WO2020116830A1 - Light diffusion lens - Google Patents

Light diffusion lens Download PDF

Info

Publication number
WO2020116830A1
WO2020116830A1 PCT/KR2019/015950 KR2019015950W WO2020116830A1 WO 2020116830 A1 WO2020116830 A1 WO 2020116830A1 KR 2019015950 W KR2019015950 W KR 2019015950W WO 2020116830 A1 WO2020116830 A1 WO 2020116830A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
axis direction
diffusing lens
light diffusing
height
Prior art date
Application number
PCT/KR2019/015950
Other languages
French (fr)
Korean (ko)
Inventor
이강현
기호경
Original Assignee
주식회사 에이치엘옵틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이치엘옵틱스 filed Critical 주식회사 에이치엘옵틱스
Publication of WO2020116830A1 publication Critical patent/WO2020116830A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient

Definitions

  • the present invention relates to a light diffusing lens.
  • a liquid crystal display which has recently been spotlighted, has advantages such as miniaturization, light weight, and low power consumption, so that it can overcome the disadvantages of the conventional cathode ray tube (CRT).
  • CTR cathode ray tube
  • it has been gradually attracting attention, and it is currently installed and used in almost all information processing devices requiring display devices.
  • the liquid crystal display panel in the liquid crystal display device is a light-receiving element that does not emit light by itself
  • a backlight unit is provided under the liquid crystal display panel to provide light to the liquid crystal display panel.
  • the backlight unit includes a lamp, a light guide plate, a reflective sheet, and optical sheets.
  • the lamp has a relatively small amount of heat, generates white light close to natural light, and uses a long-life cold cathode ray tube type lamp or a light-emitting diode (hereinafter referred to as'LED') that has good color reproducibility and consumes low power. Anticorrosion lamps are used.
  • a plurality of conventional lenses 2 having isotropic surface irradiation characteristics may be disposed on the substrate 20 at equal intervals. At this time, the lens 2 may be disposed to cover the light source mounted on the substrate 20.
  • a mura in the form of a dark portion occurs in a diagonal direction with respect to one lens 2.
  • the light emitted by the LED tends to concentrate in the front direction of the LED due to its strong straightness. Accordingly, there is an increasing demand for a technique for effectively and uniformly diffusing the light of a plurality of LEDs.
  • the lens technology that can improve the uniformity of light by designing the incident surface where light enters and the emitting surface through which light is emitted to implement an anisotropic surface irradiation, and minimizing the dark portion generated in the diagonal direction of the lens based on this,
  • the demand for the situation is also increasing.
  • the technical problem to be solved by the present invention is to provide a light diffusing lens having an incident surface on which light is incident and an emitting surface on which light is emitted so as to minimize dark portions generated in a diagonal direction of a plurality of light diffusion lenses.
  • Another technical problem to be solved by the present invention is to provide a light diffusing lens that is formed to have a long axis and a short axis on a plane, and designs a height of the long axis to be higher than the height of the short axis to prevent leakage of light from the long axis.
  • the light diffusing lens includes a lower surface on which a short axis and a long axis are formed; An incidence surface concavely formed inward from one region (entrance entrance) of the lower surface; And an emission surface through which light incident through the incident surface is emitted, wherein the emission surface includes: a curved upper surface; And a side surface vertically connecting the outer circumference of the upper surface and the outer circumference of the lower surface.
  • the lower surface, the outer circumferential shape may be a rugby ball shape.
  • the lower surface, the outer circumferential shape may be an elliptical shape.
  • the incidence surface includes: a first surface having a cylindrical shape in cross section; And a second surface extending from the first surface to the upper side and concave to the upper side.
  • the second surface may be convex toward the optical axis.
  • the upper surface may be recessed in the optical axis direction from the outer periphery, and may be a curved surface projecting toward the upper side.
  • the absolute value of the inclination of the tangent of the curved surface of the upper surface may be increased from the outer circumference toward the optical axis.
  • the upper surface may be a circular shape forming a predetermined curvature.
  • the height in the minor axis direction of the side surface may be lower than the height in the major axis direction.
  • the height in the minor axis direction is 0.5 or more and less than 1 in comparison to the height in the major axis direction.
  • the upper portion of the side surface may achieve a predetermined curvature.
  • the height in the minor axis direction may be 2.8 to 3.0 times the lowest height of the upper surface.
  • the length of the long axis may be 1.1 times or more of the length of the short axis.
  • the present invention as described above is formed to have a long axis and a short axis on a plane, and the height of the long axis is designed to be higher than the height of the short axis, so that leakage light can be prevented from occurring on the long axis. Accordingly, light uniformity is improved at the edge of the long axis side, and asymmetric light distribution is realized.
  • FIG. 2 is a perspective view of a light diffusing lens of the first embodiment of the present invention.
  • FIG 3 is a plan view of a light diffusing lens of the first embodiment of the present invention.
  • FIG. 4 is a bottom view of the light diffusing lens of the first embodiment of the present invention.
  • FIG. 5 is a front view of the light diffusing lens of the first embodiment of the present invention.
  • FIG. 6 is a side view of a light diffusing lens of the first embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a minor axis direction based on the upper surface of the light diffusing lens of the first embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a long axis direction based on an upper surface of the light diffusing lens of the first embodiment of the present invention.
  • FIG. 9 is a view showing light distribution according to a long axis length versus a short axis length of the light diffusion lens of the first embodiment of the present invention.
  • FIG 10 is an exemplary view showing the performance results of the light diffusing lens of the first embodiment of the present invention.
  • FIG. 11 is a view showing light diffusion in the long axis direction and the short axis direction of the light diffusion lens of the first embodiment of the present invention.
  • FIG. 12 is a view showing a light source applied to the light diffusion lens of the present invention.
  • FIG. 13 is a perspective view of a light diffusing lens of the second embodiment of the present invention.
  • FIG. 14 is a plan view of a light diffusing lens according to a second embodiment of the present invention.
  • 15 is a bottom view of the light diffusing lens of the second embodiment of the present invention.
  • 16 is a front view of a light diffusing lens of the second embodiment of the present invention.
  • 17 is a side view of a light diffusing lens of the second embodiment of the present invention.
  • FIG. 18 is a cross-sectional view of a minor axis direction based on the upper surface of the light diffusing lens of the second embodiment of the present invention.
  • 19 is a cross-sectional view of the long axis direction based on the upper surface of the light diffusing lens of the second embodiment of the present invention.
  • Fig. 2 is a perspective view of the light diffusing lens of the first embodiment of the present invention
  • Fig. 3 is a plan view of the light diffusing lens of the first embodiment of the present invention
  • Fig. 4 is a bottom view of the light diffusing lens of the first embodiment of the present invention
  • 5 is a front view of the light diffusing lens of the first embodiment of the present invention
  • FIG. 6 is a side view of the light diffusing lens of the first embodiment of the present invention
  • FIG. 7 is a light diffusing lens of the first embodiment of the present invention.
  • 8 is a cross-sectional view of the minor axis direction with respect to the upper surface
  • FIG. 8 is a cross-sectional view of the long axis direction with respect to the upper surface of the light diffusing lens of the first embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing the A-A line in FIG. 3
  • FIG. 8 is a cross-sectional view showing the B-B line in FIG. 3.
  • the x-direction is the shortening direction of the exit surface
  • the y-direction is the long axis direction of the exit surface
  • the z-direction indicates the optical axis direction.
  • the optical axis C is the center of light irradiated from the light source, and may coincide with the center of the light diffusion lens 1.
  • the light diffusing lens 1 of one embodiment of the present invention can be used in a liquid crystal display device.
  • the liquid crystal display may include a substrate and a plurality of light sources mounted on the substrate.
  • the light diffusion lens 1 may be disposed to cover the light source to implement asymmetric light distribution. Accordingly, the liquid crystal display device in which the light diffusion lens 1 is disposed can form an asymmetrical light distribution through the light diffusion lens 1 to prevent the formation of a conventional dark region (see FIG. 1 ).
  • the light diffusing lens 1 of the first embodiment of the present invention has a lower surface 100, an incident surface 200 through which light is incident, and light incident through the incident surface 200 It may include an exit surface 300 that is emitted.
  • the light diffusing lens 1 may diffuse light incident through the incident surface 200 by using the aspherical incidence surface 200 and the exit surface 300.
  • the exit surface 300 may include a pair of side surfaces 320 and 330 disposed to face the upper surface 310 and each other.
  • the light diffusing lens 1 may include a pair of corners 340 formed by the side surfaces 320 and 330 meeting. At this time, the corners 340 may be arranged to face each other in the long axis direction.
  • the light diffusing lens 1 may be formed using a material of polycarbonate or polymethacrylate.
  • the refractive index of the polycarbonate is 1.58, and the refractive index of the polymethmethylacrylate is 1.49.
  • the lower surface 100 may be disposed on the lower side of the upper surface 310. At this time, the lower surface 100 through the side surfaces 320 and 330 may be spaced apart from the upper surface 310.
  • 'upper side' and'lower side' are relative expressions, and unless otherwise defined below, the direction from the lower surface 100 to the upper surface 310 is defined as the upper side (upper), and vice versa. The direction from 310 to the lower surface 100 will be determined as the lower side (downward).
  • the lower surface 100 may be formed in a convex or planar shape toward the lower side.
  • the lower surface 100 having a convex shape toward the lower side may be a curved surface having a predetermined curvature.
  • the lower surface 100 is formed as a curved surface having a convex shape in the downward direction as an example, but is not limited thereto.
  • the lower surface 100 may be formed with a plane from the edge to a certain length in the center direction, and a lower convex surface may be formed from the point where the plane ends to the center side. That is, the lower surface 100 has a curvature of 0 for a certain length from the edge to the center direction, but may be a shape in which the curvature increases from a certain length or more to the center and then decreases again.
  • the plane disposed on the lower surface 100 so that light is preferentially totally reflected by the lower convex surface is preferably disposed outside the lower convex surface.
  • the lower surface 100 may be formed in a rugby ball shape in which a circular inlet 210 is disposed in the center, but is not limited thereto.
  • the lower surface 100 may be formed in an elliptical shape having a long axis and a short axis.
  • the incident surface 200 is a portion of the surface from which light emitted from the light source located at the entrance 210 is incident into the light diffusing lens 1.
  • the incident surface 200 may be formed concave from the center of the lower surface 100 to the inside. Accordingly, the entrance port 210 may be formed in the center of the lower surface 100. In addition, a light source that irradiates light toward the incident surface 200 may be disposed at the entrance port 210.
  • An air layer may be disposed between the light source and the incident surface 200. Therefore, in the case of light emitted from the light source to the air layer, the refractive index may be further refracted on the incident surface 200 of the light diffusing lens 1.
  • the incident surface 200 includes a first region 220 formed in a circular shape on a plane and a second region 230 concavely formed inward from the first region 220. can do.
  • the first region 220 may be disposed under the second region 230.
  • the entrance sphere 210 may also be formed in a circular shape. Accordingly, the entrance sphere 210 may have a predetermined radius based on the optical axis C.
  • a light source may be disposed at the center of the entrance port 210.
  • Light emitted from the light source to the side surfaces 320 and 330 may be incident on the first region 220.
  • the second region 230 may extend from the upper side of the first region 220. At this time, the second region 230 may be concave to the upper side so that the vertex P1 is formed on the optical axis C. As illustrated in FIGS. 7 and 8, the second region 230 may include a curved surface. Further, the curved surface may be convex toward the optical axis C to have a predetermined curvature, but is not limited thereto. For example, the curved surface may be formed in an ellipse or parabolic shape.
  • the second region 230 may be located on the upper side of the light source. At this time, the absolute value of the tangential slope of the curved surface of the second region 230 may gradually decrease from the top to the bottom of the curved surface.
  • the incident surface 200 includes the first region 220 and the second region 230 having different shapes, for example, the present invention is not limited thereto.
  • the vertical cross section of the incidence surface 200 may be formed in a hemispherical shape, a semi-elliptical shape, a rugby ball shape, or a parabolic shape. Accordingly, the incident surface 200 may be formed as an aspherical surface.
  • the light diffusing lens 1 when viewed in the direction of the optical axis of the light source, the light diffusing lens 1 may be formed to have a long axis and a short axis on a plane. At this time, the height H1 of each of the first side surface 320 and the second side surface 330 of the light diffusion lens 1 is smaller than the height H2 of the long axis direction.
  • the first side surface 320 and the second side surface 330 may be formed symmetrically with respect to the long axis.
  • the light diffusing lens 1 when viewed from the optical axis C, may be formed in a planar rugby ball shape.
  • the light diffusion lens 1 when viewed in the optical axis direction, may include a short axis formed of a predetermined length Lx and a long axis formed of a predetermined length Ly.
  • a short axis of the upper surface 310 of the exit surface 300 of the light diffusion lens 1 may be formed with a predetermined length Lx
  • a long axis may be formed with a predetermined length Ly.
  • the length of the long axis (Ly) is greater than the length of the short axis (Lx). Therefore, the light diffusion lens 1 can increase the amount of light diffusion in the long axis direction.
  • the long axis and the short axis of the light diffusing lens 1 are vertically arranged in a plane, and at an imaginary point where the long axis and the short axis meet, as shown in FIG. 3, the optical axis C is arranged. Accordingly, when viewed from the optical axis C, the light diffusion lens 1 can be formed symmetrically with respect to the long and short axes.
  • the length of the long axis of the light diffusion lens 1 may be 1.1 times or more and 2.0 times or less of the length of the minor axis.
  • the length (Ly) of the long axis of the light diffusion lens 1 may be referred to as the width of the light diffusion lens 1 with respect to the long axis direction
  • the length (Lx) of the short axis of the light diffusion lens 1 is in the short axis direction. It can be referred to as the width of the light diffusion lens (1).
  • the long axis length compared to the short axis length of the light diffusing lens 1 is less than 1.1 times, it is difficult to remove the above-described dark area, and when it exceeds 2.0 times, light uniformity and production efficiency are affected.
  • FIG. 9 is a view showing the light distribution according to the long axis length compared to the short axis length of the light diffusion lens of the first embodiment of the present invention
  • Figure 9 (a) shows the light distribution when the short axis length and the long axis length of the light diffusion lens is the same
  • FIG. 9(b) shows light distribution when the major axis length of the light diffusion lens is less than 1.1 times
  • FIG. 9(c) shows light distribution when the major axis length of the light diffusion lens is 1.1 times or more. Indicates.
  • an asymmetrical light distribution may be formed to remove the dark region.
  • FIG. 10 is an exemplary view showing the performance results of the light diffusing lens of the first embodiment of the present invention
  • FIG. 10 (a) is a view showing the experimental results of a conventional light diffusing lens
  • Figure 10 (b) is a A diagram showing the experimental results of the light diffusing lens according to the first embodiment.
  • the light diffusion amount of the light diffusion lens 1 is increased in the long axis direction compared to the conventional lens 2.
  • the light diffusing lens 1 of one embodiment of the present invention implements anisotropic light diffusion. Furthermore, when comparing the area A1 of FIG. 10A and the area A2 of FIG. 10B, the light diffusion lens 1 is equal in the area A2 (the edge of the light diffusion lens 1 in the long axis direction). It can be seen that one light is implemented.
  • the top surface 310 of the exit surface 300 may be formed in a shape recessed in the center direction from the edge.
  • the upper surface 310 may be a convex curved surface projecting toward the upper side.
  • the upper surface 310 may reflect light refracted by the incident surface 200 to the side surfaces 320 and 330 and the corners 340. For example, among the light irradiated from the light source to the upper surface 310, light irradiated toward the long axis at a predetermined angle ⁇ based on the optical axis C may be refracted to the corner by the upper surface 310. Accordingly, the light diffusion lens 1 can prevent the generation of leakage light in the long axis direction.
  • the upper surface 310 may be referred to as a reflective surface.
  • the light diffusion lens 1 is made of a material having a higher density than air, light incident on the upper surface 310 at a predetermined angle ⁇ based on the optical axis C can be totally reflected.
  • the angle ⁇ is an angle formed by the optical axis C and the light irradiated from the light source, and may be an acute angle, as shown in FIG. 11.
  • the angle ⁇ is the angle formed by the virtual line connecting the upper edge with respect to the minor axis direction of the side surfaces 320 and 330 and the center (optical axis vertex 11a) of the light source and the optical axis C. Can be.
  • the angle ⁇ may be 52.5 degrees or less. If the angle ⁇ is more than 52.5 degrees and is incident on the upper surface 310 formed as a curved surface, light leakage may occur in the long axis direction.
  • FIG. 11 is a view showing light diffusion in the long axis direction and the short axis direction of the light diffusion lens of the first embodiment of the present invention, and FIG. 11(a) is generated in the short direction of the light diffusion lens according to the first embodiment
  • FIG. 11B is a view showing effective light in which leakage light is prevented in the long axis direction of the light diffusion lens according to the first embodiment.
  • leakage light is generated in the minor axis direction of the light diffusion lens 1.
  • the leakage light may mean light that is not irradiated to the side surfaces 320 and 330.
  • leakage light may mean light irradiated upward from the side surfaces 320 and 330.
  • light deflection may occur in the minor axis direction of the light diffusing lens 1 as in the area A3 of FIG. 10B.
  • the length of the upper surface 310 in the long axis direction of the light diffusing lens 1 of the first embodiment of the present invention is longer than that of the short axis direction, and the height is higher than that of the short axis direction. Since it is high, leakage light formed in the short axis direction can be converted into effective light. Accordingly, light may be uniformly distributed as in the area A2 of FIG. 10B.
  • the light diffusing lens 1 of the light irradiated below 52.5 degrees based on the optical axis C among the light irradiated on the upper surface 310 increases the leakage light toward the short axis direction. That is, with respect to light irradiated to the upper surface 310 below 52.5 degrees based on the optical axis C, the light diffusion lens 1 may reduce leakage light as it goes from the short axis direction to the long axis direction in a planar view.
  • the light diffusing lens 1 of the first embodiment of the present invention forms the upper surface 310 formed as a curved surface by adjusting the length Ly and height H2 in the long axis direction, thereby generating leakage light in the long axis direction. Can be prevented.
  • the light diffusion lens 1 enlarges the coverage of light with respect to the long axis direction, and can derive an asymmetric light distribution by the expanded coverage.
  • the curved surface of the upper surface 310 may increase as the absolute value of the slope of the tangent line increases from the edge toward the optical axis C.
  • the first side surface 320 and the second side surface of the light diffusion lens 1 ( 330)
  • Each short axis height H1 is smaller than the long axis direction height H2.
  • the height H2 in the long axis direction may be the height of the edge 340.
  • the reference for the height may be the lower edge of each of the lower surface 100 or the first side surface 320 and the second side surface 330.
  • the height of the short axis direction H1 of each of the first side surface 320 and the second side surface 330 is 0.5 or more and less than 1, compared to the height of the long axis H2. That is, the height H1 of each of the first side surface 320 and the second side surface 330 may be formed within a range of 0.5 ⁇ H2 ⁇ H1 ⁇ H2.
  • the curved surface of the upper surface 310 may be formed to have a predetermined curvature (1/R1).
  • curvature (1/R1) in the long axis direction and curvature (1) in the short axis direction /R1) may be the same.
  • the center of the curvature 1/R1 may be disposed outside the light diffusion lens 1.
  • the upper surface 310 is formed to be rotationally symmetrical with respect to the optical axis C, but may be formed in a longer shape in the long axis direction.
  • the curvature of the upper surface 310 may be referred to as a first curvature. Therefore, the upper surface 310 may be formed to have a narrower radius and a recessed shape toward the optical axis C.
  • the curved surface of the upper surface 310 is formed to have a predetermined curvature, but is not limited thereto.
  • the curved surface may be formed in a part shape of a parabola or an ellipse.
  • the side surface disposed between the lower surface 100 and the upper surface 310 may include a first side surface 320 and a second side surface 330.
  • the first side surface 320 and the second side surface 330 may be disposed to face each other with the optical axis C interposed therebetween. At this time, the first side surface 320 and the second side surface 330 may be formed parallel to the optical axis C.
  • the height H1 of each of the first side surface 320 and the second side surface 330 is smaller than the height H2 of the long axis direction.
  • the first side portion 321 of the first side surface 320 may be disposed in the minor axis direction, and the second side portion 331 may be disposed on the second side surface 330. Accordingly, the height H1 in the short axis direction of the first side surface 320 and the second side surface 330 may be the height of the first side portion 321 and the second side portion 331.
  • the height H1 in the short axis direction of the first side surface 320 and the second side surface 330 is the height H3 of the vertex P2 which is one point of the upper surface 310 disposed on the optical axis C line. Greater than At this time, the height H1 of the first side surface 320 and the second side surface 330 in the short axis direction H1 is the height H3 of the vertex P2 which is one point of the upper surface 310 disposed on the optical axis C line. It can be 2.8 to 3.0 times.
  • the height H1 in the short axis direction of the first side surface 320 and the second side surface 330 is the height H3 of the vertex P2 which is a point of the upper surface 310 disposed on the optical axis C line. It can be 2.9 times.
  • the height H3 of the vertex P2 which is one point of the upper surface 310 is disposed on the optical axis C line, it can be formed at a constant height regardless of the long axis direction and the short axis direction.
  • the height H3 of the vertex P2 is adjusted, an increase in the slope with respect to the tangent of the upper surface 310 formed as a curved surface may be adjusted. Accordingly, the height H1 in the short axis direction of the first side surface 320 and the second side surface 330 may also be adjusted in consideration of the height H3 of the vertex P2.
  • the upper surface disposed on the optical axis C line is the height H1 of the short axis direction of the first side surface 320 and the second side surface 330. It can be formed at 2.8 to 3.0 times the height (H3) of the vertex (P2), which is one point of (310).
  • the height H1 in the minor axis direction of the first side surface 320 and the second side surface 330 is formed smaller than the height H2 of the corner 340, as shown in FIG.
  • the upper sides of the first side surface 320 and the second side surface 330 may be formed to have a predetermined curvature (1/R2).
  • the curvature (1/R2) may be referred to as a second curvature.
  • the first side surface 320 and the second side surface 330 may be formed to be convex outward in a plane.
  • the outer side means the opposite direction of the direction toward the optical axis C.
  • the first side surface 320 and the second side surface 330 may include an outwardly convex curved surface.
  • the curved surfaces of the first side surface 320 and the second side surface 330 may be formed to have a predetermined curvature.
  • the center of curvature of each of the first side surface 320 and the second side surface 330 may be arranged to be spaced apart from the optical axis C on the plane.
  • the center of curvature of the first side surface 320 may be formed on the second side surface 330 side
  • the center of curvature of the second side surface 330 may be formed on the first side surface 320 side. Therefore, the light diffusion lens 1 may include a pair of corners 340 formed by meeting the first side surface 320 and the second side surface 330.
  • the light source 10 irradiating light toward the incident surface 200 may include an upper light emitting surface 11 and four side light emitting surfaces 12. Accordingly, the light source 10 may implement five-sided light emission. At this time, the lower surface of the light source 10 may be disposed to contact the upper surface of the substrate 20.
  • Light irradiated from the upper light emitting surface 11 of the light source 10 is irradiated in the optical axis direction (z direction), and light irradiated from the side light emitting surface 12 can be irradiated in the radial direction of the light diffusing lens 1. have.
  • an optical axis vertex 11a may be formed at the center of the upper light emitting surface 11. At this time, the optical axis vertex 11a may be disposed on the optical axis C line.
  • the light source 10 may include an LED.
  • a yellow (Yellow) phosphor may be applied to the LED.
  • the light diffusion lens 1 includes a long axis and a short axis on a plane, and increases the length of the upper surface 310 formed as a curved surface in the long axis direction compared to the short axis direction, and at the same time, the long axis direction of the side surfaces 320 and 330.
  • the height H2 can be formed larger than the height H1 in the minor axis direction. Accordingly, the light diffusion lens 1 uses the upper surface 310 formed as a curved surface to totally reflect the light incident therein to the edge 340 side.
  • the light diffusion lens 1 may increase light diffusivity in the long axis direction by the upper surface 310 whose length is increased in the long axis direction. Accordingly, the light diffusion lens 1 can prevent or minimize the presence of leakage light that may occur on the long axis direction side.
  • FIG. 13 is a perspective view of the light diffusing lens of the second embodiment of the present invention
  • FIG. 14 is a plan view of the light diffusing lens of the second embodiment of the present invention
  • FIG. 15 is a bottom view of the light diffusing lens of the second embodiment of the present invention
  • 16 is a front view of the light diffusing lens of the second embodiment of the present invention
  • FIG. 17 is a side view of the light diffusing lens of the second embodiment of the present invention
  • FIG. 18 is a light diffusing lens of the second embodiment of the present invention 19 is a cross-sectional view of the minor axis direction with respect to the upper surface
  • FIG. 19 is a cross-sectional view of the long axis direction with respect to the upper surface of the light diffusing lens of the second embodiment of the present invention.
  • FIG. 18 is a cross-sectional view showing line A1-A1 in FIG. 14, and
  • FIG. 19 is a cross-sectional view showing line B1-B1 in FIG.
  • the x-direction is the minor axis direction of the exit surface
  • the y-direction is the major axis direction of the exit surface
  • the z-direction indicates the optical axis direction.
  • the light diffusion lens 1a in the light diffusion lens 1a according to the second embodiment, light incident through the lower surface 100a, the incident surface 200 through which the light is incident, and the incident surface 200 is emitted. It may include an exit surface (300a).
  • the lower surface (100a) and the upper surface (310a) of the exit surface (300a) when viewed in the optical axis direction, is formed in an elliptical shape difference from the light diffusing lens (1) according to the first embodiment
  • the light diffusing lens 1a may diffuse light incident through the incidence surface 200 using the aspherical incidence surface 200 and the exit surface 300a.
  • the exit surface 300a may include an upper surface 310a and one side surface 350.
  • the light diffusing lens 1 according to the first embodiment includes a pair of corners 340 formed by the side surfaces 320 and 330 meeting, and is formed in a rugby ball shape when viewed in the optical axis direction.
  • the light diffusing lens 1a according to the second embodiment is processed by rounding a pair of corners 340 where the side surfaces 320 and 330 meet. It may be formed in an oval shape.
  • the lower surface 100a may be disposed on the lower side of the upper surface 310a. At this time, the lower surface 100a through the side surface 350 may be arranged to be spaced apart from the upper surface 310a.
  • the lower surface 100a may be formed in an elliptical shape in which a circular inlet 210 is disposed in the center.
  • the light diffusing lens 1a when viewed in the optical axis direction of the light source, the light diffusing lens 1a may be formed to have a long axis and a short axis on a plane. At this time, the height H1 in the short axis direction of the side surface 350 of the light diffusion lens 1a is smaller than the height H2 in the long axis direction.
  • the light diffusion lens 1a may include a short axis formed of a predetermined length Lx and a long axis formed of a predetermined length Ly.
  • a short axis of the upper surface 310a among the exit surfaces 300a of the light diffusion lens 1a may be formed with a predetermined length Lx
  • a long axis may be formed with a predetermined length Ly.
  • the length of the long axis (Ly) is greater than the length of the short axis (Lx). Therefore, the light diffusion lens 1a can increase the amount of light diffusion in the long axis direction.
  • the long axis and the short axis of the light diffusing lens 1a are vertically arranged in a plane, and at an imaginary point where the long axis and the short axis meet, as shown in FIG. 14, the optical axis C may be arranged.
  • the top surface 310a of the exit surface 300a may be formed in a shape recessed from the edge toward the center.
  • the upper surface 310a may be a convex curved surface projecting toward the upper side.
  • the light diffusing lens 1 according to the first embodiment may have a vertex formed by an edge 340, but as shown in FIG. 16, light diffusing according to the second embodiment
  • the vertex of the lens 1a may be deleted by a rounding process.
  • the upper surface 310a may reflect light refracted by the incident surface 200 to the side surface 350.
  • the light diffusing lens 1a forms the upper surface 310a formed as a curved surface by adjusting the length Ly and the height H2 in the long axis direction, thereby preventing generation of leakage light in the long axis direction. Accordingly, the light diffusion lens 1a enlarges the coverage of light with respect to the long axis direction, and asymmetric light distribution can be derived by the expanded coverage.
  • the side surface 350 disposed between the lower surface 100a and the upper surface 310a may be symmetrically formed based on a long axis and a short axis. At this time, the side surface 350 may be formed parallel to the optical axis (C).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

A light diffusion lens is disclosed. A light diffusion lens according to one embodiment of the present invention comprises: a lower surface having a short axis and a long axis; a light incident surface recessed inward from a partial region (entrance aperture) of the lower surface; and a light emitting surface through which light that is incident through the light incident surface is emitted, wherein the light emitting surface includes a curved upper surface, and a lateral surface for vertically connecting the outer periphery of the upper surface and the outer periphery of the lower surface.

Description

광 확산렌즈Light diffusing lens
본 발명은 광 확산렌즈에 대한 것이다.The present invention relates to a light diffusing lens.
급속하게 발전하고 있는 반도체 기술을 중심으로, 평판 표시장치가 소형 및 경량화되면서 그 수요가 폭발적으로 늘어나고 있다.Focusing on the rapidly developing semiconductor technology, the demand for the flat panel display device has been explosively increased due to its small size and light weight.
이러한 평판 표시장치 중에서 근래에 각광받고 있는 액정 표시 장치(liquid crystal display; LCD)는 소형화, 경량화 및 저전력 소비화 등의 이점을 가지고 있어서 기존의 브라운관(cathode ray tube; CRT)의 단점을 극복할 수 있는 대체 수단으로서 점차 주목 받아 왔고, 현재는 디스플레이 장치가 필요한 거의 모든 정보 처리 기기에 장착되어 사용되고 있다.Among these flat panel display devices, a liquid crystal display (LCD), which has recently been spotlighted, has advantages such as miniaturization, light weight, and low power consumption, so that it can overcome the disadvantages of the conventional cathode ray tube (CRT). As an alternative means, it has been gradually attracting attention, and it is currently installed and used in almost all information processing devices requiring display devices.
액정 표시장치에서의 액정 표시패널은 스스로 발광하지 못하는 수광 소자이므로, 액정 표시패널 하부에서 액정 표시패널에 광을 제공하기 위한 백라이트 유닛을 구비하고 있다. 여기서, 백라이트 유닛은 램프, 도광판, 반사 시트 및 광학 시트류 등을 포함한다. Since the liquid crystal display panel in the liquid crystal display device is a light-receiving element that does not emit light by itself, a backlight unit is provided under the liquid crystal display panel to provide light to the liquid crystal display panel. Here, the backlight unit includes a lamp, a light guide plate, a reflective sheet, and optical sheets.
그리고, 램프는 비교적 발열량이 적으며 자연광에 가까운 백색광을 발생시키고 수명이 긴 냉음극선관 방식 램프나 색 재현성이 좋고 저전력이 소비되는 발광다이오드(Light Emitting Diode: 이하 'LED'라고 한다)를 이용한 LED 방식 램프를 사용한다. In addition, the lamp has a relatively small amount of heat, generates white light close to natural light, and uses a long-life cold cathode ray tube type lamp or a light-emitting diode (hereinafter referred to as'LED') that has good color reproducibility and consumes low power. Anticorrosion lamps are used.
종래에는 냉음극선관 방식의 램프를 사용하였으나, LED 방식 램프가 색 재현성이 좋으며, 소비전력도 적게 든다는 장점을 갖기 때문에, LED 방식 램프 제품이 사용되기 시작하였다.In the past, a cold cathode ray tube type lamp was used, but since the LED type lamp has the advantage of good color reproducibility and low power consumption, LED type lamp products have begun to be used.
도 1은 등방형 면 조사 특성을 갖는 복수의 렌즈의 배열 및 광 조사 분포를 나타내는 도면이다. BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the arrangement|positioning of several lenses which have an isotropic surface irradiation characteristic, and light irradiation distribution.
도 1을 참조하면, 등방형 면 조사 특성을 갖는 종래의 복수의 렌즈(2)는 기판(20)상에 동일한 간격으로 배치될 수 있다. 이때, 렌즈(2)는 기판(20) 상에 실장되는 광원을 덮도록 배치될 수 있다. Referring to FIG. 1, a plurality of conventional lenses 2 having isotropic surface irradiation characteristics may be disposed on the substrate 20 at equal intervals. At this time, the lens 2 may be disposed to cover the light source mounted on the substrate 20.
도 1에 도시된 바와 같이, 하나의 렌즈(2)를 기준으로 대각선 방향에는 암부 형태의 무라가 발생하는 문제가 있다. 예컨데, 광원으로 LED가 이용되는 경우, LED가 발하는 빛은 직진성이 강해 LED 정면 방향으로 집중하는 경향이 있다. 그에 따라, 복수의 LED의 빛을 효과적으로 그리고 균일하게 확산시키기 위한 기술에 대한 수요가 늘어나고 있다.As illustrated in FIG. 1, there is a problem in that a mura in the form of a dark portion occurs in a diagonal direction with respect to one lens 2. For example, when an LED is used as a light source, the light emitted by the LED tends to concentrate in the front direction of the LED due to its strong straightness. Accordingly, there is an increasing demand for a technique for effectively and uniformly diffusing the light of a plurality of LEDs.
따라서, 비등방형 면조사를 구현하도록 광이 입사하는 입사면과 광이 출사되는 출사면을 설계하고, 이를 기반으로 렌즈의 대각선 방향에 발생하는 암부를 최소화하여 광의 균일도를 향상시킬 수 있는 렌즈 기술에 대한 요구 또한 높아지고 있는 실정이다. Therefore, the lens technology that can improve the uniformity of light by designing the incident surface where light enters and the emitting surface through which light is emitted to implement an anisotropic surface irradiation, and minimizing the dark portion generated in the diagonal direction of the lens based on this, The demand for the situation is also increasing.
본 발명이 해결하고자 하는 기술적 과제는, 복수의 광 확산렌즈의 대각선 방향에 발생하는 암부를 최소화하도록 광이 입사되는 입사면과 광이 출사되는 출사면이 형성된 광 확산렌즈를 제공하는 것이다.The technical problem to be solved by the present invention is to provide a light diffusing lens having an incident surface on which light is incident and an emitting surface on which light is emitted so as to minimize dark portions generated in a diagonal direction of a plurality of light diffusion lenses.
본 발명이 해결하고자 하는 다른 기술적 과제는, 평면상 장축과 단축을 갖도록 형성되며, 장축측 높이를 단축측 높이보다 높게 설계하여 장축측에서 누설광의 발생을 방지하는 광 확산렌즈를 제공하는 것이다.Another technical problem to be solved by the present invention is to provide a light diffusing lens that is formed to have a long axis and a short axis on a plane, and designs a height of the long axis to be higher than the height of the short axis to prevent leakage of light from the long axis.
상기와 같은 기술적 과제를 해결하기 위해, 본 발명의 일실시예의 광 확산렌즈는, 단축과 장축이 형성되는 하부면; 상기 하부면의 일영역(입사구)으로부터 내부로 오목하게 형성된 입사면; 및 상기 입사면을 통해 입사된 광이 출사되는 출사면을 포함하고, 상기 출사면은, 곡면 형상의 상부면; 및 상기 상부면의 외주와 상기 하부면의 외주를 수직으로 연결하는 측부면을 포함할 수 있다.In order to solve the above technical problem, the light diffusing lens according to an embodiment of the present invention includes a lower surface on which a short axis and a long axis are formed; An incidence surface concavely formed inward from one region (entrance entrance) of the lower surface; And an emission surface through which light incident through the incident surface is emitted, wherein the emission surface includes: a curved upper surface; And a side surface vertically connecting the outer circumference of the upper surface and the outer circumference of the lower surface.
본 발명의 일실시예에서, 상기 하부면은, 외주 형상이 럭비공 형상일 수 있다.In one embodiment of the present invention, the lower surface, the outer circumferential shape may be a rugby ball shape.
본 발명의 일실시예에서, 상기 하부면은, 외주 형상이 타원 형상일 수 있다.In one embodiment of the present invention, the lower surface, the outer circumferential shape may be an elliptical shape.
본 발명의 일실시예에서, 상기 입사면은, 단면이 원기둥 형상의 제1면; 및 상기 제1면으로부터 상부측으로 연장되어, 상부측으로 오목하게 형성되는 제2면을 포함할 수 있다.In one embodiment of the present invention, the incidence surface includes: a first surface having a cylindrical shape in cross section; And a second surface extending from the first surface to the upper side and concave to the upper side.
본 발명의 일실시예에서, 상기 제2면은 광축을 향해 볼록하게 형성될 수 있다.In one embodiment of the present invention, the second surface may be convex toward the optical axis.
본 발명의 일실시예에서, 상기 상부면은, 외주에서 광축 방향으로 함몰되고, 상부측으로 돌출된 곡면 형상일 수 있다.In one embodiment of the present invention, the upper surface may be recessed in the optical axis direction from the outer periphery, and may be a curved surface projecting toward the upper side.
본 발명의 일실시예에서, 상기 상부면의 곡면의 접선의 기울기의 절대값이, 외주로부터 광축으로 갈수록 커질 수 있다.In one embodiment of the present invention, the absolute value of the inclination of the tangent of the curved surface of the upper surface may be increased from the outer circumference toward the optical axis.
본 발명의 일실시예에서, 상기 상부면은, 소정 곡률을 이루는 원형상일 수 있다.In one embodiment of the present invention, the upper surface may be a circular shape forming a predetermined curvature.
본 발명의 일실시예에서, 상기 측부면의 단축방향의 높이는, 장축방향의 높이보다 낮을 수 있다.In one embodiment of the present invention, the height in the minor axis direction of the side surface may be lower than the height in the major axis direction.
본 발명의 일실시예에서, 상기 단축방향의 높이는, 상기 장축방향의 높이 대비 0.5 이상이고 1 미만일 수 있다.In one embodiment of the present invention, the height in the minor axis direction is 0.5 or more and less than 1 in comparison to the height in the major axis direction.
본 발명의 일실시예에서, 상기 측부면의 상부는 소정 곡률을 이룰 수 있다.In one embodiment of the present invention, the upper portion of the side surface may achieve a predetermined curvature.
본 발명의 일실시예에서, 상기 단축방향의 높이는, 상기 상부면의 가장 낮은 높이의 2.8 내지 3.0배일 수 있다.In one embodiment of the present invention, the height in the minor axis direction may be 2.8 to 3.0 times the lowest height of the upper surface.
본 발명의 일실시예에서, 상기 장축의 길이는, 상기 단축의 길이의 1.1 배 이상일 수 있다.In one embodiment of the present invention, the length of the long axis may be 1.1 times or more of the length of the short axis.
상기와 같은 본 발명은 평면상 장축과 단축을 갖도록 형성되며, 장축측 높이를 단축측 높이보다 높게 설계하여, 장축측에서 누설광의 발생을 방지할 수 있다. 그에 따라, 장축측의 가장자리에서 광 균일도가 향상되며 비대칭 배광을 구현하는 효과가 있다. The present invention as described above is formed to have a long axis and a short axis on a plane, and the height of the long axis is designed to be higher than the height of the short axis, so that leakage light can be prevented from occurring on the long axis. Accordingly, light uniformity is improved at the edge of the long axis side, and asymmetric light distribution is realized.
도 1은 등방형 면 조사 특성을 갖는 복수의 렌즈의 배열 및 광 조사 분포를 나타내는 도면이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the arrangement|positioning of several lenses which have an isotropic surface irradiation characteristic, and light irradiation distribution.
도 2는 본 발명의 제1실시예의 광 확산렌즈의 사시도이다.2 is a perspective view of a light diffusing lens of the first embodiment of the present invention.
도 3은 본 발명의 제1실시예의 광 확산렌즈의 평면도이다.3 is a plan view of a light diffusing lens of the first embodiment of the present invention.
도 4는 본 발명의 제1실시예의 광 확산렌즈의 저면도이다.4 is a bottom view of the light diffusing lens of the first embodiment of the present invention.
도 5는 본 발명의 제1실시예의 광 확산렌즈의 정면도이다.5 is a front view of the light diffusing lens of the first embodiment of the present invention.
도 6은 본 발명의 제1실시예의 광 확산렌즈의 측면도이다. 6 is a side view of a light diffusing lens of the first embodiment of the present invention.
도 7은 본 발명의 제1실시예의 광 확산렌즈의 상부면을 기준으로 단축 방향에 대한 단면도이다. 7 is a cross-sectional view of a minor axis direction based on the upper surface of the light diffusing lens of the first embodiment of the present invention.
도 8은 본 발명의 제1실시예의 광 확산렌즈의 상부면을 기준으로 장축 방향에 대한 단면도이다. 8 is a cross-sectional view of a long axis direction based on an upper surface of the light diffusing lens of the first embodiment of the present invention.
도 9는 본 발명의 제1실시예의 광 확산렌즈의 단축 길이 대비 장축 길이에 따른 배광을 나타내는 도면이다. 9 is a view showing light distribution according to a long axis length versus a short axis length of the light diffusion lens of the first embodiment of the present invention.
도 10은 본 발명의 제1실시예의 광 확산렌즈의 성능결과를 나타내는 예시도이다. 10 is an exemplary view showing the performance results of the light diffusing lens of the first embodiment of the present invention.
도 11은 본 발명의 제1실시예의 광 확산렌즈의 장축 방향과 단축 방향에서의 광 확산을 나타내는 도면이다.11 is a view showing light diffusion in the long axis direction and the short axis direction of the light diffusion lens of the first embodiment of the present invention.
도 12는 본 발명의 광 확산렌즈에 적용되는 광원을 나타내는 도면이다. 12 is a view showing a light source applied to the light diffusion lens of the present invention.
도 13은 본 발명의 제2실시예의 광 확산렌즈의 사시도이다. 13 is a perspective view of a light diffusing lens of the second embodiment of the present invention.
도 14는 본 발명의 제2실시예의 광 확산렌즈의 평면도이다. 14 is a plan view of a light diffusing lens according to a second embodiment of the present invention.
도 15는 본 발명의 제2실시예의 광 확산렌즈의 저면도이다. 15 is a bottom view of the light diffusing lens of the second embodiment of the present invention.
도 16은 본 발명의 제2실시예의 광 확산렌즈의 정면도이다. 16 is a front view of a light diffusing lens of the second embodiment of the present invention.
도 17은 본 발명의 제2실시예의 광 확산렌즈의 측면도이다. 17 is a side view of a light diffusing lens of the second embodiment of the present invention.
도 18은 본 발명의 제2실시예의 광 확산렌즈의 상부면을 기준으로 단축 방향에 대한 단면도이다. 18 is a cross-sectional view of a minor axis direction based on the upper surface of the light diffusing lens of the second embodiment of the present invention.
도 19는 본 발명의 제2실시예의 광 확산렌즈의 상부면을 기준으로 장축 방향에 대한 단면도이다. 19 is a cross-sectional view of the long axis direction based on the upper surface of the light diffusing lens of the second embodiment of the present invention.
본 발명의 구성 및 효과를 충분히 이해하기 위하여, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예들을 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라, 여러가지 형태로 구현될 수 있고 다양한 변경을 가할 수 있다. 단지, 본 실시예에 대한 설명은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다. 첨부된 도면에서 구성요소는 설명의 편의를 위하여 그 크기를 실제보다 확대하여 도시한 것이며, 각 구성요소의 비율은 과장되거나 축소될 수 있다.In order to fully understand the configuration and effects of the present invention, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, and can be implemented in various forms and various changes can be made. However, the description of the present embodiment is provided to complete the disclosure of the present invention, and to fully inform the scope of the invention to those skilled in the art to which the present invention pertains. In the accompanying drawings, the components are enlarged and enlarged than actual sizes for convenience of description, and the ratio of each component may be exaggerated or reduced.
'제1', '제2' 등의 용어는 다양한 구성요소를 설명하는데 사용될 수 있지만, 구성요소는 위 용어에 의해 한정되어서는 안 된다. 위 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용될 수 있다. 예를 들어, 본 발명의 권리범위를 벗어나지 않으면서 '제1구성요소'는 '제2구성요소'로 명명될 수 있고, 유사하게 '제2구성요소'도 '제1구성요소'로 명명될 수 있다. 또한, 단수의 표현은 문맥상 명백하게 다르게 표현하지 않는 한, 복수의 표현을 포함한다. 본 발명의 실시예에서 사용되는 용어는 다르게 정의되지 않는 한, 해당 기술분야에서 통상의 지식을 가진 자에게 통상적으로 알려진 의미로 해석될 수 있다.Terms such as'first' and'second' can be used to describe various components, but the components should not be limited by the above terms. The above term may be used only for the purpose of distinguishing one component from other components. For example, without departing from the scope of the present invention, the'first component' may be referred to as a'second component', and similarly the'second component' may also be referred to as a'first component'. Can be. In addition, a singular expression includes a plural expression unless the context clearly expresses otherwise. The terms used in the embodiments of the present invention may be interpreted as meanings commonly known to those skilled in the art unless otherwise defined.
이하에서는, 도면을 참조하여 본 발명의 일실시예의 광 확산렌즈를 설명하기로 한다. Hereinafter, a light diffusing lens according to an embodiment of the present invention will be described with reference to the drawings.
[제1실시예][First Embodiment]
도 2는 본 발명의 제1실시예의 광 확산렌즈의 사시도이고, 도 3은 본 발명의 제1실시예의 광 확산렌즈의 평면도이고, 도 4는 본 발명의 제1실시예의 광 확산렌즈의 저면도이고, 도 5는 본 발명의 제1실시예의 광 확산렌즈의 정면도이고, 도 6은 본 발명의 제1실시예의 광 확산렌즈의 측면도이고, 도 7은 본 발명의 제1실시예의 광 확산렌즈의 상부면을 기준으로 단축 방향에 대한 단면도이고, 도 8은 본 발명의 제1실시예의 광 확산렌즈의 상부면을 기준으로 장축 방향에 대한 단면도이다. Fig. 2 is a perspective view of the light diffusing lens of the first embodiment of the present invention, Fig. 3 is a plan view of the light diffusing lens of the first embodiment of the present invention, and Fig. 4 is a bottom view of the light diffusing lens of the first embodiment of the present invention 5 is a front view of the light diffusing lens of the first embodiment of the present invention, FIG. 6 is a side view of the light diffusing lens of the first embodiment of the present invention, and FIG. 7 is a light diffusing lens of the first embodiment of the present invention. 8 is a cross-sectional view of the minor axis direction with respect to the upper surface, and FIG. 8 is a cross-sectional view of the long axis direction with respect to the upper surface of the light diffusing lens of the first embodiment of the present invention.
여기서, 도 7은 도 3의 A-A선을 나타내는 단면도이고, 도 8은 도 3의 B-B선을 나타내는 단면도이다. 또한, 도 2에서 x 방향은 출사면의 단축 방향이고, y 방향은 출사면의 장축 방향이며, z 방향은 광축 방향을 나타낸다. 광축(C)이라 함은 광원에서 조사되는 광의 중심이며, 광 확산렌즈(1)의 중심과 일치할 수 있다. Here, FIG. 7 is a cross-sectional view showing the A-A line in FIG. 3, and FIG. 8 is a cross-sectional view showing the B-B line in FIG. 3. In addition, in FIG. 2, the x-direction is the shortening direction of the exit surface, the y-direction is the long axis direction of the exit surface, and the z-direction indicates the optical axis direction. The optical axis C is the center of light irradiated from the light source, and may coincide with the center of the light diffusion lens 1.
본 발명의 일실시예의 광 확산렌즈(1)는 액정 표시장치에 사용될 수 있다. 이때, 액정 표시장치는 기판 및, 기판에 실장되는 복수의 광원을 포함할 수 있다. 그리고, 광 확산렌즈(1)는 광원을 덮도록 배치되어 비대칭적 배광을 구현한 수 있다. 그에 따라, 광 확산렌즈(1)가 배치된 액정 표시장치는 광 확산렌즈(1)를 통해 비대칭적 배광을 형성하여 종래의 암부 영역(도 1 참조)이 형성되는 것을 방지할 수 있다. The light diffusing lens 1 of one embodiment of the present invention can be used in a liquid crystal display device. At this time, the liquid crystal display may include a substrate and a plurality of light sources mounted on the substrate. In addition, the light diffusion lens 1 may be disposed to cover the light source to implement asymmetric light distribution. Accordingly, the liquid crystal display device in which the light diffusion lens 1 is disposed can form an asymmetrical light distribution through the light diffusion lens 1 to prevent the formation of a conventional dark region (see FIG. 1 ).
도 2 내지 도 8을 참조하면, 본 발명의 제1실시예의 광 확산렌즈(1)는 하부면(100), 광이 입사되는 입사면(200) 및 입사면(200)을 통해 입사된 광이 출사되는 출사면(300)을 포함할 수 있다. 2 to 8, the light diffusing lens 1 of the first embodiment of the present invention has a lower surface 100, an incident surface 200 through which light is incident, and light incident through the incident surface 200 It may include an exit surface 300 that is emitted.
여기서, 광 확산렌즈(1)는 비구면 형상의 입사면(200)과 출사면(300)을 이용하여 입사면(200)을 통해 입사된 광을 확산시킬 수 있다. 그리고, 출사면(300)은 상부면(310)과 서로 마주보게 배치되는 한 쌍의 측부면(320, 330)을 포함할 수 있다. Here, the light diffusing lens 1 may diffuse light incident through the incident surface 200 by using the aspherical incidence surface 200 and the exit surface 300. In addition, the exit surface 300 may include a pair of side surfaces 320 and 330 disposed to face the upper surface 310 and each other.
또한, 광 확산렌즈(1)는 측부면(320, 330)이 만나 형성되는 한 쌍의 모서리(340)를 포함할 수 있다. 이때, 모서리(340)는 장축 방향에 서로 마주보게 배치될 수 있다. In addition, the light diffusing lens 1 may include a pair of corners 340 formed by the side surfaces 320 and 330 meeting. At this time, the corners 340 may be arranged to face each other in the long axis direction.
광 확산렌즈(1)는 폴리카보네이트 또는 폴리메타메틸아크릴레이트의 재질을 이용하여 형성될 수 있다. 여기서, 폴리카보네이트의 굴절율은 1.58이고, 폴리메타메틸아크릴레이트의 굴절률은 1.49이다.The light diffusing lens 1 may be formed using a material of polycarbonate or polymethacrylate. Here, the refractive index of the polycarbonate is 1.58, and the refractive index of the polymethmethylacrylate is 1.49.
하부면(100)은 상부면(310)의 하부측에 배치될 수 있다. 이때, 측부면(320, 330)을 통해 하부면(100)은 상부면(310)과 이격되게 배치될 수 있다. 여기서, '상부측'과 '하부측'은 상대적인 표현으로서 이하에서 별다른 정의가 없다면, 하부면(100)에서 상부면(310)으로 향하는 방향을 상부측(위쪽)으로 정하고, 이와 반대로 상부면(310)에서 하부면(100)으로 향하는 방향을 하부측(아래쪽)으로 정하기로 한다. The lower surface 100 may be disposed on the lower side of the upper surface 310. At this time, the lower surface 100 through the side surfaces 320 and 330 may be spaced apart from the upper surface 310. Here,'upper side' and'lower side' are relative expressions, and unless otherwise defined below, the direction from the lower surface 100 to the upper surface 310 is defined as the upper side (upper), and vice versa. The direction from 310 to the lower surface 100 will be determined as the lower side (downward).
하부면(100)은 하부측으로 볼록한 형상 또는 평면 형상으로 형성될 수 있다. 이때, 하부측으로 볼록한 형상의 하부면(100)은 소정의 곡률을 가지는 곡면일 수 있다. The lower surface 100 may be formed in a convex or planar shape toward the lower side. At this time, the lower surface 100 having a convex shape toward the lower side may be a curved surface having a predetermined curvature.
하부면(100)은 아래 방향으로 볼록한 형상의 곡면으로 형성된 것을 그 예로 하고 있으나 반드시 이에 한정되지 않는다. 예컨데, 하부면(100)은 가장자리에서 중심 방향으로 일정한 길이까지는 평면이 형성되어 있을 수 있으며, 평면이 끝나는 지점부터 중심측으로 하부볼록면이 형성될 수 있다. 즉, 하부면(100)은 가장자리에서 중심 방향으로 일정 길이 동안 곡률이 0이지만, 일정 길이 이상부터 중심까지는 곡률이 증가하다가 다시 감소하는 형상일 수 있다.The lower surface 100 is formed as a curved surface having a convex shape in the downward direction as an example, but is not limited thereto. For example, the lower surface 100 may be formed with a plane from the edge to a certain length in the center direction, and a lower convex surface may be formed from the point where the plane ends to the center side. That is, the lower surface 100 has a curvature of 0 for a certain length from the edge to the center direction, but may be a shape in which the curvature increases from a certain length or more to the center and then decreases again.
평면만으로 구성된 하부면과 비교해 볼 때, 하부볼록면을 구비하는 하부면(100)의 경우 광원에서 출사되는 광 중에서 하부측으로 출사되는 광을 상부측으로 더 많이 전반사 시킬 수 있다. Compared with the lower surface composed of only a flat surface, in the case of the lower surface 100 having a lower convex surface, more light emitted from the light source to the lower side may be totally reflected to the upper side.
여기서, 하부볼록면에 의해 우선적으로 광이 전반사되도록 하부면(100)에 배치되는 평면은 하부볼록면의 외측에 배치되는 것이 바람직하다. Here, the plane disposed on the lower surface 100 so that light is preferentially totally reflected by the lower convex surface is preferably disposed outside the lower convex surface.
도 4에 도시된 바와 같이, 하부면(100)은 중앙에 원형의 입사구(210)가 배치되는 럭비공 형상으로 형성될 수 있으나 반드시 이에 한정되지 않는다. 예컨데, 하부면(100)은 장축 및 단축을 갖는 타원형 형상으로 형성될 수도 있다. As illustrated in FIG. 4, the lower surface 100 may be formed in a rugby ball shape in which a circular inlet 210 is disposed in the center, but is not limited thereto. For example, the lower surface 100 may be formed in an elliptical shape having a long axis and a short axis.
입사면(200)은 입사구(210)에 위치하는 광원에서 출사되는 광이 광 확산렌즈(1)의 내부로 입사되는 표면 부분이다.The incident surface 200 is a portion of the surface from which light emitted from the light source located at the entrance 210 is incident into the light diffusing lens 1.
입사면(200)은 하부면(100)의 중앙에서 내부로 오목하게 형성될 수 있다. 그에 따라, 하부면(100)의 중앙에는 입사구(210)가 형성될 수 있다. 그리고, 입사구(210)에는 입사면(200)을 향해 광을 조사하는 광원이 배치될 수 있다. The incident surface 200 may be formed concave from the center of the lower surface 100 to the inside. Accordingly, the entrance port 210 may be formed in the center of the lower surface 100. In addition, a light source that irradiates light toward the incident surface 200 may be disposed at the entrance port 210.
광원과 입사면(200) 사이에는 공기층이 배치될 수 있다. 따라서, 광원에서 공기층으로 출사되는 광의 경우 굴절율이 다른 광 확산렌즈(1)의 입사면(200)에서 더 굴절될 수 있다.An air layer may be disposed between the light source and the incident surface 200. Therefore, in the case of light emitted from the light source to the air layer, the refractive index may be further refracted on the incident surface 200 of the light diffusing lens 1.
도 2, 도 7 및 도 8을 참조하면, 입사면(200)은 평면상 원형으로 형성된 제1영역(220) 및 제1영역(220)에서 내부로 오목하게 형성된 제2영역(230)을 포함할 수 있다. 2, 7 and 8, the incident surface 200 includes a first region 220 formed in a circular shape on a plane and a second region 230 concavely formed inward from the first region 220. can do.
제1영역(220)은 제2영역(230)의 하부측에 배치될 수 있다. 그리고, 제1영역(220)이 원기둥 형상으로 형성됨에 따라, 입사구(210) 또한 원형으로 형성될 수 있다. 그에 따라, 입사구(210)는 광축(C)을 기준으로 소정의 반지름을 가질 수 있다. 그리고, 입사구(210)의 중앙에는 광원이 배치될 수 있다. The first region 220 may be disposed under the second region 230. In addition, as the first region 220 is formed in a cylindrical shape, the entrance sphere 210 may also be formed in a circular shape. Accordingly, the entrance sphere 210 may have a predetermined radius based on the optical axis C. In addition, a light source may be disposed at the center of the entrance port 210.
제1영역(220)에는 광원으로부터 측부면(320, 330)으로 방출된 광이 입사될 수 있다. Light emitted from the light source to the side surfaces 320 and 330 may be incident on the first region 220.
제2영역(230)은 제1영역(220)의 상부측에서 연장될 수 있다. 이때, 제2영역(230)은 광축(C) 상에 꼭지점(P1)이 형성되도록 상부측으로 오목하게 형성될 수 있다. 도 7 및 도 8에 도시된 바와 같이, 제2영역(230)은 곡면을 포함할 수 있다. 그리고, 곡면은 소정의 곡률을 갖도록 광축(C)을 향해 볼록하게 형성될 수 있으나 반드시 이에 한정되지 않는다. 예컨데, 곡면은 타원 또는 포물선 형상으로 형성될 수도 있다. The second region 230 may extend from the upper side of the first region 220. At this time, the second region 230 may be concave to the upper side so that the vertex P1 is formed on the optical axis C. As illustrated in FIGS. 7 and 8, the second region 230 may include a curved surface. Further, the curved surface may be convex toward the optical axis C to have a predetermined curvature, but is not limited thereto. For example, the curved surface may be formed in an ellipse or parabolic shape.
제2영역(230)은 광원의 상부측에 위치할 수 있다. 이때, 제2영역(230)의 곡면의 접선 기울기의 절대값은 곡면의 상단에서 하단으로 갈수록 점진적으로 감소될 수 있다. The second region 230 may be located on the upper side of the light source. At this time, the absolute value of the tangential slope of the curved surface of the second region 230 may gradually decrease from the top to the bottom of the curved surface.
여기서, 입사면(200)이 서로 다른 형상의 제1영역(220)과 제2영역(230)을 포함하는 것을 그 예로 하고 있으나 반드시 이에 한정되는 것은 아니다. 예컨데, 입사면(200)의 수직 단면이 반구 형상, 반타원 형상, 반럭비(rugby)공 형상 또는 포물선 형상으로 형성될 수도 있다. 그에 따라, 입사면(200)은 비구면으로 형성될 수 있다. Here, although the incident surface 200 includes the first region 220 and the second region 230 having different shapes, for example, the present invention is not limited thereto. For example, the vertical cross section of the incidence surface 200 may be formed in a hemispherical shape, a semi-elliptical shape, a rugby ball shape, or a parabolic shape. Accordingly, the incident surface 200 may be formed as an aspherical surface.
한편, 광원의 광축 방향에서 바라볼 때, 광 확산렌즈(1)는 평면상 장축과 단축을 구비하도록 형성될 수 있다. 이때, 광 확산렌즈(1)의 제1측부면(320) 및 제2측부면(330) 각각의 단축 방향 높이(H1)는 장축 방향 높이(H2)보다 작다. 여기서, 제1측부면(320) 및 제2측부면(330) 장축을 기준으로 대칭되게 형성될 수 있다. On the other hand, when viewed in the direction of the optical axis of the light source, the light diffusing lens 1 may be formed to have a long axis and a short axis on a plane. At this time, the height H1 of each of the first side surface 320 and the second side surface 330 of the light diffusion lens 1 is smaller than the height H2 of the long axis direction. Here, the first side surface 320 and the second side surface 330 may be formed symmetrically with respect to the long axis.
도 2 내지 도 4에 도시된 바와 같이, 광축(C)에서 바라볼 때, 광 확산렌즈(1)는 평면상 럭비공 형상으로 형성될 수 있다.2 to 4, when viewed from the optical axis C, the light diffusing lens 1 may be formed in a planar rugby ball shape.
도 3에 도시된 바와 같이, 광축 방향에서 바라볼 때, 광 확산렌즈(1)는 소정의 길이(Lx)로 형성된 단축과 소정의 길이(Ly)로 형성된 장축을 포함할 수 있다. 상세하게, 광 확산렌즈(1)의 출사면(300) 중 상부면(310)의 단축은 소정의 길이(Lx)로 형성되고, 장축은 소정의 길이(Ly)로 형성될 수 있다. 이때, 장축의 길이(Ly)는 단축의 길이(Lx)보다 크다. 따라서, 광 확산렌즈(1)는 장축 방향으로 광 확산량을 증대시킬 수 있다. 3, when viewed in the optical axis direction, the light diffusion lens 1 may include a short axis formed of a predetermined length Lx and a long axis formed of a predetermined length Ly. In detail, a short axis of the upper surface 310 of the exit surface 300 of the light diffusion lens 1 may be formed with a predetermined length Lx, and a long axis may be formed with a predetermined length Ly. At this time, the length of the long axis (Ly) is greater than the length of the short axis (Lx). Therefore, the light diffusion lens 1 can increase the amount of light diffusion in the long axis direction.
여기서, 광 확산렌즈(1)의 장축과 단축은 평면상 수직하게 배치되며, 장축과 단축이 만나는 가상의 일점에는, 도 3에 도시된 바와 같이, 광축(C)이 배치된다. 그에 따라, 광축(C)에서 바라볼 때, 광 확산렌즈(1)는 장축 및 단축에 대해 대칭으로 형성될 수 있다. Here, the long axis and the short axis of the light diffusing lens 1 are vertically arranged in a plane, and at an imaginary point where the long axis and the short axis meet, as shown in FIG. 3, the optical axis C is arranged. Accordingly, when viewed from the optical axis C, the light diffusion lens 1 can be formed symmetrically with respect to the long and short axes.
광 확산렌즈(1)의 장축의 길이는 단축의 길이의 1.1배 이상이고 2.0배 이하일 수 있다. 여기서, 광 확산렌즈(1)의 장축의 길이(Ly)는 장축 방향에 대한 광 확산렌즈(1)의 폭이라 불릴 수 있고, 광 확산렌즈(1)의 단축의 길이(Lx)는 단축 방향에 대한 광 확산렌즈(1)의 폭이라 불릴 수 있다. The length of the long axis of the light diffusion lens 1 may be 1.1 times or more and 2.0 times or less of the length of the minor axis. Here, the length (Ly) of the long axis of the light diffusion lens 1 may be referred to as the width of the light diffusion lens 1 with respect to the long axis direction, and the length (Lx) of the short axis of the light diffusion lens 1 is in the short axis direction. It can be referred to as the width of the light diffusion lens (1).
광 확산렌즈(1)의 단축 길이 대비 장축 길이가 1.1배 미만인 경우, 상술된 암부 영역을 제거하기 어려우며, 2.0배를 초과하는 경우 광 균일도 및 생산 효율에 영향을 미치게 된다. When the long axis length compared to the short axis length of the light diffusing lens 1 is less than 1.1 times, it is difficult to remove the above-described dark area, and when it exceeds 2.0 times, light uniformity and production efficiency are affected.
도 9는 본 발명의 제1실시예의 광 확산렌즈의 단축 길이 대비 장축 길이에 따른 배광을 나타내는 도면으로서, 도 9의 (a)는 광 확산렌즈의 단축 길이와 장축 길이가 동일한 경우의 배광을 나타내고, 도 9의 (b)는 광 확산렌즈의 단축 길이 대비 장축 길이가 1.1배 미만인 경우의 배광을 나타내고, 도 9의 (c)는 광 확산렌즈의 단축 길이 대비 장축 길이가 1.1배 이상인 경우의 배광을 나타낸다. 9 is a view showing the light distribution according to the long axis length compared to the short axis length of the light diffusion lens of the first embodiment of the present invention, Figure 9 (a) shows the light distribution when the short axis length and the long axis length of the light diffusion lens is the same , FIG. 9(b) shows light distribution when the major axis length of the light diffusion lens is less than 1.1 times, and FIG. 9(c) shows light distribution when the major axis length of the light diffusion lens is 1.1 times or more. Indicates.
도 9의 (a)에 도시된 바와 같이, 광 확산렌즈의 단축 길이와 장축 길이가 동일한 경우 암부 영역(도 1 참조)을 제거할 수 없다. As shown in FIG. 9(a), when the short and long axes of the light diffusion lens are the same, the dark region (see FIG. 1) cannot be removed.
도 9의 (b)에 도시된 바와 같이, 광 확산렌즈의 단축 길이 대비 장축 길이가 1.1배 미만인 경우에도 암부 영역(도 1 참조)을 제거할 수 없다.As shown in FIG. 9(b), even when the short axis length and the long axis length of the light diffusion lens are less than 1.1 times, the dark region (see FIG. 1) cannot be removed.
도 9의 (c)에 도시된 바와 같이, 광 확산렌즈(1)의 장축의 길이가 단축의 길이의 1.1배 이상일 때, 비대칭적 배광을 형성하여 암부 영역을 제거할 수 있다. As shown in FIG. 9C, when the length of the long axis of the light diffusion lens 1 is 1.1 times or more of the length of the short axis, an asymmetrical light distribution may be formed to remove the dark region.
도 10은 본 발명의 제1실시예의 광 확산렌즈의 성능결과를 나타내는 예시도로서, 도 10의 (a)는 종래의 광 확산렌즈의 실험 결과를 나타내는 도면이고, 도 10의 (b)는 제1실시예에 따른 광 확산렌즈의 실험 결과를 나타내는 도면이다. 10 is an exemplary view showing the performance results of the light diffusing lens of the first embodiment of the present invention, FIG. 10 (a) is a view showing the experimental results of a conventional light diffusing lens, Figure 10 (b) is a A diagram showing the experimental results of the light diffusing lens according to the first embodiment.
도 10를 참조하면, 종래의 렌즈(2)에 비해 광 확산렌즈(1)는 장축 방향으로 광 확산량이 증대됨을 확인할 수 있다. Referring to FIG. 10, it can be seen that the light diffusion amount of the light diffusion lens 1 is increased in the long axis direction compared to the conventional lens 2.
도 10의 (b)에 도시된 바와 같이, 본 발명의 일실시예의 광 확산렌즈(1)는 비등방형 광 확산을 구현한다. 나아가, 도 10의 (a)의 A1 영역과 도 10의 (b)의 A2 영역을 비교해 볼 때, 광 확산렌즈(1)는 A2 영역(광 확산렌즈(1)의 장축 방향의 가장자리)에서 균등한 광을 구현하고 있음을 확인할 수 있다. As shown in FIG. 10B, the light diffusing lens 1 of one embodiment of the present invention implements anisotropic light diffusion. Furthermore, when comparing the area A1 of FIG. 10A and the area A2 of FIG. 10B, the light diffusion lens 1 is equal in the area A2 (the edge of the light diffusion lens 1 in the long axis direction). It can be seen that one light is implemented.
한편, 출사면(300) 중 상부면(310)은 가장자리에서 중심 방향으로 함몰된 형상으로 형성될 수 있다. 이때, 상부면(310)은 상부측으로 돌출된 볼록한 곡면 형상일 수 있다. On the other hand, the top surface 310 of the exit surface 300 may be formed in a shape recessed in the center direction from the edge. At this time, the upper surface 310 may be a convex curved surface projecting toward the upper side.
상부면(310)은 입사면(200)에 의해 굴절된 광을 측부면(320, 330) 및 모서리(340)로 반사시킬 수 있다. 예컨데, 광원에서 상부면(310)으로 조사되는 광 중 광축(C)을 기준으로 소정의 각도(θ)로 장축 방향을 향해 조사되는 광은 상부면(310)에 의해 모서리로 굴절될 수 있다. 그에 따라, 광 확산렌즈(1)는 장축 방향으로 누설광의 발생을 방지할 수 있다. 여기서, 상부면(310)은 반사면이라 불릴 수 있다. The upper surface 310 may reflect light refracted by the incident surface 200 to the side surfaces 320 and 330 and the corners 340. For example, among the light irradiated from the light source to the upper surface 310, light irradiated toward the long axis at a predetermined angle θ based on the optical axis C may be refracted to the corner by the upper surface 310. Accordingly, the light diffusion lens 1 can prevent the generation of leakage light in the long axis direction. Here, the upper surface 310 may be referred to as a reflective surface.
광 확산렌즈(1)는 공기보다 밀도가 높은 재질이기 때문에, 광축(C)을 기준으로 상부면(310)에 소정의 각도(θ)로 입사되는 광을 전반사시킬 수 있다. 여기서, 각도(θ)는 광축(C)과 광원에서 조사되는 광이 이루는 각으로써, 도 11에 도시된 바와 같이, 예각일 수 있다. 그리고, 각도(θ)는 측부면(320, 330)의 단축 방향에 대한 상부측 모서리와 광원의 상부발광면의 중심(광축정점(11a))을 잇는 가상의 선과 광축(C)이 이루는 각도일 수 있다. Since the light diffusion lens 1 is made of a material having a higher density than air, light incident on the upper surface 310 at a predetermined angle θ based on the optical axis C can be totally reflected. Here, the angle θ is an angle formed by the optical axis C and the light irradiated from the light source, and may be an acute angle, as shown in FIG. 11. And, the angle θ is the angle formed by the virtual line connecting the upper edge with respect to the minor axis direction of the side surfaces 320 and 330 and the center (optical axis vertex 11a) of the light source and the optical axis C. Can be.
그리고, 각도(θ)는 52.5도 이하일 수 있다. 만일, 각도(θ)가 52.5도를 초과하여 곡면으로 형성된 상부면(310)으로 입사되는 경우, 장축 방향에서 광의 누설을 초래할 수 있다. In addition, the angle θ may be 52.5 degrees or less. If the angle θ is more than 52.5 degrees and is incident on the upper surface 310 formed as a curved surface, light leakage may occur in the long axis direction.
도 11은 본 발명의 제1실시예의 광 확산렌즈의 장축 방향과 단축 방향에서의 광 확산을 나타내는 도면으로서, 도 11의 (a)는 제1실시예에 따른 광 확산렌즈의 단축 방향에서 발생하는 누설광을 나타내는 도면이고, 도 11의 (b)는 제1실시예에 따른 광 확산렌즈의 장축 방향에서 누설광이 방지된 유효광을 나타내는 도면이다. 11 is a view showing light diffusion in the long axis direction and the short axis direction of the light diffusion lens of the first embodiment of the present invention, and FIG. 11(a) is generated in the short direction of the light diffusion lens according to the first embodiment FIG. 11B is a view showing effective light in which leakage light is prevented in the long axis direction of the light diffusion lens according to the first embodiment.
도 11의 (a)에 도시된 바와 같이, 광 확산렌즈(1)의 단축 방향에서 누설광이 발생한다. 여기서, 누설광이라 함은 측부면(320, 330)측으로 조사되지 않는 광을 의미할 수 있다. 특히, 누설광은 측부면(320, 330)에서 상방으로 조사되는 광을 의미할 수 있다. As shown in (a) of FIG. 11, leakage light is generated in the minor axis direction of the light diffusion lens 1. Here, the leakage light may mean light that is not irradiated to the side surfaces 320 and 330. In particular, leakage light may mean light irradiated upward from the side surfaces 320 and 330.
그에 따라, 도 10의 (b)의 A3 영역과 같이 광 확산렌즈(1)의 단축 방향에서 광 처짐이 발생할 수 있다. Accordingly, light deflection may occur in the minor axis direction of the light diffusing lens 1 as in the area A3 of FIG. 10B.
도 11의 (b)에 도시된 바와 같이, 본 발명의 제1실시예의 광 확산렌즈(1)는, 장축 방향에서 상부면(310)의 길이가 단축 방향에 비해 길고, 높이가 단축 방향에 비해 높기 때문에 단축 방향에서 형성되던 누설광이 유효광으로 변환될 수 있다. 그에 따라, 도 10의 (b)의 A2 영역과 같이 광이 균일하게 배광될 수 있다. 11(b), the length of the upper surface 310 in the long axis direction of the light diffusing lens 1 of the first embodiment of the present invention is longer than that of the short axis direction, and the height is higher than that of the short axis direction. Since it is high, leakage light formed in the short axis direction can be converted into effective light. Accordingly, light may be uniformly distributed as in the area A2 of FIG. 10B.
도 11을 참조하면, 광 확산렌즈(1)는 상부면(310)에 조사되는 광 중 광축(C)을 기준으로 52.5도 이하로 조사되는 광은 단축 방향으로 갈수록 누설광이 증가한다. 즉, 상부면(310)에 광축(C)을 기준으로 52.5도 이하로 조사되는 광에 대해 광 확산렌즈(1)는 평면상 단축 방향에서 장축 방향으로 갈수록 누설광이 감소시킬 수 있다.Referring to FIG. 11, the light diffusing lens 1 of the light irradiated below 52.5 degrees based on the optical axis C among the light irradiated on the upper surface 310 increases the leakage light toward the short axis direction. That is, with respect to light irradiated to the upper surface 310 below 52.5 degrees based on the optical axis C, the light diffusion lens 1 may reduce leakage light as it goes from the short axis direction to the long axis direction in a planar view.
따라서, 본 발명의 제1실시예의 광 확산렌즈(1)는 장축 방향의 길이(Ly) 및 높이(H2)를 조절하여 곡면으로 형성된 상부면(310)을 형성함으로써, 장축 방향에 대한 누설광의 발생을 방지할 수 있다. 그리고, 광 확산렌즈(1)는 장축 방향에 대한 광의 커버리지(Coverage)를 확대시켜며, 확대된 커버리지에 의해 비대칭적 배광을 도출할 수 있다. Accordingly, the light diffusing lens 1 of the first embodiment of the present invention forms the upper surface 310 formed as a curved surface by adjusting the length Ly and height H2 in the long axis direction, thereby generating leakage light in the long axis direction. Can be prevented. In addition, the light diffusion lens 1 enlarges the coverage of light with respect to the long axis direction, and can derive an asymmetric light distribution by the expanded coverage.
상부면(310)의 곡면은 접선의 기울기의 절대값이 가장자리에서 광축(C)으로 갈수록 증대될 수 있다. 그리고, 광 확산렌즈(1)의 곡면은 장축 방향의 길이(Ly)가 단축 방향의 길이(Lx)보다 길기 때문에, 광 확산렌즈(1)의 제1측부면(320) 및 제2측부면(330) 각각의 단축 방향 높이(H1)는 장축 방향 높이(H2)보다 작다. 여기서, 장축 방향 높이(H2)는 모서리(340)의 높이일 수 있다. 그리고, 높이에 대한 기준은 하부면(100) 또는 제1측부면(320) 및 제2측부면(330) 각각의 하측 모서리일 수 있다. The curved surface of the upper surface 310 may increase as the absolute value of the slope of the tangent line increases from the edge toward the optical axis C. In addition, since the curved surface of the light diffusion lens 1 has a length Ly in the long axis direction longer than a length Lx in the short axis direction, the first side surface 320 and the second side surface of the light diffusion lens 1 ( 330) Each short axis height H1 is smaller than the long axis direction height H2. Here, the height H2 in the long axis direction may be the height of the edge 340. In addition, the reference for the height may be the lower edge of each of the lower surface 100 or the first side surface 320 and the second side surface 330.
이때, 제1측부면(320) 및 제2측부면(330) 각각의 단축 방향 높이(H1)는 장축 방향 높이(H2) 대비 0.5이상이고 1미만일 수 있다. 즉, 제1측부면(320) 및 제2측부면(330) 각각의 단축 방향 높이(H1)는 0.5×H2 ≤ H1〈 H2의 범위 내에서 형성될 수 있다. At this time, the height of the short axis direction H1 of each of the first side surface 320 and the second side surface 330 is 0.5 or more and less than 1, compared to the height of the long axis H2. That is, the height H1 of each of the first side surface 320 and the second side surface 330 may be formed within a range of 0.5×H2 ≤ H1 <H2.
단축 방향 높이(H1)가 장축 방향 높이(H2)의 0.5배 미만인 경우 제1측부면(320) 및 제2측부면(330)에서 누설광이 발생할 수 있으며, 단축 방향 높이(H1)가 장축 방향 높이(H2)와 동일한 경우 상부면(310)에서 광축(C)을 기준으로 52.5도 이하로 조사되는 광에 대한 광 투과 현상이 발생할 수 있다. When the height in the short axis direction H1 is less than 0.5 times the height in the long axis direction H2, leakage light may be generated in the first side surface 320 and the second side surface 330, and the short axis direction height H1 is in the long axis direction When the height H2 is the same, a light transmission phenomenon may occur for light irradiated below 52.5 degrees based on the optical axis C on the upper surface 310.
또한, 상부면(310)의 곡면은 소정의 곡률(1/R1)을 갖도록 형성될 수 있으며, 도 7 및 도 8을 참조하면, 장축 방향의 곡률(1/R1)과 단축 방향의 곡률(1/R1)은 동일할 수 있다. 이때, 곡률(1/R1)의 중심은 광 확산렌즈(1)의 외측에 배치될 수 있다. In addition, the curved surface of the upper surface 310 may be formed to have a predetermined curvature (1/R1). Referring to FIGS. 7 and 8, curvature (1/R1) in the long axis direction and curvature (1) in the short axis direction /R1) may be the same. At this time, the center of the curvature 1/R1 may be disposed outside the light diffusion lens 1.
즉, 상부면(310)은 광축(C)을 기준으로 회전대칭되게 형성되되, 장축 방향으로 더 긴 형상으로 형성될 수 있다. 여기서, 상부면(310)의 곡률은 제1곡률이라 불릴 수 있다. 따라서, 상부면(310)은 광축(C)으로 갈수록 반경이 좁아지게 형성되고, 함몰되는 형상으로 형성될 수 있다. That is, the upper surface 310 is formed to be rotationally symmetrical with respect to the optical axis C, but may be formed in a longer shape in the long axis direction. Here, the curvature of the upper surface 310 may be referred to as a first curvature. Therefore, the upper surface 310 may be formed to have a narrower radius and a recessed shape toward the optical axis C.
상부면(310)의 곡면이 소정의 곡률을 갖도록 형성된 것을 그 예로 하고 있으나 반드시 이에 한정되는 것은 아니다. 예컨데, 곡면은 포물선 또는 타원의 일부 형상으로 형성될 수도 있다. The example that the curved surface of the upper surface 310 is formed to have a predetermined curvature, but is not limited thereto. For example, the curved surface may be formed in a part shape of a parabola or an ellipse.
하부면(100)과 상부면(310) 사이에 배치되는 측부면은 제1측부면(320)과 제2측부면(330)을 포함할 수 있다. The side surface disposed between the lower surface 100 and the upper surface 310 may include a first side surface 320 and a second side surface 330.
제1측부면(320)과 제2측부면(330)은 광축(C)을 사이에 두고 서로 마주보게 배치될 수 있다. 이때, 제1측부면(320)과 제2측부면(330)은 광축(C)과 평행하게 형성될 수 있다. The first side surface 320 and the second side surface 330 may be disposed to face each other with the optical axis C interposed therebetween. At this time, the first side surface 320 and the second side surface 330 may be formed parallel to the optical axis C.
이때, 제1측부면(320) 및 제2측부면(330) 각각의 단축 방향 높이(H1)는 장축 방향 높이(H2)보다 작다.At this time, the height H1 of each of the first side surface 320 and the second side surface 330 is smaller than the height H2 of the long axis direction.
그에 따라, 단축 방향에는 제1측부면(320)의 제1측부(321)가 배치되고, 제2측부면(330)에는 제2측부(331)가 배치될 수 있다. 따라서, 제1측부면(320) 및 제2측부면(330)의 단축 방향 높이(H1)는 제1측부(321) 및 제2측부(331)의 높이일 수 있다. Accordingly, the first side portion 321 of the first side surface 320 may be disposed in the minor axis direction, and the second side portion 331 may be disposed on the second side surface 330. Accordingly, the height H1 in the short axis direction of the first side surface 320 and the second side surface 330 may be the height of the first side portion 321 and the second side portion 331.
그리고, 제1측부면(320) 및 제2측부면(330)의 단축 방향 높이(H1)는 광축(C) 선상에 배치되는 상부면(310)의 일점인 꼭지점(P2)의 높이(H3)보다 크다. 이때, 제1측부면(320) 및 제2측부면(330)의 단축 방향 높이(H1)는 광축(C) 선상에 배치되는 상부면(310)의 일점인 꼭지점(P2)의 높이(H3)의 2.8~3.0배일 수 있다. 바람직하게 제1측부면(320) 및 제2측부면(330)의 단축 방향 높이(H1)는 광축(C) 선상에 배치되는 상부면(310)의 일점인 꼭지점(P2)의 높이(H3)의 2.9배일 수 있다.In addition, the height H1 in the short axis direction of the first side surface 320 and the second side surface 330 is the height H3 of the vertex P2 which is one point of the upper surface 310 disposed on the optical axis C line. Greater than At this time, the height H1 of the first side surface 320 and the second side surface 330 in the short axis direction H1 is the height H3 of the vertex P2 which is one point of the upper surface 310 disposed on the optical axis C line. It can be 2.8 to 3.0 times. Preferably, the height H1 in the short axis direction of the first side surface 320 and the second side surface 330 is the height H3 of the vertex P2 which is a point of the upper surface 310 disposed on the optical axis C line. It can be 2.9 times.
상부면(310)의 일점인 꼭지점(P2)의 높이(H3)는 광축(C) 선상에 배치되기 때문에, 장축 방향 및 단축 방향에 관계없이 일정한 높이로 형성될 수 있다. Since the height H3 of the vertex P2 which is one point of the upper surface 310 is disposed on the optical axis C line, it can be formed at a constant height regardless of the long axis direction and the short axis direction.
그리고, 꼭지점(P2)의 높이(H3)가 조정됨에 따라, 곡면으로 형성된 상부면(310)의 접선에 대한 기울기의 증가폭이 조절될 수 있다. 그에 따라, 제1측부면(320) 및 제2측부면(330)의 단축 방향 높이(H1) 또한 꼭지점(P2)의 높이(H3)를 고려하여 조절될 수 있다. In addition, as the height H3 of the vertex P2 is adjusted, an increase in the slope with respect to the tangent of the upper surface 310 formed as a curved surface may be adjusted. Accordingly, the height H1 in the short axis direction of the first side surface 320 and the second side surface 330 may also be adjusted in consideration of the height H3 of the vertex P2.
따라서, 상부면(310)에 의한 전반사 및 광 투과 현상을 고려하여 제1측부면(320) 및 제2측부면(330)의 단축 방향 높이(H1)를 광축(C) 선상에 배치되는 상부면(310)의 일점인 꼭지점(P2)의 높이(H3)의 2.8~3.0배로 형성할 수 있다. Accordingly, in consideration of total reflection and light transmission by the upper surface 310, the upper surface disposed on the optical axis C line is the height H1 of the short axis direction of the first side surface 320 and the second side surface 330. It can be formed at 2.8 to 3.0 times the height (H3) of the vertex (P2), which is one point of (310).
한편, 모서리(340)의 높이(H2)에 비해 제1측부면(320) 및 제2측부면(330)의 단축 방향 높이(H1)가 작게 형성됨에 따라, 도 6에 도시된 바와 같이, 제1측부면(320) 및 제2측부면(330)의 상부측은 소정의 곡률(1/R2)을 갖도록 형성될 수 있다. 여기서, 곡률(1/R2)은 제2곡률이라 불릴 수 있다. On the other hand, as shown in FIG. 6, as the height H1 in the minor axis direction of the first side surface 320 and the second side surface 330 is formed smaller than the height H2 of the corner 340, as shown in FIG. The upper sides of the first side surface 320 and the second side surface 330 may be formed to have a predetermined curvature (1/R2). Here, the curvature (1/R2) may be referred to as a second curvature.
도 3 및 도 4를 참조하면, 제1측부면(320)과 제2측부면(330)은 평면상 외측으로 볼록하게 형성될 수 있다. 여기서 외측이라 함은 광축(C)을 향하는 방향의 반대방향을 의미한다. 그에 따라, 제1측부면(320)과 제2측부면(330)은 외측으로 볼록한 곡면을 포함할 수 있다. 그리고, 제1측부면(320)과 제2측부면(330)의 곡면은 소정의 곡률을 갖도록 형성될 수 있다. 3 and 4, the first side surface 320 and the second side surface 330 may be formed to be convex outward in a plane. Here, the outer side means the opposite direction of the direction toward the optical axis C. Accordingly, the first side surface 320 and the second side surface 330 may include an outwardly convex curved surface. In addition, the curved surfaces of the first side surface 320 and the second side surface 330 may be formed to have a predetermined curvature.
그리고, 제1측부면(320)과 제2측부면(330) 각각의 곡률의 중심은 평면상 광축(C)과 이격되게 배치될 수 있다. 이때, 제1측부면(320)의 곡률의 중심은 제2측부면(330)측에 형성되고 제2측부면(330)의 곡률의 중심은 제1측부면(320)측에 형성될 수 있기 때문에, 광 확산렌즈(1)는 제1측부면(320)과 제2측부면(330)이 만나 형성되는 한 쌍의 모서리(340)를 포함할 수 있다.And, the center of curvature of each of the first side surface 320 and the second side surface 330 may be arranged to be spaced apart from the optical axis C on the plane. At this time, the center of curvature of the first side surface 320 may be formed on the second side surface 330 side, and the center of curvature of the second side surface 330 may be formed on the first side surface 320 side. Therefore, the light diffusion lens 1 may include a pair of corners 340 formed by meeting the first side surface 320 and the second side surface 330.
도 12를 참조하면, 입사면(200)을 향해 광을 조사하는 광원(10)은 상부발광면(11)과 네 개의 측부발광면(12)을 포함할 수 있다. 그에 따라, 광원(10)은 5면 발광을 구현할 수 있다. 이때, 광원(10)의 하면은 기판(20)의 상면과 접촉되게 배치될 수 있다. Referring to FIG. 12, the light source 10 irradiating light toward the incident surface 200 may include an upper light emitting surface 11 and four side light emitting surfaces 12. Accordingly, the light source 10 may implement five-sided light emission. At this time, the lower surface of the light source 10 may be disposed to contact the upper surface of the substrate 20.
광원(10)의 상부발광면(11)에서 조사되는 광은 광축 방향(z 방향)으로 조사되고, 측부발광면(12)에서 조사되는 광은 광 확산렌즈(1)의 반경 방향으로 조사될 수 있다. Light irradiated from the upper light emitting surface 11 of the light source 10 is irradiated in the optical axis direction (z direction), and light irradiated from the side light emitting surface 12 can be irradiated in the radial direction of the light diffusing lens 1. have.
그리고, 상부발광면(11)의 중심에는 광축정점(11a)이 형성될 수 있다. 이때, 광축정점(11a)은 광축(C) 선상에 배치될 수 있다. In addition, an optical axis vertex 11a may be formed at the center of the upper light emitting surface 11. At this time, the optical axis vertex 11a may be disposed on the optical axis C line.
여기서, 광원(10)은 LED를 포함할 수 있다. 그리고, LED에는 노란색(Yellow) 형광체가 도포될 수 있다. Here, the light source 10 may include an LED. In addition, a yellow (Yellow) phosphor may be applied to the LED.
종합해보면, 광 확산렌즈(1)는 평면상 장축과 단축을 포함하고, 단축 방향 대비 장축 방향으로 곡면으로 형성된 상부면(310)의 길이를 증가시킴과 동시에 측부면(320, 330)의 장축 방향 높이(H2)를 단축 방향 높이(H1)보다 크게 형성할 수 있다. 그에 따라, 광 확산렌즈(1)는 곡면으로 형성된 상부면(310)을 이용하여 내부로 입사된 광을 모서리(340)측으로 전반사되게 한다. Taken together, the light diffusion lens 1 includes a long axis and a short axis on a plane, and increases the length of the upper surface 310 formed as a curved surface in the long axis direction compared to the short axis direction, and at the same time, the long axis direction of the side surfaces 320 and 330. The height H2 can be formed larger than the height H1 in the minor axis direction. Accordingly, the light diffusion lens 1 uses the upper surface 310 formed as a curved surface to totally reflect the light incident therein to the edge 340 side.
이에, 장축 방향으로 길이가 증가된 상부면(310)에 의해 광 확산렌즈(1)는 장축 방향으로 광 확산성을 증가시킬 수 있다. 그에 따라, 광 확산렌즈(1)는 장축 방향측에서 발생할 수 있는 누설광의 존재를 방지 또는 최소화할 수 있다. Accordingly, the light diffusion lens 1 may increase light diffusivity in the long axis direction by the upper surface 310 whose length is increased in the long axis direction. Accordingly, the light diffusion lens 1 can prevent or minimize the presence of leakage light that may occur on the long axis direction side.
[제2실시예][Second Embodiment]
도 13은 본 발명의 제2실시예의 광 확산렌즈의 사시도이고, 도 14는 본 발명의 제2실시예의 광 확산렌즈의 평면도이고, 도 15는 본 발명의 제2실시예의 광 확산렌즈의저면도이고, 도 16은 본 발명의 제2실시예의 광 확산렌즈의 정면도이고, 도 17은 본 발명의 제2실시예의 광 확산렌즈의 측면도이고, 도 18은 본 발명의 제2실시예의 광 확산렌즈의 상부면을 기준으로 단축 방향에 대한 단면도이고, 도 19는 본 발명의 제2실시예의 광 확산렌즈의 상부면을 기준으로 장축 방향에 대한 단면도이다. 여기서, 도 18은 도 14의 A1-A1선을 나타내는 단면도이고, 도 19는 도 14의 B1-B1선을 나타내는 단면도이다. 도 13에 있어서 x 방향은 출사면의 단축 방향이고, y 방향은 출사면의 장축 방향이며, z 방향은 광축 방향을 나타낸다. 13 is a perspective view of the light diffusing lens of the second embodiment of the present invention, FIG. 14 is a plan view of the light diffusing lens of the second embodiment of the present invention, and FIG. 15 is a bottom view of the light diffusing lens of the second embodiment of the present invention 16 is a front view of the light diffusing lens of the second embodiment of the present invention, FIG. 17 is a side view of the light diffusing lens of the second embodiment of the present invention, and FIG. 18 is a light diffusing lens of the second embodiment of the present invention 19 is a cross-sectional view of the minor axis direction with respect to the upper surface, and FIG. 19 is a cross-sectional view of the long axis direction with respect to the upper surface of the light diffusing lens of the second embodiment of the present invention. Here, FIG. 18 is a cross-sectional view showing line A1-A1 in FIG. 14, and FIG. 19 is a cross-sectional view showing line B1-B1 in FIG. In Fig. 13, the x-direction is the minor axis direction of the exit surface, the y-direction is the major axis direction of the exit surface, and the z-direction indicates the optical axis direction.
도 13 내지 도 19를 참조하면, 제2실시예에 따른 광 확산렌즈(1a)는 하부면(100a), 광이 입사되는 입사면(200) 및 입사면(200)을 통해 입사된 광이 출사되는 출사면(300a)을 포함할 수 있다. 여기서, 하부면(100a)과 출사면(300a)의 상부면(310a)은 광축 방향에서 바라볼 때, 타원형으로 형성된다는 점에서 제1실시예에 따른 광 확산렌즈(1)와 형상적 차이를 갖는다. 13 to 19, in the light diffusion lens 1a according to the second embodiment, light incident through the lower surface 100a, the incident surface 200 through which the light is incident, and the incident surface 200 is emitted. It may include an exit surface (300a). Here, the lower surface (100a) and the upper surface (310a) of the exit surface (300a), when viewed in the optical axis direction, is formed in an elliptical shape difference from the light diffusing lens (1) according to the first embodiment Have
광 확산렌즈(1a)는 비구면 형상의 입사면(200)과 출사면(300a)을 이용하여 입사면(200)을 통해 입사된 광을 확산시킬 수 있다. 그리고, 출사면(300a)은 상부면(310a)과 하나의 측부면(350)을 포함할 수 있다. 여기서, 제1실시예에 따른 광 확산렌즈(1)는 측부면(320, 330)이 만나 형성되는 한 쌍의 모서리(340)를 포함함으로써, 광축 방향에서 바라볼 때 럭비공 형상으로 형성되나, 제2실시예에 따른 광 확산렌즈(1a)의 경우, 제1실시예에 따른 광 확산렌즈(1)는 측부면(320, 330)이 만나 형성되는 한 쌍의 모서리(340)를 라운딩 처리하여 타원형 형상으로 형성될 수 있다. The light diffusing lens 1a may diffuse light incident through the incidence surface 200 using the aspherical incidence surface 200 and the exit surface 300a. In addition, the exit surface 300a may include an upper surface 310a and one side surface 350. Here, the light diffusing lens 1 according to the first embodiment includes a pair of corners 340 formed by the side surfaces 320 and 330 meeting, and is formed in a rugby ball shape when viewed in the optical axis direction. In the case of the light diffusing lens 1a according to the second embodiment, the light diffusing lens 1 according to the first embodiment is processed by rounding a pair of corners 340 where the side surfaces 320 and 330 meet. It may be formed in an oval shape.
하부면(100a)은 상부면(310a)의 하부측에 배치될 수 있다. 이때, 측부면(350)을 통해 하부면(100a)은 상부면(310a)과 이격되게 배치될 수 있다.The lower surface 100a may be disposed on the lower side of the upper surface 310a. At this time, the lower surface 100a through the side surface 350 may be arranged to be spaced apart from the upper surface 310a.
도 15에 도시된 바와 같이, 하부면(100a)은 중앙에 원형의 입사구(210)가 배치되는 타원형 형상으로 형성될 수 있다. As illustrated in FIG. 15, the lower surface 100a may be formed in an elliptical shape in which a circular inlet 210 is disposed in the center.
한편, 광원의 광축 방향에서 바라볼 때, 광 확산렌즈(1a)는 평면상 장축과 단축을 구비하도록 형성될 수 있다. 이때, 광 확산렌즈(1a)의 측부면(350)의 단축 방향 높이(H1)는 장축 방향 높이(H2)보다 작다. On the other hand, when viewed in the optical axis direction of the light source, the light diffusing lens 1a may be formed to have a long axis and a short axis on a plane. At this time, the height H1 in the short axis direction of the side surface 350 of the light diffusion lens 1a is smaller than the height H2 in the long axis direction.
도 14에 도시된 바와 같이, 광축 방향에서 바라볼 때, 광 확산렌즈(1a)는 소정의 길이(Lx)로 형성된 단축과 소정의 길이(Ly)로 형성된 장축을 포함할 수 있다. 상세하게, 광 확산렌즈(1a)의 출사면(300a) 중 상부면(310a)의 단축은 소정의 길이(Lx)로 형성되고, 장축은 소정의 길이(Ly)로 형성될 수 있다. 이때, 장축의 길이(Ly)는 단축의 길이(Lx)보다 크다. 따라서, 광 확산렌즈(1a)는 장축 방향으로 광 확산량을 증대시킬 수 있다. As shown in FIG. 14, when viewed in the optical axis direction, the light diffusion lens 1a may include a short axis formed of a predetermined length Lx and a long axis formed of a predetermined length Ly. In detail, a short axis of the upper surface 310a among the exit surfaces 300a of the light diffusion lens 1a may be formed with a predetermined length Lx, and a long axis may be formed with a predetermined length Ly. At this time, the length of the long axis (Ly) is greater than the length of the short axis (Lx). Therefore, the light diffusion lens 1a can increase the amount of light diffusion in the long axis direction.
여기서, 광 확산렌즈(1a)의 장축과 단축은 평면상 수직하게 배치되며, 장축과 단축이 만나는 가상의 일점에는, 도 14에 도시된 바와 같이, 광축(C)이 배치될 수 있다. Here, the long axis and the short axis of the light diffusing lens 1a are vertically arranged in a plane, and at an imaginary point where the long axis and the short axis meet, as shown in FIG. 14, the optical axis C may be arranged.
출사면(300a) 중 상부면(310a)은 가장자리에서 중심 방향으로 함몰된 형상으로 형성될 수 있다. 이때, 상부면(310a)은 상부측으로 돌출된 볼록한 곡면 형상일 수 있다. 도 5에 도시된 바와 같이, 제1실시예에 따른 광 확산렌즈(1)는 모서리(340)에 의해 꼭지점이 형성될 수 있으나, 도 16에 도시된 바와 같이, 제2실시예에 따른 광 확산렌즈(1a)는 라운딩 처리에 의해 꼭지점이 삭제될 수 있다. The top surface 310a of the exit surface 300a may be formed in a shape recessed from the edge toward the center. At this time, the upper surface 310a may be a convex curved surface projecting toward the upper side. As shown in FIG. 5, the light diffusing lens 1 according to the first embodiment may have a vertex formed by an edge 340, but as shown in FIG. 16, light diffusing according to the second embodiment The vertex of the lens 1a may be deleted by a rounding process.
이때, 상부면(310a)은 입사면(200)에 의해 굴절된 광을 측부면(350)으로 반사시킬 수 있다. At this time, the upper surface 310a may reflect light refracted by the incident surface 200 to the side surface 350.
따라서, 광 확산렌즈(1a)는 장축 방향의 길이(Ly) 및 높이(H2)를 조절하여 곡면으로 형성된 상부면(310a)을 형성함으로써, 장축 방향에 대한 누설광의 발생을 방지할 수 있다. 그에 따라, 광 확산렌즈(1a)는 장축 방향에 대한 광의 커버리지를 확대시켜며, 확대된 커버리지에 의해 비대칭적 배광을 도출할 수 있다. Therefore, the light diffusing lens 1a forms the upper surface 310a formed as a curved surface by adjusting the length Ly and the height H2 in the long axis direction, thereby preventing generation of leakage light in the long axis direction. Accordingly, the light diffusion lens 1a enlarges the coverage of light with respect to the long axis direction, and asymmetric light distribution can be derived by the expanded coverage.
하부면(100a)과 상부면(310a) 사이에 배치되는 측부면(350)은 장축과 단축을 기준으로 대칭되게 형성될 수 있다. 이때, 측부면(350)은 광축(C)과 평행하게 형성될 수 있다. The side surface 350 disposed between the lower surface 100a and the upper surface 310a may be symmetrically formed based on a long axis and a short axis. At this time, the side surface 350 may be formed parallel to the optical axis (C).
상기에서는 본 발명의 실시예를 참조하여 설명하였지만, 해당 기술 분야의 통상의 지식을 가진자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 그리고, 이러한 수정과 변경에 관계된 차이점들을 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Although described above with reference to embodiments of the present invention, those skilled in the art can variously modify the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. You will understand that you can change it. And, it should be interpreted that the differences related to the modifications and changes are included in the scope of the present invention defined in the appended claims.

Claims (13)

  1. 단축과 장축이 형성되는 하부면;A lower surface on which a short axis and a long axis are formed;
    상기 하부면의 일영역(입사구)으로부터 내부로 오목하게 형성된 입사면; 및An incidence surface concavely formed inward from one region (entrance entrance) of the lower surface; And
    상기 입사면을 통해 입사된 광이 출사되는 출사면을 포함하고,And an emission surface through which light incident through the incident surface is emitted,
    상기 출사면은,The exit surface,
    곡면 형상의 상부면; 및A curved upper surface; And
    상기 상부면의 외주와 상기 하부면의 외주를 수직으로 연결하는 측부면을 포함하는 광 확산렌즈.And a side surface vertically connecting the outer circumference of the upper surface and the outer circumference of the lower surface.
  2. 제1항에 있어서, 상기 하부면은,The method of claim 1, wherein the lower surface,
    외주 형상이 럭비공 형상인 광 확산렌즈.A light diffusing lens having an outer circumferential shape of a rugby ball.
  3. 제1항에 있어서, 상기 하부면은, The method of claim 1, wherein the lower surface,
    외주 형상이 타원 형상인 광 확산렌즈.A light diffusing lens having an outer circumferential shape.
  4. 제1항에 있어서, 상기 입사면은,The method of claim 1, wherein the incident surface,
    단면이 원기둥 형상의 제1면; 및A first surface having a cylindrical shape in cross section; And
    상기 제1면으로부터 상부측으로 연장되어, 상부측으로 오목하게 형성되는 제2면을 포함하는 광 확산렌즈.A light diffusing lens comprising a second surface extending upwardly from the first surface to be concave toward the upper side.
  5. 제4항에 있어서, 상기 제2면은 광축을 향해 볼록하게 형성되는 광 확산렌즈.The light diffusion lens of claim 4, wherein the second surface is convex toward the optical axis.
  6. 제1항에 있어서, 상기 상부면은,The method of claim 1, wherein the upper surface,
    외주에서 광축 방향으로 함몰되고, 상부측으로 돌출된 곡면 형상인 광 확산렌즈.A light diffusion lens that is recessed in the direction of the optical axis from the outer periphery and protrudes upward.
  7. 제6항에 있어서, 상기 상부면의 곡면의 접선의 기울기의 절대값이, 외주로부터 광축으로 갈수록 커지는 광 확산렌즈.The light diffusing lens according to claim 6, wherein the absolute value of the inclination of the tangent of the curved surface of the upper surface increases from the outer periphery toward the optical axis.
  8. 제6항에 있어서, 상기 상부면은, 소정 곡률을 이루는 원형상인 광 확산렌즈.The light diffusing lens according to claim 6, wherein the upper surface has a circular shape forming a predetermined curvature.
  9. 제1항에 있어서,According to claim 1,
    상기 측부면의 단축방향의 높이는, 장축방향의 높이보다 낮은 광 확산렌즈.The height of the side surface in the minor axis direction is lower than that in the major axis direction.
  10. 제9항에 있어서, 상기 단축방향의 높이는, 상기 장축방향의 높이 대비 0.5 이상이고 1 미만인 광 확산렌즈.10. The method of claim 9, The height in the minor axis direction, the light diffusion lens is less than 1 and more than 0.5 in comparison to the height in the major axis direction.
  11. 제9항에 있어서, The method of claim 9,
    상기 측부면의 상부는 소정 곡률을 이루는 광 확산렌즈.An upper portion of the side surface is a light diffusing lens forming a predetermined curvature.
  12. 제9항에 있어서,The method of claim 9,
    상기 단축방향의 높이는, 상기 상부면의 가장 낮은 높이의 2.8 내지 3.0배인 광 확산렌즈.The height of the short axis direction is 2.8 to 3.0 times the lowest height of the upper surface, the light diffusing lens.
  13. 제1항에 있어서, According to claim 1,
    상기 장축의 길이는, 상기 단축의 길이의 1.1 배 이상인 광 확산렌즈.The length of the long axis, the light diffusion lens of 1.1 times or more of the length of the short axis.
PCT/KR2019/015950 2018-12-06 2019-11-20 Light diffusion lens WO2020116830A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0156383 2018-12-06
KR1020180156383A KR102213297B1 (en) 2018-12-06 2018-12-06 Lens for wide diffusion light

Publications (1)

Publication Number Publication Date
WO2020116830A1 true WO2020116830A1 (en) 2020-06-11

Family

ID=70973934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015950 WO2020116830A1 (en) 2018-12-06 2019-11-20 Light diffusion lens

Country Status (2)

Country Link
KR (1) KR102213297B1 (en)
WO (1) WO2020116830A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332054A (en) * 2005-05-23 2006-12-07 Sekonix Co Ltd Led diffusion lens
KR20150009860A (en) * 2013-07-17 2015-01-27 서울반도체 주식회사 Light diffusing lens and light emitting device having the same
KR20150041692A (en) * 2013-10-08 2015-04-17 삼성전자주식회사 Reflective diffusion lens and lighting installation
KR20150116607A (en) * 2014-04-08 2015-10-16 한국광기술원 Complex aspherical lens
KR20180118512A (en) * 2018-02-07 2018-10-31 주식회사 에이치엘옵틱스 Light distribution lens

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2927202B2 (en) * 1995-03-29 1999-07-28 日亜化学工業株式会社 LED lamp
KR20140123134A (en) * 2013-04-10 2014-10-22 삼성전자주식회사 Reflective diffusion lens and lighting installation
CN103807806B (en) * 2014-01-22 2016-01-20 宏力照明集团有限公司 The light distributing method of the COB module LED street lamp lens in 3,5 tracks can be irradiated to
KR102142388B1 (en) * 2014-02-06 2020-08-10 삼성디스플레이 주식회사 Led light source package
JP2018005045A (en) * 2016-07-05 2018-01-11 株式会社エンプラス Luminous flux control member, light-emitting device and method for producing luminous flux control member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332054A (en) * 2005-05-23 2006-12-07 Sekonix Co Ltd Led diffusion lens
KR20150009860A (en) * 2013-07-17 2015-01-27 서울반도체 주식회사 Light diffusing lens and light emitting device having the same
KR20150041692A (en) * 2013-10-08 2015-04-17 삼성전자주식회사 Reflective diffusion lens and lighting installation
KR20150116607A (en) * 2014-04-08 2015-10-16 한국광기술원 Complex aspherical lens
KR20180118512A (en) * 2018-02-07 2018-10-31 주식회사 에이치엘옵틱스 Light distribution lens

Also Published As

Publication number Publication date
KR20200069156A (en) 2020-06-16
KR102213297B1 (en) 2021-02-08

Similar Documents

Publication Publication Date Title
WO2018212436A1 (en) Backlight unit and light flux control member for local dimming
US11231568B2 (en) Illumination apparatus
WO2018159977A1 (en) Display device, backlight unit, light-emitting module and lens
WO2013095012A1 (en) Optical plate for lighting, and lighting apparatus using same
WO2020184903A1 (en) Backlight unit using mini led or micro led as light source
WO2013105683A1 (en) Microlens array sheet and backlight unit including same
WO2016080676A1 (en) Light emitting device package
WO2016186410A1 (en) Reflective polarizing module having particles and backlight unit including same
WO2011025102A1 (en) Liquid crystal display
WO2016200149A1 (en) Lighting apparatus
WO2011049373A2 (en) Light emitting device package and lighting system including same
WO2014106992A1 (en) High-emission-angle lens
WO2020116830A1 (en) Light diffusion lens
WO2017030341A1 (en) Lighting device
WO2016200151A1 (en) Lighting apparatus
WO2021002655A1 (en) Display apparatus and diffuser plate thereof
WO2019132367A1 (en) Diffusion sheet having improved shielding performance and backlight unit comprising same
WO2018221878A1 (en) Light transfer unit having blocking part formed thereon, backlight module using same, and method for manufacturing light transfer unit
WO2020162678A1 (en) Optical film for mini led or micro led backlight unit
WO2020166864A1 (en) Optical film for mini led or micro led backlight unit
WO2021256729A1 (en) Diffusion plate-supporting type lens
WO2018062861A1 (en) Light source module unit for exposure and exposure device having same
WO2016099195A1 (en) Diffusion lens structure and light emitting device including same
WO2017183938A1 (en) Lighting device
KR20020071358A (en) The direct lighting back light panel with the light guide plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892119

Country of ref document: EP

Kind code of ref document: A1