合管理装置30に送信する。 The flight plan transmitting unit 101 of the server device 10 transmits the flight plan of the drone 20 under the jurisdiction of its own device (that is, under the jurisdiction of the operation management business operator using the own device) to the integrated management device 30. The flight plan of the drone 20 is created by an operation management company having jurisdiction over the drone 20, converted into data, and stored in the server device 10. The flight plan is, for example, information indicating a flight airspace in which the drone 20 flies and a time zone in which the flight airspace is flown. The flight plan may be a plan for the day or a plan for the next day or later. The flight plan transmission unit 101 transmits the stored flight plan data to the integrated management device 30.
 統合管理装置30の飛行計画取得部301は、送信されてきた飛行計画データが示す飛行計画、すなわち、運航管理支援システム1が支援の対象とするドローン20の飛行計画を取得する。飛行計画取得部301は、取得した飛行計画を飛行計画記憶部302に供給する。飛行計画記憶部302は、供給された飛行計画を、計画対象のドローン20のドローンIDに対応付けて記憶する。 The flight plan acquisition unit 301 of the integrated management apparatus 30 acquires the flight plan indicated by the transmitted flight plan data, that is, the flight plan of the drone 20 that the operation management support system 1 supports. The flight plan acquisition unit 301 supplies the acquired flight plan to the flight plan storage unit 302. The flight plan storage unit 302 stores the supplied flight plan in association with the drone ID of the planned drone 20.
 ドローン20の飛行制御部201は、センサ装置26が備える各センサの測定結果を用いて、自機の飛行を制御する。飛行制御部201は、例えば、操作者がプロポ等を用いて指示した飛行経路で飛行するよう飛行制御を行う。ドローン20の飛行情報送信部202は、自機の飛行状況を示す飛行情報を、自機を管轄するサーバ装置10に、指定された方法で送信する。 The flight control unit 201 of the drone 20 controls the flight of its own aircraft by using the measurement result of each sensor included in the sensor device 26. The flight control unit 201 performs flight control so as to fly on the flight route instructed by the operator using, for example, a radio transmitter. The flight information transmitting unit 202 of the drone 20 transmits the flight information indicating the flight status of the own device to the server device 10 that controls the own device by a designated method.
 飛行情報送信部202は、本実施例では、サーバ装置10から指示された頻度で、飛行情報を送信する。飛行情報の送信頻度は、例えば送信の時間間隔又は所定の期間の送信回数等で指定される。いずれの場合も、送信頻度が決まれば次の送信までの時間間隔が決まる。飛行情報送信部202は、指定された頻度が示す時間間隔でセンサ装置26が備える各センサの測定結果に基づいて飛行情報データを生成し、サーバ装置10に送信する。 In the present embodiment, the flight information transmitting unit 202 transmits the flight information at the frequency instructed by the server device 10. The frequency of flight information transmission is specified by, for example, a time interval of transmission or the number of times of transmission in a predetermined period. In either case, if the transmission frequency is determined, the time interval until the next transmission is determined. The flight information transmission unit 202 generates flight information data based on the measurement result of each sensor included in the sensor device 26 at a time interval indicated by the designated frequency, and transmits the flight information data to the server device 10.
 サーバ装置10の飛行情報取得部102は、上記のとおりドローン20から上述した指定された方法で送信されてくる飛行情報を取得する。飛行情報取得部102は、この飛行情報を取得することで、自装置が管轄するグループに属するドローン20の飛行状況を取得する。ここで、サーバ装置10にとって、自装置が管轄するドローン20のグループのことを「管轄グループ」といい、他のサーバ装置10が管轄するドローン20のグループのことを「管轄外グループ」というものとする。つまり、飛行情報取得部102は、管轄グループに属するドローン20の飛行状況を取得する。 The flight information acquisition unit 102 of the server device 10 acquires the flight information transmitted from the drone 20 by the specified method as described above. The flight information acquisition unit 102 acquires the flight information to acquire the flight status of the drone 20 belonging to the group under its control. Here, for the server device 10, a group of the drone 20 that is under its control is referred to as a “jurisdiction group”, and a group of drones 20 that is under the control of another server device 10 is referred to as a “non-jurisdiction group”. To do. That is, the flight information acquisition unit 102 acquires the flight status of the drone 20 belonging to the jurisdiction group.
 図5は飛行情報の一例を表す。図5の例では、ドローンIDと、飛行時刻(各情報の測定時刻)と、飛行位置(例えば緯度及び経度)と、飛行方向(例えば方角を360度で表した数値)と、飛行高度(例えば海抜高度)と、飛行速度とを含む飛行情報が表されている。飛行情報は繰り返し取得されるので、1つのドローンIDに対して複数の飛行時刻等が対応付けられている。 Fig. 5 shows an example of flight information. In the example of FIG. 5, the drone ID, the flight time (measurement time of each information), the flight position (for example, latitude and longitude), the flight direction (for example, the numerical value indicating the direction in 360 degrees), and the flight altitude (for example, Flight information including altitude (altitude above sea level) and flight speed is displayed. Since the flight information is repeatedly acquired, a plurality of flight times and the like are associated with one drone ID.
 飛行情報取得部102は、取得した管轄グループに属するドローン20の飛行情報を計画外飛行判定部103に供給する。計画外飛行判定部103は、管轄グループに属するドローン20が飛行計画から外れた飛行をしているか否かを判定する。計画外飛行判定部103は、例えば1日の初めに当日に飛行する予定で且つ管轄グループに属するドローン20の全ての飛行計画を飛行計画取得部104に要求する。 The flight information acquisition unit 102 supplies the acquired flight information of the drone 20 belonging to the jurisdiction group to the unplanned flight determination unit 103. The unplanned flight determination unit 103 determines whether the drone 20 belonging to the jurisdiction group is flying out of the flight plan. The unplanned flight determination unit 103 requests the flight plan acquisition unit 104 for all the flight plans of the drones 20 that are scheduled to fly on the same day at the beginning of the day and belong to the jurisdiction group.
 飛行計画取得部104は、要求された飛行計画、すなわち、当日飛行予定の管轄グループに属するドローン20の飛行計画を取得する。飛行計画取得部104は、自装置の飛行計画送信部101から該当する飛行計画を読み出すことで、要求された飛行計画を取得する。飛行計画について、図6を参照して説明する。 The flight plan acquisition unit 104 acquires the requested flight plan, that is, the flight plan of the drone 20 belonging to the jurisdiction group scheduled to fly on the day. The flight plan acquisition unit 104 acquires the requested flight plan by reading the corresponding flight plan from the flight plan transmission unit 101 of the own device. The flight plan will be described with reference to FIG.
 図6は飛行計画の一例を表す。図6(a)では、ドローンIDが「D001」のドローン20が飛行する予定の飛行空域が表されている。運航管理支援システム1においては、ドローン20が飛行することができる飛行可能空域が道路網のように予め定められている。飛行可能空域は、飛行のために必要な許可を受けた空域であり、場合によっては許可が不要な空域を含むこともある。 Figure 6 shows an example of a flight plan. In FIG. 6A, the flight airspace where the drone 20 with the drone ID “D001” is scheduled to fly is shown. In the operation management support system 1, the flyable airspace in which the drone 20 can fly is predetermined like a road network. Flyable airspace is airspace that has received the necessary permission for flight, and may include airspace that does not require permission in some cases.
 本実施例では、飛行可能空域は、隙間なく敷き詰められた立方体の空間(以下「セル」という)によって表され、各セルには各々を識別するセルIDが付されている。本実施例では、説明を分かり易くするため、各セルの高度が一定であり、各セルのxy座標とセルIDとを対応させて表している(例えばxy座標が(x10、y15)のセルはC10_15というセルIDが付されている)。 In the present embodiment, the flyable airspace is represented by a cubic space (hereinafter referred to as “cell”) that is spread without any gaps, and each cell is provided with a cell ID that identifies each cell. In the present embodiment, in order to make the description easy to understand, the altitude of each cell is constant, and the xy coordinates of each cell and the cell ID are represented in correspondence (for example, a cell whose xy coordinates are (x10, y15) is The cell ID is C10_15).
 図6(a)では、「倉庫α11」から「店舗α12」まで至る飛行空域R1が表されている。飛行空域R1には、ドローン20の出発地となるセルC01_01からx軸正方向に隣接するセルを通ってセルC20_01に至る分割空域R11(飛行空域を分割した空域のこと)と、そこからy軸正方向に隣接するセルを通ってセルC20_20に至る分割空域R12と、そこからx軸正方向に隣接するセルを通って目的地セルであるセルC50_20に至る分割空域R13とが含まれている。 In Fig. 6(a), the flight airspace R1 from "warehouse α11" to "store α12" is shown. The flying airspace R1 includes a divided airspace R11 (which is an airspace into which the flight airspace is divided) from the cell C01_01, which is the starting point of the drone 20, to the cell C20_01 through the cell adjacent in the positive direction of the x-axis, and the y-axis. It includes a divided air space R12 that reaches the cell C20_20 through a cell that is adjacent in the positive direction, and a divided air space R13 that extends from the cell C50_20 that is a destination cell through a cell that is adjacent in the x-axis positive direction.
 図6(b)では、ドローンIDが「D001」のドローン20の飛行計画として、飛行空域を表すセルIDと、その飛行空域における飛行予定期間とが表されている。例えば上記ドローン20の場合、分割空域毎にセルID及び飛行予定期間が表されている。例えば分割空域R11であれば、分割空域R11に進入する予定の時刻T111から離脱する予定の時刻T112までの期間K11が表されている。 In FIG. 6B, as a flight plan of the drone 20 having a drone ID of “D001”, a cell ID representing a flight airspace and a flight scheduled period in the flight airspace are shown. For example, in the case of the drone 20, the cell ID and the scheduled flight period are shown for each divided airspace. For example, in the case of the divided airspace R11, a period K11 from a time T111 scheduled to enter the divided airspace R11 to a time T112 scheduled to leave the divided airspace R11 is represented.
 また、ドローンIDが「D002」のドローン20は、飛行空域A21を時刻T21からT22まで飛行する飛行計画が表されている。このドローン20は例えば或る敷地を上空から撮影することになっており、飛行空域A21はその敷地の上空に位置するセルのセルIDの集合で表されている。この例では、飛行空域A21の中でどのような経路で飛行するかまでは計画で決まっていないが、そこまで詳細に決まっていてもよい。 Also, the drone 20 with the drone ID “D002” shows the flight plan to fly in the flight space A21 from time T21 to T22. The drone 20 is supposed to photograph, for example, a certain site from above, and the flight area A21 is represented by a set of cell IDs of cells located above the site. In this example, the route to fly in the flight area A21 is not decided by the plan, but it may be decided in detail.
 飛行計画取得部104は、取得した管轄グループに属するドローン20の飛行計画を計画外飛行判定部103に供給する。計画外飛行判定部103は、供給された飛行計画と、供給された飛行情報が示す飛行状況とを比較して、例えば飛行計画で予定された飛行経路から所定の距離以上離れた位置を飛行している場合に、飛行計画から外れた飛行をしていると判定する。計画外飛行判定部103は、例えば飛行計画が表す飛行空域からセル2つ分以上離れた場合に飛行計画から外れた飛行をしていると判定する。 The flight plan acquisition unit 104 supplies the acquired flight plan of the drone 20 belonging to the jurisdiction group to the unplanned flight determination unit 103. The unplanned flight determination unit 103 compares the supplied flight plan with the flight situation indicated by the supplied flight information, and flies at a position separated by a predetermined distance or more from the flight route planned in the flight plan, for example. If it is, the flight is judged to be off the flight plan. The unplanned flight determination unit 103 determines that the flight is out of the flight plan, for example, when it is separated from the flight area represented by the flight plan by two cells or more.
 また、計画外飛行判定部103は、飛行計画で予定された飛行経路であっても、予定された飛行時間帯から所定の時間以上離れた時刻に飛行している場合に、飛行計画から外れた飛行をしていると判定する。計画外飛行判定部103は、例えば飛行計画が表す飛行予定期間から5分以上離れている場合に飛行計画から外れた飛行をしていると判定する。なお、上述したセル2つ及び5分という距離及び時間は一例であり、それら以外の距離及び時間が用いられてもよい。 In addition, the unplanned flight determination unit 103 deviates from the flight plan even if the flight route is a flight route planned by the flight plan when the flight is at a time that is more than a predetermined time away from the scheduled flight time zone. Determined to be flying. The unplanned flight determination unit 103 determines that the flight is out of the flight plan, for example, when it is away from the scheduled flight period represented by the flight plan by 5 minutes or more. Note that the above-described distance and time of two cells and five minutes are examples, and other distances and times may be used.
 ここで、本実施例では、図1に表すように、サーバ装置10毎にドローン20の属するグループが存在する。飛行計画取得部104は、自装置が管轄する管轄グループに属するドローン20だけでなく、他のサーバ装置10が管轄する管轄外グループに属し且つ当日飛行予定のドローン20の飛行計画も合わせて取得する。飛行計画取得部104は、統合管理装置30に対して、該当する管轄外グループに属するドローン20の飛行計画を要求する要求データを送信する。 Here, in this embodiment, as shown in FIG. 1, each server device 10 has a group to which the drone 20 belongs. The flight plan acquisition unit 104 acquires not only the drone 20 that belongs to the jurisdiction group that the device owns but also the flight plan of the drone 20 that belongs to a non-jurisdiction group that the other server device 10 has jurisdiction and that is scheduled to fly on the day. .. The flight plan acquisition unit 104 transmits, to the integrated management device 30, request data requesting a flight plan of the drone 20 that belongs to the relevant non-jurisdiction group.
 統合管理装置30の飛行計画配信部303は、送信されてきた要求データにより要求された飛行計画を飛行計画記憶部302から読み出して、要求元のサーバ装置10に配信する。飛行計画取得部104は、配信されてきた飛行計画を管轄外グループに属するドローン20の飛行計画として取得し、第1衝突特定部105に供給する。なお、飛行計画取得部104は、他のサーバ装置10から直接管轄外グループに属するドローン20の飛行計画を取得してもよい。 The flight plan distribution unit 303 of the integrated management apparatus 30 reads out the flight plan requested by the transmitted request data from the flight plan storage unit 302 and distributes it to the requesting server device 10. The flight plan acquisition unit 104 acquires the delivered flight plan as a flight plan of the drone 20 belonging to the non-jurisdiction group, and supplies the flight plan to the first collision identification unit 105. The flight plan acquisition unit 104 may directly acquire the flight plan of the drone 20 that belongs to the non-jurisdiction group from another server device 10.
 第1衝突特定部105には、計画外飛行判定部103が、飛行計画から外れた飛行をしていると判定したドローン20の飛行情報を供給する。第1衝突特定部105は、計画外飛行判定部103から飛行情報が供給された場合、すなわち、飛行計画から外れた飛行を示すドローン20の飛行状況が取得された場合に、管轄グループに属するドローン20のうちから、飛行計画から外れた飛行を示す飛行状況のドローン20に対して衝突する可能性があるドローン20を特定する。 The first collision identification unit 105 is supplied with flight information of the drone 20 that the unplanned flight determination unit 103 has determined to be flying outside the flight plan. The first collision identifying unit 105 receives the flight information from the unplanned flight determination unit 103, that is, when the flight status of the drone 20 indicating a flight out of the flight plan is acquired, the drone belonging to the jurisdiction group. The drone 20 that may collide with the drone 20 in the flight situation indicating the flight out of the flight plan is identified from among the 20.
 第1衝突特定部105は、例えば、飛行計画取得部104により取得された管轄グループに属するドローン20の飛行計画に基づいて、衝突の可能性があるドローン20を特定する。以下では、単に「衝突の可能性があるドローン20」と言った場合、計画外飛行をしているドローン20に対して衝突する可能性があるドローン20のことを言うものとする。 The first collision identification unit 105 identifies the drone 20 that may have a collision, for example, based on the flight plan of the drone 20 belonging to the jurisdiction group acquired by the flight plan acquisition unit 104. In the following, simply saying “a drone 20 with a possibility of collision” means a drone 20 with a possibility of collision with a drone 20 that is flying unplanned.
 なお、2台以上のドローン20が計画外飛行をしている場合は、衝突の可能性があるドローン20自身が計画外飛行をしていることも起こり得る。また、計画外飛行をしているドローン20及び衝突の可能性があるドローン20の属するグループは、上記の例ではいずれも管轄グループであるが、管轄外グループの場合もある(その場合については後述する)。 -If two or more drones 20 are flying unplanned, it is possible that the drone 20 itself may fly unplanned, which may cause a collision. In addition, the drone 20 that is flying unplanned and the group to which the drone 20 that has a possibility of collision belong to the jurisdiction group in the above example, but may be the non-jurisdiction group. To).
 第1衝突特定部105は、例えば、供給された飛行状況に含まれるドローン20(計画外飛行をしているドローン20)の位置と、取得された飛行計画におけるドローン20の現在位置との距離に基づいて衝突の可能性があるドローン20を特定する。一般に2機のドローンの飛行する位置が一定の距離以上近づくと、衝突の可能性が高まってくる。そこで、第1衝突特定部105は、計画外飛行をしているドローン20との距離が閾値未満であるドローン20を、衝突の可能性があるドローン20として特定する。 The first collision identifying unit 105 determines, for example, the distance between the position of the drone 20 (the drone 20 performing unplanned flight) included in the supplied flight status and the current position of the drone 20 in the acquired flight plan. Based on this, the drone 20 that is likely to collide is identified. Generally, if the flying positions of two drones approach a certain distance or more, the possibility of collision increases. Therefore, the first collision identifying unit 105 identifies a drone 20 having a distance less than the threshold value with respect to the drone 20 that is flying unplanned as a drone 20 having a possibility of collision.
 ここで、「衝突の可能性がある」とは、衝突の可能性が所定のレベル以上まで高まった状態をいう。例えばドローン同士が100m以上離れている状態でも、飛行を続けていれば衝突する可能性は0ではないが極めて小さいので、衝突の可能性があるとは判断されない。一方、ドローン同士の距離がある程度(上述した閾値未満の距離)まで近づくと、飛行方向や飛行速度にもよるが衝突の可能性が高まることには間違いないので、第1衝突特定部105は、そのような場合に衝突の可能性があるドローン20を特定する。 ”Here, “there is a possibility of collision” means that the possibility of collision has risen to a predetermined level or higher. For example, even if the drones are 100 m or more apart from each other, the possibility of a collision is not 0 if they continue flying, but it is extremely small, so it is not determined that there is a possibility of a collision. On the other hand, when the distance between the drones approaches a certain distance (distance less than the above-mentioned threshold value), there is no doubt that the possibility of collision will increase depending on the flight direction and the flight speed. Therefore, the first collision identifying unit 105 In such a case, the drone 20 having a possibility of collision is specified.
 第1衝突特定部105は、衝突の可能性があるドローン20を特定すると、特定されたドローン20及び計画外飛行をしているドローン20を回避処理部106に通知する。回避処理部106は、管轄グループに属するドローン20が衝突の可能性があると特定された場合に、その衝突を回避させるための処理(回避処理)を行う。回避処理部106は、例えば、計画外飛行をしているドローン20と衝突する可能性があるドローン20に対して一定時間の停止を指示する処理を回避処理として行う。 When the first collision identification unit 105 identifies the drone 20 that may have a collision, the first collision identification unit 105 notifies the avoidance processing unit 106 of the identified drone 20 and the drone 20 that is flying unplanned. The avoidance processing unit 106 performs processing (avoidance processing) for avoiding the collision when the drone 20 belonging to the jurisdiction group is identified as having a possibility of collision. The avoidance processing unit 106 performs, for example, processing for instructing the drone 20 that may collide with the drone 20 that is flying unplanned to stop for a certain period of time as the avoidance processing.
 また、回避処理部106は、ドローン20の飛行経路を、衝突を回避することが可能な飛行経路に変更することを指示する処理を回避処理として行う。なお、回避処理部106は、計画外飛行をしているドローン20が管轄グループに属するドローン20である場合は、計画外飛行をしているドローン20に対して同じ指示を行う処理を回避処理として行ってもよい。回避処理部106は、上記の指示を示す指示データを例えば指示対象のドローン20に送信する。 Further, the avoidance processing unit 106 performs processing for instructing to change the flight path of the drone 20 to a flight path capable of avoiding a collision as an avoidance processing. In addition, when the drone 20 performing the unplanned flight is a drone 20 belonging to a jurisdiction group, the avoidance processing unit 106 performs the same instruction to the drone 20 performing the unplanned flight as the avoidance processing. You can go. The avoidance processing unit 106 transmits instruction data indicating the above instruction to, for example, the drone 20 to be instructed.
 指示対象のドローン20の飛行制御部201は、上記指示データを受け取ると、指示されたとおりに自機の飛行を制御する。なお、指示データの送信先はこれに限らず、例えば操作者が用いるプロポ又はパソコン等であってもよい。その場合はプロポ又はパソコン等が指示データの示す指示を表示し、操作者がそれを見て指示に従った飛行操作を行う。このように回避処理が行われることで、計画外飛行をしているドローン20が同じ管轄グループに属するドローン20と衝突することが避けられる。 Upon receiving the instruction data, the flight control unit 201 of the drone 20 to be instructed controls the flight of its own aircraft as instructed. Note that the transmission destination of the instruction data is not limited to this, and may be, for example, a transmitter or personal computer used by the operator. In that case, a radio transmitter, a personal computer, or the like displays the instruction indicated by the instruction data, and the operator looks at it and performs a flight operation according to the instruction. By performing the avoidance process in this manner, it is possible to prevent the drone 20 flying unplanned from colliding with the drone 20 belonging to the same jurisdiction group.
 また、第1衝突特定部105は、飛行計画取得部104により取得された管轄外グループに属するドローン20の飛行計画に基づいて、管轄外グループに属するドローン20のうちから、計画外飛行をしているドローン20と衝突の可能性があるドローン20を特定する。第1衝突特定部105は、例えば管轄グループに属するドローン20を対象にする場合と同じ方法(ドローン20間の距離を用いる方法)で、管轄外グループに属するドローン20を対象として、衝突の可能性があるドローン20を特定する。 In addition, the first collision identifying unit 105 performs an unplanned flight from the drones 20 belonging to the non-jurisdiction group based on the flight plan of the drone 20 belonging to the non-jurisdiction group acquired by the flight plan acquisition unit 104. The drone 20 that may collide with the existing drone 20 is identified. The first collision identifying unit 105 targets the drones 20 belonging to the jurisdiction group and targets the drones 20 belonging to the non-jurisdiction group by the same method (method using the distance between the drones 20), for example. Identify the drone 20 that has
 第1衝突特定部105は、衝突の可能性があるドローン20として管轄外グループに属するドローン20を特定した場合も、回避処理部106への通知を行う。回避処理部106は、管轄外グループに属するドローン20には指示できないので、計画外飛行をしているドローン20(つまり管轄グループに属するドローン20)に対して例えば上記の停止又は飛行経路の変更の少なくとも一方を指示する回避処理を行う。 The first collision identification unit 105 also notifies the avoidance processing unit 106 even when the drone 20 belonging to a group outside the jurisdiction is identified as the drone 20 that may have a collision. Since the avoidance processing unit 106 cannot instruct the drone 20 belonging to the non-jurisdiction group, the avoidance processing unit 106 may, for example, stop the drone 20 performing the unplanned flight (that is, drone 20 belonging to the jurisdiction group) or change the flight route. An avoidance process for instructing at least one is performed.
 計画外飛行判定部103は、計画外飛行をしているドローン20の飛行情報を計画外飛行通知部107にも供給する。計画外飛行通知部107は、供給された飛行情報を他のサーバ装置10に送信することで、送信した飛行情報が示す計画外飛行をしているドローン20の飛行状況を他の全てのサーバ装置10に通知する。 The unplanned flight determination unit 103 also supplies the unplanned flight notification unit 107 with flight information of the drone 20 that is making an unplanned flight. The unplanned flight notification unit 107 transmits the supplied flight information to the other server devices 10 so that the flight status of the drone 20 performing the unplanned flight indicated by the transmitted flight information is displayed in all other server devices. Notify 10.
 ここからは、飛行状況の通知先となったサーバ装置10の機能について説明する。通知先のサーバ装置10の計画外通知受取部108は、送信されてきた飛行情報を受け取ることで、計画外飛行をしているドローン20の飛行状況の通知を受け取る。計画外通知受取部108は、飛行状況の通知として受け取った飛行情報を自装置の第2衝突特定部109に供給する。 From here, the function of the server device 10 that is the notification destination of the flight status will be described. The unplanned notification receiving unit 108 of the server device 10 of the notification destination receives the flight information transmitted, thereby receiving the notification of the flight status of the drone 20 performing the unplanned flight. The unplanned notification receiving unit 108 supplies the flight information received as the notification of the flight status to the second collision identifying unit 109 of the own device.
 第2衝突特定部109は、他のサーバ装置10から計画外飛行をしているドローン20の飛行状況が通知された場合に、通知されたドローン20と衝突の可能性があり且つ自装置が管轄するグループに属するドローン20を特定する。第2衝突特定部109には、自装置の飛行計画取得部104が、取得した飛行計画のうち自装置が管轄するグループに属するドローン20の飛行計画を供給する。 When the second collision identifying unit 109 is notified from another server device 10 of the flight status of the drone 20 that is flying unplanned, the second collision identification unit 109 may have a collision with the notified drone 20 and is under the jurisdiction of its own device. The drone 20 belonging to the group to be specified is specified. The flight plan acquisition unit 104 of the own device supplies the second collision identification unit 109 with the flight plan of the drone 20 belonging to the group under the control of the own device among the acquired flight plans.
 第2衝突特定部109は、供給された飛行情報及び飛行計画に基づいて、例えば第1衝突特定部105と同じ方法(ドローン20間の距離を用いる方法)で、通知された計画外飛行をしているドローン20及び管轄グループに属するドローン20を対象として、衝突の可能性があるドローン20を特定する。 The second collision identification unit 109 performs the notified unplanned flight based on the supplied flight information and flight plan, for example, by the same method as the first collision identification unit 105 (method using the distance between the drones 20). The drone 20 that has a possibility of collision is specified for the drone 20 that is in operation and the drone 20 that belongs to the jurisdiction group.
 第2衝突特定部109は、管轄グループに属するドローン20から衝突の可能性があるドローン20を特定すると、特定されたドローン20を自装置の回避処理部106に通知する。回避処理部106は、衝突の可能性があるドローン20の通知を受け取った場合、回避処理を行う。回避処理部106が行う回避処理は、上述した回避処理(停止指示及び飛行経路の変更指示等)と同じ処理である。第2衝突特定部109は、特定したドローン20及び計画外飛行をしているドローン20を衝突通知部110に通知する。 When the second collision identification unit 109 identifies the drone 20 that may have a collision from the drones 20 belonging to the jurisdiction group, the second collision identification unit 109 notifies the avoidance processing unit 106 of the own device of the identified drone 20. When the avoidance processing unit 106 receives the notification of the drone 20 having a possibility of collision, the avoidance processing unit 106 performs the avoidance processing. The avoidance processing performed by the avoidance processing unit 106 is the same as the above-described avoidance processing (stop instruction, flight route change instruction, etc.). The second collision identification unit 109 notifies the collision notification unit 110 of the identified drone 20 and the drone 20 that is flying unplanned.
 衝突通知部110は、計画外飛行をしているドローン20の通知を受け取った場合、すなわち、第2衝突特定部109により衝突の可能性がある管轄グループに属するドローン20が特定された場合、特定されたドローン20の飛行状況を、飛行計画から外れた飛行を示す飛行状況の通知元のサーバ装置10に通知する。衝突通知部110は、特定されたドローン20の飛行状況を示す飛行情報を、前述した通知元のサーバ装置10に送信することで、上記の通知を行う。 The collision notification unit 110 specifies when the notification of the drone 20 performing the unplanned flight is received, that is, when the second collision identification unit 109 identifies the drone 20 belonging to the jurisdiction group in which the collision may occur. The notified flight status of the drone 20 is notified to the server device 10 which is the notification source of the flight status indicating the flight out of the flight plan. The collision notification unit 110 makes the above notification by transmitting flight information indicating the flight status of the identified drone 20 to the above-mentioned server 10 as the notification source.
 ここから、計画外飛行をしているドローン20の飛行状況を示す飛行情報の通知元であったサーバ装置10の説明に戻る。通知元のサーバ装置10の衝突通知受取部111は、送信されてきた飛行情報を受け取ることで、計画外飛行をしているドローン20(管轄グループに属するドローン20)と衝突の可能性があるドローン20(管轄外グループに属するドローン20)の飛行状況の通知を受け取る。 From here, return to the description of the server device 10 that is the notification source of the flight information indicating the flight status of the drone 20 that is flying unplanned. The collision notification receiving unit 111 of the server device 10 of the notification source receives the transmitted flight information, so that there is a possibility of collision with the drone 20 (drone 20 belonging to the jurisdiction group) performing an unplanned flight. Receive notification of flight status of 20 (drone 20 belonging to non-jurisdiction group).
 衝突通知受取部111は、飛行状況の通知として受け取った飛行情報を回避処理部106に供給する。供給された飛行情報は、管轄グループに属するドローン20が計画外飛行をしている場合に、管轄外グループに属するドローン20と衝突する可能性があることを示す。管轄外グループに属するドローン20は、第1衝突特定部105によっても衝突する可能性があるドローン20として特定されることがあるが、必ずしもこの特定がされるとは限らない。 The collision notification receiving unit 111 supplies the flight information received as the flight status notification to the avoidance processing unit 106. The supplied flight information indicates that the drone 20 belonging to the jurisdiction group may collide with the drone 20 belonging to the non-jurisdiction group when the unplanned flight is performed. The drone 20 belonging to the non-jurisdiction group may be identified as the drone 20 that may collide with the first collision identification unit 105, but the identification is not necessarily performed.
 例えば、管轄外グループに属するドローン20の飛行計画が当日になって変更され、変更された飛行計画が配信されなかった場合、第1衝突特定部105は古い飛行計画を用いるため衝突する可能性があるドローン20を正しく特定することができない。その場合、飛行計画が当日になって変更されたドローン20を管轄するサーバ装置10は新たな飛行計画を取得できるので、衝突する可能性があるドローン20を正しく特定することができる。 For example, if the flight plan of the drone 20 belonging to the non-jurisdiction group is changed on the same day and the changed flight plan is not delivered, the first collision identifying unit 105 uses the old flight plan and may collide. A certain drone 20 cannot be correctly identified. In that case, the server device 10 that manages the drone 20 whose flight plan has been changed on the day can obtain a new flight plan, and thus the drone 20 that may collide can be correctly identified.
 そこで、回避処理部106は、他のサーバ装置10から管轄グループに属するドローン20に対して衝突する可能性があるドローン20の飛行状況が通知された場合、第1衝突特定部105により衝突の可能性があるドローン20が特定されていなくても、通知された飛行状況のドローン20(管轄外グループに属するドローン20)に対して衝突する可能性があるドローン20(管轄グループに属し且つ計画外飛行をしているドローン20)の回避処理を行う。この回避処理を行うことで、前述したような理由で衝突する可能性があるドローン20の特定が正しくできなかったために衝突が発生することを防ぐことができる。 Therefore, when the avoidance processing unit 106 is notified of the flight status of the drone 20 that may collide with the drone 20 belonging to the jurisdiction group from the other server device 10, the avoidance processing unit 106 may collide with the first collision identifying unit 105. Drones 20 (which belong to the jurisdiction group and are unplanned flights) that may collide with the drone 20 (the drone 20 that belongs to the non-jurisdiction group) in the notified flight status, even if the drone 20 that has the potential The avoidance process for the drone 20) is By performing this avoidance processing, it is possible to prevent a collision from occurring because the drone 20 that may possibly collide for the reason described above could not be correctly identified.
 また、回避処理部106は、衝突する可能性があるドローン20が特定されるよりも前から、より危険が回避されるように、ドローン20が飛行情報(自機の飛行状況を示す情報の送信方法を指示する。この場合の回避処理部106は本発明の「指示部」の一例である。回避処理部106は、本実施例では、送信方法として、飛行情報の送信頻度が指示される。 In addition, the avoidance processing unit 106 transmits flight information (information indicating the flight status of the aircraft itself) to the drone 20 so that the danger is avoided even before the drone 20 that may collide is identified. The avoidance processing unit 106 in this case is an example of the “instruction unit” of the present invention.In the present embodiment, the avoidance processing unit 106 is instructed as the transmission frequency of the flight information.
 回避処理部106は、ドローン20が飛行する際の危険の大きさを表す情報である危険度情報に基づいて送信方法を決定し、決定した送信方法での飛行情報の送信を指示する。飛行するドローン20における危険とは、例えば故障又は飛行制御が効かなくなって墜落し、自機の破損、人及び物への加害が生じるという危険である。これらの危険は、例えばドローン20同士が接触し又は衝突することが原因で発生する。 The avoidance processing unit 106 determines the transmission method based on the risk degree information, which is information indicating the magnitude of danger when the drone 20 flies, and instructs the transmission of flight information by the determined transmission method. The danger in the flying drone 20 is, for example, a failure or a crash in which flight control becomes ineffective, resulting in damage to the aircraft itself and damage to people and objects. These dangers arise, for example, because the drones 20 contact or collide with each other.
 ドローン20同士の接触及び衝突は、例えばドローン20が密集しているほど起きやすくなる。そこで、回避処理部106は、本実施例では、或る飛行空域を飛行するドローン20の密集度を示す情報をその飛行空域の危険度情報として用いる。飛行空域における密集度は、例えば、飛行計画及び飛行情報によって表される。飛行計画は飛行計画取得部104によって取得され、飛行情報は飛行情報取得部102によって取得される。 Contact and collision between the drones 20 are more likely to occur as the drones 20 are closer together. Therefore, in the present embodiment, the avoidance processing unit 106 uses the information indicating the density of the drones 20 flying in a certain flight airspace as the risk information of the flight airspace. The density in the flight airspace is represented by, for example, a flight plan and flight information. The flight plan is acquired by the flight plan acquisition unit 104, and the flight information is acquired by the flight information acquisition unit 102.
 飛行情報取得部102及び飛行計画取得部104は本発明の「取得部」の一例である。飛行計画取得部104は、取得した飛行計画(管轄グループに属するドローン20の飛行計画及び管轄外グループに属するドローン20の飛行計画の両方)を危険度情報として回避処理部106に供給する。飛行情報取得部102は、取得した飛行情報(管轄グループに属するドローン20の飛行情報)を危険度情報として回避処理部106に供給する。 The flight information acquisition unit 102 and the flight plan acquisition unit 104 are examples of the “acquisition unit” in the present invention. The flight plan acquisition unit 104 supplies the acquired flight plans (both the flight plan of the drone 20 belonging to the jurisdiction group and the flight plan of the drone 20 belonging to the non-jurisdiction group) to the avoidance processing unit 106 as risk information. The flight information acquisition unit 102 supplies the acquired flight information (flight information of the drone 20 belonging to the jurisdiction group) to the avoidance processing unit 106 as risk information.
 また、計画外通知受取部108は、管轄外グループに属するドローン20のうち、計画外飛行をしているドローン20の飛行状況を取得する。計画外飛行をしているドローン20については飛行計画よりも通知された飛行状況を用いることで、より正確な密集度が表される。計画外通知受取部108も本発明の「取得部」の一例である。計画外通知受取部108は取得した飛行状況を危険度情報として回避処理部106に供給する。 Further, the unplanned notification receiving unit 108 acquires the flight status of the drone 20 that is performing an unplanned flight among the drones 20 belonging to the uncontrolled area. For the drone 20 that is flying unplanned, the notified flight status is used rather than the flight plan, so that more accurate density is represented. The unplanned notification receiving unit 108 is also an example of the “acquiring unit” in the present invention. The unplanned notification receiving unit 108 supplies the acquired flight status to the avoidance processing unit 106 as risk level information.
 上記の危険度情報は、いずれも、危険の大きさ(本実施例ではドローン20の密集度)を飛行空域毎に表すことが可能である。ここでいう飛行空域とは、例えば1以上のセルを含む飛行空域である。例えば図6に表す飛行計画であれば、飛行空域及び飛行予定期間から各セルを飛行する期間を推定できるので、各ドローン20について推定した期間が重複するセルにはそれらのドローン20が密集することになる。 All of the above danger level information can represent the level of danger (the density of the drones 20 in this embodiment) for each flight area. The flight airspace mentioned here is, for example, a flight airspace including one or more cells. For example, in the flight plan shown in FIG. 6, it is possible to estimate the flight period of each cell from the flight airspace and the scheduled flight period. Therefore, the drone 20 should be densely packed in the cells where the estimated period of each drone 20 overlaps. become.
 また、飛行状況についても、飛行状況に含まれる飛行位置及び飛行時刻から飛行中のセルが分かるので、セル毎の密集度を表すことが可能である。そこで、回避処理部106は、上記の各部により取得された危険度情報が表す飛行空域における危険の大きさに応じた送信制御方法を用いることで、その飛行空域を飛行するドローン20が飛行情報を送信するように指示する。 Also, regarding the flight status, it is possible to express the density of each cell because the cell in flight can be known from the flight position and flight time included in the flight status. Therefore, the avoidance processing unit 106 uses the transmission control method according to the magnitude of the risk in the flight air space represented by the risk information acquired by each of the above units, so that the drone 20 flying in the flight air space can obtain the flight information. Instruct to send.
 具体的には、回避処理部106は、取得された危険度情報が表す危険が大きいほど飛行情報の送信頻度が高くなるような制御を指示する。回避処理部106は、本実施例では、ドローン20の密集度と、危険度(危険度情報が表す危険の大きさ)と、送信頻度とを対応付けた頻度テーブルを用いてこの指示を行う。 Specifically, the avoidance processing unit 106 instructs control such that the greater the risk represented by the acquired risk information, the more frequently the flight information is transmitted. In the present embodiment, the avoidance processing unit 106 gives this instruction using a frequency table in which the density of the drones 20, the degree of danger (the degree of danger represented by the degree of danger information), and the transmission frequency are associated with each other.
 図7は頻度テーブルの一例を表す。図7の例では、「Th1未満」、「Th1以上Th2未満」及び「Th2以上」(Th1<Th2)というドローン20の密集度と、「低」、「中」及び「高」という危険度と、「T3毎」、「T2毎」及び「T1毎」(T1<T2<T3とする)という送信頻度とがそれぞれ対応付けられている。Th1、Th2は密集度の閾値を表し、T1~T3は送信の時間間隔を表す。 FIG. 7 shows an example of the frequency table. In the example of FIG. 7, the density of the drone 20 is “less than Th1,” “th1 or more and less than Th2,” and “th2 or more” (Th1<Th2), and risk levels of “low”, “medium”, and “high”. , "Every T3", "Every T2" and "Every T1" (T1<T2<T3) are associated with each other. Th1 and Th2 represent the threshold value of the density, and T1 to T3 represent the time intervals of transmission.
 回避処理部106は、まず、取得された飛行計画及び飛行状況から、各飛行空域(例えばN(Nは自然数)個の隣接するセル)におけるドローン20の密集度(飛行空域内を飛行中のドローン20の台数)を算出する。回避処理部106は、算出した密集度に頻度テーブルにおいて対応付けられている危険度を特定する。回避処理部106は、特定した危険度に頻度テーブルにおいて対応付けられている送信頻度を、その危険度が特定された飛行空域を飛行中のドローン20の送信頻度として決定する。 The avoidance processing unit 106 first determines the density of the drones 20 in each flight airspace (for example, N (N is a natural number) adjacent cells) from the acquired flight plan and flight conditions (the drone flying in the flight airspace). 20). The avoidance processing unit 106 identifies the degree of risk associated with the calculated congestion degree in the frequency table. The avoidance processing unit 106 determines the transmission frequency associated with the identified risk level in the frequency table as the transmission frequency of the drone 20 that is flying in the flight airspace in which the risk level is identified.
 回避処理部106は、決定した送信頻度で飛行情報を送信するようドローン20に指示する。但し、送信頻度が決定される度に毎回指示を行う必要はない。例えば、回避処理部106は、前回決定した送信頻度と変わってない場合は送信頻度の指示を行わず、前回決定した送信頻度と変わった場合に新たな送信頻度に変更するようドローン20に指示する。 The avoidance processing unit 106 instructs the drone 20 to transmit the flight information at the determined transmission frequency. However, it is not necessary to give an instruction each time the transmission frequency is determined. For example, the avoidance processing unit 106 does not instruct the transmission frequency if it has not changed from the previously determined transmission frequency, and instructs the drone 20 to change to the new transmission frequency if the previously determined transmission frequency has changed. ..
 なお、回避処理部106は、送信頻度の変更の有無に関わらず決定した送信頻度での送信を指示してもよいが、変更時に限ることで、指示データの通信量を減らすことができる。ドローン20の飛行情報送信部202は、この指示を受け取ると、指示された頻度での飛行情報の送信を開始する。回避処理部106は、自装置が管轄するドローン20に対してだけ上記指示を行う。 Note that the avoidance processing unit 106 may instruct the transmission at the determined transmission frequency regardless of whether or not the transmission frequency is changed, but the communication amount of the instruction data can be reduced by only making the change. Upon receiving this instruction, the flight information transmitting unit 202 of the drone 20 starts transmitting flight information at the instructed frequency. The avoidance processing unit 106 gives the above instruction only to the drone 20 under its control.
 危険度の高い飛行空域を飛行中で且つ管轄外グループに属するドローン20に対しては、そのドローン20を管轄するサーバ装置10の回避処理部106から同様の指示が行われる。このようにして、ドローン20は、自機が飛行中の飛行空域の危険度に応じた頻度で飛行情報を管轄のサーバ装置10に送信する。 A similar instruction is given to the drone 20 that is flying in a high-risk flight airspace and belongs to a group outside the jurisdiction from the avoidance processing unit 106 of the server device 10 that administers the drone 20. In this way, the drone 20 transmits flight information to the server device 10 under its jurisdiction at a frequency according to the degree of danger of the flight airspace in which the drone is flying.
 なお、頻度テーブルにおいては、危険度の項目がなくて密集度及び送信頻度だけが対応付けられていてもよい。その場合でも、回避処理部106は、算出した密集度に対応付けられた頻度での飛行情報の送信を指示することができる。運航管理支援システム1が備える各装置は、上記の構成に基づいて、飛行空域の危険度に応じた飛行情報の送信制御をドローン20に指示する指示処理を行う。 Note that, in the frequency table, there may be no risk item and only the density and the transmission frequency may be associated. Even in that case, the avoidance processing unit 106 can instruct to transmit the flight information at a frequency associated with the calculated congestion degree. Each device included in the operation management support system 1 performs an instruction process for instructing the drone 20 to control the transmission of flight information according to the degree of danger of the flight airspace based on the above configuration.
 図8は指示処理における各装置の動作手順の一例を表す。図8では、サーバ装置10及びそのサーバ装置10が管轄するドローン20が表されている。この動作手順は、例えば、管轄するドローン20のうち最も早い飛行開始時刻よりも前の決められた時刻になったことを契機に開始される。まず、サーバ装置10(飛行計画取得部301)は、当日飛行予定の全てのドローン20の飛行計画を取得する(ステップS11)。取得された飛行計画は、危険度情報としても用いられる。 FIG. 8 shows an example of the operation procedure of each device in the instruction processing. In FIG. 8, the server device 10 and the drone 20 managed by the server device 10 are shown. The operation procedure is started, for example, when a predetermined time before the earliest flight start time of the controlled drone 20 is reached. First, the server device 10 (flight plan acquisition unit 301) acquires the flight plans of all drones 20 scheduled to fly on the day (step S11). The acquired flight plan is also used as risk information.
 次に、ドローン20(飛行情報送信部202)は、自機の飛行状況を示す飛行情報を生成し(ステップS21)、生成した飛行情報を、指定された送信制御方法でサーバ装置10に送信する(ステップS22)。このときの送信制御は、例えば図7に表すように時間間隔をT3毎とした送信である。サーバ装置10(飛行情報取得部102)は、この飛行情報を受け取ると、受け取った飛行情報が示す飛行状況を取得する(ステップS23)。取得された飛行状況は、危険度情報としても用いられる。 Next, the drone 20 (flight information transmitting unit 202) generates flight information indicating the flight status of the own aircraft (step S21), and transmits the generated flight information to the server device 10 by the designated transmission control method. (Step S22). The transmission control at this time is transmission in which the time interval is every T3 as shown in FIG. 7, for example. Upon receiving this flight information, the server device 10 (flight information acquisition unit 102) acquires the flight status indicated by the received flight information (step S23). The acquired flight status is also used as risk information.
 また、サーバ装置10(計画外通知受取部108)は、計画外飛行をしているドローン20の飛行状況を取得する(ステップS24)。ステップS24は、管轄外グループに属するドローン20が計画外飛行をしている場合にのみ行われる動作である。この飛行状況も、危険度情報として用いられる。サーバ装置10(回避処理部106)は、それまでに取得された危険度情報(飛行計画及び飛行状況)に基づいてドローン20の密集度を算出する(ステップS31)。 Further, the server device 10 (unplanned notification receiving unit 108) acquires the flight status of the drone 20 that is flying unplanned (step S24). Step S24 is an operation performed only when the drone 20 belonging to the non-jurisdiction group is flying unplanned. This flight status is also used as risk information. The server device 10 (avoidance processing unit 106) calculates the congestion degree of the drone 20 based on the risk degree information (flight plan and flight status) acquired up to that point (step S31).
 続いて、サーバ装置10(回避処理部106)は、算出した密集度が表す危険度に応じた送信制御内容(本実施例では送信頻度)を特定する(ステップS32)。そして、サーバ装置10(回避処理部106)は、送信制御内容が変化したドローン20があるか否かを判断し(ステップS33)、ない(NO)と判断した場合はステップS22(飛行情報の受け取り)の前に戻って動作を行う。 Next, the server device 10 (avoidance processing unit 106) identifies the transmission control content (transmission frequency in this embodiment) according to the degree of risk represented by the calculated congestion level (step S32). Then, the server device 10 (avoidance processing unit 106) determines whether or not there is the drone 20 whose transmission control content has changed (step S33), and when it determines that there is no (NO) step S22 (receipt of flight information). ) Go back and do the action.
 サーバ装置10(回避処理部106)は、送信制御内容が変化したドローン20がある(YES)と判断した場合は、そのドローン20に対して危険の大きさに応じた送信制御内容に基づいて飛行情報を送信することを指示する指示データを送信する(ステップS34)。ドローン20(飛行情報送信部202)は、受け取った指示データが示す指示に従い飛行情報の送信制御内容を変更する(ステップS35)。 If the server device 10 (avoidance processing unit 106) determines that there is a drone 20 whose transmission control content has changed (YES), the server device 10 (avoidance processing unit 106) flies based on the transmission control content according to the magnitude of the danger to the drone 20. Instruction data for instructing to transmit information is transmitted (step S34). The drone 20 (flight information transmission unit 202) changes the flight information transmission control content in accordance with the instruction indicated by the received instruction data (step S35).
 ドローン20の飛行中に生じる危険に対処するためには、飛行情報の送信頻度をなるべく高くして飛行状況がリアルタイムに取得されることが望ましい。取得された飛行状況が古いと回避処理が間に合わずに衝突するということが起こり得るからである。しかし、ドローン20は飛行のために軽量化がされており、プロセッサ11等の情報処理に用いられるリソースも限られている。 In order to cope with the dangers that the drone 20 may cause during flight, it is desirable that the frequency of flight information transmission is as high as possible and the flight status is acquired in real time. This is because, if the acquired flight status is old, it may happen that the avoidance process does not make it in time and a collision occurs. However, the drone 20 is lightened for flight, and resources used for information processing such as the processor 11 are also limited.
 そのため、飛行情報の送信処理の負荷が高すぎることも望ましくない。本実施例では、安全のため常に送信頻度を高くする場合に比べて、危険度が低い場合には送信頻度を低くして送信処理の負荷を抑えている。一方で、危険度が高い場合には送信頻度を高くするので、常に送信頻度を低くする場合に比べて、よりリアルタイムに近い飛行状況が取得されるようにして、飛行中に生じる危険への対処がより確実に行われるようにしている。 Therefore, it is not desirable that the load of flight information transmission processing is too high. In this embodiment, when the risk is low, the transmission frequency is reduced to reduce the load of the transmission process as compared with the case where the transmission frequency is always increased for safety. On the other hand, when the risk is high, the transmission frequency is increased, so compared to the case where the transmission frequency is always reduced, the flight situation closer to real time is acquired, and the danger occurring during flight is dealt with. Is being carried out more reliably.
 また、本実施例では、ドローン20の密集度を示す情報である飛行計画及び飛行状況が危険度情報として用いられている。これらの情報は、サーバ装置10が運航管理のために取得する情報である。そのため、危険度情報を取得するための処理を新たに追加する必要がないから、他の情報を危険度情報として取得する場合に比べて、サーバ装置10の処理の負荷を小さくすることができる。 In addition, in the present embodiment, the flight plan and flight status, which are information indicating the density of the drones 20, are used as the risk information. These pieces of information are information that the server device 10 acquires for operation management. Therefore, since it is not necessary to newly add a process for acquiring the risk information, the processing load of the server device 10 can be reduced as compared with the case where other information is acquired as the risk information.
[2]変形例
 上述した実施例は本発明の実施の一例に過ぎず、以下のように変形させてもよい。また、実施例及び各変形例は必要に応じてそれぞれ組み合わせてもよい。その際は、各変形例について優先順位を付けて(各変形例を実施すると競合する事象が生じる場合にどちらを優先するかを決める順位付けをして)実施してもよい。
[2] Modified Example The above-described embodiment is merely an example of the implementation of the present invention, and may be modified as follows. In addition, the embodiments and the modified examples may be combined as needed. In that case, you may carry out by giving priority to each modified example (it is decided which is prioritized when competing events occur if each modified example is carried out).
 また、具体的な組み合わせ方法として、例えば共通する値(例えば送信頻度)を求めるために異なるパラメータを用いる変形例を組み合わせて、それらのパラメータを共に用いて共通する値等を求めてもよい。また、個別に求めた値等を何らかの規則に従い合算して1つの値等を求めてもよい。また、それらの際に、用いられるパラメータ毎に異なる重み付けをしてもよい。 Further, as a specific combination method, for example, modification examples in which different parameters are used to obtain a common value (for example, transmission frequency) may be combined, and a common value or the like may be obtained using those parameters together. Further, the values or the like obtained individually may be summed according to some rule to obtain a single value or the like. Further, in those cases, different weighting may be performed for each parameter used.
[2-1]ドローンの特定方法
 第1衝突特定部105及び第2衝突特定部109は、実施例とは異なる方法で衝突の可能性があるドローン20を特定してもよい。例えば、第1衝突特定部105は、実施例では計画外飛行をしているドローン20の位置と、飛行計画におけるドローン20の現在位置との距離が閾値未満である場合に衝突の可能性があるドローン20として特定した。
[2-1] Drone Identification Method The first collision identification unit 105 and the second collision identification unit 109 may identify the drone 20 that may have a collision by a method different from that of the embodiment. For example, the first collision identifying unit 105 may cause a collision when the distance between the position of the drone 20 that is flying unplanned and the current position of the drone 20 in the flight plan is less than a threshold in the embodiment. Identified as drone 20.
 第1衝突特定部105は、例えば、計画外飛行をしているドローン20と他のドローン20の位置関係及び飛行方向によって閾値を変動させてもよい。具体的には、第1衝突特定部105は、両ドローン20の位置が近づいている状態では閾値を小さくし、両ドローン20の位置が遠ざかっている状態では閾値を大きくする。また、実施例のように飛行空域がセルによって表される場合、そのセルを活用して特定が行われてもよい。 The first collision identifying unit 105 may change the threshold according to the positional relationship between the drone 20 that is flying unplanned and the other drone 20 and the flight direction. Specifically, the first collision identifying unit 105 decreases the threshold when the positions of both drones 20 are approaching, and increases the threshold when the positions of both drones 20 are moving away from each other. Further, when the flight airspace is represented by cells as in the embodiment, the cells may be utilized for the identification.
 例えば、第1衝突特定部105は、計画外飛行をしているドローン20の飛行方向から今後の一定期間の飛行経路を予測し、計画外飛行をしているドローン20との距離がその期間において閾値未満になるセルを飛行予定のドローン20を、衝突の可能性があるドローン20として特定してもよい。また、例えばドローン20の飛行状況に含まれる飛行位置及び飛行高度が示す3次元空間上の位置を含むセルは、そのドローン20の飛行中の空域を示すことになる。 For example, the first collision identifying unit 105 predicts a flight path for a certain period in the future from the flight direction of the drone 20 that is performing unplanned flight, and the distance to the drone 20 that is performing unplanned flight is in that period. A drone 20 that is scheduled to fly a cell that falls below the threshold value may be identified as a drone 20 that has a possibility of collision. In addition, for example, a cell including a flight position included in the flight situation of the drone 20 and a position in the three-dimensional space indicated by the flight altitude indicates an air space in flight of the drone 20.
 そこで、第1衝突特定部105は、計画外飛行をしているドローン20が現在飛行中の空域と所定の関係にある空域を飛行する飛行計画が取得されたドローン20を、衝突の可能性があるドローン20として特定してもよい。所定の関係とは、例えば現在飛行中の空域と同じ空域という関係である。同じ空域内を飛行しているドローン20同士は衝突の可能性があるからである。 Therefore, the first collision identifying unit 105 may collide with the drone 20 for which an unplanned flight has been acquired for a flight plan in which the drone 20 is flying in an air space having a predetermined relationship with the air space in which the drone 20 is currently flying. It may be specified as a certain drone 20. The predetermined relationship is, for example, a relationship with the same airspace as the airspace currently in flight. This is because the drones 20 flying in the same airspace may collide with each other.
 なお、他にも、例えば計画外飛行のドローン20が現在飛行中の空域と同じ空域又はそれに隣接する空域という関係が所定の関係として用いられてもよい。また、搬送用の飛行経路のようにドローン20の飛行方向が限られている場合、飛行方向の前後だけ隣接する空域を所定の関係にある空域に含めるようにしてもよい。このようにセル(飛行空域)に基づく特定が行われることで、ドローン20同士の距離を算出する処理が不要になる。 Note that, in addition, for example, a relationship of the same airspace as the airspace in which the unplanned flight drone 20 is currently flying or an airspace adjacent thereto may be used as the predetermined relationship. Further, when the flight direction of the drone 20 is limited, such as a flight route for transportation, air spaces adjacent to each other only in the front and rear in the flight direction may be included in the air spaces having a predetermined relationship. Since the identification based on the cell (flight airspace) is performed in this manner, the process of calculating the distance between the drones 20 becomes unnecessary.
 3次元座標間の距離を算出するよりも、セルに座標が含まれるか否か(決まった範囲内の座標であるか否か)を判断する方が処理の負荷が小さくなりやすい。そのため、本変形例によれば、ドローン20同士の距離に基づく場合に比べて、衝突の可能性があるドローン20を特定する際の処理の負荷を小さくすることができる。 The processing load tends to be smaller if it is determined whether the cell contains coordinates (whether the coordinates are within a fixed range) than when the distance between the three-dimensional coordinates is calculated. Therefore, according to the present modification, the processing load when identifying the drone 20 that may have a collision can be reduced as compared to the case where the drone 20 is based on the distance between the drones 20.
 一方、セル内のどこを飛行するかによって衝突の可能性が変動するが、セル単位ではその詳細な衝突可能性の高さまでは判断できない。実施例のようにドローン20同士の距離を用いると、セル単位で判断する場合に比べて、衝突の可能性があるドローン20をより高い精度で特定することができる。 On the other hand, the possibility of collision varies depending on where you fly in the cell, but it is not possible to judge on the basis of the detailed possibility of collision on a cell-by-cell basis. When the distance between the drones 20 is used as in the embodiment, the drone 20 having a possibility of collision can be specified with higher accuracy as compared with the case where the determination is made in units of cells.
 また、第2衝突特定部109も、上述した第1衝突特定部105と同様の特定方法を用いてもよい。例えば、第2衝突特定部109は、計画外飛行を示し且つ管轄外グループに属するドローン20の飛行状況が通知された場合に、そのドローン20が飛行中の空域と所定の関係にある空域を飛行する飛行計画が取得された間隔グループに属するドローン20を衝突の可能性があるドローン20として特定する。 The second collision identification unit 109 may also use the same identification method as the above-described first collision identification unit 105. For example, when the second collision identification unit 109 indicates unplanned flight and is notified of the flight status of the drone 20 belonging to the non-jurisdiction group, the second collision identification unit 109 flies in an airspace having a predetermined relationship with the airspace in which the drone 20 is flying. The drone 20 belonging to the interval group for which the flight plan to be acquired is identified as the drone 20 having a possibility of collision.
 所定の関係の考え方は上述したとおりである。この場合も、ドローン20同士の距離に基づく場合に比べて、衝突の可能性があるドローン20を特定する際の処理(特定処理)の負荷を小さくすることができる。また、実施例のようにドローン20同士の距離を用いると、セル単位で判断する場合に比べて、衝突の可能性があるドローン20をより高い精度で特定することができる。 The concept of the prescribed relationship is as described above. In this case as well, the load of the processing (identification processing) when identifying the drone 20 with the possibility of collision can be reduced as compared with the case where the drone 20 is based on the distance between the drones 20. Further, when the distance between the drones 20 is used as in the embodiment, the drone 20 having a possibility of collision can be specified with higher accuracy than in the case where the determination is made in cell units.
 また、第1衝突特定部105及び第2衝突特定部109は、上記方法以外にも、例えばドローン20の飛行方向又は飛行速度に基づいて衝突の可能性があるドローン20を特定してもよい。その場合、例えばドローン20同士の距離が同じであっても、飛行方向が向き合っている場合は反対向きの場合よりも衝突の可能性が高いものとして特定が行われる。 In addition to the above method, the first collision identification unit 105 and the second collision identification unit 109 may identify the drone 20 that may have a collision based on the flight direction or the flight speed of the drone 20, for example. In that case, for example, even if the distances between the drones 20 are the same, the identification is performed when the flight directions are opposite to each other as having a higher possibility of collision than in the opposite directions.
 具体的には、例えば第1衝突特定部105は、飛行方向が向き合っているドローン20同士の距離の閾値(閾値未満だと衝突の可能性があることを示す)を、飛行方向が反対向きのドローン20同士の距離の閾値よりも大きくして、衝突の可能性があるドローン20を特定する。また、第1衝突特定部105は、飛行速度が速いほどドローン20同士の距離の閾値を大きくする。第2衝突特定部109も、同様の方法で衝突の可能性があるドローン20を特定可能である。いずれの場合も、飛行方向又は飛行速度を用いない場合に比べて、衝突の可能性があるドローン20の特定精度を高めることができる。 Specifically, for example, the first collision identifying unit 105 sets the threshold value of the distance between the drones 20 facing each other in the flight direction (when the distance is less than the threshold value, there is a possibility of collision) to the direction of the opposite flight direction. The drone 20 is set to be larger than the threshold value of the distance between the drones 20 to identify the drone 20 having a possibility of collision. In addition, the first collision identifying unit 105 increases the threshold value of the distance between the drones 20 as the flight speed increases. The second collision identifying unit 109 can identify the drone 20 that may have a collision by the same method. In any case, the accuracy of identifying the drone 20 having a possibility of collision can be improved as compared with the case where the flight direction or the flight speed is not used.
[2-2]飛行情報
 ドローン20が送信する飛行情報が示す飛行状況は、実施例と異なっていてもよい。例えば飛行位置及び飛行高度の変化量から飛行方向及び飛行速度を算出可能なので、飛行情報に飛行方向及び飛行速度が含まれていなくてもよい。また、例えば或る地域では一定の飛行高度で飛行することが決まっていれば、飛行情報に飛行高度も含まれていなくてもよい。
[2-2] Flight Information The flight status indicated by the flight information transmitted by the drone 20 may be different from that in the embodiment. For example, since the flight direction and the flight speed can be calculated from the change amount of the flight position and the flight altitude, the flight information does not have to include the flight direction and the flight speed. Further, for example, if it is decided to fly at a certain flight altitude in a certain area, the flight information may not include the flight altitude.
 また、ドローン20が周囲の飛行体(主に他のドローン20)の距離及び方向を検知する機能を有している場合、検知した距離及び方向に飛行体が存在するという飛行状況を示す飛行情報が取得されてもよい。この飛行状況も、ドローン20同士の衝突の可能性の判断に活用できる。要するに、計画外飛行の判断又はドローン20同士の衝突の可能性の判断の少なくとも一方に活用することが可能であれば、どのような情報が飛行情報に含まれていてもよい。 In addition, when the drone 20 has a function of detecting the distance and direction of surrounding flying objects (mainly other drones 20), flight information indicating flight conditions indicating that the flying object exists at the detected distance and direction. May be obtained. This flight situation can also be used to judge the possibility of collision between the drones 20. In short, any information may be included in the flight information as long as it can be utilized for at least one of the determination of unplanned flight and the determination of the possibility of collision between the drones 20.
[2-3]送信制御内容:飛行情報の項目
 飛行情報の送信制御は、実施例で述べた送信頻度に関するもの限らない。回避処理部106は、例えば、飛行情報取得部102等により取得された危険度情報が表す危険が大きいほど飛行情報に含める情報の項目を多くなるように指示してもよい。この場合、回避処理部106は、ドローン20の密集度と、危険度と、飛行情報の項目とを対応付けた項目テーブルを用いてこの指示を行う。
[2-3] Transmission Control Content: Flight Information Item The flight information transmission control is not limited to the transmission frequency described in the embodiments. The avoidance processing unit 106 may instruct, for example, to increase the number of items of information included in the flight information as the risk represented by the risk information acquired by the flight information acquisition unit 102 or the like increases. In this case, the avoidance processing unit 106 gives this instruction using an item table in which the degree of congestion of the drone 20, the degree of danger, and the item of flight information are associated with each other.
 図9は項目テーブルの一例を表す。図9の例では、「Th1未満」、「Th1以上Th2未満」及び「Th2以上」(Th1<Th2)というドローン20の密集度と、「低」、「中」及び「高」という危険度と、「飛行位置、飛行時刻」、「飛行位置、飛行時刻、飛行方向」及び「飛行位置、飛行時刻、飛行方向、飛行速度」という飛行情報の項目とがそれぞれ対応付けられている。 FIG. 9 shows an example of the item table. In the example of FIG. 9, the density of the drone 20 is “less than Th1,” “th1 or more and less than Th2,” and “th2 or more” (Th1<Th2), and risk levels of “low”, “medium”, and “high”. , “Flight position, flight time”, “Flight position, flight time, flight direction” and “Flight position, flight time, flight direction, flight speed” are associated with each other.
 回避処理部106は、実施例と同様に取得された飛行計画及び飛行状況から密集度を算出し、算出した密集度と同じ危険度に項目テーブルにおいて対応付けられている飛行情報の項目を、その危険度が特定された飛行空域を飛行中のドローン20の飛行情報の項目として決定する。本変形例では、例えば飛行開始時は「飛行位置、飛行時刻」だけを含む飛行情報が送信されるものとする。 The avoidance processing unit 106 calculates the congestion degree from the flight plan and the flight situation acquired in the same manner as in the embodiment, and sets the flight information items associated with the same degree of danger as the calculated congestion degree in the item table. The flight airspace with the specified risk is determined as an item of flight information of the drone 20 in flight. In this modification, for example, flight information including only “flight position, flight time” is transmitted at the start of flight.
 その後、回避処理部106は、例えば危険度が「中」という飛行空域が出現した場合、その飛行空域を飛行中で且つ管轄グループに属するドローン20に、危険度「中」に対応付けられた「飛行位置、飛行時刻、飛行方向」を項目として含む飛行情報の送信を指示する。この指示により、ドローン20は、自機が飛行中の飛行空域の危険度に応じた項目を含む飛行情報を管轄のサーバ装置10に送信する。 After that, when the flight airspace with the risk level “medium” appears, the avoidance processing unit 106 associates the drone 20 that is flying in the flight airspace and belongs to the jurisdiction group with the risk “medium”. Instruct to send flight information including “Flight position, flight time, flight direction” as items. In response to this instruction, the drone 20 transmits flight information including items according to the degree of danger of the flight area in which the drone is flying to the server device 10 in its jurisdiction.
 例えば飛行情報に飛行位置及び飛行時刻だけが含まれている場合でも、実施例で述べたドローン20同士の距離を用いた方法又は変形例で述べた飛行中の飛行空域を用いた方法を用いて、衝突の可能性があるドローン20の特定が可能である。一方、上記変形例で述べた飛行方向又は飛行速度を用いる方法を用いるためには、それらの情報が必要である。 For example, even when the flight information includes only the flight position and the flight time, the method using the distance between the drones 20 described in the embodiment or the method using the flight airspace during flight described in the modification is used. It is possible to identify the drone 20 that may have a collision. On the other hand, in order to use the method using the flight direction or the flight speed described in the above modification, such information is required.
 本変形例では、危険度が高い飛行空域については、より精度が高い飛行方向又は飛行速度を用いた方法で衝突の可能性があるドローン20の特定が可能となっている。一方で、危険度が低い場合には飛行情報の項目を少なくして送信処理の負荷を抑えている。なお、飛行位置及び飛行時刻の時系列変化から飛行方向及び飛行速度を求めることはできるが、その演算に要する時間の分だけ衝突の可能性があるドローン20の特定が遅れてしまう。本変形例では、飛行方向及び飛行速度を項目に含めることで、そのような遅れも生じないようにすることができる。 In this modification, it is possible to specify the drone 20 having a possibility of collision in a flight area having a high degree of risk by a method using a flight direction or a flight speed with higher accuracy. On the other hand, when the degree of risk is low, the number of flight information items is reduced to reduce the load of transmission processing. Although the flight direction and the flight speed can be obtained from the time series changes in the flight position and the flight time, the identification of the drone 20 having the possibility of collision is delayed by the time required for the calculation. In this modification, such a delay can be prevented by including the flight direction and the flight speed in the items.
[2-4]送信制御:送信先
 飛行情報の送信制御内容は他にもある。ドローン20の飛行情報送信部202は、実施例では飛行情報をサーバ装置10にだけ送信したが、本変形例では、自機の飛行に関係する処理を行う2以上の外部装置に飛行情報を必要に応じて送信可能であるものとする。2以上の外部装置とは、例えば、ドローン20を管轄するメインのサーバ装置10とサブのサーバ装置10が存在する場合におけるそれら複数のサーバ装置10のことである。
[2-4] Transmission control: transmission destination There are other flight information transmission control contents. The flight information transmitting unit 202 of the drone 20 transmits the flight information only to the server device 10 in the embodiment, but in the present modification, the flight information is required for two or more external devices that perform processing related to the flight of the own aircraft. Can be transmitted according to The two or more external devices are, for example, the plurality of server devices 10 when the main server device 10 and the sub server device 10 that control the drone 20 exist.
 メイン及びサブのサーバ装置10は、ドローン20を管轄する事業者が用意してもよいし、その事業者の管轄を補助する別の事業者が用意してもよい。補助事業者は、例えば別のドローン20の管轄事業者又は統合管理装置30を運用する事業者等である。複数のサーバ装置10でドローン20を管轄する目的は、例えばメインのサーバ装置10が何らかの事情で衝突する可能性があるドローン20を特定できなかった場合(特定漏れが発生した場合)のバックアップとする(代わりに特定を行わせる)ためである。 The main and sub server devices 10 may be prepared by a business operator who administers the drone 20, or may be prepared by another business operator who assists the jurisdiction of the business operator. The auxiliary business operator is, for example, a business operator who administers another drone 20 or a business operator who operates the integrated management device 30. The purpose of controlling the drone 20 with the plurality of server devices 10 is, for example, to back up when the main server device 10 cannot identify the drone 20 that may collide for some reason (when a specific omission occurs). This is because (to specify instead).
 本変形例では、回避処理部106は、飛行情報取得部102等により取得された危険度情報が表す危険が大きいほど飛行情報の送信先を多くなるように指示する。回避処理部106は、例えば、ドローン20の密集度と、危険度と、飛行情報の送信先とを対応付けた送信先テーブルを用いてこの指示を行う。 In this modification, the avoidance processing unit 106 instructs that the greater the risk represented by the risk information acquired by the flight information acquisition unit 102, the greater the number of destinations to which the flight information is transmitted. The avoidance processing unit 106 gives this instruction using, for example, a destination table in which the degree of congestion of the drones 20, the degree of danger, and the destination of flight information are associated.
 図10は送信先テーブルの一例を表す。図10の例では、「Th1未満」、「Th1以上Th2未満」及び「Th2以上」(Th1<Th2)というドローン20の密集度と、「低」、「中」及び「高」という危険度と、「メインサーバ装置」、「メインサーバ装置+サブサーバ装置1台」及び「メインサーバ装置+サブサーバ装置2台」という送信先とがそれぞれ対応付けられている。 FIG. 10 shows an example of the destination table. In the example of FIG. 10, the density of the drone 20 is “less than Th1,” “greater than or equal to Th1 and less than Th2,” and “greater than or equal to Th2” (Th1<Th2), and risks of “low”, “medium”, and “high”. , "Main server device", "main server device + 1 sub server device" and "main server device + 2 sub server devices" are associated with the destinations, respectively.
 回避処理部106は、実施例と同様に取得された飛行計画及び飛行状況から密集度を算出し、算出した密集度と同じ危険度に送信先テーブルにおいて対応付けられている送信先を、その危険度が特定された飛行空域を飛行中のドローン20の飛行情報の送信先として決定する。本変形例では、例えば飛行開始時は「メインサーバ装置」だけに飛行情報が送信されるものとする。 The avoidance processing unit 106 calculates the congestion degree from the flight plan and the flight situation acquired in the same manner as in the embodiment, and determines the transmission destination associated in the transmission destination table with the same degree of danger as the calculated congestion degree. The flight airspace with the specified degree is determined as the destination of the flight information of the drone 20 in flight. In this modification, for example, flight information is transmitted only to the “main server device” at the start of flight.
 その後、回避処理部106は、例えば危険度が「大」という飛行空域が出現した場合、その飛行空域を飛行中で且つ管轄グループに属するドローン20に、危険度「大」に対応付けられた「メインサーバ装置+サブサーバ装置2台」を送信先とする飛行情報の送信を指示する。この指示により、ドローン20は、メインサーバ装置だけでなく2台のサブサーバ装置に対しても飛行情報を送信する。 After that, when a flight airspace with a risk level of "large" appears, the avoidance processing unit 106 associates the drone 20 that is flying in the flight airspace and belongs to the jurisdiction group with the risk level of "high". Instructing the transmission of flight information with “main server device+two sub server devices” as the destination. By this instruction, the drone 20 transmits flight information not only to the main server device but also to the two sub server devices.
 本変形例では、危険度が高い場合には、複数台で特定が行われ、衝突の可能性があるドローン20の特定漏れが生じにくいようにしている。一方で、危険度が低い場合には、送信先を少なくして、サブサーバ装置における処理の負荷を抑えている。これにより、常に全ての送信先に飛行情報が送信される場合に比べて、サブサーバ装置に求められるリソースを小さく抑え、サブサーバ装置を用意する事業者のコスト負担を小さくすることができる。 In this modified example, when the risk is high, the identification is performed by a plurality of units, and the drone 20 that may have a collision is less likely to be omitted. On the other hand, when the degree of risk is low, the number of destinations is reduced to reduce the processing load on the sub server device. As a result, compared with the case where flight information is constantly transmitted to all the destinations, the resources required for the sub server device can be reduced, and the cost burden on the business operator who prepares the sub server device can be reduced.
[2-5]危険度情報:人口密集度
 危険度情報は実施例で述べた情報(飛行計画及び飛行状況)に限らない。例えば、飛行空域の周囲の地上の人口密集度を示す情報がその飛行空域の危険度情報として用いられてもよい。
[2-5] Risk information: Population density The risk information is not limited to the information (flight plan and flight status) described in the embodiments. For example, information indicating the population density on the ground around the flight airspace may be used as the risk information of the flight airspace.
 人口密集度は、例えば地上の土地の種別によって表される。土地の種別とは、例えば、住宅地、商業地、工業地、農地及び林地等の、土地を用途別に区分する種類である。例えば住宅地は人が多く、林地は人が少ないというように、土地の種別はそこにいる人の多さの傾向を表す。なお、ドローン20を飛行させる時間は基本的に昼間なので、危険度情報は日中の人の多さを表していればよい。 ∙ Population density is represented by the type of land on the ground, for example. The type of land is, for example, a type in which land is classified according to use, such as residential land, commercial land, industrial land, agricultural land, and forest land. For example, there are many people in a residential area and few people in a forest area, and the type of land indicates the tendency of a large number of people there. Since the time for flying the drone 20 is basically in the daytime, the risk level information only needs to represent the number of people during the day.
 本変形例では、飛行計画によって飛行が予定されている地域の地図とその地域における土地の種別とを表す地図データをサーバ装置10が予め記憶しておく。土地の種別の区分けには、例えば登記されている地目を利用したり、市販の地図においてなされている色分け(住居、店舗及び工場の色分け等)を利用したりすればよい。 In this modified example, the server device 10 stores in advance map data representing a map of a region where a flight is scheduled to be carried out according to a flight plan and a type of land in the region. For classification of land types, for example, registered land marks may be used, or color coding (color coding of houses, shops, factories, etc.) made on a commercially available map may be used.
 回避処理部106は、各飛行空域の地図上の位置を特定し、その位置の周囲の土地の種別を危険度情報として地図データから取得する。この場合の回避処理部106は本発明の「取得部」の一例である。回避処理部106は、例えば実施例のように飛行情報の送信制御内容として送信頻度を指示する場合は、地上の土地の種別と、人口密集度と、危険度と、送信頻度とを対応付けた頻度テーブルを用いてこの指示を行う。 The avoidance processing unit 106 identifies the position of each flight airspace on the map, and acquires the type of land around that position from the map data as risk information. The avoidance processing unit 106 in this case is an example of the “acquisition unit” of the present invention. The avoidance processing unit 106 associates the type of land on the ground, the density of population, the degree of danger, and the transmission frequency when the transmission frequency is instructed as the transmission control content of the flight information as in the embodiment. This is done using a frequency table.
 図11は本変形例の頻度テーブルの一例を表す。図11の例では、「農地、林地」、「工業地」及び「住宅地、商業地」という土地の種別と、「低」、「中」及び「高」という人口密集度と、「低」、「中」及び「高」という危険度と、「T3毎」、「T2毎」及び「T1毎」という送信頻度とがそれぞれ対応付けられている。 FIG. 11 shows an example of the frequency table of this modification. In the example of FIG. 11, the types of land such as “agricultural land, forest land”, “industrial land” and “residential area, commercial area”, population density of “low”, “medium” and “high”, and “low” , "Medium" and "high" are associated with the transmission frequencies "every T3", "every T2" and "every T1", respectively.
 回避処理部106は、各飛行空域について取得した地上の土地の種別に頻度テーブルにおいて対応付けられている人口密集度を特定する。そして、回避処理部106は、特定した人口密集度と同じ危険度に頻度テーブルにおいて対応付けられている送信頻度を、その人口密集度に対応付けられている地上の土地の種別が取得された飛行空域を飛行中のドローン20の飛行情報の送信頻度として決定する。 The avoidance processing unit 106 identifies the population density associated in the frequency table with the type of land on the ground acquired for each flight airspace. Then, the avoidance processing unit 106 sets the transmission frequency that is associated with the same degree of risk as the identified population density in the frequency table to the flight in which the type of land on the ground that is associated with the population density is acquired. The airspace is determined as the transmission frequency of the flight information of the drone 20 in flight.
 本変形例では、人口密集度が低い地域を飛行中のドローン20については送信頻度を低くして送信処理の負荷を抑えている。一方、人口密集度が高い地域を飛行中のドローン20については送信頻度を高くして、危険の伝達をより確実に行うことができるようにしている。このようにして、送信処理の負荷を抑えつつ、万が一ドローン20が落下したときでも人を怪我させる可能性が小さくなるようにしている。 In this modified example, the drone 20 that is flying in an area with a low population density has a low transmission frequency to reduce the transmission processing load. On the other hand, the frequency of transmission of the drone 20 that is flying in an area with a high population density is increased so that the danger can be transmitted more reliably. In this way, it is possible to reduce the load of the transmission process and reduce the possibility of injuring a person even if the drone 20 falls.
 なお、本変形例において、送信頻度以外の送信制御パラメータが用いられてもよい。それらの送信制御パラメータが用いられた場合でも、それぞれ上記の変形例で述べた効果(より精度の高い特定の実現、サブサーバ装置のコスト負担の抑制)が実現される。 In this modification, transmission control parameters other than the transmission frequency may be used. Even when those transmission control parameters are used, the effects described in the above-described modified examples (specific realization with higher accuracy and cost burden of the sub server device suppressed) are realized.
[2-6]危険度情報:気象状況
 危険度情報は上述した情報に限らない。例えば、飛行空域における気象状況を示す情報がその飛行空域の危険度情報として用いられてもよい。ドローン20は風及び雨による影響を受けやすいので、風速及び降水量が多くなるほどドローン20が落下する危険が大きくなる。
[2-6] Risk information: weather conditions The risk information is not limited to the above information. For example, information indicating the weather condition in the flight airspace may be used as the risk information of the flight airspace. Since the drone 20 is easily affected by wind and rain, the risk of the drone 20 falling increases as the wind speed and precipitation increase.
 本変形例では、回避処理部106が、天気予報サービス等を利用して、気象状況を示す情報を取得する。この場合の回避処理部106は本発明の「取得部」の一例である。回避処理部106は、例えば実施例のように飛行情報の送信制御パラメータとして送信頻度が指定される場合は、飛行空域における気象状況と、危険度と、送信頻度とを対応付けた頻度テーブルを用いてこの指示を行う。 In this modification, the avoidance processing unit 106 uses a weather forecast service or the like to acquire information indicating weather conditions. The avoidance processing unit 106 in this case is an example of the “acquisition unit” of the present invention. When the transmission frequency is designated as the transmission control parameter of the flight information as in the embodiment, for example, the avoidance processing unit 106 uses a frequency table in which the weather condition in the flight airspace, the degree of danger, and the transmission frequency are associated with each other. Leverage instructions.
 図12は本変形例の頻度テーブルの一例を表す。図12(a)の例では、「Th11未満」、「Th11以上Th12未満」及び「Th12以上」(Th11<Th12)という風速と、「低」、「中」及び「高」という危険度と、「T3毎」、「T2毎」及び「T1毎」という送信頻度とがそれぞれ対応付けられている。 FIG. 12 shows an example of the frequency table of this modification. In the example of FIG. 12A, wind speeds of “less than Th11”, “Th11 or more and less than Th12”, and “Th12 or more” (Th11<Th12), and risk levels of “low”, “medium”, and “high”, The transmission frequencies of “every T3”, “every T2”, and “every T1” are associated with each other.
 回避処理部106は、飛行空域の気象状況として取得した風速と同じ危険度に送信先テーブルにおいて対応付けられている送信頻度を、その飛行空域を飛行中のドローン20の飛行情報の送信頻度として決定する。また、図12(b)の例では、「Th21未満」、「Th21以上Th22未満」及び「Th22以上」(Th21<Th22)という降水量と、「低」、「中」及び「高」という危険度と、「T3毎」、「T2毎」及び「T1毎」という送信頻度とがそれぞれ対応付けられている。 The avoidance processing unit 106 determines the transmission frequency associated with the same degree of risk as the wind speed acquired as the weather condition of the flight airspace in the destination table as the transmission frequency of the flight information of the drone 20 in flight in the flight airspace. To do. In the example of FIG. 12B, the precipitation amounts “less than Th21”, “third or more and less than Th22” and “th22 or more” (Th21<Th22) and dangers of “low”, “medium” and “high”. The degree and the transmission frequency of “every T3”, “every T2”, and “every T1” are associated with each other.
回避処理部106は、飛行空域の気象状況として取得した降水量と同じ危険度に送信先テーブルにおいて対応付けられている送信頻度を、その飛行空域を飛行中のドローン20の飛行情報の送信頻度として決定する。なお、回避処理部106は、風速及び降水量の両方を気象状況として取得した場合は、より高い方の危険度に対応付けられている送信頻度を決定する。 The avoidance processing unit 106 sets the transmission frequency associated in the transmission destination table to the same degree of risk as the amount of precipitation acquired as the weather condition of the flight airspace, as the transmission frequency of the flight information of the drone 20 flying in the flight airspace. decide. In addition, when both the wind speed and the precipitation amount are acquired as the weather condition, the avoidance processing unit 106 determines the transmission frequency associated with the higher risk level.
 本変形例では、飛行中に気象状況が変化しても、変化した気象状況に合わせた頻度で飛行情報が送信されてくる。これにより、上記の指示を行わない場合に比べて、気象状況の変化により落下の危険が高まった状況における迅速な回避処理を実行可能にし、ドローン20の落下の可能性を減らすようにしている。なお、本変形例においても、飛行情報の項目及び送信先が送信制御パラメータとして用いられてもよく、それぞれ上記の変形例で述べた効果が実現される。 In this modification, even if the weather conditions change during flight, flight information is sent at a frequency that matches the changed weather conditions. As a result, as compared with the case where the above instruction is not issued, a quick avoidance process can be executed in a situation where the risk of falling has increased due to changes in weather conditions, and the possibility of the drone 20 falling is reduced. Also in this modification, the flight information item and the transmission destination may be used as the transmission control parameters, and the effects described in the above modifications are realized.
[2-7]危険度情報:空域高度
 危険度情報は上述した情報に限らない。例えば、ドローン20の飛行高度が高いほど、落下時の衝撃が大きくなり人や物への加害の度合いが大きくなる危険があり、また、故障等で飛行制御ができなくなった場合に落下する可能性のある範囲が広がって予期しない場所に落下する危険が大きくなる。
[2-7] Risk information: Airspace altitude The risk information is not limited to the above information. For example, the higher the flight altitude of the drone 20, the greater the impact at the time of dropping, and the greater the degree of damage to people and objects, and the possibility that the drone 20 may fall if flight control becomes impossible due to a failure or the like. There is a greater risk of falling into an unexpected area due to the spread of the area.
 一方、飛行高度が低すぎると、正常飛行の状態から何らかの理由で下降した場合に、飛行状態を立て直す間もなく落下する危険が大きくなる。そこで、飛行空域の高度を示す情報がその飛行空域の危険度情報として用いられてもよい。飛行空域の高度は、実施例と同じく飛行計画(セルの高度で表される)及び飛行状況(ドローン20の飛行高度で表される)によって表される。 On the other hand, if the flight altitude is too low, if the aircraft descends from the normal flight state for some reason, the risk of falling will increase immediately before the flight state is restored. Therefore, information indicating the altitude of the flight area may be used as the risk information of the flight area. The altitude of the flight airspace is represented by the flight plan (represented by the altitude of the cell) and the flight condition (represented by the flight altitude of the drone 20) as in the embodiment.
 従って、本変形例では、飛行情報取得部102、飛行計画取得部104及び計画外通知受取部108が本発明の「取得部」の一例である。飛行空域の高度は、例えばその飛行空域の中で最も低い位置又は中心となる位置等(一定のルールで表される位置であればよい)の高度により表される。回避処理部106は、例えば実施例のように飛行情報の送信制御パラメータとして送信頻度が指定される場合は、飛行空域の高度と、危険度と、送信頻度とを対応付けた頻度テーブルを用いてこの指示を行う。 Therefore, in this modification, the flight information acquisition unit 102, the flight plan acquisition unit 104, and the unplanned notification reception unit 108 are examples of the “acquisition unit” of the present invention. The altitude of the flight airspace is represented by, for example, the lowest position in the flight airspace or the position at the center thereof (as long as the position is represented by a certain rule). When the transmission frequency is designated as the transmission control parameter of the flight information as in the embodiment, for example, the avoidance processing unit 106 uses a frequency table in which the altitude of the flight airspace, the degree of danger, and the transmission frequency are associated with each other. Give this instruction.
 図13は本変形例の頻度テーブルの一例を表す。図13の例では、「Th31未満」、「Th31以上Th32未満」、「Th32以上Th33未満」及び「Th33以上」(Th31<Th32<Th33)という飛行空域の高度と、「中」、「低」、「中」及び「高」という危険度と、「T2毎」、「T3毎」、「T2毎」及び「T1毎」という送信頻度とがそれぞれ対応付けられている。 FIG. 13 shows an example of the frequency table of this modification. In the example of FIG. 13, the flight airspace altitudes of “less than Th31”, “Th31 or more and less than Th32”, “Th32 or more and less than Th33”, and “Th33 or more” (Th31<Th32<Th33) and “medium” or “low”. , "Medium" and "high" are associated with transmission frequencies "every T2", "every T3", "every T2" and "every T1", respectively.
 回避処理部106は、取得した危険度情報が示す飛行空域の高度と同じ危険度に送信先テーブルにおいて対応付けられている送信頻度を、その飛行空域を飛行中のドローン20の飛行情報の送信頻度として決定する。例えば飛行空域の高度が「Th31未満」であれば危険度が「中」なので「T2毎」という送信頻度が決定され、飛行空域の高度が「Th33以上」であれば危険度が「高」なので「T1毎」という送信頻度が決定される。 The avoidance processing unit 106 sets the transmission frequency associated with the same degree of danger as the altitude of the flight airspace indicated by the acquired risk information in the destination table to the transmission frequency of the flight information of the drone 20 flying in the flight airspace. To decide. For example, if the altitude of the flight airspace is "less than Th31", the risk level is "medium", so the transmission frequency "every T2" is determined, and if the altitude of the flight airspace is "Th33 or higher", the risk level is "high". The transmission frequency "every T1" is determined.
 本変形例では、危険度が低い飛行空域を飛行中のドローン20については送信頻度を低くして送信処理の負担を抑えている。一方で、危険度が高い高度の飛行空域を飛行中のドローン20については送信頻度を高くして迅速な回避処理を実行可能にし、ドローン20の落下の可能性を減らすようにしている。なお、本変形例においても、飛行情報の項目及び送信先が送信制御パラメータとして用いられてもよく、それぞれ上記の変形例で述べた効果が実現される。 In this modification, the transmission frequency is reduced for the drone 20 that is flying in a low-risk flight area to reduce the transmission processing load. On the other hand, with respect to the drone 20 that is flying in a high-risk flight area, the frequency of transmission is increased to enable quick avoidance processing and reduce the possibility of the drone 20 falling. Also in this modification, the flight information item and the transmission destination may be used as the transmission control parameters, and the effects described in the above-described modification are realized.
[2-8]周辺情報
 各例で述べた危険度情報は、ドローン20の衝突の危険(ドローン20同士の位置が近づいた場合等)又は落下の危険(風速や降水量が大きくなった場合等)を表す場合がある。その場合に、回避処理部106は、取得する情報を増やして、それらの危険を回避するために活用してもよい。
[2-8] Peripheral information The risk information described in each example is the risk of collision of the drones 20 (when the positions of the drones 20 are close to each other) or the risk of falling (when the wind speed or precipitation increases, etc.) ) May be represented. In that case, the avoidance processing unit 106 may increase the amount of information to be acquired and utilize it in order to avoid those risks.
 本変形例では、回避処理部106は、衝突又は落下が予測される位置の周辺を飛行する他のドローン20にその予測位置の周辺に関する情報(周辺情報)を送信させる指示を行う。この場合の回避処理部106は本発明の「第2指示部」の一例である。周辺情報とは、例えば、予測位置の周辺を飛行するドローン20の飛行状況である。また、ドローン20が赤外線センサ等により他の飛行体(ドローン又は鳥等)を検知する機能を有している場合はその検知結果も周辺情報に含まれる。 In this modification, the avoidance processing unit 106 issues an instruction to cause another drone 20 flying around a position where a collision or a drop is predicted to transmit information (surrounding information) around the predicted position. The avoidance processing unit 106 in this case is an example of the “second instruction unit” in the present invention. The peripheral information is, for example, the flight status of the drone 20 flying around the predicted position. When the drone 20 has a function of detecting another flying object (drone, bird, etc.) by an infrared sensor or the like, the detection result is also included in the peripheral information.
 回避処理部106は、例えば、第1衝突特定部105又は第2衝突特定部109により衝突の可能性があるドローン20が特定された場合に、それらのドローン20の現在位置、飛行方向及び飛行速度から、衝突が予測される位置を算出する。なお、予測位置の算出は第1衝突特定部105又は第2衝突特定部109が行ってもよい。回避処理部106は、算出された予測位置の周辺を飛行するドローン20(例えば予測位置からの距離が閾値未満のドローン20)を特定する。 The avoidance processing unit 106, for example, when the first collision identification unit 105 or the second collision identification unit 109 identifies the drone 20 that may have a collision, the current position, flight direction, and flight speed of the drone 20. From this, the position where the collision is predicted is calculated. The predicted position may be calculated by the first collision identification unit 105 or the second collision identification unit 109. The avoidance processing unit 106 identifies the drone 20 flying around the calculated predicted position (for example, the drone 20 whose distance from the predicted position is less than the threshold).
 回避処理部106は、特定したドローン20に、周辺情報の送信を指示する指示データを送信する。ドローン20の飛行情報送信部202は、この指示を受け取ると、指示された周辺情報として例えば自機の飛行状況又は他の飛行体の検知結果等をサーバ装置10に送信する。回避処理部106は、送信されてきた周辺情報を受け取ると、それらの周辺情報が示す周辺の状況に応じて回避処理を行う。 The avoidance processing unit 106 transmits instruction data for instructing transmission of peripheral information to the identified drone 20. Upon receiving this instruction, the flight information transmitting unit 202 of the drone 20 transmits the instructed peripheral information, for example, the flight status of the own aircraft or the detection result of another flight object to the server device 10. When the avoidance processing unit 106 receives the transmitted peripheral information, the avoidance processing unit 106 performs the avoidance processing according to the peripheral situation indicated by the peripheral information.
 回避処理部106は、例えば予測位置の周辺に他のドローン20が少なければ、特定されたドローン20の飛行速度を落とすことで衝突を回避しつつ或る程度飛行も続けさせるが、周辺に他のドローン20が多ければ、特定されたドローン20を停止させることでより確実に衝突を回避させる。また、回避処理部106は、特定されたドローン20から見て予測位置の右側に他のドローン20が存在している場合は、予測位置の左側を迂回する経路で飛行させて衝突を回避する。 For example, if there are few other drones 20 around the predicted position, the avoidance processing unit 106 reduces the flight speed of the identified drone 20 to avoid collision and continue flight to some extent. If there are many drones 20, stopping the specified drone 20 more reliably avoids a collision. Further, when the other drone 20 exists on the right side of the predicted position as viewed from the identified drone 20, the avoidance processing unit 106 causes the left side of the predicted position to fly on a route that detours to avoid a collision.
 回避指示をされたドローン20は、予定とは異なる飛行を行うことになるので、その結果他のドローン20と衝突する可能性が生じないとは限らない。本変形例では、周辺情報にも基づいて回避処理が行われるので、衝突する可能性がある他のドローン20との衝突を回避するだけでなく、予測位置の周辺の他の飛行体との衝突も回避させることができる。 The drone 20 that has been given the avoidance instruction will fly differently from the scheduled flight, so there is no guarantee that it will collide with other drones 20. In this modified example, the avoidance process is performed based on the surrounding information as well, so that not only the collision with another drone 20 that may collide is avoided, but also the collision with another air vehicle around the predicted position. Can be avoided.
 なお、予測位置の周辺を飛行するドローン20が風速計又は降水量計を備えている場合、風速又は降水量が周辺情報として送信されてもよい。その場合、回避処理部106は、予測位置の気象状況を踏まえて回避処理を行う。回避処理部106は、例えば風や雨が強ければ念のため予測位置よりも手前でドローン20を停止させ、風や雨が弱ければ飛行速度を落とすだけで衝突を回避させる。この場合も、周辺情報がない場合に比べて、衝突の可能性を減らすことができる。 If the drone 20 flying around the predicted position has an anemometer or a precipitation meter, the wind speed or precipitation amount may be transmitted as the surrounding information. In that case, the avoidance processing unit 106 performs the avoidance processing based on the weather condition of the predicted position. The avoidance processing unit 106 stops the drone 20 before the predicted position, just in case, for example, if wind or rain is strong, and if the wind or rain is weak, only avoids the collision by reducing the flight speed. Also in this case, the possibility of collision can be reduced as compared with the case where there is no peripheral information.
[2-9]指示タイミング
 回避処理部106は、実施例では、飛行中のドローン20に対して送信制御内容を指示したが、これに限らず、飛行を開始する前に送信制御内容を予め指示しておいてもよい。飛行開始前でも、飛行計画及び既に飛行を開始している他のドローン20の飛行状況から、各飛行空域の将来の或る時点でのドローン20の密集度を算出することができる。
[2-9] Instruction Timing In the embodiment, the avoidance processing unit 106 instructs the drone 20 in flight about the content of the transmission control, but the present invention is not limited to this, and the content of the transmission control is previously instructed before the flight starts. You may keep it. Even before the start of flight, the density of the drone 20 at a certain point in the future in each flight area can be calculated from the flight plan and the flight conditions of other drones 20 that have already started flying.
 回避処理部106は、そうして将来の時刻毎に各飛行空域のドローン20の密集度を算出し、指示対象のドローン20が飛行する予定の各飛行空域について、算出した密集度に応じた送信頻度を決定する。回避処理部106は、各飛行空域を飛行する際には決定した送信頻度で飛行情報を送信するよう指示対象のドローン20に指示する。なお、回避処理部106は、飛行が開始されてから各飛行空域の密集度が変化した場合は、変化した密集度に基づく指示を改めて行えばよい。 The avoidance processing unit 106 then calculates the congestion degree of the drone 20 in each flight airspace for each future time, and transmits for each flight airspace in which the drone 20 to be instructed will fly according to the calculated congestion degree. Determine the frequency. The avoidance processing unit 106 instructs the drone 20 to be instructed to transmit the flight information at the determined transmission frequency when flying in each flight area. It should be noted that when the density of each flight airspace has changed since the start of flight, the avoidance processing unit 106 may reissue an instruction based on the changed density.
 また、送信制御内容が飛行情報の項目又は送信先であっても、同様に予め指示しておくことができる。また、危険度情報として地上の人口密集度を示す情報又は飛行空域の高度が用いられる場合も同様である。また、気象状況についても、天気予報の情報を用いれば、予め指示しておくことが可能である。本変形例によれば、例えば通信状態の悪い地域をドローン20が飛行する場合に、飛行開始前に予め指示しておくことで、衝突を回避しやすくすることができる。 Also, even if the transmission control content is an item of flight information or a destination, it is possible to instruct in advance in the same manner. The same applies when the information indicating the population density on the ground or the altitude of the flight airspace is used as the risk information. Further, it is possible to preliminarily instruct the weather condition by using the information of the weather forecast. According to this modification, for example, when the drone 20 flies in an area where communication is poor, it is possible to easily avoid a collision by giving an instruction in advance before the flight starts.
[2-10]危険度情報の単位
 実施例では、危険の大きさを飛行空域毎に表す危険度情報が用いられたが、これに限らない。例えば、危険の大きさを時間帯毎に表す危険度情報が用いられてもよい。時間帯毎の危険度とは、例えば9~10時は危険度が低、10~11時は危険度が中、11~13時は危険度が大という具合である。回避処理部106は、例えば飛行計画が示す各時間帯に飛行しているドローン20の台数から時間帯毎の危険度を判断する。
[2-10] Unit of Danger Level Information In the embodiment, the risk level information indicating the magnitude of the risk for each flight area is used, but the unit is not limited to this. For example, risk degree information indicating the magnitude of danger for each time period may be used. The risk level for each time zone is, for example, low at 9 to 10 o'clock, medium at 10 to 11 o'clock, and high at 11 to 13 o'clock. The avoidance processing unit 106 determines the degree of danger for each time zone based on the number of drones 20 flying in each time zone indicated by the flight plan, for example.
 なお、飛行空域毎に各時間帯の危険の大きさを表す危険度情報が用いられてもよい。また、飛行範囲も飛行時間帯も極めて限られているドローン20しか管轄しないサーバ装置10の場合は、飛行空域も時間帯も区別せずに当日の危険の大きさを表す危険度情報(例えば当日に飛行するドローン20の台数だけを示す情報)を用いてもよい。要するに、ドローン20が飛行する際の危険の大きさを表していれば、どのような情報が危険度情報として用いられてもよい。 Note that risk information indicating the magnitude of danger in each time zone may be used for each flight area. Further, in the case of the server device 10 which is only under the jurisdiction of the drone 20 having a very limited flight range and flight time zone, risk information indicating the degree of danger on the day without distinguishing the flight airspace and the time zone (for example, the day) Information indicating only the number of drones 20 flying to the vehicle) may be used. In short, any information may be used as the risk degree information as long as it represents the magnitude of danger when the drone 20 flies.
[2-11]通知先の絞込み
 実施例では、計画外飛行通知部107が、計画外飛行をしているドローン20の飛行状況を他の全てのサーバ装置10に通知したが、通知先を絞り込んでもよい。計画外飛行通知部107は、例えば、計画外飛行をしているドローン20と衝突の可能性があると特定されたドローン20を管轄するサーバ装置10だけに通知先を絞り込んでもよい。そうすることで、絞り込みを行わない場合に比べて、計画外飛行をしているドローン20の通知による処理(通信処理及び特定処理等)の負荷を軽減することができる。
[2-11] Narrowing down notification destinations In the embodiment, the unplanned flight notification unit 107 notifies all other server devices 10 of the flight status of the drone 20 that is making an unplanned flight. However, the notification destinations are narrowed down. But it's okay. The unplanned flight notification unit 107 may narrow down the notification destinations only to the server device 10 that manages the drone 20 that is identified as having the possibility of collision with the drone 20 that is performing the unplanned flight, for example. By doing so, it is possible to reduce the load of the processing (communication processing, specific processing, etc.) by the notification of the drone 20 that is performing the unplanned flight, as compared with the case where the narrowing is not performed.
[2-12]飛行計画
 飛行計画の表し方は、実施例と異なっていてもよい。例えばセルを用いずに3次元空間の座標を用いて飛行計画が表されてもよい。その場合、例えば3次元座標系において、飛行経路を線で表す数式又は飛行空域の境界面を表す数式等が用いられればよい。また、途中の経路ではなく、出発地、経由地、到着地の情報だけで飛行計画が表されてもよい。その場合でも、各位置の間を直線的に移動すること又は決められた経路に沿って移動することが決まっていれば、実際に飛行する経路を判断することが可能である。
[2-12] Flight Plan The way of expressing the flight plan may be different from that of the embodiment. For example, the flight plan may be represented using coordinates in a three-dimensional space without using cells. In that case, for example, in a three-dimensional coordinate system, a mathematical expression expressing a flight route by a line, a mathematical expression expressing a boundary surface of a flight airspace, or the like may be used. Further, the flight plan may be represented only by the information of the departure place, the waypoint, and the arrival place instead of the route on the way. Even in that case, if it is decided to move linearly between the respective positions or to move along a predetermined route, it is possible to judge the route to actually fly.
 また、飛行予定期間も、詳細な期間が分かることが望ましいが、例えば出発予定時刻及び到着予定時刻だけが分かる程度でもよい。その場合も、例えば平均飛行速度を算出することで、どの時刻にどの辺りを飛行中であるかを判断することができる。要するに、飛行情報と突き合わせることで計画外飛行を判断することができるのであれば、どのような形で飛行計画が表されてもよい。 Also, it is desirable to know the detailed flight schedule period, but for example, it is sufficient to know only the scheduled departure time and the scheduled arrival time. Even in that case, for example, by calculating the average flight speed, it is possible to determine at what time and in what area the flight is in progress. In short, the flight plan may be represented in any form as long as it can determine the unplanned flight by comparing it with the flight information.
[2-13]飛行体
 実施例では、自律飛行を行う飛行体として回転翼機型の飛行体が用いられたが、これに限らない。例えば飛行機型の飛行体であってもよいし、ヘリコプター型の飛行体であってもよい。要するに、操作者の操作により飛行することが可能であり、且つ、検査データを取得する機能を有する飛行体であればよい。
[2-13] Aircraft In the embodiments, a rotary wing aircraft is used as a vehicle that performs autonomous flight, but the invention is not limited to this. For example, it may be an airplane-type flying body or a helicopter-type flying body. In short, any flying body that can fly by the operation of the operator and has a function of acquiring inspection data may be used.
[2-14]各機能を実現する装置
 図4に表す各機能を実現する装置は、上述した装置に限らない。例えば、サーバ装置10が実現する機能の一部を統合管理装置30が実現してもよい。また、例えば管轄事業者が小規模で管轄するドローン20も少数である場合に、プロポ又はパソコン等の操作者が用いる装置がサーバ装置10の各機能を実現してもよい。要するに、運航管理支援システム1の全体で図4に表す各機能が実現されていればよい。
[2-14] Device that realizes each function The device that realizes each function shown in FIG. 4 is not limited to the above-mentioned device. For example, the integrated management device 30 may implement part of the functions implemented by the server device 10. Further, for example, when the jurisdiction company is small and the number of drones 20 under jurisdiction is small, a device used by an operator such as a radio transmitter or a personal computer may realize each function of the server device 10. In short, each function shown in FIG. 4 may be realized in the entire operation management support system 1.
[2-15]発明のカテゴリ
 本発明は、上述したサーバ装置10及び統合管理装置30という情報処理装置の他、それらの情報処理装置及びドローン20のような飛行体を備える情報処理システム(運航管理支援システム1はその一例)としても捉えられる。また、本発明は、それらの情報処理装置が実施する処理を実現するための情報処理方法としても捉えられるし、それらの情報処理装置を制御するコンピュータを機能させるためのプログラムとしても捉えられる。このプログラムは、それを記憶させた光ディスク等の記録媒体の形態で提供されてもよいし、インターネット等のネットワークを介してコンピュータにダウンロードさせ、それをインストールして利用可能にするなどの形態で提供されてもよい。
[2-15] Category of Invention In addition to the information processing devices such as the server device 10 and the integrated management device 30 described above, the present invention relates to an information processing system including these information processing devices and a flying body such as the drone 20 (operation management The support system 1 can also be regarded as an example thereof. Further, the present invention can be understood as an information processing method for realizing the processing executed by those information processing apparatuses, and as a program for causing a computer that controls those information processing apparatuses to function. This program may be provided in the form of a recording medium such as an optical disc having the program stored therein, or may be provided in the form of being downloaded by a computer via a network such as the Internet and installed and made available. May be done.
[2-16]機能ブロック
 なお、上記実施例の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。
[2-16] Functional Blocks The block diagrams used in the description of the above embodiments show functional blocks. These functional blocks (components) are realized by an arbitrary combination of at least one of hardware and software. The method of realizing each functional block is not particularly limited.
 すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 That is, each functional block may be realized by using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.) and may be implemented using these multiple devices. The functional blocks may be realized by combining the one device or the plurality of devices with software.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, observation, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but not limited to these. I can't. For example, a functional block (configuration unit) that causes transmission to function is called a transmission unit (transmitting unit) or a transmitter (transmitter). In any case, as described above, the implementation method is not particularly limited.
[2-17]入出力の方向
 情報等(※「情報、信号」の項目参照)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
[2-17] Input/output direction Information and the like (see the item “Information, signal”) can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input/output may be performed via a plurality of network nodes.
[2-18]入出力された情報等の扱い
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
[2-18] Handling of input/output information, etc. The input/output information, etc. may be stored in a specific place (for example, a memory) or may be managed using a management table. Information that is input/output may be overwritten, updated, or added. The output information and the like may be deleted. The input information and the like may be transmitted to another device.
[2-19]判定方法
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
[2-19] Judgment Method The judgment may be performed by a value (0 or 1) represented by 1 bit, a true/false value (Boolean: true or false), or a numerical value. (For example, comparison with a predetermined value) may be performed.
[2-20]処理手順等
 本開示において説明した各態様/実施例の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
[2-20] Processing Procedure, etc. The processing procedure, sequence, flowchart, etc. of each aspect/embodiment described in the present disclosure may be interchanged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps in a sample order, and are not limited to the specific order presented.
[2-21]入出力された情報等の扱い
 入出力された情報等は特定の場所(例えばメモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
[2-21] Handling of input/output information The input/output information may be stored in a specific place (for example, a memory) or may be managed by a management table. Information that is input/output may be overwritten, updated, or added. The output information and the like may be deleted. The input information and the like may be transmitted to another device.
[2-22]ソフトウェア
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
[2-22] Software Software, whether called software, firmware, middleware, microcode, hardware description language, or any other name, is an instruction, instruction set, code, code segment, program code, program. , Subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., should be broadly construed.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、
マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
Also, software, instructions, information, etc. may be sent and received via a transmission medium. For example, software may be wired technology (coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared,
At least one of these wired and wireless technologies are included within the definition of transmission medium when transmitted from a website, server, or other remote source using at least one of the microwaves and the like.
[2-23]情報、信号
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
[2-23] Information, Signals The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description include voltage, current, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any of these. May be represented by a combination of
[2-24]「判断」、「決定」
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。
[2-24] "Judgment", "Decision"
The terms "determining" and "determining" as used in this disclosure may encompass a wide variety of actions. "Judgment", "decision" means, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigating (investigating), searching (looking up, search, inquiry) (Eg, searching in a table, a database, or another data structure), considering ascertaining as “judging” or “deciding”, and the like.
 また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、
選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
In addition, "decision" and "decision" include receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), access (accessing) (for example, accessing data in a memory) can be regarded as “judging” and “deciding”. In addition, "judgment" and "decision" are resolving,
This may include considering selections, selections, establishments, comparisons, etc. as “judgments” and “decisions”. That is, the “judgment” and “decision” may include considering some action as “judgment” and “decision”. In addition, "determination (decision)" may be read as "assuming,""expecting,""considering," and the like.
[2-25]「に基づいて」の意味
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
[2-25] Meaning of “based on” As used in this disclosure, the description “based on” does not mean “based only on,” unless expressly specified otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
[2-26]「異なる」
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
[2-26] "Different"
In the present disclosure, the term “A and B are different” may mean “A and B are different from each other”. The term may mean that “A and B are different from C”. The terms "remove", "coupled" and the like may be construed as "different" as well.
[2-27]「及び」、「又は」
 本開示において、「A及びB」でも「A又はB」でも実施可能な構成については、一方の表現で記載された構成を、他方の表現で記載された構成として用いてもよい。例えば「A及びB」と記載されている場合、他の記載との不整合が生じず実施可能であれば、「A又はB」として用いてもよい。
[2-27] "and", "or"
In the present disclosure, for the configurations that can be implemented by “A and B” or “A or B”, the configuration described in one expression may be used as the configuration described in the other expression. For example, when "A and B" is described, it may be used as "A or B" as long as it is practicable without inconsistency with other descriptions.
[2-28]態様のバリエーション等
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
[2-28] Variations of Aspect, etc. Each aspect/embodiment described in the present disclosure may be used alone, in combination, or may be switched according to execution. Further, the notification of the predetermined information (for example, the notification of “being X”) is not limited to the explicit notification, and is performed implicitly (for example, the notification of the predetermined information is not performed). Good.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is obvious to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be implemented as modified and changed modes without departing from the spirit and scope of the present disclosure defined by the description of the claims. Therefore, the description of the present disclosure is for the purpose of exemplification, and does not have any restrictive meaning to the present disclosure.
1…運航管理支援システム、10…サーバ装置、20…ドローン、30…統合管理装置、101…飛行計画送信部、102…飛行情報取得部、103…計画外飛行判定部、104…飛行計画取得部、105…第1衝突特定部、106…回避処理部、107…計画外飛行通知部、108…計画外通知受取部、109…第2衝突特定部、110…衝突通知部、111…衝突通知受取部、201…飛行制御部、202…飛行情報送信部、301…飛行計画取得部、302…飛行計画記憶部、303…飛行計画配信部。 DESCRIPTION OF SYMBOLS 1... Operation management support system, 10... Server device, 20... Drone, 30... Integrated management device, 101... Flight plan transmission part, 102... Flight information acquisition part, 103... Unplanned flight determination part, 104... Flight plan acquisition part , 105... First collision identification unit, 106... Avoidance processing unit, 107... Unplanned flight notification unit, 108... Unplanned notification receiving unit, 109... Second collision identification unit, 110... Collision notification unit, 111... Collision notification reception Flight control unit, 202 Flight information transmission unit, 301 Flight plan acquisition unit, 302 Flight plan storage unit, 303 Flight plan distribution unit.

Claims (7)

  1.  飛行体が飛行する際の危険の大きさを表す危険度情報を取得する取得部と、
     前記飛行体が自機の飛行状況を示す飛行情報を送信するに際し、取得された前記危険度情報が表す危険の大きさに応じて前記飛行体が前記飛行情報を送信するように前記飛行体に指示する指示部と
     を備える情報処理装置。
    An acquisition unit that acquires risk level information indicating the magnitude of danger when the air vehicle flies,
    When the flight body transmits flight information indicating the flight status of the aircraft, the flight body transmits the flight information to the flight body according to the degree of danger represented by the acquired risk information. An information processing apparatus comprising: an instruction unit for instructing.
  2.  前記危険度情報は、前記危険の大きさを飛行空域毎に表す情報を含み、
     前記指示部は、取得された前記危険度情報が表す飛行空域における危険の大きさに応じて、当該飛行空域を飛行する飛行体が前記飛行情報を送信するように指示する
     請求項1に記載の情報処理装置。
    The risk information includes information indicating the magnitude of the danger for each flight area,
    The said instruction|indication part instruct|indicates that the flying body which flies in the said flight airspace transmits the said flight information according to the magnitude of the danger in the flight airspace which the said acquired risk degree information represents. Information processing device.
  3.  前記指示部は、取得された前記危険度情報が表す危険が大きいほど前記飛行情報の送信頻度を高くするように指示する
     請求項1又は2に記載の情報処理装置。
    The information processing apparatus according to claim 1, wherein the instruction unit gives an instruction to increase the transmission frequency of the flight information as the risk represented by the acquired risk information increases.
  4.  前記指示部は、取得された前記危険度情報が表す危険が大きいほど前記飛行情報に含める情報の項目が多くなるように指示する
     請求項1から3のいずれか1項に記載の情報処理装置。
    The information processing device according to any one of claims 1 to 3, wherein the instruction unit instructs that the number of items of information included in the flight information increases as the risk represented by the acquired risk information increases.
  5.  前記飛行体は、自機の飛行に関係する処理を行う2以上の外部装置に前記飛行情報を送信可能であり、
     前記指示部は、取得された前記危険度情報が表す危険が大きいほど前記飛行情報の送信先を増やすように指示する
     請求項1から4のいずれか1項に記載の情報処理装置。
    The aircraft is capable of transmitting the flight information to two or more external devices that perform processing related to the flight of the aircraft.
    The information processing device according to claim 1, wherein the instruction unit instructs to increase the number of transmission destinations of the flight information as the risk represented by the acquired risk information increases.
  6.  取得された前記危険度情報が前記飛行体の衝突又は落下の危険を表している場合に、当該衝突又は落下が予測される位置の周辺を飛行する他の飛行体に当該位置の周辺に関する周辺情報を送信させる指示を行う第2指示部をさらに備える
     請求項1から5のいずれか1項に記載の情報処理装置。
    When the obtained risk information indicates the risk of collision or falling of the flying object, surrounding information about the vicinity of the position of another flying object flying around the position where the collision or falling is predicted. The information processing apparatus according to claim 1, further comprising: a second instruction unit that gives an instruction to transmit.
  7.  前記危険度情報は、飛行空域を飛行する飛行体の密集度、飛行空域の周囲の地上の人口密集度、飛行空域における気象状況又は飛行空域の高度の少なくともいずれか1つを示す
     請求項1から6のいずれか1項に記載の情報処理装置。
    The risk information indicates at least one of a density of flying objects flying in the flight area, a population density of the ground around the flight area, a weather condition in the flight area, or an altitude of the flight area. 6. The information processing device according to any one of 6.
PCT/JP2020/000866 2019-01-22 2020-01-14 Information processing device WO2020153170A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020568070A JPWO2020153170A1 (en) 2019-01-22 2020-01-14 Information processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-008381 2019-01-22
JP2019008381 2019-01-22

Publications (1)

Publication Number Publication Date
WO2020153170A1 true WO2020153170A1 (en) 2020-07-30

Family

ID=71736030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000866 WO2020153170A1 (en) 2019-01-22 2020-01-14 Information processing device

Country Status (2)

Country Link
JP (1) JPWO2020153170A1 (en)
WO (1) WO2020153170A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6917516B1 (en) * 2020-12-24 2021-08-11 Kddi株式会社 Flight management system and flight management method
JP7036272B1 (en) * 2021-10-06 2022-03-15 トヨタ自動車株式会社 Data collection system, data collection method and data collection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146083A1 (en) * 2014-03-28 2015-10-01 日本電気株式会社 Information-collecting device, information-collection method, and program-recording medium
JP2016045618A (en) * 2014-08-21 2016-04-04 沖電気工業株式会社 Information collection device, communication device, information collection method, and program
JP2016139392A (en) * 2015-01-26 2016-08-04 株式会社リコー Information processing device, information processing system, and program
JP2017085546A (en) * 2015-08-21 2017-05-18 ザ・ボーイング・カンパニーThe Boeing Company Interface with aircraft distress tracking and search and rescue system
WO2018042927A1 (en) * 2016-09-02 2018-03-08 ソニー株式会社 Circuit, terminal device, base station device and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11212816B2 (en) * 2016-12-05 2021-12-28 Kddi Corporation Flying device, control device, communication control method, and control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146083A1 (en) * 2014-03-28 2015-10-01 日本電気株式会社 Information-collecting device, information-collection method, and program-recording medium
JP2016045618A (en) * 2014-08-21 2016-04-04 沖電気工業株式会社 Information collection device, communication device, information collection method, and program
JP2016139392A (en) * 2015-01-26 2016-08-04 株式会社リコー Information processing device, information processing system, and program
JP2017085546A (en) * 2015-08-21 2017-05-18 ザ・ボーイング・カンパニーThe Boeing Company Interface with aircraft distress tracking and search and rescue system
WO2018042927A1 (en) * 2016-09-02 2018-03-08 ソニー株式会社 Circuit, terminal device, base station device and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6917516B1 (en) * 2020-12-24 2021-08-11 Kddi株式会社 Flight management system and flight management method
JP2022100678A (en) * 2020-12-24 2022-07-06 Kddi株式会社 Flight management system and flight management method
US11823579B2 (en) 2020-12-24 2023-11-21 Kddi Corporation Flight management system and flight management method
JP7036272B1 (en) * 2021-10-06 2022-03-15 トヨタ自動車株式会社 Data collection system, data collection method and data collection device

Also Published As

Publication number Publication date
JPWO2020153170A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
JP6991240B2 (en) Information processing equipment
WO2020153171A1 (en) Information processing device
US11634225B2 (en) Information-processing device and information-processing method
US11605300B2 (en) Aircraft operation system
JP6944854B2 (en) Information processing device
US11380209B2 (en) Information processing apparatus
US20080035784A1 (en) Aircraft wake vortex predictor and visualizer
WO2020153172A1 (en) Information processing device
JP6980037B2 (en) Information processing equipment
WO2020153170A1 (en) Information processing device
JP6967076B2 (en) Information processing equipment
EP3816884A1 (en) Aircraft parking stand assignment prediction
JP7171364B2 (en) Information processing equipment
JP7186280B2 (en) Information processing device and program
JP6971331B2 (en) Information processing equipment and information processing method
JP6850315B2 (en) Information processing device
WO2022123962A1 (en) Control device, program, system, and method
US20230196930A1 (en) Landing information determination apparatus, landing information determination system, landing information determination method, and computer-readable medium
US10755490B2 (en) Data broker engine for managing data exchanges between on-board and off-board systems
JPWO2020189607A1 (en) Information processing equipment
CN112061407A (en) Unmanned aerial vehicle fault early warning method and system, unmanned aerial vehicle, equipment and medium
JP2020067878A (en) Information processor
EP4080167A1 (en) Methods and systems for detecting wind shear conditions in an urban airspace
JP2023169941A (en) Centralized control system of unmanned aircraft and centralized control method of unmanned aircraft
CN116189483A (en) Low-altitude aircraft monitoring system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20745077

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020568070

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20745077

Country of ref document: EP

Kind code of ref document: A1