WO2020145332A1 - Electronic mirror device - Google Patents

Electronic mirror device Download PDF

Info

Publication number
WO2020145332A1
WO2020145332A1 PCT/JP2020/000395 JP2020000395W WO2020145332A1 WO 2020145332 A1 WO2020145332 A1 WO 2020145332A1 JP 2020000395 W JP2020000395 W JP 2020000395W WO 2020145332 A1 WO2020145332 A1 WO 2020145332A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
display
crystal panel
light
vehicle
Prior art date
Application number
PCT/JP2020/000395
Other languages
French (fr)
Japanese (ja)
Inventor
尚 山添
Original Assignee
日本精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精機株式会社 filed Critical 日本精機株式会社
Priority to JP2020565194A priority Critical patent/JP7331868B2/en
Publication of WO2020145332A1 publication Critical patent/WO2020145332A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/04Rear-view mirror arrangements mounted inside vehicle
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • the present invention relates to an electronic mirror device.
  • Patent Document 1 discloses an electronic mirror for an automobile, in which a display element is arranged behind a concave mirror at a distance shorter than its focal length, and a virtual image is displayed behind the concave mirror. According to this, similarly to the conventional mirror system, it is possible to give the virtual image a depth and reduce the distance for switching the focus of the eyes to the distant one, so that the rear and side images can be easily seen.
  • Patent Document 1 describes arranging a plane mirror on the back surface of the concave mirror or inverting the front surface and the back surface of the concave mirror by using the back surface of the concave mirror as a plane mirror.
  • the present disclosure has been made in view of the above circumstances, and is an electronic device capable of switching between a display of an image around the vehicle by an image and a display of an image around the vehicle by reflection of light from an actual landscape with a simpler configuration.
  • An object is to provide a mirror device.
  • an electronic mirror device includes a display that emits display light indicating a peripheral captured image that captures the periphery of a vehicle, A concave mirror that reflects the display light emitted from the display, A switching panel disposed between the display and the concave mirror and capable of switching between a transmissive state and a reflective state in response to application of a voltage, Equipped with.
  • the electronic mirror device it is possible to switch between the image display of the image around the vehicle and the image display of the image around the vehicle by reflection of light from the actual landscape with a simpler configuration.
  • FIG. 1 is a schematic diagram of a vehicle equipped with an electronic mirror device according to an embodiment of the present disclosure. It is a block diagram which shows the function of the electronic mirror apparatus shown in FIG. It is a schematic sectional drawing which shows the liquid crystal panel of the electronic mirror apparatus shown in FIG.
  • FIG. 3 is a diagram showing a positional relationship between a concave mirror and a liquid crystal panel of the electronic mirror device shown in FIG. 1. It is a figure which shows the transmission state of the electronic mirror apparatus shown in FIG. It is a figure which shows the reflective state of the electronic mirror apparatus shown in FIG. It is a figure which shows the liquid crystal panel in the transmission state shown to FIG. 5A. It is a figure which shows the liquid crystal panel in the reflective state shown in FIG. 5B.
  • FIG. 8 is a side view showing a display of an electronic mirror device according to another embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a vehicle A equipped with an electronic mirror device 1 according to an embodiment of the present disclosure, and shows a state in which the vehicle A is viewed from the right side.
  • FIG. 2 is a block diagram showing the functions of the electronic mirror device 1.
  • the front-rear direction of the vehicle A in FIG. 1 is the X direction (the front direction is the +X direction, the rear direction is the -X direction), and the left-right direction is the Y direction (the left direction is the +Y direction and the right direction is the -Y direction).
  • the vertical direction is the Z direction (the upward direction is the +Z direction and the downward direction is the -Z direction).
  • the electronic mirror device 1 is arranged in front of the vehicle interior of the vehicle A, and includes a liquid crystal panel 100, a display device 200, and a concave mirror 300. In addition to these, the electronic mirror device 1 includes a control unit 400, a storage unit 500, and an I/O interface 600 as its functions.
  • the electronic mirror device 1 has a peripheral captured image viewing mode in which a user D, who is supposed to be a driver seated in the driver's seat, visually recognizes the captured peripheral images including the rear and sides of the vehicle A. It is configured to be able to switch between a real scenery visualizing mode in which a real scenery mainly behind or on the side of the vehicle A is reflected and visually recognized by the user.
  • the liquid crystal panel 100 is arranged together with the concave mirror 300 in the vicinity of the front windshield A1 in the vehicle interior of the vehicle A, and is arranged between the display device 200 and the concave mirror 300 in the front-rear direction of the vehicle A. Further, in terms of the positional relationship with the user D, it can be said that the liquid crystal panel 100 is arranged between the user D and the concave mirror 300.
  • the liquid crystal panel 100 according to this embodiment is a twisted nematic (TN) type liquid crystal panel, and is configured as shown in FIG. 3 in a schematic sectional view.
  • TN twisted nematic
  • the liquid crystal panel 100 is an example of a switching panel of the present disclosure, and is configured to be switchable between a transmissive state and a reflective state in response to voltage application under the voltage application control of the control unit 400.
  • the transmission state and reflection state of the liquid crystal panel 100 will be described in detail later.
  • the user D side (generally ⁇ X direction) of the liquid crystal panel 100 is defined as “front side”, and the opposite side (generally +X direction) is defined as “back side”, and each part is described. To do. Further, in view of the viewability of the drawing, hatching showing a cross section is appropriately omitted in FIG.
  • the liquid crystal panel 100 includes a liquid crystal element 10, an absorptive polarizing plate 21 located on the front side of the liquid crystal element 10, and a reflective polarizing plate 22 located on the back side of the liquid crystal element 10.
  • the liquid crystal panel 100 in plan view has, for example, a substantially rectangular shape.
  • the liquid crystal element 10 includes, as shown in FIG. 3, a first substrate 11, a second substrate 12, and a liquid crystal layer 13.
  • the first substrate 11 and the second substrate 12 are a pair of transparent substrates facing each other, and are made of, for example, glass, plastic, or the like.
  • the first substrate 11 and the second substrate 12 are arranged so as to be opposed to each other with the liquid crystal layer 13 interposed therebetween, and their main surfaces (opposing surfaces) are parallel to each other.
  • the first substrate 11 is located on the front side of the liquid crystal layer 13.
  • a transparent electrode 11 a is provided on the liquid crystal layer 13 side of the first substrate 11.
  • a transparent electrode 12a is provided on the liquid crystal layer 13 side of the second substrate 12.
  • the transparent electrodes 11a and 12a are formed by a known method such as sputtering, vapor deposition, and etching. In this embodiment, each of the transparent electrodes 11a and 12a is formed in a solid shape on the corresponding substrate surface and has a substantially rectangular shape in a plan view.
  • the transparent electrodes 11a and 12a are made of an ITO (Indium Tin Oxide) film containing indium oxide as a main component.
  • an insulating film and an alignment film are formed on each of the first substrate 11 and the second substrate 12.
  • the insulating film is made of a silicon-based insulating film and is formed so as to cover each of the transparent electrodes 11a and 12a from the liquid crystal layer 13 side.
  • An alignment film is formed between the insulating film and the liquid crystal layer 13. That is, the transparent electrode 11a, the insulating film, and the alignment film are laminated on the first substrate 11. Further, on the second substrate 12, a transparent electrode 12a, an insulating film, and an alignment film are laminated.
  • the alignment film is in contact with the liquid crystal layer 13 and is for defining the alignment state of the liquid crystal molecules 13a (schematically shown in FIGS. 6A and 6B) included in the liquid crystal layer 13.
  • a known method is used. (For example, flexo printing).
  • the alignment film is subjected to rubbing treatment.
  • the rubbing direction of the front side alignment film that is, the alignment film formed on the first substrate 11
  • the rubbing direction of the back side that is, the alignment film formed on the second substrate 12
  • they are substantially orthogonal (just including the orthogonal).
  • the alignment of the liquid crystal molecules 13a is regulated by both alignment films that have been subjected to the rubbing treatment in this way.
  • the alignment treatment applied to the alignment film is not limited to the rubbing treatment, and may be any other known treatment such as a photo-alignment treatment or a protrusion alignment treatment.
  • the liquid crystal layer 13 is formed by enclosing the liquid crystal material in a closed space formed by a sealing material (not shown) for joining the first substrate 11 and the second substrate 12 and both substrates.
  • the thickness (cell gap) of the liquid crystal layer 13 is defined by a spacer (not shown) provided between the first substrate 11 and the second substrate 12.
  • the liquid crystal molecules 13a of the liquid crystal layer 13 are twisted by 90° between the ends of the liquid crystal layer 13 on the first substrate 11 side and the second substrate 12 side due to the alignment regulating force of the alignment film. With a twist angle of 90°, the orientation is such that it gradually rotates (turns) from one substrate side to the other substrate side (chiral structure). In this way, the liquid crystal layer 13 has chirality when no voltage is applied.
  • the absorption type polarizing plate 21 has a transmission axis (hereinafter, also referred to as a first transmission axis) and an absorption axis orthogonal to the first transmission axis.
  • the absorption type polarizing plate 21 transmits, of the incident light, light having a polarization direction parallel to the first transmission axis.
  • the reflective polarizing plate 22 has a transmission axis (hereinafter, also referred to as a second transmission axis) and a reflection axis orthogonal to the second transmission axis. Of the incident light, the reflective polarizing plate 22 transmits light having a polarization direction parallel to the second transmission axis and reflects light having a polarization direction parallel to the reflection axis.
  • the first transmission axis of the absorptive polarizing plate 21 and the second transmission axis of the reflective polarizing plate 22 are substantially parallel to each other (including just parallel) when viewed from the substrate normal direction. Both polarizing plates are arranged (parallel Nicol arrangement). Further, the rubbing direction of the front side alignment film (that is, the alignment film formed on the first substrate 11) and the direction along which the absorption axis of the absorptive polarizing plate 21 runs are set to be parallel.
  • the absorption type polarizing plate 21 is attached to the front surface of the first substrate 11 with the first transparent adhesive film 31 interposed therebetween.
  • the reflective polarizing plate 22 is attached to the back surface of the second substrate 12 via the second transparent adhesive film 32.
  • An optical element such as a retardation plate may be provided between the liquid crystal element 10 and each polarizing plate.
  • the polarizing plate may be attached to an optical element located between the liquid crystal element 10 and the polarizing plate.
  • the first transparent adhesive film 31 and the second transparent adhesive film 32 are each made of, for example, an acrylic transparent adhesive (acrylic polymer).
  • the first transparent adhesive film 31 is formed by applying a transparent adhesive to the surface of the absorptive polarizing plate 21 to be attached to the first substrate 11.
  • the second transparent adhesive film 32 is formed by applying a transparent adhesive to the surface of the reflective polarizing plate 22 that is attached to the second substrate 12.
  • the display device 200 is disposed in the vicinity of the roof A2 in the vehicle interior of the vehicle A, and is located on the rear side (-X direction) and the upper side (+Z direction) of the vehicle A with respect to the liquid crystal panel 100 and the concave mirror 300.
  • the display device 200 is a display device capable of displaying the peripheral captured image under the image display control of the control unit 400 and emitting display light L1 (see FIG. 5A) indicating the peripheral captured image toward the concave mirror 300. is there. Specific examples thereof include a TFT (Thin Film Transistor) type liquid crystal display and an organic EL (Electro-Luminescence) display. Further, the display device 200 may be a projector.
  • the concave mirror 300 is arranged near the front windshield A1 in the vehicle interior of the vehicle A together with the liquid crystal panel 100, and is arranged on the front side (+X direction) of the vehicle A with respect to the liquid crystal panel 100 and the display 200.
  • the liquid crystal panel 100 and the concave mirror 300 are housed in a common case (housing) not shown.
  • FIG. 4 shows the positional relationship between the liquid crystal panel 100 and the concave mirror 300 in the front-rear direction (X direction) of the vehicle A.
  • the liquid crystal panel 100 is tilted more downward ( ⁇ Z direction) than the concave mirror 300.
  • the first horizontal length DS1 between the upper end 110 of the liquid crystal panel 100 and the upper end 310 of the concave mirror 300 is equal to the second horizontal length DS1 between the lower end 120 of the liquid crystal panel 100 and the lower end 320 of the concave mirror 300. Is longer than DS2 (DS1>DS2). The reason why the liquid crystal panel 100 and the concave mirror 300 are arranged in such a positional relationship will be described later.
  • the control unit 400 includes one or more arithmetic processing circuits such as a microcomputer, peripheral circuits, and programs. More specifically, the control unit 400 includes, as hardware, a CPU that actually performs processing (such as control of the entire electronic mirror device 1) executed by the control unit 400, a RAM that functions as a main memory of the CPU, and a control unit. A ROM that stores various programs that cause the 400 to execute processing described below, and various converters that digitally convert information (signals) input/output to/from the control unit 400 for the CPU or analog conversion for output. Equipped with.
  • the control unit 400 may include various dedicated circuits (for example, an image processing circuit) for executing a part of the processing performed by the control unit 400 on behalf of the CPU.
  • the control unit 400 includes a program as software for executing the process executed by the control unit 400.
  • the storage unit 500 stores a program used when the control unit 400 executes a process, data used for the process, and the like.
  • the storage unit 500 is configured to include a rewritable non-volatile storage medium such as a flash memory.
  • the storage unit 500 may include a memory card or the like that is easily removable.
  • the I/O interface 600 is a hardware interface for inputting/outputting information to/from the operation unit 2, the image pickup unit 3, and other devices in the vehicle A provided in the vehicle A by wired or wireless connection. And a software interface. Through communication, the I/O interface 600 acquires various kinds of information such as a switching operation between the transmission state and the reflection state of the electronic mirror device 1 from the operation unit 2 and the peripheral captured image from the image capturing unit 3, and transmits the information to the control unit 400. To do.
  • the operation unit 2 is, for example, a push button switch or a touch panel, and receives an operation of the user D.
  • the operation unit 2 may be capable of operating various devices in the vehicle A including the electronic mirror device 1, or may be a unit dedicated to operating the electronic mirror device 1.
  • the image capturing unit 3 is a camera provided in the vehicle interior of the vehicle A and/or in the vehicle body of the vehicle A, and captures an image of the periphery of the vehicle A including the rear and sides thereof to obtain the peripheral captured image.
  • the electronic mirror device 1 is configured as described above.
  • FIG. 5A. , FIG. 5B, FIG. 6A, and FIG. 6B show the electronic mirror device 1 in the peripheral captured image viewing mode
  • FIG. 5B shows the electronic mirror device 1 in the real landscape viewing mode
  • 6A shows the liquid crystal panel 100 in the transmissive state
  • FIG. 6B shows the liquid crystal panel 100 in the reflective state.
  • 6A and 6B hatching showing a cross section is omitted as appropriate, and appropriate members are omitted.
  • the display device 200 displays the peripheral captured image under the image display control of the control unit 400, and directs the display light L1 indicating the peripheral captured image to the concave mirror 300. (Approximately +X direction).
  • the display light L1 emitted from the display device 200 reaches the liquid crystal panel 100.
  • the liquid crystal panel 100 is set to the transmissive state under the voltage application control of the control unit 400.
  • the liquid crystal panel 100 transmits the display light L1 of the display device 200 in the transmissive state.
  • the display light L1 transmitted through the liquid crystal panel 100 reaches the concave mirror 300, is magnified and reflected by the concave mirror 300.
  • the display light L1 reflected by the concave mirror 300 again passes through the liquid crystal panel 100 and reaches the eye box EB.
  • the eye box EB is an area in the vertical and horizontal directions (YZ plane) set as the range of the viewpoint position of the user D who is seated in the driver's seat.
  • the user D puts the viewpoint image of himself/herself in the eye box EB in the peripheral captured image visual recognition mode, so that the peripheral captured image has a virtual image V with a depth (positioned at a distance in the +X direction). Can be seen as.
  • the user D can easily adjust the focus of the eyes even when the line of sight is shifted from the distant view such as the scenery in front of the vehicle A to the peripheral captured image (virtual image V).
  • the liquid crystal panel 100 transmits the display light L1.
  • the display light L1 reflected by the concave mirror 300 is transmitted again through the reflection type polarization plate 22, the liquid crystal layer 13, and the absorption type polarization plate 21 and is visible to the user D through the virtual image V of the peripheral captured image reflected by the concave mirror 300. ..
  • the absorptive polarizing plate 21 When external light enters from the front side of the liquid crystal panel 100, it passes through the absorptive polarizing plate 21 and the linearly polarized light parallel to the first transmission axis as it is through the liquid crystal layer 13.
  • the light passes through the reflective polarizing plate 22 having two transmission axes and is reflected by the concave mirror 300.
  • the reflection surface shape and the installation angle of the concave mirror 300 are designed to reflect the display light L1 from the display device 200 toward the eye box EB of the user D, so that most of the external light incident on the concave mirror 300 is reflected. Does not reach the eye box EB of the user D, and the visibility of the peripheral captured image is hardly reduced.
  • the polarization direction is changed by 90° due to the chirality and becomes linearly polarized light along the reflection axis of the reflection type polarizing plate 22, and is reflected by the reflection type polarizing plate 22.
  • the reflected light passes through the liquid crystal layer 13 and is converted again by 90° in the polarization direction, and thus passes through the absorption type polarizing plate 21.
  • the liquid crystal panel 100 functions as a mirror in the reflective state.
  • the portion functioning as a mirror is called an active area.
  • the display 200 is basically in a non-display state, but if the display light L1 enters from the front side of the liquid crystal panel 100, it passes through the absorption type polarizing plate 21 and becomes the first transmission axis. When it becomes parallel linearly polarized light and is transmitted through the liquid crystal layer 13, the 90° polarization direction is converted and becomes linearly polarized light along the reflection axis of the reflective polarizing plate 22, so that it is reflected by the reflective polarizing plate 22.
  • the installation angle of the liquid crystal panel 100 is designed so that the light L2 from the actual landscape is reflected toward the eye box EB of the user D. Therefore, the display light L1 reflected by the liquid crystal panel 100 is the light of the user D. It does not reach the eye box EB, and does not reduce the visibility of the real landscape.
  • the concave mirror 300 is arranged so as to reflect the display light L1 of the display device 200 arranged near the roof A2 of the vehicle A to the eye box EB, and the liquid crystal panel 100 is arranged from the display device 200. Is arranged so that the light L2 from the actual scenery below is reflected by the eye box EB.
  • the first horizontal length DS1 between the upper end 110 of the liquid crystal panel 100 and the upper end 310 of the concave mirror 300 is equal to the lower end 120 of the liquid crystal panel 100 and the lower end 320 of the concave mirror 300. Is larger than the second length DS2 in the horizontal direction between (DS1>DS2).
  • the electronic mirror device 1 does not need a complicated switching mechanism such as a rotation mechanism, and has a simpler configuration in which the liquid crystal panel 100 is arranged between the display device 200 and the concave mirror 300. It is possible to switch between the display of the peripheral image (the peripheral captured image visual confirmation mode) and the display of the image of the periphery of the vehicle by reflection of light from the actual landscape (the actual landscape visual recognition mode).
  • liquid crystal panel 100 has been described as an example of the switching panel of the present disclosure, but the switching panel is not limited to this, and may be any one that can switch between the transmissive state and the reflective state depending on the voltage application state.
  • the switching panel is not limited to this, and may be any one that can switch between the transmissive state and the reflective state depending on the voltage application state.
  • an EC panel using an electrochromic (EC) material may be used.
  • the liquid crystal panel 100 may be used as the switching panel, and linearly polarized light parallel to the first transmission axis of the absorption type polarizing plate 21 may be emitted as the display light L1 of the display device 200. ..
  • the first transmission axis of the absorptive polarizing plate 21 is set to the vertical direction so that the liquid crystal panel 100 transmits the linearly polarized light in the vertical direction in the transmissive state, and Vertically polarized light may be emitted as the display light L1. According to this, even when the user D mainly wears the polarizing glass that blocks the linearly polarized light in the horizontal direction, it does not hinder the visual recognition of the peripheral captured image.
  • the outside from the rear of the vehicle A (generally in the ⁇ X direction) is arranged so as to surround the emitting portion 210 that emits the display light L1 of the display device 200.
  • a light blocking unit 220 that blocks the light L3 may be provided.
  • the light shielding part 220 is made of, for example, a collar-shaped member formed of a black resin material or a metal material, but the shape and the like are not limited to this. According to this, the visibility of the peripheral captured image can be further enhanced.
  • the first transmission axis of the absorption type polarizing plate 21 and the second transmission axis of the reflection type polarizing plate 22 are set to be parallel to each other, and the reflection is performed when the driving voltage is not applied.
  • an example (normal reflection) has been described in which the state becomes a transmission state when the drive voltage is applied, the present invention is not limited to this.
  • the first transmission axis of the absorptive polarizing plate 21 and the second transmission axis of the reflective polarizing plate 22 are set substantially orthogonal to each other so that the liquid crystal panel 100 is in a reflective state when a driving voltage is applied, and the driving voltage is applied.
  • the liquid crystal panel 100 may be configured so as to be in a transmissive state in the absence (normally transparent). In the case of normally transmitting, the liquid crystal panel 100 can be switched between a reflective state and a transmissive state as follows.
  • the reflected light passes through the liquid crystal layer 13 again as it is, and also passes through the absorption type polarizing plate 21 having the first transmission axis substantially orthogonal to the reflection axis. In this way, the liquid crystal panel 100 functions as a mirror in the reflective state.
  • the active area of the liquid crystal panel 100 may be divided into a plurality of areas, and the transmission state and the reflection state may be switched for each divided area.
  • two divided areas may be provided on the left and right sides, one of which is in a reflective state to be the real landscape visual recognition mode, and the other of which is in a transmissive state to be the peripheral captured image visual confirmation mode.
  • an image such as vehicle information may be appropriately displayed on the display device 200 in addition to the peripheral captured image.
  • at least one of the transparent electrodes 11a and 12a is divided for each divided area.
  • the voltage may be applied to the liquid crystal layer 13 via the transparent electrodes 11a and 12a by either a passive or active driving method.
  • the liquid crystal element 10 is a TN type liquid crystal having a twist angle of 90°
  • the twist angle may be less than 90° or may be greater than 90° as long as the reflective state and the transmissive state described above can be realized by applying a voltage to the liquid crystal layer 13.
  • the liquid crystal element 10 may be of STN (Super Twisted Nematic) type. If the reflective state and the transmissive state can be realized by applying a voltage to the liquid crystal layer 13, the first transmission axis of the absorption type polarizing plate 21 and the second transmission axis of the reflection type polarizing plate 22 are , And the rubbing direction of the alignment film does not have to be parallel or orthogonal. It is also possible to appropriately shift each optical axis in consideration of the viewing angle characteristic in the transmissive state and the reflective characteristic in the reflective state.
  • Electronic mirror device 100 Liquid crystal panel (switching panel) 200
  • Display device 300 Concave mirror 400
  • Control unit 500 Storage unit 600
  • I/O interface A Vehicle L1
  • Display light L2 Light from real landscape

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

The purpose of the present invention is to enable switching, with a simpler structure, between displaying of a vehicle surroundings image through a picture and displaying of a vehicle surroundings image by reflection of light from the real scenery. An electronic mirror device (1) according to the present invention is provided with: a display (200) that emits display light indicating a surrounding-captured picture capturing the surroundings of a vehicle (A); a concave mirror (300) that reflects the display light emitted from the display (200); and a liquid crystal panel (100) that is disposed between the display (200) and the concave mirror (300) and that can switch between a transmission state and a reflection state in accordance with application of a voltage.

Description

電子ミラー装置Electronic mirror device
 本発明は、電子ミラー装置に関する。 The present invention relates to an electronic mirror device.
 特許文献1には、凹面鏡の後方にその焦点距離よりも短い距離に表示素子を配置し、凹面鏡の奥に虚像を表示する自動車用電子ミラーが開示されている。これによれば、従来の鏡式と同様に虚像に奥行きを与えて遠方との目のピントを切り替える距離を低減し、後方や側方の像を見やすくすることができる。 Patent Document 1 discloses an electronic mirror for an automobile, in which a display element is arranged behind a concave mirror at a distance shorter than its focal length, and a virtual image is displayed behind the concave mirror. According to this, similarly to the conventional mirror system, it is possible to give the virtual image a depth and reduce the distance for switching the focus of the eyes to the distant one, so that the rear and side images can be easily seen.
特開2018-55075号公報JP, 2018-55075, A
 この種の電子ミラー装置は、画像表示装置の故障時やユーザの好みによる選択のため、画像による車両周辺の像の表示と、従来の車両周辺からの外光の反射による車両周辺の像の表示とが切り替え可能であることが望まれる。特許文献1には、その切り替え方法として凹面鏡裏面に平面鏡を配置するか、凹面鏡の裏面を平面鏡として表裏反転を行うことが述べられているものの、反転可能とするために装置の複雑化や大型化を招く点で課題がある。 This kind of electronic mirror device displays an image around the vehicle by an image and a conventional image around the vehicle due to reflection of external light from the surroundings of the vehicle for selection when the image display device fails or is selected by the user. It is desirable that and can be switched. As a switching method, Patent Document 1 describes arranging a plane mirror on the back surface of the concave mirror or inverting the front surface and the back surface of the concave mirror by using the back surface of the concave mirror as a plane mirror. There is a problem in that
 本開示は、上記実情に鑑みてなされたものであり、より簡素な構成によって画像による車両周辺の像の表示と実風景からの光の反射による車両周辺の像の表示とを切り替え可能とする電子ミラー装置を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and is an electronic device capable of switching between a display of an image around the vehicle by an image and a display of an image around the vehicle by reflection of light from an actual landscape with a simpler configuration. An object is to provide a mirror device.
 上記目的を達成するため、本開示に係る電子ミラー装置は、車両の周辺を撮像した周辺撮像画像を示す表示光を出射する表示器と、
 前記表示器から出射された前記表示光を反射する凹面鏡と、
 前記表示器と前記凹面鏡との間に配置され、電圧の印加に応じて透過状態と反射状態とを切り替え可能な切り替えパネルと、
を備える。
In order to achieve the above object, an electronic mirror device according to an embodiment of the present disclosure includes a display that emits display light indicating a peripheral captured image that captures the periphery of a vehicle,
A concave mirror that reflects the display light emitted from the display,
A switching panel disposed between the display and the concave mirror and capable of switching between a transmissive state and a reflective state in response to application of a voltage,
Equipped with.
 本開示に係る電子ミラー装置によれば、より簡素な構成によって画像による車両周辺の像の表示と実風景からの光の反射による車両周辺の像の表示とを切り替え可能となる。 According to the electronic mirror device according to the present disclosure, it is possible to switch between the image display of the image around the vehicle and the image display of the image around the vehicle by reflection of light from the actual landscape with a simpler configuration.
本開示の実施形態に係る電子ミラー装置を搭載した車両の概略図である。1 is a schematic diagram of a vehicle equipped with an electronic mirror device according to an embodiment of the present disclosure. 図1に示す電子ミラー装置の機能を示すブロック図である。It is a block diagram which shows the function of the electronic mirror apparatus shown in FIG. 図1に示す電子ミラー装置の液晶パネルを示す概略断面図である。It is a schematic sectional drawing which shows the liquid crystal panel of the electronic mirror apparatus shown in FIG. 図1に示す電子ミラー装置の凹面鏡と液晶パネルの位置関係を示す図である。FIG. 3 is a diagram showing a positional relationship between a concave mirror and a liquid crystal panel of the electronic mirror device shown in FIG. 1. 図1に示す電子ミラー装置の透過状態を示す図である。It is a figure which shows the transmission state of the electronic mirror apparatus shown in FIG. 図1に示す電子ミラー装置の反射状態を示す図である。It is a figure which shows the reflective state of the electronic mirror apparatus shown in FIG. 図5Aに示す透過状態における液晶パネルを示す図である。It is a figure which shows the liquid crystal panel in the transmission state shown to FIG. 5A. 図5Bに示す反射状態における液晶パネルを示す図である。It is a figure which shows the liquid crystal panel in the reflective state shown in FIG. 5B. 本開示の他の実施形態に係る電子ミラー装置の表示器を示す側面図である。FIG. 8 is a side view showing a display of an electronic mirror device according to another embodiment of the present disclosure.
 本開示の実施形態を、図面を参照して説明する。 Embodiments of the present disclosure will be described with reference to the drawings.
 図1は、本開示の実施形態に係る電子ミラー装置1を搭載した車両Aの概略図であり、車両Aを向かって右側方から見た状態を示している。図2は、電子ミラー装置1の機能を示すブロック図である。以下、図1における車両Aの前後方向をX方向(前方向を+X方向、後ろ方向を-X方向とする)、左右方向をY方向(左方向を+Y方向、右方向を-Y方向とする)、上下方向をZ方向(上方向を+Z方向、下方向を-Z方向とする)として説明を述べる。 1 is a schematic diagram of a vehicle A equipped with an electronic mirror device 1 according to an embodiment of the present disclosure, and shows a state in which the vehicle A is viewed from the right side. FIG. 2 is a block diagram showing the functions of the electronic mirror device 1. Hereinafter, the front-rear direction of the vehicle A in FIG. 1 is the X direction (the front direction is the +X direction, the rear direction is the -X direction), and the left-right direction is the Y direction (the left direction is the +Y direction and the right direction is the -Y direction). ), and the vertical direction is the Z direction (the upward direction is the +Z direction and the downward direction is the -Z direction).
 電子ミラー装置1は、車両Aの車室内前方に配置されるものであり、液晶パネル100と、表示器200と、凹面鏡300と、を備える。電子ミラー装置1は、これらに加え、その機能として、制御部400と、記憶部500と、I/Oインターフェース600と、を備える。電子ミラー装置1は、車両Aの後方や側方を含む周辺を撮像した周辺撮像画像を主に運転席に着座した状態の運転者が想定される使用者Dに視認させる周辺撮像画像視認モードと、車両Aの主に後方や側方の実風景を反射して使用者に視認させる実風景視認モードと、を切り替え可能に構成される。 The electronic mirror device 1 is arranged in front of the vehicle interior of the vehicle A, and includes a liquid crystal panel 100, a display device 200, and a concave mirror 300. In addition to these, the electronic mirror device 1 includes a control unit 400, a storage unit 500, and an I/O interface 600 as its functions. The electronic mirror device 1 has a peripheral captured image viewing mode in which a user D, who is supposed to be a driver seated in the driver's seat, visually recognizes the captured peripheral images including the rear and sides of the vehicle A. It is configured to be able to switch between a real scenery visualizing mode in which a real scenery mainly behind or on the side of the vehicle A is reflected and visually recognized by the user.
 液晶パネル100は、車両Aの車室内のフロントウィンドシールドA1付近に凹面鏡300とともに配置されるものであり、車両Aの前後方向において、表示器200と凹面鏡300との間に配置される。また、使用者Dとの位置関係で言うと、液晶パネル100は、使用者Dと凹面鏡300との間に配置されるとも言える。この実施形態に係る液晶パネル100は、ねじれネマティック(TN(Twisted Nematic))型の液晶パネルであり、概略断面視で図3に示すように構成されている。液晶パネル100は、本開示の切り替えパネルの一例であり、制御部400の電圧印加制御のもとで電圧の印加に応じて透過状態と反射状態に切替え可能に構成されている。液晶パネル100の透過状態及び反射状態については、あとで詳述する。 The liquid crystal panel 100 is arranged together with the concave mirror 300 in the vicinity of the front windshield A1 in the vehicle interior of the vehicle A, and is arranged between the display device 200 and the concave mirror 300 in the front-rear direction of the vehicle A. Further, in terms of the positional relationship with the user D, it can be said that the liquid crystal panel 100 is arranged between the user D and the concave mirror 300. The liquid crystal panel 100 according to this embodiment is a twisted nematic (TN) type liquid crystal panel, and is configured as shown in FIG. 3 in a schematic sectional view. The liquid crystal panel 100 is an example of a switching panel of the present disclosure, and is configured to be switchable between a transmissive state and a reflective state in response to voltage application under the voltage application control of the control unit 400. The transmission state and reflection state of the liquid crystal panel 100 will be described in detail later.
 なお、以下では、説明の理解を容易とするため、液晶パネル100の使用者D側(概ね-X方向)を「表側」、その反対側(概ね+X方向)を「裏側」とし、各部を説明する。また、図面の見易さを考慮して、図3においては、適宜、断面を示すハッチングを省略した。 In the following description, in order to facilitate understanding of the description, the user D side (generally −X direction) of the liquid crystal panel 100 is defined as “front side”, and the opposite side (generally +X direction) is defined as “back side”, and each part is described. To do. Further, in view of the viewability of the drawing, hatching showing a cross section is appropriately omitted in FIG.
 液晶パネル100は、図3に示すように、液晶素子10と、液晶素子10の表側に位置する吸収型偏光板21と、液晶素子10の裏側に位置する反射型偏光板22と、を備える。図示しないが、平面視における液晶パネル100は、例えば、略矩形状をなしている。 As shown in FIG. 3, the liquid crystal panel 100 includes a liquid crystal element 10, an absorptive polarizing plate 21 located on the front side of the liquid crystal element 10, and a reflective polarizing plate 22 located on the back side of the liquid crystal element 10. Although not shown, the liquid crystal panel 100 in plan view has, for example, a substantially rectangular shape.
 液晶素子10は、図3に示すように、第1基板11と、第2基板12と、液晶層13と、を備える。 The liquid crystal element 10 includes, as shown in FIG. 3, a first substrate 11, a second substrate 12, and a liquid crystal layer 13.
 第1基板11及び第2基板12は、互いに対向する一対の透明基板であり、例えば、ガラス、プラスチック等から構成されている。第1基板11と第2基板12とは、液晶層13を挟んで対向するように、且つ、互いの主面(対向面)が平行となるように配置されている。第1基板11は、液晶層13の表側に位置する。 The first substrate 11 and the second substrate 12 are a pair of transparent substrates facing each other, and are made of, for example, glass, plastic, or the like. The first substrate 11 and the second substrate 12 are arranged so as to be opposed to each other with the liquid crystal layer 13 interposed therebetween, and their main surfaces (opposing surfaces) are parallel to each other. The first substrate 11 is located on the front side of the liquid crystal layer 13.
 第1基板11の液晶層13側には、透明電極11aが設けられている。第2基板12の液晶層13側には、透明電極12aが設けられている。透明電極11a,12aは、スパッタ、蒸着、エッチング等の公知の手法により形成されている。この実施形態においては、透明電極11a,12aは、各々、対応する基板面にベタ状に形成され、平面視で略矩形状をなしている。透明電極11a,12aは、酸化インジウムを主成分とするITO(Indium Tin Oxide)膜等から構成されている。 A transparent electrode 11 a is provided on the liquid crystal layer 13 side of the first substrate 11. A transparent electrode 12a is provided on the liquid crystal layer 13 side of the second substrate 12. The transparent electrodes 11a and 12a are formed by a known method such as sputtering, vapor deposition, and etching. In this embodiment, each of the transparent electrodes 11a and 12a is formed in a solid shape on the corresponding substrate surface and has a substantially rectangular shape in a plan view. The transparent electrodes 11a and 12a are made of an ITO (Indium Tin Oxide) film containing indium oxide as a main component.
 また、第1基板11及び第2基板12の各々には、図示しない絶縁膜や配向膜が形成されている。絶縁膜は、シリコン系の絶縁膜からなり、透明電極11a,12aの各々を液晶層13側から覆うように形成されている。また、絶縁膜と液晶層13との間には、配向膜が形成されている。つまり、第1基板11には、透明電極11a、絶縁膜、及び配向膜が積層形成されている。また、第2基板12には、透明電極12a、絶縁膜、及び配向膜が積層形成されている。 Further, an insulating film and an alignment film (not shown) are formed on each of the first substrate 11 and the second substrate 12. The insulating film is made of a silicon-based insulating film and is formed so as to cover each of the transparent electrodes 11a and 12a from the liquid crystal layer 13 side. An alignment film is formed between the insulating film and the liquid crystal layer 13. That is, the transparent electrode 11a, the insulating film, and the alignment film are laminated on the first substrate 11. Further, on the second substrate 12, a transparent electrode 12a, an insulating film, and an alignment film are laminated.
 配向膜は、液晶層13と接し、液晶層13が含む液晶分子13a(図6A、図6Bにおいて模式的に表した)の配向状態を規定するためのものであり、例えばポリイミドから、公知の方法(例えば、フレクソ印刷)によって形成される。配向膜には、ラビング処理が施されている。この実施形態においては、表側の配向膜(つまり、第1基板11に形成された配向膜)のラビング方向と、裏側(つまり、第2基板12に形成された配向膜)のラビング方向とは、基板法線方向(第1基板11と第2基板12の対向面の法線方向)から見て略直交(丁度、直交も含む)する。このようにラビング処理が施された両配向膜により、液晶分子13aの配向が規制されている。なお、配向膜に施される配向処理は、ラビング処理に限らず、光配向処理、突起配向処理等の他の公知の処理によってもよい。 The alignment film is in contact with the liquid crystal layer 13 and is for defining the alignment state of the liquid crystal molecules 13a (schematically shown in FIGS. 6A and 6B) included in the liquid crystal layer 13. For example, from polyimide, a known method is used. (For example, flexo printing). The alignment film is subjected to rubbing treatment. In this embodiment, the rubbing direction of the front side alignment film (that is, the alignment film formed on the first substrate 11) and the rubbing direction of the back side (that is, the alignment film formed on the second substrate 12) are When viewed from the substrate normal line direction (the normal line direction of the facing surfaces of the first substrate 11 and the second substrate 12), they are substantially orthogonal (just including the orthogonal). The alignment of the liquid crystal molecules 13a is regulated by both alignment films that have been subjected to the rubbing treatment in this way. Note that the alignment treatment applied to the alignment film is not limited to the rubbing treatment, and may be any other known treatment such as a photo-alignment treatment or a protrusion alignment treatment.
 液晶層13は、第1基板11及び第2基板12を接合するためのシール材(図示せず)と両基板とによって形成される密閉空間に液晶材が封入されることによって形成される。液晶層13の厚み(セルギャップ)は、第1基板11と第2基板12との間に設けられたスペーサ(図示せず)によって規定されている。液晶層13の液晶分子13aは、配向膜の配向規制力により、その長軸の向きが液晶層13の第1基板11側の端部と第2基板12側の端部とで90°ねじれる(ツイスト角が90°)とともに、一方の基板側から他方の基板側にいくにつれて少しずつ回転(旋回)するように配向する(カイラル構造)。このようにして、電圧無印加時における液晶層13は、カイラリティを有する。 The liquid crystal layer 13 is formed by enclosing the liquid crystal material in a closed space formed by a sealing material (not shown) for joining the first substrate 11 and the second substrate 12 and both substrates. The thickness (cell gap) of the liquid crystal layer 13 is defined by a spacer (not shown) provided between the first substrate 11 and the second substrate 12. The liquid crystal molecules 13a of the liquid crystal layer 13 are twisted by 90° between the ends of the liquid crystal layer 13 on the first substrate 11 side and the second substrate 12 side due to the alignment regulating force of the alignment film. With a twist angle of 90°, the orientation is such that it gradually rotates (turns) from one substrate side to the other substrate side (chiral structure). In this way, the liquid crystal layer 13 has chirality when no voltage is applied.
 吸収型偏光板21は、透過軸(以下、第1透過軸ともいう)と、第1透過軸と直交する吸収軸とを有する。吸収型偏光板21は、入射した光のうち、第1透過軸と平行な偏光方向の光を透過させる。 The absorption type polarizing plate 21 has a transmission axis (hereinafter, also referred to as a first transmission axis) and an absorption axis orthogonal to the first transmission axis. The absorption type polarizing plate 21 transmits, of the incident light, light having a polarization direction parallel to the first transmission axis.
 反射型偏光板22は、透過軸(以下、第2透過軸ともいう)と、第2透過軸と直交する反射軸とを有する。反射型偏光板22は、入射した光のうち、第2透過軸と平行な偏光方向の光を透過させ、反射軸と平行な偏光方向の光を反射させる。 The reflective polarizing plate 22 has a transmission axis (hereinafter, also referred to as a second transmission axis) and a reflection axis orthogonal to the second transmission axis. Of the incident light, the reflective polarizing plate 22 transmits light having a polarization direction parallel to the second transmission axis and reflects light having a polarization direction parallel to the reflection axis.
 この実施形態では、基板法線方向から見て、吸収型偏光板21の第1透過軸と、反射型偏光板22の第2透過軸とが互いに略平行(丁度、平行も含む)となるように、両偏光板は配置されている(平行ニコル配置)。また、表側の配向膜(つまり、第1基板11に形成された配向膜)のラビング方向と、吸収型偏光板21の吸収軸が沿う方向とが、平行となるように設定されている。 In this embodiment, the first transmission axis of the absorptive polarizing plate 21 and the second transmission axis of the reflective polarizing plate 22 are substantially parallel to each other (including just parallel) when viewed from the substrate normal direction. Both polarizing plates are arranged (parallel Nicol arrangement). Further, the rubbing direction of the front side alignment film (that is, the alignment film formed on the first substrate 11) and the direction along which the absorption axis of the absorptive polarizing plate 21 runs are set to be parallel.
 吸収型偏光板21は、第1基板11の表側の面に、第1透明粘着膜31を介して貼り付けられている。反射型偏光板22は、第2基板12の裏側の面に、第2透明粘着膜32を介して貼り付けられている。なお、液晶素子10と各偏光板の間に、位相差板などの光学素子を設けてもよい。この場合は、液晶素子10と偏光板の間に位置する光学素子に、当該偏光板を貼り付ければよい。 The absorption type polarizing plate 21 is attached to the front surface of the first substrate 11 with the first transparent adhesive film 31 interposed therebetween. The reflective polarizing plate 22 is attached to the back surface of the second substrate 12 via the second transparent adhesive film 32. An optical element such as a retardation plate may be provided between the liquid crystal element 10 and each polarizing plate. In this case, the polarizing plate may be attached to an optical element located between the liquid crystal element 10 and the polarizing plate.
 第1透明粘着膜31、第2透明粘着膜32は、各々、例えば、アクリル系の透明粘着剤(アクリル系ポリマー)等から構成されている。第1透明粘着膜31は、吸収型偏光板21の第1基板11に貼り付けられる面に、透明粘着剤を塗工することで形成される。第2透明粘着膜32は、反射型偏光板22の第2基板12に貼り付けられる面に、透明粘着剤を塗工することで形成される。 The first transparent adhesive film 31 and the second transparent adhesive film 32 are each made of, for example, an acrylic transparent adhesive (acrylic polymer). The first transparent adhesive film 31 is formed by applying a transparent adhesive to the surface of the absorptive polarizing plate 21 to be attached to the first substrate 11. The second transparent adhesive film 32 is formed by applying a transparent adhesive to the surface of the reflective polarizing plate 22 that is attached to the second substrate 12.
 表示器200は、車両Aの車室内のルーフA2付近に配置されるものであり、液晶パネル100及び凹面鏡300よりも車両A後方側(-X方向)かつ上方側(+Z方向)に位置するものである。表示器200は、制御部400の画像表示制御のもとで前記周辺撮像画像を表示し、前記周辺撮像画像を示す表示光L1(図5A参照)を凹面鏡300に向けて出射可能な表示器である。具体的には、TFT(Thin Film Transistor)型の液晶表示器や有機EL(Electro-Luminescence)表示器が挙げられる。また、表示器200は、プロジェクタであってもよい。 The display device 200 is disposed in the vicinity of the roof A2 in the vehicle interior of the vehicle A, and is located on the rear side (-X direction) and the upper side (+Z direction) of the vehicle A with respect to the liquid crystal panel 100 and the concave mirror 300. Is. The display device 200 is a display device capable of displaying the peripheral captured image under the image display control of the control unit 400 and emitting display light L1 (see FIG. 5A) indicating the peripheral captured image toward the concave mirror 300. is there. Specific examples thereof include a TFT (Thin Film Transistor) type liquid crystal display and an organic EL (Electro-Luminescence) display. Further, the display device 200 may be a projector.
 凹面鏡300は、車両Aの車室内のフロントウィンドシールドA1付近に液晶パネル100とともに配置されるものであり、液晶パネル100及び表示器200よりも車両A前方側(+X方向)に配置される。なお、液晶パネル100及び凹面鏡300は、図示しない共通のケース(筐体)に収容される。図4は、液晶パネル100と凹面鏡300との車両Aの前後方向(X方向)における位置関係を示す。液晶パネル100は、凹面鏡300と比較して、より下向き(-Z方向)に傾けられる。すなわち、液晶パネル100の上端110と凹面鏡300の上端310との間の水平方向の第1の長さDS1は、液晶パネル100の下端120と凹面鏡300の下端320との間の水平方向の第2の長さDS2よりも大きい(DS1>DS2)。このような位置関係で液晶パネル100と凹面鏡300とを配置した理由については後で述べる。 The concave mirror 300 is arranged near the front windshield A1 in the vehicle interior of the vehicle A together with the liquid crystal panel 100, and is arranged on the front side (+X direction) of the vehicle A with respect to the liquid crystal panel 100 and the display 200. The liquid crystal panel 100 and the concave mirror 300 are housed in a common case (housing) not shown. FIG. 4 shows the positional relationship between the liquid crystal panel 100 and the concave mirror 300 in the front-rear direction (X direction) of the vehicle A. The liquid crystal panel 100 is tilted more downward (−Z direction) than the concave mirror 300. That is, the first horizontal length DS1 between the upper end 110 of the liquid crystal panel 100 and the upper end 310 of the concave mirror 300 is equal to the second horizontal length DS1 between the lower end 120 of the liquid crystal panel 100 and the lower end 320 of the concave mirror 300. Is longer than DS2 (DS1>DS2). The reason why the liquid crystal panel 100 and the concave mirror 300 are arranged in such a positional relationship will be described later.
 制御部400は、例えばマイクロコンピュータなどの1つまたは複数の演算処理回路、周辺回路及びプログラムを含む。より具体的には、制御部400は、ハードウェアとして制御部400が実行する処理(電子ミラー装置1全体の制御など)を実際に行うCPUと、CPUのメインメモリとして機能するRAMと、制御部400に後述の処理などを実行させる各種プログラムを記憶するROMと、制御部400に入出力される情報(信号)をCPU用にデジタル変換したり出力用にアナログ変換したりする各種変換器と、を備える。制御部400は、CPUに加えて、制御部400が行う処理の一部をCPUに代わって実行するための各種専用回路(例えば、画像処理回路など)を備えても良い。また、制御部400は、ソフトウェアとして制御部400が実行する処理を行うためのプログラムを備える。 The control unit 400 includes one or more arithmetic processing circuits such as a microcomputer, peripheral circuits, and programs. More specifically, the control unit 400 includes, as hardware, a CPU that actually performs processing (such as control of the entire electronic mirror device 1) executed by the control unit 400, a RAM that functions as a main memory of the CPU, and a control unit. A ROM that stores various programs that cause the 400 to execute processing described below, and various converters that digitally convert information (signals) input/output to/from the control unit 400 for the CPU or analog conversion for output. Equipped with. In addition to the CPU, the control unit 400 may include various dedicated circuits (for example, an image processing circuit) for executing a part of the processing performed by the control unit 400 on behalf of the CPU. In addition, the control unit 400 includes a program as software for executing the process executed by the control unit 400.
 記憶部500は、制御部400が処理を実行する際に使用するプログラムや処理に用いるデータなどを格納する。記憶部500は、フラッシュメモリなどのデータを書き換え可能な不揮発性記憶媒体などを含んで構成される。記憶部500は、メモリーカードなどの着脱容易なものを含んでもよい。 The storage unit 500 stores a program used when the control unit 400 executes a process, data used for the process, and the like. The storage unit 500 is configured to include a rewritable non-volatile storage medium such as a flash memory. The storage unit 500 may include a memory card or the like that is easily removable.
 I/Oインターフェース600は、有線接続あるいは無線接続にて、車両Aに備えられる操作部2、撮像部3及びその他の車両A内の機器との間で情報の入出力を行うためのハードウェアインターフェース及びソフトウェアインターフェースである。通信により、I/Oインターフェース600は、操作部2から電子ミラー装置1の透過状態と反射状態との切り替え操作、撮像部3から前記周辺撮像画像などの各種情報を取得し、制御部400に送信する。操作部2は、例えば押ボタンスイッチやタッチパネルであり、使用者Dの操作を受け付けるものである。操作部2は、電子ミラー装置1を含む車両A内の各種機器を操作可能であってもよく、電子ミラー装置1の操作を専用に行うものであってもよい。撮像部3は、車両Aの車室内及び/あるいは車両Aの車体に設けられるカメラであり、車両Aの後方や側方を含む周辺を撮像し、前記周辺撮像画像を得る。 The I/O interface 600 is a hardware interface for inputting/outputting information to/from the operation unit 2, the image pickup unit 3, and other devices in the vehicle A provided in the vehicle A by wired or wireless connection. And a software interface. Through communication, the I/O interface 600 acquires various kinds of information such as a switching operation between the transmission state and the reflection state of the electronic mirror device 1 from the operation unit 2 and the peripheral captured image from the image capturing unit 3, and transmits the information to the control unit 400. To do. The operation unit 2 is, for example, a push button switch or a touch panel, and receives an operation of the user D. The operation unit 2 may be capable of operating various devices in the vehicle A including the electronic mirror device 1, or may be a unit dedicated to operating the electronic mirror device 1. The image capturing unit 3 is a camera provided in the vehicle interior of the vehicle A and/or in the vehicle body of the vehicle A, and captures an image of the periphery of the vehicle A including the rear and sides thereof to obtain the peripheral captured image.
 以上のように、電子ミラー装置1が構成されている。 The electronic mirror device 1 is configured as described above.
 次に、電子ミラー装置1の前記周辺撮像画像視認モードと、前記実風景視認モードとの切り替えとこれらモードの切り替えを実行するための、液晶パネル100の透過状態と反射状態との切り替えについて図5A、図5B、図6A、図6Bを用いて説明する。図5Aは前記周辺撮像画像視認モードの電子ミラー装置1を示し、図5Bは前記実風景視認モードの電子ミラー装置1を示す。図6Aは、透過状態の液晶パネル100を示し、図6Bは、反射状態の液晶パネル100を示す。なお、図6A、図6Bにおいては、適宜、断面を示すハッチングを省略し、適宜の部材を省略した。 Next, regarding switching between the peripheral captured image viewing mode of the electronic mirror device 1 and the actual landscape viewing mode, and switching between the transmissive state and the reflective state of the liquid crystal panel 100 in order to switch between these modes, FIG. 5A. , FIG. 5B, FIG. 6A, and FIG. 6B. 5A shows the electronic mirror device 1 in the peripheral captured image viewing mode, and FIG. 5B shows the electronic mirror device 1 in the real landscape viewing mode. 6A shows the liquid crystal panel 100 in the transmissive state, and FIG. 6B shows the liquid crystal panel 100 in the reflective state. 6A and 6B, hatching showing a cross section is omitted as appropriate, and appropriate members are omitted.
(周辺撮像画像視認モード)
 図5Aに示す前記周辺撮像画像視認モードにおいて、表示器200は、制御部400の画像表示制御のもとで前記周辺撮像画像を表示し、前記周辺撮像画像を示す表示光L1を凹面鏡300に向けて(概ね+X方向)出射する。
 表示器200から出射された表示光L1は、液晶パネル100に達する。このとき、制御部400の電圧印加制御のもと液晶パネル100を透過状態とする。液晶パネル100は、透過状態においては、表示器200の表示光L1を透過させる。液晶パネル100を透過した表示光L1は、凹面鏡300に達し、凹面鏡300で拡大して反射される。凹面鏡300で反射された表示光L1は、再度液晶パネル100を透過し、アイボックスEBに達する。アイボックスEBは、運転席に着座した状態の使用者Dの視点位置の範囲として設定される上下及び左右方向(YZ平面)の領域である。これにより、使用者Dは、前記周辺撮像画像視認モードにおいて、自身の視点位置をアイボックスEB内に置くことで、前記周辺撮像画像を奥行きのある(概ね+X方向の遠方に位置する)虚像Vとして視認することができる。これによれば、使用者Dは、車両A前方の風景などの遠景から前記周辺撮像画像(虚像V)に視線を移した場合であっても目のピントを容易に調整できる。
(Peripheral imaging image viewing mode)
In the peripheral captured image viewing mode shown in FIG. 5A, the display device 200 displays the peripheral captured image under the image display control of the control unit 400, and directs the display light L1 indicating the peripheral captured image to the concave mirror 300. (Approximately +X direction).
The display light L1 emitted from the display device 200 reaches the liquid crystal panel 100. At this time, the liquid crystal panel 100 is set to the transmissive state under the voltage application control of the control unit 400. The liquid crystal panel 100 transmits the display light L1 of the display device 200 in the transmissive state. The display light L1 transmitted through the liquid crystal panel 100 reaches the concave mirror 300, is magnified and reflected by the concave mirror 300. The display light L1 reflected by the concave mirror 300 again passes through the liquid crystal panel 100 and reaches the eye box EB. The eye box EB is an area in the vertical and horizontal directions (YZ plane) set as the range of the viewpoint position of the user D who is seated in the driver's seat. Thereby, the user D puts the viewpoint image of himself/herself in the eye box EB in the peripheral captured image visual recognition mode, so that the peripheral captured image has a virtual image V with a depth (positioned at a distance in the +X direction). Can be seen as. According to this, the user D can easily adjust the focus of the eyes even when the line of sight is shifted from the distant view such as the scenery in front of the vehicle A to the peripheral captured image (virtual image V).
(液晶パネルの透過状態)
 ここで、液晶パネル100の透過状態について図6Aを用いて詳しく述べる。駆動電圧の印加時においては、液晶パネル100の液晶分子13aは、電圧の印加方向(基板法線方向)に沿うように配向し、そのカイラリティが失われる。この状態で、表示光L1が液晶パネル100の表側(概ね-X方向)から入射すると、吸収型偏光板21を透過して第1透過軸と平行な直線偏光となるが、液晶層13を透過しても偏光方向は変換されないため、第1透過軸と平行な第2透過軸を有する反射型偏光板22も透過する。このようにして、液晶パネル100は表示光L1を透過させる。凹面鏡300を反射した表示光L1は再度反射型偏光板22、液晶層13、吸収型偏光板21を透過して使用者Dに凹面鏡300で反射した前記周辺撮像画像の虚像Vを透かして視認させる。
(Transmission state of liquid crystal panel)
Here, the transmission state of the liquid crystal panel 100 will be described in detail with reference to FIG. 6A. When the drive voltage is applied, the liquid crystal molecules 13a of the liquid crystal panel 100 are oriented along the voltage application direction (the substrate normal direction), and the chirality is lost. In this state, when the display light L1 enters from the front side of the liquid crystal panel 100 (generally in the −X direction), it passes through the absorption type polarizing plate 21 to become linearly polarized light parallel to the first transmission axis, but passes through the liquid crystal layer 13. However, since the polarization direction is not converted, the reflective polarizing plate 22 having the second transmission axis parallel to the first transmission axis is also transmitted. In this way, the liquid crystal panel 100 transmits the display light L1. The display light L1 reflected by the concave mirror 300 is transmitted again through the reflection type polarization plate 22, the liquid crystal layer 13, and the absorption type polarization plate 21 and is visible to the user D through the virtual image V of the peripheral captured image reflected by the concave mirror 300. ..
 なお、外光が液晶パネル100の表側から入射すると、吸収型偏光板21を透過して第1透過軸と平行な直線偏光のまま液晶層13を透過するため、第1透過軸と平行な第2透過軸を有する反射型偏光板22を透過し、凹面鏡300で反射される。しかしながら、凹面鏡300の反射面形状及び設置角度は、表示器200からの表示光L1を使用者DのアイボックスEBに向かって反射するように設計されるため、凹面鏡300に入射する外光のほとんどは使用者DのアイボックスEBに達することはなく、前記周辺撮像画像の視認性をほとんど低下させない。 When external light enters from the front side of the liquid crystal panel 100, it passes through the absorptive polarizing plate 21 and the linearly polarized light parallel to the first transmission axis as it is through the liquid crystal layer 13. The light passes through the reflective polarizing plate 22 having two transmission axes and is reflected by the concave mirror 300. However, the reflection surface shape and the installation angle of the concave mirror 300 are designed to reflect the display light L1 from the display device 200 toward the eye box EB of the user D, so that most of the external light incident on the concave mirror 300 is reflected. Does not reach the eye box EB of the user D, and the visibility of the peripheral captured image is hardly reduced.
(実風景視認モード)
 図5Bに示す前記実風景視認モードにおいて、車両A後方あるいは側方の実風景からの光L2は、液晶パネル100に達する。このとき、制御部400の電圧印加制御のもと液晶パネル100を反射状態とする。液晶パネル100は、反射状態においては、実風景からの光L2を反射させる。液晶パネル100で反射された実風景からの光L2は、アイボックスEBに達する。これにより、使用者Dは、前記実風景視認モードにおいて、自身の視点位置をアイボックスEB内に置くことで、実風景を奥行きのある虚像として視認することができる。
(Real scenery viewing mode)
In the actual scenery visualizing mode shown in FIG. 5B, the light L2 from the actual scenery behind or on the side of the vehicle A reaches the liquid crystal panel 100. At this time, the liquid crystal panel 100 is brought into a reflective state under the voltage application control of the control unit 400. In the reflective state, the liquid crystal panel 100 reflects the light L2 from the actual landscape. The light L2 from the real scene reflected by the liquid crystal panel 100 reaches the eye box EB. Accordingly, the user D can visually recognize the real scenery as a virtual image with a depth by placing his or her own viewpoint position in the eye box EB in the real scenery visual recognition mode.
(液晶パネルの反射状態)
 ここで、液晶パネル100の反射状態について図6Bを用いて詳しく述べる。駆動電圧が印加されていない状態では、液晶パネル100の液晶分子13aは実質的に基板面と平行であり、液晶層13はカイラリティを有したままである。この状態で、実風景からの光L2が液晶パネル100の表側から入射すると、吸収型偏光板21を透過して第1透過軸と平行な直線偏光となり、液晶層13を透過すると、液晶層13のカイラリティにより90°偏光方向が変換されて、反射型偏光板22の反射軸に沿う直線偏光となるため、反射型偏光板22で反射される。この反射光は、液晶層13を透過して、再び偏光方向が90°変換されるため、吸収型偏光板21を透過する。このようにして、液晶パネル100は、反射状態においては鏡として機能する。以下では、反射状態の液晶パネル100のうち、鏡として機能する部分をアクティブエリアと呼ぶ。
(Reflected state of LCD panel)
Here, the reflection state of the liquid crystal panel 100 will be described in detail with reference to FIG. 6B. In the state in which the drive voltage is not applied, the liquid crystal molecules 13a of the liquid crystal panel 100 are substantially parallel to the substrate surface, and the liquid crystal layer 13 remains chiral. In this state, when the light L2 from the real scene is incident from the front side of the liquid crystal panel 100, it is transmitted through the absorption type polarizing plate 21 to become linearly polarized light parallel to the first transmission axis, and when transmitted through the liquid crystal layer 13, the liquid crystal layer 13 is transmitted. The polarization direction is changed by 90° due to the chirality and becomes linearly polarized light along the reflection axis of the reflection type polarizing plate 22, and is reflected by the reflection type polarizing plate 22. The reflected light passes through the liquid crystal layer 13 and is converted again by 90° in the polarization direction, and thus passes through the absorption type polarizing plate 21. In this way, the liquid crystal panel 100 functions as a mirror in the reflective state. In the following, of the liquid crystal panel 100 in the reflective state, the portion functioning as a mirror is called an active area.
 なお、前記実風景視認モードにおいて、表示器200は非表示状態を基本とするが、仮に表示光L1が液晶パネル100の表側から入射すると、吸収型偏光板21を透過して第1透過軸と平行な直線偏光となり、液晶層13を透過すると、90°偏光方向が変換されて、反射型偏光板22の反射軸に沿う直線偏光となるため、反射型偏光板22で反射する。しかしながら、液晶パネル100の設置角度は、実風景からの光L2を使用者DのアイボックスEBに向かって反射するように設計されるため、液晶パネル100で反射する表示光L1は使用者DのアイボックスEBに達することはなく、実風景の視認性を低下させない。 In the actual scenery viewing mode, the display 200 is basically in a non-display state, but if the display light L1 enters from the front side of the liquid crystal panel 100, it passes through the absorption type polarizing plate 21 and becomes the first transmission axis. When it becomes parallel linearly polarized light and is transmitted through the liquid crystal layer 13, the 90° polarization direction is converted and becomes linearly polarized light along the reflection axis of the reflective polarizing plate 22, so that it is reflected by the reflective polarizing plate 22. However, the installation angle of the liquid crystal panel 100 is designed so that the light L2 from the actual landscape is reflected toward the eye box EB of the user D. Therefore, the display light L1 reflected by the liquid crystal panel 100 is the light of the user D. It does not reach the eye box EB, and does not reduce the visibility of the real landscape.
 このように、電子ミラー装置1は、凹面鏡300を車両AのルーフA2付近に配置される表示器200の表示光L1をアイボックスEBに反射させるように配置し、液晶パネル100を表示器200よりも下方の実風景からの光L2をアイボックスEBに反射させるように配置する。その結果、図4で示すように、液晶パネル100の上端110と凹面鏡300の上端310との間の水平方向の第1の長さDS1は、液晶パネル100の下端120と凹面鏡300の下端320との間の水平方向の第2の長さDS2よりも大きくなる(DS1>DS2)。 As described above, in the electronic mirror device 1, the concave mirror 300 is arranged so as to reflect the display light L1 of the display device 200 arranged near the roof A2 of the vehicle A to the eye box EB, and the liquid crystal panel 100 is arranged from the display device 200. Is arranged so that the light L2 from the actual scenery below is reflected by the eye box EB. As a result, as shown in FIG. 4, the first horizontal length DS1 between the upper end 110 of the liquid crystal panel 100 and the upper end 310 of the concave mirror 300 is equal to the lower end 120 of the liquid crystal panel 100 and the lower end 320 of the concave mirror 300. Is larger than the second length DS2 in the horizontal direction between (DS1>DS2).
 このように、電子ミラー装置1は、回転機構などの複雑な切り替え機構を必要とせず、液晶パネル100を表示器200と凹面鏡300との間に配置するという、より簡素な構成によって、画像による車両周辺の像の表示(前記周辺撮像画像視認モード)と実風景からの光の反射による車両周辺の像の表示(前記実風景視認モード)とを切り替えることができる。 As described above, the electronic mirror device 1 does not need a complicated switching mechanism such as a rotation mechanism, and has a simpler configuration in which the liquid crystal panel 100 is arranged between the display device 200 and the concave mirror 300. It is possible to switch between the display of the peripheral image (the peripheral captured image visual confirmation mode) and the display of the image of the periphery of the vehicle by reflection of light from the actual landscape (the actual landscape visual recognition mode).
 なお、本開示の範囲は上記の実施形態及び図面によって限定されるものではない。これらに変更(構成要素の削除も含む)を加えることができるのはもちろんである。 Note that the scope of the present disclosure is not limited to the above embodiments and drawings. Of course, changes (including deletion of components) can be added to these.
 また、本開示の切り替えパネルとして液晶パネル100を例に挙げたが、切り替えパネルはこれに限定されず、電圧の印加状態によって透過状態と反射状態とを切り替え可能なものであればよい。他の例としては、エレクトロクロミック(EC;electrochromic)材料を用いたECパネルであってもよい。 Further, the liquid crystal panel 100 has been described as an example of the switching panel of the present disclosure, but the switching panel is not limited to this, and may be any one that can switch between the transmissive state and the reflective state depending on the voltage application state. As another example, an EC panel using an electrochromic (EC) material may be used.
 また、本開示の他の実施形態は、切り替えパネルに液晶パネル100を用いて、表示器200の表示光L1として吸収型偏光板21の第1透過軸と平行な直線偏光を出射してもよい。さらに、本開示の他の実施形態は、吸収型偏光板21の第1透過軸を鉛直方向として、液晶パネル100が前記透過状態において前記鉛直方向の直線偏光を透過するようにし、表示器200の表示光L1として鉛直方向の直線偏光を出射してもよい。これによれば、使用者Dが主に水平方向の直線偏光を遮る偏光グラスを着用している状態でも、前記周辺撮像画像の視認を妨げない。 Further, in another embodiment of the present disclosure, the liquid crystal panel 100 may be used as the switching panel, and linearly polarized light parallel to the first transmission axis of the absorption type polarizing plate 21 may be emitted as the display light L1 of the display device 200. .. Further, according to another embodiment of the present disclosure, the first transmission axis of the absorptive polarizing plate 21 is set to the vertical direction so that the liquid crystal panel 100 transmits the linearly polarized light in the vertical direction in the transmissive state, and Vertically polarized light may be emitted as the display light L1. According to this, even when the user D mainly wears the polarizing glass that blocks the linearly polarized light in the horizontal direction, it does not hinder the visual recognition of the peripheral captured image.
 また、前述したように、前記周辺撮像画像視認モードにおいて、外光のほとんどは凹面鏡300で反射されてもアイボックスEBには達しないが、表示器200の周囲付近を通過する外光は凹面鏡300で反射されてアイボックスEBに達する可能性がある。これに対し、本開示の他の実施形態は、図7で示すように、表示器200の表示光L1を出射する出射部210を囲むように、車両A後方(概ね-X方向)からの外光L3を遮る遮光部220を設けてもよい。図7において、遮光部220は、例えば黒色の樹脂材料や金属材料によって形成される鍔状部材からなるが、その形状等はこれに限定されない。これによれば、前記周辺撮像画像の視認性をより高めることができる。 Further, as described above, in the peripheral captured image visual confirmation mode, most of the external light does not reach the eye box EB even when reflected by the concave mirror 300, but the external light passing near the periphery of the display 200 is the concave mirror 300. May be reflected by and reach the eye box EB. On the other hand, according to another embodiment of the present disclosure, as shown in FIG. 7, the outside from the rear of the vehicle A (generally in the −X direction) is arranged so as to surround the emitting portion 210 that emits the display light L1 of the display device 200. A light blocking unit 220 that blocks the light L3 may be provided. In FIG. 7, the light shielding part 220 is made of, for example, a collar-shaped member formed of a black resin material or a metal material, but the shape and the like are not limited to this. According to this, the visibility of the peripheral captured image can be further enhanced.
 また、以上の説明では、液晶パネル100は、吸収型偏光板21の第1透過軸と反射型偏光板22の第2透過軸とを平行に設定し、駆動電圧が印加されていない際に反射状態となり、駆動電圧の印加時に透過状態となる例(ノーマリ反射)を示したが、これに限られない。液晶パネル100は、吸収型偏光板21の第1透過軸と、反射型偏光板22の第2透過軸とを略直交に設定し、駆動電圧の印加時に反射状態とし、駆動電圧が印加されていない状態で透過状態となるように液晶パネル100を構成してもよい(ノーマリ透過)。ノーマリ透過の例では、液晶パネル100は、次のように反射状態と透過状態とに切り替えが可能となる。 Further, in the above description, in the liquid crystal panel 100, the first transmission axis of the absorption type polarizing plate 21 and the second transmission axis of the reflection type polarizing plate 22 are set to be parallel to each other, and the reflection is performed when the driving voltage is not applied. Although an example (normal reflection) has been described in which the state becomes a transmission state when the drive voltage is applied, the present invention is not limited to this. In the liquid crystal panel 100, the first transmission axis of the absorptive polarizing plate 21 and the second transmission axis of the reflective polarizing plate 22 are set substantially orthogonal to each other so that the liquid crystal panel 100 is in a reflective state when a driving voltage is applied, and the driving voltage is applied. The liquid crystal panel 100 may be configured so as to be in a transmissive state in the absence (normally transparent). In the case of normally transmitting, the liquid crystal panel 100 can be switched between a reflective state and a transmissive state as follows.
(液晶パネルの透過状態)
 駆動電圧が印加されていない状態では、液晶パネル100の液晶分子13aは実質的に基板面と平行であり、液晶層13はカイラリティを有したままである。この状態で、表示光L1が液晶パネル100の表側から入射すると、吸収型偏光板21を透過して第1透過軸と平行な直線偏光となり、液晶層13を透過すると、液晶層13のカイラリティにより90°偏光方向が変換されて、第1透過軸と略直交する第2透過軸を有する反射型偏光板22を透過する。このようにして、液晶パネル100は、表示光L1を透過させる。
(Transmission state of liquid crystal panel)
In the state in which the drive voltage is not applied, the liquid crystal molecules 13a of the liquid crystal panel 100 are substantially parallel to the substrate surface, and the liquid crystal layer 13 remains chiral. In this state, when the display light L1 enters from the front side of the liquid crystal panel 100, it passes through the absorptive polarizing plate 21 to become linearly polarized light parallel to the first transmission axis, and when it passes through the liquid crystal layer 13, it depends on the chirality of the liquid crystal layer 13. The 90° polarization direction is converted and transmitted through the reflective polarizing plate 22 having the second transmission axis that is substantially orthogonal to the first transmission axis. In this way, the liquid crystal panel 100 transmits the display light L1.
(液晶パネルの反射状態)
 駆動電圧の印加時においては、液晶パネル100の液晶分子13aは、電圧の印加方向(基板法線方向)に沿うように配向し、そのカイラリティが失われる。この状態で、実風景からの光L2が液晶パネル100の表側から入射すると、吸収型偏光板21を透過して第1透過軸と平行な直線偏光のまま液晶層13を透過するため、第1透過軸と平行な反射型偏光板22の反射軸に沿う直線偏光となり、反射型偏光板22で反射される。この反射光は、そのまま再び液晶層13を透過して、反射軸と略直交する第1透過軸を有する吸収型偏光板21を透過する。このようにして、液晶パネル100は、反射状態においては鏡として機能する。
(Reflected state of LCD panel)
When the drive voltage is applied, the liquid crystal molecules 13a of the liquid crystal panel 100 are oriented along the voltage application direction (the substrate normal direction), and the chirality is lost. In this state, when the light L2 from the real scene enters from the front side of the liquid crystal panel 100, it passes through the absorption type polarizing plate 21 and linearly polarized light parallel to the first transmission axis, and then passes through the liquid crystal layer 13, so that the first It becomes linearly polarized light along the reflection axis of the reflection type polarizing plate 22 parallel to the transmission axis, and is reflected by the reflection type polarizing plate 22. The reflected light passes through the liquid crystal layer 13 again as it is, and also passes through the absorption type polarizing plate 21 having the first transmission axis substantially orthogonal to the reflection axis. In this way, the liquid crystal panel 100 functions as a mirror in the reflective state.
 また、本開示の他の実施形態は、液晶パネル100のアクティブエリアを複数のエリアに分割し、分割エリア毎に透過状態と反射状態の切り替えを可能としてもよい。例えば、左右2つの分割エリアを設け、一方を反射状態として前記実風景視認モードとし、もう一方を透過状態として前記周辺撮像画像視認モードとしてもよい。また、このとき表示器200に前記周辺撮像画像以外にも車両情報などの画像を適宜表示してもよい。また、液晶パネル100のアクティブエリアを複数のエリアに分割するためには、分割エリア毎に透明電極11a,12aの少なくとも一方を分割することとなる。このとき、透明電極11a,12aを介しての液晶層13への電圧の印加は、パッシブとアクティブのいずれの駆動方式であってもよい。 Further, according to another embodiment of the present disclosure, the active area of the liquid crystal panel 100 may be divided into a plurality of areas, and the transmission state and the reflection state may be switched for each divided area. For example, two divided areas may be provided on the left and right sides, one of which is in a reflective state to be the real landscape visual recognition mode, and the other of which is in a transmissive state to be the peripheral captured image visual confirmation mode. At this time, an image such as vehicle information may be appropriately displayed on the display device 200 in addition to the peripheral captured image. Further, in order to divide the active area of the liquid crystal panel 100 into a plurality of areas, at least one of the transparent electrodes 11a and 12a is divided for each divided area. At this time, the voltage may be applied to the liquid crystal layer 13 via the transparent electrodes 11a and 12a by either a passive or active driving method.
 また、以上では、液晶素子10は、ツイスト角が90°であるTN型の液晶である例を示したが、これに限られない。前述した反射状態と透過状態とが液晶層13への電圧の印加に応じて実現可能であれば、ツイスト角は、90°未満であってもよいし、90°より大きくてもよい。例えば、液晶素子10は、STN(Super Twisted Nematic)型のものであってもよい。また、反射状態と透過状態とが液晶層13への電圧の印加に応じて実現可能であれば、吸収型偏光板21の第1透過軸と、反射型偏光板22の第2透過軸とは、平行又は直交の関係でなくともよいし、これらの光学軸と配向膜のラビング方向とも、平行又は直交の関係でなくともよい。透過状態での視角特性や反射状態での反射特性を勘案して、各光学軸を適宜ずらすことも可能である。 Moreover, in the above, the example in which the liquid crystal element 10 is a TN type liquid crystal having a twist angle of 90° has been shown, but the invention is not limited to this. The twist angle may be less than 90° or may be greater than 90° as long as the reflective state and the transmissive state described above can be realized by applying a voltage to the liquid crystal layer 13. For example, the liquid crystal element 10 may be of STN (Super Twisted Nematic) type. If the reflective state and the transmissive state can be realized by applying a voltage to the liquid crystal layer 13, the first transmission axis of the absorption type polarizing plate 21 and the second transmission axis of the reflection type polarizing plate 22 are , And the rubbing direction of the alignment film does not have to be parallel or orthogonal. It is also possible to appropriately shift each optical axis in consideration of the viewing angle characteristic in the transmissive state and the reflective characteristic in the reflective state.
 以上の説明では、本発明の理解を容易にするために、公知の技術的事項の説明を適宜省略した。 In the above description, in order to facilitate understanding of the present invention, description of publicly known technical matters is appropriately omitted.
1…電子ミラー装置
100…液晶パネル(切り替えパネル)
200…表示器
300…凹面鏡
400…制御部
500…記憶部
600…I/Oインターフェース
A…車両
L1…表示光
L2…実風景からの光
1... Electronic mirror device 100... Liquid crystal panel (switching panel)
200... Display device 300... Concave mirror 400... Control unit 500... Storage unit 600... I/O interface A... Vehicle L1... Display light L2... Light from real landscape

Claims (3)

  1.  車両(A)の周辺を撮像した周辺撮像画像を示す表示光(L1)を出射する表示器(200)と、
     前記表示器(200)から出射された前記表示光(L1)を反射する凹面鏡(300)と、
     前記表示器(200)と前記凹面鏡(300)との間に配置され、電圧の印加に応じて透過状態と反射状態とを切り替え可能な切り替えパネル(100)と、
    を備える
    電子ミラー装置。
    A display (200) for emitting display light (L1) showing a peripheral captured image obtained by capturing the periphery of the vehicle (A);
    A concave mirror (300) that reflects the display light (L1) emitted from the display (200),
    A switching panel (100) disposed between the display (200) and the concave mirror (300) and capable of switching between a transmissive state and a reflective state in response to application of a voltage;
    An electronic mirror device including.
  2.  前記凹面鏡(300)の上端(310)と前記切り替えパネル(100)の上端(110)との間の第1の長さ(DS1)は、前記凹面鏡(300)の下端(320)と前記切り替えパネル(100)の下端(120)との間の第2の長さ(DS2)よりも大きい
    請求項1に記載の電子ミラー装置。
    The first length (DS1) between the upper end (310) of the concave mirror (300) and the upper end (110) of the switching panel (100) is equal to the lower end (320) of the concave mirror (300) and the switching panel. The electronic mirror device according to claim 1, wherein the second length (DS2) between the lower end (120) of the (100) is larger than the second length (DS2).
  3.  前記切り替えパネル(100)は、前記透過状態において鉛直方向の偏光を透過する液晶パネル(100)であり、
     前記表示器(200)は、前記表示光(L1)として前記鉛直方向の偏光を出射する
    請求項1に記載の電子ミラー装置。
     
    The switching panel (100) is a liquid crystal panel (100) that transmits vertically polarized light in the transmission state.
    The electronic mirror device according to claim 1, wherein the display (200) emits the vertically polarized light as the display light (L1).
PCT/JP2020/000395 2019-01-11 2020-01-09 Electronic mirror device WO2020145332A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020565194A JP7331868B2 (en) 2019-01-11 2020-01-09 Electronic mirror device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019003050 2019-01-11
JP2019-003050 2019-02-15

Publications (1)

Publication Number Publication Date
WO2020145332A1 true WO2020145332A1 (en) 2020-07-16

Family

ID=71521002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000395 WO2020145332A1 (en) 2019-01-11 2020-01-09 Electronic mirror device

Country Status (2)

Country Link
JP (1) JP7331868B2 (en)
WO (1) WO2020145332A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018055075A (en) * 2016-09-26 2018-04-05 有限会社石川光学造形研究所 Vehicle electronic mirror
DE102016220965A1 (en) * 2016-10-25 2018-04-26 Bayerische Motoren Werke Aktiengesellschaft Vehicle with camera-based rear-view mirrors
WO2018159340A1 (en) * 2017-03-03 2018-09-07 パナソニックIpマネジメント株式会社 Vehicle-mounted rearview display apparatus
JP2018205446A (en) * 2017-05-31 2018-12-27 パナソニックIpマネジメント株式会社 Display system, electronic mirror system and mobile body equipped with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018055075A (en) * 2016-09-26 2018-04-05 有限会社石川光学造形研究所 Vehicle electronic mirror
DE102016220965A1 (en) * 2016-10-25 2018-04-26 Bayerische Motoren Werke Aktiengesellschaft Vehicle with camera-based rear-view mirrors
WO2018159340A1 (en) * 2017-03-03 2018-09-07 パナソニックIpマネジメント株式会社 Vehicle-mounted rearview display apparatus
JP2018205446A (en) * 2017-05-31 2018-12-27 パナソニックIpマネジメント株式会社 Display system, electronic mirror system and mobile body equipped with the same

Also Published As

Publication number Publication date
JPWO2020145332A1 (en) 2021-12-02
JP7331868B2 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
US8259264B2 (en) Liquid crystal display device with viewing angle control areas having a black matrix that does not overlap with the data lines
JP4076934B2 (en) Liquid crystal display panel and liquid crystal display device
US9568771B2 (en) Liquid crystal device, electronic device and projector with maximum-light-intensity direction inclined from the direction normal to the substrates
KR20110081069A (en) Liquid crystal display apparatus
JP4572888B2 (en) Liquid crystal device and electronic device
JP6068052B2 (en) Liquid crystal display element
JP2012063704A (en) Display device
JP7191670B2 (en) Electronics
JPH117045A (en) Active matrix liquid crystal display device
JP2010139938A (en) Touch panel, and liquid crystal display device provided with the same
JPWO2009119865A1 (en) Display panel and camera
TWI414855B (en) Liquid crystal display device and electronic apparatus
TWI266076B (en) Reflective-transmissive liquid crystal display panel, liquid crystal display panel, and liquid crystal display apparatus
JP2019095477A (en) Vehicle-purpose inner mirror
WO2020145332A1 (en) Electronic mirror device
CN111295615A (en) Image display system
JP2007025146A (en) Liquid crystal display device, display method, and electronic apparatus
JP7292069B2 (en) Display device and mirror device
JP2012002898A (en) Three dimensional image recognition device
JP2007199366A (en) Liquid crystal display device
WO2023223660A1 (en) Camera module
EP3489743B1 (en) Liquid crystal apparatus
JP2008009019A (en) Liquid crystal display device
JP2021054208A (en) Electronic mirror device
JP5287221B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20737870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565194

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20737870

Country of ref document: EP

Kind code of ref document: A1