WO2020110509A1 - Vehicle air conditioner - Google Patents

Vehicle air conditioner Download PDF

Info

Publication number
WO2020110509A1
WO2020110509A1 PCT/JP2019/041093 JP2019041093W WO2020110509A1 WO 2020110509 A1 WO2020110509 A1 WO 2020110509A1 JP 2019041093 W JP2019041093 W JP 2019041093W WO 2020110509 A1 WO2020110509 A1 WO 2020110509A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
temperature
compressor
refrigerant
air conditioning
Prior art date
Application number
PCT/JP2019/041093
Other languages
French (fr)
Japanese (ja)
Inventor
孝史 青木
竜 宮腰
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to DE112019005898.3T priority Critical patent/DE112019005898B4/en
Priority to CN201980074264.2A priority patent/CN113015639A/en
Publication of WO2020110509A1 publication Critical patent/WO2020110509A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3261Cooling devices information from a variable is obtained related to temperature of the air at an evaporating unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3266Cooling devices information from a variable is obtained related to the operation of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • B60H2001/3272Cooling devices output of a control signal related to a compressing unit to control the revolving speed of a compressor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/328Cooling devices output of a control signal related to an evaporating unit
    • B60H2001/3283Cooling devices output of a control signal related to an evaporating unit to control the refrigerant flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a heat pump type air conditioner for air conditioning the interior of a vehicle.
  • the vehicle air conditioner having a plurality of evaporators for example, it is necessary to cool the temperature-controlled object from the operation mode in which the refrigerant is evaporated by the heat absorber (evaporator) to air-condition the vehicle interior.
  • the heat exchange paths including them are increased, and the capacity (rotation speed) of the compressor is insufficient.
  • the temperature of the air blown into the vehicle compartment temporarily rises, and the cooling of the temperature controlled object is delayed.
  • the present invention has been made to solve the above-mentioned conventional technical problems, and avoids a lack of capacity of a compressor when shifting to an operation mode in which the number of evaporators that evaporate a refrigerant increases.
  • An object of the present invention is to provide a vehicle air conditioner capable of performing the above.
  • the vehicle air conditioner of the present invention includes at least a compressor for compressing a refrigerant, a plurality of evaporators for evaporating the refrigerant, and a control device to air-condition the vehicle interior, and the control device is at least ,
  • a first operation mode for evaporating the refrigerant in the evaporator and a second operation mode for evaporating the refrigerant in a larger number of evaporators than the first operation mode are executed by switching the first operation mode.
  • the compressor rotation speed increase control for increasing the rotation speed of the compressor is executed before the transfer to the second operation mode.
  • a vehicle air conditioner is mounted on a vehicle by evaporating the refrigerant and a heat absorber as an evaporator for cooling the air supplied to the vehicle compartment in the above invention.
  • the control device includes a heat exchanger for temperature control, which is an evaporator for cooling the target for temperature control, and the controller is one of the heat exchanger and the heat exchanger for temperature control.
  • the refrigerant is evaporated, and in the second operation mode, the refrigerant is evaporated by the heat absorber and the heat exchanger for temperature adjustment.
  • a vehicle air conditioner provides a heat absorber valve device that controls the flow of the refrigerant to the heat absorber in the above invention, and a heated device that controls the flow of the refrigerant to the heat exchanger for temperature adjustment.
  • the control device includes a valve device for temperature adjustment, and in the first operation mode, one of the valve device for the heat absorber and the valve device for temperature adjustment target is opened, and the other is closed, and the second operation mode is set.
  • the heat absorber valve device and the temperature control target valve device are opened.
  • the control device opens the heat absorber valve device as the first operation mode, and controls the rotation speed of the compressor based on the temperature of the heat absorber, Air conditioning (single) mode in which the valve device for temperature control target is closed, and the valve device for temperature control target is opened to rotate the compressor based on the temperature of the target heat exchanger for temperature control or the target cooled by it.
  • Air conditioning (single) mode in which the valve device for temperature control target is closed, and the valve device for temperature control target is opened to rotate the compressor based on the temperature of the target heat exchanger for temperature control or the target cooled by it.
  • Controlling the number and closing the heat absorber valve device has a temperature controlled cooling (single) mode, and as the second operation mode, opens the heat absorber valve device and rotates the compressor based on the temperature of the heat absorber.
  • the control device calculates the target rotational speed of the compressor by a feedforward calculation based on the target temperature of the heat absorber in the air conditioning (single) mode, and adjusts the temperature control.
  • the target rotation speed of the compressor is calculated by the feedforward calculation based on the target temperature of the heat exchanger for temperature adjustment or the object to be cooled by the heat exchanger, and in the compressor rotation speed increase control, It is characterized in that the target rotation speed of the compressor is increased by decreasing each target temperature.
  • the vehicle air conditioner according to a sixth aspect of the invention is the vehicle of the fourth or fifth aspect, in which the control unit shifts to a predetermined mode in the air conditioning (single) mode or the temperature controlled cooling (single) mode.
  • the air conditioning (priority) + temperature controlled cooling mode or the temperature controlled cooling (priority) + air conditioning mode It is characterized by moving to.
  • the temperature-controlled object is a battery mounted in the vehicle, and the traveling motor of the vehicle is driven by power supply from the battery.
  • the controller shifts to the air conditioning (priority) + temperature controlled cooling mode when a predetermined mode shift request is input, and in the air conditioning (single) mode, the control device operates When the output is equal to or higher than a predetermined threshold value, or when the inclination of the output of the traveling motor is higher than or equal to the predetermined threshold value, the compressor rotation speed increase control is executed.
  • the control device is an air conditioner when a predetermined mode shift request is input in the air conditioner (single) mode. (Priority) +
  • the compressor rotation speed increase control is executed. It is characterized by doing.
  • the controller inputs a predetermined mode shift request in the air conditioning (single) mode. If the temperature rises in the air conditioning (priority) + temperature controlled target cooling mode and the slope of the heat generation amount of the temperature controlled target rises above a predetermined threshold in the air conditioning (single) mode, the compressor rotates. It is characterized in that the number increase control is executed.
  • the control device inputs a predetermined mode shift request in the air conditioning (single) mode.
  • the temperature of the temperature-controlled target is predicted to increase from the navigation information in the air-conditioning (single) mode in addition to the air conditioning (priority) + temperature-controlled cooling mode, the compressor rotation speed increase control is performed. It is characterized by executing.
  • An air conditioner for a vehicle according to an eleventh aspect of the present invention is provided with an indoor blower for feeding the air that has exchanged heat with the heat absorber in the aspects of the invention according to the fourth to tenth aspects, and the control device is an air conditioner ( When performing the compressor rotation speed increase control when shifting from the independent mode to the air conditioning (priority)+controlled cooling mode, the operation of the indoor blower is suppressed.
  • a vehicle air conditioner according to a twelfth aspect of the present invention is a vehicle air conditioner according to any of the fourth to eleventh aspects of the invention, wherein a radiator for radiating the refrigerant to heat the air to be supplied to the vehicle interior, and the air passing through the heat absorber radiate heat.
  • the controller is equipped with an air mix damper to adjust the rate of ventilation, and the control device controls the compressor rotation speed increase when shifting from the air conditioning (single) mode to the air conditioning (priority) + temperature controlled cooling mode. When executed, it is characterized in that the temperature drop of the air supplied into the vehicle compartment is suppressed by the air mix damper.
  • a compressor for compressing a refrigerant, a plurality of evaporators for evaporating the refrigerant, and a vehicle air-conditioning apparatus for air-conditioning the vehicle interior which is provided with at least a controller, the controller at least evaporates.
  • a first operation mode in which the refrigerant is evaporated in the evaporator and a second operation mode in which the refrigerant is evaporated in a larger number of evaporators than the first operation mode are switched and executed.
  • compressor rotation speed increase control for increasing the rotation speed of the compressor is executed before shifting to the second operation mode.
  • the heat exchanger for temperature adjustment is provided as an evaporator, and the controller evaporates the refrigerant in one of the heat absorber and the heat exchanger for temperature adjustment in the first operation mode, In this operation mode, if the refrigerant is evaporated by the heat absorber and the heat exchanger for temperature adjustment, in the first operation mode, air conditioning in the vehicle compartment and cooling of the temperature adjustment target are performed, respectively. In this operation mode, the object to be temperature-controlled can be cooled while air-conditioning the passenger compartment.
  • the first operation mode in which the refrigerant evaporates in the heat absorber or the heat exchanger for temperature regulation shifts to the second operation mode in which the refrigerant evaporates in both the heat absorber and the heat exchanger for temperature regulation.
  • the compressor rotation speed increase control it is possible to avoid the inconvenience that the capacity of the compressor becomes insufficient immediately after shifting from the first operation mode to the second operation mode. become.
  • a heat absorber valve device for controlling the flow of the refrigerant to the heat absorber as in the invention of claim 3 and a valve device for the temperature-controlled object for controlling the flow of the refrigerant to the heat exchanger for temperature-controlled object are provided.
  • the control device opens one of the heat absorber valve device and the temperature-controlled object valve device and closes the other, and in the second operation mode, the heat absorber valve.
  • control device opens the valve device for the heat absorber as the first operation mode, controls the rotation speed of the compressor based on the temperature of the heat absorber or the valve for temperature control.
  • Air-conditioning (single) mode to close the device, open the valve device for the temperature controlled object, and control the rotation speed of the compressor based on the temperature of the heat exchanger for the temperature controlled object or the object cooled by it, to absorb heat
  • the temperature-controlled target cooling (single) mode in which the instrument valve device is closed, it is possible to smoothly perform the air conditioning of the vehicle interior and the cooling of the temperature-controlled target.
  • the valve device for the heat absorber is opened, the rotation speed of the compressor is controlled based on the temperature of the heat absorber, and the temperature of the heat exchanger for the temperature-controlled object or the temperature of the object cooled by it is adjusted.
  • the temperature control target valve device is opened and cooled by the temperature control target heat exchanger.
  • the rotational speed of the compressor is controlled based on the temperature of the target, and the temperature-controlled target cooling (priority) + air-conditioning mode that controls the opening/closing of the heat absorber valve device based on the temperature of the heat absorber is executed, While cooling the temperature-controlled object while air-conditioning the room, depending on the situation, it is possible to switch between prioritizing the air conditioning in the vehicle interior and prioritizing the cooling for the temperature-controlled object to achieve a comfortable vehicle air conditioning effect. It becomes possible to realize the cooling of the object to be temperature controlled.
  • the control device calculates the target rotation speed of the compressor by the feedforward calculation based on the target temperature of the heat absorber in the air-conditioning (single) mode, and the target cooling target cooling (single ) Mode, the target rotation speed of the compressor is calculated by the feedforward calculation based on the target temperature of the heat exchanger for temperature control or the object to be cooled by it, and in the compressor rotation speed increase control, each target temperature is calculated.
  • the compressor rotation speed increase control By lowering the target speed of the compressor by lowering it, in the air conditioning (single) mode and the cooling (single) mode to be temperature-controlled, the compressor rotation speed increase control accurately increases the compressor rotation speed. Will be able to.
  • the control device performs the compressor rotation speed increase control. After increasing the number of revolutions of the compressor, by changing to the air conditioning (priority) + target temperature controlled cooling mode or the temperature controlled target cooling (priority) + air conditioning mode, air conditioning (priority) + temperature controlled It becomes possible to reliably increase the rotation speed of the compressor before shifting to the target cooling mode or the temperature controlled target cooling (priority)+air conditioning mode.
  • the temperature-controlled object is a battery mounted on the vehicle
  • the vehicle drive motor is driven by power supplied from the battery
  • the controller inputs a predetermined mode transition request in the air conditioning (single) mode.
  • the mode is switched to the air conditioning (priority) + temperature controlled cooling mode
  • the output of the traveling motor becomes high in the air conditioning (single) mode
  • the temperature of the battery rises.
  • the control device when the output of the traveling motor becomes equal to or higher than a predetermined threshold value in the air conditioning (single) mode, or the inclination of the output of the traveling motor rises, the control device according to the invention of claim 7
  • the value becomes equal to or higher than the predetermined threshold value if the compressor rotation speed increase control is executed, the rotation speed of the compressor is increased before shifting to the air conditioning (priority)+controlled cooling mode. It is possible to leave.
  • the number of revolutions of the compressor can be increased before the mode shift request is input, so that it is possible to shift to the air conditioning (priority)+cooling mode controlled by temperature control at an early stage. become.
  • the control device executes the compressor rotation speed increase control when the inclination of the temperature of the temperature-controlled object increases in the air-conditioning (single) mode becomes equal to or higher than a predetermined threshold value.
  • the rotation speed of the compressor can be increased before the request is input, and the air-conditioning (priority)+temperature controlled cooling mode can be switched early.
  • the control device executes the compressor rotation speed increase control when the inclination of the heat generation amount of the temperature-controlled object increases in the air conditioning (single) mode becomes equal to or more than a predetermined threshold value. It becomes possible to increase the rotation speed of the compressor before the mode shift request is input, and it becomes possible to shift to the air conditioning (priority)+controlled cooling mode at an early stage.
  • the control device executes the compressor rotation speed increase control as described above.
  • the control device executes the compressor rotation speed increase control when shifting from the air-conditioning (single) mode to the air-conditioning (priority) + temperature control target cooling mode, By suppressing the operation of the blower, it is possible to eliminate the inconvenience of excessive air conditioning in the passenger compartment.
  • the control device executes the compressor rotation speed increase control at the time of shifting from the air conditioning (single) mode to the air conditioning (priority) + temperature controlled cooling mode, the air mix damper is used. By suppressing the temperature decrease of the air supplied to the vehicle interior, it is possible to eliminate the disadvantage that the vehicle interior is excessively air-conditioned.
  • FIG. 4 is another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2.
  • FIG. 7 is yet another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2. It is a figure explaining the compressor rotation speed increase control of the heat pump controller of the control apparatus of FIG. It is a figure explaining another compressor rotation speed increase control of the heat pump controller of the control apparatus of FIG.
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 of an embodiment of the present invention.
  • a vehicle of an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and electric power charged in a battery 55 mounted in the vehicle is used as a traveling motor (electric motor). (Not shown) to drive and run, and the compressor 2 of the vehicle air conditioner 1 of the present invention, which will be described later, is also driven by the electric power supplied from the battery 55. ..
  • EV electric vehicle
  • an engine internal combustion engine
  • electric motor traveling motor
  • the vehicle air conditioner 1 of the embodiment is a heating mode, a dehumidification heating mode, a dehumidification cooling mode, a cooling mode, and a defrosting mode in a heat pump operation using the refrigerant circuit R in an electric vehicle that cannot be heated by engine waste heat.
  • the air conditioning (priority)+battery cooling mode, the battery cooling (priority)+air conditioning mode, and the battery cooling (single) mode are switched and executed to perform air conditioning in the vehicle compartment and temperature control of the battery 55. It is a thing.
  • the cooling mode and the battery cooling (single) mode are examples of the first operation mode of the present invention
  • the air conditioning (priority)+battery cooling mode and the battery cooling (priority)+air conditioning mode are the second embodiment of the present invention.
  • This is an example of the operation mode.
  • the cooling mode is an example of the air conditioning (single) mode in the present invention
  • the battery cooling (single) mode is an example of the temperature controlled target cooling (independent) mode in the present invention.
  • Air conditioning (priority)+battery cooling mode Is an embodiment of the air conditioning (priority)+controlled cooling target temperature mode
  • battery cooling (priority)+air conditioning mode is an embodiment of the controlled cooling target (preferred)+air conditioning mode of the present invention.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and a running motor.
  • the vehicle to which the vehicle air conditioner 1 of the embodiment is applied is one in which the battery 55 can be charged from an external charger (quick charger or normal charger).
  • the battery 55, the traveling motor, the inverter controlling the same, and the like described above are the objects of temperature adjustment mounted on the vehicle in the present invention, but in the following embodiments, the battery 55 will be taken as an example for description.
  • the vehicle air conditioner 1 of the embodiment is for performing air conditioning (heating, cooling, dehumidification, and ventilation) of a vehicle interior of an electric vehicle, and an electric compressor 2 for compressing a refrigerant and an interior of the vehicle interior.
  • the radiator 4 (releasing the heat of the refrigerant), the outdoor expansion valve 6 including an electric valve (electronic expansion valve) that decompresses and expands the refrigerant during heating, and the radiator that dissipates the refrigerant during cooling, and the refrigerant during heating
  • An outdoor heat exchanger 7 for exchanging heat between the refrigerant and the outside air to function as an evaporator that absorbs heat (absorbs heat into the refrigerant)
  • an indoor expansion valve 8 including a mechanical expansion valve for decompressing and expanding the refrigerant.
  • a heat absorber 9 as an evaporator provided in the air flow passage 3 for absorbing (evaporating) the refrigerant from the inside and outside of the vehicle during cooling and dehumidifying, an accumulator 12 and the like are sequentially connected by a refrigerant pipe 13 to form a refrigerant circuit.
  • R is configured.
  • the outdoor expansion valve 6 decompresses and expands the refrigerant flowing out of the radiator 4 and flowing into the outdoor heat exchanger 7, and can be fully closed. Further, in the embodiment, the indoor expansion valve 8 using the mechanical expansion valve decompresses and expands the refrigerant flowing into the heat absorber 9, and adjusts the degree of superheat of the refrigerant in the heat absorber 9.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outdoor air and the refrigerant by forcibly ventilating the outdoor air through the outdoor heat exchanger 7, whereby the outdoor air is discharged while the vehicle is stopped (that is, the vehicle speed is 0 km/h).
  • the heat exchanger 7 is configured to ventilate outside air.
  • the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the downstream side of the refrigerant, and the refrigerant pipe 13A on the refrigerant outlet side of the outdoor heat exchanger 7 is used when flowing the refrigerant to the heat absorber 9.
  • the refrigerant pipe 13B on the outlet side of the supercooling section 16 is connected to the receiver dryer section 14 via an electromagnetic valve 17 (for cooling) as an open/close valve, and the check valve 18, the indoor expansion valve 8 and the heat absorption It is connected to the refrigerant inlet side of the heat absorber 9 through an electromagnetic valve 35 (for a cabin) as a device valve device in order.
  • the receiver dryer unit 14 and the supercooling unit 16 structurally form a part of the outdoor heat exchanger 7.
  • the check valve 18 has the forward direction of the indoor expansion valve 8. Further, in the embodiment, the indoor expansion valve 8 and the solenoid valve 35 are expansion valves with solenoid valves.
  • the refrigerant pipe 13A that has exited from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and this branched refrigerant pipe 13D is passed through a solenoid valve 21 (for heating) that is opened and closed during heating. It is connected to the refrigerant pipe 13C on the refrigerant outlet side of the heat absorber 9 for communication.
  • the refrigerant pipe 13C is connected to the inlet side of the accumulator 12, and the outlet side of the accumulator 12 is connected to the refrigerant suction side refrigerant pipe 13K of the compressor 2.
  • a strainer 19 is connected to the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4, and this refrigerant pipe 13E is connected to the refrigerant pipes 13J and 13F before the outdoor expansion valve 6 (refrigerant upstream side).
  • One of the branched and branched refrigerant pipes 13J is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
  • the other branched refrigerant pipe 13F is connected to the refrigerant downstream side of the check valve 18 and the refrigerant upstream side of the indoor expansion valve 8 via an electromagnetic valve 22 (for dehumidification) as an opening/closing valve that is opened during dehumidification. It is communicatively connected to the located refrigerant pipe 13B.
  • the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve are connected. It becomes a bypass circuit that bypasses 18. Further, a solenoid valve 20 as an opening/closing valve for bypass is connected in parallel to the outdoor expansion valve 6.
  • an intake switching damper 26 is provided at 25 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation) which is the air inside the vehicle interior and the outside air (outside air introduction) which is the air outside the vehicle interior.
  • an indoor blower (blower fan) 27 for feeding the introduced inside air or outside air to the air flow passage 3 is provided.
  • the intake switching damper 26 of the embodiment opens and closes the outside air intake port and the inside air intake port of the intake port 25 at an arbitrary ratio to remove the air (outside air and inside air) flowing into the heat absorber 9 of the air flow passage 3. It is configured so that the ratio of inside air can be adjusted between 0% and 100% (the ratio of outside air can also be adjusted between 100% and 0%).
  • an auxiliary heater 23 as an auxiliary heating device including a PTC heater (electric heater) is provided in the embodiment, and passes through the radiator 4. It is possible to heat the air supplied to the passenger compartment. Further, in the air flow passage 3 on the air upstream side of the radiator 4, the air (inside air or outside air) flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated. An air mix damper 28 that adjusts the ratio of ventilation to the device 4 and the auxiliary heater 23 is provided.
  • the vehicle air conditioner 1 includes an equipment temperature adjusting device 61 for adjusting the temperature of the battery 55 by circulating a heat medium in the battery 55 (object to be temperature adjusted).
  • the device temperature adjusting device 61 of the embodiment includes a circulation pump 62 as a circulating device for circulating a heat medium in the battery 55, and a refrigerant-heat medium heat exchanger as a heat exchanger for a temperature-controlled object which is an evaporator. 64 and a heat medium heater 63 as a heating device.
  • the heat medium heater 63 and the battery 55 are annularly connected by a heat medium pipe 66.
  • the inlet of the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 is connected to the discharge side of the circulation pump 62, and the outlet of this heat medium passage 64A is connected to the inlet of the heat medium heater 63.
  • the outlet of the heat medium heater 63 is connected to the inlet of the battery 55, and the outlet of the battery 55 is connected to the suction side of the circulation pump 62.
  • the heat medium used in the device temperature adjusting device 61 for example, water, a refrigerant such as HFO-1234yf, a liquid such as coolant, or a gas such as air can be adopted.
  • water is used as the heat medium.
  • the heat medium heater 63 is composed of an electric heater such as a PTC heater. Further, it is assumed that, for example, a jacket structure is provided around the battery 55 so that a heat medium can flow in a heat exchange relationship with the battery 55.
  • the heat medium discharged from the circulation pump 62 flows into the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64.
  • the heat medium exiting the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heating heater 63, and if the heat medium heating heater 63 is generating heat, the heat medium heating heater 63 heats the heat medium heating heater 63 and then the battery. 55, where the heat medium exchanges heat with the battery 55.
  • the heat medium that has exchanged heat with the battery 55 is sucked into the circulation pump 62 and circulated in the heat medium pipe 66.
  • a branch pipe 67 as a branch circuit is provided in the refrigerant pipe 13B located on the refrigerant downstream side of the connecting portion between the refrigerant pipe 13F and the refrigerant pipe 13B of the refrigerant circuit R and on the refrigerant upstream side of the indoor expansion valve 8.
  • auxiliary expansion valve 68 which is a mechanical expansion valve in the embodiment, and an electromagnetic valve (for chiller) 69 as a valve device for the temperature-controlled object are sequentially provided.
  • the auxiliary expansion valve 68 decompresses and expands the refrigerant flowing into a later-described refrigerant passage 64B of the refrigerant-heat medium heat exchanger 64, and adjusts the degree of superheat of the refrigerant in the refrigerant passage 64B of the refrigerant-heat medium heat exchanger 64.
  • the auxiliary expansion valve 68 and the solenoid valve 69 are also expansion valves with solenoid valves.
  • the other end of the branch pipe 67 is connected to the refrigerant flow passage 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 71 is connected to the outlet of the refrigerant flow passage 64B.
  • the other end is connected to a refrigerant pipe 13C on the refrigerant upstream side (refrigerant upstream side of the accumulator 12) from the confluence with the refrigerant pipe 13D.
  • the auxiliary expansion valve 68, the electromagnetic valve 69, the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and the like also form a part of the refrigerant circuit R and, at the same time, a part of the device temperature adjusting device 61. It will be.
  • the solenoid valve 69 When the solenoid valve 69 is open, the refrigerant (a part or all of the refrigerant) discharged from the outdoor heat exchanger 7 flows into the branch pipe 67, the pressure is reduced by the auxiliary expansion valve 68, and then the refrigerant is passed through the solenoid valve 69. -The refrigerant flows into the refrigerant channel 64B of the heat medium heat exchanger 64 and evaporates there. The refrigerant absorbs heat from the heat medium flowing through the heat medium passage 64A in the process of flowing through the refrigerant passage 64B, and then is sucked into the compressor 2 through the refrigerant pipe 71, the refrigerant pipe 13C, and the accumulator 12 through the refrigerant pipe 13K.
  • FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment.
  • the control device 11 includes an air conditioning controller 45 and a heat pump controller 32 each of which includes a microcomputer that is an example of a computer including a processor, and these include a CAN (Controller Area Network) and a LIN (Local Interconnect Network). Is connected to the vehicle communication bus 65 that constitutes the. Further, the compressor 2 and the auxiliary heater 23, the circulation pump 62 and the heat medium heating heater 63 are also connected to the vehicle communication bus 65, and the air conditioning controller 45, the heat pump controller 32, the compressor 2, the auxiliary heater 23, the circulation pump 62 and the heat generator. The medium heater 63 is configured to send and receive data via the vehicle communication bus 65.
  • the vehicle communication bus 65 includes a vehicle controller 72 (ECU) that controls the entire vehicle including traveling, a battery controller (BMS: Battery Management System) 73 that controls the charging and discharging of the battery 55, and a GPS navigation device 74.
  • the vehicle controller 72, the battery controller 73, and the GPS navigation device 74 are also configured by a microcomputer that is an example of a computer including a processor.
  • the air conditioning controller 45 and the heat pump controller 32 that configure the control device 11 connect the vehicle communication bus 65 to each other. Information (data) is transmitted and received to and from the vehicle controller 72, the battery controller 73, and the GPS navigation device 74 via the above.
  • the air conditioning controller 45 is a higher-level controller that controls the vehicle interior air conditioning.
  • the inputs of the air conditioning controller 45 are an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle and an outside air humidity that detects outside air humidity.
  • the sensor 34, the HVAC suction temperature sensor 36 that detects the temperature of the air that is sucked into the air flow passage 3 from the suction port 25 and flows into the heat absorber 9, and the inside air temperature sensor 37 that detects the air (inside air) temperature in the vehicle interior.
  • An inside air humidity sensor 38 for detecting the humidity of the air in the vehicle compartment
  • an indoor CO 2 concentration sensor 39 for detecting the carbon dioxide concentration in the vehicle compartment
  • an outlet temperature sensor 41 for detecting the temperature of the air blown into the vehicle compartment.
  • 53A is a display as a display output device provided in the air conditioning operation unit 53.
  • the output of the air conditioning controller 45 is connected to the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, and the outlet switching damper 31, which are connected to the air conditioning controller 45. Controlled by.
  • the heat pump controller 32 is a controller that mainly controls the refrigerant circuit R, and the heat pump controller 32 has an input that releases heat to detect the refrigerant inlet temperature Tcxin of the radiator 4 (which is also the refrigerant temperature discharged from the compressor 2 ).
  • Radiator pressure sensor 47 for detecting the refrigerant pressure (pressure of radiator 4; radiator pressure Pci) and heat absorber temperature sensor for detecting the temperature of heat absorber 9 (refrigerant temperature of heat absorber 9: heat absorber temperature Te) 48, an outdoor heat exchanger temperature sensor 49 for detecting the refrigerant temperature at the outlet of the outdoor heat exchanger 7 (refrigerant evaporation temperature of the outdoor heat exchanger 7: outdoor heat exchanger temperature TXO), and the temperature of the auxiliary heater 23.
  • Outputs of the auxiliary heater temperature sensors 50A (driver's seat side) and 50B (passenger seat side) are connected.
  • the output of the heat pump controller 32 includes the outdoor expansion valve 6, the solenoid valve 22 (for dehumidification), the solenoid valve 17 (for cooling), the solenoid valve 21 (for heating), the solenoid valve 20 (for bypass), and the solenoid valve 35.
  • the electromagnetic valves (for the cabin) and the electromagnetic valve 69 (for the chiller) are connected, and they are controlled by the heat pump controller 32.
  • the compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63 each have a built-in controller, and in the embodiment, the controller of the compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63. Transmits and receives data to and from the heat pump controller 32 via the vehicle communication bus 65, and is controlled by the heat pump controller 32.
  • the circulation pump 62 and the heat medium heater 63 that constitute the device temperature adjusting device 61 may be controlled by the battery controller 73.
  • the battery controller 73 includes a heat medium temperature sensor 76 for detecting the temperature (heat medium temperature Tw) of the heat medium on the outlet side of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 of the device temperature adjusting device 61.
  • the output of a battery temperature sensor 77 that detects the temperature of the battery 55 (the temperature of the battery 55 itself: the battery temperature Tcell).
  • the remaining amount of the battery 55 (the amount of stored electricity), the information regarding the charging of the battery 55 (information indicating that the battery is being charged, charging completion time, remaining charging time, etc.), the heat medium temperature Tw, the battery temperature Tcell, the battery
  • the amount of heat generated by 55 (calculated by the battery controller 73 from the amount of energization) is transmitted from the battery controller 73 to the air conditioning controller 45 and the vehicle controller 72 via the vehicle communication bus 65.
  • the information about the charging completion time and the remaining charging time when the battery 55 is charged is information supplied from an external charger such as a quick charger. Further, the output Mpower of the traveling motor is transmitted from the vehicle controller 72 to the heat pump controller 32 and the air conditioning controller 45.
  • the heat pump controller 32 and the air conditioning controller 45 send and receive data to and from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53.
  • Air volume Ga of air flowing into the air flow passage 3 and flowing in the air flow passage 3 (calculated by the air conditioning controller 45), air flow rate SW by the air mix damper 28 (calculated by the air conditioning controller 45), voltage of the indoor blower 27 (BLV), the information from the battery controller 73, the information from the GPS navigation device 74, and the output of the air conditioning operation unit 53 are transmitted from the air conditioning controller 45 to the heat pump controller 32 via the vehicle communication bus 65, and the heat pump controller 32 controls the heat pump controller 32. It is configured to be used for control.
  • the heat pump controller 32 also transmits data (information) regarding the control of the refrigerant circuit R to the air conditioning controller 45 via the vehicle communication bus 65.
  • the control device 11 controls the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the air conditioning operation of the air conditioning (priority)+battery cooling mode and the battery cooling.
  • air conditioning controller 45 heat pump controller 32
  • the air conditioning operation of the air conditioning (priority)+battery cooling mode and the battery cooling are switched and executed.
  • the battery 55 is not charged in the embodiment, and the ignition of the vehicle is performed. This is executed when (IGN) is turned on and the air conditioning switch of the air conditioning operation unit 53 is turned on. However, it is executed even when the ignition is OFF during remote operation (pre-air conditioning, etc.). Even when the battery 55 is being charged, there is no battery cooling request, and the process is executed when the air conditioning switch is ON.
  • each battery cooling operation in the battery cooling (priority)+air conditioning mode and the battery cooling (single) mode is executed, for example, when the plug of the quick charger (external power source) is connected and the battery 55 is being charged. It is something.
  • the battery cooling (single) mode is executed when the air conditioning switch is OFF and there is a battery cooling request (during traveling at a high outside air temperature, etc.) other than during charging of the battery 55.
  • the heat pump controller 32 operates the circulation pump 62 of the device temperature adjusting device 61 when the ignition is turned on, or when the battery 55 is being charged even when the ignition is turned off. It is assumed that the heat medium is circulated in the heat medium pipe 66 as indicated by broken lines in FIGS. Further, although not shown in FIG. 3, the heat pump controller 32 of the embodiment also executes a battery heating mode for heating the battery 55 by causing the heat medium heating heater 63 of the device temperature adjusting device 61 to generate heat.
  • FIG. 4 shows how the refrigerant flows in the refrigerant circuit R in the heating mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 21 and the solenoid valve 17 , The solenoid valve 20, the solenoid valve 22, the solenoid valve 35, and the solenoid valve 69 are closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
  • the liquefied refrigerant in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air ventilated by traveling or by the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R serves as a heat pump.
  • the low-temperature refrigerant that has exited the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D, the solenoid valve 21, and further enters the accumulator 12 via this refrigerant pipe 13C, where it is gas-liquid separated.
  • the circulation in which the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K is repeated.
  • the air heated by the radiator 4 is blown out from the air outlet 29, so that the interior of the vehicle is heated.
  • the heat pump controller 32 calculates a target heater temperature TCO (of the radiator 4) calculated from a target outlet temperature TAO, which will be described later, which is a target temperature of the air blown into the vehicle interior (a target value of the temperature of the air blown into the vehicle interior).
  • the target radiator pressure PCO is calculated from the target temperature), and the rotational speed of the compressor 2 is based on the target radiator pressure PCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • the heat pump controller 32 supplements this shortage with the heat generated by the auxiliary heater 23. As a result, the vehicle interior is heated without any trouble even when the outside temperature is low.
  • FIG. 5 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and heating mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35, and closes the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4, a part of it enters the refrigerant pipe 13J through the refrigerant pipe 13E and reaches the outdoor expansion valve 6.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air ventilated by traveling or by the outdoor blower 15 (heat absorption).
  • the low-temperature refrigerant leaving the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D and the solenoid valve 21, enters the accumulator 12 via the refrigerant pipe 13C, and is separated into gas and liquid there. After that, the circulation in which the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K is repeated.
  • the rest of the condensed refrigerant flowing through the radiator pipe 13E via the radiator 4 is diverted, and the diverted refrigerant flows into the refrigerant pipe 13F via the solenoid valve 22 and reaches the refrigerant pipe 13B.
  • the refrigerant reaches the indoor expansion valve 8, is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 via the electromagnetic valve 35, and is evaporated.
  • the water in the air blown out from the indoor blower 27 is condensed and adheres to the heat absorber 9 due to the heat absorbing action of the refrigerant generated in the heat absorber 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 flows out into the refrigerant pipe 13C, joins the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 from the refrigerant pipe 13K via the accumulator 12. Repeat the cycle.
  • the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated), so that dehumidification and heating of the vehicle interior is performed.
  • the heat pump controller 32 rotates the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. Or the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is its target value. ..
  • the heat pump controller 32 selects the lower one of the compressor target rotation speeds (the lower one of TGNCh and TGNCc described later) obtained from either calculation depending on the radiator pressure Pci or the heat absorber temperature Te.
  • the valve opening degree of the outdoor expansion valve 6 is controlled based on the heat absorber temperature Te.
  • the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. .. As a result, the vehicle interior is dehumidified and heated even when the outside temperature is low.
  • FIG. 6 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and cooling mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 17 and the solenoid valve 35, and closes the solenoid valve 20, the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
  • the refrigerant exiting the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipes 13E and 13J, and then passes through the outdoor expansion valve 6 controlled to open more (a region of a larger valve opening) than the heating mode or the dehumidifying and heating mode. It flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 is condensed by being cooled there by traveling or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18.
  • the refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, moisture in the air blown out from the indoor blower 27 is condensed and attached to the heat absorber 9, and the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is repeatedly sucked into the compressor 2 from the refrigerant pipe 13K via the refrigerant pipe 13K.
  • the air cooled and dehumidified by the heat absorber 9 is reheated (has a lower heating capacity than that during dehumidification heating) in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated). As a result, dehumidification and cooling of the vehicle interior are performed.
  • the heat pump controller 32 absorbs heat based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target temperature of the heat absorber 9 (target value of the heat absorber temperature Te).
  • the rotation speed of the compressor 2 is controlled so that the device temperature Te becomes the target heat absorber temperature TEO, and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the target radiator pressure PCO.
  • the valve opening of the outdoor expansion valve 6 is controlled so that the radiator pressure Pci becomes the target radiator pressure PCO. Amount).
  • the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. To do. As a result, dehumidifying and cooling are performed without lowering the temperature inside the vehicle compartment too much.
  • FIG. 7 shows how the refrigerant flows in the refrigerant circuit R in the cooling mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 35, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the auxiliary heater 23 is not energized.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is ventilated through the radiator 4, since the proportion thereof is small (because of only reheating (reheating) during cooling), it almost passes through the radiator 4,
  • the discharged refrigerant reaches the refrigerant pipe 13J via the refrigerant pipe 13E.
  • the electromagnetic valve 20 since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, and is cooled there by traveling or by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
  • the refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18.
  • the refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and then is sucked into the compressor 2 via the refrigerant pipe 13K.
  • the air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
  • the heat pump controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • Air conditioning (priority) + battery cooling mode (second operation mode, air conditioning (priority) + temperature control target cooling mode)
  • the air conditioning (priority)+battery cooling mode will be described with reference to FIG. FIG. 8 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the air conditioning (priority)+battery cooling mode.
  • the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, the solenoid valve 35, and the solenoid valve 69, and closes the solenoid valves 21 and 22.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the auxiliary heater 23 is not energized.
  • the heat medium heater 63 is not energized.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is ventilated through the radiator 4, since the proportion thereof is small (because of only reheating (reheating) during cooling), it almost passes through the radiator 4,
  • the discharged refrigerant reaches the refrigerant pipe 13J via the refrigerant pipe 13E.
  • the electromagnetic valve 20 since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, and is cooled there by traveling or by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16.
  • the refrigerant flowing into the refrigerant pipe 13B is branched after passing through the check valve 18, and one of the refrigerant flows through the refrigerant pipe 13B as it is to reach the indoor expansion valve 8.
  • the refrigerant flowing into the indoor expansion valve 8 is decompressed there, then flows into the heat absorber 9 through the electromagnetic valve 35, and is evaporated. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and then is sucked into the compressor 2 via the refrigerant pipe 13K.
  • the air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
  • the rest of the refrigerant that has passed through the check valve 18 is split, flows into the branch pipe 67, and reaches the auxiliary expansion valve 68.
  • the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant passage 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (shown by a solid arrow in FIG. 8).
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage there.
  • the heat medium is cooled by exchanging heat with the refrigerant that evaporates in 64B and absorbing heat.
  • the heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63.
  • the heat medium heating heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly sucked into the circulation pump 62 and repeatedly circulated (indicated by a dashed arrow in FIG. 8 ).
  • the heat pump controller 32 maintains the electromagnetic valve 35 in the open state, and will be described later based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • the rotation speed of the compressor 2 is controlled as described above.
  • the solenoid valve 69 is controlled to open and close as follows based on the temperature of the heat medium detected by the heat medium temperature sensor 76 (heat medium temperature Tw: transmitted from the battery controller 73).
  • the heat medium temperature Tw is used as an index indicating the temperature of the battery 55 to be temperature-controlled in the embodiment (hereinafter the same).
  • the heat pump controller 32 sets an upper limit value TUL and a lower limit value TLL with a predetermined temperature difference above and below a predetermined target heat medium temperature TWO as a target value of the heat medium temperature Tw. Then, when the heat medium temperature Tw increases due to heat generation of the battery 55 or the like from the state where the solenoid valve 69 is closed and rises to the upper limit value TUL (when it exceeds the upper limit value TUL or becomes equal to or more than the upper limit value TUL). In the following case, the same), the solenoid valve 69 is opened.
  • the refrigerant flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64, evaporates, and cools the heat medium flowing through the heat medium channel 64A. Therefore, the battery 55 is cooled by the cooled heat medium. To be done.
  • the solenoid valve 69 is closed. After that, the solenoid valve 69 is repeatedly opened and closed as described above to control the heat medium temperature Tw to the target heat medium temperature TWO while giving priority to the cooling in the vehicle compartment, to cool the battery 55.
  • the heat pump controller 32 calculates the above-mentioned target outlet temperature TAO from the following formula (I).
  • the target outlet temperature TAO is a target value of the temperature of the air blown into the vehicle compartment from the outlet 29.
  • TAO (Tset-Tin) ⁇ K+Tbal(f(Tset, SUN, Tam)) ..(I)
  • Tset is the set temperature of the vehicle interior set by the air conditioning operation unit 53
  • Tin is the temperature of the vehicle interior air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the solar radiation sensor 51 detects the temperature. It is a balance value calculated from the amount of solar radiation SUN and the outside air temperature Tam detected by the outside air temperature sensor 33.
  • the target outlet temperature TAO is higher as the outside air temperature Tam is lower, and is decreased as the outside air temperature Tam is increased.
  • the heat pump controller 32 selects any one of the above air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of startup.
  • the target outlet temperature TAO in response to operating conditions such as the outside air temperature Tam, the target outlet temperature TAO, the heat medium temperature Tw and the battery temperature Tcell, environmental conditions, changes in setting conditions, and a battery cooling request (mode transition request) from the battery controller 73.
  • the air conditioning operation is selected and switched.
  • Battery cooling (priority) + air conditioning mode (second operation mode, temperature-controlled cooling (priority) + air conditioning mode)
  • the operation during charging of the battery 55 will be described.
  • the plug for charging a quick charger (external power source) is connected and the battery 55 is being charged (these information is transmitted from the battery controller 73)
  • the ignition (IGN) of the vehicle is turned on/off.
  • the heat pump controller 32 executes battery cooling (priority)+air conditioning mode.
  • the way the refrigerant flows in the refrigerant circuit R in the battery cooling (priority)+air conditioning mode is the same as in the air conditioning (priority)+battery cooling mode shown in FIG.
  • the heat pump controller 32 maintains the electromagnetic valve 69 in an open state, and the heat detected by the heat medium temperature sensor 76 (transmitted from the battery controller 73) is detected.
  • the rotation speed of the compressor 2 is controlled based on the medium temperature Tw as described later.
  • the solenoid valve 35 is controlled to open and close as follows based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • the heat pump controller 32 sets an upper limit value TeUL and a lower limit value TeLL with a predetermined temperature difference above and below a predetermined target heat sink temperature TEO as a target value of the heat sink temperature Te.
  • the heat absorber temperature Te rises from the state where the solenoid valve 35 is closed and rises to the upper limit value TeUL (when it exceeds the upper limit value TeUL or becomes equal to or higher than the upper limit value TeUL.
  • the solenoid valve 35 is opened.
  • the refrigerant flows into the heat absorber 9 and evaporates, and cools the air flowing through the air flow passage 3.
  • the solenoid valve 35 is closed. Thereafter, such opening/closing of the solenoid valve 35 is repeated to control the heat absorber temperature Te to the target heat absorber temperature TEO while prioritizing the cooling of the battery 55 to cool the vehicle interior.
  • Battery cooling (single) mode first operating mode, temperature controlled cooling (single) mode
  • the heat pump controller 32 executes the battery cooling (single) mode. However, it is executed when the air conditioning switch is OFF and there is a battery cooling request (during traveling at a high outside air temperature) other than during charging of the battery 55.
  • FIG. 9 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the battery cooling (single) mode.
  • the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35.
  • the compressor 2 and the outdoor blower 15 are operated.
  • the indoor blower 27 is not operated and the auxiliary heater 23 is not energized. Further, the heat medium heater 63 is not energized in this operation mode.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, it passes only here, and the refrigerant exiting the radiator 4 reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, where it is air-cooled by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16. After passing through the check valve 18, all of the refrigerant flowing into the refrigerant pipe 13B flows into the branch pipe 67 and reaches the auxiliary expansion valve 68. Here, the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant flow path 64B repeatedly passes through the refrigerant pipe 71, the refrigerant pipe 13C, and the accumulator 12 and is repeatedly sucked into the compressor 2 from the refrigerant pipe 13K (represented by a solid arrow in FIG. 9).
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage there.
  • the heat medium is cooled by being absorbed by the refrigerant evaporated in 64B.
  • the heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63.
  • the heat medium heating heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly sucked into the circulation pump 62 and repeatedly circulated (indicated by a dashed arrow in FIG. 9 ).
  • the heat pump controller 32 cools the battery 55 by controlling the number of revolutions of the compressor 2 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76 as described later.
  • FIG. 10 shows how the refrigerant flows in the refrigerant circuit R in the defrosting mode (solid arrow).
  • the refrigerant evaporates in the outdoor heat exchanger 7 and absorbs heat from the outside air to reach a low temperature, so that the moisture in the outside air adheres to the outdoor heat exchanger 7 as frost.
  • the defrosting mode of the outdoor heat exchanger 7 is executed as follows.
  • the heat pump controller 32 sets the refrigerant circuit R to the heating mode described above, and then fully opens the valve opening degree of the outdoor expansion valve 6. Then, the compressor 2 is operated, the high-temperature refrigerant discharged from the compressor 2 is caused to flow into the outdoor heat exchanger 7 through the radiator 4 and the outdoor expansion valve 6, and the frost formation on the outdoor heat exchanger 7 is prevented. Thaw ( Figure 10). Then, the heat pump controller 32 defrosts the outdoor heat exchanger 7 when the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 49 becomes higher than a predetermined defrosting end temperature (for example, +3° C.). Is completed and the defrosting mode is terminated.
  • a predetermined defrosting end temperature for example, +3° C.
  • the heat pump controller 32 executes the battery heating mode when the air conditioning operation is executed or when the battery 55 is charged. In this battery heating mode, the heat pump controller 32 operates the circulation pump 62 to energize the heat medium heating heater 63. The solenoid valve 69 is closed.
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 66, and passes therethrough to reach the heat medium heater 63.
  • the heat medium heating heater 63 is generating heat, the heat medium is heated by the heat medium heating heater 63 to increase its temperature, and then reaches the battery 55 to exchange heat with the battery 55.
  • the battery 55 is heated, and the heat medium after heating the battery 55 is repeatedly circulated by being sucked into the circulation pump 62.
  • the heat pump controller 32 controls the energization of the heat medium heating heater 63 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76 to set the heat medium temperature Tw to the predetermined target heat medium temperature. Adjust to TWO and heat battery 55.
  • TGNCh is calculated, and in the dehumidifying cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode, based on the heat absorber temperature Te, the target rotation speed of the compressor 2 (compressor target rotation speed) according to the control block diagram of FIG. Calculate TGNCc.
  • the dehumidifying and heating mode the lower direction of the compressor target rotation speed TGNCh and the compressor target rotation speed TGNc is selected.
  • the target rotation speed of the compressor 2 (compressor target rotation speed) TGNCcb is calculated based on the heat medium temperature Tw by the control block diagram of FIG. To do.
  • FIG. 11 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCh of the compressor 2 based on the radiator pressure Pci.
  • the F/F operation amount TGNChff of the compressor target rotation speed is calculated.
  • the heater temperature Thp is an air temperature (estimated value) on the leeward side of the radiator 4, and the radiator pressure Pci detected by the radiator pressure sensor 47 and the refrigerant outlet of the radiator 4 detected by the radiator outlet temperature sensor 44. It is calculated (estimated) from the temperature Tci.
  • the degree of supercooling SC is calculated from the refrigerant inlet temperature Tcxin and the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator inlet temperature sensor 43 and the radiator outlet temperature sensor 44.
  • the target radiator pressure PCO is calculated by the target value calculator 79 based on the target supercooling degree TGSC and the target heater temperature TCO. Further, the F/B (feedback) manipulated variable calculation unit 81 calculates the F/B manipulated variable TGNChfb of the compressor target rotational speed by PID calculation or PI calculation based on the target radiator pressure PCO and the radiator pressure Pci. Then, the F/F operation amount TGNChff calculated by the F/F operation amount calculation unit 78 and the F/B operation amount TGNChfb calculated by the F/B operation amount calculation unit 81 are added by the adder 82 to obtain a limit setting unit as TGNCh00. It is input to 83.
  • the lower limit speed ECNpdLimLo and the upper limit speed ECNpdLimHi for control are set to TGNCh0, and then the compressor OFF control unit 84 is used to determine the target compressor speed TGNCh.
  • the heat pump controller 32 controls the operation of the compressor 2 by the compressor target rotation speed TGNCh calculated based on the radiator pressure Pci.
  • the compressor OFF control unit 84 sets the compressor target rotation speed TGNCh to the above-described lower limit rotation speed ECNpdLimLo, and the radiator pressure Pci is a predetermined upper limit value PUL and lower limit value PLL set above and below the target radiator pressure PCO. If the state of rising up to the upper limit value PUL (a state of exceeding the upper limit value PUL or a state of becoming equal to or more than the upper limit value PUL. The same applies hereinafter) continues for a predetermined time th1, the compressor 2 is stopped and compression is performed. It enters the ON-OFF mode that controls the ON-OFF of the machine 2.
  • the compressor 2 In the ON-OFF mode of the compressor 2, when the radiator pressure Pci drops to the lower limit value PLL (when it falls below the lower limit value PLL or becomes lower than or equal to the lower limit value PLL.
  • the compressor 2 is started to operate the compressor target rotation speed TGNCh as the lower limit rotation speed ECNpdLimLo, and when the radiator pressure Pci rises to the upper limit value PUL in that state, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed ECNpdLimLo are repeated.
  • the compressor 2 When the radiator pressure Pci decreases to the lower limit value PUL and the compressor 2 is started, and the radiator pressure Pci does not become higher than the lower limit value PUL for a predetermined time th2, the compressor 2 is turned on and off. Is completed and the normal mode is restored.
  • FIG. 12 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCc of the compressor 2 based on the heat absorber temperature Te.
  • the F/F (feed forward) operation amount calculation unit 86 of the heat pump controller 32 determines the outside air temperature Tam, the air volume Ga of the air flowing through the air flow passage 3 (the blower voltage BLV of the indoor blower 27 may be used), and the target radiator.
  • the F/F operation amount TGNccff of the compressor target rotation speed is calculated.
  • the F/B manipulated variable calculation unit 87 also calculates the F/B manipulated variable TGNCcfb of the compressor target rotation speed by PID calculation or PI calculation based on the target heat absorber temperature TEO and the heat absorber temperature Te. Then, the F/F operation amount TGNCcff calculated by the F/F operation amount calculation unit 86 and the F/B operation amount TGNCcfb calculated by the F/B operation amount calculation unit 87 are added by the adder 88 to obtain a limit setting unit as TGNCc00. It is input to 89.
  • the lower limit rotational speed TGNCcLimLo and the upper limit rotational speed TGNCcLimHi in control are set to TGNCc0, and then the compressor OFF control unit 91 is used to determine the target compressor rotational speed TGNCc.
  • the heat pump controller 32 controls the operation of the compressor 2 by the compressor target rotation speed TGNCc calculated based on the heat absorber temperature Te.
  • the compressor OFF control unit 91 determines that the compressor target rotation speed TGNCc becomes the above-described lower limit rotation speed TGNCcLimLo, and the heat absorber temperature Te is set between the upper limit value TeUL and the lower limit value TeLL set above and below the target heat absorber temperature TEO.
  • the compressor 2 is stopped and the ON-OFF mode in which the compressor 2 is ON-OFF controlled is entered.
  • FIG. 13 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCcb of the compressor 2 based on the heat medium temperature Tw.
  • the F/F (feed forward) operation amount calculation unit 92 of the heat pump controller 32 uses the outside air temperature Tam, the target radiator pressure PCO, the target heat absorber temperature TEO, and the flow rate Gw (circulation of the heat medium in the device temperature adjusting device 61).
  • the F/B manipulated variable calculation unit 93 also calculates the F/B manipulated variable TGNCcbfb of the compressor target rotation speed by PID calculation or PI calculation based on the target heat medium temperature TWO and the heat medium temperature Tw. Then, the F/F operation amount TGNCcbff calculated by the F/F operation amount calculation unit 92 and the F/B operation amount TGNCcbfb calculated by the F/B operation amount calculation unit 93 are added by the adder 94, and the limit setting unit is set as TGNCcb00. 96 is input.
  • the lower limit speed TGNCcbLimLo for control and the upper limit speed TGNCcbLimHi are set to TGNCcb0, and then the compressor OFF control unit 97 determines the target compressor speed TGNCcb.
  • the heat pump controller 32 controls the operation of the compressor 2 by the compressor target rotation speed TGNCcb calculated based on the heat medium temperature Tw.
  • the compressor OFF control unit 97 determines that the compressor target rotation speed TGNCcb becomes the above-described lower limit rotation speed TGNCcbLimLo, and the heat medium temperature Tw is set to an upper or lower limit of the target heat medium temperature TWO among the upper limit value TUL and the lower limit value TLL.
  • the compressor 2 is stopped and the ON-OFF mode for controlling the ON-OFF of the compressor 2 is entered.
  • the compressor 2 In the ON-OFF mode of the compressor 2 in this case, when the heat medium temperature Tw rises to the upper limit value TUL, the compressor 2 is started to operate the compressor target rotation speed TGNCcb as the lower limit rotation speed TGNCcbLimLo, and the state When the heat medium temperature Tw falls to the lower limit value TLL, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed TGNCcbLimLo are repeated.
  • the cooling medium mode when the cooling medium mode is being executed, for example, when the heating medium temperature Tw detected by the heating medium temperature sensor 76 has risen to the above-described upper limit value TUL, or the battery temperature Tcell detected by the battery temperature sensor 77. Is increased to a predetermined upper limit value, the battery controller 73 outputs a battery cooling request to the heat pump controller 32 and the air conditioning controller 45. For example, when a battery cooling request is input to the heat pump controller 32 at time t1 in FIG. 14, this becomes a mode transition request, and the heat pump controller 32 starts the compressor rotation speed increase control in this case, and first, the target heat sink temperature TEO. Is decreased by a predetermined value TEO1.
  • the F/F operation amount TGNCcff of the compressor target rotation speed calculated by the F/F operation amount calculation unit 86 of FIG. 12 increases, so that the finally calculated compressor target rotation speed TGNCc is also normal.
  • the actual rotation speed of the compressor 2 also increases.
  • the heat pump controller 32 opens the solenoid valve 69 and the operation mode. To the air conditioning (priority) + battery cooling mode.
  • the air conditioning controller 45 when the air conditioning switch of the air conditioning operation unit 53 is turned on while the battery cooling (single) mode is being executed, the air conditioning controller 45 outputs an air conditioning request to the heat pump controller 32. Similarly, when an air conditioning request is input to the heat pump controller 32 at time t1 in FIG. 14, this becomes a mode transition request, and the heat pump controller 32 starts the compressor rotation speed increase control in this case, and first sets the target heat medium temperature TWO to a predetermined value. Decrease the value TWO1.
  • the F/F operation amount TGNCcbff of the compressor target rotation speed calculated by the F/F operation amount calculation unit 92 of FIG. 13 increases, so that the finally calculated compressor target rotation speed TGNCcb is also normal.
  • the actual rotation speed of the compressor 2 also increases.
  • the heat pump controller 32 opens the electromagnetic valve 35 and shifts the operation mode to the battery cooling (priority)+air conditioning mode.
  • the compressor rotation speed increase control As described above, the shortage of the capacity (rotation speed) of the compressor 2 immediately after shifting from the battery cooling (single) mode to the battery cooling (priority)+air conditioning mode is resolved, and the battery 55 It is possible to improve the compatibility between the cooling of the vehicle and the air conditioning of the vehicle compartment, and to improve the reliability and the marketability of the vehicle.
  • the control of the compressor 2 after the transition is returned to the above-described battery cooling (priority)+rotation speed control in the air conditioning mode.
  • the solenoid valve 35 and the indoor expansion valve 8 are constituted by the expansion valve with the solenoid valve, the differential pressure when the solenoid valve 35 is opened with the rotation speed of the compressor 2 increased is reduced. The noise is also suppressed.
  • the heat pump controller 32 causes the refrigerant to evaporate in any one of the heat absorber 9 and the refrigerant-heat medium heat exchanger 64 in the cooling mode and the battery cooling (single) mode, and air conditioning (priority).
  • the refrigerant In + battery cooling mode and battery cooling (priority) + air conditioning mode, the refrigerant is evaporated by the heat absorber 9 and the refrigerant-heat medium heat exchanger 64. Therefore, in the cooling mode and the battery cooling (single) mode, the vehicle is cooled.
  • the air conditioning (priority)+battery cooling mode and in the battery cooling (priority)+air conditioning mode the interior of the vehicle is cooled and the battery 55 is cooled.
  • the number of revolutions of the compressor is changed when the cooling mode is changed to the air conditioning (priority)+the temperature-controlled cooling mode and when the battery cooling (single) mode is changed to the battery cooling (priority)+the air conditioning mode. Since the rise control is executed, the temperature of the air blown into the passenger compartment immediately after the mode is changed from the cooling mode to the air conditioning (priority)+battery cooling mode is raised, and the user feels uncomfortable. Immediately after shifting from the battery cooling (single) mode to the battery cooling (priority)+air conditioning mode, the inconvenience that the cooling performance of the battery 55 deteriorates is avoided in advance, and the compatibility of the air conditioning in the vehicle interior and the cooling of the battery 55 is improved. Will be able to.
  • an electromagnetic valve 35 that controls the flow of the refrigerant to the heat absorber 9 and an electromagnetic valve 69 that controls the flow of the refrigerant to the refrigerant-heat medium heat exchanger 64 are provided, and the heat pump controller 32 cools the air.
  • the mode and the battery cooling (single) mode one of the solenoid valve 35 and the solenoid valve 69 is opened and the other is closed, and in the air conditioning (priority)+battery cooling mode and the battery cooling (priority)+air conditioning mode. Since the solenoid valve 35 and the solenoid valve 69 are opened, the respective operation modes can be smoothly executed.
  • the electromagnetic valve 35 is opened to control the rotation speed of the compressor 2 by the heat absorber temperature Te, and the electromagnetic valve 69 is closed in the cooling mode, and the electromagnetic valve 69 is opened to set the heat medium temperature Tw of the compressor 2. Since the rotation speed is controlled and the battery cooling (single) mode in which the electromagnetic valve 35 is closed is executed, it is possible to smoothly cool the vehicle interior and cool the battery 55.
  • the solenoid valve 35 is opened, the rotation speed of the compressor 2 is controlled by the heat absorber temperature Te, and the solenoid valve 69 is opened/closed by the heat medium temperature Tw. 69 is opened, the rotation speed of the compressor 2 is controlled by the heat medium temperature Tw, and the battery cooling (priority)+air-conditioning mode in which the electromagnetic valve 35 is controlled to be opened/closed by the heat absorber temperature Te is executed. While the battery 55 is being cooled while performing the cooling of the vehicle, it is possible to switch between prioritizing the cooling of the vehicle interior and the cooling of the battery 55 depending on the situation. Cooling can be realized.
  • the compressor target rotation speed is controlled to lower the target heat absorber temperature TEO and the target heat medium temperature TWO which are input to the F/F operation amount calculation units 86 and 92, whereby the compressor target rotation speed is reduced.
  • the heat pump controller 32 controls the compressor rotation speed to control the compressor. After increasing the number of revolutions of 2, if the mode is changed to air conditioning (priority)+battery cooling mode or battery cooling (priority)+air conditioning mode, air conditioning (priority)+battery cooling mode or battery cooling (priority) It becomes possible to reliably increase the rotation speed of the compressor 2 before shifting to the + air conditioning mode.
  • the heat pump controller 32 executes the above-described compressor rotation speed increase control (lowers the target heat absorber temperature TEO).
  • TEO target heat absorber temperature
  • the heat pump controller 32 for example, at time t3 in FIG. 15, when the slope of the increase in the output Mpower of the traveling motor is equal to or larger than a predetermined threshold value X1, or when the slope indicated by the battery temperature Tcell is equal to or larger than a predetermined threshold value X2.
  • the heat pump controller 32 starts the compressor rotation speed increase control in this case, and first sets the target heat absorber temperature TEO to the predetermined value TEO1. Only lower.
  • Each of the threshold values X1 to X3 is a value obtained by an experiment in advance.
  • the target compressor speed TGNCc increases as before, so the actual speed of the compressor 2 (actual speed) also increases.
  • the heat pump controller 32 increases the compressor target rotation speed TGNCc to a predetermined value TGNCc1. After that, when the battery cooling request is input at time t4, the heat pump controller 32 shifts to the air conditioning (priority)+battery cooling mode, and in this case, performs the operation mode switching process until time t5. Then, the solenoid valve 69 is opened during the operation mode switching process.
  • Compressor rotation speed increase control by heat pump controller 32 Part 4
  • the cooling mode when the cooling mode is being executed, for example, even when high-speed traveling on a highway is continued, the temperature of the battery 55 may rise and the mode may shift to the air conditioning (priority)+battery cooling mode. is expected. Therefore, when the heat pump controller 32 indicates that the navigation information obtained from the GPS navigation device 74 in the cooling mode indicates, for example, that the vehicle is traveling on a highway in the future, and the temperature of the battery 55 is predicted to rise, the heat pump controller 32 described above is used.
  • the rotation speed increase control (lowering the target heat absorber temperature TEO) is executed.
  • the rotational speed of the compressor 2 can be increased before the battery cooling request is input, so that it is possible to quickly shift to the air conditioning (priority)+battery cooling mode. ..
  • the heat pump controller 32 executes the compressor rotation speed increase control of (13) to (15) instead of the compressor rotation speed increase control of (12) described above. )
  • the compressor rotation speed increase control in ()) is performed by any one of them, a combination thereof, or all of them.
  • the heat pump controller 32 suppresses the operation of the indoor blower 27 when executing the compressor rotation speed increase control when shifting from the cooling mode to the air conditioning (priority)+battery cooling mode. That is, by reducing the rotation speed of the indoor blower 27, it is possible to eliminate the disadvantage that the vehicle interior is excessively cooled.
  • the heat medium temperature Tw is adopted as the index indicating the temperature of the temperature-controlled object in the above-mentioned embodiment
  • the battery temperature Tcell may be adopted.
  • the heat medium is circulated to control the temperature of the battery 55, but the present invention is not limited to this, and the refrigerant and the battery 55 (object to be temperature-controlled) may be directly heat-exchanged.
  • the vehicle 55 is capable of cooling the battery 55 while cooling the inside of the vehicle in the air conditioning (priority)+battery cooling mode and the battery cooling (priority)+air conditioning mode for simultaneously cooling the vehicle interior and cooling the battery 55.
  • the air conditioning apparatus 1 has been described, the cooling of the battery 55 is not limited to during cooling, but other air conditioning operation, for example, the above-described dehumidifying and heating mode and cooling of the battery 55 may be performed at the same time.
  • the dehumidifying and heating mode also becomes the air conditioning (single) mode in the present invention
  • the solenoid valve 69 is opened, and a part of the refrigerant flowing toward the heat absorber 9 via the refrigerant pipe 13F is caused to flow into the branch pipe 67, and the refrigerant-heat medium. It will flow to the heat exchanger 64.
  • the solenoid valve 35 is the heat absorber valve device and the solenoid valve 69 is the temperature controlled valve device.
  • the indoor expansion valve 8 and the auxiliary expansion valve 68 are electrically closed valves, Therefore, the solenoid valves 35 and 69 are not required, the indoor expansion valve 8 serves as the heat absorber valve device of the present invention, and the auxiliary expansion valve 68 serves as the temperature controlled valve device.
  • the heat absorber 9 and the refrigerant-heat medium heat exchanger 64 are the evaporator of the present invention, but the invention of claim 1 is not limited to this, and for example, a main unit for cooling the air supplied to the passenger compartment is used.
  • a main unit for cooling the air supplied to the passenger compartment is used.
  • another evaporator for rear seat evaporator, etc., for cooling other parts of the vehicle interior, or for cooling other parts of the vehicle outside the vehicle interior
  • the operation mode in which the refrigerant is evaporated in either the main evaporator or the other evaporator is the first operation mode in the present invention, and the refrigerant is used in both evaporators.
  • the operation mode for evaporating is the second operation mode.
  • the invention of claim 1 is also applied to a vehicle air conditioner provided with another evaporator (evaporator for rear seat, etc.) in addition to the heat absorber 9 and the refrigerant-heat medium heat exchanger 64 of the embodiment. It is valid.
  • the operation mode in which the refrigerant is evaporated by the heat absorber 9 and another evaporator (evaporator for rear seat, etc.) is the first operation mode in the present invention.
  • the operation mode in which the refrigerant is evaporated by the heat absorber 9, another evaporator (evaporator for rear seat, etc.) and the refrigerant-heat medium heat exchanger 64 is the second operation mode in the present invention.
  • the present invention has been described with the vehicle air conditioner 1 having each operation mode such as the heating mode, the dehumidification heating mode, the dehumidification cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode.
  • the present invention is also effective for a vehicle air conditioner capable of executing, for example, a cooling mode, an air conditioning (priority)+battery cooling mode, a battery cooling (priority)+air conditioning mode, and a battery cooling (single) mode. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

[Problem] To provide a vehicle air conditioner with which it is possible to preemptively avoid inadequate performance of a compressor when transitioning to an operation mode in which the number of evaporators causing refrigerant to evaporate increases. [Solution] A control device switches between at least a cooling mode in which refrigerant is caused to evaporate by a heat absorber 9, and an air conditioning (priority) + battery cooldown mode in which the refrigerant is caused to evaporate by the heat absorber 9 and a refrigerant/heat medium heat exchanger 64. When a transition is made from the cooling mode to the air conditioning (priority) + battery cooldown mode, a compressor rotation speed increase control is executed to increase the rotation speed of a compressor 2 before transitioning to the air conditioning (priority) + battery cooldown mode.

Description

車両用空気調和装置Air conditioner for vehicle
 本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置に関するものである。 The present invention relates to a heat pump type air conditioner for air conditioning the interior of a vehicle.
 近年の環境問題の顕在化から、車両に搭載されたバッテリから供給される電力で走行用モータを駆動する電気自動車やハイブリッド自動車等の車両が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、圧縮機と、放熱器と、吸熱器(蒸発器)と、室外熱交換器が接続された冷媒回路を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において蒸発(吸熱)させることで暖房し、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において蒸発(吸熱)させることで冷房する等して車室内を空調するものが開発されている(例えば、特許文献1参照)。 Due to the emergence of environmental problems in recent years, vehicles such as electric vehicles and hybrid vehicles that drive a traveling motor with electric power supplied from a battery mounted on the vehicle have come into widespread use. And, as an air conditioner that can be applied to such a vehicle, a compressor, a radiator, a heat absorber (evaporator), and a refrigerant circuit to which an outdoor heat exchanger is connected are provided, and the discharge from the compressor is performed. The generated refrigerant is radiated in the radiator, and the refrigerant radiated in this radiator is heated by evaporating (absorbing) heat in the outdoor heat exchanger, and the refrigerant discharged from the compressor is radiated in the outdoor heat exchanger to absorb heat. A device for air-conditioning the interior of a vehicle by evaporating (absorbing heat) in a container to cool it has been developed (for example, see Patent Document 1).
 一方、例えばバッテリは充放電による自己発熱等で高温となった環境下で使用されると性能が低下すると共に、劣化が進行し、やがては作動不良を起こして破損する危険性がある。そこで、バッテリを冷却するための熱交換器(蒸発器)を設け、冷媒回路を循環する冷媒をこの熱交換器に循環させることでバッテリを冷却することができるようにしたものも開発されている(例えば、特許文献2、特許文献3参照)。 On the other hand, for example, if a battery is used in an environment where it becomes hot due to self-heating due to charging/discharging, its performance will deteriorate, and deterioration will progress, and eventually there is a risk of malfunction and damage. Therefore, a heat exchanger (evaporator) for cooling the battery is provided, and a battery which can cool the battery by circulating the refrigerant circulating in the refrigerant circuit through the heat exchanger has also been developed. (See, for example, Patent Documents 2 and 3).
特開2014-213765号公報JP, 2014-213765, A 特許第5860360号公報Patent No. 5860360 特許第5860361号公報Japanese Patent No. 5860361
 上記のように、複数の蒸発器を有する車両用空気調和装置では、例えば、吸熱器(蒸発器)で冷媒を蒸発させて車室内を空調している運転モードから被温調対象の冷却が必要となって被温調対象用熱交換器(蒸発器)にも冷媒を流す運転モードに移行した直後は、それらを含む熱交換の経路が増えるため、圧縮機の能力(回転数)が不足する状態となり、車室内に吹き出される空気の温度が一時的に高くなってしまうと共に、被温調対象の冷却も遅延するようになる。 As described above, in the vehicle air conditioner having a plurality of evaporators, for example, it is necessary to cool the temperature-controlled object from the operation mode in which the refrigerant is evaporated by the heat absorber (evaporator) to air-condition the vehicle interior. Immediately after the operation mode in which the refrigerant is also supplied to the heat exchanger (evaporator) to be temperature-controlled, the heat exchange paths including them are increased, and the capacity (rotation speed) of the compressor is insufficient. As a result, the temperature of the air blown into the vehicle compartment temporarily rises, and the cooling of the temperature controlled object is delayed.
 また、被温調対象用熱交換器(蒸発器)に冷媒を流す運転モードから車室内の冷房を必要となって吸熱器(蒸発器)にも冷媒を流す運転モードに移行した直後も、圧縮機の能力が不足する状態となるため、車室内の空調が遅延すると共に、被温調対象の冷却能力も一時的に低下し、何れの場合にも使用者に不快感を与え、被温調対象の冷却にも支障を来すという問題があった。 Also, immediately after the operation mode in which the refrigerant is passed through the heat exchanger (evaporator) to be temperature-controlled, it is necessary to cool the vehicle interior and the refrigerant is also passed through the heat absorber (evaporator). Since the capacity of the machine becomes insufficient, the air conditioning in the passenger compartment is delayed, and the cooling capacity of the temperature-controlled object is temporarily reduced. There was a problem that it also hindered the cooling of the target.
 本発明は、係る従来の技術的課題を解決するために成されたものであり、冷媒を蒸発させる蒸発器の数が増える運転モードに移行する際の圧縮機の能力不足を未然に回避することができる車両用空気調和装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned conventional technical problems, and avoids a lack of capacity of a compressor when shifting to an operation mode in which the number of evaporators that evaporate a refrigerant increases. An object of the present invention is to provide a vehicle air conditioner capable of performing the above.
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、冷媒を蒸発させるための複数の蒸発器と、制御装置を少なくとも備えて車室内を空調するものであって、制御装置は少なくとも、蒸発器にて冷媒を蒸発させる第1の運転モードと、この第1の運転モードより多い数の蒸発器にて冷媒を蒸発させる第2の運転モードを切り換えて実行すると共に、第1の運転モードから第2の運転モードに移行する際、当該第2の運転モードに移行する前に、圧縮機の回転数を上昇させる圧縮機回転数上昇制御を実行することを特徴とする。 The vehicle air conditioner of the present invention includes at least a compressor for compressing a refrigerant, a plurality of evaporators for evaporating the refrigerant, and a control device to air-condition the vehicle interior, and the control device is at least , A first operation mode for evaporating the refrigerant in the evaporator and a second operation mode for evaporating the refrigerant in a larger number of evaporators than the first operation mode are executed by switching the first operation mode. When the mode is changed to the second operation mode, the compressor rotation speed increase control for increasing the rotation speed of the compressor is executed before the transfer to the second operation mode.
 請求項2の発明の車両用空気調和装置は、上記発明において冷媒を蒸発させて車室内に供給する空気を冷却するための蒸発器としての吸熱器と、冷媒を蒸発させて車両に搭載された被温調対象を冷却するための蒸発器としての被温調対象用熱交換器を備え、制御装置は、第1の運転モードにおいて、吸熱器と被温調対象用熱交換器のうちの何れか一方で冷媒を蒸発させると共に、第2の運転モードにおいては、吸熱器及び被温調対象用熱交換器で冷媒を蒸発させることを特徴とする。 A vehicle air conditioner according to a second aspect of the invention is mounted on a vehicle by evaporating the refrigerant and a heat absorber as an evaporator for cooling the air supplied to the vehicle compartment in the above invention. In the first operation mode, the control device includes a heat exchanger for temperature control, which is an evaporator for cooling the target for temperature control, and the controller is one of the heat exchanger and the heat exchanger for temperature control. On the other hand, the refrigerant is evaporated, and in the second operation mode, the refrigerant is evaporated by the heat absorber and the heat exchanger for temperature adjustment.
 請求項3の発明の車両用空気調和装置は、上記発明において吸熱器への冷媒の流通を制御する吸熱器用弁装置と、被温調対象用熱交換器への冷媒の流通を制御する被温調対象用弁装置を備え、制御装置は、第1の運転モードにおいて、吸熱器用弁装置と被温調対象用弁装置のうちの何れか一方を開き、他方を閉じると共に、第2の運転モードにおいては、吸熱器用弁装置及び被温調対象用弁装置を開くことを特徴とする。 A vehicle air conditioner according to a third aspect of the present invention provides a heat absorber valve device that controls the flow of the refrigerant to the heat absorber in the above invention, and a heated device that controls the flow of the refrigerant to the heat exchanger for temperature adjustment. In the first operation mode, the control device includes a valve device for temperature adjustment, and in the first operation mode, one of the valve device for the heat absorber and the valve device for temperature adjustment target is opened, and the other is closed, and the second operation mode is set. In (1), the heat absorber valve device and the temperature control target valve device are opened.
 請求項4の発明の車両用空気調和装置は、上記発明において制御装置は、第1の運転モードとして、吸熱器用弁装置を開き、吸熱器の温度に基づいて圧縮機の回転数を制御し、被温調対象用弁装置を閉じる空調(単独)モードと、被温調対象用弁装置を開き、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器用弁装置を閉じる被温調対象冷却(単独)モードを有すると共に、第2の運転モードとして、吸熱器用弁装置を開き、吸熱器の温度に基づいて圧縮機の回転数を制御し、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて被温調対象用弁装置を開閉制御する空調(優先)+被温調対象冷却モードと、被温調対象用弁装置を開き、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器の温度に基づいて吸熱器用弁装置を開閉制御する被温調対象冷却(優先)+空調モードを有し、空調(単独)モードから空調(優先)+被温調対象冷却モードに移行する際、及び、被温調対象冷却(単独)モードから被温調対象冷却(優先)+空調モードに移行する際、圧縮機回転数上昇制御を実行することを特徴とする。 In the vehicle air conditioner of a fourth aspect of the invention, in the above invention, the control device opens the heat absorber valve device as the first operation mode, and controls the rotation speed of the compressor based on the temperature of the heat absorber, Air conditioning (single) mode in which the valve device for temperature control target is closed, and the valve device for temperature control target is opened to rotate the compressor based on the temperature of the target heat exchanger for temperature control or the target cooled by it. Controlling the number and closing the heat absorber valve device has a temperature controlled cooling (single) mode, and as the second operation mode, opens the heat absorber valve device and rotates the compressor based on the temperature of the heat absorber. To control the temperature of the heat exchanger for temperature control or the valve device for temperature control based on the temperature of the object to be cooled by the air conditioning (priority) + temperature control target cooling mode and temperature control Open the valve device for temperature adjustment, control the rotation speed of the compressor based on the temperature of the heat exchanger for temperature adjustment or the object cooled by it, and open/close the valve device for heat absorber based on the temperature of the heat absorber. It has a controlled temperature controlled cooling (priority) + air conditioning mode, and when moving from an air conditioning (independent) mode to an air conditioning (priority) + controlled cooling mode, and a controlled cooling (single) mode It is characterized in that the compressor rotation speed increase control is executed when shifting from the temperature controlled cooling (priority) to the air conditioning mode.
 請求項5の発明の車両用空気調和装置は、上記発明において制御装置は、空調(単独)モードでは吸熱器の目標温度に基づくフィードフォワード演算により圧縮機の目標回転数を算出し、被温調対象冷却(単独)モードでは被温調対象用熱交換器又はそれにより冷却される対象の目標温度に基づくフィードフォワード演算により圧縮機の目標回転数を算出すると共に、圧縮機回転数上昇制御では、各目標温度を低下させることにより、圧縮機の目標回転数を上昇させることを特徴とする。 In the vehicle air conditioner according to a fifth aspect of the present invention, in the above-mentioned invention, the control device calculates the target rotational speed of the compressor by a feedforward calculation based on the target temperature of the heat absorber in the air conditioning (single) mode, and adjusts the temperature control. In the target cooling (single) mode, the target rotation speed of the compressor is calculated by the feedforward calculation based on the target temperature of the heat exchanger for temperature adjustment or the object to be cooled by the heat exchanger, and in the compressor rotation speed increase control, It is characterized in that the target rotation speed of the compressor is increased by decreasing each target temperature.
 請求項6の発明の車両用空気調和装置は、請求項4又は請求項5の発明において制御装置は、空調(単独)モード、又は、被温調対象冷却(単独)モードにおいて、所定のモード移行要求が入力された場合、圧縮機回転数上昇制御により圧縮機の回転数を上昇させた後、空調(優先)+被温調対象冷却モード、又は、被温調対象冷却(優先)+空調モードに移行することを特徴とする。 The vehicle air conditioner according to a sixth aspect of the invention is the vehicle of the fourth or fifth aspect, in which the control unit shifts to a predetermined mode in the air conditioning (single) mode or the temperature controlled cooling (single) mode. When a request is input, after the compressor speed is increased by increasing the compressor speed, the air conditioning (priority) + temperature controlled cooling mode or the temperature controlled cooling (priority) + air conditioning mode It is characterized by moving to.
 請求項7の発明の車両用空気調和装置は、請求項4又は請求項5の発明において被温調対象は車両に搭載されたバッテリであり、車両の走行用モータはバッテリからの給電により駆動され、制御装置は、空調(単独)モードにおいて、所定のモード移行要求が入力された場合、空調(優先)+被温調対象冷却モードに移行すると共に、空調(単独)モードにおいて、走行用モータの出力が所定の閾値以上となった場合、又は、走行用モータの出力が上昇する傾きが所定の閾値以上となった場合、圧縮機回転数上昇制御を実行することを特徴とする。 In the vehicle air conditioner of the invention of claim 7, in the invention of claim 4 or claim 5, the temperature-controlled object is a battery mounted in the vehicle, and the traveling motor of the vehicle is driven by power supply from the battery. In the air conditioning (single) mode, the controller shifts to the air conditioning (priority) + temperature controlled cooling mode when a predetermined mode shift request is input, and in the air conditioning (single) mode, the control device operates When the output is equal to or higher than a predetermined threshold value, or when the inclination of the output of the traveling motor is higher than or equal to the predetermined threshold value, the compressor rotation speed increase control is executed.
 請求項8の発明の車両用空気調和装置は、請求項4、請求項5又は請求項7の発明において制御装置は、空調(単独)モードにおいて、所定のモード移行要求が入力された場合、空調(優先)+被温調対象冷却モードに移行すると共に、空調(単独)モードにおいて、被温調対象の温度が上昇する傾きが所定の閾値以上となった場合、圧縮機回転数上昇制御を実行することを特徴とする。 In the vehicle air conditioner of the invention of claim 8, in the invention of claim 4, claim 5 or claim 7, the control device is an air conditioner when a predetermined mode shift request is input in the air conditioner (single) mode. (Priority) + When the temperature of the temperature-controlled object increases in the air-conditioning (single) mode when the temperature of the temperature-controlled object rises above a predetermined threshold value, the compressor rotation speed increase control is executed. It is characterized by doing.
 請求項9の発明の車両用空気調和装置は、請求項4、請求項5、請求項7又は請求項8の発明において制御装置は、空調(単独)モードにおいて、所定のモード移行要求が入力された場合、空調(優先)+被温調対象冷却モードに移行すると共に、空調(単独)モードにおいて、被温調対象の発熱量が上昇する傾きが所定の閾値以上となった場合、圧縮機回転数上昇制御を実行することを特徴とする。 In the vehicle air conditioner of the invention of claim 9, in the invention of claim 4, claim 5, claim 7 or claim 8, the controller inputs a predetermined mode shift request in the air conditioning (single) mode. If the temperature rises in the air conditioning (priority) + temperature controlled target cooling mode and the slope of the heat generation amount of the temperature controlled target rises above a predetermined threshold in the air conditioning (single) mode, the compressor rotates. It is characterized in that the number increase control is executed.
 請求項10の発明の車両用空気調和装置は、請求項4、請求項5、請求項7乃至請求項9の発明において制御装置は、空調(単独)モードにおいて、所定のモード移行要求が入力された場合、空調(優先)+被温調対象冷却モードに移行すると共に、空調(単独)モードにおいて、ナビゲーション情報から被温調対象の温度が上昇すると予測される場合、圧縮機回転数上昇制御を実行することを特徴とする。 In the vehicle air conditioner of the invention of claim 10, in the invention of claim 4, claim 5, claim 7 to claim 9, the control device inputs a predetermined mode shift request in the air conditioning (single) mode. In this case, if the temperature of the temperature-controlled target is predicted to increase from the navigation information in the air-conditioning (single) mode in addition to the air conditioning (priority) + temperature-controlled cooling mode, the compressor rotation speed increase control is performed. It is characterized by executing.
 請求項11の発明の車両用空気調和装置は、請求項4乃至請求項10の発明において吸熱器と熱交換した空気を車室内に送給するための室内送風機を備え、制御装置は、空調(単独)モードから空調(優先)+被温調対象冷却モードに移行する際の圧縮機回転数上昇制御を実行する場合、室内送風機の運転を抑制することを特徴とする。 An air conditioner for a vehicle according to an eleventh aspect of the present invention is provided with an indoor blower for feeding the air that has exchanged heat with the heat absorber in the aspects of the invention according to the fourth to tenth aspects, and the control device is an air conditioner ( When performing the compressor rotation speed increase control when shifting from the independent mode to the air conditioning (priority)+controlled cooling mode, the operation of the indoor blower is suppressed.
 請求項12の発明の車両用空気調和装置は、請求項4乃至請求項11の発明において冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、吸熱器を経た空気が放熱器に通風される割合を調整するためのエアミックスダンパを備え、制御装置は、空調(単独)モードから空調(優先)+被温調対象冷却モードに移行する際の圧縮機回転数上昇制御を実行する場合、エアミックスダンパにより車室内に供給される空気の温度低下を抑制することを特徴とする。 A vehicle air conditioner according to a twelfth aspect of the present invention is a vehicle air conditioner according to any of the fourth to eleventh aspects of the invention, wherein a radiator for radiating the refrigerant to heat the air to be supplied to the vehicle interior, and the air passing through the heat absorber radiate heat. The controller is equipped with an air mix damper to adjust the rate of ventilation, and the control device controls the compressor rotation speed increase when shifting from the air conditioning (single) mode to the air conditioning (priority) + temperature controlled cooling mode. When executed, it is characterized in that the temperature drop of the air supplied into the vehicle compartment is suppressed by the air mix damper.
 本発明によれば、冷媒を圧縮する圧縮機と、冷媒を蒸発させるための複数の蒸発器と、制御装置を少なくとも備えて車室内を空調する車両用空気調和装置において、制御装置が少なくとも、蒸発器にて冷媒を蒸発させる第1の運転モードと、この第1の運転モードより多い数の蒸発器にて冷媒を蒸発させる第2の運転モードを切り換えて実行すると共に、第1の運転モードから第2の運転モードに移行する際、当該第2の運転モードに移行する前に、圧縮機の回転数を上昇させる圧縮機回転数上昇制御を実行するようにしたので、第1の運転モードから第2の運転モードに移行した直後の圧縮機の能力(回転数)不足を解消し、信頼性と商品性を向上させることができるようになる。 According to the present invention, a compressor for compressing a refrigerant, a plurality of evaporators for evaporating the refrigerant, and a vehicle air-conditioning apparatus for air-conditioning the vehicle interior, which is provided with at least a controller, the controller at least evaporates. A first operation mode in which the refrigerant is evaporated in the evaporator and a second operation mode in which the refrigerant is evaporated in a larger number of evaporators than the first operation mode are switched and executed. When shifting to the second operation mode, compressor rotation speed increase control for increasing the rotation speed of the compressor is executed before shifting to the second operation mode. Immediately after shifting to the second operation mode, it is possible to solve the shortage of the capacity (rotation speed) of the compressor and improve the reliability and marketability.
 例えば、請求項2の発明の如く、冷媒を蒸発させて車室内に供給する空気を冷却するための吸熱器と、冷媒を蒸発させて車両に搭載された被温調対象を冷却するための被温調対象用熱交換器を蒸発器として設け、制御装置が、第1の運転モードにおいて、吸熱器と被温調対象用熱交換器のうちの何れか一方で冷媒を蒸発させると共に、第2の運転モードにおいては、吸熱器及び被温調対象用熱交換器で冷媒を蒸発させるようにすれば、第1の運転モードでは車室内の空調と被温調対象の冷却をそれぞれ行い、第2の運転モードでは車室内を空調しながら被温調対象の冷却を行うことができるようになる。そして、吸熱器又は被温調対象用熱交換器で冷媒が蒸発する第1の運転モードから、吸熱器と被温調対象用熱交換器の双方で冷媒が蒸発する第2の運転モードに移行する際、圧縮機回転数上昇制御を実行することで、第1の運転モードから第2の運転モードに移行した直後に、圧縮機の能力が不足する状態に陥る不都合を回避することができるようになる。 For example, as in the second aspect of the invention, a heat absorber for evaporating the refrigerant to cool the air supplied to the vehicle interior, and a heat sink for evaporating the refrigerant to cool the temperature-controlled object mounted on the vehicle. The heat exchanger for temperature adjustment is provided as an evaporator, and the controller evaporates the refrigerant in one of the heat absorber and the heat exchanger for temperature adjustment in the first operation mode, In this operation mode, if the refrigerant is evaporated by the heat absorber and the heat exchanger for temperature adjustment, in the first operation mode, air conditioning in the vehicle compartment and cooling of the temperature adjustment target are performed, respectively. In this operation mode, the object to be temperature-controlled can be cooled while air-conditioning the passenger compartment. Then, the first operation mode in which the refrigerant evaporates in the heat absorber or the heat exchanger for temperature regulation, shifts to the second operation mode in which the refrigerant evaporates in both the heat absorber and the heat exchanger for temperature regulation. In this case, by performing the compressor rotation speed increase control, it is possible to avoid the inconvenience that the capacity of the compressor becomes insufficient immediately after shifting from the first operation mode to the second operation mode. become.
 この場合、請求項3の発明の如く吸熱器への冷媒の流通を制御する吸熱器用弁装置と、被温調対象用熱交換器への冷媒の流通を制御する被温調対象用弁装置を設け、制御装置が、第1の運転モードにおいて、吸熱器用弁装置と被温調対象用弁装置のうちの何れか一方を開き、他方を閉じると共に、第2の運転モードにおいては、吸熱器用弁装置及び被温調対象用弁装置を開くことで、第1の運転モードと第2の運転モードを円滑に実行することができるようになる。 In this case, a heat absorber valve device for controlling the flow of the refrigerant to the heat absorber as in the invention of claim 3 and a valve device for the temperature-controlled object for controlling the flow of the refrigerant to the heat exchanger for temperature-controlled object are provided. In the first operation mode, the control device opens one of the heat absorber valve device and the temperature-controlled object valve device and closes the other, and in the second operation mode, the heat absorber valve. By opening the device and the valve device for temperature control target, it becomes possible to smoothly execute the first operation mode and the second operation mode.
 更に、請求項4の発明の如く制御装置が、第1の運転モードとして、吸熱器用弁装置を開き、吸熱器又の温度に基づいて圧縮機の回転数を制御し、被温調対象用弁装置を閉じる空調(単独)モードと、被温調対象用弁装置を開き、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器用弁装置を閉じる被温調対象冷却(単独)モードを実行するようにすれば、車室内の空調と、被温調対象の冷却を円滑に行うことができるようになる。 Further, the control device according to the invention of claim 4 opens the valve device for the heat absorber as the first operation mode, controls the rotation speed of the compressor based on the temperature of the heat absorber or the valve for temperature control. Air-conditioning (single) mode to close the device, open the valve device for the temperature controlled object, and control the rotation speed of the compressor based on the temperature of the heat exchanger for the temperature controlled object or the object cooled by it, to absorb heat By executing the temperature-controlled target cooling (single) mode in which the instrument valve device is closed, it is possible to smoothly perform the air conditioning of the vehicle interior and the cooling of the temperature-controlled target.
 また、第2の運転モードとして、吸熱器用弁装置を開き、吸熱器の温度に基づいて圧縮機の回転数を制御し、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて被温調対象用弁装置を開閉制御する空調(優先)+被温調対象冷却モードと、被温調対象用弁装置を開き、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器の温度に基づいて吸熱器用弁装置を開閉制御する被温調対象冷却(優先)+空調モードを実行するようにすれば、車室内の空調を行いながら被温調対象の冷却を行うなかで、状況に応じて車室内の空調を優先するか、被温調対象の冷却を優先するかを切り換え、快適な車室内空調と効果的な被温調対象の冷却を実現することができるようになる。 In addition, as the second operation mode, the valve device for the heat absorber is opened, the rotation speed of the compressor is controlled based on the temperature of the heat absorber, and the temperature of the heat exchanger for the temperature-controlled object or the temperature of the object cooled by it is adjusted. Based on the air conditioner (priority) + temperature control target cooling mode that controls opening and closing of the temperature control target valve device on the basis of the temperature control target valve device, the temperature control target valve device is opened and cooled by the temperature control target heat exchanger. If the rotational speed of the compressor is controlled based on the temperature of the target, and the temperature-controlled target cooling (priority) + air-conditioning mode that controls the opening/closing of the heat absorber valve device based on the temperature of the heat absorber is executed, While cooling the temperature-controlled object while air-conditioning the room, depending on the situation, it is possible to switch between prioritizing the air conditioning in the vehicle interior and prioritizing the cooling for the temperature-controlled object to achieve a comfortable vehicle air conditioning effect. It becomes possible to realize the cooling of the object to be temperature controlled.
 そして、空調(単独)モードから空調(優先)+被温調対象冷却モードに移行する際、及び、被温調対象冷却(単独)モードから被温調対象冷却(優先)+空調モードに移行する際、圧縮機回転数上昇制御を実行することで、空調(単独)モードから空調(優先)+被温調対象冷却モードに移行した直後に車室内に吹き出される空気の温度が上昇し、使用者が不快感を覚える不都合や、被温調対象冷却(単独)モードから被温調対象冷却(優先)+空調モードに移行した直後に被温調対象の冷却性能が低下する不都合を未然に回避して、車室内の空調と被温調対象の冷却の両立性を高めることができるようになる。 Then, when shifting from the air conditioning (single) mode to the air conditioning (priority) + temperature controlled cooling mode, and from the temperature controlled cooling (single) mode to the temperature controlled cooling (priority) + air conditioning mode. At this time, by executing the compressor rotation speed increase control, the temperature of the air blown into the passenger compartment immediately after the mode is changed from the air conditioning (single) mode to the air conditioning (priority) + controlled cooling mode, Avoids the inconvenience that the person feels uncomfortable and the inferior cooling performance of the temperature-controlled object immediately after shifting from the temperature-controlled cooling (single) mode to the temperature-controlled cooling (priority) + air conditioning mode. Then, it becomes possible to improve the compatibility of the air conditioning in the vehicle interior and the cooling of the temperature controlled object.
 この場合、例えば、請求項5の発明の如く制御装置が、空調(単独)モードでは吸熱器の目標温度に基づくフィードフォワード演算により圧縮機の目標回転数を算出し、被温調対象冷却(単独)モードでは被温調対象用熱交換器又はそれにより冷却される対象の目標温度に基づくフィードフォワード演算により圧縮機の目標回転数を算出すると共に、圧縮機回転数上昇制御では、各目標温度を低下させることにより、圧縮機の目標回転数を上昇させることで、空調(単独)モードや被温調対象冷却(単独)モードにおいて、圧縮機回転数上昇制御により的確に圧縮機の回転数を上昇させることができるようになる。 In this case, for example, in the air-conditioning (single) mode, the control device calculates the target rotation speed of the compressor by the feedforward calculation based on the target temperature of the heat absorber in the air-conditioning (single) mode, and the target cooling target cooling (single ) Mode, the target rotation speed of the compressor is calculated by the feedforward calculation based on the target temperature of the heat exchanger for temperature control or the object to be cooled by it, and in the compressor rotation speed increase control, each target temperature is calculated. By lowering the target speed of the compressor by lowering it, in the air conditioning (single) mode and the cooling (single) mode to be temperature-controlled, the compressor rotation speed increase control accurately increases the compressor rotation speed. Will be able to.
 そして、請求項6の発明の如く制御装置が、空調(単独)モード、又は、被温調対象冷却(単独)モードにおいて、所定のモード移行要求が入力された場合、圧縮機回転数上昇制御により圧縮機の回転数を上昇させた後、空調(優先)+被温調対象冷却モード、又は、被温調対象冷却(優先)+空調モードに移行することで、空調(優先)+被温調対象冷却モードや被温調対象冷却(優先)+空調モードに移行する前に、確実に圧縮機の回転数を上昇させておくことができるようになる。 Then, when the predetermined mode shift request is input in the air conditioning (single) mode or the temperature controlled cooling (single) mode as in the invention of claim 6, the control device performs the compressor rotation speed increase control. After increasing the number of revolutions of the compressor, by changing to the air conditioning (priority) + target temperature controlled cooling mode or the temperature controlled target cooling (priority) + air conditioning mode, air conditioning (priority) + temperature controlled It becomes possible to reliably increase the rotation speed of the compressor before shifting to the target cooling mode or the temperature controlled target cooling (priority)+air conditioning mode.
 他方、被温調対象が車両に搭載されたバッテリであり、車両の走行用モータがバッテリからの給電により駆動され、制御装置が、空調(単独)モードにおいて、所定のモード移行要求が入力されたときに、空調(優先)+被温調対象冷却モードに移行するようにした場合、空調(単独)モードにおいて走行用モータの出力が高くなった場合には、バッテリの温度が上昇するため、その後、空調(優先)+被温調対象冷却モードに移行することが予想される。 On the other hand, the temperature-controlled object is a battery mounted on the vehicle, the vehicle drive motor is driven by power supplied from the battery, and the controller inputs a predetermined mode transition request in the air conditioning (single) mode. At this time, when the mode is switched to the air conditioning (priority) + temperature controlled cooling mode, when the output of the traveling motor becomes high in the air conditioning (single) mode, the temperature of the battery rises. , It is expected to shift to the air conditioning (priority) + temperature controlled cooling mode.
 そのような場合には、請求項7の発明の如く制御装置が、空調(単独)モードにおいて走行用モータの出力が所定の閾値以上となった場合、又は、走行用モータの出力が上昇する傾きが所定の閾値以上となった場合、圧縮機回転数上昇制御を実行するようにすれば、空調(優先)+被温調対象冷却モードに移行する前に、圧縮機の回転数を上昇させておくことが可能となる。特に、この場合にはモード移行要求が入力される前に圧縮機の回転数を上昇させておくことができるので、早期に空調(優先)+被温調対象冷却モードに移行することができるようになる。 In such a case, when the output of the traveling motor becomes equal to or higher than a predetermined threshold value in the air conditioning (single) mode, or the inclination of the output of the traveling motor rises, the control device according to the invention of claim 7 When the value becomes equal to or higher than the predetermined threshold value, if the compressor rotation speed increase control is executed, the rotation speed of the compressor is increased before shifting to the air conditioning (priority)+controlled cooling mode. It is possible to leave. In particular, in this case, the number of revolutions of the compressor can be increased before the mode shift request is input, so that it is possible to shift to the air conditioning (priority)+cooling mode controlled by temperature control at an early stage. become.
 また、空調(単独)モードにおいて被温調対象の温度が急激に上昇しているときにも、その後、空調(優先)+被温調対象冷却モードに移行することが予想されるので、請求項8の発明の如く制御装置が、空調(単独)モードにおいて被温調対象の温度が上昇する傾きが所定の閾値以上となった場合に、圧縮機回転数上昇制御を実行することで、モード移行要求が入力される前に圧縮機の回転数を上昇させておくことができるようになり、早期に空調(優先)+被温調対象冷却モードに移行することができるようになる。 Further, even when the temperature of the temperature-controlled object rises sharply in the air conditioning (single) mode, it is expected that the mode will then shift to the air-conditioning (priority)+temperature-controlled cooling mode. According to the eighth aspect of the invention, the control device executes the compressor rotation speed increase control when the inclination of the temperature of the temperature-controlled object increases in the air-conditioning (single) mode becomes equal to or higher than a predetermined threshold value. The rotation speed of the compressor can be increased before the request is input, and the air-conditioning (priority)+temperature controlled cooling mode can be switched early.
 更に、空調(単独)モードにおいて被温調対象の発熱量が急激に上昇しているときにも、その後、空調(優先)+被温調対象冷却モードに移行することが予想されるので、請求項9の発明の如く制御装置が、空調(単独)モードにおいて被温調対象の発熱量が上昇する傾きが所定の閾値以上となった場合に、圧縮機回転数上昇制御を実行することで、モード移行要求が入力される前に圧縮機の回転数を上昇させておくことができるようになり、早期に空調(優先)+被温調対象冷却モードに移行することができるようになる。 Furthermore, even when the heat generation amount of the temperature-controlled object is rapidly increasing in the air conditioning (single) mode, it is expected that the mode will shift to the air-conditioning (priority)+cooling mode of the temperature-controlled object thereafter. According to the invention of Item 9, the control device executes the compressor rotation speed increase control when the inclination of the heat generation amount of the temperature-controlled object increases in the air conditioning (single) mode becomes equal to or more than a predetermined threshold value. It becomes possible to increase the rotation speed of the compressor before the mode shift request is input, and it becomes possible to shift to the air conditioning (priority)+controlled cooling mode at an early stage.
 更にまた、空調(単独)モードにおいて、例えば高速走行が継続されるような場合にも、その後、被温調対象の温度が上昇して空調(優先)+被温調対象冷却モードに移行することが予想されるので、請求項10の発明の如く制御装置が、空調(単独)モードにおいてナビゲーション情報から被温調対象の温度が上昇すると予測される場合、圧縮機回転数上昇制御を実行することで、モード移行要求が入力される前に圧縮機の回転数を上昇させておくことができるようになり、早期に空調(優先)+被温調対象冷却モードに移行することができるようになる。 Furthermore, in the air-conditioning (single) mode, even when high-speed running is continued, for example, the temperature of the temperature-controlled object rises and shifts to the air-conditioning (priority) + temperature-controlled cooling mode. Therefore, when it is predicted that the temperature of the temperature-controlled object increases in the air conditioning (single) mode from the navigation information, the control device executes the compressor rotation speed increase control as described above. Thus, it becomes possible to increase the number of revolutions of the compressor before the mode shift request is input, and it is possible to shift to the air conditioning (priority)+cooling mode under temperature control at an early stage. ..
 ここで、空調(単独)モードにおいて圧縮機の回転数を上昇させると、空調(優先)+被温調対象冷却モードに移行する前の期間は車室内に吹き出される空気の温度が低下する危険性があるが、請求項11の発明の如く制御装置が、空調(単独)モードから空調(優先)+被温調対象冷却モードに移行する際の圧縮機回転数上昇制御を実行する場合、室内送風機の運転を抑制することで、車室内が過剰に空調される不都合を解消することができるようになる。 Here, if the number of revolutions of the compressor is increased in the air conditioning (single) mode, the temperature of the air blown into the vehicle interior may decrease during the period before the mode shifts to the air conditioning (priority)+controlled cooling mode. However, when the control device executes the compressor rotation speed increase control when shifting from the air-conditioning (single) mode to the air-conditioning (priority) + temperature control target cooling mode, By suppressing the operation of the blower, it is possible to eliminate the inconvenience of excessive air conditioning in the passenger compartment.
 また、請求項12の発明の如く制御装置が、空調(単独)モードから空調(優先)+被温調対象冷却モードに移行する際の圧縮機回転数上昇制御を実行する場合、エアミックスダンパにより車室内に供給される空気の温度低下を抑制することでも車室内が過剰に空調される不都合を解消することができるようになる。 When the control device executes the compressor rotation speed increase control at the time of shifting from the air conditioning (single) mode to the air conditioning (priority) + temperature controlled cooling mode, the air mix damper is used. By suppressing the temperature decrease of the air supplied to the vehicle interior, it is possible to eliminate the disadvantage that the vehicle interior is excessively air-conditioned.
本発明を適用した一実施形態の車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioner of one embodiment to which the present invention is applied. 図1の車両用空気調和装置の制御装置の電気回路のブロック図である。It is a block diagram of an electric circuit of a control device of an air harmony device for vehicles of Drawing 1. 図2の制御装置が実行する運転モードを説明する図である。It is a figure explaining the driving mode which the control apparatus of FIG. 2 performs. 図2の制御装置のヒートポンプコントローラによる暖房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles explaining the heating mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる除湿暖房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioner explaining the dehumidification heating mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる除湿冷房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles explaining the dehumidification cooling mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる冷房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioner explaining the cooling mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる空調(優先)+バッテリ冷却モードとバッテリ冷却(優先)+空調モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles explaining the air conditioning (priority) + battery cooling mode and battery cooling (priority) + air conditioning mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによるバッテリ冷却(単独)モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioning apparatus explaining the battery cooling (single) mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる除霜モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles explaining the defrost mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラの圧縮機制御に関する制御ブロック図である。It is a control block diagram regarding compressor control of the heat pump controller of the control device of FIG. 図2の制御装置のヒートポンプコントローラの圧縮機制御に関するもう一つの制御ブロック図である。FIG. 4 is another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2. 図2の制御装置のヒートポンプコントローラの圧縮機制御に関する更にもう一つの制御ブロック図である。FIG. 7 is yet another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2. 図2の制御装置のヒートポンプコントローラの圧縮機回転数上昇制御を説明する図である。It is a figure explaining the compressor rotation speed increase control of the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラのもう一つの圧縮機回転数上昇制御を説明する図である。It is a figure explaining another compressor rotation speed increase control of the heat pump controller of the control apparatus of FIG.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。図1は本発明の一実施形態の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両に搭載されているバッテリ55に充電された電力を走行用モータ(電動モータ。図示せず)に供給することで駆動し、走行するものであり、本発明の車両用空気調和装置1の後述する圧縮機2も、バッテリ55から供給される電力で駆動されるものとする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 of an embodiment of the present invention. A vehicle of an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and electric power charged in a battery 55 mounted in the vehicle is used as a traveling motor (electric motor). (Not shown) to drive and run, and the compressor 2 of the vehicle air conditioner 1 of the present invention, which will be described later, is also driven by the electric power supplied from the battery 55. ..
 即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを用いたヒートポンプ運転により暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、除霜モード、空調(優先)+バッテリ冷却モード、バッテリ冷却(優先)+空調モード、及び、バッテリ冷却(単独)モードの各運転モードを切り換えて実行することで車室内の空調やバッテリ55の温調を行うものである。 That is, the vehicle air conditioner 1 of the embodiment is a heating mode, a dehumidification heating mode, a dehumidification cooling mode, a cooling mode, and a defrosting mode in a heat pump operation using the refrigerant circuit R in an electric vehicle that cannot be heated by engine waste heat. , The air conditioning (priority)+battery cooling mode, the battery cooling (priority)+air conditioning mode, and the battery cooling (single) mode are switched and executed to perform air conditioning in the vehicle compartment and temperature control of the battery 55. It is a thing.
 このうち、冷房モードとバッテリ冷却(単独)モードが本発明における第1の運転モードの実施例となり、空調(優先)+バッテリ冷却モード、バッテリ冷却(優先)+空調モードが本発明における第2の運転モードの実施例となる。更に、冷房モードが本発明における空調(単独)モードの実施例、バッテリ冷却(単独)モードが本発明における被温調対象冷却(単独)モードの実施例であり、空調(優先)+バッテリ冷却モードが本発明における空調(優先)+被温調対象冷却モードの実施例、バッテリ冷却(優先)+空調モードが本発明における被温調対象冷却(優先)+空調モードの実施例となる。 Of these, the cooling mode and the battery cooling (single) mode are examples of the first operation mode of the present invention, and the air conditioning (priority)+battery cooling mode and the battery cooling (priority)+air conditioning mode are the second embodiment of the present invention. This is an example of the operation mode. Further, the cooling mode is an example of the air conditioning (single) mode in the present invention, and the battery cooling (single) mode is an example of the temperature controlled target cooling (independent) mode in the present invention. Air conditioning (priority)+battery cooling mode Is an embodiment of the air conditioning (priority)+controlled cooling target temperature mode, and battery cooling (priority)+air conditioning mode is an embodiment of the controlled cooling target (preferred)+air conditioning mode of the present invention.
 尚、車両としては電気自動車に限らず、エンジンと走行用モータを供用する所謂ハイブリッド自動車にも本発明は有効である。また、実施例の車両用空気調和装置1を適用する車両は外部の充電器(急速充電器や普通充電器)からバッテリ55に充電可能とされているものである。更に、前述したバッテリ55や走行用モータ、それを制御するインバータ等が本発明における車両に搭載された被温調対象となるが、以下の実施例ではバッテリ55を例に採り上げて説明する。 The present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and a running motor. The vehicle to which the vehicle air conditioner 1 of the embodiment is applied is one in which the battery 55 can be charged from an external charger (quick charger or normal charger). Further, the battery 55, the traveling motor, the inverter controlling the same, and the like described above are the objects of temperature adjustment mounted on the vehicle in the present invention, but in the following embodiments, the battery 55 will be taken as an example for description.
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内の空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒がマフラー5と冷媒配管13Gを介して流入し、この冷媒を車室内に放熱(冷媒の熱を放出)させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁(電子膨張弁)から成る室外膨張弁6と、冷房時には冷媒を放熱させる放熱器として機能し、暖房時には冷媒を吸熱(冷媒に熱を吸収)させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる機械式膨張弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱(蒸発)させる蒸発器としての吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。 The vehicle air conditioner 1 of the embodiment is for performing air conditioning (heating, cooling, dehumidification, and ventilation) of a vehicle interior of an electric vehicle, and an electric compressor 2 for compressing a refrigerant and an interior of the vehicle interior. The high-temperature and high-pressure refrigerant discharged from the compressor 2, which is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated by ventilation, flows in through the muffler 5 and the refrigerant pipe 13G, and radiates this refrigerant into the vehicle interior. The radiator 4 (releasing the heat of the refrigerant), the outdoor expansion valve 6 including an electric valve (electronic expansion valve) that decompresses and expands the refrigerant during heating, and the radiator that dissipates the refrigerant during cooling, and the refrigerant during heating An outdoor heat exchanger 7 for exchanging heat between the refrigerant and the outside air to function as an evaporator that absorbs heat (absorbs heat into the refrigerant), and an indoor expansion valve 8 including a mechanical expansion valve for decompressing and expanding the refrigerant. And a heat absorber 9 as an evaporator provided in the air flow passage 3 for absorbing (evaporating) the refrigerant from the inside and outside of the vehicle during cooling and dehumidifying, an accumulator 12 and the like are sequentially connected by a refrigerant pipe 13 to form a refrigerant circuit. R is configured.
 そして、室外膨張弁6は放熱器4から出て室外熱交換器7に流入する冷媒を減圧膨張させると共に、全閉も可能とされている。また、実施例では機械式膨張弁が使用された室内膨張弁8は、吸熱器9に流入する冷媒を減圧膨張させると共に、吸熱器9における冷媒の過熱度を調整する。 The outdoor expansion valve 6 decompresses and expands the refrigerant flowing out of the radiator 4 and flowing into the outdoor heat exchanger 7, and can be fully closed. Further, in the embodiment, the indoor expansion valve 8 using the mechanical expansion valve decompresses and expands the refrigerant flowing into the heat absorber 9, and adjusts the degree of superheat of the refrigerant in the heat absorber 9.
 尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。 The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 exchanges heat between the outdoor air and the refrigerant by forcibly ventilating the outdoor air through the outdoor heat exchanger 7, whereby the outdoor air is discharged while the vehicle is stopped (that is, the vehicle speed is 0 km/h). The heat exchanger 7 is configured to ventilate outside air.
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7の冷媒出口側の冷媒配管13Aは、吸熱器9に冷媒を流す際に開放される開閉弁としての電磁弁17(冷房用)を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは逆止弁18、室内膨張弁8、及び、吸熱器用弁装置としての電磁弁35(キャビン用)を順次介して吸熱器9の冷媒入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。また、逆止弁18は室内膨張弁8の方向が順方向とされている。更に、実施例では室内膨張弁8と電磁弁35は電磁弁付き膨張弁にて構成している。 Further, the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the downstream side of the refrigerant, and the refrigerant pipe 13A on the refrigerant outlet side of the outdoor heat exchanger 7 is used when flowing the refrigerant to the heat absorber 9. The refrigerant pipe 13B on the outlet side of the supercooling section 16 is connected to the receiver dryer section 14 via an electromagnetic valve 17 (for cooling) as an open/close valve, and the check valve 18, the indoor expansion valve 8 and the heat absorption It is connected to the refrigerant inlet side of the heat absorber 9 through an electromagnetic valve 35 (for a cabin) as a device valve device in order. The receiver dryer unit 14 and the supercooling unit 16 structurally form a part of the outdoor heat exchanger 7. The check valve 18 has the forward direction of the indoor expansion valve 8. Further, in the embodiment, the indoor expansion valve 8 and the solenoid valve 35 are expansion valves with solenoid valves.
 また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される開閉弁としての電磁弁21(暖房用)を介して吸熱器9の冷媒出口側の冷媒配管13Cに連通接続されている。そして、この冷媒配管13Cがアキュムレータ12の入口側に接続され、アキュムレータ12の出口側は圧縮機2の冷媒吸込側の冷媒配管13Kに接続されている。 Further, the refrigerant pipe 13A that has exited from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and this branched refrigerant pipe 13D is passed through a solenoid valve 21 (for heating) that is opened and closed during heating. It is connected to the refrigerant pipe 13C on the refrigerant outlet side of the heat absorber 9 for communication. The refrigerant pipe 13C is connected to the inlet side of the accumulator 12, and the outlet side of the accumulator 12 is connected to the refrigerant suction side refrigerant pipe 13K of the compressor 2.
 更に、放熱器4の冷媒出口側の冷媒配管13Eにはストレーナ19が接続されており、更に、この冷媒配管13Eは室外膨張弁6の手前(冷媒上流側)で冷媒配管13Jと冷媒配管13Fに分岐し、分岐した一方の冷媒配管13Jが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Fは除湿時に開放される開閉弁としての電磁弁22(除湿用)を介し、逆止弁18の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bに連通接続されている。 Further, a strainer 19 is connected to the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4, and this refrigerant pipe 13E is connected to the refrigerant pipes 13J and 13F before the outdoor expansion valve 6 (refrigerant upstream side). One of the branched and branched refrigerant pipes 13J is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6. The other branched refrigerant pipe 13F is connected to the refrigerant downstream side of the check valve 18 and the refrigerant upstream side of the indoor expansion valve 8 via an electromagnetic valve 22 (for dehumidification) as an opening/closing valve that is opened during dehumidification. It is communicatively connected to the located refrigerant pipe 13B.
 これにより、冷媒配管13Fは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続されたかたちとなり、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスするバイパス回路となる。また、室外膨張弁6にはバイパス用の開閉弁としての電磁弁20が並列に接続されている。 As a result, the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve are connected. It becomes a bypass circuit that bypasses 18. Further, a solenoid valve 20 as an opening/closing valve for bypass is connected in parallel to the outdoor expansion valve 6.
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。 Further, in the air flow passage 3 on the air upstream side of the heat absorber 9, respective intake ports of an outside air intake port and an inside air intake port are formed (represented by the intake port 25 in FIG. 1). An intake switching damper 26 is provided at 25 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation) which is the air inside the vehicle interior and the outside air (outside air introduction) which is the air outside the vehicle interior. Further, on the air downstream side of the suction switching damper 26, an indoor blower (blower fan) 27 for feeding the introduced inside air or outside air to the air flow passage 3 is provided.
 尚、実施例の吸込切換ダンパ26は、吸込口25の外気吸込口と内気吸込口を任意の比率で開閉することにより、空気流通路3の吸熱器9に流入する空気(外気と内気)のうちの内気の比率を0~100%の間で調整することができるように構成されている(外気の比率も100%~0%の間で調整可能)。 The intake switching damper 26 of the embodiment opens and closes the outside air intake port and the inside air intake port of the intake port 25 at an arbitrary ratio to remove the air (outside air and inside air) flowing into the heat absorber 9 of the air flow passage 3. It is configured so that the ratio of inside air can be adjusted between 0% and 100% (the ratio of outside air can also be adjusted between 100% and 0%).
 また、放熱器4の風下側(空気下流側)における空気流通路3内には、実施例ではPTCヒータ(電気ヒータ)から成る補助加熱装置としての補助ヒータ23が設けられ、放熱器4を経て車室内に供給される空気を加熱することが可能とされている。更に、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4及び補助ヒータ23に通風する割合を調整するエアミックスダンパ28が設けられている。 Further, in the air flow passage 3 on the leeward side (air downstream side) of the radiator 4, an auxiliary heater 23 as an auxiliary heating device including a PTC heater (electric heater) is provided in the embodiment, and passes through the radiator 4. It is possible to heat the air supplied to the passenger compartment. Further, in the air flow passage 3 on the air upstream side of the radiator 4, the air (inside air or outside air) flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated. An air mix damper 28 that adjusts the ratio of ventilation to the device 4 and the auxiliary heater 23 is provided.
 更にまた、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口からの空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。 Furthermore, in the air flow passage 3 on the air downstream side of the radiator 4, FOOT (foot), VENT (vent), and DEF (def) outlets (represented by the outlet 29 in FIG. 1 as a representative) are provided. The blower outlet 29 is provided with a blower outlet switching damper 31 for controlling the blowout of air from each of the blower outlets.
 更に、車両用空気調和装置1は、バッテリ55(被温調対象)に熱媒体を循環させて当該バッテリ55の温度を調整するための機器温度調整装置61を備えている。実施例の機器温度調整装置61は、バッテリ55に熱媒体を循環させるための循環装置としての循環ポンプ62と、蒸発器である被温調対象用熱交換器としての冷媒-熱媒体熱交換器64と、加熱装置としての熱媒体加熱ヒータ63を備え、それらとバッテリ55が熱媒体配管66にて環状に接続されている。 Further, the vehicle air conditioner 1 includes an equipment temperature adjusting device 61 for adjusting the temperature of the battery 55 by circulating a heat medium in the battery 55 (object to be temperature adjusted). The device temperature adjusting device 61 of the embodiment includes a circulation pump 62 as a circulating device for circulating a heat medium in the battery 55, and a refrigerant-heat medium heat exchanger as a heat exchanger for a temperature-controlled object which is an evaporator. 64 and a heat medium heater 63 as a heating device. The heat medium heater 63 and the battery 55 are annularly connected by a heat medium pipe 66.
 実施例の場合、循環ポンプ62の吐出側に冷媒-熱媒体熱交換器64の熱媒体流路64Aの入口が接続され、この熱媒体流路64Aの出口は熱媒体加熱ヒータ63の入口に接続されている。この熱媒体加熱ヒータ63の出口がバッテリ55の入口に接続され、バッテリ55の出口が循環ポンプ62の吸込側に接続されている。 In the case of the embodiment, the inlet of the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 is connected to the discharge side of the circulation pump 62, and the outlet of this heat medium passage 64A is connected to the inlet of the heat medium heater 63. Has been done. The outlet of the heat medium heater 63 is connected to the inlet of the battery 55, and the outlet of the battery 55 is connected to the suction side of the circulation pump 62.
 この機器温度調整装置61で使用される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、実施例では水を熱媒体として採用している。また、熱媒体加熱ヒータ63はPTCヒータ等の電気ヒータから構成されている。更に、バッテリ55の周囲には例えば熱媒体が当該バッテリ55と熱交換関係で流通可能なジャケット構造が施されているものとする。 As the heat medium used in the device temperature adjusting device 61, for example, water, a refrigerant such as HFO-1234yf, a liquid such as coolant, or a gas such as air can be adopted. In the examples, water is used as the heat medium. The heat medium heater 63 is composed of an electric heater such as a PTC heater. Further, it is assumed that, for example, a jacket structure is provided around the battery 55 so that a heat medium can flow in a heat exchange relationship with the battery 55.
 そして、循環ポンプ62が運転されると、循環ポンプ62から吐出された熱媒体は冷媒-熱媒体熱交換器64の熱媒体流路64Aに流入する。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は熱媒体加熱ヒータ63に至り、当該熱媒体加熱ヒータ63が発熱されている場合にはそこで加熱された後、バッテリ55に至り、熱媒体はそこでバッテリ55と熱交換する。そして、このバッテリ55と熱交換した熱媒体が循環ポンプ62に吸い込まれることで熱媒体配管66内を循環される。 When the circulation pump 62 is operated, the heat medium discharged from the circulation pump 62 flows into the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64. The heat medium exiting the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heating heater 63, and if the heat medium heating heater 63 is generating heat, the heat medium heating heater 63 heats the heat medium heating heater 63 and then the battery. 55, where the heat medium exchanges heat with the battery 55. The heat medium that has exchanged heat with the battery 55 is sucked into the circulation pump 62 and circulated in the heat medium pipe 66.
 一方、冷媒回路Rの冷媒配管13Fと冷媒配管13Bとの接続部の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bには、分岐回路としての分岐配管67の一端が接続されている。この分岐配管67には実施例では機械式の膨張弁から構成された補助膨張弁68と、被温調対象用弁装置としての電磁弁(チラー用)69が順次設けられている。補助膨張弁68は冷媒-熱媒体熱交換器64の後述する冷媒流路64Bに流入する冷媒を減圧膨張させると共に、冷媒-熱媒体熱交換器64の冷媒流路64Bにおける冷媒の過熱度を調整する。尚、実施例では補助膨張弁68と電磁弁69も電磁弁付き膨張弁にて構成している。 On the other hand, in the refrigerant pipe 13B located on the refrigerant downstream side of the connecting portion between the refrigerant pipe 13F and the refrigerant pipe 13B of the refrigerant circuit R and on the refrigerant upstream side of the indoor expansion valve 8, a branch pipe 67 as a branch circuit is provided. One end is connected. In the branch pipe 67, an auxiliary expansion valve 68, which is a mechanical expansion valve in the embodiment, and an electromagnetic valve (for chiller) 69 as a valve device for the temperature-controlled object are sequentially provided. The auxiliary expansion valve 68 decompresses and expands the refrigerant flowing into a later-described refrigerant passage 64B of the refrigerant-heat medium heat exchanger 64, and adjusts the degree of superheat of the refrigerant in the refrigerant passage 64B of the refrigerant-heat medium heat exchanger 64. To do. In the embodiment, the auxiliary expansion valve 68 and the solenoid valve 69 are also expansion valves with solenoid valves.
 そして、分岐配管67の他端は冷媒-熱媒体熱交換器64の冷媒流路64Bに接続されており、この冷媒流路64Bの出口には冷媒配管71の一端が接続され、冷媒配管71の他端は冷媒配管13Dとの合流点より冷媒上流側(アキュムレータ12の冷媒上流側)の冷媒配管13Cに接続されている。そして、これら補助膨張弁68や電磁弁69、冷媒-熱媒体熱交換器64の冷媒流路64B等も冷媒回路Rの一部を構成すると同時に、機器温度調整装置61の一部をも構成することになる。 The other end of the branch pipe 67 is connected to the refrigerant flow passage 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 71 is connected to the outlet of the refrigerant flow passage 64B. The other end is connected to a refrigerant pipe 13C on the refrigerant upstream side (refrigerant upstream side of the accumulator 12) from the confluence with the refrigerant pipe 13D. The auxiliary expansion valve 68, the electromagnetic valve 69, the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and the like also form a part of the refrigerant circuit R and, at the same time, a part of the device temperature adjusting device 61. It will be.
 電磁弁69が開いている場合、室外熱交換器7から出た冷媒(一部又は全ての冷媒)は分岐配管67に流入し、補助膨張弁68で減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して、そこで蒸発する。冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、冷媒配管71、冷媒配管13C、アキュムレータ12を経て冷媒配管13Kから圧縮機2に吸い込まれることになる。 When the solenoid valve 69 is open, the refrigerant (a part or all of the refrigerant) discharged from the outdoor heat exchanger 7 flows into the branch pipe 67, the pressure is reduced by the auxiliary expansion valve 68, and then the refrigerant is passed through the solenoid valve 69. -The refrigerant flows into the refrigerant channel 64B of the heat medium heat exchanger 64 and evaporates there. The refrigerant absorbs heat from the heat medium flowing through the heat medium passage 64A in the process of flowing through the refrigerant passage 64B, and then is sucked into the compressor 2 through the refrigerant pipe 71, the refrigerant pipe 13C, and the accumulator 12 through the refrigerant pipe 13K.
 次に、図2は実施例の車両用空気調和装置1の制御装置11のブロック図を示している。制御装置11は、何れもプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された空調コントローラ45及びヒートポンプコントローラ32から構成されており、これらがCAN(Controller Area Network)やLIN(Local Interconnect Network)を構成する車両通信バス65に接続されている。また、圧縮機2と補助ヒータ23、循環ポンプ62と熱媒体加熱ヒータ63も車両通信バス65に接続され、これら空調コントローラ45、ヒートポンプコントローラ32、圧縮機2、補助ヒータ23、循環ポンプ62及び熱媒体加熱ヒータ63が車両通信バス65を介してデータの送受信を行うように構成されている。 Next, FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment. The control device 11 includes an air conditioning controller 45 and a heat pump controller 32 each of which includes a microcomputer that is an example of a computer including a processor, and these include a CAN (Controller Area Network) and a LIN (Local Interconnect Network). Is connected to the vehicle communication bus 65 that constitutes the. Further, the compressor 2 and the auxiliary heater 23, the circulation pump 62 and the heat medium heating heater 63 are also connected to the vehicle communication bus 65, and the air conditioning controller 45, the heat pump controller 32, the compressor 2, the auxiliary heater 23, the circulation pump 62 and the heat generator. The medium heater 63 is configured to send and receive data via the vehicle communication bus 65.
 更に、車両通信バス65には走行を含む車両全般の制御を司る車両コントローラ72(ECU)と、バッテリ55の充放電の制御を司るバッテリコントローラ(BMS:Battery Management system)73と、GPSナビゲーション装置74が接続されている。車両コントローラ72やバッテリコントローラ73、GPSナビゲーション装置74もプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成されており、制御装置11を構成する空調コントローラ45とヒートポンプコントローラ32は、車両通信バス65を介してこれら車両コントローラ72やバッテリコントローラ73、GPSナビゲーション装置74と情報(データ)の送受信を行う構成とされている。 Further, the vehicle communication bus 65 includes a vehicle controller 72 (ECU) that controls the entire vehicle including traveling, a battery controller (BMS: Battery Management System) 73 that controls the charging and discharging of the battery 55, and a GPS navigation device 74. Are connected. The vehicle controller 72, the battery controller 73, and the GPS navigation device 74 are also configured by a microcomputer that is an example of a computer including a processor. The air conditioning controller 45 and the heat pump controller 32 that configure the control device 11 connect the vehicle communication bus 65 to each other. Information (data) is transmitted and received to and from the vehicle controller 72, the battery controller 73, and the GPS navigation device 74 via the above.
 空調コントローラ45は、車両の車室内空調の制御を司る上位のコントローラであり、この空調コントローラ45の入力には、車両の外気温度Tamを検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれて吸熱器9に流入する空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と
、車室内に吹き出される空気の温度を検出する吹出温度センサ41と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速VSP)を検出するための車速センサ52の各出力と、車室内の設定温度や運転モードの切り換え等の車室内の空調設定操作や情報の表示を行うための空調操作部53が接続されている。尚、図中53Aはこの空調操作部53に設けられた表示出力装置としてのディスプレイである。
The air conditioning controller 45 is a higher-level controller that controls the vehicle interior air conditioning. The inputs of the air conditioning controller 45 are an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle and an outside air humidity that detects outside air humidity. The sensor 34, the HVAC suction temperature sensor 36 that detects the temperature of the air that is sucked into the air flow passage 3 from the suction port 25 and flows into the heat absorber 9, and the inside air temperature sensor 37 that detects the air (inside air) temperature in the vehicle interior. An inside air humidity sensor 38 for detecting the humidity of the air in the vehicle compartment, an indoor CO 2 concentration sensor 39 for detecting the carbon dioxide concentration in the vehicle compartment, and an outlet temperature sensor 41 for detecting the temperature of the air blown into the vehicle compartment. A photo sensor type solar radiation sensor 51 for detecting the amount of solar radiation into the passenger compartment, outputs of the vehicle speed sensor 52 for detecting the moving speed (vehicle speed VSP) of the vehicle, a set temperature in the passenger compartment, and An air conditioning operation unit 53 for performing an air conditioning setting operation in the vehicle interior such as switching of operation modes and displaying information is connected. In the figure, 53A is a display as a display output device provided in the air conditioning operation unit 53.
 また、空調コントローラ45の出力には、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31が接続され、それらは空調コントローラ45により制御される。 Further, the output of the air conditioning controller 45 is connected to the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, and the outlet switching damper 31, which are connected to the air conditioning controller 45. Controlled by.
 ヒートポンプコントローラ32は、主に冷媒回路Rの制御を司るコントローラであり、このヒートポンプコントローラ32の入力には、放熱器4の冷媒入口温度Tcxin(圧縮機2の吐出冷媒温度でもある)を検出する放熱器入口温度センサ43と、放熱器4の冷媒出口温度Tciを検出する放熱器出口温度センサ44と、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ46と、放熱器4の冷媒出口側の冷媒圧力(放熱器4の圧力:放熱器圧力Pci)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9の冷媒温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、室外熱交換器7の出口の冷媒温度(室外熱交換器7の冷媒蒸発温度:室外熱交換器温度TXO)を検出する室外熱交換器温度センサ49と、補助ヒータ23の温度を検出する補助ヒータ温度センサ50A(運転席側)及び50B(助手席側)の各出力が接続されている。 The heat pump controller 32 is a controller that mainly controls the refrigerant circuit R, and the heat pump controller 32 has an input that releases heat to detect the refrigerant inlet temperature Tcxin of the radiator 4 (which is also the refrigerant temperature discharged from the compressor 2 ). The inlet temperature sensor 43, the radiator outlet temperature sensor 44 that detects the refrigerant outlet temperature Tci of the radiator 4, the suction temperature sensor 46 that detects the suction refrigerant temperature Ts of the compressor 2, and the refrigerant outlet side of the radiator 4. Radiator pressure sensor 47 for detecting the refrigerant pressure (pressure of radiator 4; radiator pressure Pci) and heat absorber temperature sensor for detecting the temperature of heat absorber 9 (refrigerant temperature of heat absorber 9: heat absorber temperature Te) 48, an outdoor heat exchanger temperature sensor 49 for detecting the refrigerant temperature at the outlet of the outdoor heat exchanger 7 (refrigerant evaporation temperature of the outdoor heat exchanger 7: outdoor heat exchanger temperature TXO), and the temperature of the auxiliary heater 23. Outputs of the auxiliary heater temperature sensors 50A (driver's seat side) and 50B (passenger seat side) are connected.
 また、ヒートポンプコントローラ32の出力には、室外膨張弁6、電磁弁22(除湿用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁20(バイパス用)、電磁弁35(キャビン用)及び電磁弁69(チラー用)の各電磁弁が接続され、それらはヒートポンプコントローラ32により制御される。尚、圧縮機2、補助ヒータ23、循環ポンプ62及び熱媒体加熱ヒータ63はそれぞれコントローラを内蔵しており、実施例では圧縮機2や補助ヒータ23、循環ポンプ62や熱媒体加熱ヒータ63のコントローラは車両通信バス65を介してヒートポンプコントローラ32とデータの送受信を行い、このヒートポンプコントローラ32によって制御される。 The output of the heat pump controller 32 includes the outdoor expansion valve 6, the solenoid valve 22 (for dehumidification), the solenoid valve 17 (for cooling), the solenoid valve 21 (for heating), the solenoid valve 20 (for bypass), and the solenoid valve 35. The electromagnetic valves (for the cabin) and the electromagnetic valve 69 (for the chiller) are connected, and they are controlled by the heat pump controller 32. The compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63 each have a built-in controller, and in the embodiment, the controller of the compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63. Transmits and receives data to and from the heat pump controller 32 via the vehicle communication bus 65, and is controlled by the heat pump controller 32.
 尚、機器温度調整装置61を構成する循環ポンプ62や熱媒体加熱ヒータ63はバッテリコントローラ73により制御されるようにしてもよい。また、このバッテリコントローラ73には機器温度調整装置61の冷媒-熱媒体熱交換器64の熱媒体流路64Aの出口側の熱媒体の温度(熱媒体温度Tw)を検出する熱媒体温度センサ76と、バッテリ55の温度(バッテリ55自体の温度:バッテリ温度Tcell)を検出するバッテリ温度センサ77の出力が接続されている。そして、実施例ではバッテリ55の残量(蓄電量)やバッテリ55の充電に関する情報(充電中であることの情報や充電完了時間、残充電時間等)、熱媒体温度Twやバッテリ温度Tcell、バッテリ55の発熱量(通電量等からバッテリコントローラ73が算出)等はバッテリコントローラ73から車両通信バス65を介して空調コントローラ45や車両コントローラ72に送信される。バッテリ55の充電時における充電完了時間や残充電時間に関する情報は、急速充電器等の外部の充電器から供給される情報である。また、車両コントローラ72からは走行用モータの出力Mpowerがヒートポンプコントローラ32や空調コントローラ45に送信される。 The circulation pump 62 and the heat medium heater 63 that constitute the device temperature adjusting device 61 may be controlled by the battery controller 73. Further, the battery controller 73 includes a heat medium temperature sensor 76 for detecting the temperature (heat medium temperature Tw) of the heat medium on the outlet side of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 of the device temperature adjusting device 61. And the output of a battery temperature sensor 77 that detects the temperature of the battery 55 (the temperature of the battery 55 itself: the battery temperature Tcell). Then, in the embodiment, the remaining amount of the battery 55 (the amount of stored electricity), the information regarding the charging of the battery 55 (information indicating that the battery is being charged, charging completion time, remaining charging time, etc.), the heat medium temperature Tw, the battery temperature Tcell, the battery The amount of heat generated by 55 (calculated by the battery controller 73 from the amount of energization) is transmitted from the battery controller 73 to the air conditioning controller 45 and the vehicle controller 72 via the vehicle communication bus 65. The information about the charging completion time and the remaining charging time when the battery 55 is charged is information supplied from an external charger such as a quick charger. Further, the output Mpower of the traveling motor is transmitted from the vehicle controller 72 to the heat pump controller 32 and the air conditioning controller 45.
 ヒートポンプコントローラ32と空調コントローラ45は車両通信バス65を介して相互にデータの送受信を行い、各センサの出力や空調操作部53にて入力された設定に基づき、各機器を制御するものであるが、この場合の実施例では外気温度センサ33、外気湿度センサ34、HVAC吸込温度センサ36、内気温度センサ37、内気湿度センサ38、室内CO2濃度センサ39、吹出温度センサ41、日射センサ51、車速センサ52、
空気流通路3に流入して当該空気流通路3内を流通する空気の風量Ga(空調コントローラ45が算出)、エアミックスダンパ28による風量割合SW(空調コントローラ45が算出)、室内送風機27の電圧(BLV)、前述したバッテリコントローラ73からの情報、GPSナビゲーション装置74からの情報、空調操作部53の出力は空調コントローラ45から車両通信バス65を介してヒートポンプコントローラ32に送信され、ヒートポンプコントローラ32による制御に供される構成とされている。
The heat pump controller 32 and the air conditioning controller 45 send and receive data to and from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53. In this embodiment, the outside air temperature sensor 33, the outside air humidity sensor 34, the HVAC suction temperature sensor 36, the inside air temperature sensor 37, the inside air humidity sensor 38, the indoor CO 2 concentration sensor 39, the outlet temperature sensor 41, the solar radiation sensor 51, the vehicle speed. Sensor 52,
Air volume Ga of air flowing into the air flow passage 3 and flowing in the air flow passage 3 (calculated by the air conditioning controller 45), air flow rate SW by the air mix damper 28 (calculated by the air conditioning controller 45), voltage of the indoor blower 27 (BLV), the information from the battery controller 73, the information from the GPS navigation device 74, and the output of the air conditioning operation unit 53 are transmitted from the air conditioning controller 45 to the heat pump controller 32 via the vehicle communication bus 65, and the heat pump controller 32 controls the heat pump controller 32. It is configured to be used for control.
 また、ヒートポンプコントローラ32からも冷媒回路Rの制御に関するデータ(情報)が車両通信バス65を介して空調コントローラ45に送信される。尚、前述したエアミックスダンパ28による風量割合SWは、0≦SW≦1の範囲で空調コントローラ45が算出する。そして、SW=1のときはエアミックスダンパ28により、吸熱器9を経た空気の全てが放熱器4及び補助ヒータ23に通風されることになる。 The heat pump controller 32 also transmits data (information) regarding the control of the refrigerant circuit R to the air conditioning controller 45 via the vehicle communication bus 65. The air volume ratio SW by the air mix damper 28 described above is calculated by the air conditioning controller 45 in the range of 0≦SW≦1. Then, when SW=1, all of the air that has passed through the heat absorber 9 is ventilated by the radiator 4 and the auxiliary heater 23 by the air mix damper 28.
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。この実施例では制御装置11(空調コントローラ45、ヒートポンプコントローラ32)は、暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、及び、空調(優先)+バッテリ冷却モードの各空調運転と、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードの各バッテリ冷却運転と、除霜モードを切り換えて実行する。これらが図3に示されている。 Next, the operation of the vehicle air conditioner 1 of the embodiment having the above configuration will be described. In this embodiment, the control device 11 (air conditioning controller 45, heat pump controller 32) controls the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the air conditioning operation of the air conditioning (priority)+battery cooling mode and the battery cooling. Each battery cooling operation of (priority)+air conditioning mode and battery cooling (single) mode and defrosting mode are switched and executed. These are shown in FIG.
 このうち、暖房モードと、除湿暖房モードと、除湿冷房モードと、冷房モードと、空調(優先)+バッテリ冷却モードの各空調運転は、実施例ではバッテリ55を充電しておらず、車両のイグニッション(IGN)がONされ、空調操作部53の空調スイッチがONされている場合に実行されるものである。但し、リモート運転時(プレ空調等)にはイグニッションがOFFの場合にも実行される。また、バッテリ55を充電中でもバッテリ冷却要求が無く、空調スイッチがONされているときは実行される。一方、バッテリ冷却(優先)+空調モードと、バッテリ冷却(単独)モードの各バッテリ冷却運転は、例えば急速充電器(外部電源)のプラグを接続し、バッテリ55に充電しているときに実行されるものである。但し、バッテリ冷却(単独)モードは、バッテリ55の充電中以外にも、空調スイッチがOFFで、バッテリ冷却要求があった場合(高外気温で走行時等)には実行される。 Among these, in each of the air conditioning operations of the heating mode, the dehumidification heating mode, the dehumidification cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode, the battery 55 is not charged in the embodiment, and the ignition of the vehicle is performed. This is executed when (IGN) is turned on and the air conditioning switch of the air conditioning operation unit 53 is turned on. However, it is executed even when the ignition is OFF during remote operation (pre-air conditioning, etc.). Even when the battery 55 is being charged, there is no battery cooling request, and the process is executed when the air conditioning switch is ON. On the other hand, each battery cooling operation in the battery cooling (priority)+air conditioning mode and the battery cooling (single) mode is executed, for example, when the plug of the quick charger (external power source) is connected and the battery 55 is being charged. It is something. However, the battery cooling (single) mode is executed when the air conditioning switch is OFF and there is a battery cooling request (during traveling at a high outside air temperature, etc.) other than during charging of the battery 55.
 また、実施例ではヒートポンプコントローラ32は、イグニッションがONされているときや、イグニッションがOFFされていてもバッテリ55が充電中であるときは、機器温度調整装置61の循環ポンプ62を運転し、図4~図10に破線で示す如く熱媒体配管66内に熱媒体を循環させるものとする。更に、図3には示していないが、実施例のヒートポンプコントローラ32は、機器温度調整装置61の熱媒体加熱ヒータ63を発熱させることでバッテリ55を加熱するバッテリ加熱モードも実行する。 In the embodiment, the heat pump controller 32 operates the circulation pump 62 of the device temperature adjusting device 61 when the ignition is turned on, or when the battery 55 is being charged even when the ignition is turned off. It is assumed that the heat medium is circulated in the heat medium pipe 66 as indicated by broken lines in FIGS. Further, although not shown in FIG. 3, the heat pump controller 32 of the embodiment also executes a battery heating mode for heating the battery 55 by causing the heat medium heating heater 63 of the device temperature adjusting device 61 to generate heat.
 (1)暖房モード
 先ず、図4を参照しながら暖房モードについて説明する。尚、各機器の制御はヒートポンプコントローラ32と空調コントローラ45の協働により実行されるものであるが、以下の説明ではヒートポンプコントローラ32を制御主体とし、簡略化して説明する。図4には暖房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。ヒートポンプコントローラ32により(オートモード)或いは空調コントローラ45の空調操作部53へのマニュアルの空調設定操作(マニュアルモード)により暖房モードが選択されると、ヒートポンプコントローラ32は電磁弁21を開き、電磁弁17、電磁弁20、電磁弁22、電磁弁35、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(1) Heating Mode First, the heating mode will be described with reference to FIG. The control of each device is executed by the cooperation of the heat pump controller 32 and the air conditioning controller 45, but in the following description, the heat pump controller 32 will be the control main body and will be briefly described. FIG. 4 shows how the refrigerant flows in the refrigerant circuit R in the heating mode (solid arrow). When the heating mode is selected by the heat pump controller 32 (auto mode) or the manual air conditioning setting operation (manual mode) to the air conditioning operation unit 53 of the air conditioning controller 45, the heat pump controller 32 opens the solenoid valve 21 and the solenoid valve 17 , The solenoid valve 20, the solenoid valve 22, the solenoid valve 35, and the solenoid valve 69 are closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13E、13Jを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15により通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、更にこの冷媒配管13Cを経てアキュムレータ12に入り、そこで気液分離された後、冷媒配管13Kからガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。 The liquefied refrigerant in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air ventilated by traveling or by the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R serves as a heat pump. Then, the low-temperature refrigerant that has exited the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D, the solenoid valve 21, and further enters the accumulator 12 via this refrigerant pipe 13C, where it is gas-liquid separated. After that, the circulation in which the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K is repeated. The air heated by the radiator 4 is blown out from the air outlet 29, so that the interior of the vehicle is heated.
 ヒートポンプコントローラ32は、車室内に吹き出される空気の目標温度(車室内に吹き出される空気の温度の目標値)である後述する目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器4の目標温度)から目標放熱器圧力PCOを算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tci及び放熱器圧力センサ47が検出する放熱器圧力Pciに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。 The heat pump controller 32 calculates a target heater temperature TCO (of the radiator 4) calculated from a target outlet temperature TAO, which will be described later, which is a target temperature of the air blown into the vehicle interior (a target value of the temperature of the air blown into the vehicle interior). The target radiator pressure PCO is calculated from the target temperature), and the rotational speed of the compressor 2 is based on the target radiator pressure PCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. And controlling the valve opening degree of the outdoor expansion valve 6 based on the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator outlet temperature sensor 44 and the radiator pressure Pci detected by the radiator pressure sensor 47, The degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled.
 また、ヒートポンプコントローラ32は、必要とされる暖房能力に対して放熱器4による暖房能力(加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、低外気温時等にも車室内を支障無く暖房する。 Further, when the heating capacity (heating capacity) of the radiator 4 is insufficient with respect to the required heating capacity, the heat pump controller 32 supplements this shortage with the heat generated by the auxiliary heater 23. As a result, the vehicle interior is heated without any trouble even when the outside temperature is low.
 (2)除湿暖房モード
 次に、図5を参照しながら除湿暖房モードについて説明する。図5は除湿暖房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。除湿暖房モードでは、ヒートポンプコントローラ32は電磁弁21、電磁弁22、電磁弁35を開き、電磁弁17、電磁弁20、電磁弁69は閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(2) Dehumidification Heating Mode Next, the dehumidification heating mode will be described with reference to FIG. FIG. 5 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and heating mode (solid arrow). In the dehumidifying and heating mode, the heat pump controller 32 opens the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35, and closes the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13Eを経て一部は冷媒配管13Jに入り、室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15により通風される外気中から熱を汲み上げる(吸熱)。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、この冷媒配管13Cを経てアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。 After the refrigerant liquefied in the radiator 4 exits the radiator 4, a part of it enters the refrigerant pipe 13J through the refrigerant pipe 13E and reaches the outdoor expansion valve 6. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air ventilated by traveling or by the outdoor blower 15 (heat absorption). Then, the low-temperature refrigerant leaving the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D and the solenoid valve 21, enters the accumulator 12 via the refrigerant pipe 13C, and is separated into gas and liquid there. After that, the circulation in which the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K is repeated.
 一方、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の残りは分流され、この分流された冷媒が電磁弁22を経て冷媒配管13Fに流入し、冷媒配管13Bに至る。次に、冷媒は室内膨張弁8に至り、この室内膨張弁8にて減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。 On the other hand, the rest of the condensed refrigerant flowing through the radiator pipe 13E via the radiator 4 is diverted, and the diverted refrigerant flows into the refrigerant pipe 13F via the solenoid valve 22 and reaches the refrigerant pipe 13B. Next, the refrigerant reaches the indoor expansion valve 8, is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 via the electromagnetic valve 35, and is evaporated. At this time, the water in the air blown out from the indoor blower 27 is condensed and adheres to the heat absorber 9 due to the heat absorbing action of the refrigerant generated in the heat absorber 9, so that the air is cooled and dehumidified.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、アキュムレータ12を経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4や補助ヒータ23(発熱している場合)を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。 The refrigerant evaporated in the heat absorber 9 flows out into the refrigerant pipe 13C, joins the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 from the refrigerant pipe 13K via the accumulator 12. Repeat the cycle. The air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated), so that dehumidification and heating of the vehicle interior is performed.
 ヒートポンプコントローラ32は、実施例では目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御するか、又は、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御する。このとき、ヒートポンプコントローラ32は放熱器圧力Pciによるか吸熱器温度Teによるか、何れかの演算から得られる圧縮機目標回転数の低い方(後述するTGNChとTGNCcのうちの低い方)を選択して圧縮機2を制御する。また、吸熱器温度Teに基づいて室外膨張弁6の弁開度を制御する。 In the embodiment, the heat pump controller 32 rotates the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. Or the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is its target value. .. At this time, the heat pump controller 32 selects the lower one of the compressor target rotation speeds (the lower one of TGNCh and TGNCc described later) obtained from either calculation depending on the radiator pressure Pci or the heat absorber temperature Te. To control the compressor 2. Further, the valve opening degree of the outdoor expansion valve 6 is controlled based on the heat absorber temperature Te.
 また、ヒートポンプコントローラ32は、この除湿暖房モードにおいても必要とされる暖房能力に対して放熱器4による暖房能力(加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、低外気温時等にも車室内を支障無く除湿暖房する。 Further, when the heating capacity (heating capacity) of the radiator 4 is insufficient with respect to the heating capacity required also in the dehumidifying and heating mode, the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. .. As a result, the vehicle interior is dehumidified and heated even when the outside temperature is low.
 (3)除湿冷房モード
 次に、図6を参照しながら除湿冷房モードについて説明する。図6は除湿冷房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。除湿冷房モードでは、ヒートポンプコントローラ32は電磁弁17、及び、電磁弁35を開き、電磁弁20、電磁弁21、電磁弁22、及び、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(3) Dehumidifying and Cooling Mode Next, the dehumidifying and cooling mode will be described with reference to FIG. FIG. 6 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and cooling mode (solid arrow). In the dehumidifying and cooling mode, the heat pump controller 32 opens the solenoid valve 17 and the solenoid valve 35, and closes the solenoid valve 20, the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
 放熱器4を出た冷媒は冷媒配管13E、13Jを経て室外膨張弁6に至り、暖房モードや除湿暖房モードよりも開き気味(大きい弁開度の領域)で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入り、逆止弁18を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却され、且つ、除湿される。 The refrigerant exiting the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipes 13E and 13J, and then passes through the outdoor expansion valve 6 controlled to open more (a region of a larger valve opening) than the heating mode or the dehumidifying and heating mode. It flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 is condensed by being cooled there by traveling or by the outside air ventilated by the outdoor blower 15. The refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18. The refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, moisture in the air blown out from the indoor blower 27 is condensed and attached to the heat absorber 9, and the air is cooled and dehumidified.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこを経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4や補助ヒータ23(発熱している場合)を通過する過程で再加熱(除湿暖房時よりも加熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is repeatedly sucked into the compressor 2 from the refrigerant pipe 13K via the refrigerant pipe 13K. The air cooled and dehumidified by the heat absorber 9 is reheated (has a lower heating capacity than that during dehumidification heating) in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated). As a result, dehumidification and cooling of the vehicle interior are performed.
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)と吸熱器9の目標温度(吸熱器温度Teの目標値)である目標吸熱器温度TEOに基づき、吸熱器温度Teを目標吸熱器温度TEOにするように圧縮機2の回転数を制御すると共に、放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)と目標放熱器圧力PCO(放熱器圧力Pciの目標値)に基づき、放熱器圧力Pciを目標放熱器圧力PCOにするように室外膨張弁6の弁開度を制御することで放熱器4による必要なリヒート量(再加熱量)を得る。 The heat pump controller 32 absorbs heat based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target temperature of the heat absorber 9 (target value of the heat absorber temperature Te). The rotation speed of the compressor 2 is controlled so that the device temperature Te becomes the target heat absorber temperature TEO, and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the target radiator pressure PCO. Based on (the target value of the radiator pressure Pci), the valve opening of the outdoor expansion valve 6 is controlled so that the radiator pressure Pci becomes the target radiator pressure PCO. Amount).
 また、ヒートポンプコントローラ32は、この除湿冷房モードにおいても必要とされる暖房能力に対して放熱器4による暖房能力(再加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、車室内の温度を下げ過ぎること無く、除湿冷房する。 Further, when the heating capacity (reheating capacity) by the radiator 4 is insufficient with respect to the heating capacity required also in the dehumidifying and cooling mode, the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. To do. As a result, dehumidifying and cooling are performed without lowering the temperature inside the vehicle compartment too much.
 (4)冷房モード(第1の運転モード、空調(単独)モード)
 次に、図7を参照しながら冷房モードについて説明する。図7は冷房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。冷房モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、及び、電磁弁35を開き、電磁弁21、電磁弁22、及び、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。尚、補助ヒータ23には通電されない。
(4) Cooling mode (first operation mode, air conditioning (single) mode)
Next, the cooling mode will be described with reference to FIG. FIG. 7 shows how the refrigerant flows in the refrigerant circuit R in the cooling mode (solid arrow). In the cooling mode, the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 35, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23. The auxiliary heater 23 is not energized.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Although the air in the air flow passage 3 is ventilated through the radiator 4, since the proportion thereof is small (because of only reheating (reheating) during cooling), it almost passes through the radiator 4, The discharged refrigerant reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, and is cooled there by traveling or by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入り、逆止弁18を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出されて吸熱器9と熱交換する空気は冷却される。 The refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18. The refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Kを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御する。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and then is sucked into the compressor 2 via the refrigerant pipe 13K. The air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled. In this cooling mode, the heat pump controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
 (5)空調(優先)+バッテリ冷却モード(第2の運転モード、空調(優先)+被温調対象冷却モード)
 次に、図8を参照しながら空調(優先)+バッテリ冷却モードについて説明する。図8は空調(優先)+バッテリ冷却モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。空調(優先)+バッテリ冷却モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、電磁弁35、及び、電磁弁69を開き、電磁弁21、及び、電磁弁22を閉じる。
(5) Air conditioning (priority) + battery cooling mode (second operation mode, air conditioning (priority) + temperature control target cooling mode)
Next, the air conditioning (priority)+battery cooling mode will be described with reference to FIG. FIG. 8 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the air conditioning (priority)+battery cooling mode. In the air conditioning (priority)+battery cooling mode, the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, the solenoid valve 35, and the solenoid valve 69, and closes the solenoid valves 21 and 22.
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。尚、この運転モードでは補助ヒータ23には通電されない。また、熱媒体加熱ヒータ63にも通電されない。 Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23. In this operation mode, the auxiliary heater 23 is not energized. Further, the heat medium heater 63 is not energized.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Although the air in the air flow passage 3 is ventilated through the radiator 4, since the proportion thereof is small (because of only reheating (reheating) during cooling), it almost passes through the radiator 4, The discharged refrigerant reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, and is cooled there by traveling or by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入る。この冷媒配管13Bに流入した冷媒は、逆止弁18を経た後に分流され、一方はそのまま冷媒配管13Bを流れて室内膨張弁8に至る。この室内膨張弁8に流入した冷媒はそこで減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出されて吸熱器9と熱交換する空気は冷却される。 The refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16. The refrigerant flowing into the refrigerant pipe 13B is branched after passing through the check valve 18, and one of the refrigerant flows through the refrigerant pipe 13B as it is to reach the indoor expansion valve 8. The refrigerant flowing into the indoor expansion valve 8 is decompressed there, then flows into the heat absorber 9 through the electromagnetic valve 35, and is evaporated. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Kを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and then is sucked into the compressor 2 via the refrigerant pipe 13K. The air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
 他方、逆止弁18を経た冷媒の残りは分流され、分岐配管67に流入して補助膨張弁68に至る。ここで冷媒は減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管71、冷媒配管13C及びアキュムレータ12を順次経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す(図8に実線矢印で示す)。 On the other hand, the rest of the refrigerant that has passed through the check valve 18 is split, flows into the branch pipe 67, and reaches the auxiliary expansion valve 68. Here, the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect. The refrigerant evaporated in the refrigerant passage 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (shown by a solid arrow in FIG. 8).
 一方、循環ポンプ62が運転されているので、この循環ポンプ62から吐出された熱媒体が熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒と熱交換し、吸熱されて熱媒体は冷却される。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、熱媒体加熱ヒータ63に至る。但し、この運転モードでは熱媒体加熱ヒータ63は発熱されないので、熱媒体はそのまま通過してバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図8に破線矢印で示す)。 On the other hand, since the circulation pump 62 is operating, the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage there. The heat medium is cooled by exchanging heat with the refrigerant that evaporates in 64B and absorbing heat. The heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63. However, since the heat medium heating heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly sucked into the circulation pump 62 and repeatedly circulated (indicated by a dashed arrow in FIG. 8 ).
 この空調(優先)+バッテリ冷却モードにおいては、ヒートポンプコントローラ32は電磁弁35を開いた状態を維持し、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて後述する如く圧縮機2の回転数を制御する。また、実施例では熱媒体温度センサ76が検出する熱媒体の温度(熱媒体温度Tw:バッテリコントローラ73から送信される)に基づき、電磁弁69を以下の如く開閉制御する。尚、熱媒体温度Twは、実施例における被温調対象であるバッテリ55の温度を示す指標として採用している(以下、同じ)。 In this air conditioning (priority)+battery cooling mode, the heat pump controller 32 maintains the electromagnetic valve 35 in the open state, and will be described later based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48. The rotation speed of the compressor 2 is controlled as described above. In the embodiment, the solenoid valve 69 is controlled to open and close as follows based on the temperature of the heat medium detected by the heat medium temperature sensor 76 (heat medium temperature Tw: transmitted from the battery controller 73). The heat medium temperature Tw is used as an index indicating the temperature of the battery 55 to be temperature-controlled in the embodiment (hereinafter the same).
 即ち、ヒートポンプコントローラ32は、熱媒体温度Twの目標値としての所定の目標熱媒体温度TWOの上下に所定の温度差を有して上限値TULと下限値TLLを設定する。そして、電磁弁69を閉じている状態からバッテリ55の発熱等により熱媒体温度Twが高くなり、上限値TULまで上昇した場合(上限値TULを上回った場合、又は、上限値TUL以上となった場合。以下、同じ)、電磁弁69を開放する。これにより、冷媒は冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発し、熱媒体流路64Aを流れる熱媒体を冷却するので、この冷却された熱媒体によりバッテリ55は冷却される。 That is, the heat pump controller 32 sets an upper limit value TUL and a lower limit value TLL with a predetermined temperature difference above and below a predetermined target heat medium temperature TWO as a target value of the heat medium temperature Tw. Then, when the heat medium temperature Tw increases due to heat generation of the battery 55 or the like from the state where the solenoid valve 69 is closed and rises to the upper limit value TUL (when it exceeds the upper limit value TUL or becomes equal to or more than the upper limit value TUL). In the following case, the same), the solenoid valve 69 is opened. As a result, the refrigerant flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64, evaporates, and cools the heat medium flowing through the heat medium channel 64A. Therefore, the battery 55 is cooled by the cooled heat medium. To be done.
 その後、熱媒体温度Twが下限値TLLまで低下した場合(下限値TLLを下回った場合、又は、下限値TLL以下となった場合。以下、同じ)、電磁弁69を閉じる。以後、このような電磁弁69の開閉を繰り返して、車室内の冷房を優先しながら、熱媒体温度Twを目標熱媒体温度TWOに制御し、バッテリ55の冷却を行う。 After that, when the heat medium temperature Tw drops to the lower limit value TLL (when it falls below the lower limit value TLL or becomes equal to or lower than the lower limit value TLL. The same applies hereinafter), the solenoid valve 69 is closed. After that, the solenoid valve 69 is repeatedly opened and closed as described above to control the heat medium temperature Tw to the target heat medium temperature TWO while giving priority to the cooling in the vehicle compartment, to cool the battery 55.
 (6)空調運転の切り換え
 ヒートポンプコントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
(6) Switching of air conditioning operation The heat pump controller 32 calculates the above-mentioned target outlet temperature TAO from the following formula (I). The target outlet temperature TAO is a target value of the temperature of the air blown into the vehicle compartment from the outlet 29.
TAO=(Tset-Tin)×K+Tbal(f(Tset, SUN, Tam))
..(I)
Here, Tset is the set temperature of the vehicle interior set by the air conditioning operation unit 53, Tin is the temperature of the vehicle interior air detected by the inside air temperature sensor 37, K is a coefficient, Tbal is the set temperature Tset, and the solar radiation sensor 51 detects the temperature. It is a balance value calculated from the amount of solar radiation SUN and the outside air temperature Tam detected by the outside air temperature sensor 33. Then, in general, the target outlet temperature TAO is higher as the outside air temperature Tam is lower, and is decreased as the outside air temperature Tam is increased.
 そして、ヒートポンプコントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各空調運転のうちの何れかの空調運転を選択する。また、起動後は外気温度Tamや目標吹出温度TAO、熱媒体温度Twやバッテリ温度Tcell等の運転条件や環境条件、設定条件の変化、バッテリコントローラ73からのバッテリ冷却要求(モード移行要求)に応じ、前記各空調運転を選択して切り換えていく。 Then, the heat pump controller 32 selects any one of the above air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of startup. In addition, after the start, in response to operating conditions such as the outside air temperature Tam, the target outlet temperature TAO, the heat medium temperature Tw and the battery temperature Tcell, environmental conditions, changes in setting conditions, and a battery cooling request (mode transition request) from the battery controller 73. The air conditioning operation is selected and switched.
 (7)バッテリ冷却(優先)+空調モード(第2の運転モード、被温調対象冷却(優先)+空調モード)
 次に、バッテリ55の充電中の動作について説明する。例えば急速充電器(外部電源)の充電用のプラグが接続され、バッテリ55が充電されているときに(これらの情報はバッテリコントローラ73から送信される)、車両のイグニッション(IGN)のON/OFFに拘わらず、バッテリ冷却要求があり、空調操作部53の空調スイッチがONされた場合、ヒートポンプコントローラ32はバッテリ冷却(優先)+空調モードを実行する。このバッテリ冷却(優先)+空調モードにおける冷媒回路Rの冷媒の流れ方は、図8に示した空調(優先)+バッテリ冷却モードの場合と同様である。
(7) Battery cooling (priority) + air conditioning mode (second operation mode, temperature-controlled cooling (priority) + air conditioning mode)
Next, the operation during charging of the battery 55 will be described. For example, when the plug for charging a quick charger (external power source) is connected and the battery 55 is being charged (these information is transmitted from the battery controller 73), the ignition (IGN) of the vehicle is turned on/off. Regardless of the above, when there is a battery cooling request and the air conditioning switch of the air conditioning operation unit 53 is turned on, the heat pump controller 32 executes battery cooling (priority)+air conditioning mode. The way the refrigerant flows in the refrigerant circuit R in the battery cooling (priority)+air conditioning mode is the same as in the air conditioning (priority)+battery cooling mode shown in FIG.
 但し、このバッテリ冷却(優先)+空調モードの場合、実施例ではヒートポンプコントローラ32は電磁弁69を開いた状態に維持し、熱媒体温度センサ76(バッテリコントローラ73から送信される)が検出する熱媒体温度Twに基づいて後述する如く圧縮機2の回転数を制御する。また、実施例では吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づき、電磁弁35を以下の如く開閉制御する。 However, in the case of this battery cooling (priority)+air conditioning mode, in the embodiment, the heat pump controller 32 maintains the electromagnetic valve 69 in an open state, and the heat detected by the heat medium temperature sensor 76 (transmitted from the battery controller 73) is detected. The rotation speed of the compressor 2 is controlled based on the medium temperature Tw as described later. In the embodiment, the solenoid valve 35 is controlled to open and close as follows based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
 即ち、ヒートポンプコントローラ32は、吸熱器温度Teの目標値としての所定の目標吸熱器温度TEOの上下に所定の温度差を有して上限値TeULと下限値TeLLを設定する。そして、電磁弁35を閉じている状態から吸熱器温度Teが高くなり、上限値TeULまで上昇した場合(上限値TeULを上回った場合、又は、上限値TeUL以上となった場合。以下、同じ)、電磁弁35を開放する。これにより、冷媒は吸熱器9に流入して蒸発し、空気流通路3を流通する空気を冷却する。 That is, the heat pump controller 32 sets an upper limit value TeUL and a lower limit value TeLL with a predetermined temperature difference above and below a predetermined target heat sink temperature TEO as a target value of the heat sink temperature Te. When the heat absorber temperature Te rises from the state where the solenoid valve 35 is closed and rises to the upper limit value TeUL (when it exceeds the upper limit value TeUL or becomes equal to or higher than the upper limit value TeUL. The same applies hereinafter). , The solenoid valve 35 is opened. As a result, the refrigerant flows into the heat absorber 9 and evaporates, and cools the air flowing through the air flow passage 3.
 その後、吸熱器温度Teが下限値TeLLまで低下した場合(下限値TeLLを下回った場合、又は、TeLL以下となった場合。以下、同じ)、電磁弁35を閉じる。以後、このような電磁弁35の開閉を繰り返して、バッテリ55の冷却を優先しながら、吸熱器温度Teを目標吸熱器温度TEOに制御し、車室内の冷房を行う。 After that, when the heat absorber temperature Te drops to the lower limit value TeLL (when it falls below the lower limit value TeLL or when it falls below TeLL. The same applies hereinafter), the solenoid valve 35 is closed. Thereafter, such opening/closing of the solenoid valve 35 is repeated to control the heat absorber temperature Te to the target heat absorber temperature TEO while prioritizing the cooling of the battery 55 to cool the vehicle interior.
 (8)バッテリ冷却(単独)モード(第1の運転モード、被温調対象冷却(単独)モード)
 次に、イグニッションのON/OFFに拘わらず、空調操作部53の空調スイッチがOFFされた状態で、急速充電器の充電用のプラグが接続され、バッテリ55が充電されているとき、バッテリ冷却要求があった場合、ヒートポンプコントローラ32はバッテリ冷却(単独)モードを実行する。但し、バッテリ55の充電中以外にも、空調スイッチがOFFで、バッテリ冷却要求があった場合(高外気温で走行時等)には実行される。図9はこのバッテリ冷却(単独)モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。バッテリ冷却(単独)モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、及び、電磁弁69を開き、電磁弁21、電磁弁22、及び、電磁弁35を閉じる。
(8) Battery cooling (single) mode (first operating mode, temperature controlled cooling (single) mode)
Next, regardless of whether the ignition is ON or OFF, with the air conditioning switch of the air conditioning operating unit 53 turned OFF, the charging plug of the quick charger is connected, and the battery 55 is charged when the battery 55 is being charged. If there is, the heat pump controller 32 executes the battery cooling (single) mode. However, it is executed when the air conditioning switch is OFF and there is a battery cooling request (during traveling at a high outside air temperature) other than during charging of the battery 55. FIG. 9 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the battery cooling (single) mode. In the battery cooling (single) mode, the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35.
 そして、圧縮機2、及び、室外送風機15を運転する。尚、室内送風機27は運転されず、補助ヒータ23にも通電されない。また、この運転モードでは熱媒体加熱ヒータ63も通電されない。 Then, the compressor 2 and the outdoor blower 15 are operated. The indoor blower 27 is not operated and the auxiliary heater 23 is not energized. Further, the heat medium heater 63 is not energized in this operation mode.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき、電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで室外送風機15により通風される外気によって空冷され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, it passes only here, and the refrigerant exiting the radiator 4 reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, where it is air-cooled by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied.
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入る。この冷媒配管13Bに流入した冷媒は、逆止弁18を経た後、全てが分岐配管67に流入して補助膨張弁68に至る。ここで冷媒は減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管71、冷媒配管13C及びアキュムレータ12を順次経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す(図9に実線矢印で示す)。 The refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16. After passing through the check valve 18, all of the refrigerant flowing into the refrigerant pipe 13B flows into the branch pipe 67 and reaches the auxiliary expansion valve 68. Here, the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect. The refrigerant evaporated in the refrigerant flow path 64B repeatedly passes through the refrigerant pipe 71, the refrigerant pipe 13C, and the accumulator 12 and is repeatedly sucked into the compressor 2 from the refrigerant pipe 13K (represented by a solid arrow in FIG. 9).
 一方、循環ポンプ62が運転されているので、この循環ポンプ62から吐出された熱媒体が熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却されるようになる。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、熱媒体加熱ヒータ63に至る。但し、この運転モードでは熱媒体加熱ヒータ63は発熱されないので、熱媒体はそのまま通過してバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図9に破線矢印で示す)。 On the other hand, since the circulation pump 62 is operating, the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage there. The heat medium is cooled by being absorbed by the refrigerant evaporated in 64B. The heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63. However, since the heat medium heating heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly sucked into the circulation pump 62 and repeatedly circulated (indicated by a dashed arrow in FIG. 9 ).
 このバッテリ冷却(単独)モードにおいても、ヒートポンプコントローラ32は熱媒体温度センサ76が検出する熱媒体温度Twに基づいて後述する如く圧縮機2の回転数を制御することにより、バッテリ55を冷却する。 Also in this battery cooling (single) mode, the heat pump controller 32 cools the battery 55 by controlling the number of revolutions of the compressor 2 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76 as described later.
 (9)除霜モード
 次に、図10を参照しながら室外熱交換器7の除霜モードについて説明する。図10は除霜モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。前述した如く暖房モードでは、室外熱交換器7では冷媒が蒸発し、外気から吸熱して低温となるため、室外熱交換器7には外気中の水分が霜となって付着する。
(9) Defrost Mode Next, the defrost mode of the outdoor heat exchanger 7 will be described with reference to FIG. 10. FIG. 10 shows how the refrigerant flows in the refrigerant circuit R in the defrosting mode (solid arrow). As described above, in the heating mode, the refrigerant evaporates in the outdoor heat exchanger 7 and absorbs heat from the outside air to reach a low temperature, so that the moisture in the outside air adheres to the outdoor heat exchanger 7 as frost.
 そこで、ヒートポンプコントローラ32は室外熱交換器温度センサ49が検出する室外熱交換器温度TXO(室外熱交換器7における冷媒蒸発温度)と、室外熱交換器7の無着霜時における冷媒蒸発温度TXObaseとの差ΔTXO(=TXObase-TXO)を算出しており、室外熱交換器温度TXOが無着霜時における冷媒蒸発温度TXObaseより低下して、その差ΔTXOが所定値以上に拡大した状態が所定時間継続した場合、室外熱交換器7に着霜しているものと判定して所定の着霜フラグをセットする。 Therefore, the heat pump controller 32 detects the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 49 (refrigerant evaporation temperature in the outdoor heat exchanger 7) and the refrigerant evaporation temperature TXObase when the outdoor heat exchanger 7 is not frosted. And the difference ΔTXO (=TXObase−TXO) is calculated, and the condition that the outdoor heat exchanger temperature TXO is lower than the refrigerant evaporation temperature TXObase in the non-frosting state and the difference ΔTXO is expanded to a predetermined value or more is predetermined. When the time has continued, it is determined that the outdoor heat exchanger 7 is frosted, and a predetermined frosting flag is set.
 そして、この着霜フラグがセットされており、空調操作部53の空調スイッチがOFFされた状態で、急速充電器に充電用のプラグが接続され、バッテリ55が充電されるとき、ヒートポンプコントローラ32は以下の如く室外熱交換器7の除霜モードを実行する。 When the frosting flag is set, the air conditioning switch of the air conditioning operation unit 53 is turned off, the charging plug is connected to the quick charger, and the battery 55 is charged. The defrosting mode of the outdoor heat exchanger 7 is executed as follows.
 ヒートポンプコントローラ32はこの除霜モードでは、冷媒回路Rを前述した暖房モードの状態とした上で、室外膨張弁6の弁開度を全開とする。そして、圧縮機2を運転し、当該圧縮機2から吐出された高温の冷媒を放熱器4、室外膨張弁6を経て室外熱交換器7に流入させ、当該室外熱交換器7の着霜を融解させる(図10)。そして、ヒートポンプコントローラ32は室外熱交換器温度センサ49が検出する室外熱交換器温度TXOが所定の除霜終了温度(例えば、+3℃等)より高くなった場合、室外熱交換器7の除霜が完了したものとして除霜モードを終了する。 In this defrosting mode, the heat pump controller 32 sets the refrigerant circuit R to the heating mode described above, and then fully opens the valve opening degree of the outdoor expansion valve 6. Then, the compressor 2 is operated, the high-temperature refrigerant discharged from the compressor 2 is caused to flow into the outdoor heat exchanger 7 through the radiator 4 and the outdoor expansion valve 6, and the frost formation on the outdoor heat exchanger 7 is prevented. Thaw (Figure 10). Then, the heat pump controller 32 defrosts the outdoor heat exchanger 7 when the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 49 becomes higher than a predetermined defrosting end temperature (for example, +3° C.). Is completed and the defrosting mode is terminated.
 (10)バッテリ加熱モード
 また、空調運転を実行しているとき、或いは、バッテリ55を充電しているとき、ヒートポンプコントローラ32はバッテリ加熱モードを実行する。このバッテリ加熱モードでは、ヒートポンプコントローラ32は循環ポンプ62を運転し、熱媒体加熱ヒータ63に通電する。尚、電磁弁69は閉じる。
(10) Battery Heating Mode Further, the heat pump controller 32 executes the battery heating mode when the air conditioning operation is executed or when the battery 55 is charged. In this battery heating mode, the heat pump controller 32 operates the circulation pump 62 to energize the heat medium heating heater 63. The solenoid valve 69 is closed.
 これにより、循環ポンプ62から吐出された熱媒体は熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこを通過して熱媒体加熱ヒータ63に至る。このとき熱媒体加熱ヒータ63は発熱されているので、熱媒体は熱媒体加熱ヒータ63により加熱されて温度上昇した後、バッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は加熱されると共に、バッテリ55を加熱した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す。 As a result, the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 66, and passes therethrough to reach the heat medium heater 63. At this time, since the heat medium heating heater 63 is generating heat, the heat medium is heated by the heat medium heating heater 63 to increase its temperature, and then reaches the battery 55 to exchange heat with the battery 55. As a result, the battery 55 is heated, and the heat medium after heating the battery 55 is repeatedly circulated by being sucked into the circulation pump 62.
 このバッテリ加熱モードにおいては、ヒートポンプコントローラ32は熱媒体温度センサ76が検出する熱媒体温度Twに基づいて熱媒体加熱ヒータ63の通電を制御することにより、熱媒体温度Twを所定の目標熱媒体温度TWOに調整し、バッテリ55を加熱する。 In the battery heating mode, the heat pump controller 32 controls the energization of the heat medium heating heater 63 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76 to set the heat medium temperature Tw to the predetermined target heat medium temperature. Adjust to TWO and heat battery 55.
 (11)ヒートポンプコントローラ32による圧縮機2の制御
 また、ヒートポンプコントローラ32は、暖房モードでは放熱器圧力Pciに基づき、図11の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出し、除湿冷房モード、冷房モード、空調(優先)+バッテリ冷却モードでは、吸熱器温度Teに基づき、図12の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを算出する。尚、除湿暖房モードでは圧縮機目標回転数TGNChと圧縮機目標回転数TGNCcのうちの低い方向を選択する。また、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードでは、熱媒体温度Twに基づき、図13の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNCcbを算出する。
(11) Control of the compressor 2 by the heat pump controller 32 Further, the heat pump controller 32 in the heating mode is based on the radiator pressure Pci and the target rotation speed of the compressor 2 (compressor target rotation speed) according to the control block diagram of FIG. 11. TGNCh is calculated, and in the dehumidifying cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode, based on the heat absorber temperature Te, the target rotation speed of the compressor 2 (compressor target rotation speed) according to the control block diagram of FIG. Calculate TGNCc. In the dehumidifying and heating mode, the lower direction of the compressor target rotation speed TGNCh and the compressor target rotation speed TGNc is selected. In the battery cooling (priority)+air conditioning mode and the battery cooling (single) mode, the target rotation speed of the compressor 2 (compressor target rotation speed) TGNCcb is calculated based on the heat medium temperature Tw by the control block diagram of FIG. To do.
 (11-1)放熱器圧力Pciに基づく圧縮機目標回転数TGNChの算出
 先ず、図11を用いて放熱器圧力Pciに基づく圧縮機2の制御について詳述する。図11は放熱器圧力Pciに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部78は外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、SW=(TAO-Te)/(Thp-Te)で得られるエアミックスダンパ28による風量割合SWと、放熱器4の出口における冷媒の過冷却度SCの目標値である目標過冷却度TGSCと、ヒータ温度Thpの目標値である前述した目標ヒータ温度TCOと、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づいて圧縮機目標回転数のF/F操作量TGNChffを算出する。
(11-1) Calculation of Compressor Target Rotational Speed TGNCh Based on Radiator Pressure Pci First, the control of the compressor 2 based on the radiator pressure Pci will be described in detail with reference to FIG. FIG. 11 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCh of the compressor 2 based on the radiator pressure Pci. The F/F (feed forward) manipulated variable calculation unit 78 of the heat pump controller 32 uses the outside air temperature Tam obtained from the outside air temperature sensor 33, the blower voltage BLV of the indoor blower 27, and SW=(TAO-Te)/(Thp-Te ) The air flow rate SW obtained by the air mix damper 28, the target supercooling degree TGSC that is the target value of the supercooling degree SC of the refrigerant at the outlet of the radiator 4, and the target heater described above that is the target value of the heater temperature Thp. Based on the temperature TCO and the target radiator pressure PCO, which is the target value of the pressure of the radiator 4, the F/F operation amount TGNChff of the compressor target rotation speed is calculated.
 尚、ヒータ温度Thpは放熱器4の風下側の空気温度(推定値)であり、放熱器圧力センサ47が検出する放熱器圧力Pciと放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tciから算出(推定)する。また、過冷却度SCは放熱器入口温度センサ43と放熱器出口温度センサ44が検出する放熱器4の冷媒入口温度Tcxinと冷媒出口温度Tciから算出される。 The heater temperature Thp is an air temperature (estimated value) on the leeward side of the radiator 4, and the radiator pressure Pci detected by the radiator pressure sensor 47 and the refrigerant outlet of the radiator 4 detected by the radiator outlet temperature sensor 44. It is calculated (estimated) from the temperature Tci. The degree of supercooling SC is calculated from the refrigerant inlet temperature Tcxin and the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator inlet temperature sensor 43 and the radiator outlet temperature sensor 44.
 前記目標放熱器圧力PCOは上記目標過冷却度TGSCと目標ヒータ温度TCOに基づいて目標値演算部79が算出する。更に、F/B(フィードバック)操作量演算部81はこの目標放熱器圧力PCOと放熱器圧力Pciに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNChfbを算出する。そして、F/F操作量演算部78が算出したF/F操作量TGNChffとF/B操作量演算部81が算出したF/B操作量TGNChfbは加算器82で加算され、TGNCh00としてリミット設定部83に入力される。 The target radiator pressure PCO is calculated by the target value calculator 79 based on the target supercooling degree TGSC and the target heater temperature TCO. Further, the F/B (feedback) manipulated variable calculation unit 81 calculates the F/B manipulated variable TGNChfb of the compressor target rotational speed by PID calculation or PI calculation based on the target radiator pressure PCO and the radiator pressure Pci. Then, the F/F operation amount TGNChff calculated by the F/F operation amount calculation unit 78 and the F/B operation amount TGNChfb calculated by the F/B operation amount calculation unit 81 are added by the adder 82 to obtain a limit setting unit as TGNCh00. It is input to 83.
 リミット設定部83では制御上の下限回転数ECNpdLimLoと上限回転数ECNpdLimHiのリミットが付けられてTGNCh0とされた後、圧縮機OFF制御部84を経て圧縮機目標回転数TGNChとして決定される。通常モードではヒートポンプコントローラ32は、この放熱器圧力Pciに基づいて算出された圧縮機目標回転数TGNChにより圧縮機2の運転を制御する。 In the limit setting unit 83, the lower limit speed ECNpdLimLo and the upper limit speed ECNpdLimHi for control are set to TGNCh0, and then the compressor OFF control unit 84 is used to determine the target compressor speed TGNCh. In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 by the compressor target rotation speed TGNCh calculated based on the radiator pressure Pci.
 尚、圧縮機OFF制御部84は、圧縮機目標回転数TGNChが上述した下限回転数ECNpdLimLoとなり、放熱器圧力Pciが目標放熱器圧力PCOの上下に設定された所定の上限値PULと下限値PLLのうちの上限値PULまで上昇した状態(上限値PULを上回った状態、又は、上限値PUL以上となった状態。以下、同じ)が所定時間th1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。 In addition, the compressor OFF control unit 84 sets the compressor target rotation speed TGNCh to the above-described lower limit rotation speed ECNpdLimLo, and the radiator pressure Pci is a predetermined upper limit value PUL and lower limit value PLL set above and below the target radiator pressure PCO. If the state of rising up to the upper limit value PUL (a state of exceeding the upper limit value PUL or a state of becoming equal to or more than the upper limit value PUL. The same applies hereinafter) continues for a predetermined time th1, the compressor 2 is stopped and compression is performed. It enters the ON-OFF mode that controls the ON-OFF of the machine 2.
 この圧縮機2のON-OFFモードでは、放熱器圧力Pciが下限値PLLまで低下した場合(下限値PLLを下回った場合、又は、下限値PLL以下となった場合。以下、同じ)、圧縮機2を起動して圧縮機目標回転数TGNChを下限回転数ECNpdLimLoとして運転し、その状態で放熱器圧力Pciが上限値PULまで上昇した場合は圧縮機2を再度停止させる。即ち、下限回転数ECNpdLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、放熱器圧力Pciが下限値PULまで低下し、圧縮機2を起動した後、放熱器圧力Pciが下限値PULより高くならない状態が所定時間th2継続した場合、圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the compressor 2, when the radiator pressure Pci drops to the lower limit value PLL (when it falls below the lower limit value PLL or becomes lower than or equal to the lower limit value PLL. The same applies hereinafter), the compressor 2 is started to operate the compressor target rotation speed TGNCh as the lower limit rotation speed ECNpdLimLo, and when the radiator pressure Pci rises to the upper limit value PUL in that state, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed ECNpdLimLo are repeated. When the radiator pressure Pci decreases to the lower limit value PUL and the compressor 2 is started, and the radiator pressure Pci does not become higher than the lower limit value PUL for a predetermined time th2, the compressor 2 is turned on and off. Is completed and the normal mode is restored.
 (11-2)吸熱器温度Teに基づく圧縮機目標回転数TGNCcの算出
 次に、図12を用いて吸熱器温度Teに基づく圧縮機2の制御について詳述する。図12は吸熱器温度Teに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部86は外気温度Tamと、空気流通路3内を流通する空気の風量Ga(室内送風機27のブロワ電圧BLVでもよい)と、目標放熱器圧力PCOと、バッテリ温度センサ77が検出するバッテリ温度Tcell(バッテリコントローラ73から送信される)と、走行用モータの出力Mpower(車両コントローラ72から送信される)と、車速VSPと、バッテリ55の発熱量(バッテリコントローラ73から送信される)と、吸熱器温度Teの目標値である目標吸熱器温度TEOに基づいて圧縮機目標回転数のF/F操作量TGNCcffを算出する。
(11-2) Calculation of Compressor Target Rotational Speed TGNCc Based on Heat Absorber Temperature Te Next, control of the compressor 2 based on the heat absorber temperature Te will be described in detail with reference to FIG. FIG. 12 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCc of the compressor 2 based on the heat absorber temperature Te. The F/F (feed forward) operation amount calculation unit 86 of the heat pump controller 32 determines the outside air temperature Tam, the air volume Ga of the air flowing through the air flow passage 3 (the blower voltage BLV of the indoor blower 27 may be used), and the target radiator. The pressure PCO, the battery temperature Tcell detected by the battery temperature sensor 77 (transmitted from the battery controller 73), the output Mpower of the traveling motor (transmitted from the vehicle controller 72), the vehicle speed VSP, and the heat generation of the battery 55. Based on the amount (transmitted from the battery controller 73) and the target heat absorber temperature TEO which is the target value of the heat absorber temperature Te, the F/F operation amount TGNccff of the compressor target rotation speed is calculated.
 また、F/B操作量演算部87は目標吸熱器温度TEOと吸熱器温度Teに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNCcfbを算出する。そして、F/F操作量演算部86が算出したF/F操作量TGNCcffとF/B操作量演算部87が算出したF/B操作量TGNCcfbは加算器88で加算され、TGNCc00としてリミット設定部89に入力される。 The F/B manipulated variable calculation unit 87 also calculates the F/B manipulated variable TGNCcfb of the compressor target rotation speed by PID calculation or PI calculation based on the target heat absorber temperature TEO and the heat absorber temperature Te. Then, the F/F operation amount TGNCcff calculated by the F/F operation amount calculation unit 86 and the F/B operation amount TGNCcfb calculated by the F/B operation amount calculation unit 87 are added by the adder 88 to obtain a limit setting unit as TGNCc00. It is input to 89.
 リミット設定部89では制御上の下限回転数TGNCcLimLoと上限回転数TGNCcLimHiのリミットが付けられてTGNCc0とされた後、圧縮機OFF制御部91を経て圧縮機目標回転数TGNCcとして決定される。通常モードではヒートポンプコントローラ32は、この吸熱器温度Teに基づいて算出された圧縮機目標回転数TGNCcにより圧縮機2の運転を制御する。 In the limit setting unit 89, the lower limit rotational speed TGNCcLimLo and the upper limit rotational speed TGNCcLimHi in control are set to TGNCc0, and then the compressor OFF control unit 91 is used to determine the target compressor rotational speed TGNCc. In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 by the compressor target rotation speed TGNCc calculated based on the heat absorber temperature Te.
 尚、圧縮機OFF制御部91は、圧縮機目標回転数TGNCcが上述した下限回転数TGNCcLimLoとなり、吸熱器温度Teが目標吸熱器温度TEOの上下に設定された上限値TeULと下限値TeLLのうちの下限値TeLLまで低下した状態が所定時間tc1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。 Note that the compressor OFF control unit 91 determines that the compressor target rotation speed TGNCc becomes the above-described lower limit rotation speed TGNCcLimLo, and the heat absorber temperature Te is set between the upper limit value TeUL and the lower limit value TeLL set above and below the target heat absorber temperature TEO. When the state in which the lower limit value TeLL of the above is decreased for a predetermined time tc1 is stopped, the compressor 2 is stopped and the ON-OFF mode in which the compressor 2 is ON-OFF controlled is entered.
 この場合の圧縮機2のON-OFFモードでは、吸熱器温度Teが上限値TeULまで上昇した場合、圧縮機2を起動して圧縮機目標回転数TGNCcを下限回転数TGNCcLimLoとして運転し、その状態で吸熱器温度Teが下限値TeLLまで低下した場合は圧縮機2を再度停止させる。即ち、下限回転数TGNCcLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、吸熱器温度Teが上限値TeULまで上昇し、圧縮機2を起動した後、吸熱器温度Teが上限値TeULより低くならない状態が所定時間tc2継続した場合、この場合の圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the compressor 2 in this case, when the heat absorber temperature Te rises to the upper limit TeUL, the compressor 2 is started and the compressor target rotation speed TGNCc is operated as the lower limit rotation speed TGNCcLimLo, and the state is maintained. When the heat absorber temperature Te has dropped to the lower limit TeLL, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed TGNCcLimLo are repeated. Then, when the heat absorber temperature Te rises to the upper limit value TeUL and the compressor 2 is started, the state where the heat absorber temperature Te does not become lower than the upper limit value TeUL continues for a predetermined time tc2, and the compressor 2 in this case is turned on. -Ends the OFF mode and returns to the normal mode.
 (11-3)熱媒体温度Twに基づく圧縮機目標回転数TGNCcbの算出
 次に、図13を用いて熱媒体温度Twに基づく圧縮機2の制御について詳述する。図13は熱媒体温度Twに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNCcbを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部92は外気温度Tamと、目標放熱器圧力PCOと、目標吸熱器温度TEOと、機器温度調整装置61内の熱媒体の流量Gw(循環ポンプ62の出力から算出される)と、バッテリ温度Tcellと、走行用モータの出力Mpower(車両コントローラ72から送信される)と、車速VSPと、バッテリ55の発熱量(バッテリコントローラ73から送信される)と、熱媒体温度Twの目標値である目標熱媒体温度TWOに基づいて圧縮機目標回転数のF/F操作量TGNCcbffを算出する。
(11-3) Calculation of Compressor Target Rotational Speed TGNCcb Based on Heat Medium Temperature Tw Next, the control of the compressor 2 based on the heat medium temperature Tw will be described in detail with reference to FIG. FIG. 13 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCcb of the compressor 2 based on the heat medium temperature Tw. The F/F (feed forward) operation amount calculation unit 92 of the heat pump controller 32 uses the outside air temperature Tam, the target radiator pressure PCO, the target heat absorber temperature TEO, and the flow rate Gw (circulation of the heat medium in the device temperature adjusting device 61). (Calculated from output of pump 62), battery temperature Tcell, output Mpower of traveling motor (transmitted from vehicle controller 72), vehicle speed VSP, and heat generation amount of battery 55 (transmitted from battery controller 73). ) And the target heat medium temperature TWO which is the target value of the heat medium temperature Tw, the F/F manipulated variable TGNCcbff of the compressor target rotation speed is calculated.
 また、F/B操作量演算部93は目標熱媒体温度TWOと熱媒体温度Twに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNCcbfbを算出する。そして、F/F操作量演算部92が算出したF/F操作量TGNCcbffとF/B操作量演算部93が算出したF/B操作量TGNCcbfbは加算器94で加算され、TGNCcb00としてリミット設定部96に入力される。 The F/B manipulated variable calculation unit 93 also calculates the F/B manipulated variable TGNCcbfb of the compressor target rotation speed by PID calculation or PI calculation based on the target heat medium temperature TWO and the heat medium temperature Tw. Then, the F/F operation amount TGNCcbff calculated by the F/F operation amount calculation unit 92 and the F/B operation amount TGNCcbfb calculated by the F/B operation amount calculation unit 93 are added by the adder 94, and the limit setting unit is set as TGNCcb00. 96 is input.
 リミット設定部96では制御上の下限回転数TGNCcbLimLoと上限回転数TGNCcbLimHiのリミットが付けられてTGNCcb0とされた後、圧縮機OFF制御部97を経て圧縮機目標回転数TGNCcbとして決定される。通常モードではヒートポンプコントローラ32は、この熱媒体温度Twに基づいて算出された圧縮機目標回転数TGNCcbにより圧縮機2の運転を制御する。 In the limit setting unit 96, the lower limit speed TGNCcbLimLo for control and the upper limit speed TGNCcbLimHi are set to TGNCcb0, and then the compressor OFF control unit 97 determines the target compressor speed TGNCcb. In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 by the compressor target rotation speed TGNCcb calculated based on the heat medium temperature Tw.
 尚、圧縮機OFF制御部97は、圧縮機目標回転数TGNCcbが上述した下限回転数TGNCcbLimLoとなり、熱媒体温度Twが目標熱媒体温度TWOの上下に設定された上限値TULと下限値TLLのうちの下限値TLLまで低下した状態が所定時間tcb1継続した場合、圧縮機2を停止させて圧縮機2のON-OFF制御するON-OFFモードに入る。 The compressor OFF control unit 97 determines that the compressor target rotation speed TGNCcb becomes the above-described lower limit rotation speed TGNCcbLimLo, and the heat medium temperature Tw is set to an upper or lower limit of the target heat medium temperature TWO among the upper limit value TUL and the lower limit value TLL. When the lower limit value TLL has continued for a predetermined time tcb1, the compressor 2 is stopped and the ON-OFF mode for controlling the ON-OFF of the compressor 2 is entered.
 この場合の圧縮機2のON-OFFモードでは、熱媒体温度Twが上限値TULまで上昇した場合、圧縮機2を起動して圧縮機目標回転数TGNCcbを下限回転数TGNCcbLimLoとして運転し、その状態で熱媒体温度Twが下限値TLLまで低下した場合は圧縮機2を再度停止させる。即ち、下限回転数TGNCcbLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、熱媒体温度Twが上限値TULまで上昇し、圧縮機2を起動した後、熱媒体温度Twが上限値TULより低くならない状態が所定時間tcb2継続した場合、この場合の圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the compressor 2 in this case, when the heat medium temperature Tw rises to the upper limit value TUL, the compressor 2 is started to operate the compressor target rotation speed TGNCcb as the lower limit rotation speed TGNCcbLimLo, and the state When the heat medium temperature Tw falls to the lower limit value TLL, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed TGNCcbLimLo are repeated. Then, after the heat medium temperature Tw rises to the upper limit value TUL and the compressor 2 is started, if the state in which the heat medium temperature Tw does not become lower than the upper limit value TUL continues for a predetermined time tcb2, the compressor 2 in this case is turned on. -Ends the OFF mode and returns to the normal mode.
 (12)ヒートポンプコントローラ32による圧縮機回転数上昇制御(その1)
 次に、図14を参照しながら前述した冷房モード(第1の運転モード)から空調(優先)+バッテリ冷却モード(第2の運転モード)に移行する際、及び、バッテリ冷却(単独)モード(第1の運転モード)からバッテリ冷却(優先)+空調モード(第2の運転モード)に移行する際に、ヒートポンプコントローラ32が実行する圧縮機回転数上昇制御の一例について説明する。尚、図14は上記の移行の際の両方について纏めて示している。
(12) Compressor rotation speed increase control by the heat pump controller 32 (1)
Next, when shifting from the cooling mode (first operation mode) described above with reference to FIG. 14 to the air conditioning (priority)+battery cooling mode (second operation mode), and the battery cooling (single) mode ( An example of the compressor rotation speed increase control executed by the heat pump controller 32 when shifting from the first operation mode) to the battery cooling (priority)+air conditioning mode (second operation mode) will be described. Note that FIG. 14 collectively shows both of the above transitions.
 前述した冷房モードから空調(優先)+バッテリ冷却モードに移行した直後は、それらを含む熱交換の経路が増えるため、圧縮機2の能力(回転数)が不足する状態となり、車室内に吹き出される空気の温度が一時的に高くなってしまい、使用者に不快感を与えると共に、バッテリ55の冷却も遅延するようになる。 Immediately after shifting from the cooling mode to the air conditioning (priority)+battery cooling mode, the number of heat exchange paths including them increases, so that the capacity (rotation speed) of the compressor 2 becomes insufficient and the compressor 2 is blown into the vehicle interior. The temperature of the air to be temporarily increased becomes uncomfortable for the user, and the cooling of the battery 55 is delayed.
 ここで、冷房モードを実行しているときに、例えば、熱媒体温度センサ76が検出する熱媒体温度Twが前述した上限値TULまで上昇した場合、或いは、バッテリ温度センサ77が検出するバッテリ温度Tcellが所定の上限値まで上昇した場合、バッテリコントローラ73はバッテリ冷却要求をヒートポンプコントローラ32や空調コントローラ45に出力する。例えば、図14の時刻t1でヒートポンプコントローラ32にバッテリ冷却要求が入力された場合、これがモード移行要求となり、ヒートポンプコントローラ32はこの場合の圧縮機回転数上昇制御を開始し、先ず目標吸熱器温度TEOを所定値TEO1だけ低下させる。 Here, when the cooling medium mode is being executed, for example, when the heating medium temperature Tw detected by the heating medium temperature sensor 76 has risen to the above-described upper limit value TUL, or the battery temperature Tcell detected by the battery temperature sensor 77. Is increased to a predetermined upper limit value, the battery controller 73 outputs a battery cooling request to the heat pump controller 32 and the air conditioning controller 45. For example, when a battery cooling request is input to the heat pump controller 32 at time t1 in FIG. 14, this becomes a mode transition request, and the heat pump controller 32 starts the compressor rotation speed increase control in this case, and first, the target heat sink temperature TEO. Is decreased by a predetermined value TEO1.
 これにより、図12のF/F操作量演算部86が算出する圧縮機目標回転数のF/F操作量TGNCcffが上昇していくので、最終的に算出される圧縮機目標回転数TGNCcも通常時の値から上昇していき、圧縮機2の実際の回転数も上昇していく。そして、例えば、図14の時刻t2で圧縮機目標回転数TGNCcが所定値TGNCc1まで上昇した場合、又は、時刻t1から所定時間ts1が経過した場合、ヒートポンプコントローラ32は電磁弁69を開き、運転モードを空調(優先)+バッテリ冷却モードに移行させる。 As a result, the F/F operation amount TGNCcff of the compressor target rotation speed calculated by the F/F operation amount calculation unit 86 of FIG. 12 increases, so that the finally calculated compressor target rotation speed TGNCc is also normal. As the time value increases, the actual rotation speed of the compressor 2 also increases. Then, for example, when the compressor target rotation speed TGNCc increases to a predetermined value TGNCc1 at time t2 in FIG. 14 or when a predetermined time ts1 has elapsed from the time t1 the heat pump controller 32 opens the solenoid valve 69 and the operation mode. To the air conditioning (priority) + battery cooling mode.
 このような圧縮機回転数上昇制御を実行することにより、冷房モードから空調(優先)+バッテリ冷却モードに移行した直後の圧縮機2の能力(回転数)不足を解消し、車室内の空調とバッテリ55の冷却の両立性を高めて、信頼性と商品性を向上させることができるようになる。尚、移行後の圧縮機2の制御は、前述した空調(優先)+バッテリ冷却モードでの回転数制御に復帰する。また、前述した如く電磁弁69と補助膨張弁68は電磁弁付き膨張弁にて構成しているので、圧縮機2の回転数が上昇した状態で電磁弁69を開いたときの差圧が軽減され、騒音も抑制される。 By executing such compressor rotation speed increase control, shortage of the capacity (rotation speed) of the compressor 2 immediately after shifting from the cooling mode to the air conditioning (priority)+battery cooling mode is resolved, and the air conditioning in the vehicle interior is performed. It is possible to improve the compatibility of the cooling of the battery 55 and improve the reliability and the marketability. The control of the compressor 2 after the transition returns to the above-described air conditioning (priority)+rotational speed control in the battery cooling mode. Further, as described above, since the solenoid valve 69 and the auxiliary expansion valve 68 are configured by the expansion valve with the solenoid valve, the differential pressure when the solenoid valve 69 is opened while the rotation speed of the compressor 2 is increased is reduced. The noise is also suppressed.
 また、バッテリ冷却(単独)モードからバッテリ冷却(優先)+空調モードに移行した直後も、圧縮機2の能力が不足する状態となるため、車室内の空調が遅延すると共に、バッテリ55の冷却能力も一時的に低下してしまう。 Immediately after shifting from the battery cooling (single) mode to the battery cooling (priority)+air conditioning mode, the capacity of the compressor 2 becomes insufficient, so that the air conditioning of the vehicle interior is delayed and the cooling capacity of the battery 55 is reduced. Also temporarily drops.
 ここで、バッテリ冷却(単独)モードを実行しているときに、空調操作部53の空調スイッチがONされた場合、空調コントローラ45は空調要求をヒートポンプコントローラ32に出力する。同じく図14の時刻t1でヒートポンプコントローラ32に空調要求が入力された場合、これがモード移行要求となり、ヒートポンプコントローラ32はこの場合の圧縮機回転数上昇制御を開始し、先ず目標熱媒体温度TWOを所定値TWO1だけ低下させる。 Here, when the air conditioning switch of the air conditioning operation unit 53 is turned on while the battery cooling (single) mode is being executed, the air conditioning controller 45 outputs an air conditioning request to the heat pump controller 32. Similarly, when an air conditioning request is input to the heat pump controller 32 at time t1 in FIG. 14, this becomes a mode transition request, and the heat pump controller 32 starts the compressor rotation speed increase control in this case, and first sets the target heat medium temperature TWO to a predetermined value. Decrease the value TWO1.
 これにより、図13のF/F操作量演算部92が算出する圧縮機目標回転数のF/F操作量TGNCcbffが上昇していくので、最終的に算出される圧縮機目標回転数TGNCcbも通常時の値から上昇していき、圧縮機2の実際の回転数も上昇していく。そして、例えば、図14の時刻t2で圧縮機目標回転数TGNCcbが所定値TGNCcb1まで上昇した場合、ヒートポンプコントローラ32は電磁弁35を開き、運転モードをバッテリ冷却(優先)+空調モードに移行させる。 As a result, the F/F operation amount TGNCcbff of the compressor target rotation speed calculated by the F/F operation amount calculation unit 92 of FIG. 13 increases, so that the finally calculated compressor target rotation speed TGNCcb is also normal. As the time value increases, the actual rotation speed of the compressor 2 also increases. Then, for example, when the compressor target rotation speed TGNCcb rises to a predetermined value TGNCcb1 at time t2 in FIG. 14, the heat pump controller 32 opens the electromagnetic valve 35 and shifts the operation mode to the battery cooling (priority)+air conditioning mode.
 このような圧縮機回転数上昇制御実行することにより、バッテリ冷却(単独)モードからバッテリ冷却(優先)+空調モードに移行した直後の圧縮機2の能力(回転数)不足を解消し、バッテリ55の冷却と車室内の空調の両立性を高めて、信頼性と商品性を向上させることができるようになる。尚、移行後の圧縮機2の制御は、前述したバッテリ冷却(優先)+空調モードでの回転数制御に復帰する。また、前述した如く電磁弁35と室内膨張弁8は電磁弁付き膨張弁にて構成しているので、圧縮機2の回転数が上昇した状態で電磁弁35を開いたときの差圧が軽減され、騒音も抑制される。 By executing the compressor rotation speed increase control as described above, the shortage of the capacity (rotation speed) of the compressor 2 immediately after shifting from the battery cooling (single) mode to the battery cooling (priority)+air conditioning mode is resolved, and the battery 55 It is possible to improve the compatibility between the cooling of the vehicle and the air conditioning of the vehicle compartment, and to improve the reliability and the marketability of the vehicle. The control of the compressor 2 after the transition is returned to the above-described battery cooling (priority)+rotation speed control in the air conditioning mode. Further, as described above, since the solenoid valve 35 and the indoor expansion valve 8 are constituted by the expansion valve with the solenoid valve, the differential pressure when the solenoid valve 35 is opened with the rotation speed of the compressor 2 increased is reduced. The noise is also suppressed.
 また、実施例ではヒートポンプコントローラ32が、冷房モードとバッテリ冷却(単独)モードにおいて、吸熱器9と冷媒-熱媒体熱交換器64のうちの何れか一方で冷媒を蒸発させると共に、空調(優先)+バッテリ冷却モードと、バッテリ冷却(優先)+空調モードにおいては、吸熱器9及び冷媒-熱媒体熱交換器64で冷媒を蒸発させるようにしたので、冷房モードとバッテリ冷却(単独)モードでは車室内の冷房とバッテリ55の冷却をそれぞれ行い、空調(優先)+バッテリ冷却モードと、バッテリ冷却(優先)+空調モードでは車室内を冷房しながらバッテリ55の冷却を行うことができるようになる。 In the embodiment, the heat pump controller 32 causes the refrigerant to evaporate in any one of the heat absorber 9 and the refrigerant-heat medium heat exchanger 64 in the cooling mode and the battery cooling (single) mode, and air conditioning (priority). In + battery cooling mode and battery cooling (priority) + air conditioning mode, the refrigerant is evaporated by the heat absorber 9 and the refrigerant-heat medium heat exchanger 64. Therefore, in the cooling mode and the battery cooling (single) mode, the vehicle is cooled. In the air conditioning (priority)+battery cooling mode and in the battery cooling (priority)+air conditioning mode, the interior of the vehicle is cooled and the battery 55 is cooled.
 そして、実施例では冷房モードから空調(優先)+被温調対象冷却モードに移行する際、及び、バッテリ冷却(単独)モードからバッテリ冷却(優先)+空調モードに移行する際、圧縮機回転数上昇制御を実行するようにしているので、冷房モードから空調(優先)+バッテリ冷却モードに移行した直後に車室内に吹き出される空気の温度が上昇し、使用者が不快感を覚える不都合や、バッテリ冷却(単独)モードからバッテリ冷却(優先)+空調モードに移行した直後にバッテリ55の冷却性能が低下する不都合を未然に回避して、車室内の空調とバッテリ55の冷却の両立性を高めることができるようになる。 In the embodiment, the number of revolutions of the compressor is changed when the cooling mode is changed to the air conditioning (priority)+the temperature-controlled cooling mode and when the battery cooling (single) mode is changed to the battery cooling (priority)+the air conditioning mode. Since the rise control is executed, the temperature of the air blown into the passenger compartment immediately after the mode is changed from the cooling mode to the air conditioning (priority)+battery cooling mode is raised, and the user feels uncomfortable. Immediately after shifting from the battery cooling (single) mode to the battery cooling (priority)+air conditioning mode, the inconvenience that the cooling performance of the battery 55 deteriorates is avoided in advance, and the compatibility of the air conditioning in the vehicle interior and the cooling of the battery 55 is improved. Will be able to.
 この場合、実施例では吸熱器9への冷媒の流通を制御する電磁弁35と、冷媒-熱媒体熱交換器64への冷媒の流通を制御する電磁弁69を設け、ヒートポンプコントローラ32が、冷房モードとバッテリ冷却(単独)モードにおいて、電磁弁35と電磁弁69のうちの何れか一方を開き、他方を閉じると共に、空調(優先)+バッテリ冷却モードと、バッテリ冷却(優先)+空調モードにおいては、電磁弁35及び電磁弁69を開くようにしたので、各運転モードを円滑に実行することができるようになる。 In this case, in the embodiment, an electromagnetic valve 35 that controls the flow of the refrigerant to the heat absorber 9 and an electromagnetic valve 69 that controls the flow of the refrigerant to the refrigerant-heat medium heat exchanger 64 are provided, and the heat pump controller 32 cools the air. In the mode and the battery cooling (single) mode, one of the solenoid valve 35 and the solenoid valve 69 is opened and the other is closed, and in the air conditioning (priority)+battery cooling mode and the battery cooling (priority)+air conditioning mode. Since the solenoid valve 35 and the solenoid valve 69 are opened, the respective operation modes can be smoothly executed.
 更に、実施例では電磁弁35を開いて吸熱器温度Teで圧縮機2の回転数を制御し、電磁弁69を閉じる冷房モードと、電磁弁69を開いて熱媒体温度Twで圧縮機2の回転数を制御し、電磁弁35を閉じるバッテリ冷却(単独)モードを実行するようにしているので、車室内の冷房と、バッテリ55の冷却を円滑に行うことができるようになる。 Further, in the embodiment, the electromagnetic valve 35 is opened to control the rotation speed of the compressor 2 by the heat absorber temperature Te, and the electromagnetic valve 69 is closed in the cooling mode, and the electromagnetic valve 69 is opened to set the heat medium temperature Tw of the compressor 2. Since the rotation speed is controlled and the battery cooling (single) mode in which the electromagnetic valve 35 is closed is executed, it is possible to smoothly cool the vehicle interior and cool the battery 55.
 また、実施例では電磁弁35を開き、吸熱器温度Teで圧縮機2の回転数を制御し、熱媒体温度Twで電磁弁69を開閉制御する空調(優先)+バッテリ冷却モードと、電磁弁69を開き、熱媒体温度Twで圧縮機2の回転数を制御し、吸熱器温度Teで電磁弁35を開閉制御するバッテリ冷却(優先)+空調モードを実行するようにしているので、車室内の冷房を行いながらバッテリ55の冷却を行うなかで、状況に応じて車室内の冷房を優先するか、バッテリ55の冷却を優先するかを切り換え、快適な車室内冷房と効果的なバッテリ55の冷却を実現することができるようになる。 Further, in the embodiment, the solenoid valve 35 is opened, the rotation speed of the compressor 2 is controlled by the heat absorber temperature Te, and the solenoid valve 69 is opened/closed by the heat medium temperature Tw. 69 is opened, the rotation speed of the compressor 2 is controlled by the heat medium temperature Tw, and the battery cooling (priority)+air-conditioning mode in which the electromagnetic valve 35 is controlled to be opened/closed by the heat absorber temperature Te is executed. While the battery 55 is being cooled while performing the cooling of the vehicle, it is possible to switch between prioritizing the cooling of the vehicle interior and the cooling of the battery 55 depending on the situation. Cooling can be realized.
 また、この実施例の如く圧縮機回転数上昇制御で、F/F操作量演算部86、92に入力される目標吸熱器温度TEOや目標熱媒体温度TWOを低下させることにより、圧縮機目標回転数TGNCcやTGNCcbを上昇させるようにすれば、冷房モードやバッテリ冷却(単独)モードにおいて、圧縮機回転数上昇制御により的確に圧縮機2の回転数を上昇させることができるようになる。 Further, as in this embodiment, the compressor target rotation speed is controlled to lower the target heat absorber temperature TEO and the target heat medium temperature TWO which are input to the F/F operation amount calculation units 86 and 92, whereby the compressor target rotation speed is reduced. By increasing the numbers TGNCc and TGNCcb, it becomes possible to accurately increase the rotation speed of the compressor 2 by the compressor rotation speed increase control in the cooling mode or the battery cooling (single) mode.
 更に、実施例の如く冷房モードや、バッテリ冷却(単独)モードにおいて、バッテリ冷却要求や空調要求(何れもモード移行要求)が入力された場合、ヒートポンプコントローラ32が圧縮機回転数上昇制御により圧縮機2の回転数を上昇させた後、空調(優先)+バッテリ冷却モードや、バッテリ冷却(優先)+空調モードに移行するようにすれば、空調(優先)+バッテリ冷却モードやバッテリ冷却(優先)+空調モードに移行する前に、確実に圧縮機2の回転数を上昇させておくことができるようになる。 Further, in the cooling mode or the battery cooling (single) mode as in the embodiment, when a battery cooling request or an air conditioning request (both mode transition request) is input, the heat pump controller 32 controls the compressor rotation speed to control the compressor. After increasing the number of revolutions of 2, if the mode is changed to air conditioning (priority)+battery cooling mode or battery cooling (priority)+air conditioning mode, air conditioning (priority)+battery cooling mode or battery cooling (priority) It becomes possible to reliably increase the rotation speed of the compressor 2 before shifting to the + air conditioning mode.
 (13)ヒートポンプコントローラ32による圧縮機回転数上昇制御(その2)
 次に、前述した冷房モード(第1の運転モード)から空調(優先)+バッテリ冷却モード(第2の運転モード)に移行する際に、ヒートポンプコントローラ32が実行する圧縮機回転数上昇制御の他の実施例について説明する。冷房モードにおいて走行用モータの出力Mpowerが高くなった場合には、バッテリ55の温度が上昇するため、その後、バッテリ冷却要求が出されて空調(優先)+バッテリ冷却モードに移行することが予想される。
(13) Compressor rotation speed increase control by the heat pump controller 32 (Part 2)
Next, when shifting from the above-described cooling mode (first operation mode) to air conditioning (priority)+battery cooling mode (second operation mode), other than the compressor rotation speed increase control executed by the heat pump controller 32. An example will be described. When the output Mpower of the traveling motor becomes high in the cooling mode, the temperature of the battery 55 rises. Therefore, it is expected that a battery cooling request is issued thereafter and the mode shifts to the air conditioning (priority)+battery cooling mode. It
 そこで、ヒートポンプコントローラ32は、走行用モータの出力Mpowerが所定の閾値Mpower1以上となった場合、前述した圧縮機回転数上昇制御(目標吸熱器温度TEOを下げる)を実行する。これにより、空調(優先)+バッテリ冷却モードに移行する前に、圧縮機2の回転数を上昇させておき、移行直後の車室内の空調とバッテリ55の冷却の両立性を高めることが可能となる。特に、この場合にはバッテリ冷却要求が入力される前に圧縮機2の回転数を上昇させておくことができるので、早期に空調(優先)+バッテリ冷却モードに移行することができる。 Therefore, when the output Mpower of the traveling motor becomes equal to or higher than a predetermined threshold value Mpower1, the heat pump controller 32 executes the above-described compressor rotation speed increase control (lowers the target heat absorber temperature TEO). As a result, it is possible to increase the rotational speed of the compressor 2 before shifting to the air conditioning (priority)+battery cooling mode, and improve the compatibility of the air conditioning in the vehicle compartment immediately after shifting and the cooling of the battery 55. Become. In this case, in particular, since the rotation speed of the compressor 2 can be increased before the battery cooling request is input, it is possible to quickly shift to the air conditioning (priority)+battery cooling mode.
 (14)ヒートポンプコントローラ32による圧縮機回転数上昇制御(その3)
 次に、図15を参照しながら前述した冷房モード(第1の運転モード)から空調(優先)+バッテリ冷却モード(第2の運転モード)に移行する際に、ヒートポンプコントローラ32が実行する圧縮機回転数上昇制御のもう一つの他の実施例について説明する。
(14) Compressor rotation speed increase control by the heat pump controller 32 (Part 3)
Next, the compressor executed by the heat pump controller 32 when shifting from the cooling mode (first operation mode) described above with reference to FIG. 15 to the air conditioning (priority)+battery cooling mode (second operation mode). Another embodiment of the rotation speed increase control will be described.
 冷房モードにおいて、走行用モータの出力Mpowerが急激に上昇しているときや、バッテリ温度Tcellが急激に上昇しているとき、バッテリ55の発熱量が急激に上昇しているときにも、その後、空調(優先)+バッテリ冷却モードに移行することが予想される。ヒートポンプコントローラ32は、例えば図15の時刻t3で、走行用モータの出力Mpowerが上昇する傾きが所定の閾値X1以上となった場合、又は、バッテリ温度Tcellが情報する傾きが所定の閾値X2以上となった場合、若しくは、バッテリ55の発熱量が所定の閾値X3以上となった場合、ヒートポンプコントローラ32はこの場合の圧縮機回転数上昇制御を開始し、先ず目標熱吸熱器温度TEOを所定値TEO1だけ低下させる。尚、上記各閾値X1~X3は予め実験により求めた値である。 In the cooling mode, even when the output Mpower of the traveling motor is rapidly increasing, the battery temperature Tcell is rapidly increasing, or the heat generation amount of the battery 55 is rapidly increasing, It is expected to shift to air conditioning (priority) + battery cooling mode. The heat pump controller 32, for example, at time t3 in FIG. 15, when the slope of the increase in the output Mpower of the traveling motor is equal to or larger than a predetermined threshold value X1, or when the slope indicated by the battery temperature Tcell is equal to or larger than a predetermined threshold value X2. When the heat generation amount of the battery 55 becomes equal to or higher than the predetermined threshold value X3, the heat pump controller 32 starts the compressor rotation speed increase control in this case, and first sets the target heat absorber temperature TEO to the predetermined value TEO1. Only lower. Each of the threshold values X1 to X3 is a value obtained by an experiment in advance.
 これにより、前述同様に圧縮機目標回転数TGNCcが上昇していくので、圧縮機2の実際の回転数(実回転数)も上昇していく。ヒートポンプコントローラ32は、圧縮機目標回転数TGNCcを所定値TGNCc1まで上昇させる。その後、時刻t4でバッテリ冷却要求が入力されたら、ヒートポンプコントローラ32は空調(優先)+バッテリ冷却モードに移行し、この場合は時刻t5まで運転モード切換処理を行う。そして、この運転モード切換処理中に電磁弁69を開く。 As a result, the target compressor speed TGNCc increases as before, so the actual speed of the compressor 2 (actual speed) also increases. The heat pump controller 32 increases the compressor target rotation speed TGNCc to a predetermined value TGNCc1. After that, when the battery cooling request is input at time t4, the heat pump controller 32 shifts to the air conditioning (priority)+battery cooling mode, and in this case, performs the operation mode switching process until time t5. Then, the solenoid valve 69 is opened during the operation mode switching process.
 このような圧縮機回転数上昇制御により、冷房モードから空調(優先)+バッテリ冷却モードに移行した直後の圧縮機2の能力(回転数)不足を解消し、車室内の空調とバッテリ55の冷却の両立性を高めて、信頼性と商品性を向上させることができるようになる。特に、この場合もバッテリ冷却要求が入力される前に圧縮機2の回転数を上昇させておくことができるので、早期に空調(優先)+バッテリ冷却モードに移行することができる。尚、移行後の圧縮機2の制御は、前述した空調(優先)+バッテリ冷却モードでの回転数制御に復帰する。 By such compressor rotation speed increase control, shortage of the capacity (rotation speed) of the compressor 2 immediately after shifting from the cooling mode to the air conditioning (priority)+battery cooling mode is resolved, and air conditioning in the vehicle compartment and cooling of the battery 55 are performed. It will be possible to improve the compatibility of the above and improve the reliability and the marketability. Especially, in this case as well, since the rotation speed of the compressor 2 can be increased before the battery cooling request is input, it is possible to quickly shift to the air conditioning (priority)+battery cooling mode. The control of the compressor 2 after the transition returns to the above-described air conditioning (priority)+rotational speed control in the battery cooling mode.
 (15)ヒートポンプコントローラ32による圧縮機回転数上昇制御(その4)
 また、冷房モードを実行しているときに、例えば高速道路での高速走行が継続された場合にも、その後、バッテリ55の温度が上昇して空調(優先)+バッテリ冷却モードに移行することが予想される。そこで、ヒートポンプコントローラ32は、冷房モードにおいてGPSナビゲーション装置74から得られるナビゲーション情報が、例えば、今後高速道路を走ることを示していて、バッテリ55の温度が上昇すると予測される場合、前述した圧縮機回転数上昇制御(目標吸熱器温度TEOを下げる)を実行する。
(15) Compressor rotation speed increase control by heat pump controller 32 (Part 4)
Further, when the cooling mode is being executed, for example, even when high-speed traveling on a highway is continued, the temperature of the battery 55 may rise and the mode may shift to the air conditioning (priority)+battery cooling mode. is expected. Therefore, when the heat pump controller 32 indicates that the navigation information obtained from the GPS navigation device 74 in the cooling mode indicates, for example, that the vehicle is traveling on a highway in the future, and the temperature of the battery 55 is predicted to rise, the heat pump controller 32 described above is used. The rotation speed increase control (lowering the target heat absorber temperature TEO) is executed.
 これにより、バッテリ冷却要求が入力される前に圧縮機2の回転数を上昇させておくことができるようになるので、早期に空調(優先)+バッテリ冷却モードに移行することができるようになる。 As a result, the rotational speed of the compressor 2 can be increased before the battery cooling request is input, so that it is possible to quickly shift to the air conditioning (priority)+battery cooling mode. ..
 尚、ヒートポンプコントローラ32は前述した(12)の圧縮機回転数上昇制御に代えて、(13)~(15)の圧縮機回転数上昇制御を実行するものであるが、(13)~(15)の圧縮機回転数上昇制御は、それらの何れか、又は、それらの組み合わせ、若しくは、それらの全てを実行するものとする。 The heat pump controller 32 executes the compressor rotation speed increase control of (13) to (15) instead of the compressor rotation speed increase control of (12) described above. ) The compressor rotation speed increase control in ()) is performed by any one of them, a combination thereof, or all of them.
 (16)圧縮機回転数上昇制御を実行するときの車室内過剰冷房の抑制制御
 ここで、冷房モードにおいて圧縮機2の回転数を上昇させると、空調(優先)+バッテリ冷却モードに移行する前の期間、即ち、図14の時刻t1~t2の期間や、図15の時刻t3~t4の期間は車室内に吹き出される空気の温度が低下する。
(16) Suppressing control of vehicle interior excess cooling when executing compressor rotation speed increase control Here, when the rotation speed of the compressor 2 is increased in the cooling mode, before shifting to the air conditioning (priority)+battery cooling mode. 14, that is, the period from time t1 to t2 in FIG. 14 and the period from time t3 to t4 in FIG. 15, the temperature of the air blown into the vehicle interior decreases.
 そこで、ヒートポンプコントローラ32は、冷房モードから空調(優先)+バッテリ冷却モードに移行する際の圧縮機回転数上昇制御を実行する場合、室内送風機27の運転を抑制する。即ち、室内送風機27の回転数を低下させることで、車室内が過剰に冷房される不都合を解消する。 Therefore, the heat pump controller 32 suppresses the operation of the indoor blower 27 when executing the compressor rotation speed increase control when shifting from the cooling mode to the air conditioning (priority)+battery cooling mode. That is, by reducing the rotation speed of the indoor blower 27, it is possible to eliminate the disadvantage that the vehicle interior is excessively cooled.
 (17)圧縮機回転数上昇制御を実行するときの吹出温度の低下抑制制御
 上記に代えて、若しくは、上記に加えて、圧縮機回転数上昇制御を実行する場合、ヒートポンプコントローラ32がエアミックスダンパ28を制御し、放熱器4に通風する空気の割合を高くするようにしてもよい。これにより、車室内に供給される空気の温度低下が抑制されるので、車室内が過剰に冷房される不都合を解消することができるようになる。
(17) Control for suppressing decrease in blow-out temperature when performing compressor rotation speed increase control When the compressor rotation speed increase control is executed instead of or in addition to the above, the heat pump controller 32 causes the air mix damper to operate. 28 may be controlled to increase the proportion of air ventilated through the radiator 4. As a result, the temperature drop of the air supplied into the vehicle interior is suppressed, so that the inconvenience of excessive cooling of the vehicle interior can be eliminated.
 尚、前述した実施例では熱媒体温度Twを被温調対象の温度を示す指標として採用したが、バッテリ温度Tcellを採用してもよい。また、実施例では熱媒体を循環させてバッテリ55の温調を行うようにしたが、それに限らず、冷媒とバッテリ55(被温調対象)を直接熱交換させるようにしてもよい。 Although the heat medium temperature Tw is adopted as the index indicating the temperature of the temperature-controlled object in the above-mentioned embodiment, the battery temperature Tcell may be adopted. Further, in the embodiment, the heat medium is circulated to control the temperature of the battery 55, but the present invention is not limited to this, and the refrigerant and the battery 55 (object to be temperature-controlled) may be directly heat-exchanged.
 また、実施例では車室内の冷房とバッテリ55の冷却を同時に行う空調(優先)+バッテリ冷却モードとバッテリ冷却(優先)+空調モードで車室内を冷房しながらバッテリ55を冷却することができる車両用空気調和装置1で説明したが、バッテリ55の冷却は冷房中に限らず、他の空調運転、例えば前述した除湿暖房モードとバッテリ55の冷却を同時に行うようにしてもよい。その場合には除湿暖房モードも本発明における空調(単独)モードとなり、電磁弁69を開き、冷媒配管13Fを経て吸熱器9に向かう冷媒の一部を分岐配管67に流入させ、冷媒-熱媒体熱交換器64に流すことになる。 In the embodiment, the vehicle 55 is capable of cooling the battery 55 while cooling the inside of the vehicle in the air conditioning (priority)+battery cooling mode and the battery cooling (priority)+air conditioning mode for simultaneously cooling the vehicle interior and cooling the battery 55. Although the air conditioning apparatus 1 has been described, the cooling of the battery 55 is not limited to during cooling, but other air conditioning operation, for example, the above-described dehumidifying and heating mode and cooling of the battery 55 may be performed at the same time. In that case, the dehumidifying and heating mode also becomes the air conditioning (single) mode in the present invention, the solenoid valve 69 is opened, and a part of the refrigerant flowing toward the heat absorber 9 via the refrigerant pipe 13F is caused to flow into the branch pipe 67, and the refrigerant-heat medium. It will flow to the heat exchanger 64.
 更に、実施例では電磁弁35を吸熱器用弁装置、電磁弁69を被温調対象用弁装置としたが、室内膨張弁8や補助膨張弁68を全閉可能な電動弁にて構成した場合には、各電磁弁35や69は不要となり、室内膨張弁8が本発明における吸熱器用弁装置となり、補助膨張弁68が被温調対象用弁装置となる。 Further, in the embodiment, the solenoid valve 35 is the heat absorber valve device and the solenoid valve 69 is the temperature controlled valve device. However, when the indoor expansion valve 8 and the auxiliary expansion valve 68 are electrically closed valves, Therefore, the solenoid valves 35 and 69 are not required, the indoor expansion valve 8 serves as the heat absorber valve device of the present invention, and the auxiliary expansion valve 68 serves as the temperature controlled valve device.
 更にまた、実施例では吸熱器9と冷媒-熱媒体熱交換器64を本発明における蒸発器としたが、請求項1の発明はそれに限らず、例えば車室内に供給される空気を冷却するメインの蒸発器(実施例の吸熱器9)の他に、もう一つの蒸発器(リアシート用蒸発器等、車室内の他の箇所の冷房、若しくは、車室外の車両の他の箇所を冷却するための蒸発器)を備えた車両用空気調和装置にも有効である。 Furthermore, in the embodiment, the heat absorber 9 and the refrigerant-heat medium heat exchanger 64 are the evaporator of the present invention, but the invention of claim 1 is not limited to this, and for example, a main unit for cooling the air supplied to the passenger compartment is used. In addition to the above-mentioned evaporator (heat absorber 9 of the embodiment), another evaporator (for rear seat evaporator, etc., for cooling other parts of the vehicle interior, or for cooling other parts of the vehicle outside the vehicle interior) It is also effective for a vehicle air conditioner equipped with an (evaporator).
 その場合、メインの蒸発器と、もう一つの蒸発器(リアシート用蒸発器等)のうちの何れかで冷媒を蒸発させる運転モードが本発明における第1の運転モードとなり、双方の蒸発器で冷媒を蒸発させる運転モードが第2の運転モードとなる。 In that case, the operation mode in which the refrigerant is evaporated in either the main evaporator or the other evaporator (e.g., the evaporator for the rear seat) is the first operation mode in the present invention, and the refrigerant is used in both evaporators. The operation mode for evaporating is the second operation mode.
 また、請求項1の発明は、実施例の吸熱器9と冷媒-熱媒体熱交換器64に加えて、もう一つの蒸発器(リアシート用蒸発器等)を設けた車両用空気調和装置にも有効である。その場合には、実施例と上記の組み合わせの他に、例えば、吸熱器9と、もう一つの蒸発器(リアシート用蒸発器等)で冷媒を蒸発させる運転モードが本発明における第1の運転モードとなり、吸熱器9と、もう一つの蒸発器(リアシート用蒸発器等)と、冷媒-熱媒体熱交換器64で冷媒を蒸発させる運転モードが本発明における第2の運転モードとなる。 Further, the invention of claim 1 is also applied to a vehicle air conditioner provided with another evaporator (evaporator for rear seat, etc.) in addition to the heat absorber 9 and the refrigerant-heat medium heat exchanger 64 of the embodiment. It is valid. In that case, in addition to the combination of the embodiment and the above, for example, the operation mode in which the refrigerant is evaporated by the heat absorber 9 and another evaporator (evaporator for rear seat, etc.) is the first operation mode in the present invention. Thus, the operation mode in which the refrigerant is evaporated by the heat absorber 9, another evaporator (evaporator for rear seat, etc.) and the refrigerant-heat medium heat exchanger 64 is the second operation mode in the present invention.
 更に、実施例で説明した冷媒回路Rの構成や数値はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。更にまた、実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、空調(優先)+バッテリ冷却モード等の各運転モードを有する車両用空気調和装置1で本発明を説明したが、それに限らず、例えば冷房モード、空調(優先)+バッテリ冷却モード、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードを実行可能とされた車両用空気調和装置にも本発明は有効である。 Furthermore, it goes without saying that the configuration and numerical values of the refrigerant circuit R described in the embodiments are not limited to those and can be changed without departing from the spirit of the present invention. Furthermore, in the embodiment, the present invention has been described with the vehicle air conditioner 1 having each operation mode such as the heating mode, the dehumidification heating mode, the dehumidification cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode. However, the present invention is also effective for a vehicle air conditioner capable of executing, for example, a cooling mode, an air conditioning (priority)+battery cooling mode, a battery cooling (priority)+air conditioning mode, and a battery cooling (single) mode. ..
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器(蒸発器)
 11 制御装置
 32 ヒートポンプコントローラ(制御装置の一部を構成)
 35 電磁弁(吸熱器用弁装置)
 45 空調コントローラ(制御装置の一部を構成)
 55 バッテリ(被温調対象)
 61 機器温度調整装置
 64 冷媒-熱媒体熱交換器(蒸発器、被温調対象用熱交換器)
 68 補助膨張弁
 69 電磁弁(被温調対象用弁装置)
 72 車両コントローラ
 73 バッテリコントローラ
 77 バッテリ温度センサ
 76 熱媒体温度センサ
 R 冷媒回路
1 Vehicle Air Conditioner 2 Compressor 3 Air Flow Path 4 Radiator 6 Outdoor Expansion Valve 7 Outdoor Heat Exchanger 8 Indoor Expansion Valve 9 Heat Absorber (Evaporator)
11 control device 32 heat pump controller (constituting a part of control device)
35 Solenoid valve (Valve device for heat absorber)
45 Air-conditioning controller (a part of control device)
55 Battery (for temperature control)
61 Equipment temperature adjusting device 64 Refrigerant-heat medium heat exchanger (evaporator, heat exchanger for temperature controlled objects)
68 Auxiliary expansion valve 69 Electromagnetic valve (Valve device for temperature control target)
72 Vehicle Controller 73 Battery Controller 77 Battery Temperature Sensor 76 Heat Medium Temperature Sensor R Refrigerant Circuit

Claims (12)

  1.  冷媒を圧縮する圧縮機と、
     冷媒を蒸発させるための複数の蒸発器と、
     制御装置を少なくとも備えて車室内を空調する車両用空気調和装置において、
     前記制御装置は少なくとも、
     前記蒸発器にて冷媒を蒸発させる第1の運転モードと、
     該第1の運転モードより多い数の前記蒸発器にて冷媒を蒸発させる第2の運転モードを切り換えて実行すると共に、
     前記第1の運転モードから前記第2の運転モードに移行する際、当該第2の運転モードに移行する前に、前記圧縮機の回転数を上昇させる圧縮機回転数上昇制御を実行することを特徴とする車両用空気調和装置。
    A compressor for compressing the refrigerant,
    A plurality of evaporators for evaporating the refrigerant,
    In a vehicle air conditioner that includes at least a control device and air-conditions a vehicle interior,
    The control device is at least
    A first operation mode for evaporating the refrigerant in the evaporator,
    A second operation mode in which the refrigerant is evaporated in a larger number than the first operation mode is switched and executed, and
    When changing from the first operation mode to the second operation mode, before changing to the second operation mode, performing a compressor rotation speed increase control for increasing the rotation speed of the compressor. A characteristic vehicle air conditioner.
  2.  冷媒を蒸発させて前記車室内に供給する空気を冷却するための前記蒸発器としての吸熱器と、
     冷媒を蒸発させて車両に搭載された被温調対象を冷却するための前記蒸発器としての被温調対象用熱交換器を備え、
     前記制御装置は、
     前記第1の運転モードにおいて、前記吸熱器と前記被温調対象用熱交換器のうちの何れか一方で冷媒を蒸発させると共に、
     前記第2の運転モードにおいては、前記吸熱器及び前記被温調対象用熱交換器で冷媒を蒸発させることを特徴とする請求項1に記載の車両用空気調和装置。
    A heat absorber as the evaporator for evaporating a refrigerant to cool the air supplied to the vehicle interior,
    Equipped with a heat exchanger for the temperature controlled object as the evaporator for evaporating the refrigerant to cool the temperature controlled object mounted on the vehicle,
    The control device is
    In the first operation mode, while evaporating the refrigerant in any one of the heat absorber and the heat exchanger for temperature adjustment,
    The vehicle air conditioner according to claim 1, wherein in the second operation mode, the refrigerant is evaporated in the heat absorber and the heat exchanger for temperature adjustment.
  3.  前記吸熱器への冷媒の流通を制御する吸熱器用弁装置と、
     前記被温調対象用熱交換器への冷媒の流通を制御する被温調対象用弁装置を備え、
     前記制御装置は、
     前記第1の運転モードにおいて、前記吸熱器用弁装置と前記被温調対象用弁装置のうちの何れか一方を開き、他方を閉じると共に、
     前記第2の運転モードにおいては、前記吸熱器用弁装置及び前記被温調対象用弁装置を開くことを特徴とする請求項2に記載の車両用空気調和装置。
    A heat absorber valve device for controlling the flow of the refrigerant to the heat absorber,
    A temperature controlled object valve device for controlling the flow of the refrigerant to the temperature controlled object heat exchanger,
    The control device is
    In the first operation mode, either one of the heat absorber valve device and the temperature-controlled object valve device is opened, and the other is closed,
    The air conditioner for a vehicle according to claim 2, wherein in the second operation mode, the heat absorber valve device and the temperature control target valve device are opened.
  4.  前記制御装置は、
     前記第1の運転モードとして、
     前記吸熱器用弁装置を開き、前記吸熱器の温度に基づいて前記圧縮機の回転数を制御し、前記被温調対象用弁装置を閉じる空調(単独)モードと、
     前記被温調対象用弁装置を開き、前記被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて前記圧縮機の回転数を制御し、前記吸熱器用弁装置を閉じる被温調対象冷却(単独)モードを有すると共に、
     前記第2の運転モードとして、
     前記吸熱器用弁装置を開き、前記吸熱器の温度に基づいて前記圧縮機の回転数を制御し、前記被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて前記被温調対象用弁装置を開閉制御する空調(優先)+被温調対象冷却モードと、
     前記被温調対象用弁装置を開き、前記被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて前記圧縮機の回転数を制御し、前記吸熱器の温度に基づいて前記吸熱器用弁装置を開閉制御する被温調対象冷却(優先)+空調モードを有し、
     前記空調(単独)モードから前記空調(優先)+被温調対象冷却モードに移行する際、及び、前記被温調対象冷却(単独)モードから前記被温調対象冷却(優先)+空調モードに移行する際、前記圧縮機回転数上昇制御を実行することを特徴とする請求項3に記載の車両用空気調和装置。
    The control device is
    As the first operation mode,
    An air conditioning (single) mode in which the heat absorber valve device is opened, the rotation speed of the compressor is controlled based on the temperature of the heat absorber, and the temperature controlled target valve device is closed.
    The valve device for the temperature controlled object is opened, the rotation speed of the compressor is controlled based on the temperature of the heat exchanger for the temperature controlled object or the object cooled by it, and the valve device for the heat absorber is closed. In addition to having a temperature controlled cooling (independent) mode,
    As the second operation mode,
    The heat absorber valve device is opened, the rotation speed of the compressor is controlled based on the temperature of the heat absorber, and the temperature is controlled based on the temperature of the temperature control target heat exchanger or the target cooled by it. Air conditioning (priority) that controls opening and closing of the valve device for temperature control + cooling mode for temperature control,
    Open the temperature control target valve device, to control the rotation speed of the compressor based on the temperature of the temperature control target heat exchanger or the target cooled by it, based on the temperature of the heat absorber Has a temperature controlled target cooling (priority) + air conditioning mode for controlling the opening and closing of the heat absorber valve device,
    When shifting from the air conditioning (single) mode to the air conditioning (priority) + temperature controlled cooling mode, and from the temperature controlled cooling (single) mode to the temperature controlled cooling (priority) + air conditioning mode The air conditioner for a vehicle according to claim 3, wherein the compressor rotation speed increase control is executed at the time of transition.
  5.  前記制御装置は、前記空調(単独)モードでは前記吸熱器の目標温度に基づくフィードフォワード演算により前記圧縮機の目標回転数を算出し、前記被温調対象冷却(単独)モードでは前記被温調対象用熱交換器又はそれにより冷却される対象の目標温度に基づくフィードフォワード演算により前記圧縮機の目標回転数を算出すると共に、
     前記圧縮機回転数上昇制御では、前記各目標温度を低下させることにより、前記圧縮機の目標回転数を上昇させることを特徴とする請求項4に記載の車両用空気調和装置。
    In the air conditioning (single) mode, the control device calculates a target rotation speed of the compressor by a feedforward calculation based on the target temperature of the heat absorber, and in the target cooling (single) mode, the temperature adjustment is performed. While calculating the target rotation speed of the compressor by a feedforward calculation based on the target temperature of the target heat exchanger or the target cooled by it,
    The vehicle air conditioner according to claim 4, wherein in the compressor rotation speed increase control, the target rotation speed of the compressor is increased by decreasing each of the target temperatures.
  6.  前記制御装置は、前記空調(単独)モード、又は、前記被温調対象冷却(単独)モードにおいて、所定のモード移行要求が入力された場合、前記圧縮機回転数上昇制御により前記圧縮機の回転数を上昇させた後、前記空調(優先)+被温調対象冷却モード、又は、前記被温調対象冷却(優先)+空調モードに移行することを特徴とする請求項4又は請求項5に記載の車両用空気調和装置。 When a predetermined mode shift request is input in the air conditioning (single) mode or the temperature controlled cooling (single) mode, the control device rotates the compressor by the compressor rotation speed increase control. After increasing the number, the air-conditioning (priority)+controlled cooling target cooling mode or the controlled cooling (preferred)+air-conditioning mode is entered. The vehicle air conditioner described.
  7.  前記被温調対象は前記車両に搭載されたバッテリであり、前記車両の走行用モータは前記バッテリからの給電により駆動され、
     前記制御装置は、前記空調(単独)モードにおいて、所定のモード移行要求が入力された場合、前記空調(優先)+被温調対象冷却モードに移行すると共に、
     前記空調(単独)モードにおいて、前記走行用モータの出力が所定の閾値以上となった場合、又は、前記走行用モータの出力が上昇する傾きが所定の閾値以上となった場合、前記圧縮機回転数上昇制御を実行することを特徴とする請求項4又は請求項5に記載の車両用空気調和装置。
    The temperature controlled object is a battery mounted on the vehicle, the traveling motor of the vehicle is driven by the power supply from the battery,
    In the air conditioning (single) mode, the controller shifts to the air conditioning (priority) + temperature controlled cooling mode when a predetermined mode shift request is input,
    In the air conditioning (single) mode, when the output of the traveling motor is equal to or higher than a predetermined threshold value, or when the inclination of the output of the traveling motor is higher than or equal to a predetermined threshold value, the compressor rotation is performed. The vehicle air conditioner according to claim 4 or 5, wherein the number increase control is executed.
  8.  前記制御装置は、前記空調(単独)モードにおいて、所定のモード移行要求が入力された場合、前記空調(優先)+被温調対象冷却モードに移行すると共に、
     前記空調(単独)モードにおいて、前記被温調対象の温度が上昇する傾きが所定の閾値以上となった場合、前記圧縮機回転数上昇制御を実行することを特徴とする請求項4、請求項5又は請求項7のうちの何れかに記載の車両用空気調和装置。
    In the air conditioning (single) mode, the controller shifts to the air conditioning (priority) + temperature controlled cooling mode when a predetermined mode shift request is input,
    In the air conditioning (single) mode, when the inclination of the temperature of the temperature controlled object rises above a predetermined threshold value, the compressor rotation speed increase control is executed. The vehicle air conditioner according to claim 5 or 7.
  9.  前記制御装置は、前記空調(単独)モードにおいて、所定のモード移行要求が入力された場合、前記空調(優先)+被温調対象冷却モードに移行すると共に、
     前記空調(単独)モードにおいて、前記被温調対象の発熱量が上昇する傾きが所定の閾値以上となった場合、前記圧縮機回転数上昇制御を実行することを特徴とする請求項4、請求項5、請求項7又は請求項8のうちの何れかに記載の車両用空気調和装置。
    In the air conditioning (single) mode, the controller shifts to the air conditioning (priority) + temperature controlled cooling mode when a predetermined mode shift request is input,
    5. In the air conditioning (single) mode, when the inclination of the heat generation amount of the temperature controlled object increases above a predetermined threshold value, the compressor rotation speed increase control is executed. The vehicle air conditioner according to claim 5, claim 7, or claim 8.
  10.  前記制御装置は、前記空調(単独)モードにおいて、所定のモード移行要求が入力された場合、前記空調(優先)+被温調対象冷却モードに移行すると共に、
     前記空調(単独)モードにおいて、ナビゲーション情報から前記被温調対象の温度が上昇すると予測される場合、前記圧縮機回転数上昇制御を実行することを特徴とする請求項4、請求項5、請求項7乃至請求項9のうちの何れかに記載の車両用空気調和装置。
    In the air conditioning (single) mode, the controller shifts to the air conditioning (priority) + temperature controlled cooling mode when a predetermined mode shift request is input,
    In the air conditioning (single) mode, if it is predicted from the navigation information that the temperature of the temperature controlled object will increase, the compressor rotation speed increase control is executed. The vehicle air conditioner according to any one of claims 7 to 9.
  11.  前記吸熱器と熱交換した空気を前記車室内に送給するための室内送風機を備え、
     前記制御装置は、前記空調(単独)モードから前記空調(優先)+被温調対象冷却モードに移行する際の前記圧縮機回転数上昇制御を実行する場合、前記室内送風機の運転を抑制することを特徴とする請求項4乃至請求項10のうちの何れかに記載の車両用空気調和装置。
    An indoor blower for sending the air that has exchanged heat with the heat absorber into the vehicle interior,
    The control device suppresses the operation of the indoor blower when executing the compressor rotation speed increase control when shifting from the air conditioning (single) mode to the air conditioning (priority)+temperature controlled cooling mode. The vehicle air conditioner according to any one of claims 4 to 10.
  12.  前記冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、
     前記吸熱器を経た空気が前記放熱器に通風される割合を調整するためのエアミックスダンパを備え、
     前記制御装置は、前記空調(単独)モードから前記空調(優先)+被温調対象冷却モードに移行する際の前記圧縮機回転数上昇制御を実行する場合、前記エアミックスダンパにより前記車室内に供給される空気の温度低下を抑制することを特徴とする請求項4乃至請求項11のうちの何れかに記載の車両用空気調和装置。
    A radiator for heating the air supplied to the vehicle interior by radiating the refrigerant.
    An air mix damper is provided for adjusting the ratio of the air passing through the heat absorber to the radiator.
    In the case where the control device executes the compressor rotation speed increase control at the time of shifting from the air conditioning (single) mode to the air conditioning (priority)+temperature controlled cooling mode, the controller mixes the air in the vehicle interior by the air mix damper. The vehicle air conditioner according to any one of claims 4 to 11, characterized in that a decrease in temperature of the supplied air is suppressed.
PCT/JP2019/041093 2018-11-27 2019-10-18 Vehicle air conditioner WO2020110509A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112019005898.3T DE112019005898B4 (en) 2018-11-27 2019-10-18 vehicle air conditioning
CN201980074264.2A CN113015639A (en) 2018-11-27 2019-10-18 Air conditioner for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-221266 2018-11-27
JP2018221266A JP7300264B2 (en) 2018-11-27 2018-11-27 Vehicle air conditioner

Publications (1)

Publication Number Publication Date
WO2020110509A1 true WO2020110509A1 (en) 2020-06-04

Family

ID=70853973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041093 WO2020110509A1 (en) 2018-11-27 2019-10-18 Vehicle air conditioner

Country Status (4)

Country Link
JP (1) JP7300264B2 (en)
CN (1) CN113015639A (en)
DE (1) DE112019005898B4 (en)
WO (1) WO2020110509A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112622561A (en) * 2020-12-18 2021-04-09 长城汽车股份有限公司 Passenger compartment and battery cooling method and device and vehicle
CN113879072A (en) * 2021-11-02 2022-01-04 北京汽车集团越野车有限公司 Control method and device of vehicle-mounted air conditioning system
FR3126199A1 (en) * 2021-06-17 2023-02-24 Valeo Systemes Thermiques REFRIGERANT FLUID CIRCUIT CONSTITUTING A HEAT TREATMENT SYSTEM
FR3129197A1 (en) * 2021-11-15 2023-05-19 Valeo Systemes Thermiques Thermal conditioning system
US20230318516A1 (en) * 2022-03-31 2023-10-05 Cummins Inc. Systems and method for controlling flow of coolant to components of a vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114889397A (en) * 2022-05-04 2022-08-12 上海热翼智控系统有限公司 Method for accurately identifying frosting of heat exchanger on outer side of heat pump air-conditioning vehicle and implementation device thereof
CN116101031B (en) * 2023-04-12 2023-07-07 蔚来汽车科技(安徽)有限公司 Vehicle cooling system, control method thereof and vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120297809A1 (en) * 2011-05-26 2012-11-29 Neil Carpenter Refrigerant loop for battery electric vehicle with internal heat exchanger for heat exchange with coolant
JP2013151231A (en) * 2012-01-25 2013-08-08 Denso Corp Vehicle air-conditioning system
JP2014037178A (en) * 2012-08-13 2014-02-27 Calsonic Kansei Corp Thermal management system for electric vehicle
US20150013367A1 (en) * 2012-03-28 2015-01-15 Magna E-Car Systems Of America, Inc. Vehicle cooling with adjustable flow expansion valve
US20160221413A1 (en) * 2015-02-04 2016-08-04 Ford Global Technologies, Llc Climate control system for a vehicle
JP2018184108A (en) * 2017-04-26 2018-11-22 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1728662B1 (en) * 2005-06-02 2007-07-25 Delphi Technologies, Inc. Refrigeration system for an air conditioner
JP5860361B2 (en) 2012-08-13 2016-02-16 カルソニックカンセイ株式会社 Thermal management system for electric vehicles
JP6073653B2 (en) * 2012-11-09 2017-02-01 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6125312B2 (en) 2013-04-26 2017-05-10 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6174414B2 (en) * 2013-08-07 2017-08-02 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6247993B2 (en) * 2014-04-18 2017-12-13 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6418779B2 (en) * 2014-05-08 2018-11-07 サンデンホールディングス株式会社 Air conditioner for vehicles
US20170088006A1 (en) * 2015-09-24 2017-03-30 Ford Global Technologies, Llc Hybrid vehicle with combined cabin and battery cooling
US10293658B2 (en) 2016-04-29 2019-05-21 Ford Global Technologies, Llc Traction battery cooling system for an electrified vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120297809A1 (en) * 2011-05-26 2012-11-29 Neil Carpenter Refrigerant loop for battery electric vehicle with internal heat exchanger for heat exchange with coolant
JP2013151231A (en) * 2012-01-25 2013-08-08 Denso Corp Vehicle air-conditioning system
US20150013367A1 (en) * 2012-03-28 2015-01-15 Magna E-Car Systems Of America, Inc. Vehicle cooling with adjustable flow expansion valve
JP2014037178A (en) * 2012-08-13 2014-02-27 Calsonic Kansei Corp Thermal management system for electric vehicle
US20160221413A1 (en) * 2015-02-04 2016-08-04 Ford Global Technologies, Llc Climate control system for a vehicle
JP2018184108A (en) * 2017-04-26 2018-11-22 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112622561A (en) * 2020-12-18 2021-04-09 长城汽车股份有限公司 Passenger compartment and battery cooling method and device and vehicle
FR3126199A1 (en) * 2021-06-17 2023-02-24 Valeo Systemes Thermiques REFRIGERANT FLUID CIRCUIT CONSTITUTING A HEAT TREATMENT SYSTEM
CN113879072A (en) * 2021-11-02 2022-01-04 北京汽车集团越野车有限公司 Control method and device of vehicle-mounted air conditioning system
CN113879072B (en) * 2021-11-02 2024-03-22 北京汽车集团越野车有限公司 Control method and device of vehicle-mounted air conditioning system
FR3129197A1 (en) * 2021-11-15 2023-05-19 Valeo Systemes Thermiques Thermal conditioning system
US20230318516A1 (en) * 2022-03-31 2023-10-05 Cummins Inc. Systems and method for controlling flow of coolant to components of a vehicle

Also Published As

Publication number Publication date
CN113015639A (en) 2021-06-22
JP2020083099A (en) 2020-06-04
JP7300264B2 (en) 2023-06-29
DE112019005898B4 (en) 2023-08-03
DE112019005898T5 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
JP6997558B2 (en) Vehicle air conditioner
WO2020110509A1 (en) Vehicle air conditioner
WO2020075446A1 (en) Vehicle air conditioning device
JP7372732B2 (en) Vehicle air conditioner
WO2020129495A1 (en) Vehicle air conditioning device
JP2020179707A (en) Vehicular control system
WO2020100410A1 (en) Vehicle air-conditioning device
WO2020129493A1 (en) Vehicle air-conditioning apparatus
WO2020090255A1 (en) Air conditioning device for vehicle
WO2020121737A1 (en) Vehicular air-conditioning device
WO2021199776A1 (en) Air conditioner for vehicle
CN113195272B (en) Air conditioning device for vehicle
WO2020166274A1 (en) Vehicle air conditioner
WO2022064944A1 (en) Air conditioner for vehicle
JP7280689B2 (en) Vehicle air conditioner
WO2020179492A1 (en) Vehicle air conditioner
WO2020100524A1 (en) Vehicle air-conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890884

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19890884

Country of ref document: EP

Kind code of ref document: A1