WO2020121923A1 - Vehicle heat exchange system - Google Patents

Vehicle heat exchange system Download PDF

Info

Publication number
WO2020121923A1
WO2020121923A1 PCT/JP2019/047487 JP2019047487W WO2020121923A1 WO 2020121923 A1 WO2020121923 A1 WO 2020121923A1 JP 2019047487 W JP2019047487 W JP 2019047487W WO 2020121923 A1 WO2020121923 A1 WO 2020121923A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
radiator
heat exchanger
air
ecu
Prior art date
Application number
PCT/JP2019/047487
Other languages
French (fr)
Japanese (ja)
Inventor
健吾 文
孝博 宇野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019207741A external-priority patent/JP7375486B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201980081623.7A priority Critical patent/CN113165475A/en
Priority to DE112019006207.7T priority patent/DE112019006207T5/en
Publication of WO2020121923A1 publication Critical patent/WO2020121923A1/en
Priority to US17/328,570 priority patent/US20210276398A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption

Definitions

  • the present disclosure relates to a vehicle heat exchange system.
  • the air introduced into the engine room through the grill opening is supplied to the outdoor heat exchanger and radiator of the vehicle air conditioner.
  • a heat medium used in a refrigeration cycle or a heat pump cycle of a vehicle air conditioner flows inside the outdoor heat exchanger.
  • the outdoor heat exchanger exchanges heat between the heat medium flowing inside and the air to release the heat of the heat medium to the air or absorb the heat of the air to the heat medium.
  • Cooling water for cooling the engine of the vehicle flows through the radiator.
  • the radiator radiates the heat of the cooling water to the air by exchanging heat between the cooling water flowing inside and the air.
  • some vehicles are equipped with a shutter device that can temporarily block the flow of air from the grill opening to the engine room.
  • a heat exchange system including the outdoor heat exchanger and the radiator including such a shutter device for example, there is a vehicle heat exchange system described in Patent Document 1 below.
  • the heat exchange system described in Patent Document 1 includes an air blower for blowing the air introduced from the grille opening to the outdoor heat exchanger and the radiator.
  • the blower normally rotates in the forward direction so that the air introduced from the grill opening flows in the direction toward the outdoor heat exchanger and the radiator.
  • the outdoor heat exchanger is used as the evaporator of the heat pump cycle.
  • water contained in air is condensed on the outer surface of the outdoor heat exchanger, which may cause frost to adhere to the outer surface of the outdoor heat exchanger.
  • a defrosting operation for removing frost from the outdoor heat exchanger is performed.
  • the grill shutter is set to the closed state and the blower device is rotated in the reverse direction.
  • the air warmed by the radiator is blown to the outdoor heat exchanger to remove the frost attached to the outdoor heat exchanger.
  • An object of the present disclosure is to provide a vehicle heat exchange system capable of reducing power consumption.
  • a heat exchange system includes a heat exchanger, a radiator, a connecting member, and a shutter device.
  • the heat exchanger is a heat exchanger that is used in a heat exchange cycle of an air conditioner of a vehicle and absorbs heat from air or radiates heat to air, and a heat medium that circulates in the heat exchange cycle and from inside the engine room from the front of the vehicle. Heat exchange with the air introduced into the.
  • the radiator is used in a cooling system that cools the heat source of the vehicle, and heat is exchanged between the cooling water for cooling the heat source mounted on the vehicle and the air introduced from the front of the vehicle into the engine room. I do.
  • the connecting member thermally connects the heat exchanger and the radiator.
  • the shutter device can switch supply and cutoff of air to the heat exchanger and the radiator.
  • FIG. 1 is a block diagram showing a schematic configuration of a vehicle heat exchange system of the first embodiment.
  • FIG. 2 is a diagram schematically showing a schematic configuration of the vehicle of the first embodiment.
  • FIG. 3 is a block diagram showing an operation example of the vehicle heat exchange system of the first embodiment.
  • FIG. 4 is a perspective sectional view showing a sectional structure of the radiator, the outdoor heat exchanger, and the fins of the first embodiment.
  • FIG. 5 is a graph showing the energy consumption of the vehicle of the first embodiment in comparison between the case where the shutter device is in the open state and the case where the shutter device is in the closed state.
  • FIG. 6 is a block diagram showing an electrical configuration of the vehicle heat exchange system of the first embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration of a vehicle heat exchange system of the first embodiment.
  • FIG. 2 is a diagram schematically showing a schematic configuration of the vehicle of the first embodiment.
  • FIG. 3 is a block diagram showing an operation example of the vehicle heat exchange system
  • FIG. 7 is a flowchart showing a procedure of processing executed by the air conditioning ECU of the first embodiment.
  • FIG. 8 is a flowchart showing a procedure of processing executed by the cooling ECU of the first embodiment.
  • FIG. 9 is a flowchart showing a procedure of processing executed by the shutter ECU of the first embodiment.
  • FIG. 10 is a graph showing the relationship between the heat transfer amount between the radiator and the outdoor heat exchanger of the first embodiment and the air flow rate of the air passing through them.
  • FIG. 11 is a flowchart showing a procedure of processing executed by the shutter ECU of the second embodiment.
  • FIG. 12 is a flowchart showing a procedure of processing executed by the air conditioning ECU of the third embodiment.
  • FIG. 13 is a figure which shows typically the schematic structure of the vehicle of other embodiment.
  • the vehicle on which the heat exchange system 10 of the present embodiment is mounted is an electric vehicle or a plug-in hybrid vehicle that travels based on the power of the electric engine.
  • the vehicle heat exchange system 10 of the present embodiment includes a cooling system 20 and a heat pump cycle 30.
  • the cooling system 20 is a system that cools those elements by circulating cooling water through an electric motor 21, a battery 22, and an inverter 23 mounted on a vehicle.
  • the heat sources to be cooled by the cooling system 20 of the present embodiment are the electric motor 21, the battery 22, and the inverter 23.
  • the electric motor 21 is driven based on the electric power supplied from the battery 22.
  • the vehicle runs by transmitting the power of the electric motor 21 to the wheels of the vehicle. Further, the electric motor 21 performs regenerative power generation based on the kinetic energy transmitted from the wheels when the vehicle stops. The electric power of the electric motor 21 generated by this regenerative power generation charges the battery 22.
  • the battery 22 is a rechargeable secondary battery such as a lithium-ion battery.
  • the electric power charged in the battery 22 is supplied to not only the electric motor 21 but also various electronic devices mounted on the vehicle.
  • the inverter 23 converts the DC power charged in the battery 22 into AC power and supplies the AC power to the electric motor 21. Further, the inverter 23 converts the AC power generated by the regenerative power generation of the electric motor 21 into DC power and charges the battery 22.
  • the cooling system 20 includes a pump 24 and a radiator 25.
  • the cooling system 20 has a structure in which an electric motor 21, a battery 22, a pump 24, an inverter 23, and a radiator 25 are annularly connected by a pipe.
  • cooling water circulates through each element connected via piping.
  • the pump 24 is a so-called electric pump that is driven based on the electric power supplied from the battery 22.
  • the pump 24 circulates the cooling water in each element of the cooling system 20 by pumping the cooling water circulating in the cooling system 20.
  • the radiator 25 is arranged in the middle of an air passage Wa extending from a grille opening 41 provided in the front of the vehicle to the engine room 42.
  • the radiator 25 exchanges heat between the cooling water flowing inside and the air introduced into the engine room 42 from the grille opening 41, thereby releasing the heat of the cooling water to the air to generate the cooling water. This is the part to be cooled.
  • the cooling water cooled in the radiator 25 circulates through the electric motor 21, the battery 22, and the inverter 23, so that the heat is absorbed by the cooling water. As a result, the electric motor 21, the battery 22, and the inverter 23 are cooled.
  • the heat pump cycle 30 is a system for heating or cooling the conditioned air that is blown into the passenger compartment of the vehicle air conditioner.
  • the heat pump cycle 30 corresponds to the heat exchange cycle used in the air conditioner.
  • the heat pump cycle 30 includes a compressor 31, an indoor radiator 32, a first three-way valve 33, a first expansion valve 34, an outdoor heat exchanger 35, a second three-way valve 36, and a second expansion valve. 37 and an evaporator 38 are provided.
  • the heat pump cycle 30 has a structure in which these elements are annularly connected by piping. In the heat pump cycle 30, the heat medium circulates through each element connected via piping. In FIG.
  • the compressor 31 sucks in and compresses the heat medium, and discharges the compressed heat medium to the indoor radiator 32.
  • the indoor radiator 32 is a part that heats the conditioned air by releasing the heat of the heat medium discharged from the compressor 31 to the conditioned air when the heat pump cycle 30 is operating in the heating mode.
  • the heat medium that has passed through the indoor radiator 32 flows into the first three-way valve 33.
  • the first three-way valve 33 selectively flows the heat medium discharged from the indoor radiator 32 into either the flow passage W11 or the bypass flow passage W12.
  • the flow path W11 is a flow path in which the first expansion valve 34 is arranged.
  • the bypass flow passage W12 is a flow passage that bypasses the first expansion valve 34.
  • the first expansion valve 34 expands and reduces the pressure of the heat medium flowing from the indoor radiator 32 through the flow path W11 when the heat pump cycle 30 is operating in the heating mode.
  • the heat medium that has passed through the first expansion valve 34 by flowing through the flow path W11 or the heat medium that has bypassed the first expansion valve 34 by flowing through the bypass flow path W12 flows into the outdoor heat exchanger 35.
  • the outdoor heat exchanger 35 is arranged in the middle of the air passage Wa extending from the grille opening 41 to the engine room 42, similarly to the radiator 25.
  • the outdoor heat exchanger 35 is arranged downstream of the radiator 25 in the air flow direction Da.
  • the outdoor heat exchanger 35 exchanges heat between the heat medium flowing through the inside thereof and the air, whereby the heat of the heat medium is exchanged. It functions as a condenser that radiates heat to the air to cool the heat medium. Further, as shown in FIG. 3, when the heat pump cycle 30 is operating in the heating mode, the outdoor heat exchanger 35 exchanges heat between the heat medium flowing through the inside of the heat exchanger 35 and the air, and It functions as an evaporator that heats the heat medium by absorbing the heat of the heat medium. The heat medium that has passed through the outdoor heat exchanger 35 flows into the second three-way valve 36.
  • the second three-way valve 36 selectively flows the heat medium discharged from the outdoor heat exchanger 35 into either the flow passage W21 or the bypass flow passage W22.
  • the flow path W21 is a flow path in which the second expansion valve 37 and the evaporator 38 are arranged.
  • the bypass flow passage W22 is a flow passage that bypasses the second expansion valve 37 and the evaporator 38.
  • FIG. 1 when the heat pump cycle 30 is operating in the cooling mode, the second three-way valve 36 operates so that the heat medium discharged from the outdoor heat exchanger 35 flows through the flow path W21. Further, as shown in FIG. 3, when the heat pump cycle 30 is operating in the heating mode, the second three-way valve 36 causes the heat medium discharged from the outdoor heat exchanger 35 to flow into the bypass flow passage W12. Operate.
  • the second expansion valve 37 expands and reduces the pressure of the heat medium discharged from the outdoor heat exchanger 35 when the heat pump cycle 30 is operating in the cooling mode.
  • the heat medium whose pressure has been reduced by the second expansion valve 37 flows into the evaporator 38.
  • the evaporator 38 exchanges heat between the heat medium flowing inside and the conditioned air, thereby absorbing the heat of the conditioned air by the heat medium and cooling the conditioned air.
  • the heat medium is “compressor 31 ⁇ indoor radiator 32 ⁇ outdoor heat exchanger 35 ⁇ second expansion valve 37 ⁇ evaporator. 38 ⁇ compressor 31′′.
  • the high-temperature and high-pressure heat medium discharged from the compressor 31 flows into the indoor radiator 32.
  • the air conditioner the conditioned air does not flow into the indoor radiator 32, so the heat medium flowing through the indoor radiator 32 flows into the outdoor heat exchanger 35 without exchanging heat with the conditioned air. ..
  • the outdoor heat exchanger 35 functions as a condenser when the heat pump cycle 30 operates in the cooling mode. That is, in the outdoor heat exchanger 35, the heat of the heat medium is released to the air by exchanging heat between the high-temperature and high-pressure heat medium flowing inside the air and the air, so that the heat medium is cooled. Is condensed.
  • the heat medium cooled in the outdoor heat exchanger 35 is depressurized to a low pressure through the second expansion valve 37 and then flows into the evaporator 38.
  • heat is exchanged between the low-pressure heat medium flowing inside the evaporator 38 and the conditioned air flowing outside thereof, so that the heat of the conditioned air is absorbed by the heat medium and the heat medium evaporates.
  • the conditioned air is cooled by heat exchange between the conditioned air and the heat medium in the evaporator 38.
  • the cooled air-conditioned air is blown into the vehicle interior to cool the vehicle interior.
  • the heat medium evaporated in the evaporator 38 is sucked into the compressor 31 and compressed, and then recirculates through the heat pump cycle 30.
  • the heat medium is “compressor 31 ⁇ indoor radiator 32 ⁇ first expansion valve 34 ⁇ outdoor heat exchanger 35 ⁇ Compressor 31” flows in this order.
  • the high-temperature and high-pressure heat medium discharged from the compressor 31 flows into the indoor radiator 32.
  • the indoor radiator 32 heat is exchanged between the heat medium flowing inside the indoor radiator 32 and the conditioned air, whereby the heat of the heat medium is released to the conditioned air to heat the conditioned air.
  • the heated air is blown into the vehicle interior to heat the vehicle interior.
  • the heat medium that has passed through the indoor radiator 32 is depressurized to a low pressure through the first expansion valve 34, and then flows into the outdoor heat exchanger 35.
  • the outdoor heat exchanger 35 functions as an evaporator when the heat pump cycle 30 is operating in the heating mode. That is, in the outdoor heat exchanger 35, heat is exchanged between the low-pressure heat medium flowing inside and the air flowing outside, so that the heat of the air is absorbed by the heat medium and the heat medium evaporates. To do.
  • the heat medium evaporated in the outdoor heat exchanger 35 is sucked into the compressor 31 through the bypass passage W22 and compressed, and then recirculates in the heat pump cycle 30.
  • the radiator 25 has a structure in which a plurality of flat tubes 250 are stacked and arranged at a predetermined interval.
  • the tube 250 is made of metal such as aluminum alloy.
  • a flow path 251 of cooling water circulating in the cooling system 20 is formed inside the tube 250.
  • the air introduced from the grille opening 41 flows in the gap formed between the adjacent tubes 250, 250.
  • heat exchange is performed between the cooling water flowing inside each tube 250 and the air flowing outside each tube 250.
  • the outdoor heat exchanger 35 also has a structure in which a plurality of flat tubes 350 are stacked and arranged at a predetermined interval.
  • the tube 350 is also made of a metal such as an aluminum alloy.
  • a heat medium flow path 351 for circulating the heat pump cycle 30 is formed inside the tube 350.
  • the air introduced from the grille opening 41 flows in the gap formed between the adjacent tubes 350, 350.
  • heat exchange is performed between the heat medium flowing inside each tube 350 and the air flowing outside each tube 350.
  • fins 50 are arranged so as to extend between them. ..
  • the fins 50 are so-called corrugated fins formed by bending a thin metal plate in a wavy shape.
  • the fins 50 are joined to the tubes 250 of the radiator 25 and the tubes 350 of the outdoor heat exchanger 35 by brazing or the like.
  • the fin 50 has a function of increasing the heat transfer area of the radiator 25 and the outdoor heat exchanger 35 by increasing the contact area with the air and improving the heat exchange performance thereof.
  • the radiator 25 and the outdoor heat exchanger 35 are physically and thermally connected via fins 50. That is, the radiator 25 and the outdoor heat exchanger 35 can exchange heat with each other via the fins 50.
  • the fin 50 corresponds to a connecting member that thermally connects the radiator 25 and the outdoor heat exchanger 35.
  • the heat exchange system 10 of the present embodiment further includes a shutter device 60 and a blower device 70.
  • the shutter device 60 is arranged in the grill opening 41. Therefore, the shutter device 60 is arranged upstream of the radiator 25 and the outdoor heat exchanger 35 in the air flow direction Da.
  • the shutter device 60 has a plurality of blades.
  • the shutter device 60 opens and closes the grill opening 41 by opening and closing a plurality of blades.
  • the shutter device 60 When the shutter device 60 is in the closed state, the introduction of air into the radiator 25, the outdoor heat exchanger 35, and the engine room 42 through the grille opening 41 is blocked. In this way, the shutter device 60 can switch the supply and cutoff of air to the radiator 25 and the outdoor heat exchanger 35.
  • the aerodynamic performance of the vehicle When the shutter device 60 is in the closed state, the aerodynamic performance of the vehicle can be improved, so that the fuel consumption of the vehicle can be improved.
  • the air resistance of the vehicle is lower than when the shutter device 60 is in the open state, so that the traveling load of the vehicle is reduced. As a result, as shown in FIG.
  • the blower 70 is arranged downstream of the radiator 25 and the outdoor heat exchanger 35 in the air flow direction Da. For example, when the vehicle is stopped or the vehicle is traveling at a low speed, the amount of air supplied to the radiator 25 and the outdoor heat exchanger 35 may be insufficient. In such a case, the blower device 70 supplies air to the radiator 25 and the outdoor heat exchanger 35 by driving the blower device 70 to supplement the shortage of air amount.
  • the heat exchange system 10 of the present embodiment controls a cooling ECU (Electronic Control Unit) 28 that controls the cooling system 20, an air conditioning ECU 84 that controls an air conditioner 90 of the vehicle, and a pump 24.
  • a pump ECU 29 for controlling the shutter device 60, a shutter ECU 61 for controlling the shutter device 60, and a fan ECU 71 for controlling the blower device 70 are provided.
  • Each of the ECUs 28, 29, 61, 71, 84 is mainly composed of a microcomputer having a CPU, a memory, etc., and centrally controls a device to be controlled.
  • the output signals of the cooling system 20 and various sensors mounted on the vehicle are input to the cooling ECU 28 via the in-vehicle network Lc.
  • sensors include an inlet side water temperature sensor 26 and an outlet side water temperature sensor 27.
  • the inlet-side water temperature sensor 26 is provided in a pipe located upstream of the radiator 25 in the cooling water flow direction.
  • the inlet side water temperature sensor 26 detects the temperature Tin of the cooling water flowing into the radiator 25 and outputs a signal according to the detected temperature Tin of the cooling water.
  • the outlet side water temperature sensor 27 is provided in the pipe located downstream of the radiator 25 in the flow direction of the cooling water.
  • the outlet side water temperature sensor 27 detects the temperature Tout of the cooling water discharged from the radiator 25 and outputs a signal according to the detected temperature Tout of the cooling water.
  • the temperature Tin of the cooling water detected by the inlet water temperature sensor 26 is referred to as “inlet water temperature Tin”
  • the temperature Tout of the cooling water detected by the outlet water temperature sensor 27 is referred to as “outlet water temperature Tout”. Called.
  • the cooling ECU 28 acquires information on the inlet side water temperature Tin and the outlet side water temperature Tout based on the output signals of the respective sensors 26 and 27, and is necessary for controlling the cooling system 20 based on the output signals of other sensors. Get various state quantities.
  • the cooling ECU 28 transmits a control command value for controlling the pump 24 to the pump ECU 29 based on the information acquired by each sensor.
  • the pump ECU 29 controls the pump 24 based on the control command value, whereby cooling control for cooling the electric motor 21, the battery 22, and the inverter 23 is executed.
  • the air conditioning ECU 84 is input with output signals of various sensors provided in the air conditioning device 90 and the vehicle.
  • sensors include an inside air temperature sensor 80, an outside air temperature sensor 81, a vehicle speed sensor 82, and an inlet side temperature sensor 39.
  • the inside air temperature sensor 80 detects the inside air temperature Tr which is the temperature inside the vehicle compartment, and outputs a signal corresponding to the detected inside air temperature Tr.
  • the outside air temperature sensor 81 detects the outside air temperature Tam which is the temperature outside the vehicle compartment and outputs a signal according to the detected outside air temperature Tam.
  • the vehicle speed sensor 82 detects the vehicle speed V that is the traveling speed of the vehicle and outputs a signal corresponding to the detected vehicle speed V.
  • the inlet-side temperature sensor 39 detects the temperature Tc of the heat medium flowing into the outdoor heat exchanger 35, and outputs a signal according to the detected temperature Tc of the heat medium.
  • the air-conditioning ECU 84 also takes in signals transmitted from the operating device 83.
  • the operation device 83 is a portion operated by a user when operating the air conditioner 90. With the operating device 83, for example, the temperature inside the vehicle compartment can be set.
  • the operation device 83 transmits information on the set temperature Ts in the vehicle compartment, which is input by the user's operation, to the air conditioning ECU 84.
  • the air conditioning ECU 84 acquires information about the inside air temperature Tr, the outside air temperature Tam, and the vehicle speed V based on the output signals of the sensors 80 to 82, and is necessary for controlling the air conditioning device 90 based on the output signals of other sensors. Get various state quantities. Further, the air conditioning ECU 84 acquires various setting information set by the user's operation from the operation device 83. The air conditioning ECU 84 comprehensively controls the air conditioning device 90 including the heat pump cycle 30 based on the acquired information.
  • the shutter ECU 61 is communicatively connected to the cooling ECU 28 and the air conditioning ECU 84 via the vehicle-mounted network Lc.
  • the shutter ECU 61 can send and receive various information to and from each ECU 28, 29, 71, 84 via the vehicle-mounted network Lc.
  • the information transmitted and received among the ECUs 28, 29, 61, 71, 84 includes, for example, detection values detected by various sensors.
  • the cooling ECU 28 requests the shutter ECU 61 to open/close the shutter device 60 based on the operating state of the cooling system 20.
  • the air conditioning ECU 84 requests the shutter ECU 61 to open/close the shutter device 60 based on the operating state of the heat pump cycle 30.
  • the shutter ECU 61 controls the open/closed state of the shutter device 60 based on requests from the cooling ECU 28 and the air conditioning ECU 84.
  • the shutter ECU 61 corresponds to the control unit.
  • the fan ECU 71 controls the rotation speed and the like of the blower 70 based on requests from the cooling ECU 28 and the air conditioning ECU 84. In addition, the fan ECU 71 acquires information about the rotation speed Nf of the blower device 70.
  • a specific procedure of the opening/closing operation request processing of the shutter device 60 executed by the cooling ECU 28 and the air conditioning ECU 84 will be described. First, the procedure of the process executed by the air conditioning ECU 84 will be described with reference to FIG. 7.
  • the air conditioning ECU 84 repeatedly executes the process shown in FIG. 7 at a predetermined cycle while the heat pump cycle 30 is operating in the heating mode.
  • the air conditioning ECU 84 first calculates the required heat absorption amount QA in the outdoor heat exchanger 35 as the process of step S10. Specifically, the air conditioning ECU 84 calculates the necessary heat radiation amount of the indoor radiator 32 required to bring the inside air temperature Tr close to the set temperature Ts based on the deviation between the set temperature Ts inside the vehicle compartment and the inside air temperature Tr. Calculate using the map and the like. The air conditioning ECU 84 calculates the required heat absorption amount QA, which is the heat amount that the heat medium needs to absorb from the air in the outdoor heat exchanger 35, from the calculated necessary heat radiation amount of the indoor radiator 32 using a calculation formula, a map, or the like. To do.
  • the air conditioning ECU 84 calculates the actual heat absorption amount Qa, which is the actual heat absorption amount in the outdoor heat exchanger 35, as the process of step S11 following step S10.
  • the actual heat absorption amount Qa can be calculated as follows, for example.
  • the actual heat absorption amount Qa of the outdoor heat exchanger 35 is calculated from the temperature difference ⁇ T, which is the deviation between the temperature of the heat medium flowing through the outdoor heat exchanger 35 and the outside air temperature Tam, and the air amount GA supplied to the outdoor heat exchanger 35. It is possible to calculate using an arithmetic expression or the like. Therefore, the air conditioning ECU 84 of the present embodiment acquires the information of the outside air temperature Tam based on the output signal of the outside air temperature sensor 81.
  • the air conditioning ECU 84 controls the rotation speed of the compressor 31 as the control of the heat pump cycle 30, it knows the information on the rotation speed of the compressor 31. There is a correlation between the rotation speed of the compressor 31 and the temperature of the heat medium of the outdoor heat exchanger 35.
  • the air-conditioning ECU 84 calculates the temperature of the heat medium of the outdoor heat exchanger 35 from the rotation speed of the compressor 31 based on an arithmetic expression, a map, or the like showing the correlation between them.
  • the air conditioning ECU 84 calculates a temperature difference ⁇ T which is a deviation between the calculated temperature of the heat medium of the outdoor heat exchanger 35 and the outside air temperature Tam.
  • the air conditioning ECU 84 calculates the amount GA of air blown to the outdoor heat exchanger 35 based on the vehicle speed V and the rotation speed Nf of the blower device 70 that can be acquired from the fan ECU 71.
  • the air-conditioning ECU 84 calculates the actual heat absorption amount Qa of the outdoor heat exchanger 35 from the calculated temperature difference ⁇ T and the amount GA of air blown to the outdoor heat exchanger 35 using an arithmetic expression or the like.
  • the air conditioning ECU 84 determines whether or not the actual heat absorption amount Qa of the outdoor heat exchanger 35 is larger than the required heat absorption amount QA as the process of step S12 subsequent to step S11.
  • the air conditioning ECU 84 makes a positive determination in the process of step S12, that is, when the actual heat absorption amount Qa of the outdoor heat exchanger 35 is larger than the required heat absorption amount QA, the heat absorption from the air in the outdoor heat exchanger 35 is Judge that it is not necessary.
  • the air conditioning ECU 84 sets the first request flag F1 to "0" as the process of step S13 in order to request the shutter ECU 61 to close the shutter device 60.
  • step S12 determines whether the actual heat absorption amount Qa of the outdoor heat exchanger 35 is less than or equal to the required heat absorption amount QA.
  • the air conditioning ECU 84 removes air from the outdoor heat exchanger 35. Judge that heat absorption is necessary. In this case, the air conditioning ECU 84 sets the first request flag F1 to "1" as the process of step S14 in order to request the shutter ECU 61 to open the shutter device 60.
  • the air conditioning ECU 84 After executing the process of step S13 or the process of step S14, the air conditioning ECU 84 transmits the information of the first request flag F1 to the shutter ECU 61 as the process of step S15. Subsequently, the air conditioning ECU 84 transmits the information of the required heat absorption amount QA to the shutter ECU 61 as the process of step S16, and then ends the series of processes shown in FIG. 7.
  • the cooling ECU 28 repeatedly executes the processing shown in FIG. 8 at a predetermined cycle.
  • the cooling ECU 28 first calculates the estimated value TEin of the inlet side water temperature which is the estimated temperature of the cooling water flowing into the radiator 25 after the elapse of a predetermined time from the present as the processing of step S20.
  • the cooling ECU 28 determines the amount of change in the inlet-side water temperature Tin per unit time based on a plurality of detection values of the inlet-side water temperature Tin detected by the inlet-side water temperature sensor 26 from the present time to a predetermined time before.
  • the cooling ECU 28 estimates the inlet-side water temperature after a lapse of a predetermined time, based on the calculated amount of change in the inlet-side water temperature Tin per unit time and the current inlet-side water temperature Tin detected by the inlet-side water temperature sensor 26.
  • the value TEin is calculated by a calculation formula.
  • the estimated value TEin of the inlet-side water temperature after the lapse of the predetermined time corresponds to the temperature of the radiator 25 after the lapse of the predetermined time.
  • the cooling ECU 28 determines whether or not the estimated value TEin of the inlet-side water temperature after a lapse of a predetermined time is smaller than a predetermined temperature threshold value Tth as a process of step S21 subsequent to step S20.
  • the temperature threshold value Tth is an upper limit value of the inlet-side water temperature Tin required to maintain the cooling states of the electric motor 21, the battery 22, and the inverter 23, which are cooling targets of the cooling system 20.
  • the temperature threshold Tth is set by an experiment or the like, and is stored in advance in the memory of the cooling ECU 28.
  • step S21 When the determination in step S21 is affirmative, that is, when the estimated value TEin of the inlet-side water temperature after the elapse of the predetermined time is smaller than the predetermined temperature threshold Tth, the cooling ECU 28 secures the cooling capacity of the cooling system 20. Judge that it is done. In this case, the cooling ECU 28 sets the second request flag F2 to "0" as the process of step S22 in order to request the shutter ECU 61 to close the shutter device 60.
  • the cooling ECU 28 secures the cooling capacity of the cooling system 20. Judge that it is not done. In this case, since the radiator 25 needs to release the heat of the heat medium to the air, the cooling ECU 28 requests the shutter ECU 61 to open the shutter device 60.
  • the flag F2 is set to "1".
  • the cooling ECU 28 After executing the process of step S22 or the process of step S23, the cooling ECU 28 transmits the information of the second request flag F2 to the shutter ECU 61 as the process of step S24. Subsequently, the cooling ECU 28 calculates the required heat radiation amount QB in the radiator 25 as the process of step S25. Specifically, since the cooling ECU 28 controls the pump 24, it knows the information on the rotation speed of the pump 24. The cooling ECU 28 calculates the flow rate of the cooling water flowing through the radiator 25 based on the rotation speed of the pump 24 using an arithmetic expression or the like.
  • the cooling ECU 28 calculates a deviation between the inlet side water temperature Tin and the outlet side water temperature Tout of the radiator 25, and calculates the deviation of the radiator 25 from the calculated deviation and the flow rate of the cooling water flowing through the radiator 25. Calculate the actual amount of heat dissipation.
  • the cooling ECU 28 calculates the amount of heat to be released from the radiator 25 because the inlet side water temperature Tin of the radiator 25 does not reach the predetermined temperature, based on the actual amount of heat radiation of the radiator 25 and its transition.
  • the required heat radiation amount QB is calculated.
  • the predetermined temperature is the upper limit value of the inlet side water temperature Tin of the radiator 25 that can guarantee the operations of the electric motor 21, the battery 22, and the inverter 23, and is set in advance by experiments or the like.
  • step S26 the cooling ECU 28 transmits information on the calculated required heat radiation amount QB of the radiator 25 to the shutter ECU 61, and then ends the series of processes shown in FIG.
  • the shutter ECU 61 controls the open/close state of the shutter device 60 based on the first request flag F1 transmitted from the air conditioning ECU 84 and the second request flag F2 transmitted from the cooling ECU 28.
  • a procedure of processing executed by the shutter ECU 61 will be specifically described with reference to FIG.
  • the shutter ECU 61 repeatedly executes the processing shown in FIG. 9 at a predetermined cycle.
  • the first request flag F1 transmitted from the air conditioning ECU 84 and the second request flag F2 transmitted from the cooling ECU 28 are both set to “0” as the processing of step S30. Determine whether or not When both the first request flag F1 and the second request flag F2 are set to “0”, there is no need to absorb heat in the outdoor heat exchanger 35, and there is no need to dissipate heat in the radiator 25. Therefore, when both the first request flag F1 and the second request flag F2 are set to “0”, the shutter ECU 61 makes an affirmative decision in the process of step S30, and the shutter device 60 is selected as the process of step S31. After the closed state is set, the series of processing shown in FIG. 9 is ended.
  • the closed state of the shutter device 60 in the present embodiment means a state in which a part or all of the shutter device 60 is closed.
  • step S31 determines whether or not both the first request flag F1 and the second request flag F2 are set to "1" as the process of step S32.
  • both the first request flag F1 and the second request flag F2 are set to "1"
  • the outdoor heat exchanger 35 needs to absorb heat and the radiator 25 needs to dissipate heat. is there.
  • the heat transfer from the radiator 25 to the outdoor heat exchanger 35 via the fins 50 should satisfy the heat absorption of the outdoor heat exchanger 35 and the heat radiation of the radiator 25. If it is possible, the shutter device 60 is closed. As a result, the time during which the shutter device 60 is set to the closed state can be extended, so that it becomes possible to improve the aerodynamic performance of the vehicle.
  • the shutter ECU 61 makes an affirmative decision in the process of step S32, and as the process of step S33, the outdoor It is determined whether the required heat absorption amount QA of the heat exchanger 35 is smaller than the required heat radiation amount QB of the radiator 25. If the shutter ECU 61 makes a negative determination in the process of step S32, that is, if the required heat absorption amount QA of the outdoor heat exchanger 35 is equal to or greater than the required heat radiation amount QB of the radiator 25, the shutter device 61 performs the processing of step S37. Set 60 to the open state.
  • the shutter ECU 61 determines the determination value as the process of step S34.
  • QC is calculated based on the following formula f1.
  • QC ⁇ QB-QA- ⁇ (f1) The correction value ⁇ in the expression f1 indicates the amount of heat lost when heat is transferred from the radiator 25 to the outdoor heat exchanger 35 via the fins 50.
  • the correction value ⁇ includes, for example, the amount of heat released from the fins 50 to the air.
  • the correction value ⁇ is obtained by experiments and the like, and is stored in advance in the memory of the shutter ECU 61. If the correction value ⁇ is small enough to be ignored with respect to the required heat absorption amount QA and the required heat radiation amount QB, the correction value ⁇ may be set to “0”.
  • the shutter ECU 61 determines whether or not the determination value QC is larger than a preset threshold value Qth as a process of step S35 subsequent to step S34.
  • the process of step S35 corresponds to the process of determining whether or not the required heat absorption amount QA of the outdoor heat exchanger 35 can be supplemented by the required heat radiation amount QB of the radiator 25.
  • the determination in step S35 is affirmative, that is, when the determination value QC is larger than the threshold value Qth
  • the shutter ECU 61 supplements the required heat absorption amount QA of the outdoor heat exchanger 35 with the required heat radiation amount QB of the radiator 25. It is determined that the situation is possible.
  • the shutter ECU 61 sets the shutter device 60 to the closed state, and then ends the series of processing shown in FIG.
  • step S35 When the determination in step S35 is negative, that is, when the determination value QC is less than or equal to the threshold value Qth, the shutter ECU 61 sets the required heat absorption amount QA of the outdoor heat exchanger 35 to the required heat radiation amount QB of the radiator 25. It is determined that the situation cannot be compensated by. In this case, as the processing of step S37, the shutter ECU 61 sets the shutter device 60 to the open state, and then ends the series of processing shown in FIG.
  • step S32 when the shutter ECU 61 makes a negative determination in the process of step S32, that is, when one of the first request flag F1 and the second request flag F2 is set to “1”, the shutter ECU 61 proceeds to step S38.
  • step S38 As a process, after setting the shutter device 60 to the open state, the series of processes shown in FIG. 9 is ended.
  • the actions and effects shown in the following (1) to (4) can be obtained.
  • the shutter ECU 61 subtracts the required heat absorption amount QA of the outdoor heat exchanger 35 from the required heat radiation amount QB of the radiator 25 when both the first request flag F1 and the second request flag F2 are set to "1".
  • the shutter device 60 is set to the closed state.
  • the required heat absorption amount QA of the outdoor heat exchanger 35 can be supplemented by the required heat radiation amount QB of the radiator 25, the shutter device 60 will be in the closed state, and therefore the shutter device 60 will be in the closed state.
  • the set period can be extended. As a result, the aerodynamic performance of the vehicle can be improved. Therefore, the fuel efficiency of the vehicle can be improved, and the cruising range can be expanded. It is also possible to extend the time during which the heat pump cycle 30 can operate in the heating mode.
  • the shutter ECU 61 further subtracts the correction value ⁇ based on the heat radiation amount of the fins 50 from the subtraction value obtained by subtracting the required heat absorption amount QA of the outdoor heat exchanger 35 from the heat radiation amount QB of the radiator 25, thereby making a determination. Calculate the value QC. As a result, it is possible to calculate the determination value QC in consideration of the heat radiation amount of the fins 50, and it is possible to more accurately determine whether or not the shutter device 60 can be closed. Become.
  • the shutter ECU 61 sets the shutter device 60 to the open state in the process of step S37, and then transmits the control command value of the blower device 70 to the fan ECU 71 as the process of step S39.
  • the drive of the device 70 is controlled.
  • the process of step S39 is executed as follows.
  • the shutter ECU 61 transmits a duty value to the fan ECU 71 as a control command value for the blower 70.
  • the fan ECU 71 controls driving of the blower device 70 based on the duty value.
  • the duty value indicates the energization control amount of the blower 70. As the duty value increases, the energization amount of the blower device 70 increases, so that the rotation speed of the blower device 70 increases. On the other hand, as the duty value decreases, the amount of electricity supplied to the blower device 70 decreases, and the rotation speed of the blower device 70 decreases.
  • the shutter ECU 61 calculates the heat exchange amount QD between the radiator 25 and the outdoor heat exchanger 35.
  • the heat exchange amount QD is calculated as follows, for example. First, the shutter ECU 61 estimates the temperature of the radiator 25 based on the inlet side water temperature Tin detected by the inlet side water temperature sensor 26. Further, the shutter ECU 61 estimates the temperature of the outdoor heat exchanger 35 based on the refrigerant temperature Tc detected by the inlet side temperature sensor 39. The shutter ECU 61 calculates the temperature difference between the radiator 25 and the outdoor heat exchanger 35, and calculates the heat exchange amount QD based on the calculated temperature difference. The shutter ECU 61 may estimate the temperature of the radiator 25 based on the outlet side water temperature Tout detected by the outlet side water temperature sensor 26.
  • the shutter ECU 61 causes the outdoor heat exchanger to detect the temperature of the refrigerant based on the temperature of the refrigerant detected by the sensor.
  • the temperature of 35 may be estimated. Further, it is possible to use a sensor that detects the pressure of the refrigerant instead of the sensor that detects the temperature of the refrigerant.
  • the shutter ECU 61 calculates a first subtraction value D1 obtained by subtracting the heat exchange amount QD from the required heat absorption amount QA of the outdoor heat exchanger 35.
  • the shutter ECU 61 has a map showing the relationship between the heat absorption amount of the outdoor heat exchanger 35 and the duty value of the blower device 70, and based on this map, the first subtraction value D1 to the first duty value of the blower device 70. Calculate DA.
  • the shutter ECU 61 also calculates a second subtraction value D2 obtained by subtracting the heat exchange amount QD from the required heat radiation amount QB of the radiator 25.
  • the shutter ECU 61 has a map showing the relationship between the heat radiation amount of the radiator 25 and the duty value of the blower device 70, and calculates the second duty value DB of the blower device 70 from the second subtraction value D2 based on this map. To do.
  • the shutter ECU 61 sets the larger one of the first duty value DA and the second duty value DB as the duty value DC of the blower device 70, and sends the set duty value DC to the fan ECU 71 to blow air.
  • the drive of the device 70 is controlled. According to the heat exchange system 10 of the present embodiment described above, the action and effect shown in the following (5) can be further obtained.
  • the shutter device 60 sets the shutter device 60 to the open state and changes the heat exchange amount QD from the required heat absorption amount QA of the outdoor heat exchanger 35. Based on the subtracted first subtraction value D1 and the second subtraction value D2 obtained by subtracting the heat exchange amount QD from the required heat radiation amount QB of the radiator 25, the drive of the blower device 70 is controlled.
  • the heat exchange system 10 of the present embodiment is provided with a refrigerant pressure sensor 85 that detects the pressure Pa of the refrigerant flowing out of the outdoor heat exchanger 35.
  • the refrigerant pressure sensor 85 corresponds to a sensor that detects the pressure of the refrigerant flowing through the outdoor heat exchanger 35.
  • the output signal of the refrigerant pressure sensor 85 is taken into the air conditioning ECU 84.
  • the air conditioning ECU 84 is shown in FIG. 12 based on the refrigerant pressure Pa detected by the refrigerant pressure sensor 85, the inside air temperature Tr detected by the inside air temperature sensor 80, and the outside air temperature Tam detected by the outside air temperature sensor 81. Execute the process.
  • the correction value ⁇ PA increases as the deviation ⁇ T increases, and the correction value ⁇ PA decreases as the deviation ⁇ T decreases.
  • the air conditioning ECU 84 acquires the information of the actual refrigerant pressure Pa of the outdoor heat exchanger 35 based on the output signal of the refrigerant pressure sensor 85 as the processing of step S41 following step S40.
  • the air conditioning ECU 84 determines whether or not the actual refrigerant pressure Pa is higher than the target refrigerant pressure PA as the processing of step S42 following step S41.
  • the air conditioning ECU 84 makes an affirmative decision in the process of step S42, and as the process of the following step S43, the shutter ECU 61 is set to the closed state. Instruct.
  • the air conditioning ECU 84 makes a negative determination in the process of step S42, and the shutter device 60 is opened to open the shutter device 60 as the process of step S44. Instruct the ECU 61.
  • the shutter ECU 61 opens and closes the shutter device 60 based on an instruction from the air conditioning ECU 84.
  • the target refrigerant pressure PA is set according to the outside air temperature Tam.
  • the refrigerant pressure Pa of the outdoor heat exchanger 35 rises too much, the temperature difference between the outdoor heat exchanger 35 and the outside air temperature Tam cannot be obtained, and the heat absorption amount of the outdoor heat exchanger 35 decreases.
  • the refrigerant pressure Pa of the outdoor heat exchanger 35 decreases, and when the heat absorption amount of the outdoor heat exchanger 35 from the outside air is large, the refrigerant pressure Pa of the outdoor heat exchanger 35 increases. Go up. That is, when the wind speed of the outside air supplied to the outdoor heat exchanger 35 increases due to the opening of the shutter device 60, the refrigerant pressure Pa of the outdoor heat exchanger 35 increases. At this time, if the refrigerant pressure Pa of the outdoor heat exchanger 35 is higher than the target refrigerant pressure PA, the wind speed of the outside air supplied to the outdoor heat exchanger 35 may be slowed, that is, the shutter device 60 may be closed. it can.
  • the refrigerant pressure Pa of the outdoor heat exchanger 35 is higher than the target refrigerant pressure PA, instead of closing the shutter device 60, a method of lowering the rotation speed of the blower device 70 is adopted. Is also possible. According to the heat exchange system 10 of the present embodiment, it is not necessary to calculate the heat quantities QA, Qa, QB, Qc used in the heat exchange system 10 of the first embodiment, and therefore the calculation processing can be simplified. is there.
  • each embodiment can also be implemented in the following forms.
  • -In the heat exchange system 10 of each embodiment not only the fin 50 but an appropriate member can be used as a connecting member that thermally connects the radiator 25 and the outdoor heat exchanger 35.
  • the shutter device 60 may be arranged in the air passage Wa extending from the grill opening 41 to the engine room 42. Further, the shutter device 60 may be arranged on the downstream side of the outdoor heat exchanger 35 in the air flow direction.
  • the heat source to be cooled by the cooling system 20 is not limited to the electric motor 21, the battery 22, and the inverter 23, and any heat source mounted on the vehicle can be used.
  • the shutter ECU 61 of the first embodiment makes a negative determination in the process of step S32 shown in FIG. 9, that is, one of the first request flag F1 and the second request flag F2 is set to “1”. If so, the process of closing the shutter device 60 may be executed.
  • the ECU and the control method thereof described in the present disclosure are provided by configuring a processor and a memory programmed to execute one or more functions embodied by a computer program. It may be realized by a dedicated computer.
  • the control device and the control method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor including one or a plurality of dedicated hardware logic circuits.
  • a control device and a control method thereof according to the present disclosure are configured by a combination of a processor and a memory programmed to execute one or a plurality of functions, and a processor including one or a plurality of hardware logic circuits. It may be implemented by one or more dedicated computers.
  • the computer program may be stored in a computer-readable non-transition tangible recording medium as an instruction executed by a computer.
  • the dedicated hardware logic circuit and the hardware logic circuit may be realized by a digital circuit including a plurality of logic circuits or an analog circuit.
  • the engine room 42 may be a space in which the electric motor is housed.
  • the radiator 25 may be arranged downstream of the outdoor heat exchanger 35 in the air flow direction Da.
  • steps S31 and S36 shown in FIGS. 9 and 11 instead of the process of closing the shutter device 60, the opening degree of the shutter device 60 is set in steps S37 and S38. You may perform the process which adjusts to a closing direction rather than the opening degree of 60. The same applies to the process of step S43 in FIG.
  • the outdoor heat exchanger 35 is not limited to being used as a heat absorber that absorbs heat from the air, but may be used as a radiator that radiates heat to the air.
  • the present disclosure is not limited to the above specific examples. A person skilled in the art appropriately modified the above-described specific examples is also included in the scope of the present disclosure as long as the features of the present disclosure are provided.
  • the elements included in the above-described specific examples, and the arrangement, conditions, shapes, and the like of the elements are not limited to those illustrated, but can be appropriately changed.
  • the respective elements included in the above-described specific examples can be appropriately combined as long as there is no technical contradiction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

A heat exchange system (10) comprises a heat exchanger (35), a radiator (25), a linking member (50), and a shutter device (60). The heat exchanger is used as a heat exchanger that absorbs heat from air in a heat exchange cycle of an air conditioning device of a vehicle. The radiator is used in a cooling system that cools a heat producing source of the vehicle. The linking member thermally links the heat exchanger and the radiator. The shutter device can switch between supplying and cutting off air to the heat exchanger and the radiator.

Description

車両の熱交換システムVehicle heat exchange system 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年12月14日に出願された日本国特許出願2018-234415号と、2019年11月18日に出願された日本国特許出願2019-207741号と、に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2018-234415 filed on December 14, 2018 and Japanese Patent Application No. 2019-207741 filed on November 18, 2019. , Claiming the benefit of its priority, and the entire contents of that patent application are incorporated herein by reference.
 本開示は、車両の熱交換システムに関する。 The present disclosure relates to a vehicle heat exchange system.
 車両では、グリル開口部からエンジンルーム内に導入される空気が車両用空調装置の室外熱交換器やラジエータに供給されている。室外熱交換器の内部には、車両用空調装置の冷凍サイクルやヒートポンプサイクルに用いられる熱媒体が流れている。室外熱交換器は、その内部を流れる熱媒体と空気との間で熱交換を行うことにより、熱媒体の熱を空気に放出したり、空気の熱を熱媒体に吸収したりする。ラジエータには、車両のエンジンを冷却するための冷却水が流れている。ラジエータは、その内部を流れる冷却水と空気との間で熱交換を行うことにより、冷却水の熱を空気に放出する。 In the vehicle, the air introduced into the engine room through the grill opening is supplied to the outdoor heat exchanger and radiator of the vehicle air conditioner. A heat medium used in a refrigeration cycle or a heat pump cycle of a vehicle air conditioner flows inside the outdoor heat exchanger. The outdoor heat exchanger exchanges heat between the heat medium flowing inside and the air to release the heat of the heat medium to the air or absorb the heat of the air to the heat medium. Cooling water for cooling the engine of the vehicle flows through the radiator. The radiator radiates the heat of the cooling water to the air by exchanging heat between the cooling water flowing inside and the air.
 また、車両には、グリル開口部からエンジンルームへの空気の流れを一時的に遮断することの可能なシャッタ装置が設けられているものがある。このようなシャッタ装置を含め、上記の室外熱交換器及びラジエータを有する熱交換システムとしては、例えば下記の特許文献1に記載の車両の熱交換システムがある。 Also, some vehicles are equipped with a shutter device that can temporarily block the flow of air from the grill opening to the engine room. As a heat exchange system including the outdoor heat exchanger and the radiator including such a shutter device, for example, there is a vehicle heat exchange system described in Patent Document 1 below.
 特許文献1に記載の熱交換システムは、グリル開口部から導入される空気を室外熱交換器及びラジエータに送風するための送風装置を備えている。送風装置は、通常、グリル開口部から導入される空気が室外熱交換器及びラジエータに向かう方向に流れるように正方向に回転している。特許文献1に記載の熱交換システムでは、室外熱交換器がヒートポンプサイクルの蒸発器として用いられている。室外熱交換器が蒸発器として用いられている場合、空気に含まれる水が室外熱交換器の外面に凝縮することにより、室外熱交換器の外面に霜が付着する可能性がある。特許文献1に記載の熱交換システムでは、室外熱交換器に霜が付着した場合、室外熱交換器から霜を除去するための除霜運転が行われる。具体的には、この熱交換器システムでは、除霜運転として、グリルシャッタが閉状態に設定されるとともに、送風装置を逆方向に回転させる。これにより、ラジエータにより暖められた空気を室外熱交換器に送風することにより、室外熱交換器に付着した霜を除去している。 The heat exchange system described in Patent Document 1 includes an air blower for blowing the air introduced from the grille opening to the outdoor heat exchanger and the radiator. The blower normally rotates in the forward direction so that the air introduced from the grill opening flows in the direction toward the outdoor heat exchanger and the radiator. In the heat exchange system described in Patent Document 1, the outdoor heat exchanger is used as the evaporator of the heat pump cycle. When the outdoor heat exchanger is used as an evaporator, water contained in air is condensed on the outer surface of the outdoor heat exchanger, which may cause frost to adhere to the outer surface of the outdoor heat exchanger. In the heat exchange system described in Patent Document 1, when frost adheres to the outdoor heat exchanger, a defrosting operation for removing frost from the outdoor heat exchanger is performed. Specifically, in this heat exchanger system, as the defrosting operation, the grill shutter is set to the closed state and the blower device is rotated in the reverse direction. Thus, the air warmed by the radiator is blown to the outdoor heat exchanger to remove the frost attached to the outdoor heat exchanger.
特許第3600164号公報Japanese Patent No. 3600164
 特許文献1に記載の熱交換システムのように、ラジエータの熱を室外熱交換器に伝達させるために送風装置を逆回転させる構成の場合、送風装置を逆回転させるために電力が必要となるため、車両の消費電力が増加する可能性がある。
 なお、このような課題は、除霜運転の際に送風装置を駆動させる熱交換システムに限らず、室外熱交換器とラジエータとの間で熱交換を行う際に送風装置を駆動させる熱交換システムに共通する課題である。
As in the heat exchange system described in Patent Document 1, in the case of a configuration in which the blower device is rotated in reverse to transfer the heat of the radiator to the outdoor heat exchanger, electric power is required to rotate the blower device in reverse. , The power consumption of the vehicle may increase.
In addition, such a problem is not limited to the heat exchange system that drives the blower during the defrosting operation, but also the heat exchange system that drives the blower when performing heat exchange between the outdoor heat exchanger and the radiator. Is a common issue.
 本開示の目的は、消費電力を低減することの可能な車両の熱交換システムを提供することにある。 An object of the present disclosure is to provide a vehicle heat exchange system capable of reducing power consumption.
 本開示の一態様による熱交換システムは、熱交換器と、ラジエータと、連結部材と、シャッタ装置と、を備える。熱交換器は、車両の空調装置の熱交換サイクルサイクルに用いられて空気から吸熱又は空気に放熱する熱交換器であって、熱交換サイクルを循環する熱媒体と、車両の前方からエンジンルーム内に導入される空気との間で熱交換を行う。ラジエータは、車両の発熱源を冷却する冷却システムに用いられ、車両に搭載される発熱源を冷却するための冷却水と、車両の前方からエンジンルーム内の導入される空気との間で熱交換を行う。連結部材は、熱交換器とラジエータとを熱的に連結する。シャッタ装置は、熱交換器及びラジエータへの空気の供給及び遮断を切り替え可能である。 A heat exchange system according to an aspect of the present disclosure includes a heat exchanger, a radiator, a connecting member, and a shutter device. The heat exchanger is a heat exchanger that is used in a heat exchange cycle of an air conditioner of a vehicle and absorbs heat from air or radiates heat to air, and a heat medium that circulates in the heat exchange cycle and from inside the engine room from the front of the vehicle. Heat exchange with the air introduced into the. The radiator is used in a cooling system that cools the heat source of the vehicle, and heat is exchanged between the cooling water for cooling the heat source mounted on the vehicle and the air introduced from the front of the vehicle into the engine room. I do. The connecting member thermally connects the heat exchanger and the radiator. The shutter device can switch supply and cutoff of air to the heat exchanger and the radiator.
 この構成によれば、熱交換器とラジエータとが連結部材を介して熱的に連結されているため、熱交換器及びラジエータへの空気の供給をシャッタ装置により遮断することで、熱交換器とラジエータとの間で熱を効率的に授受することが可能となる。したがって、熱交換器とラジエータとの間で熱交換を行うために送風装置を回転させる必要がある場合であっても、送風装置の回転速度を遅くすることが可能である。また、条件次第では送風装置を停止させることも可能である。よって、消費電力を低減することができる。 According to this configuration, since the heat exchanger and the radiator are thermally connected to each other via the connecting member, by shutting off the air supply to the heat exchanger and the radiator by the shutter device, Heat can be efficiently transferred to and from the radiator. Therefore, even when it is necessary to rotate the blower in order to exchange heat between the heat exchanger and the radiator, it is possible to reduce the rotation speed of the blower. Further, the blower can be stopped depending on the conditions. Therefore, power consumption can be reduced.
図1は、第1実施形態の車両の熱交換システムの概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a vehicle heat exchange system of the first embodiment. 図2は、第1実施形態の車両の概略構成を模式的に示す図である。FIG. 2 is a diagram schematically showing a schematic configuration of the vehicle of the first embodiment. 図3は、第1実施形態の車両の熱交換システムの動作例を示すブロック図である。FIG. 3 is a block diagram showing an operation example of the vehicle heat exchange system of the first embodiment. 図4は、第1実施形態のラジエータ、室外熱交換器、及びフィンの断面構造を示す斜視断面図である。FIG. 4 is a perspective sectional view showing a sectional structure of the radiator, the outdoor heat exchanger, and the fins of the first embodiment. 図5は、第1実施形態の車両の消費エネルギについてシャッタ装置が開状態である場合と閉状態である場合とを比較して示すグラフである。FIG. 5 is a graph showing the energy consumption of the vehicle of the first embodiment in comparison between the case where the shutter device is in the open state and the case where the shutter device is in the closed state. 図6は、第1実施形態の車両の熱交換システムの電気的な構成を示すブロック図である。FIG. 6 is a block diagram showing an electrical configuration of the vehicle heat exchange system of the first embodiment. 図7は、第1実施形態の空調ECUにより実行される処理の手順を示すフローチャートである。FIG. 7 is a flowchart showing a procedure of processing executed by the air conditioning ECU of the first embodiment. 図8は、第1実施形態の冷却ECUにより実行される処理の手順を示すフローチャートである。FIG. 8 is a flowchart showing a procedure of processing executed by the cooling ECU of the first embodiment. 図9は、第1実施形態のシャッタECUにより実行される処理の手順を示すフローチャートである。FIG. 9 is a flowchart showing a procedure of processing executed by the shutter ECU of the first embodiment. 図10は、第1実施形態のラジエータ及び室外熱交換器の間の熱移動量と、それらを通過する空気の風量との関係を示すグラフである。FIG. 10 is a graph showing the relationship between the heat transfer amount between the radiator and the outdoor heat exchanger of the first embodiment and the air flow rate of the air passing through them. 図11は、第2実施形態のシャッタECUにより実行される処理の手順を示すフローチャートである。FIG. 11 is a flowchart showing a procedure of processing executed by the shutter ECU of the second embodiment. 図12は、第3実施形態の空調ECUにより実行される処理の手順を示すフローチャートである。FIG. 12 is a flowchart showing a procedure of processing executed by the air conditioning ECU of the third embodiment. 図13は、他の実施形態の車両の概略構成を模式的に示す図である。FIG. 13: is a figure which shows typically the schematic structure of the vehicle of other embodiment.
 以下、車両の熱交換システムの一実施形態について図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 <第1実施形態>
 はじめに、図1に示される車両の熱交換システム10の第1実施形態について説明する。なお、本実施形態の熱交換システム10が搭載される車両は、電動発動機の動力に基づいて走行する電気自動車やプラグインハイブリッド車等である。図1に示されるように、本実施形態の車両の熱交換システム10は、冷却システム20と、ヒートポンプサイクル30とを備えている。
Hereinafter, an embodiment of a vehicle heat exchange system will be described with reference to the drawings. In order to facilitate understanding of the description, the same reference numerals are given to the same constituent elements in each drawing as much as possible, and overlapping description will be omitted.
<First Embodiment>
First, a first embodiment of the vehicle heat exchange system 10 shown in FIG. 1 will be described. The vehicle on which the heat exchange system 10 of the present embodiment is mounted is an electric vehicle or a plug-in hybrid vehicle that travels based on the power of the electric engine. As shown in FIG. 1, the vehicle heat exchange system 10 of the present embodiment includes a cooling system 20 and a heat pump cycle 30.
 冷却システム20は、車両に搭載される電動発動機21、バッテリ22、及びインバータ23に冷却水を循環させることにより、それらの要素を冷却するシステムである。このように、本実施形態の冷却システム20が冷却対象とする発熱源は、電動発動機21、バッテリ22、及びインバータ23となっている。 The cooling system 20 is a system that cools those elements by circulating cooling water through an electric motor 21, a battery 22, and an inverter 23 mounted on a vehicle. As described above, the heat sources to be cooled by the cooling system 20 of the present embodiment are the electric motor 21, the battery 22, and the inverter 23.
 電動発動機21は、バッテリ22から供給される電力に基づいて駆動する。この電動発動機21の動力が車両の車輪に伝達されることにより車両が走行する。また、電動発動機21は、車両が停車する際に車輪から伝達される運動エネルギに基づいて回生発電を行う。この回生発電により生成される電動発動機21の電力はバッテリ22に充電される。 The electric motor 21 is driven based on the electric power supplied from the battery 22. The vehicle runs by transmitting the power of the electric motor 21 to the wheels of the vehicle. Further, the electric motor 21 performs regenerative power generation based on the kinetic energy transmitted from the wheels when the vehicle stops. The electric power of the electric motor 21 generated by this regenerative power generation charges the battery 22.
 バッテリ22は、リチウムイオン電池等の充電及び放電の可能な二次電池からなる。バッテリ22に充電されている電力は電動発動機21だけでなく、車両に搭載されている各種電子機器に供給される。
 インバータ23は、バッテリ22に充電されている直流電力を交流電力に変換して電動発動機21に供給する。また、インバータ23は、電動発動機21の回生発電により生成される交流電力を直流電力に変換してバッテリ22に充電する。
The battery 22 is a rechargeable secondary battery such as a lithium-ion battery. The electric power charged in the battery 22 is supplied to not only the electric motor 21 but also various electronic devices mounted on the vehicle.
The inverter 23 converts the DC power charged in the battery 22 into AC power and supplies the AC power to the electric motor 21. Further, the inverter 23 converts the AC power generated by the regenerative power generation of the electric motor 21 into DC power and charges the battery 22.
 冷却システム20は、ポンプ24及びラジエータ25を備えている。冷却システム20は、電動発動機21、バッテリ22、ポンプ24、インバータ23、及びラジエータ25が配管により環状に接続された構造を有している。冷却システム20では、配管を介して接続された各要素を冷却水が循環している。 The cooling system 20 includes a pump 24 and a radiator 25. The cooling system 20 has a structure in which an electric motor 21, a battery 22, a pump 24, an inverter 23, and a radiator 25 are annularly connected by a pipe. In the cooling system 20, cooling water circulates through each element connected via piping.
 ポンプ24は、バッテリ22から供給される電力に基づいて駆動する、いわゆる電動ポンプである。ポンプ24は、冷却システム20を循環する冷却水を圧送することにより、冷却システム20の各要素に冷却水を循環させる。
 図2に示されるように、ラジエータ25は、車両の前方に設けられるグリル開口部41からエンジンルーム42に延びる空気通路Waの途中に配置されている。ラジエータ25は、その内部を流れる冷却水と、グリル開口部41からエンジンルーム42内に導入される空気との間で熱交換を行うことにより、冷却水の熱を空気に放出して冷却水を冷却する部分である。
The pump 24 is a so-called electric pump that is driven based on the electric power supplied from the battery 22. The pump 24 circulates the cooling water in each element of the cooling system 20 by pumping the cooling water circulating in the cooling system 20.
As shown in FIG. 2, the radiator 25 is arranged in the middle of an air passage Wa extending from a grille opening 41 provided in the front of the vehicle to the engine room 42. The radiator 25 exchanges heat between the cooling water flowing inside and the air introduced into the engine room 42 from the grille opening 41, thereby releasing the heat of the cooling water to the air to generate the cooling water. This is the part to be cooled.
 図1に示されるように、冷却システム20では、ラジエータ25において冷却された冷却水が電動発動機21、バッテリ22、及びインバータ23を循環することにより、それらの熱が冷却水に吸収される。これにより、電動発動機21、バッテリ22、及びインバータ23が冷却されるようになっている。 As shown in FIG. 1, in the cooling system 20, the cooling water cooled in the radiator 25 circulates through the electric motor 21, the battery 22, and the inverter 23, so that the heat is absorbed by the cooling water. As a result, the electric motor 21, the battery 22, and the inverter 23 are cooled.
 ヒートポンプサイクル30は、車両の空調装置において、車室内に送風される空調空気を加熱又は冷却するためのシステムである。本実施形態では、ヒートポンプサイクル30が、空調装置に用いられる熱交換サイクルに相当する。図1に示されるように、ヒートポンプサイクル30は、圧縮機31、室内放熱器32、第1三方弁33、第1膨張弁34、室外熱交換器35、第2三方弁36、第2膨張弁37、及び蒸発器38を備えている。ヒートポンプサイクル30は、これらの要素が配管により環状に接続された構造を有している。ヒートポンプサイクル30では、配管を介して接続された各要素を熱媒体が循環している。図1では、空調空気を冷却する冷却モードでヒートポンプサイクル30が動作している場合に熱媒体が流れる配管を実線で示し、熱媒体が流れない配管を破線で示している。また、図3では、空調空気を加熱する暖房モードでヒートポンプサイクル30が動作している場合に熱媒体が流れる配管を実線で示し、熱媒体が流れない配管を破線で示している。 The heat pump cycle 30 is a system for heating or cooling the conditioned air that is blown into the passenger compartment of the vehicle air conditioner. In the present embodiment, the heat pump cycle 30 corresponds to the heat exchange cycle used in the air conditioner. As shown in FIG. 1, the heat pump cycle 30 includes a compressor 31, an indoor radiator 32, a first three-way valve 33, a first expansion valve 34, an outdoor heat exchanger 35, a second three-way valve 36, and a second expansion valve. 37 and an evaporator 38 are provided. The heat pump cycle 30 has a structure in which these elements are annularly connected by piping. In the heat pump cycle 30, the heat medium circulates through each element connected via piping. In FIG. 1, the pipes through which the heat medium flows when the heat pump cycle 30 is operating in the cooling mode for cooling the conditioned air are shown by solid lines, and the pipes through which the heat medium does not flow are shown by broken lines. Further, in FIG. 3, the pipes through which the heat medium flows when the heat pump cycle 30 is operating in the heating mode for heating the conditioned air are shown by solid lines, and the pipes through which the heat medium does not flow are shown by broken lines.
 圧縮機31は、熱媒体を吸入して圧縮するとともに、圧縮した熱媒体を室内放熱器32に吐出する。
 室内放熱器32は、ヒートポンプサイクル30が暖房モードで動作している際に、圧縮機31から吐出される熱媒体の熱を空調空気に放出することにより、空調空気を加熱する部分である。室内放熱器32を通過した熱媒体は、第1三方弁33に流入する。
The compressor 31 sucks in and compresses the heat medium, and discharges the compressed heat medium to the indoor radiator 32.
The indoor radiator 32 is a part that heats the conditioned air by releasing the heat of the heat medium discharged from the compressor 31 to the conditioned air when the heat pump cycle 30 is operating in the heating mode. The heat medium that has passed through the indoor radiator 32 flows into the first three-way valve 33.
 第1三方弁33は、室内放熱器32から吐出される熱媒体を流路W11及びバイパス流路W12のいずれかに選択的に流す。流路W11は、第1膨張弁34が配置されている流路である。バイパス流路W12は、第1膨張弁34を迂回する流路である。図1に示されるように、ヒートポンプサイクル30が冷房モードで動作している場合、第1三方弁33は、室内放熱器32から吐出される熱媒体をバイパス流路W12に流すように動作する。また、図3に示されるように、ヒートポンプサイクル30が暖房モードで動作している場合、第1三方弁33は、室内放熱器32から吐出される熱媒体を流路W11に流すように動作する。 The first three-way valve 33 selectively flows the heat medium discharged from the indoor radiator 32 into either the flow passage W11 or the bypass flow passage W12. The flow path W11 is a flow path in which the first expansion valve 34 is arranged. The bypass flow passage W12 is a flow passage that bypasses the first expansion valve 34. As shown in FIG. 1, when the heat pump cycle 30 is operating in the cooling mode, the first three-way valve 33 operates so that the heat medium discharged from the indoor radiator 32 flows through the bypass flow passage W12. Further, as shown in FIG. 3, when the heat pump cycle 30 is operating in the heating mode, the first three-way valve 33 operates so that the heat medium discharged from the indoor radiator 32 flows through the flow path W11. ..
 第1膨張弁34は、ヒートポンプサイクル30が暖房モードで動作している場合に、室内放熱器32から流路W11を通じて流入する熱媒体を膨張させて減圧させる。
 流路W11を流れることにより第1膨張弁34を通過した熱媒体、あるいはバイパス流路W12を流れることにより第1膨張弁34を迂回した熱媒体は、室外熱交換器35に流入する。図2に示されるように、室外熱交換器35は、ラジエータ25と同様に、グリル開口部41からエンジンルーム42に延びる空気通路Waの途中に配置されている。室外熱交換器35は、ラジエータ25よりも空気流れ方向Daの下流側に配置されている。図1に示されるようにヒートポンプサイクル30が冷房モードで動作している場合、室外熱交換器35は、その内部を流れる熱媒体と空気との間で熱交換を行うことにより、熱媒体の熱を空気に放熱して熱媒体を冷却する凝縮器として機能する。また、図3に示されるように、ヒートポンプサイクル30が暖房モードで動作している場合、室外熱交換器35は、その内部を流れる熱媒体と空気との間で熱交換を行うことにより、空気の熱を熱媒体に吸収させて熱媒体を加熱する蒸発器として機能する。室外熱交換器35を通過した熱媒体は、第2三方弁36に流入する。
The first expansion valve 34 expands and reduces the pressure of the heat medium flowing from the indoor radiator 32 through the flow path W11 when the heat pump cycle 30 is operating in the heating mode.
The heat medium that has passed through the first expansion valve 34 by flowing through the flow path W11 or the heat medium that has bypassed the first expansion valve 34 by flowing through the bypass flow path W12 flows into the outdoor heat exchanger 35. As shown in FIG. 2, the outdoor heat exchanger 35 is arranged in the middle of the air passage Wa extending from the grille opening 41 to the engine room 42, similarly to the radiator 25. The outdoor heat exchanger 35 is arranged downstream of the radiator 25 in the air flow direction Da. When the heat pump cycle 30 is operating in the cooling mode as shown in FIG. 1, the outdoor heat exchanger 35 exchanges heat between the heat medium flowing through the inside thereof and the air, whereby the heat of the heat medium is exchanged. It functions as a condenser that radiates heat to the air to cool the heat medium. Further, as shown in FIG. 3, when the heat pump cycle 30 is operating in the heating mode, the outdoor heat exchanger 35 exchanges heat between the heat medium flowing through the inside of the heat exchanger 35 and the air, and It functions as an evaporator that heats the heat medium by absorbing the heat of the heat medium. The heat medium that has passed through the outdoor heat exchanger 35 flows into the second three-way valve 36.
 第2三方弁36は、室外熱交換器35から吐出される熱媒体を流路W21及びバイパス流路W22のいずれかに選択的に流す。流路W21は、第2膨張弁37及び蒸発器38が配置される流路である。バイパス流路W22は、第2膨張弁37及び蒸発器38を迂回する流路である。図1に示されるように、ヒートポンプサイクル30が冷房モードで動作している場合、第2三方弁36は、室外熱交換器35から吐出される熱媒体を流路W21に流すように動作する。また、図3に示されるように、ヒートポンプサイクル30が暖房モードで動作している場合、第2三方弁36は、室外熱交換器35から吐出される熱媒体をバイパス流路W12に流すように動作する。 The second three-way valve 36 selectively flows the heat medium discharged from the outdoor heat exchanger 35 into either the flow passage W21 or the bypass flow passage W22. The flow path W21 is a flow path in which the second expansion valve 37 and the evaporator 38 are arranged. The bypass flow passage W22 is a flow passage that bypasses the second expansion valve 37 and the evaporator 38. As shown in FIG. 1, when the heat pump cycle 30 is operating in the cooling mode, the second three-way valve 36 operates so that the heat medium discharged from the outdoor heat exchanger 35 flows through the flow path W21. Further, as shown in FIG. 3, when the heat pump cycle 30 is operating in the heating mode, the second three-way valve 36 causes the heat medium discharged from the outdoor heat exchanger 35 to flow into the bypass flow passage W12. Operate.
 第2膨張弁37は、ヒートポンプサイクル30が冷房モードで動作している場合に、室外熱交換器35から吐出される熱媒体を膨張させて減圧させる。第2膨張弁37において減圧させられた熱媒体は蒸発器38に流入する。蒸発器38は、その内部を流れる熱媒体と空調空気との間で熱交換を行うことにより、空調空気の熱を熱媒体により吸収して空調空気を冷却させる。 The second expansion valve 37 expands and reduces the pressure of the heat medium discharged from the outdoor heat exchanger 35 when the heat pump cycle 30 is operating in the cooling mode. The heat medium whose pressure has been reduced by the second expansion valve 37 flows into the evaporator 38. The evaporator 38 exchanges heat between the heat medium flowing inside and the conditioned air, thereby absorbing the heat of the conditioned air by the heat medium and cooling the conditioned air.
 次に、ヒートポンプサイクル30の動作例について具体的に説明する。
 図1に示されるように、ヒートポンプサイクル30では、冷房モードで動作している場合、熱媒体が、「圧縮機31→室内放熱器32→室外熱交換器35→第2膨張弁37→蒸発器38→圧縮機31」の順で循環する。この場合、ヒートポンプサイクル30では、圧縮機31から吐出される高温及び高圧の熱媒体が室内放熱器32に流入する。この際、空調装置では、室内放熱器32に空調空気が流れないようになっているため、室内放熱器32を流れる熱媒体は空調空気と熱交換を行うことなく室外熱交換器35に流入する。
Next, an operation example of the heat pump cycle 30 will be specifically described.
As shown in FIG. 1, in the heat pump cycle 30, when operating in the cooling mode, the heat medium is “compressor 31→indoor radiator 32→outdoor heat exchanger 35→second expansion valve 37→evaporator. 38→compressor 31″. In this case, in the heat pump cycle 30, the high-temperature and high-pressure heat medium discharged from the compressor 31 flows into the indoor radiator 32. At this time, in the air conditioner, the conditioned air does not flow into the indoor radiator 32, so the heat medium flowing through the indoor radiator 32 flows into the outdoor heat exchanger 35 without exchanging heat with the conditioned air. ..
 室外熱交換器35は、ヒートポンプサイクル30が冷房モードで動作している場合には、凝縮器として機能している。すなわち、室外熱交換器35では、その内部を流れる高温及び高圧の熱媒体と空気との間で熱交換が行われることにより、熱媒体の熱が空気に放出されるため、熱媒体が冷却されて凝縮される。 The outdoor heat exchanger 35 functions as a condenser when the heat pump cycle 30 operates in the cooling mode. That is, in the outdoor heat exchanger 35, the heat of the heat medium is released to the air by exchanging heat between the high-temperature and high-pressure heat medium flowing inside the air and the air, so that the heat medium is cooled. Is condensed.
 室外熱交換器35において冷却された熱媒体は、第2膨張弁37を通じて低圧になるまで減圧させられた後、蒸発器38に流入する。蒸発器38では、その内部を流れる低圧の熱媒体と、その外部を流れる空調空気との間で熱交換が行われることにより、空調空気の熱が熱媒体に吸収されて熱媒体が蒸発する。この蒸発器38における空調空気と熱媒体との熱交換により空調空気が冷却される。冷却された空調空気が車室内に送風されることにより、車室内の冷房が行われる。蒸発器38において蒸発した熱媒体は、圧縮機31に吸入されて圧縮された後、ヒートポンプサイクル30を再循環する。 The heat medium cooled in the outdoor heat exchanger 35 is depressurized to a low pressure through the second expansion valve 37 and then flows into the evaporator 38. In the evaporator 38, heat is exchanged between the low-pressure heat medium flowing inside the evaporator 38 and the conditioned air flowing outside thereof, so that the heat of the conditioned air is absorbed by the heat medium and the heat medium evaporates. The conditioned air is cooled by heat exchange between the conditioned air and the heat medium in the evaporator 38. The cooled air-conditioned air is blown into the vehicle interior to cool the vehicle interior. The heat medium evaporated in the evaporator 38 is sucked into the compressor 31 and compressed, and then recirculates through the heat pump cycle 30.
 一方、図3に示されるように、ヒートポンプサイクル30では、暖房モードで動作している場合、熱媒体が、「圧縮機31→室内放熱器32→第1膨張弁34→室外熱交換器35→圧縮機31」の順で流れる。この場合、ヒートポンプサイクル30では、圧縮機31から吐出される高温及び高圧の熱媒体が室内放熱器32に流入する。この際、室内放熱器32において、その内部を流れる熱媒体と空調空気との間で熱交換が行われることにより、熱媒体の熱が空調空気に放出されて空調空気が加熱される。この加熱された空気が車室内に送風されることにより、車室内の暖房が行われる。 On the other hand, as shown in FIG. 3, in the heat pump cycle 30, when operating in the heating mode, the heat medium is “compressor 31→indoor radiator 32→first expansion valve 34→outdoor heat exchanger 35→ Compressor 31” flows in this order. In this case, in the heat pump cycle 30, the high-temperature and high-pressure heat medium discharged from the compressor 31 flows into the indoor radiator 32. At this time, in the indoor radiator 32, heat is exchanged between the heat medium flowing inside the indoor radiator 32 and the conditioned air, whereby the heat of the heat medium is released to the conditioned air to heat the conditioned air. The heated air is blown into the vehicle interior to heat the vehicle interior.
 室内放熱器32を通過した熱媒体は、第1膨張弁34を通じて低圧になるまで減圧させられた後、室外熱交換器35に流入する。室外熱交換器35は、ヒートポンプサイクル30が暖房モードで動作している場合には、蒸発器として機能している。すなわち、室外熱交換器35では、その内部を流れる低圧の熱媒体と、その外部を流れる空気との間で熱交換が行われることにより、空気の熱が熱媒体に吸収されて熱媒体が蒸発する。室外熱交換器35において蒸発した熱媒体は、バイパス流路W22を通じて圧縮機31に吸入されて圧縮された後、ヒートポンプサイクル30を再循環する。 The heat medium that has passed through the indoor radiator 32 is depressurized to a low pressure through the first expansion valve 34, and then flows into the outdoor heat exchanger 35. The outdoor heat exchanger 35 functions as an evaporator when the heat pump cycle 30 is operating in the heating mode. That is, in the outdoor heat exchanger 35, heat is exchanged between the low-pressure heat medium flowing inside and the air flowing outside, so that the heat of the air is absorbed by the heat medium and the heat medium evaporates. To do. The heat medium evaporated in the outdoor heat exchanger 35 is sucked into the compressor 31 through the bypass passage W22 and compressed, and then recirculates in the heat pump cycle 30.
 次に、ラジエータ25及び室外熱交換器35の構造について具体的に説明する。
 図4に示されるように、ラジエータ25は、扁平状の複数のチューブ250が所定の間隔を有して積層して配置された構造を有している。チューブ250は、アルミニウム合金等の金属により形成されている。チューブ250の内部には、冷却システム20を循環する冷却水の流路251が形成されている。隣り合うチューブ250,250の間に形成される隙間には、グリル開口部41から導入される空気が流れている。ラジエータ25では、各チューブ250の内部を流れる冷却水と、各チューブ250の外部を流れる空気との間で熱交換が行われる。
Next, the structures of the radiator 25 and the outdoor heat exchanger 35 will be specifically described.
As shown in FIG. 4, the radiator 25 has a structure in which a plurality of flat tubes 250 are stacked and arranged at a predetermined interval. The tube 250 is made of metal such as aluminum alloy. Inside the tube 250, a flow path 251 of cooling water circulating in the cooling system 20 is formed. The air introduced from the grille opening 41 flows in the gap formed between the adjacent tubes 250, 250. In the radiator 25, heat exchange is performed between the cooling water flowing inside each tube 250 and the air flowing outside each tube 250.
 室外熱交換器35も、ラジエータ25と同様に、扁平状の複数のチューブ350が所定の間隔を有して積層して配置された構造を有している。チューブ350も、アルミニウム合金等の金属により形成されている。チューブ350の内部には、ヒートポンプサイクル30を循環する熱媒体の流路351が形成されている。隣り合うチューブ350,350の間に形成される隙間には、グリル開口部41から導入される空気が流れている。室外熱交換器35では、各チューブ350の内部を流れる熱媒体と、各チューブ350の外部を流れる空気との間で熱交換が行われる。 Like the radiator 25, the outdoor heat exchanger 35 also has a structure in which a plurality of flat tubes 350 are stacked and arranged at a predetermined interval. The tube 350 is also made of a metal such as an aluminum alloy. Inside the tube 350, a heat medium flow path 351 for circulating the heat pump cycle 30 is formed. The air introduced from the grille opening 41 flows in the gap formed between the adjacent tubes 350, 350. In the outdoor heat exchanger 35, heat exchange is performed between the heat medium flowing inside each tube 350 and the air flowing outside each tube 350.
 ラジエータ25においてチューブ250,250間に形成される隙間、及び室外熱交換器35においてチューブ350,350間に形成される隙間には、それらの間に跨がるようにフィン50が配置されている。フィン50は、薄い金属板を波状に折り曲げることにより形成される、いわゆるコルゲートフィンからなる。フィン50は、ラジエータ25のチューブ250及び室外熱交換器35のチューブ350にろう付け等により接合されている。フィン50は、空気との接触面積を増加させることによりラジエータ25及び室外熱交換器35の伝熱面積を増加させ、それらの熱交換性能を向上させる機能を有している。 In the gap formed between the tubes 250, 250 in the radiator 25 and in the gap formed between the tubes 350, 350 in the outdoor heat exchanger 35, fins 50 are arranged so as to extend between them. .. The fins 50 are so-called corrugated fins formed by bending a thin metal plate in a wavy shape. The fins 50 are joined to the tubes 250 of the radiator 25 and the tubes 350 of the outdoor heat exchanger 35 by brazing or the like. The fin 50 has a function of increasing the heat transfer area of the radiator 25 and the outdoor heat exchanger 35 by increasing the contact area with the air and improving the heat exchange performance thereof.
 ラジエータ25及び室外熱交換器35は、フィン50を介して物理的及び熱的に連結されている。すなわち、ラジエータ25及び室外熱交換器35は、フィン50を介して互いに熱を授受することが可能である。このように、本実施形態では、フィン50が、ラジエータ25と室外熱交換器35とを熱的に連結する連結部材に相当する。 The radiator 25 and the outdoor heat exchanger 35 are physically and thermally connected via fins 50. That is, the radiator 25 and the outdoor heat exchanger 35 can exchange heat with each other via the fins 50. As described above, in the present embodiment, the fin 50 corresponds to a connecting member that thermally connects the radiator 25 and the outdoor heat exchanger 35.
 一方、図2に示されるように、本実施形態の熱交換システム10は、シャッタ装置60と、送風装置70とを更に備えている。
 シャッタ装置60は、グリル開口部41に配置されている。したがって、シャッタ装置60は、ラジエータ25及び室外熱交換器35に対して空気流れ方向Daの上流側に配置されている。シャッタ装置60は、複数のブレードを有している。シャッタ装置60は、複数のブレードを開閉動作させることにより、グリル開口部41を開閉させる。シャッタ装置60が開状態である場合、車両の走行風によりグリル開口部41を通じてラジエータ25、室外熱交換器35、及びエンジンルーム42に空気が導入される。シャッタ装置60が閉状態である場合、グリル開口部41を通じたラジエータ25、室外熱交換器35、及びエンジンルーム42への空気の導入が遮断される。このように、シャッタ装置60は、ラジエータ25及び室外熱交換器35への空気の供給及び遮断を切り替え可能である。シャッタ装置60が閉状態になることにより、車両の空力性能を向上させることができるため、車両の燃費を改善することが可能となる。具体的には、シャッタ装置60が開状態である場合よりも、シャッタ装置60が閉状態である場合の方が、車両の空気抵抗が減少するため、車両の走行負荷が下がる。結果として、図5に示されるように、車両の走行負荷だけでなく、補機電力、PTCヒータ等の補助電源の電力、圧縮機31の電力、車両に搭載される電動発動機(MG)21やインバータ(INV)23の損失等を減らすことができる。
On the other hand, as shown in FIG. 2, the heat exchange system 10 of the present embodiment further includes a shutter device 60 and a blower device 70.
The shutter device 60 is arranged in the grill opening 41. Therefore, the shutter device 60 is arranged upstream of the radiator 25 and the outdoor heat exchanger 35 in the air flow direction Da. The shutter device 60 has a plurality of blades. The shutter device 60 opens and closes the grill opening 41 by opening and closing a plurality of blades. When the shutter device 60 is in the open state, air is introduced into the radiator 25, the outdoor heat exchanger 35, and the engine room 42 through the grill opening 41 by the traveling wind of the vehicle. When the shutter device 60 is in the closed state, the introduction of air into the radiator 25, the outdoor heat exchanger 35, and the engine room 42 through the grille opening 41 is blocked. In this way, the shutter device 60 can switch the supply and cutoff of air to the radiator 25 and the outdoor heat exchanger 35. When the shutter device 60 is in the closed state, the aerodynamic performance of the vehicle can be improved, so that the fuel consumption of the vehicle can be improved. Specifically, when the shutter device 60 is in the closed state, the air resistance of the vehicle is lower than when the shutter device 60 is in the open state, so that the traveling load of the vehicle is reduced. As a result, as shown in FIG. 5, not only the running load of the vehicle but also the auxiliary machine power, the power of the auxiliary power source such as the PTC heater, the power of the compressor 31, the electric motor (MG) 21 mounted on the vehicle. It is possible to reduce the loss and the like of the inverter (INV) 23.
 送風装置70は、ラジエータ25及び室外熱交換器35に対して空気流れ方向Daの下流側に配置されている。例えば車両が停車している場合や、車両が低速で走行している場合には、ラジエータ25及び室外熱交換器35に供給される空気量が不足する可能性がある。このような場合、送風装置70は、その駆動によりラジエータ25及び室外熱交換器35に空気を供給することにより、不足分の空気量を補う。 The blower 70 is arranged downstream of the radiator 25 and the outdoor heat exchanger 35 in the air flow direction Da. For example, when the vehicle is stopped or the vehicle is traveling at a low speed, the amount of air supplied to the radiator 25 and the outdoor heat exchanger 35 may be insufficient. In such a case, the blower device 70 supplies air to the radiator 25 and the outdoor heat exchanger 35 by driving the blower device 70 to supplement the shortage of air amount.
 次に、本実施形態の熱交換システム10の電気的な構成について説明する。
 図6に示されるように、本実施形態の熱交換システム10は、冷却システム20を制御する冷却ECU(Electronic Control Unit)28と、車両の空調装置90を制御する空調ECU84と、ポンプ24を制御するポンプECU29と、シャッタ装置60を制御するシャッタECU61と、送風装置70を制御するファンECU71を備えている。各ECU28,29,61,71,84は、CPUやメモリ等を有するマイクロコンピュータを中心に構成されており、制御対象の装置を統括的に制御している。
Next, the electrical configuration of the heat exchange system 10 of this embodiment will be described.
As shown in FIG. 6, the heat exchange system 10 of the present embodiment controls a cooling ECU (Electronic Control Unit) 28 that controls the cooling system 20, an air conditioning ECU 84 that controls an air conditioner 90 of the vehicle, and a pump 24. A pump ECU 29 for controlling the shutter device 60, a shutter ECU 61 for controlling the shutter device 60, and a fan ECU 71 for controlling the blower device 70 are provided. Each of the ECUs 28, 29, 61, 71, 84 is mainly composed of a microcomputer having a CPU, a memory, etc., and centrally controls a device to be controlled.
 冷却ECU28には、冷却システム20や車両に搭載される各種センサの出力信号が車載ネットワークLcを介して入力されている。このようなセンサとしては、例えば入口側水温センサ26及び出口側水温センサ27がある。図1に示されるように、入口側水温センサ26は、ラジエータ25に対して冷却水の流れ方向の上流側に位置する配管に設けられている。入口側水温センサ26は、ラジエータ25に流入する冷却水の温度Tinを検出するとともに、検出された冷却水の温度Tinに応じた信号を出力する。出口側水温センサ27は、ラジエータ25に対して冷却水の流れ方向の下流側に位置する配管に設けられている。出口側水温センサ27は、ラジエータ25から排出される冷却水の温度Toutを検出するとともに、検出された冷却水の温度Toutに応じた信号を出力する。以下では、便宜上、入口側水温センサ26により検出される冷却水の温度Tinを「入口側水温Tin」と称し、出口側水温センサ27により検出される冷却水の温度Toutを「出口側水温Tout」と称する。 The output signals of the cooling system 20 and various sensors mounted on the vehicle are input to the cooling ECU 28 via the in-vehicle network Lc. Examples of such sensors include an inlet side water temperature sensor 26 and an outlet side water temperature sensor 27. As shown in FIG. 1, the inlet-side water temperature sensor 26 is provided in a pipe located upstream of the radiator 25 in the cooling water flow direction. The inlet side water temperature sensor 26 detects the temperature Tin of the cooling water flowing into the radiator 25 and outputs a signal according to the detected temperature Tin of the cooling water. The outlet side water temperature sensor 27 is provided in the pipe located downstream of the radiator 25 in the flow direction of the cooling water. The outlet side water temperature sensor 27 detects the temperature Tout of the cooling water discharged from the radiator 25 and outputs a signal according to the detected temperature Tout of the cooling water. Hereinafter, for convenience, the temperature Tin of the cooling water detected by the inlet water temperature sensor 26 is referred to as “inlet water temperature Tin”, and the temperature Tout of the cooling water detected by the outlet water temperature sensor 27 is referred to as “outlet water temperature Tout”. Called.
 冷却ECU28は、各センサ26,27のそれぞれの出力信号に基づいて入口側水温Tin及び出口側水温Toutの情報を取得するとともに、他のセンサの出力信号に基づいて冷却システム20の制御に必要な各種状態量を取得する。冷却ECU28は、各センサにより取得される情報に基づいて、ポンプ24を制御するための制御指令値をポンプECU29に送信する。この制御指令値に基づいてポンプECU29がポンプ24を制御することにより、電動発動機21、バッテリ22、及びインバータ23を冷却する冷却制御が実行される。 The cooling ECU 28 acquires information on the inlet side water temperature Tin and the outlet side water temperature Tout based on the output signals of the respective sensors 26 and 27, and is necessary for controlling the cooling system 20 based on the output signals of other sensors. Get various state quantities. The cooling ECU 28 transmits a control command value for controlling the pump 24 to the pump ECU 29 based on the information acquired by each sensor. The pump ECU 29 controls the pump 24 based on the control command value, whereby cooling control for cooling the electric motor 21, the battery 22, and the inverter 23 is executed.
 空調ECU84には、空調装置90や車両に設けられる各種センサの出力信号が入力されている。このようなセンサとしては、例えば内気温センサ80、外気温センサ81、車速センサ82、入口側温度センサ39がある。内気温センサ80は、車室内の気温である内気温Trを検出するとともに、検出された内気温Trに応じた信号を出力する。外気温センサ81は、車室外の気温である外気温Tamを検出するとともに、検出された外気温Tamに応じた信号を出力する。車速センサ82は、車両の走行速度である車速Vを検出するとともに、検出された車速Vに応じた信号を出力する。図1に示されるように、入口側温度センサ39は、室外熱交換器35に流入する熱媒体の温度Tcを検出するとともに、検出された熱媒体の温度Tcに応じた信号を出力する。 The air conditioning ECU 84 is input with output signals of various sensors provided in the air conditioning device 90 and the vehicle. Examples of such sensors include an inside air temperature sensor 80, an outside air temperature sensor 81, a vehicle speed sensor 82, and an inlet side temperature sensor 39. The inside air temperature sensor 80 detects the inside air temperature Tr which is the temperature inside the vehicle compartment, and outputs a signal corresponding to the detected inside air temperature Tr. The outside air temperature sensor 81 detects the outside air temperature Tam which is the temperature outside the vehicle compartment and outputs a signal according to the detected outside air temperature Tam. The vehicle speed sensor 82 detects the vehicle speed V that is the traveling speed of the vehicle and outputs a signal corresponding to the detected vehicle speed V. As shown in FIG. 1, the inlet-side temperature sensor 39 detects the temperature Tc of the heat medium flowing into the outdoor heat exchanger 35, and outputs a signal according to the detected temperature Tc of the heat medium.
 また、空調ECU84には、操作装置83から送信される信号も取り込まれている。操作装置83は、空調装置90を操作する際にユーザにより操作される部分である。操作装置83では、例えば車室内の温度を設定することが可能である。操作装置83は、ユーザの操作により入力される車室内の設定温度Tsの情報を空調ECU84に送信する。 The air-conditioning ECU 84 also takes in signals transmitted from the operating device 83. The operation device 83 is a portion operated by a user when operating the air conditioner 90. With the operating device 83, for example, the temperature inside the vehicle compartment can be set. The operation device 83 transmits information on the set temperature Ts in the vehicle compartment, which is input by the user's operation, to the air conditioning ECU 84.
 空調ECU84は、各センサ80~82の出力信号に基づいて内気温Tr、外気温Tam、及び車速Vの情報を取得するとともに、他のセンサの出力信号に基づいて空調装置90の制御に必要な各種状態量を取得する。また、空調ECU84は、操作装置83から、ユーザの操作により設定された各種設定情報を取得する。空調ECU84は、取得した情報に基づいて、ヒートポンプサイクル30を含め、空調装置90を統括的に制御する。 The air conditioning ECU 84 acquires information about the inside air temperature Tr, the outside air temperature Tam, and the vehicle speed V based on the output signals of the sensors 80 to 82, and is necessary for controlling the air conditioning device 90 based on the output signals of other sensors. Get various state quantities. Further, the air conditioning ECU 84 acquires various setting information set by the user's operation from the operation device 83. The air conditioning ECU 84 comprehensively controls the air conditioning device 90 including the heat pump cycle 30 based on the acquired information.
 シャッタECU61は、車載ネットワークLcを介して冷却ECU28及び空調ECU84と通信可能に接続されている。シャッタECU61は、車載ネットワークLcを介して各ECU28,29,71,84と各種情報を授受することが可能である。各ECU28,29,61,71,84の間で授受される情報には、例えば各種センサにより検出される検出値が含まれている。また、冷却ECU28は、冷却システム20の動作状態に基づいてシャッタ装置60の開閉動作をシャッタECU61に要求する。さらに、空調ECU84は、ヒートポンプサイクル30の動作状態に基づいてシャッタ装置60の開閉動作をシャッタECU61に要求する。シャッタECU61は、冷却ECU28及び空調ECU84からの要求に基づいてシャッタ装置60の開閉状態を制御する。本実施形態では、シャッタECU61が制御部に相当する。 The shutter ECU 61 is communicatively connected to the cooling ECU 28 and the air conditioning ECU 84 via the vehicle-mounted network Lc. The shutter ECU 61 can send and receive various information to and from each ECU 28, 29, 71, 84 via the vehicle-mounted network Lc. The information transmitted and received among the ECUs 28, 29, 61, 71, 84 includes, for example, detection values detected by various sensors. Further, the cooling ECU 28 requests the shutter ECU 61 to open/close the shutter device 60 based on the operating state of the cooling system 20. Further, the air conditioning ECU 84 requests the shutter ECU 61 to open/close the shutter device 60 based on the operating state of the heat pump cycle 30. The shutter ECU 61 controls the open/closed state of the shutter device 60 based on requests from the cooling ECU 28 and the air conditioning ECU 84. In the present embodiment, the shutter ECU 61 corresponds to the control unit.
 ファンECU71は、冷却ECU28及び空調ECU84からの要求に基づいて送風装置70の回転速度等を制御する。また、ファンECU71は、送風装置70から、その回転速度Nfの情報等を取得する。
 次に、冷却ECU28及び空調ECU84により実行されるシャッタ装置60の開閉動作の要求処理の具体的な手順について説明する。はじめに、空調ECU84により実行される処理の手順について図7を参照して説明する。なお、空調ECU84は、ヒートポンプサイクル30が暖房モードで動作している際に、図7に示される処理を所定の周期で繰り返し実行している。
The fan ECU 71 controls the rotation speed and the like of the blower 70 based on requests from the cooling ECU 28 and the air conditioning ECU 84. In addition, the fan ECU 71 acquires information about the rotation speed Nf of the blower device 70.
Next, a specific procedure of the opening/closing operation request processing of the shutter device 60 executed by the cooling ECU 28 and the air conditioning ECU 84 will be described. First, the procedure of the process executed by the air conditioning ECU 84 will be described with reference to FIG. 7. The air conditioning ECU 84 repeatedly executes the process shown in FIG. 7 at a predetermined cycle while the heat pump cycle 30 is operating in the heating mode.
 図7に示されるように、空調ECU84は、まず、ステップS10の処理として、室外熱交換器35における必要吸熱量QAを演算する。具体的には、空調ECU84は、車室内の設定温度Tsと内気温Trとの偏差に基づいて、内気温Trを設定温度Tsに近づけるために必要な室内放熱器32の必要放熱量を演算式やマップ等を用いて演算する。空調ECU84は、演算された室内放熱器32の必要放熱量から、室外熱交換器35において熱媒体が空気から吸収する必要のある熱量である必要吸熱量QAを演算式やマップ等を用いて演算する。 As shown in FIG. 7, the air conditioning ECU 84 first calculates the required heat absorption amount QA in the outdoor heat exchanger 35 as the process of step S10. Specifically, the air conditioning ECU 84 calculates the necessary heat radiation amount of the indoor radiator 32 required to bring the inside air temperature Tr close to the set temperature Ts based on the deviation between the set temperature Ts inside the vehicle compartment and the inside air temperature Tr. Calculate using the map and the like. The air conditioning ECU 84 calculates the required heat absorption amount QA, which is the heat amount that the heat medium needs to absorb from the air in the outdoor heat exchanger 35, from the calculated necessary heat radiation amount of the indoor radiator 32 using a calculation formula, a map, or the like. To do.
 空調ECU84は、ステップS10に続くステップS11の処理として、室外熱交換器35における実際の吸熱量である実吸熱量Qaを演算する。この実吸熱量Qaは、例えば次のように演算することが可能である。
 室外熱交換器35の実吸熱量Qaは、室外熱交換器35を流れる熱媒体の温度と外気温Tamとの偏差である温度差ΔT、及び室外熱交換器35に供給される空気量GAから演算式等を用いて演算することが可能である。そこで、本実施形態の空調ECU84は、外気温センサ81の出力信号に基づいて外気温Tamの情報を取得する。また、空調ECU84は、ヒートポンプサイクル30の制御として、圧縮機31の回転速度を制御しているため、圧縮機31の回転速度の情報を把握している。圧縮機31の回転速度と、室外熱交換器35の熱媒体の温度との間には相関関係がある。空調ECU84は、それらの相関関係を示す演算式やマップ等に基づいて、圧縮機31の回転速度から、室外熱交換器35の熱媒体の温度を演算する。空調ECU84は、演算された室外熱交換器35の熱媒体の温度と外気温Tamとの偏差である温度差ΔTを演算する。また、空調ECU84は、車速V、及びファンECU71から取得可能な送風装置70の回転速度Nfに基づいて、室外熱交換器35に送風されている空気量GAを演算する。空調ECU84は、演算された温度差ΔTと、室外熱交換器35に送風されている空気量GAとから演算式等を用いて室外熱交換器35の実吸熱量Qaを演算する。
The air conditioning ECU 84 calculates the actual heat absorption amount Qa, which is the actual heat absorption amount in the outdoor heat exchanger 35, as the process of step S11 following step S10. The actual heat absorption amount Qa can be calculated as follows, for example.
The actual heat absorption amount Qa of the outdoor heat exchanger 35 is calculated from the temperature difference ΔT, which is the deviation between the temperature of the heat medium flowing through the outdoor heat exchanger 35 and the outside air temperature Tam, and the air amount GA supplied to the outdoor heat exchanger 35. It is possible to calculate using an arithmetic expression or the like. Therefore, the air conditioning ECU 84 of the present embodiment acquires the information of the outside air temperature Tam based on the output signal of the outside air temperature sensor 81. Further, since the air conditioning ECU 84 controls the rotation speed of the compressor 31 as the control of the heat pump cycle 30, it knows the information on the rotation speed of the compressor 31. There is a correlation between the rotation speed of the compressor 31 and the temperature of the heat medium of the outdoor heat exchanger 35. The air-conditioning ECU 84 calculates the temperature of the heat medium of the outdoor heat exchanger 35 from the rotation speed of the compressor 31 based on an arithmetic expression, a map, or the like showing the correlation between them. The air conditioning ECU 84 calculates a temperature difference ΔT which is a deviation between the calculated temperature of the heat medium of the outdoor heat exchanger 35 and the outside air temperature Tam. Further, the air conditioning ECU 84 calculates the amount GA of air blown to the outdoor heat exchanger 35 based on the vehicle speed V and the rotation speed Nf of the blower device 70 that can be acquired from the fan ECU 71. The air-conditioning ECU 84 calculates the actual heat absorption amount Qa of the outdoor heat exchanger 35 from the calculated temperature difference ΔT and the amount GA of air blown to the outdoor heat exchanger 35 using an arithmetic expression or the like.
 空調ECU84は、ステップS11に続くステップS12の処理として、室外熱交換器35の実吸熱量Qaが必要吸熱量QAよりも大きいか否かを判断する。空調ECU84は、ステップS12の処理で肯定判断した場合には、すなわち室外熱交換器35の実吸熱量Qaが必要吸熱量QAよりも大きい場合には、室外熱交換器35において空気からの吸熱が必要ないと判断する。この場合、空調ECU84は、シャッタECU61に対してシャッタ装置60を閉状態にすることを要求するために、ステップS13の処理として、第1要求フラグF1を「0」に設定する。 The air conditioning ECU 84 determines whether or not the actual heat absorption amount Qa of the outdoor heat exchanger 35 is larger than the required heat absorption amount QA as the process of step S12 subsequent to step S11. When the air conditioning ECU 84 makes a positive determination in the process of step S12, that is, when the actual heat absorption amount Qa of the outdoor heat exchanger 35 is larger than the required heat absorption amount QA, the heat absorption from the air in the outdoor heat exchanger 35 is Judge that it is not necessary. In this case, the air conditioning ECU 84 sets the first request flag F1 to "0" as the process of step S13 in order to request the shutter ECU 61 to close the shutter device 60.
 一方、空調ECU84は、ステップS12の処理で否定判断した場合には、すなわち室外熱交換器35の実吸熱量Qaが必要吸熱量QA以下である場合には、室外熱交換器35において空気からの吸熱が必要であると判断する。この場合、空調ECU84は、シャッタECU61に対してシャッタ装置60を開状態にすることを要求するために、ステップS14の処理として、第1要求フラグF1を「1」に設定する。 On the other hand, if the determination in step S12 is negative, that is, if the actual heat absorption amount Qa of the outdoor heat exchanger 35 is less than or equal to the required heat absorption amount QA, the air conditioning ECU 84 removes air from the outdoor heat exchanger 35. Judge that heat absorption is necessary. In this case, the air conditioning ECU 84 sets the first request flag F1 to "1" as the process of step S14 in order to request the shutter ECU 61 to open the shutter device 60.
 空調ECU84は、ステップS13の処理又はステップS14の処理を実行した後、ステップS15の処理として、第1要求フラグF1の情報をシャッタECU61に送信する。続いて、空調ECU84は、ステップS16の処理として、必要吸熱量QAの情報をシャッタECU61に送信した後、図7に示される一連の処理を終了する。 After executing the process of step S13 or the process of step S14, the air conditioning ECU 84 transmits the information of the first request flag F1 to the shutter ECU 61 as the process of step S15. Subsequently, the air conditioning ECU 84 transmits the information of the required heat absorption amount QA to the shutter ECU 61 as the process of step S16, and then ends the series of processes shown in FIG. 7.
 次に、冷却ECU28により実行される処理の手順について図8を参照して説明する。なお、冷却ECU28は、図8に示される処理を所定の周期で繰り返し実行している。
 図8に示されるように、冷却ECU28は、まず、ステップS20の処理として、現在から所定時間経過後においてラジエータ25に流入する冷却水の推定温度である入口側水温の推定値TEinを演算する。具体的には、冷却ECU28は、現在から所定時間前までに入口側水温センサ26により検出された入口側水温Tinの複数の検出値に基づいて、単位時間当たりの入口側水温Tinの変化量を演算する。冷却ECU28は、演算された単位時間当たりの入口側水温Tinの変化量と、入口側水温センサ26により検出される現在の入口側水温Tinとに基づいて、所定時間経過後の入口側水温の推定値TEinを演算式により演算する。本実施形態では、この所定時間経過後の入口側水温の推定値TEinが、所定時間経過後のラジエータ25の温度に相当する。
Next, a procedure of processing executed by the cooling ECU 28 will be described with reference to FIG. The cooling ECU 28 repeatedly executes the processing shown in FIG. 8 at a predetermined cycle.
As shown in FIG. 8, the cooling ECU 28 first calculates the estimated value TEin of the inlet side water temperature which is the estimated temperature of the cooling water flowing into the radiator 25 after the elapse of a predetermined time from the present as the processing of step S20. Specifically, the cooling ECU 28 determines the amount of change in the inlet-side water temperature Tin per unit time based on a plurality of detection values of the inlet-side water temperature Tin detected by the inlet-side water temperature sensor 26 from the present time to a predetermined time before. Calculate The cooling ECU 28 estimates the inlet-side water temperature after a lapse of a predetermined time, based on the calculated amount of change in the inlet-side water temperature Tin per unit time and the current inlet-side water temperature Tin detected by the inlet-side water temperature sensor 26. The value TEin is calculated by a calculation formula. In the present embodiment, the estimated value TEin of the inlet-side water temperature after the lapse of the predetermined time corresponds to the temperature of the radiator 25 after the lapse of the predetermined time.
 冷却ECU28は、ステップS20に続くステップS21の処理として、所定時間経過後の入口側水温の推定値TEinが所定の温度閾値Tthよりも小さいか否かを判断する。温度閾値Tthは、冷却システム20の冷却対象である電動発動機21、バッテリ22、及びインバータ23の冷却状態を維持するために必要な入口側水温Tinの上限値である。温度閾値Tthは、実験等により設定されており、冷却ECU28のメモリに予め記憶されている。 The cooling ECU 28 determines whether or not the estimated value TEin of the inlet-side water temperature after a lapse of a predetermined time is smaller than a predetermined temperature threshold value Tth as a process of step S21 subsequent to step S20. The temperature threshold value Tth is an upper limit value of the inlet-side water temperature Tin required to maintain the cooling states of the electric motor 21, the battery 22, and the inverter 23, which are cooling targets of the cooling system 20. The temperature threshold Tth is set by an experiment or the like, and is stored in advance in the memory of the cooling ECU 28.
 冷却ECU28は、ステップS21の処理で肯定判断した場合には、すなわち所定時間経過後の入口側水温の推定値TEinが所定の温度閾値Tthよりも小さい場合には、冷却システム20の冷却能力を確保できていると判断する。この場合、冷却ECU28は、シャッタECU61に対してシャッタ装置60の閉状態を要求するために、ステップS22の処理として、第2要求フラグF2を「0」に設定する。 When the determination in step S21 is affirmative, that is, when the estimated value TEin of the inlet-side water temperature after the elapse of the predetermined time is smaller than the predetermined temperature threshold Tth, the cooling ECU 28 secures the cooling capacity of the cooling system 20. Judge that it is done. In this case, the cooling ECU 28 sets the second request flag F2 to "0" as the process of step S22 in order to request the shutter ECU 61 to close the shutter device 60.
 冷却ECU28は、ステップS21の処理で否定判断した場合には、すなわち所定時間経過後の入口側水温の推定値TEinが所定の温度閾値Tth以上である場合には、冷却システム20の冷却能力を確保できていないと判断する。この場合、ラジエータ25において熱媒体の熱を空気に放出する必要があるため、冷却ECU28は、シャッタECU61に対してシャッタ装置60の開状態を要求するために、ステップS23の処理として、第2要求フラグF2を「1」に設定する。 When the negative determination is made in the process of step S21, that is, when the estimated value TEin of the inlet side water temperature after the elapse of the predetermined time is equal to or higher than the predetermined temperature threshold Tth, the cooling ECU 28 secures the cooling capacity of the cooling system 20. Judge that it is not done. In this case, since the radiator 25 needs to release the heat of the heat medium to the air, the cooling ECU 28 requests the shutter ECU 61 to open the shutter device 60. The flag F2 is set to "1".
 冷却ECU28は、ステップS22の処理又はステップS23の処理を実行した後、ステップS24の処理として、第2要求フラグF2の情報をシャッタECU61に送信する。続いて、冷却ECU28は、ステップS25の処理として、ラジエータ25における必要放熱量QBを演算する。具体的には、冷却ECU28は、ポンプ24を制御しているため、ポンプ24の回転速度の情報を把握している。冷却ECU28は、ポンプ24の回転速度に基づいてラジエータ25を流れる冷却水の流量を演算式等により演算する。また、冷却ECU28は、ラジエータ25の入口側水温Tin及び出口側水温Toutの偏差を演算するとともに、演算された偏差と、ラジエータ25を流れる冷却水の流量とから演算式等を用いてラジエータ25の実際の放熱量を演算する。冷却ECU28は、このラジエータ25の実際の放熱量、及びその推移に基づいて、ラジエータ25の入口側水温Tinが所定温度に達しないためにラジエータ25から放出すべき熱量を演算することにより、ラジエータ25の必要放熱量QBを求める。なお、所定温度は、電動発動機21、バッテリ22、及びインバータ23の動作を保証することの可能なラジエータ25の入口側水温Tinの上限値であり、予め実験等により設定されている。 After executing the process of step S22 or the process of step S23, the cooling ECU 28 transmits the information of the second request flag F2 to the shutter ECU 61 as the process of step S24. Subsequently, the cooling ECU 28 calculates the required heat radiation amount QB in the radiator 25 as the process of step S25. Specifically, since the cooling ECU 28 controls the pump 24, it knows the information on the rotation speed of the pump 24. The cooling ECU 28 calculates the flow rate of the cooling water flowing through the radiator 25 based on the rotation speed of the pump 24 using an arithmetic expression or the like. Further, the cooling ECU 28 calculates a deviation between the inlet side water temperature Tin and the outlet side water temperature Tout of the radiator 25, and calculates the deviation of the radiator 25 from the calculated deviation and the flow rate of the cooling water flowing through the radiator 25. Calculate the actual amount of heat dissipation. The cooling ECU 28 calculates the amount of heat to be released from the radiator 25 because the inlet side water temperature Tin of the radiator 25 does not reach the predetermined temperature, based on the actual amount of heat radiation of the radiator 25 and its transition. The required heat radiation amount QB is calculated. The predetermined temperature is the upper limit value of the inlet side water temperature Tin of the radiator 25 that can guarantee the operations of the electric motor 21, the battery 22, and the inverter 23, and is set in advance by experiments or the like.
 冷却ECU28は、ステップS25に続くステップS26の処理として、演算されたラジエータ25の必要放熱量QBの情報をシャッタECU61に送信した後、図8に示される一連の処理を終了する。
 一方、シャッタECU61は、空調ECU84から送信される第1要求フラグF1、及び冷却ECU28から送信される第2要求フラグF2に基づいて、シャッタ装置60の開閉状態を制御する。次に、シャッタECU61により実行される処理の手順について図9を参照して具体的に説明する。なお、シャッタECU61は、図9に示される処理を所定の周期で繰り返し実行する。
As a process of step S26 subsequent to step S25, the cooling ECU 28 transmits information on the calculated required heat radiation amount QB of the radiator 25 to the shutter ECU 61, and then ends the series of processes shown in FIG.
On the other hand, the shutter ECU 61 controls the open/close state of the shutter device 60 based on the first request flag F1 transmitted from the air conditioning ECU 84 and the second request flag F2 transmitted from the cooling ECU 28. Next, a procedure of processing executed by the shutter ECU 61 will be specifically described with reference to FIG. The shutter ECU 61 repeatedly executes the processing shown in FIG. 9 at a predetermined cycle.
 図9に示されるように、シャッタECU61は、ステップS30の処理として、空調ECU84から送信される第1要求フラグF1、及び冷却ECU28から送信される第2要求フラグF2が共に「0」に設定されているか否かを判断する。第1要求フラグF1及び第2要求フラグF2が共に「0」に設定されている場合には、室外熱交換器35において吸熱の必要がなく、且つラジエータ25において放熱の必要がない状況である。そのため、シャッタECU61は、第1要求フラグF1及び第2要求フラグF2が共に「0」に設定されている場合には、ステップS30の処理で肯定判断し、ステップS31の処理として、シャッタ装置60を閉状態に設定した後、図9に示される一連の処理を終了する。なお、本実施形態におけるシャッタ装置60の閉状態とは、シャッタ装置60の一部又は全部が閉じられている状態を意味する。 As shown in FIG. 9, in the shutter ECU 61, the first request flag F1 transmitted from the air conditioning ECU 84 and the second request flag F2 transmitted from the cooling ECU 28 are both set to “0” as the processing of step S30. Determine whether or not When both the first request flag F1 and the second request flag F2 are set to “0”, there is no need to absorb heat in the outdoor heat exchanger 35, and there is no need to dissipate heat in the radiator 25. Therefore, when both the first request flag F1 and the second request flag F2 are set to “0”, the shutter ECU 61 makes an affirmative decision in the process of step S30, and the shutter device 60 is selected as the process of step S31. After the closed state is set, the series of processing shown in FIG. 9 is ended. The closed state of the shutter device 60 in the present embodiment means a state in which a part or all of the shutter device 60 is closed.
 シャッタECU61は、ステップS31の処理で否定判断した場合には、ステップS32の処理として、第1要求フラグF1及び第2要求フラグF2が共に「1」に設定されているか否かを判断する。第1要求フラグF1及び第2要求フラグF2が共に「1」に設定されている場合には、室外熱交換器35において吸熱が必要な状況であって、且つラジエータ25において放熱が必要な状況である。本実施形態の熱交換システム10では、このような状況において、ラジエータ25からフィン50を介した室外熱交換器35への熱伝達により室外熱交換器35の吸熱及びラジエータ25の放熱を満足することが可能な場合には、シャッタ装置60を閉状態にすることとしている。これにより、シャッタ装置60が閉状態に設定されている時間を延ばすことができるため、車両の空力性能を改善することが可能となる。 If the determination in step S31 is negative, the shutter ECU 61 determines whether or not both the first request flag F1 and the second request flag F2 are set to "1" as the process of step S32. When both the first request flag F1 and the second request flag F2 are set to "1", the outdoor heat exchanger 35 needs to absorb heat and the radiator 25 needs to dissipate heat. is there. In the heat exchange system 10 of the present embodiment, in such a situation, the heat transfer from the radiator 25 to the outdoor heat exchanger 35 via the fins 50 should satisfy the heat absorption of the outdoor heat exchanger 35 and the heat radiation of the radiator 25. If it is possible, the shutter device 60 is closed. As a result, the time during which the shutter device 60 is set to the closed state can be extended, so that it becomes possible to improve the aerodynamic performance of the vehicle.
 具体的には、シャッタECU61は、第1要求フラグF1及び第2要求フラグF2が共に「1」に設定されている場合には、ステップS32の処理で肯定判断し、ステップS33の処理として、室外熱交換器35の必要吸熱量QAがラジエータ25の必要放熱量QBよりも小さいか否かを判断する。シャッタECU61は、ステップS32の処理で否定判断した場合には、すなわち室外熱交換器35の必要吸熱量QAがラジエータ25の必要放熱量QB以上である場合には、ステップS37の処理として、シャッタ装置60を開状態に設定する。 Specifically, when both the first request flag F1 and the second request flag F2 are set to “1”, the shutter ECU 61 makes an affirmative decision in the process of step S32, and as the process of step S33, the outdoor It is determined whether the required heat absorption amount QA of the heat exchanger 35 is smaller than the required heat radiation amount QB of the radiator 25. If the shutter ECU 61 makes a negative determination in the process of step S32, that is, if the required heat absorption amount QA of the outdoor heat exchanger 35 is equal to or greater than the required heat radiation amount QB of the radiator 25, the shutter device 61 performs the processing of step S37. Set 60 to the open state.
 シャッタECU61は、ステップS33の処理で肯定判断した場合には、すなわち室外熱交換器35の必要吸熱量QAがラジエータ25の必要放熱量QBよりも小さい場合には、ステップS34の処理として、判定値QCを以下の式f1に基づいて演算する。
 QC←QB-QA-α (f1)
 なお、式f1において補正値αは、ラジエータ25からフィン50を介した室外熱交換器35への熱伝達の際に失われる熱量を示している。この補正値αには、例えばフィン50から空気に放出される熱量が含まれる。補正値αは、実験等により求められており、シャッタECU61のメモリに予め記憶されている。なお、補正値αが必要吸熱量QAや必要放熱量QBに対して無視できる程度に小さい場合には、補正値αが「0」に設定されていてもよい。
When the shutter ECU 61 makes a positive determination in the process of step S33, that is, when the required heat absorption amount QA of the outdoor heat exchanger 35 is smaller than the required heat radiation amount QB of the radiator 25, the shutter ECU 61 determines the determination value as the process of step S34. QC is calculated based on the following formula f1.
QC←QB-QA-α (f1)
The correction value α in the expression f1 indicates the amount of heat lost when heat is transferred from the radiator 25 to the outdoor heat exchanger 35 via the fins 50. The correction value α includes, for example, the amount of heat released from the fins 50 to the air. The correction value α is obtained by experiments and the like, and is stored in advance in the memory of the shutter ECU 61. If the correction value α is small enough to be ignored with respect to the required heat absorption amount QA and the required heat radiation amount QB, the correction value α may be set to “0”.
 シャッタECU61は、ステップS34に続くステップS35の処理として、判定値QCが、予め設定された閾値Qthよりも大きいか否かを判断する。本実施形態では、このステップS35の処理が、室外熱交換器35の必要吸熱量QAをラジエータ25の必要放熱量QBにより補うことができる状況であるか否かを判定する処理に相当する。シャッタECU61は、ステップS35の処理で肯定判断した場合には、すなわち判定値QCが閾値Qthよりも大きい場合には、室外熱交換器35の必要吸熱量QAをラジエータ25の必要放熱量QBにより補うことができる状況であると判定する。この場合、シャッタECU61は、ステップS36の処理として、シャッタ装置60を閉状態に設定した後、図9に示される一連の処理を終了する。 The shutter ECU 61 determines whether or not the determination value QC is larger than a preset threshold value Qth as a process of step S35 subsequent to step S34. In the present embodiment, the process of step S35 corresponds to the process of determining whether or not the required heat absorption amount QA of the outdoor heat exchanger 35 can be supplemented by the required heat radiation amount QB of the radiator 25. When the determination in step S35 is affirmative, that is, when the determination value QC is larger than the threshold value Qth, the shutter ECU 61 supplements the required heat absorption amount QA of the outdoor heat exchanger 35 with the required heat radiation amount QB of the radiator 25. It is determined that the situation is possible. In this case, as the processing of step S36, the shutter ECU 61 sets the shutter device 60 to the closed state, and then ends the series of processing shown in FIG.
 また、シャッタECU61は、ステップS35の処理で否定判断した場合には、すなわち判定値QCが閾値Qth以下である場合には、室外熱交換器35の必要吸熱量QAをラジエータ25の必要放熱量QBにより補うことができる状況ではないと判定する。この場合、シャッタECU61は、ステップS37の処理として、シャッタ装置60を開状態に設定した後、図9に示される一連の処理を終了する。 When the determination in step S35 is negative, that is, when the determination value QC is less than or equal to the threshold value Qth, the shutter ECU 61 sets the required heat absorption amount QA of the outdoor heat exchanger 35 to the required heat radiation amount QB of the radiator 25. It is determined that the situation cannot be compensated by. In this case, as the processing of step S37, the shutter ECU 61 sets the shutter device 60 to the open state, and then ends the series of processing shown in FIG.
 一方、シャッタECU61は、ステップS32の処理で否定判断した場合には、すなわち第1要求フラグF1及び第2要求フラグF2のいずれか一方が「1」に設定されている場合には、ステップS38の処理として、シャッタ装置60を開状態に設定した後、図9に示される一連の処理を終了する。 On the other hand, when the shutter ECU 61 makes a negative determination in the process of step S32, that is, when one of the first request flag F1 and the second request flag F2 is set to “1”, the shutter ECU 61 proceeds to step S38. As a process, after setting the shutter device 60 to the open state, the series of processes shown in FIG. 9 is ended.
 以上説明した本実施形態の熱交換システム10によれば、以下の(1)~(4)に示される作用及び効果を得ることができる。
 (1)ラジエータ25及び室外熱交換器35がフィン50を介して熱的に連結されているため、ラジエータ25と室外熱交換器35との間で熱を授受することが可能となる。したがって、ラジエータ25と室外熱交換器35との間で熱交換を行うために送風装置70を回転させる必要がある場合であっても送風装置の回転速度を遅くすることが可能である。また、条件次第では送風装置70を停止させることも可能である。よって、消費電力を低減することができる。
According to the heat exchange system 10 of the present embodiment described above, the actions and effects shown in the following (1) to (4) can be obtained.
(1) Since the radiator 25 and the outdoor heat exchanger 35 are thermally connected via the fins 50, heat can be transferred between the radiator 25 and the outdoor heat exchanger 35. Therefore, even when it is necessary to rotate the blower device 70 to perform heat exchange between the radiator 25 and the outdoor heat exchanger 35, it is possible to reduce the rotation speed of the blower device. Further, the blower 70 can be stopped depending on the conditions. Therefore, power consumption can be reduced.
 (2)仮に車両にシャッタ装置60が設けられていないとすると、グリル開口部41から流入した空気がラジエータ25及び室外熱交換器35を通過するため、ラジエータ25の熱が空気に逃げることになる。そのため、ラジエータ25から室外熱交換器35に熱が伝達され難くなる。より詳しくは、図10に示されるように、ラジエータ25を通過する空気の風量が増加するほど、ラジエータ25から室外熱交換器35への熱移動量は減少する。この点、本実施形態の熱交換システム10では、蒸発器として室外熱交換器35が作動しているときに、換言すれば空気から吸熱する吸熱器として室外熱交換器35が作動しているときに、シャッタECU61がシャッタ装置60を閉状態にする。シャッタ装置60が閉状態になることにより、ラジエータ25及び室外熱交換器35への空気の流入を遮断することができるため、ラジエータ25の熱が空気に逃げ難くなる。そのため、より効率的にラジエータ25と室外熱交換器35との間で熱を授受することが可能となる。 (2) If the vehicle is not provided with the shutter device 60, the air flowing in from the grille opening 41 passes through the radiator 25 and the outdoor heat exchanger 35, so that the heat of the radiator 25 escapes to the air. .. Therefore, it becomes difficult for heat to be transferred from the radiator 25 to the outdoor heat exchanger 35. More specifically, as shown in FIG. 10, as the air volume of the air passing through the radiator 25 increases, the heat transfer amount from the radiator 25 to the outdoor heat exchanger 35 decreases. In this respect, in the heat exchange system 10 of the present embodiment, when the outdoor heat exchanger 35 is operating as an evaporator, in other words, when the outdoor heat exchanger 35 is operating as a heat absorber that absorbs heat from the air. First, the shutter ECU 61 closes the shutter device 60. By closing the shutter device 60, the inflow of air into the radiator 25 and the outdoor heat exchanger 35 can be blocked, so that the heat of the radiator 25 is unlikely to escape to the air. Therefore, it is possible to more efficiently transfer heat between the radiator 25 and the outdoor heat exchanger 35.
 (3)シャッタECU61は、第1要求フラグF1及び第2要求フラグF2が共に「1」に設定されている場合、ラジエータ25の必要放熱量QBから室外熱交換器35の必要吸熱量QAを減算することにより得られる判定値QCが閾値Qthよりも大きいと判断した場合には、シャッタ装置60を閉状態に設定する。これにより、室外熱交換器35の必要吸熱量QAをラジエータ25の必要放熱量QBにより補うことができる状況である場合には、シャッタ装置60が閉状態になるため、シャッタ装置60が閉状態に設定されている期間を延ばすことができる。結果的に、車両の空力性能を向上させることができる。よって、車両の燃費を改善することが可能であるため、航続距離を拡大することができる。また、ヒートポンプサイクル30が暖房モードで動作可能な時間を延ばすこともできる。 (3) The shutter ECU 61 subtracts the required heat absorption amount QA of the outdoor heat exchanger 35 from the required heat radiation amount QB of the radiator 25 when both the first request flag F1 and the second request flag F2 are set to "1". When it is determined that the determination value QC obtained by doing so is larger than the threshold value Qth, the shutter device 60 is set to the closed state. As a result, when the required heat absorption amount QA of the outdoor heat exchanger 35 can be supplemented by the required heat radiation amount QB of the radiator 25, the shutter device 60 will be in the closed state, and therefore the shutter device 60 will be in the closed state. The set period can be extended. As a result, the aerodynamic performance of the vehicle can be improved. Therefore, the fuel efficiency of the vehicle can be improved, and the cruising range can be expanded. It is also possible to extend the time during which the heat pump cycle 30 can operate in the heating mode.
 (4)シャッタECU61は、ラジエータ25の必要放熱量QBから室外熱交換器35の必要吸熱量QAを減算した減算値から、フィン50の放熱量に基づく補正値αを更に減算することにより、判定値QCを演算する。これにより、フィン50の放熱量をも加味した判定値QCを演算することが可能であるため、シャッタ装置60を閉状態にすることが可能か否かを、より的確に判定することが可能となる。 (4) The shutter ECU 61 further subtracts the correction value α based on the heat radiation amount of the fins 50 from the subtraction value obtained by subtracting the required heat absorption amount QA of the outdoor heat exchanger 35 from the heat radiation amount QB of the radiator 25, thereby making a determination. Calculate the value QC. As a result, it is possible to calculate the determination value QC in consideration of the heat radiation amount of the fins 50, and it is possible to more accurately determine whether or not the shutter device 60 can be closed. Become.
 <第2実施形態>
 次に、熱交換システム10の第2実施形態について説明する。以下、第1実施形態の熱交換システム10との相違点を中心に説明する。
 図11に示されるように、シャッタECU61は、ステップS37の処理でシャッタ装置60を開状態に設定した後、ステップS39の処理として、送風装置70の制御指令値をファンECU71に送信することにより送風装置70の駆動を制御する。ステップS39の処理は、次のように実行される。
<Second Embodiment>
Next, a second embodiment of the heat exchange system 10 will be described. Hereinafter, differences from the heat exchange system 10 of the first embodiment will be mainly described.
As shown in FIG. 11, the shutter ECU 61 sets the shutter device 60 to the open state in the process of step S37, and then transmits the control command value of the blower device 70 to the fan ECU 71 as the process of step S39. The drive of the device 70 is controlled. The process of step S39 is executed as follows.
 シャッタECU61は、送風装置70の制御指令値としてデューティ値をファンECU71に送信する。このデューティ値に基づいてファンECU71が送風装置70の駆動を制御する。デューティ値は、送風装置70の通電制御量を示すものである。デューティ値が大きくなるほど、送風装置70の通電量が増加するため、送風装置70の回転速度が増加する。これに対し、デューティ値が小さくなるほど、送風装置70の通電量が減少するため、送風装置70の回転速度が減少する。 The shutter ECU 61 transmits a duty value to the fan ECU 71 as a control command value for the blower 70. The fan ECU 71 controls driving of the blower device 70 based on the duty value. The duty value indicates the energization control amount of the blower 70. As the duty value increases, the energization amount of the blower device 70 increases, so that the rotation speed of the blower device 70 increases. On the other hand, as the duty value decreases, the amount of electricity supplied to the blower device 70 decreases, and the rotation speed of the blower device 70 decreases.
 また、シャッタECU61は、ラジエータ25と室外熱交換器35との間の熱交換量QDを演算する。熱交換量QDは、例えば次のように演算される。まず、シャッタECU61は、入口側水温センサ26により検出される入口側水温Tinに基づいてラジエータ25の温度を推定する。また、シャッタECU61は、入口側温度センサ39により検出される冷媒の温度Tcに基づいて室外熱交換器35の温度を推定する。シャッタECU61は、推定されたラジエータ25の温度及び室外熱交換器35の温度に基づいて、それらの温度差を演算するとともに、演算された温度差に基づいて熱交換量QDを演算する。なお、シャッタECU61は、出口側水温センサ26により検出される出口側水温Toutに基づいてラジエータ25の温度を推定してもよい。また、室外熱交換器35の出口側の冷媒温度を検出するセンサが熱交換システム10に設けられている場合には、シャッタECU61は、このセンサにより検出される冷媒温度に基づいて室外熱交換器35の温度を推定してもよい。さらに、冷媒の温度を検出するセンサに代えて、冷媒の圧力を検出するセンサを用いることも可能である。 Further, the shutter ECU 61 calculates the heat exchange amount QD between the radiator 25 and the outdoor heat exchanger 35. The heat exchange amount QD is calculated as follows, for example. First, the shutter ECU 61 estimates the temperature of the radiator 25 based on the inlet side water temperature Tin detected by the inlet side water temperature sensor 26. Further, the shutter ECU 61 estimates the temperature of the outdoor heat exchanger 35 based on the refrigerant temperature Tc detected by the inlet side temperature sensor 39. The shutter ECU 61 calculates the temperature difference between the radiator 25 and the outdoor heat exchanger 35, and calculates the heat exchange amount QD based on the calculated temperature difference. The shutter ECU 61 may estimate the temperature of the radiator 25 based on the outlet side water temperature Tout detected by the outlet side water temperature sensor 26. When the heat exchange system 10 is provided with a sensor that detects the temperature of the refrigerant on the outlet side of the outdoor heat exchanger 35, the shutter ECU 61 causes the outdoor heat exchanger to detect the temperature of the refrigerant based on the temperature of the refrigerant detected by the sensor. The temperature of 35 may be estimated. Further, it is possible to use a sensor that detects the pressure of the refrigerant instead of the sensor that detects the temperature of the refrigerant.
 さらに、シャッタECU61は、室外熱交換器35の必要吸熱量QAから熱交換量QDを減算した第1減算値D1を演算する。シャッタECU61は、室外熱交換器35の吸熱量と送風装置70のデューティ値との関係を示すマップを有しており、このマップに基づいて第1減算値D1から送風装置70の第1デューティ値DAを演算する。 Further, the shutter ECU 61 calculates a first subtraction value D1 obtained by subtracting the heat exchange amount QD from the required heat absorption amount QA of the outdoor heat exchanger 35. The shutter ECU 61 has a map showing the relationship between the heat absorption amount of the outdoor heat exchanger 35 and the duty value of the blower device 70, and based on this map, the first subtraction value D1 to the first duty value of the blower device 70. Calculate DA.
 また、シャッタECU61は、ラジエータ25の必要放熱量QBから熱交換量QDを減算した第2減算値D2を演算する。シャッタECU61は、ラジエータ25の放熱量と送風装置70のデューティ値との関係を示すマップを有しており、このマップに基づいて第2減算値D2から送風装置70の第2デューティ値DBを演算する。 The shutter ECU 61 also calculates a second subtraction value D2 obtained by subtracting the heat exchange amount QD from the required heat radiation amount QB of the radiator 25. The shutter ECU 61 has a map showing the relationship between the heat radiation amount of the radiator 25 and the duty value of the blower device 70, and calculates the second duty value DB of the blower device 70 from the second subtraction value D2 based on this map. To do.
 シャッタECU61は、第1デューティ値DA及び第2デューティ値DBのうち、値の大きい方を送風装置70のデューティ値DCとして設定するとともに、設定されたデューティ値DCをファンECU71に送信することで送風装置70の駆動を制御する。
 以上説明した本実施形態の熱交換システム10によれば、以下の(5)に示される作用及び効果を更に得ることができる。
The shutter ECU 61 sets the larger one of the first duty value DA and the second duty value DB as the duty value DC of the blower device 70, and sends the set duty value DC to the fan ECU 71 to blow air. The drive of the device 70 is controlled.
According to the heat exchange system 10 of the present embodiment described above, the action and effect shown in the following (5) can be further obtained.
 (5)シャッタECU61は、判定値QCが閾値Qth以下であると判断した場合には、シャッタ装置60を開状態に設定するとともに、室外熱交換器35の必要吸熱量QAから熱交換量QDを減算した第1減算値D1と、ラジエータ25の必要放熱量QBから熱交換量QDを減算した第2減算値D2とに基づいて、送風装置70の駆動を制御する。このような構成によれば、室外熱交換器35の必要吸熱量QA及びラジエータ25の必要放熱量QBに基づいて送風装置70を駆動させる場合と比較すると、ラジエータ25の放熱及び室外熱交換器35の吸熱を満足しつつ、送風装置70の回転速度を低減することが可能である。よって、消費電力を低減することが可能である。 (5) When the shutter ECU 61 determines that the determination value QC is equal to or less than the threshold value Qth, the shutter device 60 sets the shutter device 60 to the open state and changes the heat exchange amount QD from the required heat absorption amount QA of the outdoor heat exchanger 35. Based on the subtracted first subtraction value D1 and the second subtraction value D2 obtained by subtracting the heat exchange amount QD from the required heat radiation amount QB of the radiator 25, the drive of the blower device 70 is controlled. According to such a configuration, as compared with the case where the air blower 70 is driven based on the required heat absorption amount QA of the outdoor heat exchanger 35 and the required heat radiation amount QB of the radiator 25, the heat radiation of the radiator 25 and the outdoor heat exchanger 35 It is possible to reduce the rotation speed of the blower device 70 while satisfying the heat absorption of. Therefore, power consumption can be reduced.
 <第3実施形態>
 次に、熱交換システム10の第3実施形態について説明する。以下、第1実施形態の熱交換システム10との相違点を中心に説明する。
 図1に破線で示されるように、本実施形態の熱交換システム10には、室外熱交換器35から流出する冷媒の圧力Paを検出する冷媒圧力センサ85が設けられている。本実施形態では、冷媒圧力センサ85が、室外熱交換器35を流れる冷媒の圧力を検出するセンサに相当する。図6に破線で示されるように、冷媒圧力センサ85の出力信号は空調ECU84に取り込まれている。空調ECU84は、冷媒圧力センサ85により検出される冷媒の圧力Pa、内気温センサ80により検出される内気温Tr、及び外気温センサ81により検出される外気温Tamに基づいて、図12に示される処理を実行する。
<Third Embodiment>
Next, a third embodiment of the heat exchange system 10 will be described. Hereinafter, differences from the heat exchange system 10 of the first embodiment will be mainly described.
As shown by the broken line in FIG. 1, the heat exchange system 10 of the present embodiment is provided with a refrigerant pressure sensor 85 that detects the pressure Pa of the refrigerant flowing out of the outdoor heat exchanger 35. In the present embodiment, the refrigerant pressure sensor 85 corresponds to a sensor that detects the pressure of the refrigerant flowing through the outdoor heat exchanger 35. As shown by the broken line in FIG. 6, the output signal of the refrigerant pressure sensor 85 is taken into the air conditioning ECU 84. The air conditioning ECU 84 is shown in FIG. 12 based on the refrigerant pressure Pa detected by the refrigerant pressure sensor 85, the inside air temperature Tr detected by the inside air temperature sensor 80, and the outside air temperature Tam detected by the outside air temperature sensor 81. Execute the process.
 図12に示されるように、空調ECU84は、まず、ステップS40の処理として、目標冷媒圧力PAを演算する。具体的には、空調ECU84は、メモリに記憶されているマップを用いて外気温Tamから目標冷媒圧力の基礎値PAbを演算する。このマップでは、外気温Tamが上昇するほど目標冷媒圧力の基礎値PAbが増加するように設定されている。また、空調ECU84は、車室内の設定温度Tsと内気温Trとの偏差ΔT(=Ts-Tr)を演算するとともに、演算された偏差ΔTから、メモリに記憶されているマップを用いて目標冷媒圧力の補正値ΔPAを演算する。このマップでは、偏差ΔTが大きくなるほど補正値ΔPAが増加するとともに、偏差ΔTが小さくなるほど補正値ΔPAが減少するように設定されている。空調ECU84は、目標冷媒圧力の基礎値PAbに補正値ΔPAを加算することにより最終的な目標冷媒圧力PA(=PAb+ΔPA)を求める。 As shown in FIG. 12, the air conditioning ECU 84 first calculates the target refrigerant pressure PA as the process of step S40. Specifically, the air conditioning ECU 84 calculates the basic value PAb of the target refrigerant pressure from the outside air temperature Tam using the map stored in the memory. In this map, the basic value PAb of the target refrigerant pressure is set to increase as the outside air temperature Tam rises. Further, the air conditioning ECU 84 calculates a deviation ΔT (=Ts−Tr) between the set temperature Ts in the vehicle compartment and the inside air temperature Tr, and uses the calculated deviation ΔT to calculate the target refrigerant using a map stored in the memory. A pressure correction value ΔPA is calculated. In this map, the correction value ΔPA increases as the deviation ΔT increases, and the correction value ΔPA decreases as the deviation ΔT decreases. The air conditioning ECU 84 obtains the final target refrigerant pressure PA (=PAb+ΔPA) by adding the correction value ΔPA to the basic value PAb of the target refrigerant pressure.
 空調ECU84は、ステップS40に続くステップS41の処理として、冷媒圧力センサ85の出力信号に基づいて室外熱交換器35の実冷媒圧力Paの情報を取得する。
 空調ECU84は、ステップS41に続くステップS42の処理として、実冷媒圧力Paが目標冷媒圧力PAよりも大きいか否かを判断する。空調ECU84は、実冷媒圧力Paが目標冷媒圧力PAよりも大きい場合には、ステップS42の処理で肯定判断して、続くステップS43の処理として、シャッタ装置60を閉状態に設定するようにシャッタECU61に対して指示する。一方、空調ECU84は、実冷媒圧力Paが目標冷媒圧力PA以下である場合には、ステップS42の処理で否定判断して、続くステップS44の処理として、シャッタ装置60を開状態にするようにシャッタECU61に対して指示する。シャッタECU61は、空調ECU84からの指示に基づいてシャッタ装置60を開閉させる。
The air conditioning ECU 84 acquires the information of the actual refrigerant pressure Pa of the outdoor heat exchanger 35 based on the output signal of the refrigerant pressure sensor 85 as the processing of step S41 following step S40.
The air conditioning ECU 84 determines whether or not the actual refrigerant pressure Pa is higher than the target refrigerant pressure PA as the processing of step S42 following step S41. When the actual refrigerant pressure Pa is higher than the target refrigerant pressure PA, the air conditioning ECU 84 makes an affirmative decision in the process of step S42, and as the process of the following step S43, the shutter ECU 61 is set to the closed state. Instruct. On the other hand, when the actual refrigerant pressure Pa is equal to or lower than the target refrigerant pressure PA, the air conditioning ECU 84 makes a negative determination in the process of step S42, and the shutter device 60 is opened to open the shutter device 60 as the process of step S44. Instruct the ECU 61. The shutter ECU 61 opens and closes the shutter device 60 based on an instruction from the air conditioning ECU 84.
 次に、本実施形態の熱交換システム10の動作例について説明する。
 室外熱交換器35の冷媒圧力Paが低くなりすぎると室外熱交換器35が着霜してしまうため、外気温Tamに応じて目標冷媒圧力PAを設定するようにしている。一方、室外熱交換器35の冷媒圧力Paが上がりすぎると、室外熱交換器35において外気温Tamとの温度差が取れなくなるため、室外熱交換器35の吸熱量が下がる。外気からの室外熱交換器35の吸熱量が小さいと室外熱交換器35の冷媒圧力Paが下がり、外気からの室外熱交換器35の吸熱量が大きいと室外熱交換器35の冷媒圧力Paが上がる。つまり、シャッタ装置60が開状態になることにより室外熱交換器35に供給される外気の風速が速くなると、室外熱交換器35の冷媒圧力Paが上がる。このときに、室外熱交換器35の冷媒圧力Paが目標冷媒圧力PAよりも高いと、室外熱交換器35に供給される外気の風速を遅くする、すなわちシャッタ装置60を閉状態にすることができる。
Next, an operation example of the heat exchange system 10 of the present embodiment will be described.
If the refrigerant pressure Pa of the outdoor heat exchanger 35 becomes too low, the outdoor heat exchanger 35 will be frosted. Therefore, the target refrigerant pressure PA is set according to the outside air temperature Tam. On the other hand, if the refrigerant pressure Pa of the outdoor heat exchanger 35 rises too much, the temperature difference between the outdoor heat exchanger 35 and the outside air temperature Tam cannot be obtained, and the heat absorption amount of the outdoor heat exchanger 35 decreases. When the heat absorption amount of the outdoor heat exchanger 35 from the outside air is small, the refrigerant pressure Pa of the outdoor heat exchanger 35 decreases, and when the heat absorption amount of the outdoor heat exchanger 35 from the outside air is large, the refrigerant pressure Pa of the outdoor heat exchanger 35 increases. Go up. That is, when the wind speed of the outside air supplied to the outdoor heat exchanger 35 increases due to the opening of the shutter device 60, the refrigerant pressure Pa of the outdoor heat exchanger 35 increases. At this time, if the refrigerant pressure Pa of the outdoor heat exchanger 35 is higher than the target refrigerant pressure PA, the wind speed of the outside air supplied to the outdoor heat exchanger 35 may be slowed, that is, the shutter device 60 may be closed. it can.
 なお、室外熱交換器35の冷媒圧力Paが目標冷媒圧力PAよりも高い場合に、シャッタ装置60を閉状態にするという方法に代えて、送風装置70の回転速度を下げるという方法を採用することも可能である。
 本実施形態の熱交換システム10によれば、第1実施形態の熱交換システム10で用いられる熱量QA,Qa,QB,Qcを演算する必要がないため、演算処理を簡素化することが可能である。
Note that, when the refrigerant pressure Pa of the outdoor heat exchanger 35 is higher than the target refrigerant pressure PA, instead of closing the shutter device 60, a method of lowering the rotation speed of the blower device 70 is adopted. Is also possible.
According to the heat exchange system 10 of the present embodiment, it is not necessary to calculate the heat quantities QA, Qa, QB, Qc used in the heat exchange system 10 of the first embodiment, and therefore the calculation processing can be simplified. is there.
 <他の実施形態>
 なお、各実施形態は、以下の形態にて実施することもできる。
 ・各実施形態の熱交換システム10では、ラジエータ25と室外熱交換器35とを熱的に連結する連結部材として、フィン50に限らず、適宜の部材を用いることが可能である。
<Other Embodiments>
In addition, each embodiment can also be implemented in the following forms.
-In the heat exchange system 10 of each embodiment, not only the fin 50 but an appropriate member can be used as a connecting member that thermally connects the radiator 25 and the outdoor heat exchanger 35.
 ・シャッタ装置60は、グリル開口部41からエンジンルーム42に延びる空気通路Waに配置されていてもよい。また、シャッタ装置60は、空気の流れ方向における室外熱交換器35の下流側に配置されていてもよい。
 ・冷却システム20が冷却対象とする発熱源としては、電動発動機21、バッテリ22、及びインバータ23に限らず、車両に搭載される任意の発熱源を用いることが可能である。
The shutter device 60 may be arranged in the air passage Wa extending from the grill opening 41 to the engine room 42. Further, the shutter device 60 may be arranged on the downstream side of the outdoor heat exchanger 35 in the air flow direction.
The heat source to be cooled by the cooling system 20 is not limited to the electric motor 21, the battery 22, and the inverter 23, and any heat source mounted on the vehicle can be used.
 ・第1実施形態のシャッタECU61は、図9に示されるステップS32の処理で否定判断した場合に、すなわち第1要求フラグF1及び第2要求フラグF2のいずれか一方が「1」に設定されている場合に、シャッタ装置60を閉状態にする処理を実行してもよい。
 ・本開示に記載のECU及びその制御方法は、コンピュータプログラムにより具体化された1つ又は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された1つ又は複数の専用コンピュータにより、実現されてもよい。本開示に記載の制御装置及びその制御方法は、1つ又は複数の専用ハードウェア論理回路を含むプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。本開示に記載の制御装置及びその制御方法は、1つ又は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと1つ又は複数のハードウェア論理回路を含むプロセッサとの組み合わせにより構成された1つ又は複数の専用コンピュータにより、実現されてもよい。コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。専用ハードウェア論理回路及びハードウェア論理回路は、複数の論理回路を含むデジタル回路、又はアナログ回路により実現されてもよい。
The shutter ECU 61 of the first embodiment makes a negative determination in the process of step S32 shown in FIG. 9, that is, one of the first request flag F1 and the second request flag F2 is set to “1”. If so, the process of closing the shutter device 60 may be executed.
The ECU and the control method thereof described in the present disclosure are provided by configuring a processor and a memory programmed to execute one or more functions embodied by a computer program. It may be realized by a dedicated computer. The control device and the control method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor including one or a plurality of dedicated hardware logic circuits. A control device and a control method thereof according to the present disclosure are configured by a combination of a processor and a memory programmed to execute one or a plurality of functions, and a processor including one or a plurality of hardware logic circuits. It may be implemented by one or more dedicated computers. The computer program may be stored in a computer-readable non-transition tangible recording medium as an instruction executed by a computer. The dedicated hardware logic circuit and the hardware logic circuit may be realized by a digital circuit including a plurality of logic circuits or an analog circuit.
 ・電気自動車等の電動機を動力源とする車両に上記実施形態の構成を採用する場合には、エンジンルーム42は、電動機が収容される空間であってもよい。
 ・図13に示されるように、ラジエータ25は室外熱交換器35よりも空気流れ方向Daの下流側に配置されていてもよい。ところで、シャッタ装置60が閉状態の場合であっても、シャッタ装置60の複数のブレードの間には隙間が形成される可能性があるため、この隙間を通じてエンジンルーム42に微量の空気が流れるおそれがある。この空気の流れにより、図13に示される構成において仮にフィン50が設けられていない場合には、ラジエータ25の熱を室外熱交換器35に伝達することが難しくなる可能性がある。具体的には、図13に示されるようにラジエータ25が室外熱交換器35よりも空気流れ方向Daの下流側に配置されている場合には、ラジエータ25の熱を吸収した空気が室外熱交換器35を流れることなくエンジンルーム42へと流れる。そのため、フィン50が設けられていない場合には、ラジエータ25の熱を室外熱交換器35に伝達することが難しい。この点、図13に示されるようにラジエータ25及び室外熱交換器35がフィン50を介して熱的に連結されていれば、仮にシャッタ装置60が閉状態である状況で微量の空気がラジエータ25及び室外熱交換器35に流れている場合であっても、ラジエータ25の熱を室外熱交換器35にフィン50を介して伝達することが可能となる。
When the configuration of the above embodiment is adopted in a vehicle that uses an electric motor as a power source, such as an electric vehicle, the engine room 42 may be a space in which the electric motor is housed.
As shown in FIG. 13, the radiator 25 may be arranged downstream of the outdoor heat exchanger 35 in the air flow direction Da. By the way, even when the shutter device 60 is in the closed state, a gap may be formed between the plurality of blades of the shutter device 60. Therefore, a small amount of air may flow into the engine room 42 through the gap. There is. This air flow may make it difficult to transfer the heat of the radiator 25 to the outdoor heat exchanger 35 if the fins 50 are not provided in the configuration shown in FIG. 13. Specifically, as shown in FIG. 13, when the radiator 25 is arranged downstream of the outdoor heat exchanger 35 in the air flow direction Da, the air that has absorbed the heat of the radiator 25 is the outdoor heat exchange. It flows into the engine room 42 without flowing through the vessel 35. Therefore, when the fins 50 are not provided, it is difficult to transfer the heat of the radiator 25 to the outdoor heat exchanger 35. In this regard, as shown in FIG. 13, if the radiator 25 and the outdoor heat exchanger 35 are thermally connected to each other through the fins 50, a small amount of air will be emitted from the radiator 25 when the shutter device 60 is closed. Even when the heat flows to the outdoor heat exchanger 35, the heat of the radiator 25 can be transferred to the outdoor heat exchanger 35 via the fins 50.
 ・図9及び図11に示されるステップS31,S36に示される処理では、シャッタ装置60を閉状態にする処理に代えて、シャッタ装置60の開度を、ステップS37,S38で設定されるシャッタ装置60の開度よりも閉じる方向に調整する処理を実行してもよい。図12のステップS43の処理でも同様である。 In the processes shown in steps S31 and S36 shown in FIGS. 9 and 11, instead of the process of closing the shutter device 60, the opening degree of the shutter device 60 is set in steps S37 and S38. You may perform the process which adjusts to a closing direction rather than the opening degree of 60. The same applies to the process of step S43 in FIG.
 ・室外熱交換器35は、空気から吸熱する吸熱器として用いられるものに限らず、空気に放熱する放熱器として用いられるものであってもよい。
 ・本開示は上記の具体例に限定されるものではない。上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素、及びその配置、条件、形状等は、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。
The outdoor heat exchanger 35 is not limited to being used as a heat absorber that absorbs heat from the air, but may be used as a radiator that radiates heat to the air.
The present disclosure is not limited to the above specific examples. A person skilled in the art appropriately modified the above-described specific examples is also included in the scope of the present disclosure as long as the features of the present disclosure are provided. The elements included in the above-described specific examples, and the arrangement, conditions, shapes, and the like of the elements are not limited to those illustrated, but can be appropriately changed. The respective elements included in the above-described specific examples can be appropriately combined as long as there is no technical contradiction.

Claims (10)

  1.  車両の空調装置の熱交換サイクル(30)に用いられて空気から吸熱又は空気に放熱する熱交換器であって、前記熱交換サイクルを循環する熱媒体と、車両の前方からエンジンルーム内に導入される空気との間で熱交換を行う熱交換器(35)と、
     前記車両の発熱源を冷却する冷却システム(20)に用いられ、前記車両に搭載される発熱源を冷却するための冷却水と、車両の前方から前記エンジンルーム内に導入される空気との間で熱交換を行うラジエータ(25)と、
     前記熱交換器と前記ラジエータとを熱的に連結する連結部材(50)と、
     前記熱交換器及び前記ラジエータへの空気の供給及び遮断を切り替え可能なシャッタ装置(60)と、を備える
     熱交換システム。
    A heat exchanger used in a heat exchange cycle (30) of an air conditioner for a vehicle to absorb heat from air or release heat to air, the heat medium circulating in the heat exchange cycle, and introduced into the engine room from the front of the vehicle. A heat exchanger (35) for exchanging heat with the air to be stored;
    Between cooling water used for a cooling system (20) for cooling a heat source of the vehicle and for cooling a heat source mounted on the vehicle, and air introduced into the engine room from the front of the vehicle. A radiator (25) that exchanges heat with
    A connecting member (50) for thermally connecting the heat exchanger and the radiator;
    A heat exchange system comprising: a shutter device (60) capable of switching between supply and interruption of air to the heat exchanger and the radiator.
  2.  前記シャッタ装置の開閉を制御する制御部(61)を更に備える
     請求項1に記載の熱交換システム。
    The heat exchange system according to claim 1, further comprising a control unit (61) that controls opening and closing of the shutter device.
  3.  前記制御部は、空気から吸熱する吸熱器として前記熱交換器が作動するとき、前記シャッタ装置の一部又は全部を閉じる
     請求項2に記載の熱交換システム。
    The heat exchange system according to claim 2, wherein the control unit closes a part or all of the shutter device when the heat exchanger operates as a heat absorber that absorbs heat from air.
  4.  前記制御部は、前記熱交換サイクルにおいて必要とされる前記熱交換器の吸熱量を必要吸熱量(QA)とし、前記冷却システムにおいて必要とされる前記ラジエータの放熱量を必要放熱量(QB)とするとき、前記必要吸熱量を前記必要放熱量により補うことができる状況であるか否かを判定し、前記必要吸熱量を前記必要放熱量により補うことができる状況であると判定した場合には、前記シャッタ装置の開度を閉じる方向に調整する
     請求項2に記載の熱交換システム。
    The control unit sets a heat absorption amount of the heat exchanger required in the heat exchange cycle as a necessary heat absorption amount (QA), and a heat radiation amount of the radiator required in the cooling system as a necessary heat radiation amount (QB). When, when it is determined that the required heat absorption amount can be supplemented by the required heat radiation amount, it is determined that the required heat absorption amount can be supplemented by the required heat radiation amount. The heat exchange system according to claim 2, wherein the opening adjusts the opening degree of the shutter device.
  5.  前記制御部は、前記熱交換器の実際の吸熱量(Qa)が前記熱交換器の必要吸熱量以下であって、且つ所定時間経過後の前記ラジエータの温度(TEin)が所定温度(Tth)以上である場合、前記ラジエータの必要放熱量から前記熱交換器の必要吸熱量を減算することにより得られる判定値(QC)が予め定められた閾値(Qth)よりも大きいか否かを判断し、前記判定値が前記閾値よりも大きい場合には、前記必要吸熱量を前記必要放熱量により補うことができる状況であると判定して、前記シャッタ装置の開度を閉じる方向に調整する
     請求項4に記載の熱交換システム。
    The control unit is configured such that an actual heat absorption amount (Qa) of the heat exchanger is equal to or less than a necessary heat absorption amount of the heat exchanger and a temperature (TEin) of the radiator after a predetermined time has passed is a predetermined temperature (Tth). In the above case, it is determined whether or not the determination value (QC) obtained by subtracting the required heat absorption amount of the heat exchanger from the required heat radiation amount of the radiator is larger than a predetermined threshold value (Qth). When the determination value is larger than the threshold value, it is determined that the required heat absorption amount can be supplemented by the required heat radiation amount, and the opening degree of the shutter device is adjusted in the closing direction. The heat exchange system according to item 4.
  6.  前記制御部は、前記ラジエータの必要放熱量から前記熱交換器の必要吸熱量を減算した減算値から、前記連結部材の放熱量に基づく補正値(α)を更に減算することにより、前記判定値を演算する
     請求項5に記載の熱交換システム。
    The control unit further subtracts a correction value (α) based on the heat radiation amount of the connecting member from a subtraction value obtained by subtracting the necessary heat absorption amount of the heat exchanger from the necessary heat radiation amount of the radiator to obtain the determination value. The heat exchange system according to claim 5.
  7.  前記熱交換器及び前記ラジエータに空気を送風する送風装置(70)を更に備え、
     前記制御部は、前記判定値が前記閾値以下であると判断した場合には、前記シャッタ装置を開状態に設定するとともに、前記熱交換器の必要吸熱量から前記ラジエータ及び前記熱交換器の間の熱交換量を減算した第1減算値(D1)と、前記ラジエータの必要放熱量から前記ラジエータ及び前記熱交換器の間の熱交換量を減算した第2減算値(D2)とを演算し、前記第1減算値及び第2減算値のいずれか一方に基づいて前記送風装置の駆動を制御する
     請求項5又は6に記載の熱交換システム。
    Further comprising a blower (70) for blowing air to the heat exchanger and the radiator,
    When the control unit determines that the determination value is less than or equal to the threshold value, the control unit sets the shutter device to the open state, and determines between the radiator and the heat exchanger from the required heat absorption amount of the heat exchanger. And a second subtraction value (D2) obtained by subtracting the heat exchange amount between the radiator and the heat exchanger from the required heat radiation amount of the radiator. The heat exchange system according to claim 5 or 6, which controls driving of the air blower based on one of the first subtraction value and the second subtraction value.
  8.  前記制御部は、車室外の温度である外気温と、車室内の温度である内気温とに基づいて目標冷媒圧力を設定し、前記熱交換器を流れる熱媒体の圧力が前記目標冷媒圧力よりも大きい場合には、前記シャッタ装置の開度を閉じる方向に調整する
     請求項2に記載の熱交換システム。
    The control unit sets the target refrigerant pressure based on the outside air temperature that is the temperature outside the vehicle compartment and the inside air temperature that is the temperature inside the vehicle compartment, and the pressure of the heat medium flowing through the heat exchanger is lower than the target refrigerant pressure. The heat exchange system according to claim 2, wherein the opening degree of the shutter device is adjusted in a closing direction when the value is larger.
  9.  前記シャッタ装置は、前記車両のグリル開口部(41)、又は前記グリル開口部から前記エンジンルーム(42)に延びる空気通路(Wa)に配置されている
     請求項1~8のいずれか一項に記載の熱交換システム。
    The shutter device is arranged in a grill opening (41) of the vehicle or in an air passage (Wa) extending from the grill opening to the engine room (42). The heat exchange system described.
  10.  前記ラジエータは、前記熱交換器よりも空気流れ方向の上流側に配置されている
     請求項1~9のいずれか一項に記載の熱交換システム。
    The heat exchange system according to any one of claims 1 to 9, wherein the radiator is arranged on the upstream side in the air flow direction with respect to the heat exchanger.
PCT/JP2019/047487 2018-12-14 2019-12-04 Vehicle heat exchange system WO2020121923A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980081623.7A CN113165475A (en) 2018-12-14 2019-12-04 Heat exchange system for vehicle
DE112019006207.7T DE112019006207T5 (en) 2018-12-14 2019-12-04 Vehicle heat exchange system
US17/328,570 US20210276398A1 (en) 2018-12-14 2021-05-24 Vehicle heat exchange system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-234415 2018-12-14
JP2018234415 2018-12-14
JP2019207741A JP7375486B2 (en) 2018-12-14 2019-11-18 Vehicle heat exchange system
JP2019-207741 2019-11-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/328,570 Continuation US20210276398A1 (en) 2018-12-14 2021-05-24 Vehicle heat exchange system

Publications (1)

Publication Number Publication Date
WO2020121923A1 true WO2020121923A1 (en) 2020-06-18

Family

ID=71075992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047487 WO2020121923A1 (en) 2018-12-14 2019-12-04 Vehicle heat exchange system

Country Status (1)

Country Link
WO (1) WO2020121923A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054504A1 (en) * 2020-09-11 2022-03-17 株式会社デンソー Vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221997A (en) * 2007-03-12 2008-09-25 Toyota Motor Corp Vehicle air conditioner
JP2012017092A (en) * 2010-06-10 2012-01-26 Denso Corp Heat pump cycle
JP2013139995A (en) * 2011-12-05 2013-07-18 Denso Corp Heat pump cycle
JP2017121818A (en) * 2016-01-04 2017-07-13 株式会社ヴァレオジャパン Control device for cooling device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221997A (en) * 2007-03-12 2008-09-25 Toyota Motor Corp Vehicle air conditioner
JP2012017092A (en) * 2010-06-10 2012-01-26 Denso Corp Heat pump cycle
JP2013139995A (en) * 2011-12-05 2013-07-18 Denso Corp Heat pump cycle
JP2017121818A (en) * 2016-01-04 2017-07-13 株式会社ヴァレオジャパン Control device for cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054504A1 (en) * 2020-09-11 2022-03-17 株式会社デンソー Vehicle

Similar Documents

Publication Publication Date Title
JP7095848B2 (en) Vehicle air conditioner
JP6997558B2 (en) Vehicle air conditioner
CN110505968B (en) Air conditioner for vehicle
JP6855281B2 (en) Vehicle air conditioner
JP7185469B2 (en) vehicle thermal management system
JP6836209B2 (en) Vehicle cooling system
US11577579B2 (en) Vehicle air-conditioning device
JP5860361B2 (en) Thermal management system for electric vehicles
US20170021698A1 (en) Vehicle-mounted temperature adjustment device, vehicle air-conditioning device, and battery temperature adjustment device
WO2020066719A1 (en) Vehicle air conditioner
JP2008308080A (en) Heat absorption and radiation system for automobile, and control method thereof
JP7164994B2 (en) Vehicle air conditioner
JP6571430B2 (en) Air conditioner for vehicles
JP2017154522A (en) Air conditioner for vehicle
JP7372794B2 (en) Vehicle air conditioner
JP2014037182A (en) Thermal management system for electric vehicle
US20210276398A1 (en) Vehicle heat exchange system
JP2014223867A (en) Vehicle air conditioner and vehicle air conditioner control method
WO2020100410A1 (en) Vehicle air-conditioning device
JP7185412B2 (en) Vehicle air conditioner
WO2020121923A1 (en) Vehicle heat exchange system
JP7316841B2 (en) Vehicle air conditioner
JP7164986B2 (en) Vehicle air conditioner
JP7221789B2 (en) Vehicle air conditioner
CN114401853A (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896216

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19896216

Country of ref document: EP

Kind code of ref document: A1