WO2020144972A1 - Image processing device, image processing method, and program - Google Patents

Image processing device, image processing method, and program Download PDF

Info

Publication number
WO2020144972A1
WO2020144972A1 PCT/JP2019/047019 JP2019047019W WO2020144972A1 WO 2020144972 A1 WO2020144972 A1 WO 2020144972A1 JP 2019047019 W JP2019047019 W JP 2019047019W WO 2020144972 A1 WO2020144972 A1 WO 2020144972A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
spatial frequency
image
frequency characteristic
energy
Prior art date
Application number
PCT/JP2019/047019
Other languages
French (fr)
Japanese (ja)
Inventor
哲雄 島田
竹中 克郎
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2020144972A1 publication Critical patent/WO2020144972A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments

Definitions

  • the present invention relates to an image processing device, an image processing method, and a program for processing a radiation image.
  • Radiation imaging devices are widely used for medical image diagnosis and nondestructive inspection.
  • a method is known in which a plurality of radiation images are acquired by using radiation having different energy components by using a radiation imaging apparatus, and an energy subtraction image in which a specific object portion is separated or emphasized is acquired from a difference between the plurality of radiation images. There is.
  • the first sensor unit for detecting the fluorescence obtained by converting the wavelength of the radiation by the scintillator arranged on the radiation incident surface side has a structure similar to that of a normal flat panel detector, which is favorable. It is possible to have spatial resolution.
  • the second sensor section for detecting the fluorescence obtained from the scintillator arranged on the radiation incident surface side detects the fluorescence obtained by wavelength-converting the radiation that has reached through the light-transmissive substrate having a thickness. It will be. Therefore, the second sensor unit detects the fluorescence scattered by the light-transmissive substrate, which lowers the resolution.
  • the image acquired by the first sensor unit and the image acquired by the second sensor unit have different spatial resolutions. When an energy subtraction image or a spectral imaging image is generated using these images with different spatial frequencies, the calculation is inconsistent particularly in a region including high frequency components of the spatial frequency, and the result is different from the actual structure.
  • the present invention provides a technique for improving the image quality of an image generated using a plurality of radiation images by reducing the difference in spatial frequency between the radiation images having different radiation energies.
  • a radiation image processing apparatus has the following configuration. That is, Changing means for changing the spatial frequency characteristics of at least one of the plurality of radiation images so that the spatial frequency characteristics of the plurality of radiation images obtained by different plurality of radiation energies approach each other; Processing means for generating an image of a subject using the plurality of changed radiation images, The changing unit preliminarily brings the spatial frequency characteristic measured for one radiation energy of the plurality of radiation energies close to the spatial frequency characteristic measured for another radiation energy of the plurality of radiation energies. The set process is applied to the radiation image obtained with the other radiation energy.
  • the image quality of an image generated using these plurality of radiation images is improved.
  • the accompanying drawings are included in the specification and constitute a part of the specification, illustrate the embodiments of the present invention, and are used together with the description to explain the principle of the present invention.
  • the timing chart which shows operation
  • movement flow of a radiation imaging device The figure which shows the operation
  • the figure which shows the example of pixel interpolation of a radiation imaging device The figure which shows the spatial frequency characteristic of a low energy image and a high energy image.
  • the figure explaining the other example of the change method of the spatial frequency characteristic by 3rd Embodiment The figure which shows the operation
  • movement flow of a radiation imaging device The figure which shows the example of pixel interpolation of a radiation imaging device.
  • the figure which shows the spatial frequency characteristic of a low energy image and a high energy image The figure explaining the example of the method
  • a radiation image pickup apparatus that picks up images of radiation having different energies of the same site in one image pickup is used.
  • a radiation imaging apparatus for example, the configuration of the radiation imaging apparatus described in Patent Document 2 can be used in addition to the configuration described in Patent Document 1 described above.
  • a radiation imaging apparatus having a new configuration different from that of is used.
  • These radiation imaging devices have a structure including two or more detection layers for detecting radiation in order to obtain images of different radiation energies by one irradiation of radiation. For example, a structure in which a first detection layer on the radiation irradiation side and a second detection layer behind the first detection layer are provided is used.
  • the second detection layer detects the radiation that has passed through the first detection layer
  • the radiation image detected by the first detection layer and the radiation image detected by the second detection layer are different from each other.
  • Spatial frequency characteristics are different.
  • the image quality of images (energy subtraction images, spectral imaging images, etc.) generated using radiation images of different radiation energies is improved by reducing such differences in spatial frequency characteristics. ..
  • a radiation-absorbing substance for increasing the energy difference between the radiations detected in the respective detection layers is provided between the two detection layers, such a radiation-absorbing substance is used as the radiation obtained in these two detection layers.
  • the material, thickness, etc. of the scintillator (phosphor layer) arranged in each detection layer change, the spatial frequency characteristic of the obtained radiation image changes.
  • the spatial frequency characteristic of the obtained radiation image changes even when pixel arrays having different array intervals are used for each detection layer, or when the size or shape of the light receiving surface of the conversion element is different.
  • the noise characteristic of the image changes the spatial frequency characteristic of the radiation image. In the embodiment, the difference in spatial frequency characteristics caused by these factors is reduced.
  • a description will be given using a radiation imaging apparatus that acquires a plurality of radiation images having different radiation energies at one time, but the present invention is limited to a configuration using such a radiation imaging apparatus. is not.
  • a method may be used in which one or more radiation imaging devices are used to image the same subject while changing the time and angle. That is, the present invention is not limited to the structure and technique of the radiation imaging apparatus as long as it is configured to collect a plurality of radiation images having different contrasts using a plurality of radiations having different energies and to perform energy subtraction and spectral imaging calculations. Not done.
  • an indirect type imaging panel that uses a scintillator when converting radiation into electric charges is used, but the present invention is not limited to this, and a direct type that directly converts radiation into electric charges, or It may be a combination thereof. Furthermore, the energy of the radiation applied to the same radiation imaging apparatus may be changed in a short time to capture an image.
  • ⁇ -rays, ⁇ -rays, ⁇ -rays, etc. which are beams produced by particles (including photons) emitted by radiation decay
  • a beam having the same or higher energy for example, X It may also include rays, particle rays, cosmic rays, etc.
  • FIG. 1 is a diagram showing a configuration example of a radiation imaging system 200 using the radiation imaging apparatus 210 according to the first embodiment.
  • the radiation imaging system 200 is configured to electrically capture an optical image converted from radiation and obtain an electrical signal (radiation image data) for generating a radiation image.
  • the radiation imaging system 200 includes, for example, a radiation imaging apparatus 210, a radiation source 230, an exposure controller 220, and a computer 240.
  • the radiation source 230 starts emitting radiation according to the exposure command (radiation command) from the exposure control unit 220. Radiation emitted from the radiation source 230 is applied to the radiation imaging apparatus 210 through an unillustrated body. The radiation source 230 also stops the emission of radiation according to a stop command from the exposure controller 220.
  • the radiation imaging apparatus 210 includes an imaging panel 212 and a control unit 214 that controls the imaging panel 212.
  • the control unit 214 generates a stop signal for stopping the radiation of the radiation from the radiation source 230 based on the signal obtained from the imaging panel 212.
  • the stop signal is supplied to the exposure control unit 220, and the exposure control unit 220 sends a stop command to the radiation source 230 in response to the stop signal.
  • the control unit 214 includes, for example, a PLD (abbreviation of Programmable Logic Device) such as an FPGA (abbreviation of Field Programmable Gate Array), or an ASIC (abbreviation of Application Specific) or a program for integrated general purpose integrated circuit (ASIC). It may be configured by a computer or a combination of all or a part thereof.
  • the computer 240 controls the radiation imaging device 210 and the exposure control unit 220.
  • the computer 240 also includes an image processing unit 241 that receives the radiation image data output from the radiation imaging apparatus 210 and processes the radiation image data.
  • the image processing unit 241 can generate a radiation image from the radiation image data.
  • the exposure control unit 220 has an exposure switch (not shown) as an example. When the user turns on the exposure switch, the exposure control unit 220 sends an exposure command to the radiation source 230 and also indicates the start of radiation emission. Send notification to computer 240. The computer 240 that has received the start notification notifies the control unit 214 of the radiation imaging apparatus 210 of the start of radiation emission in response to the start notification.
  • FIG. 2 shows a configuration example of the image pickup panel 212.
  • the imaging panel 212 includes the pixel array 112.
  • the pixel array 112 includes a plurality of pixels PIX each including a conversion element S arranged in a two-dimensional array for detecting radiation.
  • the pixel array 112 also has a plurality of column signal lines Sig1 to Sig4 along the column direction (vertical direction in FIG. 2) for outputting the signal generated by the conversion element S.
  • the image pickup panel 212 includes a drive circuit (row selection circuit) 114 that drives the pixel array 112, and a readout circuit 113 that detects a signal that appears on the column signal line Sig of the pixel array 112. In the configuration shown in FIG.
  • the pixel array 112 is composed of 4 rows ⁇ 4 columns of pixels PIX, but in reality, more pixels PIX can be arrayed.
  • the imaging panel 212 has dimensions of 17 inches and may have about 3000 rows by about 3000 columns of pixel PIX.
  • Each pixel PIX includes a conversion element S for detecting radiation and a switch T that connects the conversion element S and the column signal line Sig (the signal line Sig corresponding to the conversion element C among the plurality of signal lines Sig). including.
  • Each conversion element S outputs a signal corresponding to the amount of incident radiation to the column signal line Sig.
  • the conversion element S may be, for example, a MIS type photodiode that is arranged on an insulating substrate such as a glass substrate and has amorphous silicon as a main material. Further, the conversion element S may be a PIN photodiode.
  • the conversion element S may be configured as an indirect element that detects light after converting radiation into light with a scintillator. In the indirect type element, the scintillator can be shared by the plurality of pixels PIX (the plurality of conversion elements S).
  • the switch T can be composed of, for example, a transistor such as a thin film transistor (TFT) having a control terminal (gate) and two main terminals (source and drain).
  • the conversion element S has two main electrodes, one main electrode of the conversion element S is connected to one of the two main terminals of the switch T, and the other main electrode of the conversion element S has a common electrode. It is connected to the bias power supply 103 via the bias line Bs.
  • the bias power supply 103 supplies the bias voltage Vs.
  • the control terminal of the switch T of each pixel PIX arranged in the first row is connected to the gate line Vg1 arranged in the row direction (horizontal direction in FIG. 2).
  • the control terminals of the switches SW of the pixels PIX arranged in the second to fourth rows are connected to the gate lines Vg2 to Vg4, respectively.
  • a gate signal is supplied to the gate lines Vg1 to Vg4 by the drive circuit 114.
  • each pixel PIX arranged in the first column the main terminal of the switch T that is not connected to the conversion element S is connected to the column signal line Sig1 of the first column.
  • the main terminals of the switch T not connected to the conversion element S are connected to the column signal lines Sig2 to Sig4 in the second to fourth columns, respectively. ..
  • the read circuit 113 has a plurality of column amplification units CA so that one column amplification unit CA corresponds to one column signal line Sig.
  • Each column amplification unit CA may include an integrating amplifier 105, a variable amplifier 104, a sample hold circuit 107, and a buffer circuit 106.
  • the integrating amplifier 105 amplifies the signal appearing on the column signal line Sig.
  • the integrating amplifier 105 may include an operational amplifier and an integrating capacitor and a reset switch connected in parallel between the inverting input terminal and the output terminal of the operational amplifier.
  • the reference potential Vref is supplied to the non-inverting input terminal of the operational amplifier. By turning on the reset switch, the integration capacitance is reset and the potential of the column signal line Sig is reset to the reference potential Vref.
  • the reset switch can be controlled by the reset pulse RC supplied from the control unit 214.
  • the variable amplifier 104 amplifies the signal output from the integrating amplifier 105 at a set amplification factor.
  • the sample hold circuit 107 samples and holds the signal output from the variable amplifier 104.
  • the sample hold circuit 107 can be composed of a sampling switch and a sampling capacitor.
  • the buffer circuit 106 buffers (impedance-converts) the signal output from the sample hold circuit 107 and outputs it.
  • the sampling switch may be controlled by a sampling pulse supplied from the controller 214.
  • the read circuit 113 also includes a multiplexer 108 that selects and outputs signals from a plurality of column amplification units CA provided corresponding to the respective column signal lines Sig in a predetermined order.
  • the multiplexer 108 includes, for example, a shift register.
  • the shift register performs a shift operation according to the clock signal CLK supplied from the control unit 214, and the shift register selects one signal from the plurality of column amplification units CA.
  • the read circuit 113 further includes a buffer 109 that buffers (impedance-converts) the signal output from the multiplexer 108, and an AD converter 110 that converts an analog signal output from the buffer 109 into a digital signal. sell.
  • the output of the AD converter 110 that is, the radiation image data is transferred to the computer 240.
  • a scintillator that converts the radiation into visible light is provided on both the incident surface side for allowing the radiation of the substrate to enter and the back surface on the side opposite to the incident surface, respectively. It is arranged to cover the surface of.
  • the conversion element S included in each pixel PIX includes two types of conversion elements S. In the configuration shown in FIG. 2, the conversion elements S12, S14, S21, S23, S32, S34, S41, S43 are arranged to receive light from the two scintillators. In the following, when these conversion elements that receive light from two scintillators of the conversion elements S are specified, they are referred to as a first conversion element 901.
  • a light shielding layer 903 is arranged between one scintillator and each of the conversion elements S.
  • the conversion elements S11, S13, S22, S24, S31, S33, S42, S44 are arranged so that the light from one scintillator is blocked and the light from the other scintillator is received.
  • the light-blocking layer 903 is a layer that blocks light emitted from the scintillator, and may block light between the second conversion element 902 and either of the scintillator that covers the incident surface side or the back surface side of the substrate. At this time, in the second conversion element 902, the light from one scintillator may not be completely blocked. One of the scintillator that covers the incident surface side and the back surface side of the substrate and the second conversion element 902 so that the amount of light that can be received from one scintillator is smaller than that of the first conversion element 901. The light shielding layer 903 may be provided between them.
  • the light shielding layer 903 is arranged between the scintillator arranged on the incident surface side of the substrate and the second conversion element 902.
  • the low energy component is absorbed by the scintillator covering the incident surface side of the substrate, converted into visible light, and incident on each pixel PIX.
  • the second conversion element 902 is shielded from the incident surface side of the substrate, light emitted from the incident surface side of the substrate does not enter. Therefore, the light converted from the low energy component of the radiation does not enter the second conversion element 902.
  • the first conversion element 901 since the light shielding layer 903 is not arranged, the light converted from the component of low radiation energy is incident.
  • the radiation high-energy components not absorbed by the scintillator arranged on the incident surface side of the substrate are absorbed by the scintillator covering the rear surface side of the substrate and converted into visible light.
  • the back surface side of the substrate is not shielded, so that light converted from a component having a high energy in the radiation is converted into the first conversion element 901 and the second conversion element 902. It enters both of the conversion elements 902.
  • the signal due to the high energy component and the low energy component of the radiation and the signal due to the high energy component of the radiation in the second conversion element 902 are You can get each. That is, the information of different radiation energies can be held in the pixels PIX adjacent to each other. By holding the information acquired from the radiation of different energy components in the adjacent pixels PIX in this way, energy subtraction can be performed using a method described later.
  • FIGS. 3A and 3B schematically show an example of a cross-sectional structure of a pixel PIXA having a first conversion element 901 and a pixel PIXB and a pixel PIXC having a second conversion element 902.
  • the radiation is described as being incident from the upper side of the drawing, but the radiation may be incident from the lower side of the drawing.
  • the first conversion element 901 and the second conversion element 902 are arranged between the substrate 310 and the scintillator 904 arranged on the incident surface side of the substrate 310.
  • FIG. 3A in the pixel PIXB, the case where the light shielding layer 903 is arranged between the second conversion element 902 and the scintillator 904 is shown.
  • FIG. 3B in the pixel PIXC, the case where the light shielding layer 903 is arranged between the second conversion element 902 and the scintillator 905 arranged on the back surface side opposite to the incident surface of the substrate 310 is shown. Has been done.
  • each pixel PIX is disposed on an insulating substrate 310 such as a glass substrate that transmits the light emitted by the scintillators 904 and 905.
  • Each pixel PIX includes a conductive layer 311, an insulating layer 312, a semiconductor layer 313, an impurity semiconductor layer 314, and a conductive layer 315 on a substrate 310 in this order.
  • the conductive layer 311 forms a gate electrode of a transistor (for example, TFT) that forms the switch T.
  • the insulating layer 312 is arranged so as to cover the conductive layer 311, and the semiconductor layer 313 is arranged over the portion of the conductive layer 311 which forms the gate electrode with the insulating layer 312 interposed therebetween.
  • the impurity semiconductor layer 314 is arranged on the semiconductor layer 313 so as to form two main terminals (source and drain) of the transistor forming the switch T.
  • the conductive layer 315 forms a wiring pattern that is connected to the two main terminals (source and drain) of the transistor that forms the switch T, respectively.
  • a part of the conductive layer 315 forms the column signal line Sig, and another part of the conductive layer 315 forms a wiring pattern for connecting the conversion element S and the switch T.
  • Each pixel PIX further includes an interlayer insulating film 316 covering the insulating layer 312 and the conductive layer 315.
  • the interlayer insulating film 316 is provided with a contact plug 317 for connecting to a portion of the conductive layer 315 that constitutes the switch T.
  • each pixel PIX includes a conversion element S arranged on the interlayer insulating film 316.
  • the conversion element S is configured as an indirect conversion element that converts light converted from radiation by the scintillators 904 and 905 into an electric signal.
  • the conversion element S includes a conductive layer 318, an insulating layer 319, a semiconductor layer 320, an impurity semiconductor layer 321, a conductive layer 322, and an electrode layer 325 that are stacked on the interlayer insulating film 316.
  • the protective layer 323 and the adhesive layer 324 are disposed on the conversion element S.
  • the scintillator 904 is arranged on the adhesive layer 324 so as to cover the incident surface side of the substrate 310. Further, the scintillator 905 is arranged so as to cover the back surface side of the substrate 310 opposite to the incident surface.
  • the conductive layers 318 form the lower electrodes of the conversion elements S, respectively.
  • the conductive layer 322 and the electrode layer 325 form the upper electrode of each conversion element S.
  • the conductive layer 318, the insulating layer 319, the semiconductor layer 320, the impurity semiconductor layer 321, and the conductive layer 322 configure a MIS type sensor as the conversion element S.
  • the impurity semiconductor layer 321 is formed using an n-type impurity semiconductor layer.
  • the scintillators 904 and 905 can be configured using materials such as GOS (gadolinium oxysulfide) and CsI (cesium iodide). These materials can be formed by pasting, printing, vapor deposition, or the like. The scintillator 904 and the scintillator 905 may use the same material, or may use different materials depending on the energy of the radiation to be acquired.
  • GOS gallium oxysulfide
  • CsI cesium iodide
  • the conversion element S shows an example in which a MIS type sensor is used, but the invention is not limited to this.
  • the conversion element S may be, for example, a pn-type or PIN-type photodiode.
  • the second conversion element 902 of the pixel PIXB has a conductive layer 318 forming a lower electrode from the incident surface side of the substrate 310 toward the scintillator 904, a conductive layer forming a semiconductor layer 320, and an upper electrode. And layers 322 in that order.
  • the conductive layer 322 forming the upper electrode functions as the light shielding layer 903.
  • the conductive layer 322 functions as the light-blocking layer 903 by forming the conductive layer 322 with a material that is opaque to light emitted from the scintillator 904, such as Al, Mo, Cr, or Cu. That is, the second conversion element 902 of the pixel PIXB has a light-shielding layer between the scintillator 904 and the second conversion element 902 so that the amount of light that can be received from the scintillator 904 is smaller than that of the first conversion element 901. 903 is arranged. The second conversion element 902 of the pixel PIXB is arranged so as to receive the light from the scintillator 905, similarly to the first conversion element 901 of the pixel PIXA.
  • the second conversion element 902 of the pixel PIXC forms a conductive layer 318, a semiconductor layer 320, and an upper electrode that form a lower electrode from the incident surface side of the substrate 310 toward the scintillator 904.
  • the conductive layer 322 and the electrode layer 325 are included in this order.
  • the conductive layer 318 forming the lower electrode functions as the light shielding layer 903. Specifically, by forming the conductive layer 318 with a material that is opaque to light emitted from the scintillator 905 such as Al, Mo, Cr, or Cu, the conductive layer 322 functions as the light-blocking layer 903.
  • the second conversion element 902 of the pixel PIXC has a light shielding layer between the scintillator 905 and the second conversion element 902 so that the amount of light that can be received from the scintillator 905 is smaller than that of the first conversion element 901. 903 is arranged. Further, the second conversion element 902 of the pixel PIXC is arranged so as to receive the light from the scintillator 904, similarly to the first conversion element 901 of the pixel PIXA.
  • the conductive layer 318 and the electrode layer 325 are made of a material transparent to light emitted from the scintillator 904, such as ITO (indium tin oxide). This makes it possible to obtain signals having different energy components between the adjacent pixel PIXA and pixel PIXB or pixel PIXC.
  • ITO indium tin oxide
  • the present invention is not limited to this.
  • a transparent material and an opaque material may be stacked, and in that case, the light shielding amount is determined by the area of the opaque material.
  • the conductive layer 322 of the pixel PIXB and the conductive layer 318 of the pixel PIXC are made to function as the light shielding layer 903, but the arrangement of the light shielding layer 903 is not limited to this.
  • a dedicated light-shielding layer 903 made of Al, Mo, Cr, Cu, or the like may be provided in the protective layer 323 for light incident from the scintillator 904.
  • the potential of the light shielding layer 903 may be fixed to a constant potential before use.
  • the positions of the switch T and the column signal line Sig of the pixel PIXA that receives the light from the scintillator 905 are moved to the pixel PIXC side. You may distribute it. With such an arrangement, the aperture ratio of the first conversion element 901 to the scintillator 905 can be increased in the pixel PIXA.
  • the light shielding layer 903 does not need to completely shield the light from the scintillator 904 or the scintillator 905 to the second conversion element 902 as described above. Energy subtraction is possible if the amount of light received from the scintillator 904 or scintillator 905 on the side where the light shielding layer 903 is arranged is different between the adjacent pixel PIXA and the pixel PIXB or pixel PIXC.
  • each of the column signal lines Sig is arranged so as to overlap a part of the pixel PIX.
  • Such a configuration is advantageous in that the area of the conversion element S of each pixel PIX is increased, but is disadvantageous in that the capacitive coupling between the column signal line Sig and the conversion element S is increased. is there.
  • the column signal line Sig is capacitively coupled between the column signal line Sig and the conversion element S. The crosstalk that changes the electric potential of occurs. 4a and 4b in FIG.
  • the number of pixels PIX having the second conversion element 902 in which the included light shielding layer 903 is arranged is the same for each row.
  • the number of pixels PIX having the plurality of second conversion elements 902 included therein is arranged to be the same for each column.
  • the radiation imaging apparatus 210 may have a function of automatically detecting the start of radiation irradiation.
  • the gate line Vg is operated so that the switch T is turned on/off, the signal from the conversion element S is read, and the presence or absence of radiation irradiation is determined from the output signal.
  • the number of pixels PIX including the second conversion element 902 including the light shielding layer 903 is different for each row, the amount of signals output for each row changes, and the detection accuracy varies. Therefore, as shown in 4a and 4b of FIG. 4, in the conversion elements S arranged in the row direction intersecting the column direction among the plurality of conversion elements S, the second conversion element 902 in which the included light shielding layer 903 is arranged is arranged.
  • the detection accuracy of automatically detecting the start of radiation irradiation becomes stable.
  • the density of the pixel PIX having the second conversion element 902 is reduced as compared with the arrangement example of the pixel PIX of 4a in FIG. Since the light from the scintillator 905 enters the conversion element S via the substrate 310, the light is diffused depending on the thickness of the substrate 310, and the MTF (Modulation Transfer Function) is reduced. Therefore, even if the density of the pixel PIX having the second conversion element 902 is reduced, the resolution does not substantially decrease.
  • MTF Modulation Transfer Function
  • the second conversion element 902 when the second conversion element 902 receives the light emitted by the scintillator 905 which is opposed to the other scintillator via the substrate 310, the second conversion element 902 has a second number greater than the number of pixels PIX including the first conversion element 901. The number of pixels PIX including the conversion element 902 may be smaller.
  • the thickness of the substrate 310 may be reduced by mechanical polishing or chemical polishing in order to suppress the diffusion of light from the scintillator 905 through the substrate 310 and reduce the decrease in MTF.
  • the anti-scattering layer 326 may be provided.
  • the image processing in the image processing unit 241 of the computer 240 may increase the resolution by sharpening processing.
  • the MTF is decreased by matching the higher resolution to the lower one. Let After that, the energy subtraction process may be performed.
  • the operation of the radiation imaging apparatus 210 including the imaging panel 212 including the pixels PIX of 4 rows and 4 columns each including the conversion element S shown in FIG. 2 will be described as an example.
  • the operation of the radiation imaging system 200 is controlled by the computer 240.
  • the operation of the radiation imaging apparatus 210 is controlled by the control unit 214 under the control of the computer 240.
  • the control unit 214 causes the drive circuit 114 and the reading circuit 113 to perform a blank reading until the radiation of the radiation from the radiation source 230, in other words, the irradiation of the radiation to the radiation imaging apparatus 210 is started.
  • the driving circuit 114 sequentially drives the gate signals supplied to the gate lines Vg1 to Vg4 of the respective rows of the pixel array 112 to the active level, and resets the dark charges accumulated in the conversion element S. is there.
  • a reset pulse of the active level is supplied to the reset switch of the integrating amplifier 105, and the column signal line Sig is reset to the reference potential.
  • the dark charges are charges that are generated even when no radiation is incident on the conversion element S.
  • the control unit 214 can recognize the start of radiation emission from the radiation source 230 based on a start notification supplied from the exposure control unit 220 via the computer 240, for example. Further, as shown in FIG. 1, the radiation imaging apparatus 210 may be provided with a detection circuit 216 that detects a current flowing through the bias line Bs or the column signal line Sig of the pixel array 112. The control unit 214 can recognize the start of irradiation of the radiation from the radiation source 230 based on the output of the detection circuit 216.
  • control unit 214 controls the switch T to be in an open state (off state). As a result, the charges generated in the conversion element S due to the irradiation of radiation are accumulated. The control unit 214 waits in this state until the irradiation of radiation is completed.
  • the control unit 214 causes the drive circuit 114 and the reading circuit 113 to execute the main reading.
  • the drive circuit 114 drives the gate signals supplied to the gate lines Vg1 to Vg4 of the respective rows of the pixel array 112 to the active level.
  • the readout circuit 113 reads out the electric charge accumulated in the conversion element S via the column signal line Sig and outputs it to the computer 240 as radiation image data through the multiplexer 108, the buffer 109 and the AD converter 110.
  • the conversion element S continues to accumulate dark charges even when it is not irradiated with radiation. Therefore, the control unit 214 acquires the offset image data by performing the same operation as when acquiring the radiation image data without irradiating the radiation. By subtracting the offset image data from the radiation image data, the offset component due to the dark charge can be removed.
  • the signals of the conversion elements S11 and S31 which are the second conversion elements 902 are output to the column signal line Sig1.
  • Energy subtraction processing can be performed by outputting the signals of the first conversion element 901 and the second conversion element 902 to different column signal lines Sig.
  • step S701 after performing the above-mentioned blank reading, the control unit 214 controls to accumulate the charges generated by the conversion element S during the irradiation of the radiation in order to acquire the radiation image data.
  • step S702 the control unit 214 causes the drive circuit 114 and the reading circuit 113 to perform the main reading, and reads the radiation image data.
  • step S702 the radiation image data is output to the computer 240.
  • the control unit 214 performs a storage operation for acquiring offset image data in step S703, and causes the drive circuit 114 and the reading circuit 113 to read the offset image data and outputs it to the computer 240 in step S704.
  • the image processing unit 241 executes the processes shown in and after step S705.
  • the computer 240 including the image processing unit 241 is an example of an image processing apparatus that images a subject using a plurality of radiation images obtained by different radiation energies.
  • the image processing unit 241 of the computer 240 performs offset correction by subtracting the radiation image data acquired in step S702 by the offset image data acquired in step S704.
  • step S706 the image processing unit 241 outputs the radiation image data after the offset correction to the radiation image data output from the first conversion element 901 and the radiation image data output from the second conversion element 902.
  • the second conversion element 902 receives radiation from above in the drawing, shields light from the scintillator 904, and receives light generated by high-energy radiation from the scintillator 905. It will be described as a thing.
  • the radiation image data output from the first conversion element 901 is referred to as a double-sided incident image
  • the radiation image data output from the second conversion element 902 is referred to as a single-sided incident image.
  • step S ⁇ b>707 the image processing unit 241 performs gain correction of the double-sided incident image using the gain correction image data obtained by performing radiation field irradiation in the absence of a subject. Further, in step S711, the image processing unit 241 uses the gain correction image data to perform gain correction on the single-sided incident image.
  • step S708 the image processing unit 241 compensates for the missing double-sided incident image of the pixel PIX that does not include the first conversion element 901, in other words, the pixel PIX that has the second conversion element 902. Pixel interpolation is performed. Similarly, in step S712, the image processing unit 241 performs pixel interpolation for compensating for the lack of the one-sided incident image of the pixel PIX not including the second conversion element 902, in other words, the pixel PIX having the first conversion element 901. .. Pixel interpolation in these steps S708 and S712 will be described using 8a and 8b in FIG. Here, as an example, an arrangement will be described in which the pixel PIX including the first conversion element 901 is larger in number than the pixel PIX including the second conversion element 902, which is illustrated in 4b of FIG.
  • the pixel interpolation of the double-sided incident image will be described with reference to 8a in FIG.
  • the value in the double-sided incident image of the pixel E having the second conversion element 902 that outputs the single-sided incident image is adjacent to the pixel E, and the pixel A that has the first conversion element 901 that outputs the pixel value of the double-sided incident image, Interpolation is performed using pixel values of B, C, D, F, G, H, and I.
  • the image processing unit 241 may interpolate the value of the pixel E in the double-sided incident image by using the average value of 8 pixels adjacent to the pixel E in the double-sided incident image.
  • the image processing unit 241 interpolates the value of the pixel E in the double-sided incident image by using the average value of a part of the pixels adjacent to each other in the double-sided incident image, such as the pixels B, D, F, and H. Good.
  • the radiation image data generated by the high energy component and the low energy component of the radiation of each pixel PIX is generated by performing pixel interpolation.
  • the pixel J having the first conversion element 901 that outputs the pixel value of the double-sided incident image is adjacent to the pixel J, and the pixels K, L, and M that have the second conversion element 902 that outputs the pixel value of the single-sided incident image.
  • N pixel values are used for interpolation.
  • the image processing unit 241 may interpolate the single-sided image data of the pixel J by using the average value of the single-sided image data of four pixels adjacent to the pixel J. In this case, for example, the distance from the position where the pixel J is arranged to the pixel K and the distance to the pixel N are different.
  • the pixel values of the single-sided incident images output from the pixels K, L, M, and N may be weighted and averaged according to the distance.
  • radiation image data hereinafter, high energy image
  • the image processing unit 241 generates radiation image data (hereinafter, low energy image) based on low energy components of radiation.
  • low energy image radiation image data
  • the double-sided incident image generated by pixel interpolation in step S708 is a radiation image having both high energy and low energy components. Therefore, a low energy image can be generated by subtracting the high energy image acquired by pixel interpolation in step S712 from the radiation image pixel interpolated in step S708. In this way, the image processing unit 241 acquires a high energy image and a low energy image.
  • the light-shielding layer 903 is provided on the side of the second conversion element 902 where the radiation enters in the above description, it is also possible to provide the light-shielding layer 903 on the side of the second conversion element 902 opposite to the side where the radiation enters. .. In that case, the single-sided incident image becomes radiation image data with a low energy component, and the pixel-interpolated single-sided incident image is subtracted from the pixel-interpolated double-sided incident image to obtain high-energy component radiation image data (high-energy image). Can be generated.
  • the radiation image of the high-energy component is a component of the radiation that cannot be completely absorbed by the scintillator 904 on the incident side of the radiation, and therefore the amount of light from the scintillator 905 is smaller than the amount of light from the scintillator 904. Therefore, when the high-energy image is generated by subtracting the single-side incident image from the double-side incident image, noise in the low-energy component radiation image is superimposed on the high-energy component radiation image. As a result, the S/N ratio of the radiation image of the high energy component becomes low.
  • the side of the second conversion element 902 on which the radiation is incident is shielded, the double-sided image data is a high energy component+low energy component, and the single-sided image data is a high energy component image. Data. Then, the S/N ratio can be improved by subtracting the single-sided image data from the double-sided image data to generate the low energy image.
  • step S710 the image processing unit 241 corrects (MTF correction) the spatial frequency characteristic (MTF: Modulation Transfer Function) of the low energy image generated in step S709. Further, in step S713, the spatial frequency characteristic of the high energy image obtained in step S712 is corrected (MTF correction).
  • the image processing unit 241 sets the high energy image and the low energy image so that the spatial frequency characteristic of the high energy image (first radiation image) and the spatial frequency characteristic of the low energy image (second radiation image) are close to each other. The spatial frequency characteristic of at least one of the above is changed. Therefore, both of the MTF correction in steps S710 and S713 do not necessarily have to be executed.
  • the image processing unit 241 that performs the MTF correction as described above changes the spatial frequency of at least one of the plurality of radiation images so that the spatial frequency characteristics of the plurality of radiation images obtained by the plurality of different radiation energies come close to each other. It is an example of a changing unit.
  • step S714 the image processing unit 241 generates an energy subtraction image and/or a spectral imaging image using the high energy image and the low energy image after MFT correction.
  • Well-known methods can be used to generate the energy subtraction image and the spectral imaging image.
  • the image processing unit 241 that performs the process of step S714 is an example of a processing unit that generates an image of a subject using a plurality of radiographic images after the change by the changing unit described above.
  • the image processing unit 241 may generate a normal radiation image based on the double-sided image data output from the first conversion element 901 in step S715.
  • the first conversion element 901 receives light from the scintillator 904 on the side where the radiation enters and light from the scintillator 905 on the side opposite to the side where the radiation enters. As a result, a higher S/N ratio can be obtained in a normal radiation image than in the case where only one of the scintillators emits light.
  • the spatial frequency characteristics of each of the high-energy image and the low-energy image are measured before the subject is imaged.
  • a slit method, a chart method, an edge method, etc. have been proposed as a method for calculating the spatial frequency characteristic, any method may be used in this proposal.
  • FIG. 9 is a graph showing the tendency of the spatial frequency characteristic of the high energy image and the spatial frequency characteristic of the low energy image.
  • the spatial frequency characteristic 501 of the low energy image tends to maintain the signal value even when the frequency becomes high, but the spatial frequency characteristic 502 of the high energy image tends to maintain no high frequency component. This is because, for example, fluorescence is scattered in the layer provided between the scintillator 904 and the scintillator 905.
  • the image processing unit 241 functioning as the changing unit measures the spatial frequency characteristic measured for one radiation energy of the plurality of radiation energies and measures the other radiation energy of the plurality of radiation energies. A process preset to bring the spatial frequency characteristics closer to each other is applied to a radiation image obtained with another radiation energy.
  • the process of the changing unit will be described more specifically.
  • the image processing unit 241 of the first embodiment approximates the spatial frequency characteristics of the radiation image obtained by the other radiation energy to the spatial frequency characteristics of the radiation image obtained by the lowest radiation energy of the plurality of radiation energies. .. That is, the image processing unit 241 performs the process set so that the first spatial frequency characteristic previously measured for the lowest radiation energy is approximated to the spatial frequency characteristic previously measured for another radiation energy. It is applied to a radiation image obtained by radiation energy.
  • the image processing unit 241 approximates the high spatial frequency characteristic 501 of the low energy image to the low spatial frequency characteristic 502 of the high energy image.
  • step S710 is skipped.
  • An appropriate filter is designed based on the spatial frequency characteristics of the low energy image and the high energy image obtained in advance. Alternatively, the filter may be designed using an existing function such as Gaussian distribution.
  • the image processing unit 241 performs a convolution operation on the high energy image using the created filter to change the spatial frequency characteristic of the high energy image. Step S710 is skipped.
  • High-energy images are expected to have almost no high-frequency components remaining as compared to low-energy images, and high-frequency noise is expected to increase as high-frequency components increase, so appropriate filter design that takes this into account is necessary. Is.
  • the image processing unit 241 causes the spatial frequency characteristic of the radiation image obtained with other radiation energy to fall within the margin range set with respect to the spatial frequency characteristic of the radiation image obtained with one radiation energy, The radiation image obtained with other radiation energy is processed. For example, as shown in FIG.
  • the margin 503 may be switched to the margin 504 with a predetermined spatial frequency as a boundary so as to be wide on the low value side.
  • the margin 503 is set to ⁇ 0.05 or less, and on the high frequency side, the margin 504 is set to ⁇ 0.1 or less on the low value side.
  • the difference between the spatial frequency characteristic measured for high radiation energy and the spatial frequency characteristic measured for low radiation energy is within ⁇ 0.05 at each frequency. Is set as follows. Also, this process is set so that the difference between the spatial frequency characteristic measured for high radiation energy and the spatial frequency characteristic measured for low radiation energy is within -0.2 in a region higher than a predetermined spatial frequency. To be done. By this method, the spatial frequencies of the high energy image and the low energy image can be made equal. Although the margin 503 and the margin 504 are switched in FIG. 10, the margin may continuously increase as the spatial frequency decreases.
  • step S713 the image processing unit 241 processes the high-energy image acquired in step S712 by using the filter generated as described above, thereby changing the spatial frequency characteristic of the high-energy image to the space of the low-energy image. Close to the frequency characteristics.
  • step S714 the energy subtraction image and/or the spectral imaging image are generated using the high-energy image and the low-energy image whose spatial frequencies are close to each other, so that the image quality of these images is improved.
  • the spatial frequency characteristics of the high energy image and the low energy image are approximated by performing the MTF correction on the high energy image. That is, the configuration has been described in which the radiation image obtained with another radiation energy is processed so as to approach the spatial frequency characteristic of the radiation image obtained with the lowest radiation energy of the plurality of radiation energies.
  • an example of performing MTF correction on a low energy image will be described. That is, in the second embodiment, a radiation image obtained with another radiation energy is processed so as to approach the spatial frequency characteristic of the radiation image obtained with the highest radiation energy among the plurality of radiation energies.
  • the configurations and operations of the radiation imaging system and the radiation imaging apparatus according to the second embodiment are similar to those of the first embodiment (FIGS. 1 to 8). However, in the second embodiment, the MTF correction of the low energy image in step S710 is executed, and the MTF correction of the high energy image in step S713 is skipped.
  • step S710 the image processing unit 241 approximates the spatial frequency characteristic 502 of the low energy image to the spatial frequency characteristic 502 of the high energy image.
  • An appropriate filter is designed in advance based on the spatial frequency characteristics of the low energy image and the high energy image obtained in advance. Alternatively, the filter may be designed in advance using an existing function such as Gaussian distribution.
  • the image processing unit 241 changes the spatial frequency characteristic 501 of the low energy image by performing a convolution operation on the low energy image using a filter created in advance.
  • the high-energy image has almost no high-frequency components remaining compared to the low-energy image, and most of the high-frequency components of the low-energy image will be lost due to this calculation.
  • high-frequency noise is suppressed, and stable output can be expected in subsequent processing.
  • the contrast of the image differs between the low energy image and the high energy image due to the difference in radiation energy, it is difficult to correct the same spatial frequency characteristic. Therefore, as shown in FIG. 11, when the spatial frequency characteristic 501 of the low energy image is changed, a tolerance is set on the curve of the spatial frequency characteristic 502 of the target high energy image, and a margin 503 is provided at each spatial frequency.
  • the margin is, for example, ⁇ 0.05 or less.
  • step S710 the image processing unit 241 processes the low-energy image generated in step S709 by using the filter generated as described above, thereby changing the spatial frequency characteristic of the low-energy image to the space of the high-energy image. Close to the frequency characteristics.
  • step S714 the energy subtraction image and/or the spectral imaging image are generated using the high-energy image and the low-energy image whose spatial frequencies are close to each other, so that the image quality of these images is improved.
  • one of the spatial frequency characteristic of the high energy image and the frequency characteristic of the low energy image is approximated to the other.
  • the plurality of radiation images are processed so that the respective spatial frequency characteristics of the plurality of radiation images obtained by the plurality of radiation energies approach the preset spatial frequency characteristics.
  • a spatial frequency characteristic that is a model of a spatial frequency characteristic necessary for diagnosing a target organ is set, and the spatial frequency characteristic of a high energy image and the spatial frequency characteristic of a low energy image are set to the characteristic.
  • the configurations and operations of the radiation imaging system and the radiation imaging apparatus of the third embodiment are the same as those of the first embodiment (FIGS. 1 to 8).
  • the MTF correction of the low energy image in step S710 and the MTF correction of the high energy image in step S713 are executed.
  • the modification of the spatial frequency characteristic according to the third embodiment is performed by setting a process of approximating the spatial frequency characteristic measured in advance for each of a plurality of radiation energies to a preset spatial frequency characteristic, and performing the set process in a plurality of radiations. Apply to images.
  • a filter for converting the spatial frequency characteristic from the spatial frequency characteristic of each of the high energy image and the low energy image is designed.
  • the filter may be designed using an existing function such as Gaussian distribution.
  • the first filter that brings the spatial frequency characteristic 501 of the low energy image closer to the arbitrary spatial frequency characteristic 505 and the spatial frequency characteristic 502 of the high energy image are set to the spatial frequency characteristic 505.
  • the spatial frequency characteristic 505 is, for example, a spatial frequency characteristic that models the spatial frequency characteristic necessary for diagnosing the target organ.
  • the spatial frequency characteristic 501 of the low energy image and the spatial frequency characteristic of the high energy image are obtained.
  • 502 is modified to approach the spatial frequency characteristic 505.
  • a tolerance is set for the target spatial frequency characteristic 505, and a margin 503 is provided at each spatial frequency.
  • the margin is, for example, ⁇ 0.05 or less.
  • step S710 the image processing unit 241 processes the low-energy image generated in step S709 by using the first filter generated as described above to spatially measure the spatial frequency characteristic 501 of the low-energy image. It approaches the frequency characteristic 505.
  • step S713 the image processing unit 241 processes the high-energy image acquired in step S712 by using the second filter generated as described above, thereby spatially processing the spatial frequency characteristic 502 of the high-energy image. It approaches the frequency characteristic 505. In this way, the spatial frequency characteristics of the low energy image and the high energy image are approximated to each other.
  • step S714 the energy subtraction image and/or the spectral imaging image are generated using the high energy image and the low energy image whose spatial frequencies are approximated, so that the image quality of these images is improved.
  • the spatial frequency characteristic 305 is set by modeling the spatial frequency required for diagnosing the target organ, but the present invention is not limited to this.
  • the spatial frequency characteristic may be set as follows. That is, the spatial frequency characteristic measured for the lowest radiation energy (or the highest radiation energy) of the plurality of radiation energies becomes 0 at the spatial frequency at which the spatial frequency becomes equal to or less than the threshold value, and the spatial frequency becomes lower in the frequency region lower than the spatial frequency.
  • the spatial frequency characteristic may be set so that the characteristic gently changes from 0 to 1.
  • a threshold value 510 is set to the spatial frequency characteristic 502 of the high energy image. Then, the value of the spatial frequency characteristic 502 becomes 0 at the spatial frequency where the threshold value 510 is set, and the spatial frequency characteristic 507 that is smoothly connected from 0 to 1 in the spatial frequency region lower than the spatial frequency is set as the target spatial frequency characteristic. Good.
  • a threshold value 510 is set to the spatial frequency characteristic 501 of the low energy image, and the value of the spatial frequency characteristic 501 becomes 0 at the spatial frequency at which the threshold value 510 becomes, and the value gradually decreases from 0 to 1 in the spatial frequency region lower than the spatial frequency.
  • the connected spatial frequency characteristic 506 may be set as a target spatial frequency characteristic. Although 0.1 is used as the threshold value 510, the threshold value 510 is not limited to this. However, the threshold value 510 is preferably 0.2 or less.
  • ⁇ Modification> a specific example of the configuration using two radiation images having different radiation energies is described, but it is also applicable to a configuration that generates an image using three or more radiation images.
  • the spatial frequency characteristic of the radiation image captured by the other radiation energy is approximated to the spatial frequency characteristic of the radiation image captured by the lowest radiation energy among the plurality of radiation energies. become.
  • the spatial frequency characteristic of a radiation image captured with the highest radiation energy of a plurality of radiation energies is approximated to the spatial frequency characteristic of a radiation image captured with another radiation energy.
  • the approximate target spatial frequency characteristic is not limited to the image of the highest or lowest radiation energy. You may make it approximate the spatial frequency characteristic of the radiation image imaged by other radiation energy to the spatial frequency characteristic of the radiation image imaged by one of several radiation energy.
  • a plurality of spatial frequency characteristics of a radiation image captured by a plurality of radiation energies are approximated to a preset target spatial frequency characteristic.
  • the spatial frequency characteristic becomes 0 at a spatial frequency that is a threshold value, and the spatial frequency characteristic becomes 0 from a spatial frequency lower than the spatial frequency.
  • the spatial frequency characteristic smoothly connecting to 1 may be set to the target spatial frequency.
  • the present invention supplies a program that implements one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus read and execute the program. It can also be realized by the processing. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
  • a circuit for example, ASIC

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

This image processing device modifies the spatial frequency characteristic of at least one of multiple radiation images such that the spatial frequency characteristics of the multiple radiation images obtained by multiple different radiation energies approach each other, and uses the modified multiple radiation images to generate an image of the subject. This modification is performed by applying pre-set processing, which causes the measured spatial frequency characteristic of one of the multiple radiation energies to approximate the measured spatial frequency characteristic of another of the multiple radiation energies, to the radiation image obtained by said one radiation energy.

Description

画像処理装置、画像処理方法およびプログラムImage processing apparatus, image processing method and program
 本発明は、放射線画像を処理するための画像処理装置、画像処理方法およびプログラムに関する。 The present invention relates to an image processing device, an image processing method, and a program for processing a radiation image.
 医療画像診断や非破壊検査に放射線撮像装置が広く利用されている。放射線撮像装置を用いて、エネルギ成分が異なる放射線により複数の放射線画像を取得し、これら複数の放射線画像の差分から、特定の被写体部分を分離又は強調したエネルギサブトラクション画像を取得する方法が知られている。 Radiation imaging devices are widely used for medical image diagnosis and nondestructive inspection. A method is known in which a plurality of radiation images are acquired by using radiation having different energy components by using a radiation imaging apparatus, and an energy subtraction image in which a specific object portion is separated or emphasized is acquired from a difference between the plurality of radiation images. There is.
 エネルギサブトラクション画像の取得には、同一の部位について放射線エネルギの異なる複数の放射線画像が必要である。特許文献1には、光透過性を有する基板の両面にシンチレータを配し、一方の側のシンチレータが発する光を検出するフォトダイオードと他方の側のシンチレータが発する光を検出するフォトダイオードとを配することが示されている。互いに異なるシンチレータが発する光を検出するフォトダイオードによって、1回の放射線の照射で2つの異なるエネルギ成分の信号が取得され、エネルギサブトラクション画像が生成できる。  To obtain energy subtraction images, multiple radiation images with different radiation energy are required for the same site. In Patent Document 1, scintillators are arranged on both surfaces of a substrate having optical transparency, and a photodiode for detecting light emitted by the scintillator on one side and a photodiode for detecting light emitted by the scintillator on the other side are arranged. Has been shown to do. The photodiodes that detect the light emitted by the different scintillators can acquire signals of two different energy components by one irradiation of radiation, and can generate an energy subtraction image.
特開2010-056396号公報JP, 2010-056396, A 特開2011-227044号公報JP, 2011-227044, A
 特許文献1の場合、放射線入射面側に配置されたシンチレータにより放射線を波長変換して得られる蛍光を検出する第1のセンサ部は、通常のフラットパネルディテクタと同様の構造となるため、良好な空間分解能を持つことが可能である。一方、放射線入射面側に配置されたシンチレータから得られる蛍光を検出する第2のセンサ部は、厚みを持った光透過性の基板を経て到達した放射線を波長変換して得られる蛍光を検出することになる。そのため、第2のセンサ部では、光透過性の基板により散乱した蛍光を検出することになり、分解能が低下する。結果、第1のセンサ部で取得された画像と第2のセンサ部で取得された画像とでは空間分解能が異なる。これら空間周波数の異なる画像を使用してエネルギサブトラクション画像やスペクトラルイメージング画像を生成すると、特に空間周波数の高周波成分を含む領域で計算に齟齬が生じ、実際の構造と異なる結果となる。 In the case of Patent Document 1, the first sensor unit for detecting the fluorescence obtained by converting the wavelength of the radiation by the scintillator arranged on the radiation incident surface side has a structure similar to that of a normal flat panel detector, which is favorable. It is possible to have spatial resolution. On the other hand, the second sensor section for detecting the fluorescence obtained from the scintillator arranged on the radiation incident surface side detects the fluorescence obtained by wavelength-converting the radiation that has reached through the light-transmissive substrate having a thickness. It will be. Therefore, the second sensor unit detects the fluorescence scattered by the light-transmissive substrate, which lowers the resolution. As a result, the image acquired by the first sensor unit and the image acquired by the second sensor unit have different spatial resolutions. When an energy subtraction image or a spectral imaging image is generated using these images with different spatial frequencies, the calculation is inconsistent particularly in a region including high frequency components of the spatial frequency, and the result is different from the actual structure.
 本発明は、放射線エネルギの異なる複数の放射線画像の空間周波数の差異を低減することで、これら複数の放射線画像を用いて生成される画像の画質を向上するための技術を提供する。 The present invention provides a technique for improving the image quality of an image generated using a plurality of radiation images by reducing the difference in spatial frequency between the radiation images having different radiation energies.
 本発明の一態様による放射線画像処理装置は以下の構成を備える。すなわち、
 異なる複数の放射線エネルギにより得られた複数の放射線画像の空間周波数特性が互いに近づくように、前記複数の放射線画像の少なくとも1つについて空間周波数特性を変更する変更手段と、
 該変更後の前記複数の放射線画像を用いて被写体に関する画像を生成する処理手段と、を備え、
 前記変更手段は、前記複数の放射線エネルギのうちの1つの放射線エネルギについて計測された空間周波数特性に、前記複数の放射線エネルギのうちの他の放射線エネルギについて計測された空間周波数特性を近づけるようにあらかじめ設定された処理を、前記他の放射線エネルギで得られた放射線画像に適用する。
A radiation image processing apparatus according to an aspect of the present invention has the following configuration. That is,
Changing means for changing the spatial frequency characteristics of at least one of the plurality of radiation images so that the spatial frequency characteristics of the plurality of radiation images obtained by different plurality of radiation energies approach each other;
Processing means for generating an image of a subject using the plurality of changed radiation images,
The changing unit preliminarily brings the spatial frequency characteristic measured for one radiation energy of the plurality of radiation energies close to the spatial frequency characteristic measured for another radiation energy of the plurality of radiation energies. The set process is applied to the radiation image obtained with the other radiation energy.
 本発明によれば、放射線エネルギの異なる複数の放射線画像の空間周波数の差異を低減することで、これら複数の放射線画像を用いて生成される画像の画質が向上する。 According to the present invention, by reducing the difference in spatial frequency between a plurality of radiation images having different radiation energies, the image quality of an image generated using these plurality of radiation images is improved.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will be apparent from the following description with reference to the accompanying drawings. Note that, in the accompanying drawings, the same or similar configurations are denoted by the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
実施形態に係る放射線撮像装置を用いた放射線撮像システムの構成例を示す図。 放射線撮像装置の撮像パネルの構成例を示す図。 放射線撮像装置の画素の断面の構造例を示す図。 放射線撮像装置の画素の断面の構造例を示す図。 放射線撮像装置の画素の配置例を示す図。 放射線撮像装置の動作を示すタイミングチャート。 放射線撮像装置の動作を示すタイミングチャート。 放射線撮像装置の動作フローを示す図。 放射線撮像装置の動作フローを示す図。 放射線撮像装置の画素補間の例を示す図。 低エネルギ画像と高エネルギ画像の空間周波数特性を示す図。 第1実施形態による空間周波数特性の変更方法の例を説明する図。 第2実施形態による空間周波数特性の変更方法の例を説明する図。 第3実施形態による空間周波数特性の変更方法の例を説明する図。 第3実施形態による空間周波数特性の変更方法の他の例を説明する図。
The accompanying drawings are included in the specification and constitute a part of the specification, illustrate the embodiments of the present invention, and are used together with the description to explain the principle of the present invention.
The figure which shows the structural example of the radiation imaging system using the radiation imaging device which concerns on embodiment. The figure which shows the structural example of the imaging panel of a radiation imaging device. The figure which shows the structural example of the cross section of the pixel of a radiation imaging device. The figure which shows the structural example of the cross section of the pixel of a radiation imaging device. The figure which shows the example of arrangement|positioning of the pixel of a radiation imaging device. The timing chart which shows operation|movement of a radiation imaging device. The timing chart which shows operation|movement of a radiation imaging device. The figure which shows the operation|movement flow of a radiation imaging device. The figure which shows the operation|movement flow of a radiation imaging device. The figure which shows the example of pixel interpolation of a radiation imaging device. The figure which shows the spatial frequency characteristic of a low energy image and a high energy image. The figure explaining the example of the method of changing the spatial frequency characteristic by 1st Embodiment. The figure explaining the example of the change method of the spatial frequency characteristic by 2nd Embodiment. The figure explaining the example of the method of changing the spatial frequency characteristic by 3rd Embodiment. The figure explaining the other example of the change method of the spatial frequency characteristic by 3rd Embodiment.
 以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. The following embodiments do not limit the invention according to the claims. Although a plurality of features are described in the embodiment, not all of the plurality of features are essential to the invention, and the plurality of features may be arbitrarily combined. Further, in the accompanying drawings, the same or similar components are designated by the same reference numerals, and duplicated description will be omitted.
 以下の各実施形態では、一度の撮像で同一部位のエネルギの異なる放射線の画像を撮像する放射線撮像装置を用いた例を説明する。そのような放射線撮像装置として、上述した特許文献1に記載された構成のほか、例えば、特許文献2に記載された放射線撮像装置の構成を用いることができるが、以下の各実施形態では、これらとは異なる新たな構成の放射線撮像装置が用いられる。これらの放射線撮像装置は、一度の放射線照射により異なる放射線エネルギの画像を得るために、放射線を検出するための2つ以上の検出層を含む構造を有している。例えば、放射線照射側の第1の検出層と、第1の検出層よりも後方の第2の検出層とが設けられた構造が用いられる。この場合、第2の検出層では第1の検出層を通過した放射線を検出するため、第1の検出層で検出される放射線の画像と第2の検出層で検出される放射線の画像とでは空間周波数特性が異なる。以下の実施形態では、このような空間周波数特性の違いを低減することにより、異なる複数の放射線エネルギの放射線画像を用いて生成される画像(エネルギサブトラクション画像、スペクトラルイメージング画像など)の画質を向上する。 In each of the following embodiments, an example will be described in which a radiation image pickup apparatus that picks up images of radiation having different energies of the same site in one image pickup is used. As such a radiation imaging apparatus, for example, the configuration of the radiation imaging apparatus described in Patent Document 2 can be used in addition to the configuration described in Patent Document 1 described above. A radiation imaging apparatus having a new configuration different from that of is used. These radiation imaging devices have a structure including two or more detection layers for detecting radiation in order to obtain images of different radiation energies by one irradiation of radiation. For example, a structure in which a first detection layer on the radiation irradiation side and a second detection layer behind the first detection layer are provided is used. In this case, since the second detection layer detects the radiation that has passed through the first detection layer, the radiation image detected by the first detection layer and the radiation image detected by the second detection layer are different from each other. Spatial frequency characteristics are different. In the following embodiments, the image quality of images (energy subtraction images, spectral imaging images, etc.) generated using radiation images of different radiation energies is improved by reducing such differences in spatial frequency characteristics. ..
 なお、上述の放射線撮像装置において一度の撮像で取得される複数の放射線画像の空間周波数特性を変化させる更なる要因の例としては以下があげられる。例えば、夫々の検出層で検出される放射線のエネルギ差を大きくするための放射線吸収物質を2つの検出層の間に設置した場合、そのような放射線吸収物質はこれら2つの検出層で得られる放射線画像の空間周波数特性を変化させる。同様に、各検出層に配置されるシンチレータ(蛍光体層)の材質、厚みなどが変われば、得られる放射線画像の空間周波数特性は変化する。さらに、検出層ごとに配列間隔の異なる画素アレイを用いた場合、変換素子の受光面の大きさまたは形状が異なる場合、などでも得られる放射線画像の空間周波数特性が変化する。また放射線のエネルギ差だけでなく、画像のノイズ特性の差によっても放射線画像の空間周波数特性は変化する。実施形態では、これらの要因により生じた空間周波数特性の差を低減する。 Note that the following are examples of further factors that change the spatial frequency characteristics of a plurality of radiation images acquired by one-time imaging in the radiation imaging apparatus described above. For example, when a radiation-absorbing substance for increasing the energy difference between the radiations detected in the respective detection layers is provided between the two detection layers, such a radiation-absorbing substance is used as the radiation obtained in these two detection layers. Change the spatial frequency characteristics of the image. Similarly, if the material, thickness, etc. of the scintillator (phosphor layer) arranged in each detection layer change, the spatial frequency characteristic of the obtained radiation image changes. Further, the spatial frequency characteristic of the obtained radiation image changes even when pixel arrays having different array intervals are used for each detection layer, or when the size or shape of the light receiving surface of the conversion element is different. Further, not only the energy difference of radiation but also the noise characteristic of the image changes the spatial frequency characteristic of the radiation image. In the embodiment, the difference in spatial frequency characteristics caused by these factors is reduced.
 また、以下の実施形態では、放射線エネルギの異なる複数の放射線画像を一度の撮像で取得する放射線撮像装置を用いて説明するが、本発明はそのような放射線撮像装置を用いた構成に限られるものではない。例えば、一つもしくは複数の放射線撮像装置を用いて、同一被写体を時間や角度を変更して撮像するような手法が用いられてもよい。すなわち、本発明は、エネルギの異なる複数の放射線を用いてコントラストの異なる複数の放射線画像を収集し、エネルギサブトラクションやスペクトラルイメージングの計算を行う構成であれば、放射線撮像装置の構造および手技は何等限定されない。 Further, in the following embodiments, a description will be given using a radiation imaging apparatus that acquires a plurality of radiation images having different radiation energies at one time, but the present invention is limited to a configuration using such a radiation imaging apparatus. is not. For example, a method may be used in which one or more radiation imaging devices are used to image the same subject while changing the time and angle. That is, the present invention is not limited to the structure and technique of the radiation imaging apparatus as long as it is configured to collect a plurality of radiation images having different contrasts using a plurality of radiations having different energies and to perform energy subtraction and spectral imaging calculations. Not done.
 また、以下の実施形態では、放射線を電荷に変換する際にシンチレータを用いる間接型の撮像パネルを用いているが、これに限られるものではなく、直接放射線を電荷に変換する直接型や、またはその組み合わせであってもよい。さらに、同一の放射線撮像装置に照射する放射線のエネルギを短時間に変更して撮像する構成であってもよい。 Further, in the following embodiments, an indirect type imaging panel that uses a scintillator when converting radiation into electric charges is used, but the present invention is not limited to this, and a direct type that directly converts radiation into electric charges, or It may be a combination thereof. Furthermore, the energy of the radiation applied to the same radiation imaging apparatus may be changed in a short time to capture an image.
 また、本発明における放射線には、放射線崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線などの他に、同程度以上のエネルギを有するビーム、例えばX線や粒子線、宇宙線なども含みうる。 In addition, in the radiation in the present invention, in addition to α-rays, β-rays, γ-rays, etc., which are beams produced by particles (including photons) emitted by radiation decay, a beam having the same or higher energy, for example, X It may also include rays, particle rays, cosmic rays, etc.
 <第1実施形態>
 図1~8を参照して、第1実施形態による放射線撮像装置の構成および動作について説明する。図1は、第1実施形態における放射線撮像装置210を用いた放射線撮像システム200の構成例を示す図である。放射線撮像システム200は、放射線から変換される光学像を電気的に撮像し、放射線画像を生成するための電気的な信号(放射線画像データ)を得るように構成される。放射線撮像システム200は、例えば、放射線撮像装置210、放射線源230、曝射制御部220およびコンピュータ240を含む。
<First Embodiment>
The configuration and operation of the radiation imaging apparatus according to the first embodiment will be described with reference to FIGS. FIG. 1 is a diagram showing a configuration example of a radiation imaging system 200 using the radiation imaging apparatus 210 according to the first embodiment. The radiation imaging system 200 is configured to electrically capture an optical image converted from radiation and obtain an electrical signal (radiation image data) for generating a radiation image. The radiation imaging system 200 includes, for example, a radiation imaging apparatus 210, a radiation source 230, an exposure controller 220, and a computer 240.
 放射線源230は、曝射制御部220からの曝射指令(放射指令)に従って放射線の放射を開始する。放射線源230から放射された放射線は、不図示の被険体を通って放射線撮像装置210に照射される。放射線源230はまた、曝射制御部220からの停止指令に従って放射線の放射を停止する。 The radiation source 230 starts emitting radiation according to the exposure command (radiation command) from the exposure control unit 220. Radiation emitted from the radiation source 230 is applied to the radiation imaging apparatus 210 through an unillustrated body. The radiation source 230 also stops the emission of radiation according to a stop command from the exposure controller 220.
 放射線撮像装置210は、撮像パネル212と、撮像パネル212を制御する制御部214とを含む。制御部214は、撮像パネル212から得られる信号に基づいて、放射線源230からの放射線の放射を停止させるための停止信号を発生する。停止信号は、曝射制御部220に供給され、曝射制御部220は、停止信号に応答して、放射線源230に対して停止指令を送る。制御部214は、例えば、FPGA(Field Programmable Gate Arrayの略。)などのPLD(Programmable Logic Deviceの略。)、又は、ASIC(Application Specific Integrated Circuitの略。)、又は、プログラムが組み込まれた汎用コンピュータ、又は、これらの全部または一部の組み合わせによって構成されうる。 The radiation imaging apparatus 210 includes an imaging panel 212 and a control unit 214 that controls the imaging panel 212. The control unit 214 generates a stop signal for stopping the radiation of the radiation from the radiation source 230 based on the signal obtained from the imaging panel 212. The stop signal is supplied to the exposure control unit 220, and the exposure control unit 220 sends a stop command to the radiation source 230 in response to the stop signal. The control unit 214 includes, for example, a PLD (abbreviation of Programmable Logic Device) such as an FPGA (abbreviation of Field Programmable Gate Array), or an ASIC (abbreviation of Application Specific) or a program for integrated general purpose integrated circuit (ASIC). It may be configured by a computer or a combination of all or a part thereof.
 コンピュータ240は、放射線撮像装置210および曝射制御部220を制御する。また、コンピュータ240は、放射線撮像装置210から出力される放射線画像データを受信し、放射線画像データを処理する画像処理部241を含む。画像処理部241は、放射線画像データから放射線画像を生成しうる。 The computer 240 controls the radiation imaging device 210 and the exposure control unit 220. The computer 240 also includes an image processing unit 241 that receives the radiation image data output from the radiation imaging apparatus 210 and processes the radiation image data. The image processing unit 241 can generate a radiation image from the radiation image data.
 曝射制御部220は、一例として曝射スイッチ(不図示)を有し、ユーザによって曝射スイッチがオンされると、曝射指令を放射線源230に送るほか、放射線の放射の開始を示す開始通知をコンピュータ240に送る。該開始通知を受けたコンピュータ240は、該開始通知に応答して、放射線の放射の開始を放射線撮像装置210の制御部214に通知する。 The exposure control unit 220 has an exposure switch (not shown) as an example. When the user turns on the exposure switch, the exposure control unit 220 sends an exposure command to the radiation source 230 and also indicates the start of radiation emission. Send notification to computer 240. The computer 240 that has received the start notification notifies the control unit 214 of the radiation imaging apparatus 210 of the start of radiation emission in response to the start notification.
 図2には、撮像パネル212の構成例が示される。撮像パネル212は、画素アレイ112を備える。画素アレイ112は、放射線を検出するための2次元アレイ状に配された変換素子Sをそれぞれ含む複数の画素PIXを備える。また、画素アレイ112は、変換素子Sで生成された信号を出力するための列方向(図2の縦方向)に沿った複数の列信号線Sig1~Sig4を有する。さらに、撮像パネル212は、画素アレイ112を駆動する駆動回路(行選択回路)114、および、画素アレイ112の列信号線Sigに現れる信号を検出するための読出回路113を備える。図2に示す構成では、記載の簡単化のために、画素アレイ112は、4行×4列の画素PIXで構成されているが、実際には、より多くの画素PIXが配列されうる。一例において、撮像パネル212は、17インチの寸法を有し、約3000行×約3000列の画素PIXを有しうる。 FIG. 2 shows a configuration example of the image pickup panel 212. The imaging panel 212 includes the pixel array 112. The pixel array 112 includes a plurality of pixels PIX each including a conversion element S arranged in a two-dimensional array for detecting radiation. The pixel array 112 also has a plurality of column signal lines Sig1 to Sig4 along the column direction (vertical direction in FIG. 2) for outputting the signal generated by the conversion element S. Further, the image pickup panel 212 includes a drive circuit (row selection circuit) 114 that drives the pixel array 112, and a readout circuit 113 that detects a signal that appears on the column signal line Sig of the pixel array 112. In the configuration shown in FIG. 2, for simplification of description, the pixel array 112 is composed of 4 rows×4 columns of pixels PIX, but in reality, more pixels PIX can be arrayed. In one example, the imaging panel 212 has dimensions of 17 inches and may have about 3000 rows by about 3000 columns of pixel PIX.
 それぞれの画素PIXは、放射線を検出するための変換素子Sと、変換素子Sと列信号線Sig(複数の信号線Sigのうち変換素子Cに対応する信号線Sig)とを接続するスイッチTとを含む。それぞれの変換素子Sは、入射した放射線の量に対応する信号を列信号線Sigに出力する。変換素子Sは、例えば、ガラス基板等の絶縁性基板上に配置されアモルファスシリコンを主材料とするMIS型フォトダイオードであってもよい。また、変換素子Sは、PIN型フォトダイオードであってもよい。本実施形態において、変換素子Sは、放射線をシンチレータで光に変換した後に、光を検出する間接型の素子として構成されうる。間接型の素子において、シンチレータは、複数の画素PIX(複数の変換素子S)によって共有されうる。 Each pixel PIX includes a conversion element S for detecting radiation and a switch T that connects the conversion element S and the column signal line Sig (the signal line Sig corresponding to the conversion element C among the plurality of signal lines Sig). including. Each conversion element S outputs a signal corresponding to the amount of incident radiation to the column signal line Sig. The conversion element S may be, for example, a MIS type photodiode that is arranged on an insulating substrate such as a glass substrate and has amorphous silicon as a main material. Further, the conversion element S may be a PIN photodiode. In the present embodiment, the conversion element S may be configured as an indirect element that detects light after converting radiation into light with a scintillator. In the indirect type element, the scintillator can be shared by the plurality of pixels PIX (the plurality of conversion elements S).
 スイッチTは、例えば、制御端子(ゲート)と2つの主端子(ソース、ドレイン)とを有する薄膜トランジスタ(TFT)などのトランジスタによって構成されうる。変換素子Sは、2つの主電極を有し、変換素子Sの一方の主電極は、スイッチTの2つの主端子のうちの一方に接続され、変換素子Sの他方の主電極は、共通のバイアス線Bsを介してバイアス電源103に接続されている。バイアス電源103は、バイアス電圧Vsを供給する。第1行に配されるそれぞれの画素PIXのスイッチTの制御端子は、行方向(図2の横方向)に沿って配されたゲート線Vg1に接続される。同様に、第2~4行に配されるそれぞれの画素PIXのスイッチSWの制御端子は、それぞれゲート線Vg2~Vg4に接続される。ゲート線Vg1~Vg4には、駆動回路114によってゲート信号が供給される。 The switch T can be composed of, for example, a transistor such as a thin film transistor (TFT) having a control terminal (gate) and two main terminals (source and drain). The conversion element S has two main electrodes, one main electrode of the conversion element S is connected to one of the two main terminals of the switch T, and the other main electrode of the conversion element S has a common electrode. It is connected to the bias power supply 103 via the bias line Bs. The bias power supply 103 supplies the bias voltage Vs. The control terminal of the switch T of each pixel PIX arranged in the first row is connected to the gate line Vg1 arranged in the row direction (horizontal direction in FIG. 2). Similarly, the control terminals of the switches SW of the pixels PIX arranged in the second to fourth rows are connected to the gate lines Vg2 to Vg4, respectively. A gate signal is supplied to the gate lines Vg1 to Vg4 by the drive circuit 114.
 第1列に配されるそれぞれの画素PIXは、スイッチTの変換素子Sと接続されない側の主端子が、第1列の列信号線Sig1に接続される。同様に、第2~4列に配されるそれぞれの画素PIXは、スイッチTの変換素子Sと接続されない側の主端子が、それぞれ第2~4列の列信号線Sig2~Sig4に接続される。 In each pixel PIX arranged in the first column, the main terminal of the switch T that is not connected to the conversion element S is connected to the column signal line Sig1 of the first column. Similarly, in each of the pixels PIX arranged in the second to fourth columns, the main terminals of the switch T not connected to the conversion element S are connected to the column signal lines Sig2 to Sig4 in the second to fourth columns, respectively. ..
 読出回路113は、1つの列信号線Sigに1つの列増幅部CAが対応するように複数の列増幅部CAを有する。それぞれの列増幅部CAは、積分増幅器105、可変増幅器104、サンプルホールド回路107、バッファ回路106を含みうる。積分増幅器105は、列信号線Sigに現れた信号を増幅する。積分増幅器105は、演算増幅器と、演算増幅器の反転入力端子と出力端子との間に並列に接続された積分容量およびリセットスイッチとを含みうる。演算増幅器の非反転入力端子には、基準電位Vrefが供給される。リセットスイッチをオンさせることによって積分容量がリセットされるとともに、列信号線Sigの電位が基準電位Vrefにリセットされる。リセットスイッチは、制御部214から供給されるリセットパルスRCによって制御されうる。 The read circuit 113 has a plurality of column amplification units CA so that one column amplification unit CA corresponds to one column signal line Sig. Each column amplification unit CA may include an integrating amplifier 105, a variable amplifier 104, a sample hold circuit 107, and a buffer circuit 106. The integrating amplifier 105 amplifies the signal appearing on the column signal line Sig. The integrating amplifier 105 may include an operational amplifier and an integrating capacitor and a reset switch connected in parallel between the inverting input terminal and the output terminal of the operational amplifier. The reference potential Vref is supplied to the non-inverting input terminal of the operational amplifier. By turning on the reset switch, the integration capacitance is reset and the potential of the column signal line Sig is reset to the reference potential Vref. The reset switch can be controlled by the reset pulse RC supplied from the control unit 214.
 可変増幅器104は、積分増幅器105から出力された信号を設定された増幅率で増幅する。サンプルホールド回路107は、可変増幅器104から出力された信号をサンプルホールドする。サンプルホールド回路107は、サンプリングスイッチとサンプリング容量とによって構成されうる。バッファ回路106は、サンプルホールド回路107から出力された信号をバッファリング(インピーダンス変換)して出力する。サンプリングスイッチは、制御部214から供給されるサンプリングパルスによって制御されうる。 The variable amplifier 104 amplifies the signal output from the integrating amplifier 105 at a set amplification factor. The sample hold circuit 107 samples and holds the signal output from the variable amplifier 104. The sample hold circuit 107 can be composed of a sampling switch and a sampling capacitor. The buffer circuit 106 buffers (impedance-converts) the signal output from the sample hold circuit 107 and outputs it. The sampling switch may be controlled by a sampling pulse supplied from the controller 214.
 また、読出回路113は、それぞれの列信号線Sigに対応するように設けられた複数の列増幅部CAからの信号を所定の順序で選択して出力するマルチプレクサ108を含む。マルチプレクサ108は、例えば、シフトレジスタを含む。シフトレジスタは、制御部214から供給されるクロック信号CLKに従ってシフト動作を行い、シフトレジスタによって複数の列増幅部CAからの1つの信号が選択される。読出回路113は、さらに、マルチプレクサ108から出力される信号をバッファリング(インピーダンス変換)するバッファ109、および、バッファ109から出力される信号であるアナログ信号をデジタル信号に変換するAD変換器110を含みうる。AD変換器110の出力、即ち、放射線画像データは、コンピュータ240に転送される。 The read circuit 113 also includes a multiplexer 108 that selects and outputs signals from a plurality of column amplification units CA provided corresponding to the respective column signal lines Sig in a predetermined order. The multiplexer 108 includes, for example, a shift register. The shift register performs a shift operation according to the clock signal CLK supplied from the control unit 214, and the shift register selects one signal from the plurality of column amplification units CA. The read circuit 113 further includes a buffer 109 that buffers (impedance-converts) the signal output from the multiplexer 108, and an AD converter 110 that converts an analog signal output from the buffer 109 into a digital signal. sell. The output of the AD converter 110, that is, the radiation image data is transferred to the computer 240.
 本実施形態において、後述するように、基板の放射線を入射させるための入射面の側と、入射面とは反対の側の裏面と、の両方に、放射線を可視光に変換するシンチレータが、それぞれの面を覆うように配される。また、それぞれの画素PIXに含まれる変換素子Sは、2種類の変換素子Sを含む。図2に示す構成において、変換素子S12、S14、S21、S23、S32、S34、S41、S43は、2つのシンチレータからの光を受光するように配される。以下において、変換素子Sのうち2つのシンチレータからの光を受光するこれらの変換素子を特定する場合、第1の変換素子901と呼ぶ。また、変換素子S11、S13、S22、S24、S31、S33、S42、S44には、一方のシンチレータと当該変換素子Sのそれぞれとの間に遮光層903が配される。これによって、変換素子S11、S13、S22、S24、S31、S33、S42、S44は、一方のシンチレータからの光が遮断され、他方のシンチレータからの光を受光するように配される。以下において、変換素子Sのうち片方のシンチレータからの光が遮断されるこれらの変換素子を特定する場合、第2の変換素子902と呼ぶ。遮光層903は、シンチレータで発光した光を遮る層であり、基板の入射面の側または裏面の側を覆うシンチレータの何れか一方と、第2の変換素子902との間を遮光すればよい。このとき、第2の変換素子902において、一方のシンチレータからの光が完全に遮断されなくてもよい。第1の変換素子901よりも一方のシンチレータから受光できる光の量が少なくなるように、基板の入射面の側または裏面の側を覆うシンチレータの何れか一方と、第2の変換素子902との間に遮光層903が配されればよい。 In the present embodiment, as will be described later, a scintillator that converts the radiation into visible light is provided on both the incident surface side for allowing the radiation of the substrate to enter and the back surface on the side opposite to the incident surface, respectively. It is arranged to cover the surface of. The conversion element S included in each pixel PIX includes two types of conversion elements S. In the configuration shown in FIG. 2, the conversion elements S12, S14, S21, S23, S32, S34, S41, S43 are arranged to receive light from the two scintillators. In the following, when these conversion elements that receive light from two scintillators of the conversion elements S are specified, they are referred to as a first conversion element 901. Further, in the conversion elements S11, S13, S22, S24, S31, S33, S42, S44, a light shielding layer 903 is arranged between one scintillator and each of the conversion elements S. Thereby, the conversion elements S11, S13, S22, S24, S31, S33, S42, S44 are arranged so that the light from one scintillator is blocked and the light from the other scintillator is received. In the following, in the case of specifying those conversion elements in which light from one scintillator of the conversion elements S is blocked, they are referred to as a second conversion element 902. The light-blocking layer 903 is a layer that blocks light emitted from the scintillator, and may block light between the second conversion element 902 and either of the scintillator that covers the incident surface side or the back surface side of the substrate. At this time, in the second conversion element 902, the light from one scintillator may not be completely blocked. One of the scintillator that covers the incident surface side and the back surface side of the substrate and the second conversion element 902 so that the amount of light that can be received from one scintillator is smaller than that of the first conversion element 901. The light shielding layer 903 may be provided between them.
 ここでは、基板の入射面の側に配されたシンチレータと第2の変換素子902との間に遮光層903が配されるとする。基板の入射面の側から入射した放射線のうち、エネルギの低い成分は、基板の入射面の側を覆うシンチレータで吸収され、可視光に変換されて、それぞれの画素PIXに入射する。第2の変換素子902は、基板の入射面の側が遮光されているため、基板の入射面の側で発光した光が入射しない。そのため、放射線のエネルギの低い成分から変換された光は、第2の変換素子902に入射しない。一方、第1の変換素子901は、遮光層903が配されないため、放射線のエネルギの低い成分から変換された光が入射する。 Here, it is assumed that the light shielding layer 903 is arranged between the scintillator arranged on the incident surface side of the substrate and the second conversion element 902. Of the radiation incident from the incident surface side of the substrate, the low energy component is absorbed by the scintillator covering the incident surface side of the substrate, converted into visible light, and incident on each pixel PIX. Since the second conversion element 902 is shielded from the incident surface side of the substrate, light emitted from the incident surface side of the substrate does not enter. Therefore, the light converted from the low energy component of the radiation does not enter the second conversion element 902. On the other hand, in the first conversion element 901, since the light shielding layer 903 is not arranged, the light converted from the component of low radiation energy is incident.
 また、放射線のうち、基板の入射面の側に配されたシンチレータで吸収されなかったエネルギの高い成分は、基板の裏面の側を覆うシンチレータで吸収され、可視光に変換される。第1の変換素子901および第2の変換素子902において、基板の裏面の側は遮光されていないため、放射線のうちエネルギが高い成分から変換された光は、第1の変換素子901、第2の変換素子902の両方に入射する。 Also, of the radiation, high-energy components not absorbed by the scintillator arranged on the incident surface side of the substrate are absorbed by the scintillator covering the rear surface side of the substrate and converted into visible light. In the first conversion element 901 and the second conversion element 902, the back surface side of the substrate is not shielded, so that light converted from a component having a high energy in the radiation is converted into the first conversion element 901 and the second conversion element 902. It enters both of the conversion elements 902.
 このように、第1の変換素子901において、放射線のうちエネルギの高い成分およびエネルギの低い成分に起因する信号、第2の変換素子902において、放射線のうちエネルギの高い成分に起因する信号が、それぞれ取得できる。つまり、互いに隣接する画素PIXで、異なる放射線エネルギの情報を保持することができる。このように隣接する画素PIXで、異なるエネルギ成分の放射線から取得される情報を保持することによって、後述する方法を用いてエネルギサブトラクションを行うことができる。 As described above, in the first conversion element 901, the signal due to the high energy component and the low energy component of the radiation and the signal due to the high energy component of the radiation in the second conversion element 902 are You can get each. That is, the information of different radiation energies can be held in the pixels PIX adjacent to each other. By holding the information acquired from the radiation of different energy components in the adjacent pixels PIX in this way, energy subtraction can be performed using a method described later.
 図3A、図3Bは、第1の変換素子901を有する画素PIXAと第2の変換素子902を有する画素PIXBおよび画素PIXCとの断面構造の一例が模式的に示される。ここでは、図面の上側から放射線を入射させるとして説明するが、図面の下側から放射線を入射させてもよい。図3A、図3Bにおいて、第1の変換素子901および第2の変換素子902が基板310と基板310の入射面の側に配されたシンチレータ904との間に配される。図3Aでは、画素PIXBにおいて、遮光層903が、第2の変換素子902とシンチレータ904との間に配される場合が示されている。一方、図3Bでは、画素PIXCにおいて、遮光層903が、第2の変換素子902と基板310の入射面とは反対の裏面の側に配されたシンチレータ905との間に配される場合が示されている。 3A and 3B schematically show an example of a cross-sectional structure of a pixel PIXA having a first conversion element 901 and a pixel PIXB and a pixel PIXC having a second conversion element 902. Here, the radiation is described as being incident from the upper side of the drawing, but the radiation may be incident from the lower side of the drawing. In FIGS. 3A and 3B, the first conversion element 901 and the second conversion element 902 are arranged between the substrate 310 and the scintillator 904 arranged on the incident surface side of the substrate 310. In FIG. 3A, in the pixel PIXB, the case where the light shielding layer 903 is arranged between the second conversion element 902 and the scintillator 904 is shown. On the other hand, in FIG. 3B, in the pixel PIXC, the case where the light shielding layer 903 is arranged between the second conversion element 902 and the scintillator 905 arranged on the back surface side opposite to the incident surface of the substrate 310 is shown. Has been done.
 それぞれの画素PIXの変換素子Sは、シンチレータ904、905で発光した光を透過するガラス基板などの絶縁性を有する基板310の上に配される。それぞれ画素PIXは、基板310の上に、導電層311、絶縁層312、半導体層313、不純物半導体層314および導電層315を、この順番で含む。導電層311は、スイッチTを構成するトランジスタ(例えばTFT)のゲート電極を構成する。絶縁層312は、導電層311を覆うように配置され、半導体層313は、絶縁層312を介して導電層311のうちゲート電極を構成する部分の上に配されている。不純物半導体層314は、スイッチTを構成するトランジスタの2つの主端子(ソース、ドレイン)を構成するように半導体層313の上に配されている。導電層315は、スイッチTを構成するトランジスタの2つの主端子(ソース、ドレイン)にそれぞれ接続された配線パターンを構成している。導電層315の一部は、列信号線Sigを構成し、他の一部は、変換素子SとスイッチTとを接続するための配線パターンを構成する。 The conversion element S of each pixel PIX is disposed on an insulating substrate 310 such as a glass substrate that transmits the light emitted by the scintillators 904 and 905. Each pixel PIX includes a conductive layer 311, an insulating layer 312, a semiconductor layer 313, an impurity semiconductor layer 314, and a conductive layer 315 on a substrate 310 in this order. The conductive layer 311 forms a gate electrode of a transistor (for example, TFT) that forms the switch T. The insulating layer 312 is arranged so as to cover the conductive layer 311, and the semiconductor layer 313 is arranged over the portion of the conductive layer 311 which forms the gate electrode with the insulating layer 312 interposed therebetween. The impurity semiconductor layer 314 is arranged on the semiconductor layer 313 so as to form two main terminals (source and drain) of the transistor forming the switch T. The conductive layer 315 forms a wiring pattern that is connected to the two main terminals (source and drain) of the transistor that forms the switch T, respectively. A part of the conductive layer 315 forms the column signal line Sig, and another part of the conductive layer 315 forms a wiring pattern for connecting the conversion element S and the switch T.
 それぞれの画素PIXは、さらに、絶縁層312および導電層315を覆う層間絶縁膜316を含む。層間絶縁膜316には、導電層315のうちスイッチTを構成する部分と接続するためのコンタクトプラグ317が設けられている。また、それぞれの画素PIXは、層間絶縁膜316の上に配された変換素子Sを含む。図3A、図3Bに示される例では、変換素子Sは、シンチレータ904、905で放射線から変換された光を電気信号に変換する間接型の変換素子として構成されている。変換素子Sは、層間絶縁膜316の上に積層された導電層318、絶縁層319、半導体層320、不純物半導体層321、導電層322、電極層325を含む。変換素子Sの上には、保護層323および接着層324が配される。シンチレータ904は、接着層324の上に、基板310の入射面の側を覆うように配される。また、シンチレータ905は、基板310の入射面とは反対の裏面の側を覆うように配される。 Each pixel PIX further includes an interlayer insulating film 316 covering the insulating layer 312 and the conductive layer 315. The interlayer insulating film 316 is provided with a contact plug 317 for connecting to a portion of the conductive layer 315 that constitutes the switch T. In addition, each pixel PIX includes a conversion element S arranged on the interlayer insulating film 316. In the example illustrated in FIGS. 3A and 3B, the conversion element S is configured as an indirect conversion element that converts light converted from radiation by the scintillators 904 and 905 into an electric signal. The conversion element S includes a conductive layer 318, an insulating layer 319, a semiconductor layer 320, an impurity semiconductor layer 321, a conductive layer 322, and an electrode layer 325 that are stacked on the interlayer insulating film 316. The protective layer 323 and the adhesive layer 324 are disposed on the conversion element S. The scintillator 904 is arranged on the adhesive layer 324 so as to cover the incident surface side of the substrate 310. Further, the scintillator 905 is arranged so as to cover the back surface side of the substrate 310 opposite to the incident surface.
 導電層318は、それぞれ変換素子Sの下部電極を構成する。また、導電層322および電極層325は、それぞれの変換素子Sの上部電極を構成する。導電層318、絶縁層319、半導体層320、不純物半導体層321、および、導電層322は、変換素子SとしてMIS型センサを構成している。例えば、不純物半導体層321は、n型の不純物半導体層で形成される。 The conductive layers 318 form the lower electrodes of the conversion elements S, respectively. In addition, the conductive layer 322 and the electrode layer 325 form the upper electrode of each conversion element S. The conductive layer 318, the insulating layer 319, the semiconductor layer 320, the impurity semiconductor layer 321, and the conductive layer 322 configure a MIS type sensor as the conversion element S. For example, the impurity semiconductor layer 321 is formed using an n-type impurity semiconductor layer.
 シンチレータ904、905は、GOS(酸硫化ガドリニウム)やCsI(ヨウ化セシウム)などの材料を用いて構成されうる。これらの材料は、貼り合わせや印刷、蒸着などによって形成されうる。シンチレータ904とシンチレータ905とは、同じ材料を用いてもよいし、取得する放射線のエネルギに応じて異なる材料を用いてもよい。 The scintillators 904 and 905 can be configured using materials such as GOS (gadolinium oxysulfide) and CsI (cesium iodide). These materials can be formed by pasting, printing, vapor deposition, or the like. The scintillator 904 and the scintillator 905 may use the same material, or may use different materials depending on the energy of the radiation to be acquired.
 本実施形態において、変換素子Sは、MIS型のセンサを用いる例を示しているが、これに限定されることはない。変換素子Sは、例えば、pn型やPIN型のフォトダイオードであってもよい。 In the present embodiment, the conversion element S shows an example in which a MIS type sensor is used, but the invention is not limited to this. The conversion element S may be, for example, a pn-type or PIN-type photodiode.
 次いで、第2の変換素子902に配される、シンチレータ904またはシンチレータ905から入射する光を遮断するための遮光層903の配置について説明する。図3Aに示す構成において、画素PIXBの第2の変換素子902は、基板310の入射面の側からシンチレータ904に向かって下部電極を構成する導電層318と半導体層320と上部電極を構成する導電層322とをこの順番で含む。この上部電極を構成する導電層322が、遮光層903として機能する。具体的には、導電層322をAl、Mo、Cr、Cuなど、シンチレータ904で発せられる光に対して不透明な材料で形成することによって、導電層322が遮光層903として機能する。つまり、画素PIXBの第2の変換素子902は、第1の変換素子901よりもシンチレータ904から受光できる光の量が少なくなるように、シンチレータ904と第2の変換素子902との間に遮光層903が配される。また、画素PIXBの第2の変換素子902は、画素PIXAの第1の変換素子901と同様に、シンチレータ905からの光を受光するように配される。また、図3Bに示す構成において、画素PIXCの第2の変換素子902は、基板310の入射面の側からシンチレータ904に向かって下部電極を構成する導電層318と半導体層320と上部電極を構成する導電層322、電極層325とをこの順番で含む。この下部電極を構成する導電層318が、遮光層903として機能する。具体的には、導電層318をAl、Mo、Cr、Cuなど、シンチレータ905で発せられる光に対して不透明な材料で形成することによって、導電層322が遮光層903として機能する。つまり、画素PIXCの第2の変換素子902は、第1の変換素子901よりもシンチレータ905から受光できる光の量が少なくなるように、シンチレータ905と第2の変換素子902との間に遮光層903が配される。また、画素PIXCの第2の変換素子902は、画素PIXAの第1の変換素子901と同様に、シンチレータ904からの光を受光するように配される。 Next, the arrangement of the light shielding layer 903 arranged in the second conversion element 902 for blocking the light incident from the scintillator 904 or the scintillator 905 will be described. In the configuration shown in FIG. 3A, the second conversion element 902 of the pixel PIXB has a conductive layer 318 forming a lower electrode from the incident surface side of the substrate 310 toward the scintillator 904, a conductive layer forming a semiconductor layer 320, and an upper electrode. And layers 322 in that order. The conductive layer 322 forming the upper electrode functions as the light shielding layer 903. Specifically, the conductive layer 322 functions as the light-blocking layer 903 by forming the conductive layer 322 with a material that is opaque to light emitted from the scintillator 904, such as Al, Mo, Cr, or Cu. That is, the second conversion element 902 of the pixel PIXB has a light-shielding layer between the scintillator 904 and the second conversion element 902 so that the amount of light that can be received from the scintillator 904 is smaller than that of the first conversion element 901. 903 is arranged. The second conversion element 902 of the pixel PIXB is arranged so as to receive the light from the scintillator 905, similarly to the first conversion element 901 of the pixel PIXA. In the structure shown in FIG. 3B, the second conversion element 902 of the pixel PIXC forms a conductive layer 318, a semiconductor layer 320, and an upper electrode that form a lower electrode from the incident surface side of the substrate 310 toward the scintillator 904. The conductive layer 322 and the electrode layer 325 are included in this order. The conductive layer 318 forming the lower electrode functions as the light shielding layer 903. Specifically, by forming the conductive layer 318 with a material that is opaque to light emitted from the scintillator 905 such as Al, Mo, Cr, or Cu, the conductive layer 322 functions as the light-blocking layer 903. That is, the second conversion element 902 of the pixel PIXC has a light shielding layer between the scintillator 905 and the second conversion element 902 so that the amount of light that can be received from the scintillator 905 is smaller than that of the first conversion element 901. 903 is arranged. Further, the second conversion element 902 of the pixel PIXC is arranged so as to receive the light from the scintillator 904, similarly to the first conversion element 901 of the pixel PIXA.
 一方、画素PIXAの第1の変換素子901において、導電層318および電極層325には、ITO(酸化インジウムスズ)など、シンチレータ904で発せられる光に対して透明な材料が用いられる。これによって、隣接する画素PIXAと画素PIXBまたは画素PIXCとの間でエネルギ成分の異なる信号を取得することができる。 On the other hand, in the first conversion element 901 of the pixel PIXA, the conductive layer 318 and the electrode layer 325 are made of a material transparent to light emitted from the scintillator 904, such as ITO (indium tin oxide). This makes it possible to obtain signals having different energy components between the adjacent pixel PIXA and pixel PIXB or pixel PIXC.
 また、本実施形態において、画素PIXBの導電層322および画素PIXCの導電層318を単層構造とする例を示したが、これに限られることはない。例えば、画素PIXBの導電層322および画素PIXCの導電層318において、透明な材料と不透明な材料とを積層させてもよく、その場合、不透明な材料の面積で遮光量が決定する。また、本実施形態において、画素PIXBの導電層322および画素PIXCの導電層318を遮光層903として機能させたが、遮光層903の配置はこれに限られることはない。例えば、画素PIXBにおいて、保護層323の中にシンチレータ904から入射する光に対し、Al、Mo、Cr、Cuなどを用いた専用の遮光層903を配してもよい。この場合、遮光層903の電位を一定の電位に固定して用いてもよい。 In addition, although an example in which the conductive layer 322 of the pixel PIXB and the conductive layer 318 of the pixel PIXC have a single-layer structure has been shown in the present embodiment, the present invention is not limited to this. For example, in the conductive layer 322 of the pixel PIXB and the conductive layer 318 of the pixel PIXC, a transparent material and an opaque material may be stacked, and in that case, the light shielding amount is determined by the area of the opaque material. Further, in the present embodiment, the conductive layer 322 of the pixel PIXB and the conductive layer 318 of the pixel PIXC are made to function as the light shielding layer 903, but the arrangement of the light shielding layer 903 is not limited to this. For example, in the pixel PIXB, a dedicated light-shielding layer 903 made of Al, Mo, Cr, Cu, or the like may be provided in the protective layer 323 for light incident from the scintillator 904. In this case, the potential of the light shielding layer 903 may be fixed to a constant potential before use.
 また、図3Bに示す画素PIXCのように、シンチレータ905からの光を遮断する場合、シンチレータ905からの光を受光する画素PIXAのスイッチTや列信号線Sigの位置を画素PIXCの側に寄せて配してもよい。このような配置にすることによって、画素PIXAにおいて、第1の変換素子901のシンチレータ905に対する開口率を上げることができる。 Further, when the light from the scintillator 905 is blocked as in the pixel PIXC shown in FIG. 3B, the positions of the switch T and the column signal line Sig of the pixel PIXA that receives the light from the scintillator 905 are moved to the pixel PIXC side. You may distribute it. With such an arrangement, the aperture ratio of the first conversion element 901 to the scintillator 905 can be increased in the pixel PIXA.
 また、遮光層903は、上述のようにシンチレータ904またはシンチレータ905から第2の変換素子902への光を完全に遮光する必要はない。隣接する画素PIXAと、画素PIXBまたは画素PIXCと、の間で、遮光層903が配される側のシンチレータ904またはシンチレータ905からの受光する量が異なるようにすれば、エネルギサブトラクションは可能である。このような場合、画素PIXAの第1の変換素子901が受光する光に対して何%の光が、画素PIXBまたは画素PIXCの第2の変換素子902に入射するかを事前に調べておき、第1の変換素子901の出力を基準に差分処理をすることによって補正できる。 Moreover, the light shielding layer 903 does not need to completely shield the light from the scintillator 904 or the scintillator 905 to the second conversion element 902 as described above. Energy subtraction is possible if the amount of light received from the scintillator 904 or scintillator 905 on the side where the light shielding layer 903 is arranged is different between the adjacent pixel PIXA and the pixel PIXB or pixel PIXC. In such a case, it is checked in advance what percentage of light with respect to the light received by the first conversion element 901 of the pixel PIXA is incident on the second conversion element 902 of the pixel PIXB or the pixel PIXC, This can be corrected by performing difference processing with the output of the first conversion element 901 as a reference.
 図3A、図3Bに示されるように、基板310の入射面に対する正射影において、列信号線Sigのそれぞれが、画素PIXの一部と重なるように配される。このような構成は、それぞれの画素PIXの変換素子Sの面積を大きくする点において有利であるが、一方、列信号線Sigと変換素子Sとの間の容量結合が大きくなるという点で不利である。変換素子Sに放射線が入射し、変換素子Sに電荷が蓄積されて下部電極である導電層318の電位が変化すると、列信号線Sigと変換素子Sとの間の容量結合によって列信号線Sigの電位が変化するクロストークが発生してしまう。図4の4a、4bは、このクロストークへの対応方法を示している。複数の変換素子Sのうち列方向と交差する行方向に並ぶ変換素子Sにおいて、含まれる遮光層903が配される第2の変換素子902を有する画素PIXの数が、行ごとに同じになるように配置する。また、複数の変換素子Sのうち列方向に並ぶ変換素子Sにおいて、含まれる複数の第2の変換素子902を有する画素PIXの数が、列ごとに同じになるように配置する。このように配置することによって、行、列単位でのクロストークによるアーチファクトの発生が抑制できる。 As shown in FIGS. 3A and 3B, in the orthogonal projection onto the incident surface of the substrate 310, each of the column signal lines Sig is arranged so as to overlap a part of the pixel PIX. Such a configuration is advantageous in that the area of the conversion element S of each pixel PIX is increased, but is disadvantageous in that the capacitive coupling between the column signal line Sig and the conversion element S is increased. is there. When radiation enters the conversion element S, charges are accumulated in the conversion element S, and the potential of the conductive layer 318 as the lower electrode changes, the column signal line Sig is capacitively coupled between the column signal line Sig and the conversion element S. The crosstalk that changes the electric potential of occurs. 4a and 4b in FIG. 4 show a method of coping with this crosstalk. In the conversion elements S arranged in the row direction crossing the column direction among the plurality of conversion elements S, the number of pixels PIX having the second conversion element 902 in which the included light shielding layer 903 is arranged is the same for each row. To arrange. In the conversion elements S arranged in the column direction among the plurality of conversion elements S, the number of pixels PIX having the plurality of second conversion elements 902 included therein is arranged to be the same for each column. By arranging in this way, it is possible to suppress the occurrence of artifacts due to crosstalk in units of rows and columns.
 また、放射線撮像装置210が、放射線の照射開始を自動で検知する機能を有していてもよい。この場合、例えば、ゲート線VgをスイッチTがオン/オフするように動作させ、当該変換素子Sからの信号を読み出し、出力信号から放射線照射の有無を判定する。遮光層903を備える第2の変換素子902を有する画素PIXの数が行ごとに異なる場合、行ごとに出力される信号量が変わり、検知精度がばらついてしまう。そのため、図4の4a、4bに示されるように、複数の変換素子Sのうち列方向と交差する行方向に並ぶ変換素子Sにおいて、含まれる遮光層903が配される第2の変換素子902を有する画素PIXの数が、行ごとに同じになるように配置する。このような配置をすることによって、放射線の照射開始を自動で検知する検知精度が安定する。 Moreover, the radiation imaging apparatus 210 may have a function of automatically detecting the start of radiation irradiation. In this case, for example, the gate line Vg is operated so that the switch T is turned on/off, the signal from the conversion element S is read, and the presence or absence of radiation irradiation is determined from the output signal. When the number of pixels PIX including the second conversion element 902 including the light shielding layer 903 is different for each row, the amount of signals output for each row changes, and the detection accuracy varies. Therefore, as shown in 4a and 4b of FIG. 4, in the conversion elements S arranged in the row direction intersecting the column direction among the plurality of conversion elements S, the second conversion element 902 in which the included light shielding layer 903 is arranged is arranged. Are arranged so that the number of pixels PIX having the same is the same for each row. With such an arrangement, the detection accuracy of automatically detecting the start of radiation irradiation becomes stable.
 また、図4の4bの画素PIXの配置例は、図4の4aの画素PIXの配置例に比べて、第2の変換素子902を有する画素PIXの密度を減らしている。シンチレータ905からの光は、基板310を介して変換素子Sに入射するため、基板310の厚さによって光が拡散し、MTF(Modulation Transfer Function)が低下してしまう。このため、第2の変換素子902を有する画素PIXの密度を減らしても実質的に解像力の低下が起こらない。つまり、第2の変換素子902が、2つのシンチレータのうち基板310を介して対向するシンチレータ905が発する光を受光する場合、第1の変換素子901を備える画素PIXの数よりも、第2の変換素子902を備える画素PIXの数の方が少なくてもよい。 In the arrangement example of the pixel PIX of 4b in FIG. 4, the density of the pixel PIX having the second conversion element 902 is reduced as compared with the arrangement example of the pixel PIX of 4a in FIG. Since the light from the scintillator 905 enters the conversion element S via the substrate 310, the light is diffused depending on the thickness of the substrate 310, and the MTF (Modulation Transfer Function) is reduced. Therefore, even if the density of the pixel PIX having the second conversion element 902 is reduced, the resolution does not substantially decrease. That is, when the second conversion element 902 receives the light emitted by the scintillator 905 which is opposed to the other scintillator via the substrate 310, the second conversion element 902 has a second number greater than the number of pixels PIX including the first conversion element 901. The number of pixels PIX including the conversion element 902 may be smaller.
 また、シンチレータ905からの基板310を介した光の拡散を抑制しMTFの低下を低減するために、機械研磨や化学研磨によって、基板310の厚さを薄くしてもよい。また、MTFの低下を低減するために、図3A,図3Bに示すように、シンチレータ905と基板310との間に、シンチレータで発せられた光に指向性を付与するルーバー層やマイクロレンズなどの散乱防止層326を設けてもよい。また、MTFの低下を低減するために、コンピュータ240の画像処理部241における画像処理で、鮮鋭化処理によって解像力を上げてもよい。また、シンチレータ904からの光による低エネルギ成分と、シンチレータ905からの光による高エネルギ成分とのMTFを合わせる方法として、解像力を上げる以外にも、解像力の高い方を低い方に合わせてMTFを低下させる。その後、エネルギサブトラクション処理を行ってもよい。 The thickness of the substrate 310 may be reduced by mechanical polishing or chemical polishing in order to suppress the diffusion of light from the scintillator 905 through the substrate 310 and reduce the decrease in MTF. In order to reduce the decrease in MTF, as shown in FIGS. 3A and 3B, a louver layer, a microlens, or the like between the scintillator 905 and the substrate 310 that imparts directivity to the light emitted by the scintillator. The anti-scattering layer 326 may be provided. Further, in order to reduce the decrease in MTF, the image processing in the image processing unit 241 of the computer 240 may increase the resolution by sharpening processing. Further, as a method of matching the MTF of the low energy component due to the light from the scintillator 904 and the MTF of the high energy component due to the light from the scintillator 905, in addition to increasing the resolution, the MTF is decreased by matching the higher resolution to the lower one. Let After that, the energy subtraction process may be performed.
 次いで、図5を参照しながら放射線撮像装置210および放射線撮像システム200の動作を説明する。ここでは、図2に示される、それぞれ変換素子Sを備える4行4列の画素PIXを含む撮像パネル212を有する放射線撮像装置210の動作を例に説明する。放射線撮像システム200の動作は、コンピュータ240によって制御される。放射線撮像装置210の動作は、コンピュータ240による制御の下で、制御部214によって制御される。 Next, operations of the radiation imaging apparatus 210 and the radiation imaging system 200 will be described with reference to FIG. Here, the operation of the radiation imaging apparatus 210 including the imaging panel 212 including the pixels PIX of 4 rows and 4 columns each including the conversion element S shown in FIG. 2 will be described as an example. The operation of the radiation imaging system 200 is controlled by the computer 240. The operation of the radiation imaging apparatus 210 is controlled by the control unit 214 under the control of the computer 240.
 まず、放射線源230からの放射線の放射、換言すると、放射線撮像装置210への放射線の照射が開始されるまで、制御部214は、駆動回路114および読出回路113に空読みを実施させる。空読みは、駆動回路114が画素アレイ112のそれぞれの行のゲート線Vg1~Vg4に供給されるゲート信号を順にアクティブレベルに駆動し、変換素子Sに蓄積されているダーク電荷をリセットするものである。ここで、空読みの際、積分増幅器105のリセットスイッチには、アクティブレベルのリセットパルスが供給され、列信号線Sigが基準電位にリセットされる。ダーク電荷とは、変換素子Sに放射線が入射しないにも関わらず発生する電荷である。 First, the control unit 214 causes the drive circuit 114 and the reading circuit 113 to perform a blank reading until the radiation of the radiation from the radiation source 230, in other words, the irradiation of the radiation to the radiation imaging apparatus 210 is started. In the idle reading, the driving circuit 114 sequentially drives the gate signals supplied to the gate lines Vg1 to Vg4 of the respective rows of the pixel array 112 to the active level, and resets the dark charges accumulated in the conversion element S. is there. Here, at the time of idle reading, a reset pulse of the active level is supplied to the reset switch of the integrating amplifier 105, and the column signal line Sig is reset to the reference potential. The dark charges are charges that are generated even when no radiation is incident on the conversion element S.
 制御部214は、例えば、曝射制御部220からコンピュータ240を介して供給される開始通知に基づいて、放射線源230からの放射線の放射の開始を認識することができる。また、図1に示すように、放射線撮像装置210に画素アレイ112のバイアス線Bsまたは列信号線Sigなどを流れる電流を検出する検出回路216が設けられてもよい。制御部214は、検出回路216の出力に基づいて放射線源230からの放射線の照射の開始を認識することができる。 The control unit 214 can recognize the start of radiation emission from the radiation source 230 based on a start notification supplied from the exposure control unit 220 via the computer 240, for example. Further, as shown in FIG. 1, the radiation imaging apparatus 210 may be provided with a detection circuit 216 that detects a current flowing through the bias line Bs or the column signal line Sig of the pixel array 112. The control unit 214 can recognize the start of irradiation of the radiation from the radiation source 230 based on the output of the detection circuit 216.
 放射線が照射されると、制御部214は、スイッチTを開かれた状態(オフ状態)に制御する。これによって、放射線の照射によって変換素子Sに発生した電荷が蓄積される。放射線の照射が終了まで、制御部214は、この状態で待機する。 When irradiated with radiation, the control unit 214 controls the switch T to be in an open state (off state). As a result, the charges generated in the conversion element S due to the irradiation of radiation are accumulated. The control unit 214 waits in this state until the irradiation of radiation is completed.
 次に、制御部214は、駆動回路114および読出回路113に本読みを実行させる。本読みでは、駆動回路114が、画素アレイ112のそれぞれの行のゲート線Vg1~Vg4に供給されるゲート信号をアクティブレベルに駆動する。そして、読出回路113は、列信号線Sigを介して変換素子Sに蓄積されている電荷を読み出し、マルチプレクサ108、バッファ109およびAD変換器110を通して放射線画像データとしてコンピュータ240に出力する。 Next, the control unit 214 causes the drive circuit 114 and the reading circuit 113 to execute the main reading. In this reading, the drive circuit 114 drives the gate signals supplied to the gate lines Vg1 to Vg4 of the respective rows of the pixel array 112 to the active level. Then, the readout circuit 113 reads out the electric charge accumulated in the conversion element S via the column signal line Sig and outputs it to the computer 240 as radiation image data through the multiplexer 108, the buffer 109 and the AD converter 110.
 次にオフセット画像データの取得について説明する。変換素子Sは、放射線を照射しない状態においても、ダーク電荷が溜まり続ける。このため、制御部214は、放射線を照射せずに放射線画像データを取得する際と同様の動作を行うことによって、オフセット画像データを取得する。放射線画像データからオフセット画像データを引き算することで、ダーク電荷によるオフセット成分が除去できる。 Next, the acquisition of offset image data will be described. The conversion element S continues to accumulate dark charges even when it is not irradiated with radiation. Therefore, the control unit 214 acquires the offset image data by performing the same operation as when acquiring the radiation image data without irradiating the radiation. By subtracting the offset image data from the radiation image data, the offset component due to the dark charge can be removed.
 次に、図6を用いて動画を撮像するための駆動について説明する。動画を撮像する場合、高速に読み出すため、同時に複数のゲート線Vgをアクティブレベルに駆動する。このとき、第1の変換素子901を備える画素PIXと第2の変換素子902を有する画素PIXとの信号を1つの列信号配線Sigに出力してしまうと、エネルギ成分を分離できなくなってしまう。そのため、図6に示すように、ゲート線Vg1とゲート線Vg3とに供給されるゲート信号を同時にアクティブレベルにすることによって、第1の変換素子901である変換素子S12と変換素子S32との信号が列信号線Sig2に出力される。同時に、第2の変換素子902である変換素子S11と変換素子S31との信号が列信号線Sig1へ出力される。第1の変換素子901と第2の変換素子902との信号を、それぞれ異なる列信号線Sigに出力することによって、エネルギサブトラクション処理ができる。 Next, driving for capturing a moving image will be described with reference to FIG. When capturing a moving image, a plurality of gate lines Vg are simultaneously driven to an active level for high-speed reading. At this time, if the signals of the pixel PIX including the first conversion element 901 and the pixel PIX including the second conversion element 902 are output to one column signal wiring Sig, the energy components cannot be separated. Therefore, as shown in FIG. 6, by simultaneously setting the gate signals supplied to the gate line Vg1 and the gate line Vg3 to the active level, the signals of the conversion elements S12 and S32, which are the first conversion elements 901, are converted. Is output to the column signal line Sig2. At the same time, the signals of the conversion elements S11 and S31 which are the second conversion elements 902 are output to the column signal line Sig1. Energy subtraction processing can be performed by outputting the signals of the first conversion element 901 and the second conversion element 902 to different column signal lines Sig.
 次に、本実施形態における画像処理フローについて、図7A,7Bを用いて説明する。まず、ステップS701において、制御部214は、上述の空読みを行った後、放射線画像データを取得するために、放射線の照射中に変換素子Sで生成される電荷を蓄積するように制御する。次いで、制御部214は、ステップS702において、駆動回路114および読出回路113に本読みを実行させ、放射線画像データを読み出す。このステップS702で、放射線画像データがコンピュータ240に出力される。次いで、制御部214は、ステップS703においてオフセット画像データを取得するための蓄積動作を行い、ステップS704において、オフセット画像データを駆動回路114および読出回路113に読み出させ、コンピュータ240に出力させる。 Next, the image processing flow in this embodiment will be described with reference to FIGS. 7A and 7B. First, in step S701, after performing the above-mentioned blank reading, the control unit 214 controls to accumulate the charges generated by the conversion element S during the irradiation of the radiation in order to acquire the radiation image data. Next, in step S702, the control unit 214 causes the drive circuit 114 and the reading circuit 113 to perform the main reading, and reads the radiation image data. In step S702, the radiation image data is output to the computer 240. Next, the control unit 214 performs a storage operation for acquiring offset image data in step S703, and causes the drive circuit 114 and the reading circuit 113 to read the offset image data and outputs it to the computer 240 in step S704.
 画像処理部241は、ステップS705以降に示される処理を実行する。画像処理部241を有するコンピュータ240は、異なる複数の放射線エネルギにより得られた複数の放射線画像を用いて被写体を画像化する画像処理装置の一例である。まず、ステップS705において、コンピュータ240の画像処理部241は、ステップS702で取得した放射線画像データを、ステップS704で取得したオフセット画像データで引き算することによってオフセット補正を行う。 The image processing unit 241 executes the processes shown in and after step S705. The computer 240 including the image processing unit 241 is an example of an image processing apparatus that images a subject using a plurality of radiation images obtained by different radiation energies. First, in step S705, the image processing unit 241 of the computer 240 performs offset correction by subtracting the radiation image data acquired in step S702 by the offset image data acquired in step S704.
 画像処理部241は、次に、ステップS706において、オフセット補正後の放射線画像データを、第1の変換素子901から出力される放射線画像データと、第2の変換素子902から出力される放射線画像データに分離する。ここでは、第2の変換素子902は、図3Aの構成において、図中の上から放射線が入射し、シンチレータ904からの光が遮光され、シンチレータ905からの高エネルギの放射線によって生じる光を受光するものとして説明する。また、第1の変換素子901から出力された放射線画像データを両面入射画像、第2の変換素子902から出力された放射線画像データを片面入射画像とそれぞれ表記する。 Next, in step S706, the image processing unit 241 outputs the radiation image data after the offset correction to the radiation image data output from the first conversion element 901 and the radiation image data output from the second conversion element 902. To separate. Here, in the configuration of FIG. 3A, the second conversion element 902 receives radiation from above in the drawing, shields light from the scintillator 904, and receives light generated by high-energy radiation from the scintillator 905. It will be described as a thing. Further, the radiation image data output from the first conversion element 901 is referred to as a double-sided incident image, and the radiation image data output from the second conversion element 902 is referred to as a single-sided incident image.
 画像処理部241は、次いで、ステップS707において、被写体が無い状態で放射線野照射を行って撮像したゲイン補正用画像データを用いて、両面入射画像のゲイン補正を行う。また、画像処理部241は、ステップS711において、ゲイン補正用画像データを用いて、片面入射画像のゲイン補正を行う。 Next, in step S<b>707, the image processing unit 241 performs gain correction of the double-sided incident image using the gain correction image data obtained by performing radiation field irradiation in the absence of a subject. Further, in step S711, the image processing unit 241 uses the gain correction image data to perform gain correction on the single-sided incident image.
 ゲイン補正を行った後、画像処理部241は、ステップS708において、第1の変換素子901を含まない画素PIX、換言すると第2の変換素子902を有する画素PIXの両面入射画像の欠落を補うための画素補間を行う。同様に画像処理部241は、ステップS712において、第2の変換素子902を含まない画素PIX、換言すると第1の変換素子901を有する画素PIXの片面入射画像の欠落を補うための画素補間を行う。これらのステップS708、S712での画素補間について、図8の8a、8bを用いて説明する。ここでは、図4の4bに示される、第1の変換素子901を備える画素PIXの方が、第2の変換素子902を備える画素PIXよりも多い場合の配置を例に説明する。 After performing the gain correction, in step S708, the image processing unit 241 compensates for the missing double-sided incident image of the pixel PIX that does not include the first conversion element 901, in other words, the pixel PIX that has the second conversion element 902. Pixel interpolation is performed. Similarly, in step S712, the image processing unit 241 performs pixel interpolation for compensating for the lack of the one-sided incident image of the pixel PIX not including the second conversion element 902, in other words, the pixel PIX having the first conversion element 901. .. Pixel interpolation in these steps S708 and S712 will be described using 8a and 8b in FIG. Here, as an example, an arrangement will be described in which the pixel PIX including the first conversion element 901 is larger in number than the pixel PIX including the second conversion element 902, which is illustrated in 4b of FIG.
 まず、図8の8aを用いて、両面入射画像の画素補間について説明する。片面入射画像を出力する第2の変換素子902を有する画素Eの両面入射画像における値は、画素Eに隣接し、両面入射画像の画素値を出力する第1の変換素子901を有する画素A、B、C、D、F、G、H、Iの画素値を用いて補間する。例えば、画像処理部241は、両面入射画像における画素Eに隣接する8画素の平均値を用いて、両面入射画像における画素Eの値を補間してもよい。また例えば、画像処理部241は、画素B、D、F、Hのように、両面入射画像において隣接する一部の画素の平均値を用いて、両面入射画像における画素Eの値を補間してもよい。ステップS708において、画素補間を行うことによって、それぞれの画素PIXの放射線の高エネルギ成分および低エネルギ成分によって生成された放射線画像データが生成される。 First, the pixel interpolation of the double-sided incident image will be described with reference to 8a in FIG. The value in the double-sided incident image of the pixel E having the second conversion element 902 that outputs the single-sided incident image is adjacent to the pixel E, and the pixel A that has the first conversion element 901 that outputs the pixel value of the double-sided incident image, Interpolation is performed using pixel values of B, C, D, F, G, H, and I. For example, the image processing unit 241 may interpolate the value of the pixel E in the double-sided incident image by using the average value of 8 pixels adjacent to the pixel E in the double-sided incident image. Further, for example, the image processing unit 241 interpolates the value of the pixel E in the double-sided incident image by using the average value of a part of the pixels adjacent to each other in the double-sided incident image, such as the pixels B, D, F, and H. Good. In step S708, the radiation image data generated by the high energy component and the low energy component of the radiation of each pixel PIX is generated by performing pixel interpolation.
 次に、図8の8bを用いて、片面入射画像における画素補間について説明する。両面入射画像の画素値を出力する第1の変換素子901を有する画素Jは、画素Jに隣接し、片面入射画像の画素値を出力する第2の変換素子902を有する画素K、L、M、Nの画素値を用いて補間する。例えば、画像処理部241は、画素Jに隣接する4画素の片面画像データの平均値を用いて、画素Jの片面画像データを補間してもよい。この場合、例えば、画素Jの配される位置から画素Kまでの距離と画素Nまでの距離とは異なる。そのため、距離に応じて、それぞれ画素K、L、M、Nから出力される片面入射画像の画素値に対して重みづけをして平均化してもよい。ステップS712において画素補間を行うことによって、それぞれの画素PIXの放射線の高エネルギ成分によって生成された放射線画像データ(以下、高エネルギ画像)が生成される。 Next, pixel interpolation in a single-sided incident image will be described with reference to 8b in FIG. The pixel J having the first conversion element 901 that outputs the pixel value of the double-sided incident image is adjacent to the pixel J, and the pixels K, L, and M that have the second conversion element 902 that outputs the pixel value of the single-sided incident image. , N pixel values are used for interpolation. For example, the image processing unit 241 may interpolate the single-sided image data of the pixel J by using the average value of the single-sided image data of four pixels adjacent to the pixel J. In this case, for example, the distance from the position where the pixel J is arranged to the pixel K and the distance to the pixel N are different. Therefore, the pixel values of the single-sided incident images output from the pixels K, L, M, and N may be weighted and averaged according to the distance. By performing pixel interpolation in step S712, radiation image data (hereinafter, high energy image) generated by the high energy component of the radiation of each pixel PIX is generated.
 次いで、画像処理部241は、ステップS709において、放射線の低エネルギ成分による放射線画像データ(以下、低エネルギ画像)を生成する。上述のように、第2の変換素子902の放射線が入射する側に遮光層903を設けた場合、片面入射画像を補間することで高エネルギ画像が得られる。また、ステップS708で画素補間により生成される両面入射画像は、高エネルギと低エネルギの両方の成分を有する放射線画像となる。このため、ステップS708で画素補間された放射線画像から、ステップS712で画素補間により取得された高エネルギ画像を引き算することによって、低エネルギ画像を生成することができる。こうして、画像処理部241は、高エネルギ画像と低エネルギ画像を取得する。 Next, in step S709, the image processing unit 241 generates radiation image data (hereinafter, low energy image) based on low energy components of radiation. As described above, when the light-shielding layer 903 is provided on the side of the second conversion element 902 where the radiation enters, a high-energy image can be obtained by interpolating the single-sided incident image. The double-sided incident image generated by pixel interpolation in step S708 is a radiation image having both high energy and low energy components. Therefore, a low energy image can be generated by subtracting the high energy image acquired by pixel interpolation in step S712 from the radiation image pixel interpolated in step S708. In this way, the image processing unit 241 acquires a high energy image and a low energy image.
 なお、上記では第2の変換素子902の放射線が入射する側に遮光層903を設けたが、第2の変換素子902の放射線が入射する側と反対側に遮光層903を設けることも考えられる。その場合、片面入射画像は、低エネルギ成分による放射線画像データとなり、画素補間された両面入射画像から画素補間された片面入射画像を引き算することによって、高エネルギ成分の放射線画像データ(高エネルギ画像)を生成することができる。しかしながら、高エネルギ成分による放射線画像は、放射線の入射する側のシンチレータ904で吸収しきれなかった放射線の成分のため、シンチレータ905からの光量は、シンチレータ904からの光量よりも少ない。そのため、両面入射画像から片面入射画像を減算して高エネルギ画像を生成すると、低エネルギ成分の放射線画像のノイズが、高エネルギ成分の放射線画像に乗ってしまう。結果として、高エネルギ成分の放射線画像のS/N比が低くなってしまう。このため、上述の本実施形態に示すように、第2の変換素子902の放射線が入射する側を遮光し、両面画像データを高エネルギ成分+低エネルギ成分、片面画像データを高エネルギ成分の画像データとする。そして、両面画像データから片面画像データを減算し、低エネルギ画像を生成する方が、S/N比が向上しうる。 Although the light-shielding layer 903 is provided on the side of the second conversion element 902 where the radiation enters in the above description, it is also possible to provide the light-shielding layer 903 on the side of the second conversion element 902 opposite to the side where the radiation enters. .. In that case, the single-sided incident image becomes radiation image data with a low energy component, and the pixel-interpolated single-sided incident image is subtracted from the pixel-interpolated double-sided incident image to obtain high-energy component radiation image data (high-energy image). Can be generated. However, the radiation image of the high-energy component is a component of the radiation that cannot be completely absorbed by the scintillator 904 on the incident side of the radiation, and therefore the amount of light from the scintillator 905 is smaller than the amount of light from the scintillator 904. Therefore, when the high-energy image is generated by subtracting the single-side incident image from the double-side incident image, noise in the low-energy component radiation image is superimposed on the high-energy component radiation image. As a result, the S/N ratio of the radiation image of the high energy component becomes low. Therefore, as shown in the above-described embodiment, the side of the second conversion element 902 on which the radiation is incident is shielded, the double-sided image data is a high energy component+low energy component, and the single-sided image data is a high energy component image. Data. Then, the S/N ratio can be improved by subtracting the single-sided image data from the double-sided image data to generate the low energy image.
 次に、画像処理部241は、ステップS710において、ステップS709で生成した低エネルギ画像の空間周波数特性(MTF:Modulation Transfer Function)を補正(MTF補正)する。また、ステップS713において、ステップS712で得られた高エネルギ画像の空間周波数特性を補正(MTF補正)する。なお、画像処理部241は、高エネルギ画像(第1の放射線画像)の空間周波数特性と低エネルギ画像(第2の放射線画像)の空間周波数特性とが近づくように、高エネルギ画像と低エネルギ画像の少なくとも一方の空間周波数特性を変更する。したがって、ステップS710とステップS713のMTF補正は、必ずしも両方が実行される必要はない。以上のようなMTF補正を行う画像処理部241は、異なる複数の放射線エネルギにより得られた複数の放射線画像の空間周波数特性が互いに近づくように、複数の放射線画像の少なくとも1つについて空間周波数を変更する変更部の一例である。 Next, in step S710, the image processing unit 241 corrects (MTF correction) the spatial frequency characteristic (MTF: Modulation Transfer Function) of the low energy image generated in step S709. Further, in step S713, the spatial frequency characteristic of the high energy image obtained in step S712 is corrected (MTF correction). The image processing unit 241 sets the high energy image and the low energy image so that the spatial frequency characteristic of the high energy image (first radiation image) and the spatial frequency characteristic of the low energy image (second radiation image) are close to each other. The spatial frequency characteristic of at least one of the above is changed. Therefore, both of the MTF correction in steps S710 and S713 do not necessarily have to be executed. The image processing unit 241 that performs the MTF correction as described above changes the spatial frequency of at least one of the plurality of radiation images so that the spatial frequency characteristics of the plurality of radiation images obtained by the plurality of different radiation energies come close to each other. It is an example of a changing unit.
 次に、ステップS714において、画像処理部241は、MFT補正後の高エネルギ画像と低エネルギ画像を用いて、エネルギサブトラクション画像および/またはスペクトラルイメージング画像を生成する。エネルギサブトラクション画像およびスペクトラルイメージング画像の生成には周知の方法を用いることができる。ステップS714の処理を行う画像処理部241は、上述した変更部による変更後の、複数の放射線画像を用いて被写体に関する画像を生成する処理部の一例である。なお、画像処理部241は、ステップS715において第1の変換素子901からそれぞれ出力された両面画像データに基づいて通常の放射線画像を生成してもよい。第1の変換素子901は、放射線の入射する側のシンチレータ904からの光と、放射線が入射する側と反対側のシンチレータ905からの光とを受光する。これによって、一方のシンチレータで発光する光のみを受光する場合よりも、通常の放射線画像において、高いS/N比を得ることができる。 Next, in step S714, the image processing unit 241 generates an energy subtraction image and/or a spectral imaging image using the high energy image and the low energy image after MFT correction. Well-known methods can be used to generate the energy subtraction image and the spectral imaging image. The image processing unit 241 that performs the process of step S714 is an example of a processing unit that generates an image of a subject using a plurality of radiographic images after the change by the changing unit described above. The image processing unit 241 may generate a normal radiation image based on the double-sided image data output from the first conversion element 901 in step S715. The first conversion element 901 receives light from the scintillator 904 on the side where the radiation enters and light from the scintillator 905 on the side opposite to the side where the radiation enters. As a result, a higher S/N ratio can be obtained in a normal radiation image than in the case where only one of the scintillators emits light.
 次に、ステップS710とステップS713による、放射線画像の空間周波数特性を変更する処理の例について説明する。まず、被写体の撮像前に高エネルギ画像と低エネルギ画像それぞれの空間周波数特性を計測しておく。空間周波数特性を算出する方法としてスリット法、チャート法、エッジ法等が提案されているが、本提案ではいかなる方法が用いられてもよい。 Next, an example of the process of changing the spatial frequency characteristic of the radiation image in steps S710 and S713 will be described. First, the spatial frequency characteristics of each of the high-energy image and the low-energy image are measured before the subject is imaged. Although a slit method, a chart method, an edge method, etc. have been proposed as a method for calculating the spatial frequency characteristic, any method may be used in this proposal.
 図9は、高エネルギ画像の空間周波数特性と低エネルギ画像の空間周波数特性の傾向を示すグラフである。低エネルギ画像の空間周波数特性501は周波数が高くなっても信号値を維持する傾向があるが、高ネルギー画像の空間周波数特性502は高周波成分が維持されない傾向がある。これは、例えば、シンチレータ904とシンチレータ905の間に設けられた層内で蛍光が散乱するためである。本実施形態では、変更部として機能する画像処理部241が、複数の放射線エネルギのうちの1つの放射線エネルギについて計測された空間周波数特性に、複数の放射線エネルギのうちの他の放射線エネルギについて計測された空間周波数特性を近づけるようにあらかじめ設定された処理を、他の放射線エネルギで得られた放射線画像に適用する。以下、変更部の処理についてより具体的に説明する。 FIG. 9 is a graph showing the tendency of the spatial frequency characteristic of the high energy image and the spatial frequency characteristic of the low energy image. The spatial frequency characteristic 501 of the low energy image tends to maintain the signal value even when the frequency becomes high, but the spatial frequency characteristic 502 of the high energy image tends to maintain no high frequency component. This is because, for example, fluorescence is scattered in the layer provided between the scintillator 904 and the scintillator 905. In the present embodiment, the image processing unit 241 functioning as the changing unit measures the spatial frequency characteristic measured for one radiation energy of the plurality of radiation energies and measures the other radiation energy of the plurality of radiation energies. A process preset to bring the spatial frequency characteristics closer to each other is applied to a radiation image obtained with another radiation energy. Hereinafter, the process of the changing unit will be described more specifically.
 第1実施形態の画像処理部241は、複数の放射線エネルギのうちの最も低い放射線エネルギにより得られる放射線画像の空間周波数特性に、他の放射線エネルギにより得られる放射線画像の空間周波数と構成を近似させる。すなわち、画像処理部241は、最も低い放射線エネルギについてあらかじめ計測された第1の空間周波数特性に、他の放射線エネルギについてあらかじめ計測した空間周波数特性を近似させるように設定された処理を、当該他の放射線エネルギで得られた放射線画像に適用する。 The image processing unit 241 of the first embodiment approximates the spatial frequency characteristics of the radiation image obtained by the other radiation energy to the spatial frequency characteristics of the radiation image obtained by the lowest radiation energy of the plurality of radiation energies. .. That is, the image processing unit 241 performs the process set so that the first spatial frequency characteristic previously measured for the lowest radiation energy is approximated to the spatial frequency characteristic previously measured for another radiation energy. It is applied to a radiation image obtained by radiation energy.
 例えば、画像処理部241は、低エネルギ画像の高い空間周波数特性501に高エネルギ画像の低い空間周波数特性502を近似させる。この場合、ステップS710はスキップする。事前に求めた低エネルギ画像と高エネルギ画像の空間周波数特性より、適切なフィルタを設計しておく。またはガウス分布等の既存の関数を用いてフィルタを設計しても良い。ステップS713において、画像処理部241は、作成したフィルタを用いて高エネルギ画像に畳み込み演算を行い、高エネルギ画像の空間周波数特性を変更する。ステップS710はスキップされる。 For example, the image processing unit 241 approximates the high spatial frequency characteristic 501 of the low energy image to the low spatial frequency characteristic 502 of the high energy image. In this case, step S710 is skipped. An appropriate filter is designed based on the spatial frequency characteristics of the low energy image and the high energy image obtained in advance. Alternatively, the filter may be designed using an existing function such as Gaussian distribution. In step S713, the image processing unit 241 performs a convolution operation on the high energy image using the created filter to change the spatial frequency characteristic of the high energy image. Step S710 is skipped.
 なお、高エネルギ画像は低エネルギ画像に比べて高周波成分がほとんど残っていないことが予測され、高周波成分の上昇に伴い高周波ノイズの上昇が予測されるため、これを考慮した適切なフィルタ設計が必要である。また、低エネルギ画像と高エネルギ画像とでは放射線エネルギの違いにより画像のコントラストが異なるため、同一の空間周波数特性に補正することは難しい。そのため、画像処理部241は、1つの放射線エネルギにより得られた放射線画像の空間周波数特性に関して設定されたマージンの範囲に、他の放射線エネルギで得られた放射線画像の空間周波数特性が入るように、他の放射線エネルギで得られた放射線画像を処理する。例えば、図10に示すように、高エネルギ画像の空間周波数特性502を変更する際には目的とする低エネルギ画像の空間周波数特性501に公差を設定し、各空間周波数でマージン503を持たせる。また、このマージン503は特に高周波側でノイズの強調を抑えるため、所定の空間周波数を境にマージン504に切り替え、低値側に広く取るようにしてもよい。例えば、マージン503として±0.05以下を設定し、高周波側では、マージン504として低値側に-0.1以下を設定する。 High-energy images are expected to have almost no high-frequency components remaining as compared to low-energy images, and high-frequency noise is expected to increase as high-frequency components increase, so appropriate filter design that takes this into account is necessary. Is. In addition, since the contrast of the image differs between the low energy image and the high energy image due to the difference in radiation energy, it is difficult to correct the same spatial frequency characteristic. Therefore, the image processing unit 241 causes the spatial frequency characteristic of the radiation image obtained with other radiation energy to fall within the margin range set with respect to the spatial frequency characteristic of the radiation image obtained with one radiation energy, The radiation image obtained with other radiation energy is processed. For example, as shown in FIG. 10, when changing the spatial frequency characteristic 502 of the high energy image, a tolerance is set for the spatial frequency characteristic 501 of the target low energy image, and a margin 503 is provided at each spatial frequency. Further, in order to suppress the emphasis of noise particularly on the high frequency side, the margin 503 may be switched to the margin 504 with a predetermined spatial frequency as a boundary so as to be wide on the low value side. For example, the margin 503 is set to ±0.05 or less, and on the high frequency side, the margin 504 is set to −0.1 or less on the low value side.
 こうして、高エネルギ画像の空間周波数特性を変更する処理は、高い放射線エネルギについて計測された空間周波数特性と低い放射線エネルギについて計測された空間周波数特性との差が各周波数で±0.05以内になるように設定される。また、この処理は、所定の空間周波数より高い領域において、高い放射線エネルギについて計測された空間周波数特性と低い放射線エネルギについて計測された空間周波数特性との差が-0.2以内になるように設定される。この手法により高エネルギ画像と低エネルギ画像の空間周波数を同等とすることができる。なお、図10では、マージン503とマージン504を切り替えるようにしているが、空間周波数が低くなるにつれてマージンが連続的に大きくなるようにしてもよい。 Thus, in the process of changing the spatial frequency characteristic of the high energy image, the difference between the spatial frequency characteristic measured for high radiation energy and the spatial frequency characteristic measured for low radiation energy is within ±0.05 at each frequency. Is set as follows. Also, this process is set so that the difference between the spatial frequency characteristic measured for high radiation energy and the spatial frequency characteristic measured for low radiation energy is within -0.2 in a region higher than a predetermined spatial frequency. To be done. By this method, the spatial frequencies of the high energy image and the low energy image can be made equal. Although the margin 503 and the margin 504 are switched in FIG. 10, the margin may continuously increase as the spatial frequency decreases.
 ステップS713において、画像処理部241は、ステップS712で取得された高エネルギ画像を以上のようにして生成されたフィルタを用いて処理することにより、高エネルギ画像の空間周波数特性を低エネルギ画像の空間周波数特性に近づける。ステップS714では、空間周波数が近づけられた高エネルギ画像と低エネルギ画像を用いてエネルギサブトラクション画像および/またはスペクトラルイメージング画像が生成されるため、これら画像の画質が向上する。 In step S713, the image processing unit 241 processes the high-energy image acquired in step S712 by using the filter generated as described above, thereby changing the spatial frequency characteristic of the high-energy image to the space of the low-energy image. Close to the frequency characteristics. In step S714, the energy subtraction image and/or the spectral imaging image are generated using the high-energy image and the low-energy image whose spatial frequencies are close to each other, so that the image quality of these images is improved.
 <第2実施形態>
 第1実施形態では、高エネルギ画像についてMTF補正を行うことで、高エネルギ画像と低エネルギ画像の空間周波数特性を近づけた。すなわち、複数の放射線エネルギのうちの最も低い放射線エネルギにより得られた放射線画像の空間周波数特性に近づくように、他の放射線エネルギで得られた放射線画像を処理する構成を説明した。第2実施形態では、低エネルギ画像をMTF補正する例を説明する。すなわち、第2実施形態では、複数の放射線エネルギのうちの最も高い放射線エネルギにより得られた放射線画像の空間周波数特性に近づくように、他の放射線エネルギで得られた放射線画像を処理する。なお、第2実施形態の放射線撮像システム、放射線撮像装置の構成および動作は、第1実施形態(図1~図8)と同様である。但し、第2実施形態では、ステップS710における低エネルギ画像のMTF補正が実行され、ステップS713における高エネルギ画像のMTF補正はスキップされる。
<Second Embodiment>
In the first embodiment, the spatial frequency characteristics of the high energy image and the low energy image are approximated by performing the MTF correction on the high energy image. That is, the configuration has been described in which the radiation image obtained with another radiation energy is processed so as to approach the spatial frequency characteristic of the radiation image obtained with the lowest radiation energy of the plurality of radiation energies. In the second embodiment, an example of performing MTF correction on a low energy image will be described. That is, in the second embodiment, a radiation image obtained with another radiation energy is processed so as to approach the spatial frequency characteristic of the radiation image obtained with the highest radiation energy among the plurality of radiation energies. The configurations and operations of the radiation imaging system and the radiation imaging apparatus according to the second embodiment are similar to those of the first embodiment (FIGS. 1 to 8). However, in the second embodiment, the MTF correction of the low energy image in step S710 is executed, and the MTF correction of the high energy image in step S713 is skipped.
 ステップS710において、画像処理部241は、高エネルギ画像の空間周波数特性502に低エネルギ画像の空間周波数特性501を近似させる。事前に求めた低エネルギ画像と高エネルギ画像の空間周波数特性により、適切なフィルタがあらかじめ設計される。またはガウス分布等の既存の関数を用いてフィルタがあらかじめ設計されても良い。ステップS710において、画像処理部241は、あらかじめ作成されたフィルタを用いて低エネルギ画像について畳み込み演算を行い、低エネルギ画像の空間周波数特性501を変更する。 In step S710, the image processing unit 241 approximates the spatial frequency characteristic 502 of the low energy image to the spatial frequency characteristic 502 of the high energy image. An appropriate filter is designed in advance based on the spatial frequency characteristics of the low energy image and the high energy image obtained in advance. Alternatively, the filter may be designed in advance using an existing function such as Gaussian distribution. In step S710, the image processing unit 241 changes the spatial frequency characteristic 501 of the low energy image by performing a convolution operation on the low energy image using a filter created in advance.
 この変更により、高エネルギ画像は低エネルギ画像に比べ高周波成分がほとんど残っていないことが予測され、当該演算により低エネルギ画像の高周波成分のほとんどが失われることになる。しかし高周波ノイズは抑えられ、その後の処理で安定した出力が期待できる。また、低エネルギ画像と高エネルギ画像とでは放射線エネルギの違いにより画像のコントラストが異なるため、同一の空間周波数特性に補正することは難しい。そのため図11に示すように低エネルギ画像の空間周波数特性501を変更する際に、目的とする高エネルギ画像の空間周波数特性502の曲線に公差を設定し、各空間周波数でマージン503を持たせる。マージンは例えば±0.05以下とする。 With this change, it is predicted that the high-energy image has almost no high-frequency components remaining compared to the low-energy image, and most of the high-frequency components of the low-energy image will be lost due to this calculation. However, high-frequency noise is suppressed, and stable output can be expected in subsequent processing. In addition, since the contrast of the image differs between the low energy image and the high energy image due to the difference in radiation energy, it is difficult to correct the same spatial frequency characteristic. Therefore, as shown in FIG. 11, when the spatial frequency characteristic 501 of the low energy image is changed, a tolerance is set on the curve of the spatial frequency characteristic 502 of the target high energy image, and a margin 503 is provided at each spatial frequency. The margin is, for example, ±0.05 or less.
 ステップS710において、画像処理部241は、ステップS709で生成された低エネルギ画像を以上のようにして生成されたフィルタを用いて処理することにより、低エネルギ画像の空間周波数特性を高エネルギ画像の空間周波数特性に近づける。ステップS714では、空間周波数が近づけられた高エネルギ画像と低エネルギ画像を用いてエネルギサブトラクション画像および/またはスペクトラルイメージング画像が生成されるため、これら画像の画質が向上する。 In step S710, the image processing unit 241 processes the low-energy image generated in step S709 by using the filter generated as described above, thereby changing the spatial frequency characteristic of the low-energy image to the space of the high-energy image. Close to the frequency characteristics. In step S714, the energy subtraction image and/or the spectral imaging image are generated using the high-energy image and the low-energy image whose spatial frequencies are close to each other, so that the image quality of these images is improved.
 <第3実施形態>
 第1実施形態、第2実施形態では、高エネルギ画像の空間周波数特性と低エネルギ画像の周波数特性の一方を他方に近似することを行った。第3実施形態では、複数の放射線エネルギにより得られた複数の放射線画像のそれぞれの空間周波数特性が、あらかじめ設定された空間周波数特性に近づくように、複数の放射線画像を処理する。一例として、第3実施形態では、目的とする臓器の診断に必要な空間周波数特性をモデル化した空間周波数特性を設定し、当該特性に高エネルギ画像の空間周波数特性と低エネルギ画像の空間周波数特性を近似させる。なお、第3実施形態の放射線撮像システム、放射線撮像装置の構成および動作は、第1実施形態(図1~図8)と同様である。但し、第3実施形態では、ステップS710における低エネルギ画像のMTF補正と、ステップS713における高エネルギ画像のMTF補正が実行される。
<Third Embodiment>
In the first and second embodiments, one of the spatial frequency characteristic of the high energy image and the frequency characteristic of the low energy image is approximated to the other. In the third embodiment, the plurality of radiation images are processed so that the respective spatial frequency characteristics of the plurality of radiation images obtained by the plurality of radiation energies approach the preset spatial frequency characteristics. As an example, in the third embodiment, a spatial frequency characteristic that is a model of a spatial frequency characteristic necessary for diagnosing a target organ is set, and the spatial frequency characteristic of a high energy image and the spatial frequency characteristic of a low energy image are set to the characteristic. To approximate. The configurations and operations of the radiation imaging system and the radiation imaging apparatus of the third embodiment are the same as those of the first embodiment (FIGS. 1 to 8). However, in the third embodiment, the MTF correction of the low energy image in step S710 and the MTF correction of the high energy image in step S713 are executed.
 第3実施形態による空間周波数特性の変更は、複数の放射線エネルギのそれぞれについてあらかじめ計測した空間周波数特性を、あらかじめ設定された空間周波数特性に近似させる処理を設定し、設定された処理を複数の放射線画像に適用する。以下、より具体的な例により説明する。第3実施形態では、高エネルギ画像と低エネルギ画像のそれぞれの空間周波数特性から空間周波数特性の変換用のフィルタを設計しておく。なお、ガウス分布等の既存の関数を用いてフィルタが設計されても良い。本実施形態では、図12に示されるように、低エネルギ画像の空間周波数特性501を任意の空間周波数特性505に近づける第1のフィルタと、高エネルギ画像の空間周波数特性502を空間周波数特性505に近づける第2のフィルタが設計される。空間周波数特性505は、例えば、目的とする臓器の診断に必要な空間周波数特性をモデル化した空間周波数特性である。第1のフィルタを用いて低エネルギ画像に畳み込み演算を行い、第2のフィルタを用いて高エネルギ画像に畳み込み演算を行うことで、低エネルギ画像の空間周波数特性501と高エネルギ画像の空間周波数特性502は、空間周波数特性505に近づくように変更される。 The modification of the spatial frequency characteristic according to the third embodiment is performed by setting a process of approximating the spatial frequency characteristic measured in advance for each of a plurality of radiation energies to a preset spatial frequency characteristic, and performing the set process in a plurality of radiations. Apply to images. Hereinafter, a more specific example will be described. In the third embodiment, a filter for converting the spatial frequency characteristic from the spatial frequency characteristic of each of the high energy image and the low energy image is designed. The filter may be designed using an existing function such as Gaussian distribution. In the present embodiment, as shown in FIG. 12, the first filter that brings the spatial frequency characteristic 501 of the low energy image closer to the arbitrary spatial frequency characteristic 505 and the spatial frequency characteristic 502 of the high energy image are set to the spatial frequency characteristic 505. A second filter to approach is designed. The spatial frequency characteristic 505 is, for example, a spatial frequency characteristic that models the spatial frequency characteristic necessary for diagnosing the target organ. By performing the convolution operation on the low energy image using the first filter and the convolution operation on the high energy image using the second filter, the spatial frequency characteristic 501 of the low energy image and the spatial frequency characteristic of the high energy image are obtained. 502 is modified to approach the spatial frequency characteristic 505.
 また、低エネルギ画像と高エネルギ画像とでは放射線エネルギの違いにより画像のコントラストが異なるため、同一の空間周波数特性に補正することは難しい。そのため図12に示すように目的とする空間周波数特性505に公差を設定し、各空間周波数でマージン503を持たせる。マージンは、例えば±0.05以下とする。 Also, it is difficult to correct the same spatial frequency characteristics between the low-energy image and the high-energy image because the image contrast differs due to the difference in radiation energy. Therefore, as shown in FIG. 12, a tolerance is set for the target spatial frequency characteristic 505, and a margin 503 is provided at each spatial frequency. The margin is, for example, ±0.05 or less.
 ステップS710において、画像処理部241は、ステップS709で生成された低エネルギ画像を以上のようにして生成された第1のフィルタを用いて処理することにより、低エネルギ画像の空間周波数特性501を空間周波数特性505に近づける。ステップS713において、画像処理部241は、ステップS712で取得された高エネルギ画像を以上のようにして生成された第2のフィルタを用いて処理することにより、高エネルギ画像の空間周波数特性502を空間周波数特性505に近づける。こうして、低エネルギ画像と高エネルギ画像の空間周波数特性が互いに近似される。ステップS714では、空間周波数が近似された高エネルギ画像と低エネルギ画像を用いてエネルギサブトラクション画像および/またはスペクトラルイメージング画像が生成されるため、これら画像の画質が向上する。 In step S710, the image processing unit 241 processes the low-energy image generated in step S709 by using the first filter generated as described above to spatially measure the spatial frequency characteristic 501 of the low-energy image. It approaches the frequency characteristic 505. In step S713, the image processing unit 241 processes the high-energy image acquired in step S712 by using the second filter generated as described above, thereby spatially processing the spatial frequency characteristic 502 of the high-energy image. It approaches the frequency characteristic 505. In this way, the spatial frequency characteristics of the low energy image and the high energy image are approximated to each other. In step S714, the energy subtraction image and/or the spectral imaging image are generated using the high energy image and the low energy image whose spatial frequencies are approximated, so that the image quality of these images is improved.
 なお、上記では空間周波数特性305を、目的とする臓器の診断に必要な空間周波数をモデル化して設定したが、これに限られるものではない。例えば、空間周波数特性が次のように設定されてもよい。すなわち、複数の放射線エネルギのうち最も低い放射線エネルギ(または最も高い放射線エネルギ)について計測された空間周波数特性が閾値以下になる空間周波数において0となり、当該空間周波数よりも低い周波数の領域において、空間周波数特性がなだらかに0から1に変化するように、空間周波数特性が設定されてもよい。 In the above, the spatial frequency characteristic 305 is set by modeling the spatial frequency required for diagnosing the target organ, but the present invention is not limited to this. For example, the spatial frequency characteristic may be set as follows. That is, the spatial frequency characteristic measured for the lowest radiation energy (or the highest radiation energy) of the plurality of radiation energies becomes 0 at the spatial frequency at which the spatial frequency becomes equal to or less than the threshold value, and the spatial frequency becomes lower in the frequency region lower than the spatial frequency. The spatial frequency characteristic may be set so that the characteristic gently changes from 0 to 1.
 例えば、図13に示すように、高エネルギ画像の空間周波数特性502に閾値510を設定する。そして、空間周波数特性502の値が閾値510となる空間周波数で0となり、当該空間周波数より低い空間周波数領域で0から1へなだらかにつながる空間周波数特性507を目標とする空間周波数特性に設定してもよい。同様に、低エネルギ画像の空間周波数特性501に閾値510を設定し、空間周波数特性501の値が閾値510となる空間周波数で0となり、当該空間周波数より低い空間周波数領域で0から1へなだらかにつながる空間周波数特性506を目標とする空間周波数特性に設定してもよい。なお、閾値510として0.1が用いられているがこれに限られるものではない。但し、閾値510は0.2以下であることが好ましい。 For example, as shown in FIG. 13, a threshold value 510 is set to the spatial frequency characteristic 502 of the high energy image. Then, the value of the spatial frequency characteristic 502 becomes 0 at the spatial frequency where the threshold value 510 is set, and the spatial frequency characteristic 507 that is smoothly connected from 0 to 1 in the spatial frequency region lower than the spatial frequency is set as the target spatial frequency characteristic. Good. Similarly, a threshold value 510 is set to the spatial frequency characteristic 501 of the low energy image, and the value of the spatial frequency characteristic 501 becomes 0 at the spatial frequency at which the threshold value 510 becomes, and the value gradually decreases from 0 to 1 in the spatial frequency region lower than the spatial frequency. The connected spatial frequency characteristic 506 may be set as a target spatial frequency characteristic. Although 0.1 is used as the threshold value 510, the threshold value 510 is not limited to this. However, the threshold value 510 is preferably 0.2 or less.
 <変形例>
 なお、上述した各実施形態では、放射線エネルギの異なる2つの放射線画像を用いる構成について具体例を記載したが、3つ以上の放射線画像を用いて画像を生成する構成にも適用可能であることは上述したとおりである。その場合、第1実施形態では、例えば、複数の放射線エネルギのうち最も低い放射線エネルギで撮像された放射線画像の空間周波数特性に他の放射線エネルギで撮像された放射線画像の空間周波数特性を近似させることになる。また、第2実施形態では、例えば、複数の放射線エネルギのうち最も高い放射線エネルギで撮像された放射線画像の空間周波数特性に他の放射線エネルギで撮像された放射線画像の空間周波数特性を近似させることになる。なお、近似の目標とする空間周波数特性は、最も高いまたは最も低い放射線エネルギの画像に限られるものではない。複数の放射線エネルギのうちの1つで撮像された放射線画像の空間周波数特性に他の放射線エネルギで撮像された放射線画像の空間周波数特性を近似させるようにしてもよい。
<Modification>
In addition, in each of the above-described embodiments, a specific example of the configuration using two radiation images having different radiation energies is described, but it is also applicable to a configuration that generates an image using three or more radiation images. As described above. In that case, in the first embodiment, for example, the spatial frequency characteristic of the radiation image captured by the other radiation energy is approximated to the spatial frequency characteristic of the radiation image captured by the lowest radiation energy among the plurality of radiation energies. become. In addition, in the second embodiment, for example, the spatial frequency characteristic of a radiation image captured with the highest radiation energy of a plurality of radiation energies is approximated to the spatial frequency characteristic of a radiation image captured with another radiation energy. Become. It should be noted that the approximate target spatial frequency characteristic is not limited to the image of the highest or lowest radiation energy. You may make it approximate the spatial frequency characteristic of the radiation image imaged by other radiation energy to the spatial frequency characteristic of the radiation image imaged by one of several radiation energy.
 また、第3実施形態では、複数の放射線エネルギにより撮像された放射線画像の複数の空間周波数特性を、あらかじめ設定された、目標とする空間周波数特性に近似させることになる。或いは、複数の放射線エネルギにより撮像された放射線画像の複数の空間周波数特性のうちの1つについて、空間周波数特性が閾値となる空間周波数で0となり、当該空間周波数より低い空間周波数の領域で0から1へなだらかにつながる空間周波数特性を目標とする空間周波数に設定するようにしてもよい。 In addition, in the third embodiment, a plurality of spatial frequency characteristics of a radiation image captured by a plurality of radiation energies are approximated to a preset target spatial frequency characteristic. Alternatively, for one of a plurality of spatial frequency characteristics of a radiation image captured by a plurality of radiation energies, the spatial frequency characteristic becomes 0 at a spatial frequency that is a threshold value, and the spatial frequency characteristic becomes 0 from a spatial frequency lower than the spatial frequency. The spatial frequency characteristic smoothly connecting to 1 may be set to the target spatial frequency.
 <他の実施形態>
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
<Other Embodiments>
The present invention supplies a program that implements one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus read and execute the program. It can also be realized by the processing. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
 発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。 The invention is not limited to the above embodiment, and various modifications and variations can be made without departing from the spirit and scope of the invention. Therefore, the following claims are attached to open the scope of the invention.
 本願は、2019年1月9日提出の日本国特許出願特願2019-002140を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 The present application claims priority based on Japanese Patent Application No. 2019-002140 filed on January 9, 2019, and the entire contents thereof are incorporated herein.

Claims (17)

  1.  異なる複数の放射線エネルギにより得られた複数の放射線画像の空間周波数特性が互いに近づくように、前記複数の放射線画像の少なくとも1つについて空間周波数特性を変更する変更手段と、
     該変更後の前記複数の放射線画像を用いて被写体に関する画像を生成する処理手段と、を備え、
     前記変更手段は、前記複数の放射線エネルギのうちの1つの放射線エネルギについて計測された空間周波数特性に、前記複数の放射線エネルギのうちの他の放射線エネルギについて計測された空間周波数特性を近づけるようにあらかじめ設定された処理を、前記他の放射線エネルギで得られた放射線画像に適用することを特徴とする画像処理装置。
    Changing means for changing the spatial frequency characteristics of at least one of the plurality of radiation images so that the spatial frequency characteristics of the plurality of radiation images obtained by different plurality of radiation energies approach each other;
    Processing means for generating an image of a subject using the plurality of changed radiation images,
    The changing unit preliminarily brings the spatial frequency characteristic measured for one radiation energy of the plurality of radiation energies close to the spatial frequency characteristic measured for another radiation energy of the plurality of radiation energies. An image processing apparatus, wherein the set process is applied to a radiation image obtained with the other radiation energy.
  2.  前記変更手段は、前記1つの放射線エネルギにより得られた放射線画像の空間周波数特性に関して設定されたマージンの範囲に、前記他の放射線エネルギで得られた放射線画像の空間周波数特性が入るように、前記他の放射線エネルギで得られた放射線画像を処理することを特徴とする請求項1に記載の画像処理装置。 The changing means is configured so that the spatial frequency characteristic of the radiation image obtained by the other radiation energy falls within a margin range set with respect to the spatial frequency characteristic of the radiation image obtained by the one radiation energy. The image processing apparatus according to claim 1, wherein a radiation image obtained with other radiation energy is processed.
  3.  前記1つの放射線エネルギは、前記複数の放射線エネルギのうちの最も低い放射線エネルギであることを特徴とする請求項1に記載の画像処理装置。 The image processing apparatus according to claim 1, wherein the one radiation energy is the lowest radiation energy among the plurality of radiation energies.
  4.  前記変更手段は、前記最も低い放射線エネルギについてあらかじめ計測された第1の空間周波数特性に、前記他の放射線エネルギについてあらかじめ計測した空間周波数特性を近似させるように設定された処理を、前記他の放射線エネルギで得られた放射線画像に適用することを特徴とする請求項3に記載の画像処理装置。 The changing unit performs a process set to approximate a spatial frequency characteristic previously measured for the other radiation energy to a first spatial frequency characteristic previously measured for the lowest radiation energy. The image processing apparatus according to claim 3, wherein the image processing apparatus is applied to a radiation image obtained by energy.
  5.  前記変更手段における前記処理は、前記他の放射線エネルギについて計測された空間周波数特性と前記第1の空間周波数特性との差が各周波数で±0.05以内になるように設定されていることを特徴とする請求項4に記載の画像処理装置。 The processing in the changing means is set so that the difference between the spatial frequency characteristic measured for the other radiation energy and the first spatial frequency characteristic is within ±0.05 at each frequency. The image processing apparatus according to claim 4, which is characterized in that.
  6.  前記変更手段における前記処理は、所定の空間周波数より高い領域において、前記他の放射線エネルギについて計測された空間周波数特性と前記第1の空間周波数特性との差が-0.2以内になるように設定されていることを特徴とする請求項5に記載の画像処理装置。 In the processing in the changing means, the difference between the spatial frequency characteristic measured for the other radiation energy and the first spatial frequency characteristic is within −0.2 in a region higher than a predetermined spatial frequency. The image processing apparatus according to claim 5, wherein the image processing apparatus is set.
  7.  前記1つの放射線エネルギは、前記複数の放射線エネルギのうちの最も高い放射線エネルギであることを特徴とする請求項1に記載の画像処理装置。 The image processing apparatus according to claim 1, wherein the one radiation energy is the highest radiation energy among the plurality of radiation energies.
  8.  前記変更手段は、前記最も高い放射線エネルギについてあらかじめ計測された第1の空間周波数特性に、前記他の放射線エネルギについてあらかじめ計測された空間周波数特性を近似させるように設定された処理を、前記他の放射線エネルギで得られた放射線画像に適用することを特徴とする請求項7に記載の画像処理装置。 The changing means performs a process set to approximate a spatial frequency characteristic previously measured for the other radiation energy to a first spatial frequency characteristic previously measured for the highest radiation energy. The image processing apparatus according to claim 7, wherein the image processing apparatus is applied to a radiation image obtained by radiation energy.
  9.  前記変更手段における前記処理は、前記他の放射線エネルギで得られた画像の空間周波数特性と前記第1の空間周波数特性との差が各周波数で±0.05以内になるように設定されていることを特徴とする請求項8に記載の画像処理装置。 The processing in the changing unit is set such that the difference between the spatial frequency characteristic of the image obtained by the other radiation energy and the first spatial frequency characteristic is within ±0.05 at each frequency. The image processing device according to claim 8, wherein
  10.  異なる複数の放射線エネルギにより得られた複数の放射線画像の空間周波数特性が互いに近づくように、前記複数の放射線画像の少なくとも1つについて空間周波数特性を変更する変更手段と、
     該変更後の前記複数の放射線画像を用いて被写体に関する画像を生成する処理手段と、を備え、
     前記変更手段は、前記複数の放射線エネルギにより得られた複数の放射線画像のそれぞれの空間周波数特性が、あらかじめ設定された空間周波数特性に近づくように、前記複数の放射線画像を処理することを特徴とする画像処理装置。
    Changing means for changing the spatial frequency characteristics of at least one of the plurality of radiation images so that the spatial frequency characteristics of the plurality of radiation images obtained by different plurality of radiation energies approach each other;
    Processing means for generating an image of a subject using the plurality of changed radiation images,
    The changing means processes the plurality of radiation images such that the respective spatial frequency characteristics of the plurality of radiation images obtained by the plurality of radiation energies approach a preset spatial frequency characteristic. Image processing device.
  11.  前記変更手段は、前記複数の放射線エネルギのそれぞれについてあらかじめ計測した空間周波数特性を、前記あらかじめ設定された空間周波数特性に近似させる処理を設定し、前記設定された処理を前記複数の放射線画像に適用することを特徴とする請求項10に記載の画像処理装置。 The changing unit sets a process of approximating a spatial frequency characteristic measured in advance for each of the plurality of radiation energies to the preset spatial frequency characteristic, and applying the set process to the plurality of radiation images. The image processing apparatus according to claim 10, wherein:
  12.  前記あらかじめ設定された空間周波数特性は、前記複数の放射線エネルギのうち最も低い放射線エネルギについて計測された空間周波数特性が閾値以下になる空間周波数において0となり、当該空間周波数よりも低い周波数の領域において、空間周波数特性がなだらかに0から1へ変化するように設定されていることを特徴とする請求項11に記載の画像処理装置。 The preset spatial frequency characteristic is 0 at a spatial frequency at which the spatial frequency characteristic measured for the lowest radiation energy of the plurality of radiation energies is equal to or less than a threshold value, and in a region of a frequency lower than the spatial frequency, The image processing apparatus according to claim 11, wherein the spatial frequency characteristic is set so as to gently change from 0 to 1.
  13.  前記あらかじめ設定された空間周波数特性は、前記複数の放射線エネルギのうち最も高い放射線エネルギについて計測された空間周波数特性が閾値以下になる空間周波数において0となり、当該空間周波数よりも低い周波数の領域において、空間周波数特性がなだらかに0から1へ変化するように設定されていることを特徴とする請求項11に記載の画像処理装置。 The preset spatial frequency characteristic is 0 at a spatial frequency at which the spatial frequency characteristic measured for the highest radiation energy among the plurality of radiation energies is equal to or less than a threshold value, and in a region of a frequency lower than the spatial frequency, The image processing apparatus according to claim 11, wherein the spatial frequency characteristic is set so as to gently change from 0 to 1.
  14.  前記変更手段は、放射線画像にフィルタを適用する処理により空間周波数特性を変更することを特徴とする請求項1乃至13のいずれか1項に記載の画像処理装置。 The image processing device according to any one of claims 1 to 13, wherein the changing unit changes the spatial frequency characteristic by a process of applying a filter to the radiation image.
  15.  異なる複数の放射線エネルギにより得られた複数の放射線画像の空間周波数特性が互いに近づくように、前記複数の放射線画像の少なくとも1つについて空間周波数特性を変更する変更工程と、
     該変更後の前記複数の放射線画像を用いて被写体に関する画像を生成する処理工程と、を備え、
     前記変更工程では、前記複数の放射線エネルギのうちの1つの放射線エネルギについて計測された空間周波数特性に、前記複数の放射線エネルギのうちの他の放射線エネルギについて計測された空間周波数特性を近づけるようにあらかじめ設定された処理を、前記他の放射線エネルギで得られた放射線画像に適用することを特徴とする画像処理方法。
    A changing step of changing the spatial frequency characteristics of at least one of the plurality of radiographic images so that the spatial frequency characteristics of the plurality of radiographic images obtained by the plurality of different radiation energies approach each other;
    A processing step of generating an image of a subject using the plurality of changed radiographic images,
    In the changing step, a spatial frequency characteristic measured for one radiation energy of the plurality of radiation energies is approximated to a spatial frequency characteristic measured for another radiation energy of the plurality of radiation energies in advance. An image processing method, wherein the set process is applied to a radiation image obtained with the other radiation energy.
  16.  異なる複数の放射線エネルギにより得られた複数の放射線画像の空間周波数特性が互いに近づくように、前記複数の放射線画像の少なくとも1つについて空間周波数特性を変更する変更工程と、
     該変更後の前記複数の放射線画像を用いて被写体に関する画像を生成する処理工程と、を備え、
     前記変更工程では、前記複数の放射線エネルギにより得られた複数の放射線画像のそれぞれの空間周波数特性が、あらかじめ設定された空間周波数特性に近づくように、前記複数の放射線画像を処理することを特徴とする画像処理方法。
    A changing step of changing the spatial frequency characteristics of at least one of the plurality of radiographic images so that the spatial frequency characteristics of the plurality of radiographic images obtained by the plurality of different radiation energies approach each other;
    A processing step of generating an image of a subject using the plurality of changed radiographic images,
    In the changing step, the plurality of radiation images are processed so that each of the spatial frequency characteristics of the plurality of radiation images obtained by the plurality of radiation energies approaches a preset spatial frequency characteristic. Image processing method.
  17.  コンピュータを、請求項1乃至14のいずれか1項に記載の画像処理装置の各手段として機能させるためのプログラム。 A program for causing a computer to function as each unit of the image processing apparatus according to any one of claims 1 to 14.
PCT/JP2019/047019 2019-01-09 2019-12-02 Image processing device, image processing method, and program WO2020144972A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019002140A JP2020110264A (en) 2019-01-09 2019-01-09 Image processing apparatus, image processing method, and program
JP2019-002140 2019-01-09

Publications (1)

Publication Number Publication Date
WO2020144972A1 true WO2020144972A1 (en) 2020-07-16

Family

ID=71520797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047019 WO2020144972A1 (en) 2019-01-09 2019-12-02 Image processing device, image processing method, and program

Country Status (2)

Country Link
JP (1) JP2020110264A (en)
WO (1) WO2020144972A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109678A (en) * 1989-09-22 1991-05-09 Fuji Photo Film Co Ltd Method and device for energy subtraction of radiograph
JPH07287331A (en) * 1994-04-15 1995-10-31 Fuji Photo Film Co Ltd Image superposing method and energy subtraction method
JP2010081997A (en) * 2008-09-29 2010-04-15 Fujifilm Corp Apparatus and method for processing radiation image

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109678A (en) * 1989-09-22 1991-05-09 Fuji Photo Film Co Ltd Method and device for energy subtraction of radiograph
JPH07287331A (en) * 1994-04-15 1995-10-31 Fuji Photo Film Co Ltd Image superposing method and energy subtraction method
JP2010081997A (en) * 2008-09-29 2010-04-15 Fujifilm Corp Apparatus and method for processing radiation image

Also Published As

Publication number Publication date
JP2020110264A (en) 2020-07-27

Similar Documents

Publication Publication Date Title
CN110869809B (en) Radiation imaging apparatus and radiation imaging system
US10537295B2 (en) Radiation imaging apparatus and radiation imaging system
WO2017183264A1 (en) Radiation image capturing device, radiation image capturing system, and method of controlling radiation image capturing device
JP6929104B2 (en) Radiation imaging device, radiation imaging system, control method and program of radiation imaging device
WO2018198491A1 (en) Radiation imaging device, radiation imaging system, control method for radiation imaging device, and program
CN111316133B (en) Radiographic image capturing apparatus and radiographic image capturing system
US11294078B2 (en) Radiation imaging apparatus and radiation imaging system
US11693131B2 (en) Radiation imaging apparatus and radiation imaging system
US10921466B2 (en) Radiation imaging apparatus and radiation imaging system
JP7004850B2 (en) Photon counting spectral CT
JP4739060B2 (en) Radiation imaging apparatus, radiation imaging system, and control method thereof
WO2020144972A1 (en) Image processing device, image processing method, and program
JP6934763B2 (en) Radiation imaging device and radiation imaging system
WO2019150731A1 (en) Image processing device and image processing method and program
JP6929327B2 (en) Radiation imaging device and radiation imaging system
JP2019153692A (en) Radiation imaging device and radiation imaging system
JP2019074368A (en) Radiation imaging device and radiation imaging system
JP2022087546A (en) Radiation imaging system
JP2023117956A (en) Sensor substrate, radiation imaging apparatus, radiation imaging system, and method for manufacturing sensor substrate
JP2018195949A (en) Radiation imaging device and radiation imaging system
JP2018161431A (en) Radiographic apparatus, radiographic system, method of controlling radiographic apparatus, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908842

Country of ref document: EP

Kind code of ref document: A1