WO2020138501A1 - Multilayer-structured polymer particle, and thermoplastic resin composition, molded body, and film including same - Google Patents

Multilayer-structured polymer particle, and thermoplastic resin composition, molded body, and film including same Download PDF

Info

Publication number
WO2020138501A1
WO2020138501A1 PCT/JP2019/051629 JP2019051629W WO2020138501A1 WO 2020138501 A1 WO2020138501 A1 WO 2020138501A1 JP 2019051629 W JP2019051629 W JP 2019051629W WO 2020138501 A1 WO2020138501 A1 WO 2020138501A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
thermoplastic resin
layer
polymer particles
inner layer
Prior art date
Application number
PCT/JP2019/051629
Other languages
French (fr)
Japanese (ja)
Inventor
航平 山下
東田 昇
大串 眞康
香織 前田
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2020562555A priority Critical patent/JP7342033B2/en
Publication of WO2020138501A1 publication Critical patent/WO2020138501A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers

Definitions

  • the present invention relates to multi-layered polymer particles, a thermoplastic resin composition containing the same, a molded article and a film.
  • the (meth)acrylic resin has excellent transparency, color tone, appearance, weather resistance, luster and processability and is therefore used in various fields.
  • a film formed from a (meth)acrylic resin has high transparency, low moisture permeability, and easy primary processing and secondary processing, and is therefore widely used for optical applications, decoration applications, and the like.
  • an acrylic resin is brittle and lacks impact resistance, but a graft copolymer having a crosslinked rubber layer is blended with an acrylic resin to control the particle size of the graft copolymer having the crosslinked rubber layer. Therefore, impact resistance and strength are exhibited (Patent Document 1).
  • Patent Documents 2 and 3 molded articles such as films using a resin composition in which the graft copolymer having the rubber layer is mixed with an acrylic resin.
  • the above-mentioned molded product has a problem that when the molding temperature becomes high, many defects due to deterioration of the resin increase.
  • organic fine particles have been proposed which are obtained by further polymerizing a (meth)acrylic acid ester as a shell portion on a particulate polymer having a core portion having an average particle diameter of 0.01 ⁇ m to 1 ⁇ m. (Patent Document 4).
  • Patent Documents 1 to 4 may not be able to sufficiently reduce the spot defects of the molded product containing the film, and there is room for improvement in the multilayer structure polymer particles used.
  • the present invention reduces the defects in a molded article including a film, and therefore has excellent long-term thermal stability in a matrix resin (base resin), as well as excellent dispersibility and impact resistance.
  • the purpose is to provide coalesced particles.
  • the present inventors have found that in order to improve long-term thermal stability, dispersibility and impact resistance, the mass ratio of each layer of the multilayer structure polymer particles and the glass transition temperature of the outer layer are important. As a result of further discovery based on these findings, the present invention has been achieved. That is, the present invention is the following [1] to [14].
  • a multilayer structure polymer particle having an inner layer containing a crosslinked rubber (I) and an outer layer containing a thermoplastic resin (II) graft-bonded to the inner layer,
  • the ratio [V2/V1] of the mass (V2) of the outer layer to the mass (V1) of the inner layer is 0.3 to 0.8
  • Multilayer polymer particles having a glass transition temperature of 80 to 120° C. in the outer layer are 0.3 to 0.8
  • the thermoplastic resin (II) graft-bonded to the inner layer the graft ratio represented by the ratio of the mass of the thermoplastic resin (II) to the mass of the inner layer is 25 to 90 mass %.
  • the crosslinked rubber (I) comprises an acrylic acid ester unit of 50 to 99.99% by mass, a polyfunctional monomer unit of 0.01 to 5% by mass, and an unsaturated monomer copolymerizable therewith.
  • thermoplastic resin (II) containing 0 to 49.99% by mass of the polymer unit and graft-bonded to the inner layer is 40 to 100% by mass of the methacrylic acid ester unit and another unsaturated monomer copolymerizable therewith.
  • the thermoplastic resin (III) is a (meth)acrylic resin containing 80 to 99.9% by mass of methacrylic acid ester units and 0.1 to 20% by mass of acrylic acid ester units, [6] to The thermoplastic resin composition according to any one of [10].
  • thermoplastic resin composition according to any one of [6] to [11].
  • the present invention it is possible to provide a multi-layer structure polymer particle which is excellent in long-term thermal stability in a matrix resin (base resin) and is excellent in dispersibility and impact resistance.
  • a multilayer structure polymer particle according to an embodiment of the present invention wherein the inner layer is composed of one layer (first layer) and the outer layer is composed of two layers (second layer, third layer). It is a figure which shows a particle.
  • a multilayer structure polymer particle according to an embodiment of the present invention wherein the inner layer is composed of two layers (first layer and second layer) and the outer layer is composed of one layer (third layer). It is a figure which shows a particle.
  • a multilayer structured polymer particle according to an embodiment of the present invention wherein an inner layer is composed of two layers (first layer, second layer) and an outer layer is composed of two layers (third layer, fourth layer). It is a figure which shows a multilayer structure polymer particle.
  • the multi-layered polymer particle of the present invention is a multi-layered polymer particle having an inner layer containing a crosslinked rubber (I) and an outer layer containing a thermoplastic resin (II) graft-bonded to the inner layer.
  • the ratio [V2/V1] of the mass (V2) of the outer layer to the mass (V1) is 0.3 to 0.8.
  • [V2/V1] can be adjusted by the amount of the monomer mixture used for the polymerization of the inner layer and the outer layer of the multilayer structured polymer particles of the present invention.
  • [V2/V1] of the multilayer polymer particles of the present invention is preferably 0.35 to 0.78, and more preferably 0.4 to 0.75.
  • the long-term thermal stability and impact resistance of the multi-layered polymer particles and the dispersibility of the multi-layered polymer particles in the matrix are improved.
  • [V2/V1] is less than 0.3, long-term thermal stability in the matrix resin may deteriorate. If [V2/V1] is more than 0.8, the impact resistance may decrease.
  • [V2/V1] is preferably 0.5 or more from the viewpoint of the decomposability of the crosslinked rubber in the matrix resin and the thermal stability in the retention part of the film of the multi-layered polymer particles during film formation. , 0.55 or more, more preferably 0.60 or more, still more preferably 0.65 or more, and particularly preferably 0.70 or more.
  • the glass transition temperature (Tg) of the outer layer is 80 to 120°C.
  • the particles of the multilayer structure polymer can be easily isolated (hereinafter, also referred to as “excellent removability”), and the multilayer structure in the matrix.
  • excellent removability also referred to as “excellent removability”
  • the dispersibility of polymer particles is improved.
  • the glass transition temperature of the outer layer is lower than 80° C., blocking is likely to occur in the powder drying step, and it may be difficult to isolate the multilayer structure polymer particles.
  • the dispersibility at the time of melt-kneading may decrease, and defects such as fish eyes may easily occur.
  • the glass transition temperature of the outer layer is preferably 83° C. to 110° C., more preferably 85° C. to 105° C.
  • the outer layer of the multi-layered polymer particles of the present invention has a glass transition temperature of 2 or more, the highest glass transition temperature is taken as the glass transition temperature of the outer layer, and the glass transition temperature in the present invention is as described in the examples. Indicates the value measured by the measuring method.
  • the crosslinked rubber layer when the crosslinked rubber layer is one layer, the crosslinked rubber layer may be used alone or the crosslinked rubber layer and the inner layer may be referred to as an “inner layer”.
  • the layer outside the rubber layer is called the “outer layer”.
  • the outermost crosslinked rubber layer and the layers inside the crosslinked rubber layer are collectively referred to as “inner layer”, and the layer outside the crosslinked rubber layer is referred to as “inner layer”.
  • the outer layer Specific examples of the multilayer structured polymer particles of the present invention are illustrated in FIGS. FIG.
  • FIG. 1 is a multi-layered polymer particle having one crosslinked rubber layer, wherein the crosslinked rubber layer alone forms an inner layer, and a crosslinked PMMA (polymethylmethacrylate) layer and a PMMA outside the crosslinked rubber layer. It is a figure which shows the multilayer structure polymer particle which a layer comprises an outer layer. Further, FIG. 2 is a diagram showing a multilayer structure polymer particle in which a crosslinked rubber layer and a crosslinked PMMA layer inside thereof form an inner layer, and a PMMA layer outside the crosslinked rubber layer forms an outer layer. Further, FIG.
  • FIG. 3 is a diagram showing a multilayer structure polymer particle in which a crosslinked rubber layer and a crosslinked PMMA layer inside the crosslinked rubber layer form an inner layer, and two PMMA layers outside the crosslinked rubber layer form an outer layer
  • FIG. 4 is a diagram showing a multi-layered polymer particle in which a crosslinked rubber layer and a crosslinked PMMA layer inside the crosslinked rubber layer form an inner layer, and a crosslinked PMMA layer and a PMMA layer outside the crosslinked rubber layer form an outer layer. is there.
  • the crosslinked rubber (I) is not particularly limited, and butadiene rubber, styrene/butadiene rubber, isoprene rubber, chloroprene rubber, acrylonitrile/butadiene rubber, butyl rubber, ethylene/propylene rubber, ethylene/propylene/diene rubber, urethane rubber, silicone rubber , Fluororubber, chlorosulfonated polyethylene rubber, acrylic rubber and the like, and acrylic rubber is particularly preferably used.
  • the acrylic rubber used for the crosslinked rubber (I) includes a structural unit derived from an acrylic acid ester (hereinafter sometimes referred to as an acrylic acid ester unit) and a structural unit derived from a polyfunctional monomer (a polyfunctional monofunctional unit). It is preferable to include a monomer unit).
  • acrylic acid ester used for the crosslinked rubber (I) examples include methyl acrylate, ethyl acrylate, n-butyl acrylate, n-propyl acrylate, i-propyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, Examples include octyl acrylate, lauryl acrylate, hydroxyhexyl acrylate, isobornyl acrylate, tetrahydrofurfuryl acrylate, phenyl acrylate, cyclohexyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate and n-butyl acrylate are preferred, and n-butyl acrylate is preferred. More preferable. These may be used alone or in combination of two or more.
  • the content of the acrylate unit in the crosslinked rubber (I) is preferably 50 to 99.99% by mass, more preferably 60 to 99% by mass, and further preferably 70 to 98% by mass. .. Within this range, good impact resistance can be given.
  • polyfunctional monomer used for the crosslinked rubber (I) examples include ethylene glycol di(meth)acrylate, 1,3-butylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, divinylbenzene and allyl methacrylate. , Allyl acrylate, allyl maleate, allyl fumarate, diallyl fumarate, triallyl cyanurate and the like, allyl acrylate and allyl methacrylate are preferable, and allyl methacrylate is more preferable. These may be used alone or in combination of two or more.
  • the content of the polyfunctional monomer unit in the crosslinked rubber (I) is preferably 0.01 to 5% by mass, more preferably 0.1 to 4.5% by mass, and 1 to 4% by mass. % Is more preferable. Within this range, the desired graft ratio can be achieved.
  • the crosslinked rubber (I) may further contain other unsaturated monomer copolymerizable with the above-mentioned acrylic acid ester or polyfunctional monomer, for example, 1,3-butadiene, 1,2-butadiene, Isoprene, styrene, ⁇ -methylstyrene, vinyltoluene, methylmethacrylate, ethylmethacrylate, n-butylmethacrylate, n-propylmethacrylate, i-propylmethacrylate, i-butylmethacrylate, t-butylmethacrylate, 2-ethylhexylmethacrylate, n- Examples include octyl methacrylate, lauryl methacrylate, hydroxyhexyl methacrylate, isobornyl methacrylate, tetrahydrofurfuryl methacrylate, phenyl methacrylate, cyclohexyl methacryl
  • the content of the other unsaturated monomer unit in the crosslinked rubber (I) is preferably 0 to 49.99% by mass, more preferably 0.99 to 39.99% by mass, More preferably, it is 1.99 to 29.99 mass %.
  • the inner layer in the multi-layer structure polymer particles of the present invention may be a single layer containing a crosslinked rubber (I), or may be two or more layers each containing a crosslinked rubber (I) having a different composition. , May have one or more layers different in composition from the crosslinked rubber (I), but from the viewpoint of improving the strength of the multilayer structure polymer particles, the innermost layer containing the crosslinked hard body (for example, FIGS. And a crosslinked PMMA layer shown in 4). It is particularly preferable that the multilayer structure polymer particles of the present invention have a three-layer structure of a crosslinked hard body, a crosslinked rubber (I) and a thermoplastic resin (II).
  • the crosslinked hard body preferably contains a structural unit derived from a methacrylic acid ester (hereinafter, also referred to as a “methacrylic acid ester unit”).
  • a methacrylic acid ester a methacrylic acid ester whose ester portion is an alkyl group having 1 to 4 carbon atoms is preferable, and methyl methacrylate is particularly preferable.
  • the content of the methacrylic acid ester unit in the crosslinked hard body is preferably 40.0 to 99.0% by mass, more preferably 50.0 to 98.0% by mass, and 60.0 to 97% by mass. It is more preferably 0.0% by mass, and particularly preferably 80 to 97.0% by mass. When the content of the methacrylic acid ester unit is within this range, the strength of the multi-layer structure polymer particles can be improved.
  • the crosslinked hard body contains a structural unit derived from an acrylate ester.
  • the acrylate ester include esters in which the ester portion is a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent.
  • the same ones as those listed as the acrylic ester used for the crosslinked rubber (I) can be used, and the ester group has a hydrocarbon group having 1 to 8 carbon atoms which may have a substituent.
  • methyl acrylate, 2-ethylhexyl acrylate and n-butyl acrylate are more preferred, and methyl acrylate is even more preferred. These may be used alone or in combination of two or more.
  • the content of the acrylate unit in the crosslinked hard body is preferably 0.1 to 20.0% by mass, more preferably 1.0 to 15.0% by mass, and 3.0 to 10. It is more preferably 0% by mass. When the content of the acrylate unit is within this range, the impact resistance of the multi-layer structure polymer particles can be improved.
  • the crosslinked hard body contains a structural unit derived from a polyfunctional monomer.
  • the polyfunctional monomer used for the crosslinked rigid body the same ones as those listed as the polyfunctional monomer used for the crosslinked rubber (I) can be used, and allyl acrylate and allyl methacrylate are preferable, Allyl methacrylate is more preferred. These may be used alone or in combination of two or more.
  • the content of the polyfunctional monomer unit in the crosslinked hard body is preferably 0.01 to 3.0% by mass, more preferably 0.1 to 2.0% by mass. When the content of the polyfunctional monomer unit is within this range, it is easy to adjust the hardness to a desired level.
  • thermoplastic resin (II) graft-bonded to the internal cross-linked product (inner layer) used in the multi-layered polymer particles of the present invention is not particularly limited, and may be polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyacetic acid. Examples thereof include vinyl, polyurethane, polytetrafluoroethylene, polyamide, polycarbonate, polyester, polyethylene terephthalate, polybutylene terephthalate, polyacetal, and (meth)acrylic resin, and (meth)acrylic resin is particularly preferably used.
  • the (meth)acrylic resin used as the thermoplastic resin (II) that is graft-bonded to the inner layer preferably contains a structural unit derived from a methacrylic acid ester (methacrylic acid ester unit).
  • the methacrylic acid ester used in the thermoplastic resin (II) graft-bonded to the inner layer is preferably a methacrylic acid ester having an alkyl group with 1 to 4 carbon atoms, and particularly preferably methyl methacrylate.
  • the methacrylic acid ester used in the thermoplastic resin (II) may be used alone or in combination of two or more.
  • the content of the methacrylic acid ester unit in the thermoplastic resin (II) graft-bonded to the inner layer is preferably 40 to 100% by mass, more preferably 50 to 99% by mass, and 60 to 98% by mass. % Is more preferable. Within this range, the strength of the multilayer structured polymer particles can be appropriately maintained.
  • the thermoplastic resin (II) which is graft-bonded to the inner layer can further include a structural unit derived from another unsaturated monomer copolymerizable with the monomer, and specifically, methyl Acrylate, ethyl acrylate, n-butyl acrylate, n-propyl acrylate, i-propyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, lauryl acrylate, hydroxyhexyl acrylate, isobornyl Structural units derived from acrylate, tetrahydrofurfuryl acrylate, phenyl acrylate, cyclohexyl acrylate, benzyl acrylate can be included, but structural units derived from methyl acrylate are preferred.
  • the other unsaturated monomer used in the thermoplastic resin (II) one type may be
  • the content of the unsaturated monomer unit in the thermoplastic resin (II) graft-bonded to the inner layer is preferably 0 to 60% by mass, more preferably 1 to 50% by mass. It is more preferably from about 40% by mass.
  • the method for producing the multi-layered polymer particles of the present invention is not particularly limited, but it is preferably produced by an emulsion polymerization method because of the ease of controlling the particle diameter, and specifically, for example, a crosslinked hard body and a crosslinked rubber
  • a polymerization reaction step (S1) for forming a crosslinked hard body, and a layer containing a crosslinked rubber (I) are formed.
  • the polymerization reaction step (S2) and the polymerization reaction step (S3) for forming the layer containing the thermoplastic resin (II) can be carried out in this stacking order.
  • the case of producing the multi-layered polymer particles having the three-layered structure by an emulsion polymerization method will be described as an example.
  • Polymerization reaction step (S1) In the polymerization reaction step (S1), a monomer mixture corresponding to the composition of the crosslinked hard body can be copolymerized by a known method, and specifically, an emulsifier, a pH adjuster, a polymerization initiator and a monomer. By mixing the mixture, the chain transfer agent and the like with water and heating the mixture, a polymerization reaction is carried out and an emulsion of a crosslinked hard body can be obtained.
  • Polymerization reaction step (S2) After performing the polymerization reaction step (S1), a monomer mixture corresponding to the composition of the crosslinked rubber (I), a polymerization initiator, a chain transfer agent and the like are further added to the emulsion to form an inner first layer. A layer containing a crosslinked hard body and a crosslinked rubber (I) can be obtained as the second layer. Note that each of (S1) and (S2) may be performed a plurality of times.
  • the emulsifier used in the polymerization reaction steps (S1) to (S3) is not particularly limited as long as it is an emulsifier used in emulsion polymerization, but anionic emulsifiers, nonionic emulsifiers, nonionic/anionic emulsifiers and the like are used. it can. These emulsifiers can be used alone or in combination of two or more.
  • anionic emulsifier examples include dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate and sodium dilauryl sulfosuccinate; alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate; and alkyl sulfates such as sodium dodecyl sulfate. ..
  • nonionic emulsifiers examples include polyoxyethylene alkyl ethers and polyoxyethylene nonylphenyl ethers.
  • Nonionic/anionic emulsifiers include polyoxyethylene nonylphenyl ether sulfate such as sodium polyoxyethylene nonylphenyl ether sulfate; polyoxyethylene alkyl ether sulfate such as sodium polyoxyethylene alkyl ether sulfate; polyoxyethylene tridecyl ether. Examples thereof include alkyl ether carboxylates such as sodium acetate.
  • the polymerization initiator used in the polymerization reaction steps (S1) to (S3) is not particularly limited as long as it generates a reactive radical, and examples thereof include tert-hexylperoxyisopropyl monocarbonate and tert-hexylperoxy 2 -Ethylhexanoate, 1,1,3,3-tetramethylbutylperoxy 2-ethylhexanoate, tert-butylperoxypivalate, tert-hexylperoxypivalate, tert-butylperoxy neodecanoe -To, tert-hexylperoxy neodecanoate, 1,1,3,3-tetramethylbutylperoxy neodecanoate, 1,1-bis(tert-hexylperoxy)cyclohexane, benzoyl peroxide, 3,5,5-Trimethylhexanoyl peroxide, lauroyl peroxide, 2,2'
  • the amount of the polymerization initiator is preferably 0.001 to 0.5 parts by mass with respect to 100 parts by mass of each monomer mixture in the polymerization reaction steps (S1) to (S3), and 0.01 It is more preferably from 0.4 to 0.4 parts by mass, further preferably from 0.05 to 0.3 parts by mass.
  • Examples of the chain transfer agent used in the polymerization reaction steps (S1) to (S3) include n-octyl mercaptan, n-dodecyl mercaptan, tert-dodecyl mercaptan, 1,4-butanedithiol, 1,6-hexanedithiol, ethylene.
  • Glycol bisthiopropionate butanediol bisthioglycolate, butanediol bisthiopropionate, hexanediol bisthioglycolate, hexanediol bisthiopropionate, trimethylolpropane tris-( ⁇ -thiopropionate) , Pentaerythritol tetrakisthiopropionate and the like.
  • n-octyl mercaptan and n-dodecyl mercaptan are preferable, and n-octyl mercaptan is more preferable. These may be used alone or in combination of two or more.
  • Removal of the multi-layered polymer particles from the emulsion containing the multi-layered polymer particles obtained by the emulsion polymerization method, purification can be performed by a known method, for example, freeze-coagulation, it can be performed by washing with water, As a result, the multi-layer structure polymer particles of the present invention can be obtained.
  • the multi-layered polymer particles of the present invention have a [V2/V1] of 0.3 to 0.8, where V1 is the mass of the inner layer and V2 is the mass of the outer layer of the multi-layered polymer particles
  • the graft ratio is preferably 25 to 90% by mass. Therefore, the amount of the chain transfer agent used in the polymerization reaction step (S3) is preferably 100 parts by mass of the monomer mixture used in the step. It is 0.01 to 0.2 parts by mass, more preferably 0.02 to 0.0.18 parts by mass, still more preferably 0.03 to 0.17 parts by mass, and particularly preferably 0.05. To 0.15 parts by mass.
  • the amount of chain transfer agent used is preferably 1 to 199 parts by mass, more preferably 5 to 190 parts by mass, and even more preferably 100 parts by mass of the polymerization initiator used in the polymerization reaction step (S3). Is 10 to 150 parts by mass.
  • the graft ratio of the multi-layered polymer particles of the present invention is the same as the inner layer of the multi-layered polymer particles (for example, crosslinked rubber (I) and crosslinked resin) and the thermoplastic resin (II) graft-bonded to the inner layer. Is the ratio of the mass of the thermoplastic resin (II) graft-bonded to the inner layer to the mass of.
  • the graft ratio (mass %) can be obtained by the method described in the examples.
  • the graft ratio of the multi-layered polymer particles of the present invention is preferably 25 to 90% by mass, more preferably 28 to 80% by mass, still more preferably 30 to 70% by mass, still more preferably 40. It is up to 60% by mass. When the graft ratio is within this range, long-term thermal stability and impact resistance in the matrix resin (base resin) are improved.
  • the graft ratio can be adjusted by the blending amount of the polyfunctional monomer, the blending amount of the chain transfer agent, and the like.
  • the median diameter De of the multi-layered polymer particles of the present invention measured with an emulsion by a laser diffraction/scattering method is preferably 80 to 500 nm, more preferably 150 to 400 nm, and more preferably 200 to 300 nm. More preferable.
  • the median diameter De of the multi-layered polymer particles is within the above range, required impact resistance can be obtained.
  • the median diameter De is the average value of the outer diameters of the multi-layered particle structure of the multi-layered polymer particles, and it can be specifically obtained by the method described in the examples.
  • the number average molecular weight of the thermoplastic resin (II) graft-bonded to the inner layer is preferably 20,000 to 50,000, more preferably 21,000 to 45,000, and 22,000. More preferably, it is -40,000.
  • the number average molecular weight of the thermoplastic resin (II) graft-bonded to the inner layer is within the above range, it is possible to obtain multi-layered polymer particles having excellent long-term thermal stability.
  • the number average molecular weight of the thermoplastic resin (II) graft-bonded to the inner layer from the multilayer structure polymer particles can be estimated from the number average molecular weight of the thermoplastic resin (II) not graft-bonded.
  • the number average molecular weight of the non-grafted thermoplastic resin (II) can be determined by gel permeation chromatography (GPC) based on the molecular weight of standard polystyrene, and specifically by the method described in Examples. be able to.
  • the multilayer structure polymer particles of the present invention are multilayer structure polymer particles having an inner layer containing a crosslinked rubber (I) and an outer layer containing a thermoplastic resin (II) graft-bonded to the inner layer.
  • the graft-bonded thermoplastic resin (II) is preferably bonded to the crosslinked rubber (I) in the inner layer of the multilayer structured polymer particle of the present invention.
  • the present invention includes a thermoplastic resin composition containing the multilayer structure polymer particles and a thermoplastic resin (III) which can be a matrix resin (base resin).
  • a thermoplastic resin (III) the same as those listed as the thermoplastic resin (II) can be used, but an amorphous resin is preferable.
  • the amorphous resin used for the thermoplastic resin (III) include polyvinyl chloride, polystyrene, acrylonitrile/butadiene/styrene, polycarbonate, (meth)acrylic resin, and thermoplastic elastomer, and particularly (meth)acrylic resin. Resin is preferably used.
  • the thermoplastic resin (III) is preferably a (meth)acrylic resin containing 80 to 99.9% by mass of a methacrylic acid ester unit and 0.1 to 20% by mass of an acrylic acid ester unit.
  • a (meth)acrylic resin containing 85 to 99.8 mass% of ester units and 0.2 to 15 mass% of acrylic acid ester units is more preferable, and 90 to 99.7 mass% of methacrylic acid ester units. %, and a (meth)acrylic resin containing 0.3 to 10% by mass of an acrylic acid ester unit is more preferable.
  • the multilayer-structured polymer particles of the present invention may be mixed in the thermoplastic resin (III) in the thermoplastic resin composition. Further, from the viewpoint of transportation and the like, the thermoplastic resin composition of the present invention may be molded into, for example, a pellet shape.
  • the thermoplastic resin composition of the present invention preferably contains the multilayer structure polymer particles in an amount of 5 to 95% by mass, more preferably 7 to 80% by mass, and further preferably 10 to 60% by mass. It is particularly preferable that the content is 15 to 50% by mass. Further, the thermoplastic resin composition of the present invention preferably contains the thermoplastic resin (III) in an amount of 5 to 95% by mass, more preferably 20 to 93% by mass, and further preferably 40 to 90% by mass. Is more preferable, and it is particularly preferable that the content is 50 to 85% by mass.
  • the glass transition temperature (Tg) of the thermoplastic resin (III) is preferably 50 to 170°C, more preferably 70 to 150°C, and further preferably 90 to 140°C. When the glass transition temperature (Tg) of the thermoplastic resin (III) is within the above range, stable film formation can be achieved.
  • the glass transition temperature of the thermoplastic resin (III) refers to the value measured by the measuring method described in the examples.
  • the number average molecular weight of the thermoplastic resin (III) is preferably 10,000 to 500,000, more preferably 20,000 to 450,000, and 25,000 to 400,000. More preferably, it is particularly preferably 25,000 to 100,000. When the number average molecular weight of the thermoplastic resin (III) is within the above range, appropriate strength can be exhibited when the thermoplastic resin composition of the present invention is formed into a molded article such as a film.
  • thermoplastic resin composition of the present invention if necessary, and within a range that does not impair the effects of the present invention, an ultraviolet absorber, an antioxidant, a colorant, a fluorescent colorant, a dispersant, a heat stabilizer, and a light stabilizer. It may contain additives such as a stabilizer, an infrared absorber, an antistatic agent, a processing aid, a lubricant and a release agent.
  • the colorant may be either a pigment or a dye. It may also contain a solvent.
  • the total content of the additives in the thermoplastic resin composition of the present invention is preferably 15 parts by mass or less when the total amount of the thermoplastic resin (III) and the multilayer structure polymer is 100 parts by mass.
  • the content of the ultraviolet absorber is preferably 0.1 to 4.0 parts by mass when the total amount of the thermoplastic resin (III) and the multilayer structure polymer is 100 parts by mass, and 0.2 parts by mass is preferable. It is more preferably at least 0.4 part by mass, further preferably at least 0.4 part by mass. Further, the content of the ultraviolet absorber is more preferably 3.8 parts by mass or less, and further preferably 3.5 parts by mass or less, from the viewpoint of suppressing the cost. Further, the content of the antioxidant is preferably 0.005 to 10 parts by mass, and 0.008 to 10 parts by mass, when the total amount of the thermoplastic resin (III) and the multilayer structure polymer is 100 parts by mass. The amount is more preferably 1 part by mass, further preferably 0.01 to 0.2 part by mass.
  • the present invention includes a molded product containing the multilayer structure polymer particles of the present invention, a molded product made of the thermoplastic resin composition of the present invention, and a film.
  • the film of the present invention is suitably used for optical members such as a polarizer protective film, a retardation film, a retardation plate, a light diffusion plate, a light guide plate and the like.
  • MMA methyl methacrylate
  • ALMA allyl methacrylate
  • MA methyl acrylate
  • BA n-butyl acrylate
  • St styrene
  • BzA benzyl acrylate
  • n-OM n-octyl mercaptan
  • Glass transition temperature (Tg) It was measured according to JIS K7121:2012. A differential scanning calorimeter (DSC) device (manufactured by Shimadzu Corporation; DSC-50) was used for the measurement. A powder of 5 mg of polymer particles having a multilayer structure was precisely weighed and used as a sample. In measuring the DSC curve, the sample was heated to 230° C. once, cooled to ⁇ 90° C., and then heated from ⁇ 90° C. to 230° C. at 10° C./min. The midpoint glass transition temperature was determined from the DSC curve measured during the second heating. The midpoint glass transition temperature was defined as the glass transition temperature (Tg).
  • DSC differential scanning calorimeter
  • [Graft rate] 2 g of the powder of the multi-layered polymer particles was precisely weighed and used as the sample mass (W).
  • the precisely weighed powder was immersed in 118 g of acetone at 25° C. for 24 hours. Then, the powder and acetone were stirred to uniformly disperse the multilayer structure polymer particles in acetone.
  • the preparation liquid was prepared as described above. Then, 30 g of the prepared liquid was dispensed into each of four stainless centrifuge tubes. The centrifuge tube was weighed in advance. The centrifuge tube was centrifuged for 90 minutes at 0° C. and 20,000 rpm in a high-speed cooling centrifuge (CR22GIII manufactured by Hitachi, Ltd.).
  • the supernatant was removed from each centrifuge tube by decantation. Then, 30 g of acetone was newly added to each centrifuge tube. The precipitate and acetone were stirred. After centrifuging the centrifuge tube again, the supernatant was removed. Stirring, centrifugation and supernatant removal were repeated 4 times in total. As described above, the acetone-soluble component was sufficiently removed. Then, the precipitate was dried by vacuum drying together with the centrifuge tube. The weight of the acetone-insoluble component was determined by weighing the precipitate after drying. The graft ratio of the multi-layer structure polymer particles was calculated based on the following formula.
  • the mass of the inner crosslinked product (inner layer) is the mass of the inner layer crosslinked rubber (I) layer, or the inner layer crosslinked rubber (I) and its inner layer (for example, crosslinked resin). It is the total mass of the components used to synthesize the crosslinked product (inner layer) inside the structural polymer particles.
  • the number average molecular weight of the thermoplastic resin (II) The acetone-soluble component obtained in the measurement of the graft ratio was sufficiently dried, 10 mg was precisely weighed, 5 mL of THF (tetrahydrofuran) was added, and the mixture was stirred for 3 hours to remove the acetone-soluble component of the multilayer polymer particles from THF. Dispersed evenly throughout. The sample produced as described above was measured by GPC under the above conditions, and the number average molecular weight of the thermoplastic resin (II) was measured.
  • the emulsion containing multi-layered polymer particles obtained by emulsion polymerization was diluted 200 times with water.
  • the aqueous dispersion was analyzed by a laser diffraction/scattering particle size distribution measuring device (LA-950V2, manufactured by Horiba Ltd.), and the median diameter De was calculated from the analysis value.
  • LA-950V2 laser diffraction/scattering particle size distribution measuring device
  • the median diameter De was calculated from the analysis value.
  • the refractive indices of the multi-layered polymer particles and water were set to 1.4900 and 1.3333, respectively.
  • thermoplastic resin composition 1 g was weighed, wrapped in a tubular Teflon (registered trademark) sheet, and further enclosed in a pressure-resistant tube made of SUS. This was heated at 270° C. for 24 hours.
  • the samples before and after the heating test were cut out with a microtome and then dyed with a phosphotungstic acid solution for 15 minutes, and the dispersion state of the multilayer structure polymer particles in the thermoplastic resin was observed by TEM (JEOL: JSM-7600F, magnification: ⁇ 10000).
  • the dispersion state before and after heating was judged according to the following criteria. The dispersed state was confirmed by observing 100 multi-layer structure polymer particles and observing the following criteria.
  • the produced film was placed on an impact tester (Yasuda Seiki Seisakusho: No. 181 film impact tester), the energy at the time of breaking the film was measured, and the impact resistance was evaluated from the value obtained by dividing the energy by the film thickness. ..
  • the criteria for the indicators are as follows. A (good): energy when the film is broken is 1.0 J/mm or more B (bad): energy when the film is broken is less than 1.0 J/mm
  • EO sodium polyoxyethylene
  • the emulsion obtained in the above step was stirred, and the second layer raw material was continuously added dropwise over 60 minutes. After the dropping was completed, the polymerization reaction was further performed for 90 minutes to obtain an emulsion containing the crosslinked rubber (I). Next, 0.2 part by mass of potassium persulfate was put into the reactor. Separately, 200 parts by mass of a monomer mixture having the composition of the third layer shown in Table 1 was prepared.
  • the emulsion containing the crosslinked rubber (I) was stirred, and the monomer mixture having the composition of the third layer was continuously added dropwise over 50 minutes. After the dropping was completed, the polymerization reaction was further performed for 80 minutes.
  • an emulsion containing multi-layered polymer particles in which the thermoplastic resin was graft-polymerized on the crosslinked rubber was obtained.
  • the removability was evaluated.
  • the multilayer structure polymer particles were solidified by freezing the emulsion. Next, the coagulated product was washed with water and dried to obtain a powder of multi-layer structure polymer particles.
  • an emulsion containing multi-layered polymer particles in which the thermoplastic resin was graft-polymerized on the crosslinked rubber was obtained.
  • the removability was evaluated.
  • the multi-layered polymer particles were solidified by freezing the emulsion.
  • the coagulated product was washed with water and dried to obtain a powder of multi-layer structure polymer particles.
  • Production of multi-layered polymer particles Powders of multi-layered polymer particles were obtained in the same manner as in Production Example 2 except that the compositions of the first layer, the second layer and the third layer shown in Table 1 were changed.
  • an emulsion containing multi-layered polymer particles in which the thermoplastic resin was graft-polymerized on the crosslinked rubber was obtained.
  • the removability was evaluated.
  • the multi-layered polymer particles were solidified by freezing the emulsion.
  • the coagulated product was washed with water and dried to obtain a powder of multi-layer structure polymer particles.
  • EO sodium polyoxyethylene
  • the emulsion obtained in the above step was stirred, and the second layer raw material was continuously added dropwise over 60 minutes. After the dropping was completed, the polymerization reaction was further performed for 90 minutes to obtain an emulsion containing the crosslinked rubber (I).
  • 0.14 parts by mass of potassium persulfate was charged into the reactor. Separately, 315 parts by mass of a monomer mixture having the composition of the third layer shown in Table 1 was prepared.
  • the emulsion containing the crosslinked rubber (I) was stirred, and the monomer mixture having the composition of the third layer was continuously added dropwise over 30 minutes. After the dropping was completed, the polymerization reaction was further performed for 60 minutes.
  • an emulsion containing multi-layered polymer particles in which the thermoplastic resin was graft-polymerized on the crosslinked rubber was obtained.
  • the removability was evaluated.
  • the multi-layered polymer particles were solidified by freezing the emulsion. Next, the coagulated product was washed with water and dried to obtain a powder of multi-layer structure polymer particles.
  • an emulsion containing multi-layered polymer particles in which the thermoplastic resin was graft-polymerized on the crosslinked rubber was obtained.
  • the removability was evaluated.
  • the multi-layered polymer particles were solidified by freezing the emulsion.
  • the coagulated product was washed with water and dried to obtain a powder of multi-layer structure polymer particles.
  • an emulsion containing multi-layered polymer particles in which the thermoplastic resin was graft-polymerized on the crosslinked rubber was obtained.
  • the removability was evaluated.
  • the multi-layered polymer particles were solidified by freezing the emulsion.
  • the coagulated product was washed with water and dried to obtain a powder of multi-layer structure polymer particles.
  • the mixed liquid and the raw material liquid (total of 9000 kg) were charged into a pressure resistant polymerization tank, and the temperature was raised to 70° C. to start the polymerization reaction while stirring in a nitrogen atmosphere. After 3 hours had elapsed from the start of the polymerization reaction, the temperature was raised to 90° C. and stirring was continued for 1 hour to obtain a liquid in which the bead-like copolymer was dispersed. Although some polymer adhered to the wall of the polymerization tank or the stirring blade, the polymerization reaction proceeded smoothly without foaming.
  • the obtained copolymer dispersion was washed with an appropriate amount of ion-exchanged water, and the bead-shaped copolymer was taken out by a bucket centrifuge and dried in a hot air dryer at 80° C. for 12 hours to give a bead-shaped (meta )
  • An acrylic resin was obtained.
  • the obtained (meth)acrylic resin had a methyl methacrylate unit content of 99.3% by mass, a methyl acrylate unit content of 0.7% by mass, a number average molecular weight of 46,000, and a glass transition temperature of It was 120°C.
  • V1-1 is the content (mass part) of the crosslinked hard body in the inner layer of the multilayer structure polymer particles
  • V1-2 is the content (mass of the crosslinked rubber (I) of the inner layer of the multilayer structure polymer particles).
  • Part) and V2 represent the content (parts by mass) of the outer layer of the multilayer structure polymer particles.
  • MMA, MA, ALMA, St, BzA, and n-OM represent the content (% by mass) of each monomer and chain transfer agent used for synthesizing the polymer component of each layer in each layer.
  • thermoplastic resin (III) 76 parts by mass of the (meth)acrylic resin of Production Example 11 and 24 parts by mass of the multilayer structure polymer particles (Production Example 1) were kneaded with a Labo Plastomill at 250° C. for 3 minutes (manufactured by Toyo Seiki Co., Ltd.). : Labo Plastomill 4C150) and further pulverized by a pulverizer to obtain an amorphous thermoplastic resin composition in granular form. A film having a thickness of 100 ⁇ m was obtained by hot press molding at 250° C. for 5 minutes. Using the obtained thermoplastic resin composition and film, thermal stability, dispersibility and impact resistance were evaluated. The evaluation results are shown in Table 2.
  • Examples 2 to 5, Comparative Examples 1 to 5 Amorphous granular heat particles were formed in the same manner as in Example 1 except that the multilayer structure polymer particles used and the composition ratio of the thermoplastic resin (III) to the multilayer structure polymer particles were changed as shown in Table 2. A plastic resin composition and a film having a thickness of 100 ⁇ m were obtained, and thermal stability, dispersibility, and impact resistance were evaluated. The evaluation results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a multilayer-structured polymer particle having excellent long-term thermal stability in a matrix resin (base resin), and an excellent dispersibility and impact resistance in order to reduce defects in a molded body including a film. The multilayer-structured polymer particle has: an inner layer containing a cross-linked rubber (I); and an outer layer containing a thermoplastic resin (II) which is grafted with the inner layer, wherein the ratio [V2/V1] of the mass (V2) of the outer layer to the mass (V1) of the inner layer is 0.3-0.8, and the glass transition temperature of the outer layer is 80-120 °C.

Description

多層構造重合体粒子、それを含む熱可塑性樹脂組成物、成形体及びフィルムMultilayer polymer particles, thermoplastic resin composition containing the same, molded article and film
 本発明は、多層構造重合体粒子、それを含む熱可塑性樹脂組成物、成形体及びフィルムに関する。 The present invention relates to multi-layered polymer particles, a thermoplastic resin composition containing the same, a molded article and a film.
 (メタ)アクリル系樹脂は優れた透明性、色調、外観、耐候性、光沢及び加工性を有するため、様々な分野で使用されている樹脂である。特に(メタ)アクリル系樹脂から成形されたフィルムは、透明性が高く、透湿性も小さく、一次加工、二次加工が容易であるため光学用途や加飾用途等に広く使用されている。
 一般的にアクリル系樹脂はもろく、耐衝撃性に欠けるが、架橋ゴム層を有するグラフト共重合体をアクリル系樹脂等に配合し、その架橋ゴム層を有するグラフト共重合体の粒子径を制御することで耐衝撃性と強度を発現させている(特許文献1)。また、このゴム層を有するグラフト共重合体をアクリル系樹脂に配合した樹脂組成物を用いたフィルム等の成形品が提案されている(特許文献2、3)。
 しかし、上記成形品では、成形温度が高温になると、樹脂の劣化に起因するブツ欠点が多くなるという問題があった。このブツ欠点を低減する方法として平均粒子径が0.01μm~1μmのコア部となる粒子状重合体に、シェル部として(メタ)アクリル酸エステルを更に重合してなる、有機微粒子が提案されている(特許文献4)。
The (meth)acrylic resin has excellent transparency, color tone, appearance, weather resistance, luster and processability and is therefore used in various fields. In particular, a film formed from a (meth)acrylic resin has high transparency, low moisture permeability, and easy primary processing and secondary processing, and is therefore widely used for optical applications, decoration applications, and the like.
Generally, an acrylic resin is brittle and lacks impact resistance, but a graft copolymer having a crosslinked rubber layer is blended with an acrylic resin to control the particle size of the graft copolymer having the crosslinked rubber layer. Therefore, impact resistance and strength are exhibited (Patent Document 1). In addition, molded articles such as films using a resin composition in which the graft copolymer having the rubber layer is mixed with an acrylic resin have been proposed (Patent Documents 2 and 3).
However, the above-mentioned molded product has a problem that when the molding temperature becomes high, many defects due to deterioration of the resin increase. As a method of reducing the spot defects, organic fine particles have been proposed which are obtained by further polymerizing a (meth)acrylic acid ester as a shell portion on a particulate polymer having a core portion having an average particle diameter of 0.01 μm to 1 μm. (Patent Document 4).
特開昭48-55233号公報JP-A-48-55233 国際公開第2016/139927号International Publication No. 2016/139927 国際公開第2017/204243号International Publication No. 2017/204243 特開2007-254727号公報JP, 2007-254727, A
 しかしながら、特許文献1~4に開示されている方法では、フィルムを含む成形体のブツ欠点を十分に低減できない場合があり、用いる多層構造重合体粒子に改善の余地があった。
 上記事情に鑑み、本発明は、フィルムを含む成形体中の欠点を低減するため、マトリクス樹脂(ベース樹脂)中における長期熱安定性に優れると共に、分散性及び耐衝撃性に優れた多層構造重合体粒子を提供することを目的とする。
However, the methods disclosed in Patent Documents 1 to 4 may not be able to sufficiently reduce the spot defects of the molded product containing the film, and there is room for improvement in the multilayer structure polymer particles used.
In view of the above-mentioned circumstances, the present invention reduces the defects in a molded article including a film, and therefore has excellent long-term thermal stability in a matrix resin (base resin), as well as excellent dispersibility and impact resistance. The purpose is to provide coalesced particles.
 本発明者らは前記課題について鋭意検討した結果、長期熱安定性、分散性及び耐衝撃性を向上させるためには多層構造重合体粒子の各層の質量比及び外層のガラス転移温度が重要であることを見出し、その知見に基づき更に検討した結果、本発明に至った。
 すなわち、本発明は下記[1]~[14]である。
[1]架橋ゴム(I)を含む内層と、前記内層とグラフト結合している熱可塑性樹脂(II)を含む外層とを有する多層構造重合体粒子であって、
 前記内層の質量(V1)に対する前記外層の質量(V2)の比[V2/V1]が0.3~0.8であり、
 前記外層のガラス転移温度が80~120℃である多層構造重合体粒子。
[2]前記内層とグラフト結合している熱可塑性樹脂(II)について、前記内層の質量に対する前記熱可塑性樹脂(II)の質量の比率で表されるグラフト率が25~90質量%である、[1]に記載の多層構造重合体粒子。
[3]レーザー回析・散乱法により測定したメジアン径が80~500nmである、[1]又は[2]に記載の多層構造重合体粒子。
[4]前記内層とグラフト結合している熱可塑性樹脂(II)の数平均分子量が20,000~50,000である、[1]~[3]のいずれか1項に記載の多層構造重合体粒子。
[5]前記架橋ゴム(I)は、アクリル酸エステル単位50~99.99質量%と、多官能性単量体単位0.01~5質量%と、これらと共重合可能な不飽和単量体単位0~49.99質量%とを含み、前記内層とグラフト結合している熱可塑性樹脂(II)はメタクリル酸エステル単位40~100質量%と、これと共重合可能な他の不飽和単量体単位0~60質量%とを含む、[1]~[4]のいずれか1項に記載の多層構造重合体粒子。
[6]熱可塑性樹脂(III)5~95質量%と、[1]~[5]のいずれか1項に記載の多層構造重合体粒子5~95質量%とを含有する熱可塑性樹脂組成物。
[7]前記熱可塑性樹脂(III)が非晶性樹脂である、[6]に記載の熱可塑性樹脂組成物。
[8]前記熱可塑性樹脂(III)のガラス転移温度が50~170℃である、[6]又は[7]に記載の熱可塑性樹脂組成物。
[9]前記熱可塑性樹脂(III)の数平均分子量が10,000~500,000である、[6]~[8]のいずれか1項に記載の熱可塑性樹脂組成物。
[10]前記熱可塑性樹脂(III)が(メタ)アクリル系樹脂である、[6]~[9]のいずれか1項に記載の熱可塑性樹脂組成物。
[11]前記熱可塑性樹脂(III)がメタクリル酸エステル単位80~99.9質量%とアクリル酸エステル単位0.1~20質量%とを含む(メタ)アクリル系樹脂である、[6]~[10]のいずれか1項に記載の熱可塑性樹脂組成物。
[12][6]~[11]のいずれか1項に記載の熱可塑性樹脂組成物からなる成形体。
[13][6]~[11]のいずれか1項に記載の熱可塑性樹脂組成物からなるフィルム。
[14][1]~[5]のいずれか1項に記載の多層構造重合体粒子を含む成形体。
As a result of diligent studies on the above-mentioned problems, the present inventors have found that in order to improve long-term thermal stability, dispersibility and impact resistance, the mass ratio of each layer of the multilayer structure polymer particles and the glass transition temperature of the outer layer are important. As a result of further discovery based on these findings, the present invention has been achieved.
That is, the present invention is the following [1] to [14].
[1] A multilayer structure polymer particle having an inner layer containing a crosslinked rubber (I) and an outer layer containing a thermoplastic resin (II) graft-bonded to the inner layer,
The ratio [V2/V1] of the mass (V2) of the outer layer to the mass (V1) of the inner layer is 0.3 to 0.8,
Multilayer polymer particles having a glass transition temperature of 80 to 120° C. in the outer layer.
[2] Regarding the thermoplastic resin (II) graft-bonded to the inner layer, the graft ratio represented by the ratio of the mass of the thermoplastic resin (II) to the mass of the inner layer is 25 to 90 mass %. [1] The multilayer structure polymer particles described in [1].
[3] The multilayer-structured polymer particles according to [1] or [2], which has a median diameter of 80 to 500 nm measured by a laser diffraction/scattering method.
[4] The multilayer structure polymer according to any one of [1] to [3], wherein the thermoplastic resin (II) graft-bonded to the inner layer has a number average molecular weight of 20,000 to 50,000. Coalesced particles.
[5] The crosslinked rubber (I) comprises an acrylic acid ester unit of 50 to 99.99% by mass, a polyfunctional monomer unit of 0.01 to 5% by mass, and an unsaturated monomer copolymerizable therewith. The thermoplastic resin (II) containing 0 to 49.99% by mass of the polymer unit and graft-bonded to the inner layer is 40 to 100% by mass of the methacrylic acid ester unit and another unsaturated monomer copolymerizable therewith. The multilayer-structured polymer particles according to any one of [1] to [4], which contains 0 to 60 mass% of a monomer unit.
[6] A thermoplastic resin composition containing 5 to 95% by mass of the thermoplastic resin (III) and 5 to 95% by mass of the multilayer structure polymer particles according to any one of [1] to [5]. ..
[7] The thermoplastic resin composition according to [6], wherein the thermoplastic resin (III) is an amorphous resin.
[8] The thermoplastic resin composition according to [6] or [7], wherein the glass transition temperature of the thermoplastic resin (III) is 50 to 170°C.
[9] The thermoplastic resin composition according to any one of [6] to [8], wherein the thermoplastic resin (III) has a number average molecular weight of 10,000 to 500,000.
[10] The thermoplastic resin composition according to any one of [6] to [9], wherein the thermoplastic resin (III) is a (meth)acrylic resin.
[11] The thermoplastic resin (III) is a (meth)acrylic resin containing 80 to 99.9% by mass of methacrylic acid ester units and 0.1 to 20% by mass of acrylic acid ester units, [6] to The thermoplastic resin composition according to any one of [10].
[12] A molded product comprising the thermoplastic resin composition according to any one of [6] to [11].
[13] A film made of the thermoplastic resin composition according to any one of [6] to [11].
[14] A molded product containing the multilayer structured polymer particles according to any one of [1] to [5].
 本発明によれば、マトリクス樹脂(ベース樹脂)中における長期熱安定性に優れると共に、分散性及び耐衝撃性に優れた多層構造重合体粒子を提供することができる。 According to the present invention, it is possible to provide a multi-layer structure polymer particle which is excellent in long-term thermal stability in a matrix resin (base resin) and is excellent in dispersibility and impact resistance.
本発明の実施の形態にかかる多層構造重合体粒子であって、内層が1つの層(第1層)からなり、外層が2つの層(第2層、第3層)からなる多層構造重合体粒子を示す図である。A multilayer structure polymer particle according to an embodiment of the present invention, wherein the inner layer is composed of one layer (first layer) and the outer layer is composed of two layers (second layer, third layer). It is a figure which shows a particle. 本発明の実施の形態にかかる多層構造重合体粒子であって、内層が2つの層(第1層、第2層)からなり、外層が1つの層(第3層)からなる多層構造重合体粒子を示す図である。A multilayer structure polymer particle according to an embodiment of the present invention, wherein the inner layer is composed of two layers (first layer and second layer) and the outer layer is composed of one layer (third layer). It is a figure which shows a particle. 本発明の実施の形態にかかる多層構造重合体粒子であって、内層が2つの層(第1層、第2層)からなり、外層が2つの層(第3層、第4層)からなる多層構造重合体粒子を示す図である。A multilayer structured polymer particle according to an embodiment of the present invention, wherein an inner layer is composed of two layers (first layer, second layer) and an outer layer is composed of two layers (third layer, fourth layer). It is a figure which shows a multilayer structure polymer particle. 本発明の実施の形態にかかる多層構造重合体粒子であって、内層が2つの層(第1層、第2層)からなり、外層が2つの層(第3層、第4層)からなる多層構造重合体粒子を示す図である。A multilayer structured polymer particle according to an embodiment of the present invention, wherein an inner layer is composed of two layers (first layer, second layer) and an outer layer is composed of two layers (third layer, fourth layer). It is a figure which shows a multilayer structure polymer particle.
 本発明の多層構造重合体粒子は、架橋ゴム(I)を含む内層と、前記内層とグラフト結合している熱可塑性樹脂(II)を含む外層を有する多層構造重合体粒子であって、前記内層の質量(V1)に対する前記外層の質量(V2)の比[V2/V1]が0.3~0.8である。[V2/V1]は、本発明の多層構造重合体粒子の内層及び外層の重合に用いる単量体混合物の量によって、調整することができる。本発明の多層構造重合体粒子の[V2/V1]は、0.35~0.78であることが好ましく、0.4~0.75であることがより好ましい。この範囲であることによって、多層構造重合体粒子の長期熱安定性と耐衝撃性、マトリクス中での多層構造重合体粒子の分散性が向上する。[V2/V1]が0.3未満である場合、マトリクス樹脂中における長期熱安定性が悪化する可能性がある。また、[V2/V1]が0.8超である場合、耐衝撃性が低下する可能性がある。マトリクス樹脂中における架橋ゴムの分解性や、多層構造重合体粒子のフィルムの製膜時等の滞留部での熱安定性の観点から、[V2/V1]は0.5以上であることが好ましく、0.55以上であることがより好ましく、0.60以上であることが更に好ましく、0.65以上であることがより更に好ましく、0.70以上であることが特に好ましい。 The multi-layered polymer particle of the present invention is a multi-layered polymer particle having an inner layer containing a crosslinked rubber (I) and an outer layer containing a thermoplastic resin (II) graft-bonded to the inner layer. The ratio [V2/V1] of the mass (V2) of the outer layer to the mass (V1) is 0.3 to 0.8. [V2/V1] can be adjusted by the amount of the monomer mixture used for the polymerization of the inner layer and the outer layer of the multilayer structured polymer particles of the present invention. [V2/V1] of the multilayer polymer particles of the present invention is preferably 0.35 to 0.78, and more preferably 0.4 to 0.75. Within this range, the long-term thermal stability and impact resistance of the multi-layered polymer particles and the dispersibility of the multi-layered polymer particles in the matrix are improved. When [V2/V1] is less than 0.3, long-term thermal stability in the matrix resin may deteriorate. If [V2/V1] is more than 0.8, the impact resistance may decrease. [V2/V1] is preferably 0.5 or more from the viewpoint of the decomposability of the crosslinked rubber in the matrix resin and the thermal stability in the retention part of the film of the multi-layered polymer particles during film formation. , 0.55 or more, more preferably 0.60 or more, still more preferably 0.65 or more, and particularly preferably 0.70 or more.
 また、本発明においては、外層のガラス転移温度(Tg)は80~120℃である。前記外層のガラス転移温度(Tg)がこの範囲であることによって、多層構造重合体の粒子を単離しやすくなり(以下、「取り出し性が良好である」ともいう。)、マトリクス中での多層構造重合体粒子の分散性が向上する。外層のガラス転移温度が80℃未満である場合、粉体乾燥工程でブロッキングが生じやすくなり、多層構造重合体粒子を単離しにくくなる可能性がある。また、溶融混錬時の分散性が低下し、フィッシュアイ等の欠点が発生しやすくなる可能性がある。更に、ガラス転移温度が120℃超である場合、凍結凝固法によって粉体を取り出す際に凝集体ができにくくなり、粉体として単離しづらくなる可能性がある。これらの観点から前記外層のガラス転移温度は、83℃~110℃であることが好ましく、85℃~105℃であることがより好ましい。
 なお、本発明の多層構造重合体粒子の外層が2以上のガラス転移温度を示す場合、最も高いガラス転移温度を前記外層のガラス転移温度とし、本発明におけるガラス転移温度は、実施例に記載の測定方法により測定した値を指す。
Further, in the present invention, the glass transition temperature (Tg) of the outer layer is 80 to 120°C. When the glass transition temperature (Tg) of the outer layer is within this range, the particles of the multilayer structure polymer can be easily isolated (hereinafter, also referred to as “excellent removability”), and the multilayer structure in the matrix. The dispersibility of polymer particles is improved. When the glass transition temperature of the outer layer is lower than 80° C., blocking is likely to occur in the powder drying step, and it may be difficult to isolate the multilayer structure polymer particles. In addition, the dispersibility at the time of melt-kneading may decrease, and defects such as fish eyes may easily occur. Further, when the glass transition temperature is higher than 120° C., it becomes difficult to form an aggregate when the powder is taken out by the freeze-coagulation method, and it may be difficult to isolate the powder. From these viewpoints, the glass transition temperature of the outer layer is preferably 83° C. to 110° C., more preferably 85° C. to 105° C.
When the outer layer of the multi-layered polymer particles of the present invention has a glass transition temperature of 2 or more, the highest glass transition temperature is taken as the glass transition temperature of the outer layer, and the glass transition temperature in the present invention is as described in the examples. Indicates the value measured by the measuring method.
 本発明の多層構造重合体粒子においては、架橋ゴム層が1層である場合は該架橋ゴム層を単独で、又は該架橋ゴム層とその内側の層をあわせて「内層」といい、該架橋ゴム層よりも外側の層を「外層」という。一方、架橋ゴム層を2層以上有する場合は、最も外側にある架橋ゴム層及び該架橋ゴム層よりも内側の層を合わせて「内層」といい、該架橋ゴム層よりも外側の層を「外層」という。本発明の多層構造重合体粒子の具体例を図1~4に例示する。
 図1は、架橋ゴム層を1つ有する多層構造重合体粒子であって、該架橋ゴム層が単独で内層を形成し、該架橋ゴム層よりも外側の架橋PMMA(ポリメチルメタクリレート)層及びPMMA層が外層を構成する多層構造重合体粒子を示す図である。また、図2は架橋ゴム層とその内側の架橋PMMA層とが内層を形成し、該架橋ゴム層よりも外側のPMMA層が外層を形成する多層構造重合体粒子を示す図である。
 更に、図3は架橋ゴム層とその内側の架橋PMMA層とが内層を形成し、該架橋ゴム層よりも外側の2つのPMMA層が外層を形成する多層構造重合体粒子を示す図であり、図4は、架橋ゴム層とその内側の架橋PMMA層とが内層を形成し、該架橋ゴム層よりも外側の架橋PMMA層とPMMA層とが外層を形成する多層構造重合体粒子を示す図である。
In the multi-layered polymer particles of the present invention, when the crosslinked rubber layer is one layer, the crosslinked rubber layer may be used alone or the crosslinked rubber layer and the inner layer may be referred to as an “inner layer”. The layer outside the rubber layer is called the “outer layer”. On the other hand, in the case of having two or more crosslinked rubber layers, the outermost crosslinked rubber layer and the layers inside the crosslinked rubber layer are collectively referred to as “inner layer”, and the layer outside the crosslinked rubber layer is referred to as “inner layer”. The outer layer”. Specific examples of the multilayer structured polymer particles of the present invention are illustrated in FIGS.
FIG. 1 is a multi-layered polymer particle having one crosslinked rubber layer, wherein the crosslinked rubber layer alone forms an inner layer, and a crosslinked PMMA (polymethylmethacrylate) layer and a PMMA outside the crosslinked rubber layer. It is a figure which shows the multilayer structure polymer particle which a layer comprises an outer layer. Further, FIG. 2 is a diagram showing a multilayer structure polymer particle in which a crosslinked rubber layer and a crosslinked PMMA layer inside thereof form an inner layer, and a PMMA layer outside the crosslinked rubber layer forms an outer layer.
Further, FIG. 3 is a diagram showing a multilayer structure polymer particle in which a crosslinked rubber layer and a crosslinked PMMA layer inside the crosslinked rubber layer form an inner layer, and two PMMA layers outside the crosslinked rubber layer form an outer layer, FIG. 4 is a diagram showing a multi-layered polymer particle in which a crosslinked rubber layer and a crosslinked PMMA layer inside the crosslinked rubber layer form an inner layer, and a crosslinked PMMA layer and a PMMA layer outside the crosslinked rubber layer form an outer layer. is there.
 架橋ゴム(I)としては、特に制限はなく、ブタジエンゴム、スチレン・ブタジエンゴム、イソプレンゴム、クロロプレンゴム、アクリロニトリル・ブタジエンゴム、ブチルゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエンゴム、ウレタンゴム、シリコーンゴム、フッ素ゴム、クロロスルホン化ポリエチレンゴム、アクリルゴム等が挙げられ、特にアクリルゴムが好ましく用いられる。 The crosslinked rubber (I) is not particularly limited, and butadiene rubber, styrene/butadiene rubber, isoprene rubber, chloroprene rubber, acrylonitrile/butadiene rubber, butyl rubber, ethylene/propylene rubber, ethylene/propylene/diene rubber, urethane rubber, silicone rubber , Fluororubber, chlorosulfonated polyethylene rubber, acrylic rubber and the like, and acrylic rubber is particularly preferably used.
 架橋ゴム(I)に用いられるアクリルゴムは、アクリル酸エステルに由来する構造単位(以下、アクリル酸エステル単位と称することがある)と多官能性単量体に由来する構造単位(多官能性単量体単位)を含むことが好ましい。 The acrylic rubber used for the crosslinked rubber (I) includes a structural unit derived from an acrylic acid ester (hereinafter sometimes referred to as an acrylic acid ester unit) and a structural unit derived from a polyfunctional monomer (a polyfunctional monofunctional unit). It is preferable to include a monomer unit).
 架橋ゴム(I)に用いられるアクリル酸エステルとしては、メチルアクリレート、エチルアクリレート、n-ブチルアクリレート、n―プロピルアクリレート、i―プロピルアクリレート、i-ブチルアクリレート、t-ブチルアクリレート、2-エチルヘキシルアクリレート、オクチルアクリレート、ラウリルアクリレート、ヒドロキシヘキシルアクリレート、イソボルニルアクリレート、テトラヒドロフルフリルアクリレート、フェニルアクリレート、シクロヘキシルアクリレート、ベンジルアクリレート等が挙げられ、2-エチルヘキシルアクリレート、n-ブチルアクリレートが好ましく、n-ブチルアクリレートがより好ましい。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。 Examples of the acrylic acid ester used for the crosslinked rubber (I) include methyl acrylate, ethyl acrylate, n-butyl acrylate, n-propyl acrylate, i-propyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, Examples include octyl acrylate, lauryl acrylate, hydroxyhexyl acrylate, isobornyl acrylate, tetrahydrofurfuryl acrylate, phenyl acrylate, cyclohexyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate and n-butyl acrylate are preferred, and n-butyl acrylate is preferred. More preferable. These may be used alone or in combination of two or more.
 架橋ゴム(I)におけるアクリル酸エステル単位の含有量は50~99.99質量%であることが好ましく、60~99質量%であることがより好ましく、70~98質量%であることが更に好ましい。この範囲内であることによって、良好な耐衝撃性を与えることができる。 The content of the acrylate unit in the crosslinked rubber (I) is preferably 50 to 99.99% by mass, more preferably 60 to 99% by mass, and further preferably 70 to 98% by mass. .. Within this range, good impact resistance can be given.
 架橋ゴム(I)に用いられる多官能性単量体としては、エチレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジビニルベンゼン、アリルメタクリレート、アリルアクリレート、アリルマレエート、アリルフマレート、ジアリルフマレート、トリアリルシアヌレート等が挙げられ、アリルアクリレート、アリルメタクリレートが好ましく、アリルメタクリレートがより好ましい。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。 Examples of the polyfunctional monomer used for the crosslinked rubber (I) include ethylene glycol di(meth)acrylate, 1,3-butylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, divinylbenzene and allyl methacrylate. , Allyl acrylate, allyl maleate, allyl fumarate, diallyl fumarate, triallyl cyanurate and the like, allyl acrylate and allyl methacrylate are preferable, and allyl methacrylate is more preferable. These may be used alone or in combination of two or more.
 架橋ゴム(I)における多官能性単量体単位の含有量は0.01~5質量%であることが好ましく、0.1~4.5質量%であることがより好ましく、1~4質量%であることが更に好ましい。この範囲内であることによって、所望のグラフト率を達成することができる。 The content of the polyfunctional monomer unit in the crosslinked rubber (I) is preferably 0.01 to 5% by mass, more preferably 0.1 to 4.5% by mass, and 1 to 4% by mass. % Is more preferable. Within this range, the desired graft ratio can be achieved.
 架橋ゴム(I)は、前記アクリル酸エステル又は多官能性単量体と共重合可能な他の不飽和単量体を更に含むことができ、例えば1,3-ブタジエン、1,2-ブタジエン、イソプレン、スチレン、α-メチルスチレン、ビニルトルエン、メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、n-プロピルメタクリレート、i-プロピルメタクリレート、i-ブチルメタクリレート、t-ブチルメタクリレート、2-エチルヘキシルメタクリレート、n-オクチルメタクリレート、ラウリルメタクリレート、ヒドロキシヘキシルメタクリレート、イソボルニルメタクリレート、テトラヒドロフルフリルメタクリレート、フェニルメタクリレート、シクロヘキシルメタクリレート、ベンジルメタクリレート、アクリロニトリル、メタクリロニトリル等が挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。 The crosslinked rubber (I) may further contain other unsaturated monomer copolymerizable with the above-mentioned acrylic acid ester or polyfunctional monomer, for example, 1,3-butadiene, 1,2-butadiene, Isoprene, styrene, α-methylstyrene, vinyltoluene, methylmethacrylate, ethylmethacrylate, n-butylmethacrylate, n-propylmethacrylate, i-propylmethacrylate, i-butylmethacrylate, t-butylmethacrylate, 2-ethylhexylmethacrylate, n- Examples include octyl methacrylate, lauryl methacrylate, hydroxyhexyl methacrylate, isobornyl methacrylate, tetrahydrofurfuryl methacrylate, phenyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, acrylonitrile and methacrylonitrile. These may be used alone or in combination of two or more.
 架橋ゴム(I)における、前記他の不飽和単量体単位の含有量は、0~49.99質量%であることが好ましく、0.99~39.99質量%であることがより好ましく、1.99~29.99質量%であることが更に好ましい。 The content of the other unsaturated monomer unit in the crosslinked rubber (I) is preferably 0 to 49.99% by mass, more preferably 0.99 to 39.99% by mass, More preferably, it is 1.99 to 29.99 mass %.
 本発明の多層構造重合体粒子における内層は、架橋ゴム(I)を含む層の単層であってもよいし、組成の異なる架橋ゴム(I)をそれぞれ含む2層以上であってもよいし、架橋ゴム(I)とは組成の異なる1又は2以上の層を含んでもよいが、多層構造重合体粒子の強度を向上させる観点から、架橋硬質体を含む最内層(例えば図2、3、及び4に示す架橋PMMA層)を含むことが好ましい。本発明の多層構造重合体粒子は、架橋硬質体、架橋ゴム(I)、熱可塑性樹脂(II)の3層構造であることが特に好ましい。 The inner layer in the multi-layer structure polymer particles of the present invention may be a single layer containing a crosslinked rubber (I), or may be two or more layers each containing a crosslinked rubber (I) having a different composition. , May have one or more layers different in composition from the crosslinked rubber (I), but from the viewpoint of improving the strength of the multilayer structure polymer particles, the innermost layer containing the crosslinked hard body (for example, FIGS. And a crosslinked PMMA layer shown in 4). It is particularly preferable that the multilayer structure polymer particles of the present invention have a three-layer structure of a crosslinked hard body, a crosslinked rubber (I) and a thermoplastic resin (II).
 架橋硬質体は、メタクリル酸エステルに由来する構造単位(以下、「メタクリル酸エステル単位」ともいう)を含むことが好ましい。具体的には、メタクリル酸エステルとしては、エステル部分が炭素数1~4のアルキル基であるメタクリル酸エステルが好ましく、メチルメタクリレートが特に好ましい。 The crosslinked hard body preferably contains a structural unit derived from a methacrylic acid ester (hereinafter, also referred to as a “methacrylic acid ester unit”). Specifically, as the methacrylic acid ester, a methacrylic acid ester whose ester portion is an alkyl group having 1 to 4 carbon atoms is preferable, and methyl methacrylate is particularly preferable.
 架橋硬質体中のメタクリル酸エステル単位の含有量は、40.0~99.0質量%であることが好ましく、50.0~98.0質量%であることがより好ましく、60.0~97.0質量%であることが更に好ましく、80~97.0質量%であることが特に好ましい。メタクリル酸エステル単位の含有量がこの範囲内であることにより、多層構造重合体粒子の強度を向上させることができる。 The content of the methacrylic acid ester unit in the crosslinked hard body is preferably 40.0 to 99.0% by mass, more preferably 50.0 to 98.0% by mass, and 60.0 to 97% by mass. It is more preferably 0.0% by mass, and particularly preferably 80 to 97.0% by mass. When the content of the methacrylic acid ester unit is within this range, the strength of the multi-layer structure polymer particles can be improved.
 また、架橋硬質体はアクリル酸エステルに由来する構造単位を含有することが好ましい。アクリル酸エステルとしては、例えばエステル部分が置換基を有していてもよい炭素数1~12の炭化水素基であるエステルが挙げられる。具体的には、架橋ゴム(I)に用いられるアクリル酸エステルとして挙げたものと同じものを用いることができ、エステル部分が置換基を有していてもよい炭素数1~8の炭化水素基であるアクリル酸エステルが好ましく、メチルアクリレート、2-エチルヘキシルアクリレート、n-ブチルアクリレートがより好ましく、メチルアクリレートが更に好ましい。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。 Further, it is preferable that the crosslinked hard body contains a structural unit derived from an acrylate ester. Examples of the acrylate ester include esters in which the ester portion is a hydrocarbon group having 1 to 12 carbon atoms which may have a substituent. Specifically, the same ones as those listed as the acrylic ester used for the crosslinked rubber (I) can be used, and the ester group has a hydrocarbon group having 1 to 8 carbon atoms which may have a substituent. Are preferred, methyl acrylate, 2-ethylhexyl acrylate and n-butyl acrylate are more preferred, and methyl acrylate is even more preferred. These may be used alone or in combination of two or more.
 架橋硬質体中のアクリル酸エステル単位の含有量は0.1~20.0質量%であることが好ましく、1.0~15.0質量%であることがより好ましく、3.0~10.0質量%であることが更に好ましい。アクリル酸エステル単位の含有量がこの範囲内であることにより、多層構造重合体粒子の耐衝撃性を向上させることができる。 The content of the acrylate unit in the crosslinked hard body is preferably 0.1 to 20.0% by mass, more preferably 1.0 to 15.0% by mass, and 3.0 to 10. It is more preferably 0% by mass. When the content of the acrylate unit is within this range, the impact resistance of the multi-layer structure polymer particles can be improved.
 また、架橋硬質体は多官能単量体に由来する構造単位を含有することが好ましい。架橋硬質体に用いられる多官能性単量体としては、架橋ゴム(I)に用いられる多官能性単量体として挙げたものと同じものを用いることができ、アリルアクリレート、アリルメタクリレートが好ましく、アリルメタクリレートがより好ましい。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。 Further, it is preferable that the crosslinked hard body contains a structural unit derived from a polyfunctional monomer. As the polyfunctional monomer used for the crosslinked rigid body, the same ones as those listed as the polyfunctional monomer used for the crosslinked rubber (I) can be used, and allyl acrylate and allyl methacrylate are preferable, Allyl methacrylate is more preferred. These may be used alone or in combination of two or more.
 架橋硬質体中の多官能性単量体単位の含有量は、0.01~3.0質量%であることが好ましく、0.1~2.0質量%であることがより好ましい。多官能性単量体単位の含有量がこの範囲内であることにより、所望の硬さに調整しやすい。 The content of the polyfunctional monomer unit in the crosslinked hard body is preferably 0.01 to 3.0% by mass, more preferably 0.1 to 2.0% by mass. When the content of the polyfunctional monomer unit is within this range, it is easy to adjust the hardness to a desired level.
 本発明の多層構造重合体粒子に用いられる内部の架橋物(内層)とグラフト結合している熱可塑性樹脂(II)としては、特に制限はなく、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、ポリウレタン、ポリテトラフルオロエチレン、ポリアミド、ポリカーボネート、ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアセタール、(メタ)アクリル系樹脂が挙げられ、特に(メタ)アクリル系樹脂が好ましく用いられる。 The thermoplastic resin (II) graft-bonded to the internal cross-linked product (inner layer) used in the multi-layered polymer particles of the present invention is not particularly limited, and may be polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyacetic acid. Examples thereof include vinyl, polyurethane, polytetrafluoroethylene, polyamide, polycarbonate, polyester, polyethylene terephthalate, polybutylene terephthalate, polyacetal, and (meth)acrylic resin, and (meth)acrylic resin is particularly preferably used.
 前記内層とグラフト結合している熱可塑性樹脂(II)として用いられる(メタ)アクリル系樹脂はメタクリル酸エステルに由来する構造単位(メタクリル酸エステル単位)を含むことが好ましい。
 前記内層とグラフト結合している熱可塑性樹脂(II)に用いられるメタクリル酸エステルとしてはアルキル基の炭素数が1~4であるメタクリル酸エステルが好ましく、メチルメタクリレートが特に好ましい。熱可塑性樹脂(II)に用いられるメタクリル酸エステルは1種を単独で用いてもよいし、2種以上を併用してもよい。
The (meth)acrylic resin used as the thermoplastic resin (II) that is graft-bonded to the inner layer preferably contains a structural unit derived from a methacrylic acid ester (methacrylic acid ester unit).
The methacrylic acid ester used in the thermoplastic resin (II) graft-bonded to the inner layer is preferably a methacrylic acid ester having an alkyl group with 1 to 4 carbon atoms, and particularly preferably methyl methacrylate. The methacrylic acid ester used in the thermoplastic resin (II) may be used alone or in combination of two or more.
 前記内層とグラフト結合している熱可塑性樹脂(II)におけるメタクリル酸エステル単位の含有量は40~100質量%であることが好ましく、50~99質量%であることがより好ましく、60~98質量%であることが更に好ましい。この範囲内であることによって、多層構造重合体粒子の強度を適切に保つことができる。 The content of the methacrylic acid ester unit in the thermoplastic resin (II) graft-bonded to the inner layer is preferably 40 to 100% by mass, more preferably 50 to 99% by mass, and 60 to 98% by mass. % Is more preferable. Within this range, the strength of the multilayer structured polymer particles can be appropriately maintained.
 前記内層とグラフト結合している熱可塑性樹脂(II)は、前記単量体と共重合可能な他の不飽和単量体に由来する構造単位を更に含むことができ、具体的には、メチルアクリレート、エチルアクリレート、n-ブチルアクリレート、n-プロピルアクリレート、i-プロピルアクリレート、i-ブチルアクリレート、t-ブチルアクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリレート、ラウリルアクリレート、ヒドロキシヘキシルアクリレート、イソボルニルアクリレート、テトラヒドロフルフリルアクリレート、フェニルアクリレート、シクロヘキシルアクリレート、ベンジルアクリレートに由来する構造単位を含むことができるが、メチルアクリレートに由来する構造単位が好ましい。
 熱可塑性樹脂(II)に用いられる他の不飽和単量体は1種を単独で用いてもよいし、2種以上を併用してもよい。
The thermoplastic resin (II) which is graft-bonded to the inner layer can further include a structural unit derived from another unsaturated monomer copolymerizable with the monomer, and specifically, methyl Acrylate, ethyl acrylate, n-butyl acrylate, n-propyl acrylate, i-propyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, lauryl acrylate, hydroxyhexyl acrylate, isobornyl Structural units derived from acrylate, tetrahydrofurfuryl acrylate, phenyl acrylate, cyclohexyl acrylate, benzyl acrylate can be included, but structural units derived from methyl acrylate are preferred.
As the other unsaturated monomer used in the thermoplastic resin (II), one type may be used alone, or two or more types may be used in combination.
 前記内層とグラフト結合している熱可塑性樹脂(II)における前記不飽和単量体単位の含有量は0~60質量%であることが好ましく、1~50質量%であることがより好ましく、2~40質量%であることが更に好ましい。 The content of the unsaturated monomer unit in the thermoplastic resin (II) graft-bonded to the inner layer is preferably 0 to 60% by mass, more preferably 1 to 50% by mass. It is more preferably from about 40% by mass.
 本発明の多層構造重合体粒子の製造方法は特に制限されないが、粒子径の制御のしやすさ等から乳化重合法により製造することが好ましく、具体的には、例えば架橋硬質体、架橋ゴム(I)、熱可塑性樹脂(II)の順で積層された3層構造の多層構造重合体粒子の場合、架橋硬質体を形成する重合反応工程(S1)、架橋ゴム(I)を含む層を形成する重合反応工程(S2)、熱可塑性樹脂(II)を含む層を形成する重合反応工程(S3)を、この積層順序で行うことによって製造することができる。以下、前記3層構造の多層構造重合体粒子を乳化重合法で製造する場合を例に説明する。 The method for producing the multi-layered polymer particles of the present invention is not particularly limited, but it is preferably produced by an emulsion polymerization method because of the ease of controlling the particle diameter, and specifically, for example, a crosslinked hard body and a crosslinked rubber ( In the case of a multilayer structure polymer particle having a three-layer structure in which I) and a thermoplastic resin (II) are laminated in this order, a polymerization reaction step (S1) for forming a crosslinked hard body, and a layer containing a crosslinked rubber (I) are formed. The polymerization reaction step (S2) and the polymerization reaction step (S3) for forming the layer containing the thermoplastic resin (II) can be carried out in this stacking order. Hereinafter, the case of producing the multi-layered polymer particles having the three-layered structure by an emulsion polymerization method will be described as an example.
[重合反応工程(S1)]
 重合反応工程(S1)では、架橋硬質体の組成に対応した単量体混合物を公知の方法により共重合することができ、具体的には、乳化剤、pH調整剤、重合開始剤、単量体混合物、連鎖移動剤等を水に混合し、加熱することによって、重合反応を行い、架橋硬質体のエマルジョンを得ることができる。
[Polymerization reaction step (S1)]
In the polymerization reaction step (S1), a monomer mixture corresponding to the composition of the crosslinked hard body can be copolymerized by a known method, and specifically, an emulsifier, a pH adjuster, a polymerization initiator and a monomer. By mixing the mixture, the chain transfer agent and the like with water and heating the mixture, a polymerization reaction is carried out and an emulsion of a crosslinked hard body can be obtained.
[重合反応工程(S2)]
 前記重合反応工程(S1)を行った後、更に架橋ゴム(I)の組成に対応した単量体混合物、重合開始剤、連鎖移動剤等を前記エマルジョンに加えることで、内側の第1層として架橋硬質体、第2層として架橋ゴム(I)を含む層を得ることができる。なお、(S1)及び(S2)はそれぞれ複数回行っても良い。
[Polymerization reaction step (S2)]
After performing the polymerization reaction step (S1), a monomer mixture corresponding to the composition of the crosslinked rubber (I), a polymerization initiator, a chain transfer agent and the like are further added to the emulsion to form an inner first layer. A layer containing a crosslinked hard body and a crosslinked rubber (I) can be obtained as the second layer. Note that each of (S1) and (S2) may be performed a plurality of times.
[重合反応工程(S3)]
 前記重合反応工程(S2)を行った後、熱可塑性樹脂(II)の組成に対応する単量体混合物、重合開始剤、連鎖移動剤をエマルジョンに加え(共)重合させることによって、本発明の多層構造重合体粒子を得ることができる。
[Polymerization reaction step (S3)]
After carrying out the polymerization reaction step (S2), a monomer mixture corresponding to the composition of the thermoplastic resin (II), a polymerization initiator, and a chain transfer agent are added (co)polymerized to give an emulsion of the present invention. Multilayered polymer particles can be obtained.
 前記重合反応工程(S1)~(S3)に用いる乳化剤としては、乳化重合に用いられる乳化剤であれば特に制限されないが、アニオン系乳化剤、ノニオン系乳化剤、及びノニオン・アニオン系乳化剤等を用いることができる。これら乳化剤は、1種又は2種以上用いることができる。
 アニオン系乳化剤としては、ジオクチルスルホコハク酸ナトリウム、及びジラウリルスルホコハク酸ナトリウム等のジアルキルスルホコハク酸塩;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;及び、ドデシル硫酸ナトリウム等のアルキル硫酸塩等が挙げられる。
 ノニオン系乳化剤としては、ポリオキシエチレンアルキルエーテル、及びポリオキシエチレンノニルフェニルエーテル等が挙げられる。
 ノニオン・アニオン系乳化剤としては、ポリオキシエチレンノニルフェニルエーテル硫酸ナトリウム等のポリオキシエチレンノニルフェニルエーテル硫酸塩;ポリオキシエチレンアルキルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルエーテル硫酸塩;ポリオキシエチレントリデシルエーテル酢酸ナトリウム等のアルキルエーテルカルボン酸塩等が挙げられる。
The emulsifier used in the polymerization reaction steps (S1) to (S3) is not particularly limited as long as it is an emulsifier used in emulsion polymerization, but anionic emulsifiers, nonionic emulsifiers, nonionic/anionic emulsifiers and the like are used. it can. These emulsifiers can be used alone or in combination of two or more.
Examples of the anionic emulsifier include dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate and sodium dilauryl sulfosuccinate; alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate; and alkyl sulfates such as sodium dodecyl sulfate. ..
Examples of nonionic emulsifiers include polyoxyethylene alkyl ethers and polyoxyethylene nonylphenyl ethers.
Nonionic/anionic emulsifiers include polyoxyethylene nonylphenyl ether sulfate such as sodium polyoxyethylene nonylphenyl ether sulfate; polyoxyethylene alkyl ether sulfate such as sodium polyoxyethylene alkyl ether sulfate; polyoxyethylene tridecyl ether. Examples thereof include alkyl ether carboxylates such as sodium acetate.
 前記重合反応工程(S1)~(S3)に用いる重合開始剤としては、反応性ラジカルを発生するものであれば特に限定されず、例えばtert-ヘキシルパーオキシイソプロピルモノカーボネート、tert-ヘキシルパーオキシ2-エチルヘキサノエート、1,1,3,3-テトラメチルブチルパーオキシ2-エチルヘキサノエート、tert-ブチルパーオキシピバレート、tert-ヘキシルパーオキシピバレート、tert-ブチルパーオキシネオデカノエ-ト、tert-ヘキシルパーオキシネオデカノエ-ト、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1,1-ビス(tert-ヘキシルパーオキシ)シクロヘキサン、ベンゾイルパーオキシド、3,5,5-トリメチルヘキサノイルパーオキシド、ラウロイルパーオキシド、2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、過硫酸カリウム等が挙げられる。これらのうち、過硫酸カリウムが好ましい。 The polymerization initiator used in the polymerization reaction steps (S1) to (S3) is not particularly limited as long as it generates a reactive radical, and examples thereof include tert-hexylperoxyisopropyl monocarbonate and tert-hexylperoxy 2 -Ethylhexanoate, 1,1,3,3-tetramethylbutylperoxy 2-ethylhexanoate, tert-butylperoxypivalate, tert-hexylperoxypivalate, tert-butylperoxy neodecanoe -To, tert-hexylperoxy neodecanoate, 1,1,3,3-tetramethylbutylperoxy neodecanoate, 1,1-bis(tert-hexylperoxy)cyclohexane, benzoyl peroxide, 3,5,5-Trimethylhexanoyl peroxide, lauroyl peroxide, 2,2'-azobis(2-methylpropionitrile), 2,2'-azobis(2-methylbutyronitrile), dimethyl 2,2 Examples thereof include'-azobis(2-methylpropionate) and potassium persulfate. Of these, potassium persulfate is preferred.
 重合開始剤の量は、重合反応工程(S1)~(S3)のそれぞれの単量体混合物100質量部に対して、それぞれ0.001~0.5質量部であることが好ましく、0.01~0.4質量部であることがより好ましく、0.05~0.3質量部であることが更に好ましい。 The amount of the polymerization initiator is preferably 0.001 to 0.5 parts by mass with respect to 100 parts by mass of each monomer mixture in the polymerization reaction steps (S1) to (S3), and 0.01 It is more preferably from 0.4 to 0.4 parts by mass, further preferably from 0.05 to 0.3 parts by mass.
 前記重合反応工程(S1)~(S3)に用いる連鎖移動剤としては、例えばn-オクチルメルカプタン、n-ドデシルメルカプタン、tert-ドデシルメルカプタン、1,4-ブタンジチオール、1,6-ヘキサンジチオール、エチレングリコールビスチオプロピオネート、ブタンジオールビスチオグリコレート、ブタンジオールビスチオプロピオネート、ヘキサンジオールビスチオグリコレート、ヘキサンジオールビスチオプロピオネート、トリメチロールプロパントリス-(β-チオプロピオネート)、ペンタエリスリトールテトラキスチオプロピオネート等が挙げられる。これらのうちn-オクチルメルカプタン、n-ドデシルメルカプタンが好ましく、n-オクチルメルカプタンがより好ましい。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。 Examples of the chain transfer agent used in the polymerization reaction steps (S1) to (S3) include n-octyl mercaptan, n-dodecyl mercaptan, tert-dodecyl mercaptan, 1,4-butanedithiol, 1,6-hexanedithiol, ethylene. Glycol bisthiopropionate, butanediol bisthioglycolate, butanediol bisthiopropionate, hexanediol bisthioglycolate, hexanediol bisthiopropionate, trimethylolpropane tris-(β-thiopropionate) , Pentaerythritol tetrakisthiopropionate and the like. Of these, n-octyl mercaptan and n-dodecyl mercaptan are preferable, and n-octyl mercaptan is more preferable. These may be used alone or in combination of two or more.
 乳化重合法により得られた多層構造重合体粒子を含有するエマルジョンからの多層構造重合体粒子の取り出し、精製は、公知の方法によって行うことができ、例えば凍結凝固や、水洗により行うことができ、その結果、本発明の多層構造重合体粒子を得ることができる。 Removal of the multi-layered polymer particles from the emulsion containing the multi-layered polymer particles obtained by the emulsion polymerization method, purification can be performed by a known method, for example, freeze-coagulation, it can be performed by washing with water, As a result, the multi-layer structure polymer particles of the present invention can be obtained.
 本発明の多層構造重合体粒子は、多層構造重合体粒子の内層の質量をV1、外層の質量をV2としたときの[V2/V1]が0.3~0.8であることに加えて、グラフト率が25~90質量%であることが好ましいが、そのために、重合反応工程(S3)における連鎖移動剤の使用量は当該工程で用いる単量体混合物100質量部に対して、好ましくは0.01~0.2質量部であり、より好ましくは0.02~0.0.18質量部であり、更に好ましくは0.03~0.17質量部であり、特に好ましくは0.05~0.15質量部である。
 また、連鎖移動剤の使用量は、重合反応工程(S3)において使用する重合開始剤100質量部に対して、好ましくは1~199質量部であり、より好ましくは5~190質量部、更に好ましくは10~150質量部である。
In addition to the fact that the multi-layered polymer particles of the present invention have a [V2/V1] of 0.3 to 0.8, where V1 is the mass of the inner layer and V2 is the mass of the outer layer of the multi-layered polymer particles, The graft ratio is preferably 25 to 90% by mass. Therefore, the amount of the chain transfer agent used in the polymerization reaction step (S3) is preferably 100 parts by mass of the monomer mixture used in the step. It is 0.01 to 0.2 parts by mass, more preferably 0.02 to 0.0.18 parts by mass, still more preferably 0.03 to 0.17 parts by mass, and particularly preferably 0.05. To 0.15 parts by mass.
The amount of chain transfer agent used is preferably 1 to 199 parts by mass, more preferably 5 to 190 parts by mass, and even more preferably 100 parts by mass of the polymerization initiator used in the polymerization reaction step (S3). Is 10 to 150 parts by mass.
 本発明の多層構造重合体粒子のグラフト率は、多層構造重合体粒子の内層(例えば架橋ゴム(I)及び架橋樹脂)と前記内層とグラフト結合している熱可塑性樹脂(II)について、前記内層の質量に対する前記内層とグラフト結合している熱可塑性樹脂(II)の質量の比率である。係るグラフト率(質量%)は、実施例に記載の方法で求めることができる。 The graft ratio of the multi-layered polymer particles of the present invention is the same as the inner layer of the multi-layered polymer particles (for example, crosslinked rubber (I) and crosslinked resin) and the thermoplastic resin (II) graft-bonded to the inner layer. Is the ratio of the mass of the thermoplastic resin (II) graft-bonded to the inner layer to the mass of. The graft ratio (mass %) can be obtained by the method described in the examples.
 本発明の多層構造重合体粒子のグラフト率は、好ましくは25~90質量%であり、より好ましくは28~80質量%であり、更に好ましくは30~70質量%であり、より更に好ましくは40~60質量%である。グラフト率がこの範囲内であることにより、マトリックス樹脂(ベース樹脂)中における長期熱安定性と耐衝撃性が向上する。
 グラフト率は、多官能性単量体の配合量、連鎖移動剤の配合量等によって調整することができる。
The graft ratio of the multi-layered polymer particles of the present invention is preferably 25 to 90% by mass, more preferably 28 to 80% by mass, still more preferably 30 to 70% by mass, still more preferably 40. It is up to 60% by mass. When the graft ratio is within this range, long-term thermal stability and impact resistance in the matrix resin (base resin) are improved.
The graft ratio can be adjusted by the blending amount of the polyfunctional monomer, the blending amount of the chain transfer agent, and the like.
 本発明の多層構造重合体粒子をエマルジョンでレーザー回析・散乱法により測定したメジアン径Deは80~500nmであることが好ましく、150~400nmであることがより好ましく、200~300nmであることが更に好ましい。多層構造重合体粒子のメジアン径Deが前記範囲内であることによって、必要な耐衝撃性が得られる。ここでメジアン径Deとは、多層構造重合体粒子の多層粒子構造の外径の平均値であり、具体的には実施例において記載の方法により求めることができる。 The median diameter De of the multi-layered polymer particles of the present invention measured with an emulsion by a laser diffraction/scattering method is preferably 80 to 500 nm, more preferably 150 to 400 nm, and more preferably 200 to 300 nm. More preferable. When the median diameter De of the multi-layered polymer particles is within the above range, required impact resistance can be obtained. Here, the median diameter De is the average value of the outer diameters of the multi-layered particle structure of the multi-layered polymer particles, and it can be specifically obtained by the method described in the examples.
 前記内層とグラフト結合している熱可塑性樹脂(II)の数平均分子量は、20,000~50,000であることが好ましく、21,000~45,000であることがより好ましく、22,000~40,000であることが更に好ましい。前記内層とグラフト結合している熱可塑性樹脂(II)の数平均分子量が前記範囲内であることによって、長期熱安定性に優れた多層構造重合体粒子とすることができる。 The number average molecular weight of the thermoplastic resin (II) graft-bonded to the inner layer is preferably 20,000 to 50,000, more preferably 21,000 to 45,000, and 22,000. More preferably, it is -40,000. When the number average molecular weight of the thermoplastic resin (II) graft-bonded to the inner layer is within the above range, it is possible to obtain multi-layered polymer particles having excellent long-term thermal stability.
 前記内層とグラフト結合している熱可塑性樹脂(II)の数平均分子量を、多層構造重合体粒子から直接に測定することは困難である。係る数平均分子量は、グラフト結合していない熱可塑性樹脂(II)の数平均分子量から推定することができる。前記グラフト結合していない熱可塑性樹脂(II)の数平均分子量は、標準ポリスチレンの分子量を基準としてゲルパーミエーションクロマトグラフィ(GPC)により求めることができ、具体的には実施例において記載の方法により求めることができる。 It is difficult to directly measure the number average molecular weight of the thermoplastic resin (II) graft-bonded to the inner layer from the multilayer structure polymer particles. The number average molecular weight can be estimated from the number average molecular weight of the thermoplastic resin (II) not graft-bonded. The number average molecular weight of the non-grafted thermoplastic resin (II) can be determined by gel permeation chromatography (GPC) based on the molecular weight of standard polystyrene, and specifically by the method described in Examples. be able to.
 本発明の多層構造重合体粒子は、架橋ゴム(I)を含む内層と、前記内層とグラフト結合している熱可塑性樹脂(II)を含む外層とを有する多層構造重合体粒子である。グラフト結合している前記熱可塑性樹脂(II)は、本発明の多層構造重合体粒子の内層の架橋ゴム(I)と結合することが好ましい。 The multilayer structure polymer particles of the present invention are multilayer structure polymer particles having an inner layer containing a crosslinked rubber (I) and an outer layer containing a thermoplastic resin (II) graft-bonded to the inner layer. The graft-bonded thermoplastic resin (II) is preferably bonded to the crosslinked rubber (I) in the inner layer of the multilayer structured polymer particle of the present invention.
 本発明は、前記多層構造重合体粒子とマトリクス樹脂(ベース樹脂)となりえる熱可塑性樹脂(III)とを含有する熱可塑性樹脂組成物を含む。
 熱可塑性樹脂(III)としては、熱可塑性樹脂(II)として挙げたものと同じものを用いることができるが、非晶性樹脂であることが好ましい。熱可塑性樹脂(III)に用いられる非晶性樹脂としてはポリ塩化ビニル、ポリスチレン、アクリロニトリル・ブタジエン・スチレン、ポリカーボネート、(メタ)アクリル系樹脂、熱可塑性エラストマー等が挙げられ、特に(メタ)アクリル系樹脂が好ましく用いられる。
The present invention includes a thermoplastic resin composition containing the multilayer structure polymer particles and a thermoplastic resin (III) which can be a matrix resin (base resin).
As the thermoplastic resin (III), the same as those listed as the thermoplastic resin (II) can be used, but an amorphous resin is preferable. Examples of the amorphous resin used for the thermoplastic resin (III) include polyvinyl chloride, polystyrene, acrylonitrile/butadiene/styrene, polycarbonate, (meth)acrylic resin, and thermoplastic elastomer, and particularly (meth)acrylic resin. Resin is preferably used.
 熱可塑性樹脂(III)は、メタクリル酸エステル単位を80~99.9質量%とアクリル酸エステル単位を0.1~20質量%とを含む(メタ)アクリル系樹脂であることが好ましく、メタクリル酸エステル単位を85~99.8質量%とアクリル酸エステル単位を0.2~15質量%とを含む(メタ)アクリル系樹脂であることがより好ましく、メタクリル酸エステル単位を90~99.7質量%とアクリル酸エステル単位を0.3~10質量%とを含む(メタ)アクリル系樹脂であることが更に好ましい。 The thermoplastic resin (III) is preferably a (meth)acrylic resin containing 80 to 99.9% by mass of a methacrylic acid ester unit and 0.1 to 20% by mass of an acrylic acid ester unit. A (meth)acrylic resin containing 85 to 99.8 mass% of ester units and 0.2 to 15 mass% of acrylic acid ester units is more preferable, and 90 to 99.7 mass% of methacrylic acid ester units. %, and a (meth)acrylic resin containing 0.3 to 10% by mass of an acrylic acid ester unit is more preferable.
 本発明の多層構造重合体粒子は、前記の熱可塑性樹脂組成物において、熱可塑性樹脂(III)中に混合されていてもよい。また、運搬等の観点から、本発明の熱可塑性樹脂組成物は例えばペレットの形状等に成形されていてもよい。 The multilayer-structured polymer particles of the present invention may be mixed in the thermoplastic resin (III) in the thermoplastic resin composition. Further, from the viewpoint of transportation and the like, the thermoplastic resin composition of the present invention may be molded into, for example, a pellet shape.
 本発明の熱可塑性樹脂組成物は、多層構造重合体粒子を5~95質量%含有することが好ましく、7~80質量%含有することがより好ましく、10~60質量%含有することが更に好ましく、15~50質量%含有することが特に好ましい。また、本発明の熱可塑性樹脂組成物は、熱可塑性樹脂(III)を5~95質量%含有することが好ましく、20~93質量%含有することがより好ましく、40~90質量%含有することが更に好ましく、50~85質量%含有することが特に好ましい。 The thermoplastic resin composition of the present invention preferably contains the multilayer structure polymer particles in an amount of 5 to 95% by mass, more preferably 7 to 80% by mass, and further preferably 10 to 60% by mass. It is particularly preferable that the content is 15 to 50% by mass. Further, the thermoplastic resin composition of the present invention preferably contains the thermoplastic resin (III) in an amount of 5 to 95% by mass, more preferably 20 to 93% by mass, and further preferably 40 to 90% by mass. Is more preferable, and it is particularly preferable that the content is 50 to 85% by mass.
 熱可塑性樹脂(III)のガラス転移温度(Tg)は、好ましくは50~170℃であり、より好ましくは70~150℃であり、更に好ましくは90~140℃である。熱可塑性樹脂(III)のガラス転移温度(Tg)が前記範囲内であることにより、安定に製膜することができる。
 なお、熱可塑性樹脂(III)のガラス転移温度は、実施例に記載の測定方法により測定した値を指す。
The glass transition temperature (Tg) of the thermoplastic resin (III) is preferably 50 to 170°C, more preferably 70 to 150°C, and further preferably 90 to 140°C. When the glass transition temperature (Tg) of the thermoplastic resin (III) is within the above range, stable film formation can be achieved.
The glass transition temperature of the thermoplastic resin (III) refers to the value measured by the measuring method described in the examples.
 熱可塑性樹脂(III)の数平均分子量は、10,000~500,000であることが好ましく、20,000~450,000であることがより好ましく、25,000~400,000であることが更に好ましく、25,000~100,000であることが特に好ましい。熱可塑性樹脂(III)の数平均分子量が前記範囲内であることによって、本発明の熱可塑性樹脂組成物をフィルム等の成形体とした際、適切な強度を発現することができる。 The number average molecular weight of the thermoplastic resin (III) is preferably 10,000 to 500,000, more preferably 20,000 to 450,000, and 25,000 to 400,000. More preferably, it is particularly preferably 25,000 to 100,000. When the number average molecular weight of the thermoplastic resin (III) is within the above range, appropriate strength can be exhibited when the thermoplastic resin composition of the present invention is formed into a molded article such as a film.
 本発明の熱可塑性樹脂組成物は、必要に応じて、また、本発明の効果を損なわない範囲で、紫外線吸収剤、酸化防止剤、着色剤、蛍光発色剤、分散剤、熱安定剤、光安定剤、赤外線吸収剤、帯電防止剤、加工助剤、滑剤、離型剤等の添加剤を含んでいてもよい。着色剤は顔料及び染料のいずれでもよい。また溶剤を含んでいてもよい。
 本発明の熱可塑性樹脂組成物中の添加剤の合計の含有量は前記熱可塑性樹脂(III)と前記多層構造重合体の合計を100質量部としたときに15質量部以下であることが好ましく、10質量部以下であることがより好ましい。紫外線吸収剤の含有量は、前記熱可塑性樹脂(III)と前記多層構造重合体の合計を100質量部としたときに0.1~4.0質量部であることが好ましく、0.2質量部以上であることがより好ましく、0.4質量部以上であることが更に好ましい。また、紫外線吸収剤の含有量は、コストを抑制する観点からは、3.8質量部以下であることがより好ましく、3.5質量部以下であることが更に好ましい。また、酸化防止剤の含有量は、前記熱可塑性樹脂(III)と前記多層構造重合体の合計を100質量部としたときに0.005~10質量部であることが好ましく、0.008~1質量部であることがより好ましく、0.01~0.2質量部であることが更に好ましい。
The thermoplastic resin composition of the present invention, if necessary, and within a range that does not impair the effects of the present invention, an ultraviolet absorber, an antioxidant, a colorant, a fluorescent colorant, a dispersant, a heat stabilizer, and a light stabilizer. It may contain additives such as a stabilizer, an infrared absorber, an antistatic agent, a processing aid, a lubricant and a release agent. The colorant may be either a pigment or a dye. It may also contain a solvent.
The total content of the additives in the thermoplastic resin composition of the present invention is preferably 15 parts by mass or less when the total amount of the thermoplastic resin (III) and the multilayer structure polymer is 100 parts by mass. It is more preferably 10 parts by mass or less. The content of the ultraviolet absorber is preferably 0.1 to 4.0 parts by mass when the total amount of the thermoplastic resin (III) and the multilayer structure polymer is 100 parts by mass, and 0.2 parts by mass is preferable. It is more preferably at least 0.4 part by mass, further preferably at least 0.4 part by mass. Further, the content of the ultraviolet absorber is more preferably 3.8 parts by mass or less, and further preferably 3.5 parts by mass or less, from the viewpoint of suppressing the cost. Further, the content of the antioxidant is preferably 0.005 to 10 parts by mass, and 0.008 to 10 parts by mass, when the total amount of the thermoplastic resin (III) and the multilayer structure polymer is 100 parts by mass. The amount is more preferably 1 part by mass, further preferably 0.01 to 0.2 part by mass.
 本発明は、本発明の多層構造重合体粒子を含む成形体、本発明の熱可塑性樹脂組成物からなる成形体及びフィルムを含む。本発明のフィルムは、例えば偏光子保護フィルム、位相差フィルム、位相差板、光拡散板、導光板等のような光学部材に好適に用いられる。 The present invention includes a molded product containing the multilayer structure polymer particles of the present invention, a molded product made of the thermoplastic resin composition of the present invention, and a film. The film of the present invention is suitably used for optical members such as a polarizer protective film, a retardation film, a retardation plate, a light diffusion plate, a light guide plate and the like.
 以下、実施例及び比較例によって本発明を具体的に説明するが、本発明は下記実施例に限定されない。
 実施例及び比較例において、物性値の測定等は以下の方法によって実施した。また、実施例及び比較例に使用した単量体等の略称は以下の通りである。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
In Examples and Comparative Examples, the measurement of physical properties and the like were carried out by the following methods. Further, the abbreviations of the monomers and the like used in Examples and Comparative Examples are as follows.
  MMA :メチルメタクリレート
  ALMA:アリルメタクリレート
  MA  :メチルアクリレート
  BA  :n-ブチルアクリレート
  St  :スチレン
  BzA :ベンジルアクリレート
  n-OM:n-オクチルメルカプタン
MMA: methyl methacrylate ALMA: allyl methacrylate MA: methyl acrylate BA: n-butyl acrylate St: styrene BzA: benzyl acrylate n-OM: n-octyl mercaptan
[数平均分子量]
 GPC(ゲル・パーミエイション・クロマトグラフィー)を用いて測定した値に基づき、ポリスチレン換算分子量として求めた。測定条件は以下のとおりであった。
装置:東ソー株式会社製GPC装置「HCL-8320」
分離カラム:東ソー株式会社製「TTSKguradcolumn SuperHZ-H」、「TSKgel HZM-M」及び「TSKgel SuperHZ4000」を直列に連結
溶離剤:THF(テトラヒドロフラン)
溶離剤流量:0.35ml/分
カラム温度:40℃
検出方法:示差屈折率(RI)法
[Number average molecular weight]
Based on the value measured using GPC (gel permeation chromatography), the molecular weight in terms of polystyrene was obtained. The measurement conditions were as follows.
Device: GPC device “HCL-8320” manufactured by Tosoh Corporation
Separation column: Tosoh Corporation “TTSKguradcolumn SuperHZ-H”, “TSKgel HZM-M” and “TSKgel SuperHZ4000” are connected in series Eluent: THF (tetrahydrofuran)
Eluent flow rate: 0.35 ml/min Column temperature: 40°C
Detection method: differential refractive index (RI) method
[ガラス転移温度(Tg)]
 JIS K7121:2012に準拠して測定した。測定に示差走査熱量測定(DSC)装置(島津製作所製;DSC-50)を用いた。多層構造重合体粒子の粉末5mgを精秤し、これを試料とした。DSC曲線の測定に際して、試料を230℃まで一度昇温し、次いで-90℃まで冷却し、その後、-90℃から230℃までを10℃/分で昇温させる条件を用いた。2回目の昇温時に測定されるDSC曲線から中間点ガラス転移温度を求めた。係る中間点ガラス転移温度をガラス転移温度(Tg)とした。
[Glass transition temperature (Tg)]
It was measured according to JIS K7121:2012. A differential scanning calorimeter (DSC) device (manufactured by Shimadzu Corporation; DSC-50) was used for the measurement. A powder of 5 mg of polymer particles having a multilayer structure was precisely weighed and used as a sample. In measuring the DSC curve, the sample was heated to 230° C. once, cooled to −90° C., and then heated from −90° C. to 230° C. at 10° C./min. The midpoint glass transition temperature was determined from the DSC curve measured during the second heating. The midpoint glass transition temperature was defined as the glass transition temperature (Tg).
[グラフト率]
 多層構造重合体粒子の粉末2gを精秤し、これをサンプルの質量(W)とした。精秤した粉末をアセトン118gに25℃で24時間浸漬した。その後、粉末及びアセトンを撹拌することで、多層構造重合体粒子をアセトン中に均一に分散させた。以上により、調合液を作製した。
 その後、4本のステンレス製遠沈管に調合液を各30g分取した。遠沈管はあらかじめ秤量しておいた。高速冷却遠心機(日立製作所製:CR22GIII)にて、0℃、20,000rpmで90分間遠沈管を遠心した。それぞれの遠沈管から上澄み液をデカンテーションにより除去した。その後、各遠沈管に新たにアセトン30gを入れた。沈殿物及びアセトンを撹拌した。再び遠沈管を遠心した後、上澄み液を除去した。撹拌、遠心分離及び上澄み除去を計4回繰り返した。以上により、アセトン可溶成分を十分に除去した。
 その後、沈殿物を、遠沈管ごと真空乾燥にて乾燥させた。乾燥後に沈殿物を秤量することで、アセトン不溶成分の質量を求めた。下記の式に基づいて多層構造重合体粒子のグラフト率を算出した。
(グラフト率)={〔(アセトン不溶成分の質量)-(内部の架橋物(内層)の質量)〕/(内層の質量)}×100
 ここで、内部の架橋物(内層)の質量は、内層の架橋ゴム(I)層、又は、内層の架橋ゴム(I)及びその内側の層(例えば架橋樹脂)を合わせた質量であり、多層構造重合体粒子の内部の架橋物(内層)を合成するために用いた成分の合計質量である。
[Graft rate]
2 g of the powder of the multi-layered polymer particles was precisely weighed and used as the sample mass (W). The precisely weighed powder was immersed in 118 g of acetone at 25° C. for 24 hours. Then, the powder and acetone were stirred to uniformly disperse the multilayer structure polymer particles in acetone. The preparation liquid was prepared as described above.
Then, 30 g of the prepared liquid was dispensed into each of four stainless centrifuge tubes. The centrifuge tube was weighed in advance. The centrifuge tube was centrifuged for 90 minutes at 0° C. and 20,000 rpm in a high-speed cooling centrifuge (CR22GIII manufactured by Hitachi, Ltd.). The supernatant was removed from each centrifuge tube by decantation. Then, 30 g of acetone was newly added to each centrifuge tube. The precipitate and acetone were stirred. After centrifuging the centrifuge tube again, the supernatant was removed. Stirring, centrifugation and supernatant removal were repeated 4 times in total. As described above, the acetone-soluble component was sufficiently removed.
Then, the precipitate was dried by vacuum drying together with the centrifuge tube. The weight of the acetone-insoluble component was determined by weighing the precipitate after drying. The graft ratio of the multi-layer structure polymer particles was calculated based on the following formula.
(Graft ratio)={[(mass of acetone insoluble component)-(mass of internal crosslinked product (inner layer))]/(mass of inner layer)}×100
Here, the mass of the inner crosslinked product (inner layer) is the mass of the inner layer crosslinked rubber (I) layer, or the inner layer crosslinked rubber (I) and its inner layer (for example, crosslinked resin). It is the total mass of the components used to synthesize the crosslinked product (inner layer) inside the structural polymer particles.
[熱可塑性樹脂(II)の数平均分子量]
 前記グラフト率の測定において得られたアセトン可溶成分を十分に乾燥させ、10mg精秤したのちにTHF(テトラヒドロフラン)5mLを加えて3時間撹拌し、多層構造重合体粒子のアセトン可溶成分をTHF中に均一に分散させた。以上により作製したサンプルを前記条件のGPCにて測定し、熱可塑性樹脂(II)の数平均分子量を測定した。
[The number average molecular weight of the thermoplastic resin (II)]
The acetone-soluble component obtained in the measurement of the graft ratio was sufficiently dried, 10 mg was precisely weighed, 5 mL of THF (tetrahydrofuran) was added, and the mixture was stirred for 3 hours to remove the acetone-soluble component of the multilayer polymer particles from THF. Dispersed evenly throughout. The sample produced as described above was measured by GPC under the above conditions, and the number average molecular weight of the thermoplastic resin (II) was measured.
[メジアン径De]
 乳化重合によって得られた多層構造重合体粒子を含むエマルジョンを水で200倍に希釈した。係る水分散液をレーザー回析/散乱式粒子径分布測定装置(堀場製作所製:LA-950V2)にて分析し、分析値よりメジアン径Deを算出した。この際、多層構造重合体粒子及び水の屈折率をそれぞれ、1.4900及び1.3333とした。
[Median diameter De]
The emulsion containing multi-layered polymer particles obtained by emulsion polymerization was diluted 200 times with water. The aqueous dispersion was analyzed by a laser diffraction/scattering particle size distribution measuring device (LA-950V2, manufactured by Horiba Ltd.), and the median diameter De was calculated from the analysis value. At this time, the refractive indices of the multi-layered polymer particles and water were set to 1.4900 and 1.3333, respectively.
[多層構造重合体粒子の取出し性]
 多層構造重合体粒子を含むエマルジョンを-20℃の冷凍庫で凍結凝固し、80℃のイオン交換水にて水洗した後、小型遠心脱水機(SANYO社製:SYK-3800)にて脱水した。次いで、80℃の温風乾燥機にて乾燥させ、その凝固物の状態を下記判断基準にて判定した。
<判定基準>
 A(良い):粉体状態で多層構造重合体粒子を取り出せる。
 B(普通):ブロック状態で多層構造重合体粒子を取り出せる。
 C(悪い):粘土状で多層構造重合体粒子を取り出しにくい、もしくは乾燥後凝固物同士がブロッキングする。
[Removability of multi-layered polymer particles]
The emulsion containing multi-layered polymer particles was freeze-coagulated in a freezer at −20° C., washed with ion-exchanged water at 80° C., and then dehydrated with a small centrifugal dehydrator (SANK: SYK-3800). Then, it was dried with a warm air dryer at 80° C., and the state of the coagulated product was judged according to the following judgment criteria.
<Judgment criteria>
A (good): The multilayer structure polymer particles can be taken out in the powder state.
B (normal): The multilayer structure polymer particles can be taken out in a block state.
C (bad): It is difficult to take out the multi-layered polymer particles in the form of clay, or the solidified materials block each other after drying.
[熱安定性]
 熱可塑性樹脂組成物を1g秤量し、筒状としたテフロン(登録商標)シートに包み、更にSUS製の耐圧管へ封入した。これを270℃、24時間加熱した。前記加熱試験前後のサンプルをミクロトームにて切り出したのち、リンタングステン酸溶液で15分間染色し、熱可塑性樹脂中の多層構造重合体粒子の分散状態をTEM観察(JEOL製:JSM-7600F、倍率:×10000)にて確認した。加熱前後の分散状態を下記基準にて判定した。なお、分散状態の確認は、多層構造重合体粒子を100個見て、下記判定基準にて判定した。
<判定基準>
 A(良い):連なっている多層構造重合体粒子の個数が10%未満
 B(普通):連なっている多層構造重合体粒子の個数が10%以上20%未満
 C(悪い):連なっている多層構造重合体粒子の個数が20%以上
[Thermal stability]
1 g of the thermoplastic resin composition was weighed, wrapped in a tubular Teflon (registered trademark) sheet, and further enclosed in a pressure-resistant tube made of SUS. This was heated at 270° C. for 24 hours. The samples before and after the heating test were cut out with a microtome and then dyed with a phosphotungstic acid solution for 15 minutes, and the dispersion state of the multilayer structure polymer particles in the thermoplastic resin was observed by TEM (JEOL: JSM-7600F, magnification: ×10000). The dispersion state before and after heating was judged according to the following criteria. The dispersed state was confirmed by observing 100 multi-layer structure polymer particles and observing the following criteria.
<Judgment criteria>
A (good): the number of continuous multi-layered polymer particles is less than 10% B (normal): the number of continuous multi-layered polymer particles is 10% or more and less than 20% C (bad): continuous multi-layer The number of structural polymer particles is 20% or more
[分散性]
 実施例又は比較例で得られたアクリル系樹脂組成物のペレットについて、キャピログラフ(株式会社東洋精機製作所製 型式1D)を用い、押出温度270℃、直径1mm、長さ40mmのキャピラリーにより、ピストンスピード10mm/分で押出したストランドを、付属のメルトテンション測定器により引取り速度6m/分で引取り、ストランドを3m採取した後、ブツの数を数えた。
<判定基準>
 A(良い):ストランド3m中のブツの個数が20個未満
 B(普通):ストランド3m中のブツの個数が20個以上50個未満
 C(悪い):ストランド3m中のブツの個数が50個以上
[Dispersibility]
For the pellets of the acrylic resin composition obtained in Examples or Comparative Examples, using a capillograph (manufactured by Toyo Seiki Seisakusho Co., Ltd. Model 1D), an extrusion temperature of 270° C., a diameter of 1 mm, and a length of 40 mm were used, and the piston speed was 10 mm. The strand extruded at a speed of 6 m/min was taken at a take-up speed of 6 m/min by an attached melt tension measuring device, 3 m of the strand was sampled, and then the number of spots was counted.
<Judgment criteria>
A (good): The number of butts in the strand 3m is less than 20 B (ordinary): The number of butts in the strand 3m is 20 or more and less than 50 C (bad): The number of butts in the strand 3m is 50 that's all
[耐衝撃性]
 作製したフィルムをインパクトテスター(安田精機製作所製:No.181フィルムインパクトテスター)に設置し、フィルムを破壊したときのエネルギーを測定し、そのエネルギーをフィルム厚みで割った数値から耐衝撃性を評価した。
指標の基準は以下とした。
 A(良い):フィルムを破壊したときのエネルギーが1.0J/mm以上
 B(悪い):フィルムを破壊したときのエネルギーが1.0J/mm未満
[Impact resistance]
The produced film was placed on an impact tester (Yasuda Seiki Seisakusho: No. 181 film impact tester), the energy at the time of breaking the film was measured, and the impact resistance was evaluated from the value obtained by dividing the energy by the film thickness. ..
The criteria for the indicators are as follows.
A (good): energy when the film is broken is 1.0 J/mm or more B (bad): energy when the film is broken is less than 1.0 J/mm
[製造例1:多層構造重合体粒子の製造]
 撹拌機、温度計、窒素ガス導入管、単量体導入管及び還流冷却管を備えた反応器を用意した。係る反応容器内に、イオン交換水733質量部、ポリオキシエチレン(EO=3)トリデシルエーテル酢酸ナトリウム0.09質量部、及び炭酸ナトリウム0.5質量部を仕込んだ。反応器内を窒素ガスで十分に置換した。次いで内温を80℃にした。
 別途、表1に示す第1層の組成からなる単量体混合物175質量部を調整した。係る単量体混合物に乳化剤としてポリオキシエチレン(EO=3)トリデシルエーテル酢酸ナトリウム1.23質量部を溶解することで、第1層原料を調整した。反応容器内に過硫酸カリウム0.17質量部を投入し、続いて、前記第1層原料を、45分かけて連続的に滴下した。滴下終了後、更に40分間重合反応を行った。以上により第1層の重合体成分を含むエマルジョンを得た。
 次いで同反応器内に、過硫酸カリウム0.225質量部を投入した。別途、表1に示す第2層の組成からなる単量体混合物225質量部を調整した。係る単量体混合物に乳化剤としてポリオキシエチレン(EO=3)トリデシルエーテル酢酸ナトリウム0.59質量部を溶解することで、第2層原料を調整した。前記工程で得られたエマルジョンを攪拌し、第2層原料を60分間かけて連続的に滴下した。滴下終了後、更に90分間重合反応を行い、架橋ゴム(I)を含むエマルジョンを得た。
 次に、同反応器内に、過硫酸カリウム0.2質量部を投入した。別途、表1に示す第3層の組成からなる単量体混合物200質量部を調整した。架橋ゴム(I)を含むエマルジョンを攪拌し、第3層の組成からなる単量体混合物を50分間かけて連続的に滴下した。滴下終了後、更に80分間重合反応を行った。
 以上の操作により、架橋ゴムに熱可塑性樹脂がグラフト重合している多層構造重合体粒子を含むエマルジョンを得た。得られたエマルジョンを用いて、取出し性の評価を行った。係るエマルジョンを凍結することで、多層構造重合体粒子を凝固させた。次いで凝固物を水洗するとともに、乾燥することで多層構造重合体粒子の粉体を得た。
[Production Example 1: Production of multi-layer structure polymer particles]
A reactor equipped with a stirrer, a thermometer, a nitrogen gas introduction pipe, a monomer introduction pipe and a reflux cooling pipe was prepared. Into such a reaction vessel, 733 parts by mass of ion-exchanged water, 0.09 parts by mass of sodium polyoxyethylene (EO=3) tridecyl ether acetate, and 0.5 parts by mass of sodium carbonate were charged. The inside of the reactor was sufficiently replaced with nitrogen gas. Then, the internal temperature was set to 80°C.
Separately, 175 parts by mass of a monomer mixture having the composition of the first layer shown in Table 1 was prepared. The first layer raw material was prepared by dissolving 1.23 parts by mass of sodium polyoxyethylene (EO=3) tridecyl ether acetate as an emulsifier in the monomer mixture. 0.17 parts by mass of potassium persulfate was put into the reaction vessel, and then the first layer raw material was continuously added dropwise over 45 minutes. After the dropping was completed, the polymerization reaction was performed for 40 minutes. Thus, an emulsion containing the polymer component of the first layer was obtained.
Next, 0.225 parts by mass of potassium persulfate was put into the same reactor. Separately, 225 parts by mass of a monomer mixture having the composition of the second layer shown in Table 1 was prepared. The second layer raw material was prepared by dissolving 0.59 parts by mass of sodium polyoxyethylene (EO=3) tridecyl ether acetate as an emulsifier in the monomer mixture. The emulsion obtained in the above step was stirred, and the second layer raw material was continuously added dropwise over 60 minutes. After the dropping was completed, the polymerization reaction was further performed for 90 minutes to obtain an emulsion containing the crosslinked rubber (I).
Next, 0.2 part by mass of potassium persulfate was put into the reactor. Separately, 200 parts by mass of a monomer mixture having the composition of the third layer shown in Table 1 was prepared. The emulsion containing the crosslinked rubber (I) was stirred, and the monomer mixture having the composition of the third layer was continuously added dropwise over 50 minutes. After the dropping was completed, the polymerization reaction was further performed for 80 minutes.
By the above operation, an emulsion containing multi-layered polymer particles in which the thermoplastic resin was graft-polymerized on the crosslinked rubber was obtained. Using the obtained emulsion, the removability was evaluated. The multilayer structure polymer particles were solidified by freezing the emulsion. Next, the coagulated product was washed with water and dried to obtain a powder of multi-layer structure polymer particles.
[製造例2:多層構造重合体粒子の製造]
 1層目及び2層目まで製造例1と同様の方法で架橋ゴム重合体を含むエマルジョンを得た。
 次に、同反応器内に、過硫酸カリウム0.289質量部を投入した。別途、表1に示す第3層の組成からなる単量体混合物289質量部を調整した。架橋ゴム(I)を含むエマルジョンを撹拌し、第3層の組成からなる単量体混合物を、75分間かけて連続的に滴下した。滴下終了後、更に115分間重合反応を行った。
 以上の操作により、架橋ゴムに熱可塑性樹脂がグラフト重合している多層構造重合体粒子を含むエマルジョンを得た。得られたエマルジョンを用いて、取出し性の評価を行った。係るエマルジョンを凍結することで、多層構造重合体粒子を凝固させた。次いで凝固物を水洗するとともに、乾燥することで多層構造重合体粒子の粉体を得た。
[Production Example 2: Production of multi-layered polymer particles]
An emulsion containing a crosslinked rubber polymer was obtained in the same manner as in Production Example 1 up to the first layer and the second layer.
Next, 0.289 parts by mass of potassium persulfate was charged into the reactor. Separately, 289 parts by mass of a monomer mixture having the composition of the third layer shown in Table 1 was prepared. The emulsion containing the crosslinked rubber (I) was stirred, and the monomer mixture having the composition of the third layer was continuously added dropwise over 75 minutes. After the dropping was completed, the polymerization reaction was further performed for 115 minutes.
By the above operation, an emulsion containing multi-layered polymer particles in which the thermoplastic resin was graft-polymerized on the crosslinked rubber was obtained. Using the obtained emulsion, the removability was evaluated. The multi-layered polymer particles were solidified by freezing the emulsion. Next, the coagulated product was washed with water and dried to obtain a powder of multi-layer structure polymer particles.
[製造例3:多層構造重合体粒子の製造]
 表1に示す第1層及び第2層並びに第3層のそれぞれの組成を変更したこと以外は、製造例2同様の方法で、多層構造重合体粒子の粉体を得た。
[Production Example 3: Production of multi-layer structure polymer particles]
Powders of multi-layered polymer particles were obtained in the same manner as in Production Example 2 except that the compositions of the first layer, the second layer and the third layer shown in Table 1 were changed.
[製造例4:多層構造重合体粒子の製造]
 表1に示す第1層及び第2層並びに第3層のそれぞれの組成を変更したこと以外は、製造例2同様の方法で、多層構造重合体粒子の粉体を得た。
[Production Example 4: Production of multi-layered polymer particles]
Powders of multi-layered polymer particles were obtained in the same manner as in Production Example 2 except that the compositions of the first layer, the second layer and the third layer shown in Table 1 were changed.
[製造例5:多層構造重合体粒子の製造]
 表1に示す第1層及び第2層並びに第3層のそれぞれの組成を変更したこと以外は、製造例2同様の方法で、多層構造重合体粒子の粉体を得た。
[Production Example 5: Production of multi-layered polymer particles]
Powders of multi-layered polymer particles were obtained in the same manner as in Production Example 2 except that the compositions of the first layer, the second layer and the third layer shown in Table 1 were changed.
[製造例6:多層構造重合体粒子の製造]
 1層目及び2層目まで製造例1と同様の方法で架橋ゴム重合体を含むエマルジョンを得た。
 次に、同反応器内に、過硫酸カリウム0.1質量部を投入した。別途、表1に示す第3層の組成から成なる単量体混合物100質量部を調整した。架橋ゴム(I)を含むエマルジョンを撹拌し、第3層の組成からなる単量体混合物を、25分間かけて連続的に滴下した。滴下終了後、更に45分間重合反応を行った。
 以上の操作により、架橋ゴムに熱可塑性樹脂がグラフト重合している多層構造重合体粒子を含むエマルジョンを得た。得られたエマルジョンを用いて、取出し性の評価を行った。係るエマルジョンを凍結することで、多層構造重合体粒子を凝固させた。次いで凝固物を水洗するとともに、乾燥することで多層構造重合体粒子の粉体を得た。
[Production Example 6: Production of multi-layered polymer particles]
An emulsion containing a crosslinked rubber polymer was obtained in the same manner as in Production Example 1 up to the first layer and the second layer.
Next, 0.1 part by mass of potassium persulfate was charged into the reactor. Separately, 100 parts by mass of a monomer mixture having the composition of the third layer shown in Table 1 was prepared. The emulsion containing the crosslinked rubber (I) was stirred, and the monomer mixture having the composition of the third layer was continuously added dropwise over 25 minutes. After the dropping was completed, the polymerization reaction was further performed for 45 minutes.
By the above operation, an emulsion containing multi-layered polymer particles in which the thermoplastic resin was graft-polymerized on the crosslinked rubber was obtained. Using the obtained emulsion, the removability was evaluated. The multi-layered polymer particles were solidified by freezing the emulsion. Next, the coagulated product was washed with water and dried to obtain a powder of multi-layer structure polymer particles.
[製造例7:多層構造重合体粒子の製造]
 撹拌機、温度計、窒素ガス導入管、単量体導入管及び還流冷却管を備えた反応器を用意した。係る反応容器内に、イオン交換水1,050質量部、ポリオキシエチレン(EO=3)トリデシルエーテル酢酸ナトリウム0.13質量部、及び炭酸ナトリウム0.7質量部を仕込んだ。反応器内を窒素ガスで十分に置換した。次いで内温を80℃にした。
 別途、表1に示す第1層の組成からなる単量体混合物70質量部を調整した。係る単量体混合物に乳化剤としてポリオキシエチレン(EO=3)トリデシルエーテル酢酸ナトリウム0.84質量部を溶解することで、第1層原料を調整した。反応容器内に過硫酸カリウム0.25質量部を投入し、続いて、前記第1層原料を、60分かけて連続的に滴下した。滴下終了後、更に30分間重合反応を行った。以上により第1層の重合体成分を含むエマルジョンを得た。
 次いで同反応器内に、過硫酸カリウム0.32質量部を投入した。別途、表1に示す第2層の組成からなる単量体混合物315質量部を調整した。係る単量体混合物に乳化剤としてポリオキシエチレン(EO=3)トリデシルエーテル酢酸ナトリウム0.82質量部を溶解することで、第2層原料を調整した。前記工程で得られたエマルジョンを攪拌し、第2層原料を60分間かけて連続的に滴下した。滴下終了後、更に90分間重合反応を行い、架橋ゴム(I)を含むエマルジョンを得た。
 次に、同反応器内に、過硫酸カリウム0.14質量部を投入した。別途、表1に示す第3層の組成からなる単量体混合物315質量部を調整した。架橋ゴム(I)を含むエマルジョンを攪拌し、第3層の組成からなる単量体混合物を30分間かけて連続的に滴下した。滴下終了後、更に60分間重合反応を行った。
 以上の操作により、架橋ゴムに熱可塑性樹脂がグラフト重合している多層構造重合体粒子を含むエマルジョンを得た。得られたエマルジョンを用いて、取出し性の評価を行った。係るエマルジョンを凍結することで、多層構造重合体粒子を凝固させた。次いで凝固物を水洗するとともに、乾燥することで多層構造重合体粒子の粉体を得た。
[Production Example 7: Production of multi-layer structure polymer particles]
A reactor equipped with a stirrer, a thermometer, a nitrogen gas introduction pipe, a monomer introduction pipe and a reflux cooling pipe was prepared. In such a reaction vessel, 1,050 parts by mass of ion-exchanged water, 0.13 parts by mass of sodium polyoxyethylene (EO=3) tridecyl ether acetate, and 0.7 parts by mass of sodium carbonate were charged. The inside of the reactor was sufficiently replaced with nitrogen gas. Then, the internal temperature was set to 80°C.
Separately, 70 parts by mass of a monomer mixture having the composition of the first layer shown in Table 1 was prepared. The first layer raw material was prepared by dissolving 0.84 parts by mass of sodium polyoxyethylene (EO=3) tridecyl ether acetate as an emulsifier in the monomer mixture. 0.25 parts by mass of potassium persulfate was put into the reaction vessel, and then the first layer raw material was continuously added dropwise over 60 minutes. After the dropping was completed, the polymerization reaction was performed for another 30 minutes. Thus, an emulsion containing the polymer component of the first layer was obtained.
Next, 0.32 parts by mass of potassium persulfate was charged into the reactor. Separately, 315 parts by mass of a monomer mixture having the composition of the second layer shown in Table 1 was prepared. The second layer raw material was prepared by dissolving 0.82 parts by mass of sodium polyoxyethylene (EO=3) tridecyl ether acetate as an emulsifier in the monomer mixture. The emulsion obtained in the above step was stirred, and the second layer raw material was continuously added dropwise over 60 minutes. After the dropping was completed, the polymerization reaction was further performed for 90 minutes to obtain an emulsion containing the crosslinked rubber (I).
Next, 0.14 parts by mass of potassium persulfate was charged into the reactor. Separately, 315 parts by mass of a monomer mixture having the composition of the third layer shown in Table 1 was prepared. The emulsion containing the crosslinked rubber (I) was stirred, and the monomer mixture having the composition of the third layer was continuously added dropwise over 30 minutes. After the dropping was completed, the polymerization reaction was further performed for 60 minutes.
By the above operation, an emulsion containing multi-layered polymer particles in which the thermoplastic resin was graft-polymerized on the crosslinked rubber was obtained. Using the obtained emulsion, the removability was evaluated. The multi-layered polymer particles were solidified by freezing the emulsion. Next, the coagulated product was washed with water and dried to obtain a powder of multi-layer structure polymer particles.
[製造例8:多層構造重合体粒子の製造]
 表1に示す第1層及び第2層並びに第3層のそれぞれの組成を変更したこと以外は、製造例7同様の方法で、多層構造重合体粒子の粉体を得た。
[Production Example 8: Production of multi-layered polymer particles]
A powder of multilayer-structured polymer particles was obtained in the same manner as in Production Example 7, except that the compositions of the first layer, the second layer, and the third layer shown in Table 1 were changed.
[製造例9:多層構造重合体粒子の製造]
 1層目及び2層目まで製造例1と同様の方法で架橋ゴム重合体を含むエマルジョンを得た。
 次に、同反応器内に、過硫酸カリウム0.5質量部を投入した。別途、表1に示す第3層の組成から成なる単量体混合物500質量部を調整した。架橋ゴム(I)を含むエマルジョンを撹拌し、第3層の組成からなる単量体混合物を、125分間かけて連続的に滴下した。滴下終了後、更に60分間重合反応を行った。
 以上の操作により、架橋ゴムに熱可塑性樹脂がグラフト重合している多層構造重合体粒子を含むエマルジョンを得た。得られたエマルジョンを用いて、取出し性の評価を行った。係るエマルジョンを凍結することで、多層構造重合体粒子を凝固させた。次いで凝固物を水洗するとともに、乾燥することで多層構造重合体粒子の粉体を得た。
[Production Example 9: Production of multi-layered polymer particles]
An emulsion containing a crosslinked rubber polymer was obtained in the same manner as in Production Example 1 up to the first layer and the second layer.
Next, 0.5 part by mass of potassium persulfate was charged into the reactor. Separately, 500 parts by mass of a monomer mixture having the composition of the third layer shown in Table 1 was prepared. The emulsion containing the crosslinked rubber (I) was stirred, and the monomer mixture having the composition of the third layer was continuously added dropwise over 125 minutes. After the dropping was completed, the polymerization reaction was further performed for 60 minutes.
By the above operation, an emulsion containing multi-layered polymer particles in which the thermoplastic resin was graft-polymerized on the crosslinked rubber was obtained. Using the obtained emulsion, the removability was evaluated. The multi-layered polymer particles were solidified by freezing the emulsion. Next, the coagulated product was washed with water and dried to obtain a powder of multi-layer structure polymer particles.
[製造例10:多層構造重合体粒子の製造]
 1層目及び2層目まで実施例1と同様の方法で架橋ゴム重合体を含むエマルジョンを得た。
 次に、同反応器内に、過硫酸カリウム0.289質量部を投入した。別途、表1に示す第3層の組成から成なる単量体混合物289質量部を調整した。架橋ゴム(I)を含むエマルジョンを撹拌し、第3層の組成からなる単量体混合物を、75分間かけて連続的に滴下した。滴下終了後、更に115分間重合反応を行った。
 以上の操作により、架橋ゴムに熱可塑性樹脂がグラフト重合している多層構造重合体粒子を含むエマルジョンを得た。得られたエマルジョンを用いて、取出し性の評価を行った。係るエマルジョンを凍結することで、多層構造重合体粒子を凝固させた。次いで凝固物を水洗するとともに、乾燥することで多層構造重合体粒子の粉体を得た。
[Production Example 10: Production of multi-layered polymer particles]
An emulsion containing a crosslinked rubber polymer was obtained in the same manner as in Example 1 up to the first layer and the second layer.
Next, 0.289 parts by mass of potassium persulfate was charged into the reactor. Separately, 289 parts by mass of a monomer mixture having the composition of the third layer shown in Table 1 was prepared. The emulsion containing the crosslinked rubber (I) was stirred, and the monomer mixture having the composition of the third layer was continuously added dropwise over 75 minutes. After the dropping was completed, the polymerization reaction was further performed for 115 minutes.
By the above operation, an emulsion containing multi-layered polymer particles in which the thermoplastic resin was graft-polymerized on the crosslinked rubber was obtained. Using the obtained emulsion, the removability was evaluated. The multi-layered polymer particles were solidified by freezing the emulsion. Next, the coagulated product was washed with water and dried to obtain a powder of multi-layer structure polymer particles.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[製造例11:(メタ)アクリル系樹脂の製造]
 メタクリル酸メチル99.3質量部及びアクリル酸メチル0.7質量部に重合開始剤〔2,2’-アゾビス(2-メチルプロピオニトリル)、水素引抜能:1%、1時間半減期温度:83℃〕0.008質量部、及び連鎖移動剤(n-オクチルメルカプタン)0.26質量部を加え、溶解させて3000kgの原料液を得た。
 イオン交換水100質量部、硫酸ナトリウム0.03質量部、及び懸濁分散剤0.45質量部を混ぜ合わせて6000kgの混合液を得た。耐圧重合槽に、当該混合液と前記原料液(合計9000kg)を仕込み、窒素雰囲気下で撹拌しながら、温度を70℃にして重合反応を開始させた。重合反応開始後、3時間経過時に、温度を90℃に上げ、撹拌を引き続き1時間行うことによりビーズ状共重合体が分散した液を得た。なお、重合槽壁面あるいは撹拌翼にポリマーが若干付着したが、泡立ちもなく、円滑に重合反応が進んだ。
 得られた共重合体分散液を適量のイオン交換水で洗浄し、バケット式遠心分離機により、ビーズ状共重合体を取り出し、80℃の熱風乾燥機で12時間乾燥し、ビーズ状の(メタ)アクリル樹脂を得た。
 得られた(メタ)アクリル樹脂は、メタクリル酸メチル単位の含有量が99.3質量%、アクリル酸メチル単位の含有量が0.7質量%、数平均分子量が46,000、ガラス転移温度は120℃であった。
[Production Example 11: Production of (meth)acrylic resin]
Polymerization initiator [2,2'-azobis(2-methylpropionitrile)] in 99.3 parts by mass of methyl methacrylate and 0.7 parts by mass of methyl acrylate, hydrogen abstraction ability: 1%, 1 hour half-life temperature: 83° C.] 0.008 parts by mass and a chain transfer agent (n-octyl mercaptan) 0.26 parts by mass were added and dissolved to obtain 3000 kg of a raw material liquid.
100 parts by mass of ion-exchanged water, 0.03 part by mass of sodium sulfate, and 0.45 part by mass of a suspension dispersant were mixed to obtain a mixed solution of 6000 kg. The mixed liquid and the raw material liquid (total of 9000 kg) were charged into a pressure resistant polymerization tank, and the temperature was raised to 70° C. to start the polymerization reaction while stirring in a nitrogen atmosphere. After 3 hours had elapsed from the start of the polymerization reaction, the temperature was raised to 90° C. and stirring was continued for 1 hour to obtain a liquid in which the bead-like copolymer was dispersed. Although some polymer adhered to the wall of the polymerization tank or the stirring blade, the polymerization reaction proceeded smoothly without foaming.
The obtained copolymer dispersion was washed with an appropriate amount of ion-exchanged water, and the bead-shaped copolymer was taken out by a bucket centrifuge and dried in a hot air dryer at 80° C. for 12 hours to give a bead-shaped (meta ) An acrylic resin was obtained.
The obtained (meth)acrylic resin had a methyl methacrylate unit content of 99.3% by mass, a methyl acrylate unit content of 0.7% by mass, a number average molecular weight of 46,000, and a glass transition temperature of It was 120°C.
 表1中、V1-1は、多層構造重合体粒子の内層の架橋硬質体の含有量(質量部)、V1-2は多層構造重合体粒子の内層の架橋ゴム(I)の含有量(質量部)、V2は多層構造重合体粒子の外層の含有量(質量部)を表す。MMA、MA、ALMA、St、BzA、n-OMは、各層の重合体成分を合成するために用いた各単量体及び連鎖移動剤の各層における含有量(質量%)を表す。 In Table 1, V1-1 is the content (mass part) of the crosslinked hard body in the inner layer of the multilayer structure polymer particles, and V1-2 is the content (mass of the crosslinked rubber (I) of the inner layer of the multilayer structure polymer particles). Part) and V2 represent the content (parts by mass) of the outer layer of the multilayer structure polymer particles. MMA, MA, ALMA, St, BzA, and n-OM represent the content (% by mass) of each monomer and chain transfer agent used for synthesizing the polymer component of each layer in each layer.
[実施例1]
 熱可塑性樹脂(III)として製造例11の(メタ)アクリル系樹脂76質量部及び多層構造重合体粒子(製造例1)24質量部をラボプラストミルで250℃、3分間混練し(東洋精機製:Labo Plastomill 4C150)、更に粉砕機にて粉砕することで不定形な粒状の熱可塑性樹脂組成物を得た。また250℃で5分間、熱プレス成形することで厚さ100μmのフィルムを得た。得られた熱可塑性樹脂組成物とフィルムを用いて、熱安定性、分散性、耐衝撃性の評価を行った。評価結果を表2に示す。
[Example 1]
As the thermoplastic resin (III), 76 parts by mass of the (meth)acrylic resin of Production Example 11 and 24 parts by mass of the multilayer structure polymer particles (Production Example 1) were kneaded with a Labo Plastomill at 250° C. for 3 minutes (manufactured by Toyo Seiki Co., Ltd.). : Labo Plastomill 4C150) and further pulverized by a pulverizer to obtain an amorphous thermoplastic resin composition in granular form. A film having a thickness of 100 μm was obtained by hot press molding at 250° C. for 5 minutes. Using the obtained thermoplastic resin composition and film, thermal stability, dispersibility and impact resistance were evaluated. The evaluation results are shown in Table 2.
[実施例2~5、比較例1~5]
 用いる多層構造重合体粒子、及び熱可塑性樹脂(III)と多層構造重合体粒子の組成比を、表2に記載したとおりに変更した以外は、実施例1と同様にして不定形な粒状の熱可塑性樹脂組成物及び100μmのフィルムを得て、熱安定性、分散性、耐衝撃性の評価を行った。評価結果を表2に示す。
[Examples 2 to 5, Comparative Examples 1 to 5]
Amorphous granular heat particles were formed in the same manner as in Example 1 except that the multilayer structure polymer particles used and the composition ratio of the thermoplastic resin (III) to the multilayer structure polymer particles were changed as shown in Table 2. A plastic resin composition and a film having a thickness of 100 μm were obtained, and thermal stability, dispersibility, and impact resistance were evaluated. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[評価結果]
 実施例1~5では熱安定性、分散性、耐衝撃性いずれも良好な結果を示した。一方、[V2/V1]が0.25と低い多層構造重合体粒子を用いた比較例1は、熱安定性、分散性が不足する結果となり、[V2/V1]が0.82と高い多層構造重合体粒子を用いた比較例2は、耐衝撃性が不足する結果となった。また、比較例3は、[V2/V1]が0.25と低い多層構造重合体粒子を用いているため熱安定性が不足し、比較例4は、[V2/V1]が1.25と高い多層構造重合体粒子を用いているため耐衝撃性が不足する結果となった。また、外層のガラス転移温度が低い多層構造重合体粒子を用いた比較例5は取り出し性及び分散性が悪かった。

 
[Evaluation results]
In Examples 1 to 5, good results were obtained in terms of thermal stability, dispersibility, and impact resistance. On the other hand, Comparative Example 1 using the multi-layered polymer particles having a low [V2/V1] of 0.25 resulted in insufficient thermal stability and dispersibility, resulting in a high [V2/V1] of 0.82. Comparative Example 2 using the structural polymer particles resulted in insufficient impact resistance. Further, Comparative Example 3 uses multilayer structure polymer particles having a low [V2/V1] of 0.25, and thus has insufficient thermal stability, and Comparative Example 4 has a [V2/V1] of 1.25. Since high polymer particles having a multi-layer structure are used, the impact resistance is insufficient. Further, in Comparative Example 5 using the polymer particles having a multi-layer structure having a low glass transition temperature of the outer layer, the removability and dispersibility were poor.

Claims (14)

  1.  架橋ゴム(I)を含む内層と、前記内層とグラフト結合している熱可塑性樹脂(II)を含む外層とを有する多層構造重合体粒子であって、
     前記内層の質量(V1)に対する前記外層の質量(V2)の比[V2/V1]が0.3~0.8であり、
     前記外層のガラス転移温度が80~120℃である多層構造重合体粒子。
    A multilayer structure polymer particle having an inner layer containing a crosslinked rubber (I) and an outer layer containing a thermoplastic resin (II) graft-bonded to the inner layer,
    The ratio [V2/V1] of the mass (V2) of the outer layer to the mass (V1) of the inner layer is 0.3 to 0.8,
    Multilayer polymer particles having a glass transition temperature of 80 to 120° C. in the outer layer.
  2.  前記内層とグラフト結合している熱可塑性樹脂(II)について、前記内層の質量に対する前記熱可塑性樹脂(II)の質量の比率で表されるグラフト率が25~90質量%である、請求項1に記載の多層構造重合体粒子。 The thermoplastic resin (II) graft-bonded to the inner layer has a graft ratio represented by the ratio of the mass of the thermoplastic resin (II) to the mass of the inner layer of 25 to 90 mass %. The multi-layered polymer particles described in.
  3.  レーザー回析・散乱法により測定したメジアン径が80~500nmである、請求項1又は2に記載の多層構造重合体粒子。 The multilayer structure polymer particle according to claim 1 or 2, which has a median diameter of 80 to 500 nm measured by a laser diffraction/scattering method.
  4.  前記内層とグラフト結合している熱可塑性樹脂(II)の数平均分子量が20,000~50,000である、請求項1~3のいずれか1項に記載の多層構造重合体粒子。 The multilayer structure polymer particles according to any one of claims 1 to 3, wherein the thermoplastic resin (II) graft-bonded to the inner layer has a number average molecular weight of 20,000 to 50,000.
  5.  前記架橋ゴム(I)は、アクリル酸エステル単位50~99.99質量%と、多官能性単量体単位0.01~5質量%と、これらと共重合可能な不飽和単量体単位0~49.99質量%とを含み、
     前記内層とグラフト結合している熱可塑性樹脂(II)はメタクリル酸エステル単位40~100質量%と、これと共重合可能な他の不飽和単量体単位0~60質量%とを含む、請求項1~4のいずれか1項に記載の多層構造重合体粒子。
    The crosslinked rubber (I) contains 50 to 99.99% by mass of an acrylic acid ester unit, 0.01 to 5% by mass of a polyfunctional monomer unit, and an unsaturated monomer unit 0 copolymerizable therewith. Up to 49.99% by mass,
    The thermoplastic resin (II) graft-bonded to the inner layer contains 40 to 100% by mass of a methacrylic acid ester unit and 0 to 60% by mass of another unsaturated monomer unit copolymerizable therewith. Item 5. The multilayer structured polymer particle according to any one of items 1 to 4.
  6.  熱可塑性樹脂(III)5~95質量%と、請求項1~5のいずれか1項に記載の多層構造重合体粒子5~95質量%とを含有する熱可塑性樹脂組成物。 A thermoplastic resin composition containing 5 to 95% by mass of the thermoplastic resin (III) and 5 to 95% by mass of the multilayer structure polymer particles according to any one of claims 1 to 5.
  7.  前記熱可塑性樹脂(III)が非晶性樹脂である、請求項6に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 6, wherein the thermoplastic resin (III) is an amorphous resin.
  8.  前記熱可塑性樹脂(III)のガラス転移温度が50~170℃である、請求項6又は7に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 6 or 7, wherein the glass transition temperature of the thermoplastic resin (III) is 50 to 170°C.
  9.  前記熱可塑性樹脂(III)の数平均分子量が10,000~500,000である、請求項6~8のいずれか1項に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 6 to 8, wherein the thermoplastic resin (III) has a number average molecular weight of 10,000 to 500,000.
  10.  前記熱可塑性樹脂(III)が(メタ)アクリル系樹脂である、請求項6~9のいずれか1項に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 6 to 9, wherein the thermoplastic resin (III) is a (meth)acrylic resin.
  11.  前記熱可塑性樹脂(III)がメタクリル酸エステル単位80~99.9質量%とアクリル酸エステル単位0.1~20質量%とを含む(メタ)アクリル系樹脂である、請求項6~10のいずれか1項に記載の熱可塑性樹脂組成物。 Any of claims 6 to 10, wherein the thermoplastic resin (III) is a (meth)acrylic resin containing 80 to 99.9% by mass of a methacrylic acid ester unit and 0.1 to 20% by mass of an acrylic acid ester unit. 2. The thermoplastic resin composition according to item 1.
  12.  請求項6~11のいずれか1項に記載の熱可塑性樹脂組成物からなる成形体。 A molded body made of the thermoplastic resin composition according to any one of claims 6 to 11.
  13.  請求項6~11のいずれか1項に記載の熱可塑性樹脂組成物からなるフィルム。 A film made of the thermoplastic resin composition according to any one of claims 6 to 11.
  14.  請求項1~5のいずれか1項に記載の多層構造重合体粒子を含む成形体。

     
    A molded body containing the multilayer structured polymer particles according to any one of claims 1 to 5.

PCT/JP2019/051629 2018-12-28 2019-12-27 Multilayer-structured polymer particle, and thermoplastic resin composition, molded body, and film including same WO2020138501A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020562555A JP7342033B2 (en) 2018-12-28 2019-12-27 Multilayer structure polymer particles, thermoplastic resin compositions containing the same, molded bodies and films

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018247568 2018-12-28
JP2018-247568 2018-12-28
JP2019205044 2019-11-12
JP2019-205044 2019-11-12

Publications (1)

Publication Number Publication Date
WO2020138501A1 true WO2020138501A1 (en) 2020-07-02

Family

ID=71127913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051629 WO2020138501A1 (en) 2018-12-28 2019-12-27 Multilayer-structured polymer particle, and thermoplastic resin composition, molded body, and film including same

Country Status (2)

Country Link
JP (1) JP7342033B2 (en)
WO (1) WO2020138501A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7441743B2 (en) 2020-06-29 2024-03-01 株式会社クラレ thermoplastic resin film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855233A (en) * 1971-11-05 1973-08-03
JPH03199213A (en) * 1989-12-27 1991-08-30 Asahi Chem Ind Co Ltd Acrylic polymer of multi-layer structure
JP2005200502A (en) * 2004-01-14 2005-07-28 Mitsubishi Rayon Co Ltd Impact resistance improver and resin composition
JP2009084574A (en) * 2007-10-02 2009-04-23 Lg Chem Ltd Optical film and method for manufacturing the same
WO2016139927A1 (en) * 2015-03-02 2016-09-09 株式会社カネカ Acrylic resin composition, and molded product and film made from same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5394787B2 (en) 2009-03-24 2014-01-22 コニシ株式会社 Aqueous resin composition for imparting to fibrous material and method for producing the same
JP2011093258A (en) 2009-10-30 2011-05-12 Sumitomo Chemical Co Ltd Matting resin film
JP5501930B2 (en) 2009-10-30 2014-05-28 住友化学株式会社 Multilayer polymer
JP6048425B2 (en) 2014-02-13 2016-12-21 藤倉化成株式会社 Adhesive composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855233A (en) * 1971-11-05 1973-08-03
JPH03199213A (en) * 1989-12-27 1991-08-30 Asahi Chem Ind Co Ltd Acrylic polymer of multi-layer structure
JP2005200502A (en) * 2004-01-14 2005-07-28 Mitsubishi Rayon Co Ltd Impact resistance improver and resin composition
JP2009084574A (en) * 2007-10-02 2009-04-23 Lg Chem Ltd Optical film and method for manufacturing the same
WO2016139927A1 (en) * 2015-03-02 2016-09-09 株式会社カネカ Acrylic resin composition, and molded product and film made from same

Also Published As

Publication number Publication date
JPWO2020138501A1 (en) 2021-11-04
JP7342033B2 (en) 2023-09-11

Similar Documents

Publication Publication Date Title
KR100815995B1 (en) Acrylate-Styrene- Acrylonitrile Grafted Copolymer with Excellent Impact Strength at Low and Room Temperature, Coloring, and Weatherability, and Thermoplastic Resin Composition Containing Same
JPS6017406B2 (en) Manufacturing method of multilayer structure acrylic resin molding material
JPH11511492A (en) Thermoplastic molding material with low haze value
KR101903916B1 (en) Impact-resistant molding material having an improved characteristics profile
JP7383805B2 (en) Thermoplastic resin and its manufacturing method
JP2021521311A (en) Thermoplastic resin composition
JP2022551615A (en) Thermoplastic resin and its manufacturing method
JP3198075B2 (en) Multilayer acrylic polymer and methacrylic resin composition using the same
JP3642919B2 (en) Impact modifier and thermoplastic polymer composition containing the same
WO2020138501A1 (en) Multilayer-structured polymer particle, and thermoplastic resin composition, molded body, and film including same
WO2018181897A1 (en) Resin composition containing multilayered structure and method for producing same
JP2014533764A (en) Acrylic laminate film excellent in weather resistance and moldability and method for producing the same
JP7391200B2 (en) Transparent thermoplastic resin and its manufacturing method
JPH07300547A (en) Production of impact resistant methacrylic resin composition
JP2021130745A (en) Multilayer structure polymer particle, thermoplastic resin composition containing the same, molding, and film
US20090124725A1 (en) Viscosity Modifier for Thermoplastic Polyester Resin, Thermoplastic Polyester Resin Composition Containing the Same, and Molding of the Composition
JP3630876B2 (en) Impact resistant methacrylic resin composition
JP3366362B2 (en) Methacrylic impact modifier and resin composition
JP3366363B2 (en) Methacrylic impact modifier and impact resin composition
JP3310362B2 (en) Impact resistant resin composition
JPH05214202A (en) Thermoplastic molding material
JPH10152595A (en) Shock-resistant methacrylic resin composition
JPH0673199A (en) Delustered film for laminate
WO2002048224A1 (en) Transparent, rubber-modified styrene copolymer
JP4674779B2 (en) Particulate multilayered acrylic polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562555

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904086

Country of ref document: EP

Kind code of ref document: A1