WO2020105646A1 - Method for producing graphene, and graphene production equipment - Google Patents

Method for producing graphene, and graphene production equipment

Info

Publication number
WO2020105646A1
WO2020105646A1 PCT/JP2019/045320 JP2019045320W WO2020105646A1 WO 2020105646 A1 WO2020105646 A1 WO 2020105646A1 JP 2019045320 W JP2019045320 W JP 2019045320W WO 2020105646 A1 WO2020105646 A1 WO 2020105646A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
graphene
electrodes
pair
electrolytic solution
Prior art date
Application number
PCT/JP2019/045320
Other languages
French (fr)
Japanese (ja)
Inventor
橋本 英樹
英孝 阿相
勇太 仁科
Original Assignee
学校法人工学院大学
国立大学法人岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人工学院大学, 国立大学法人岡山大学 filed Critical 学校法人工学院大学
Priority to JP2020557568A priority Critical patent/JP7357936B2/en
Publication of WO2020105646A1 publication Critical patent/WO2020105646A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals

Definitions

  • the present disclosure relates to a graphene manufacturing method and a graphene manufacturing apparatus.
  • Graphene which is a sheet-like crystalline carbon composed of carbon atoms, has excellent properties such as conductivity, thermal stability, toughness, and flexibility, and is used in various devices such as semiconductor devices, solar cells, and transparent conductive films. Is expected to be used in the field of.
  • graphene As a practical production method of graphene, a top-down method in which graphene is obtained by delamination using graphite as a starting material is drawing attention.
  • graphite is chemically exfoliated using strong oxidizer such as potassium permanganate and concentrated sulfuric acid (strong acid), which is an intercalant, to prepare graphene. Since a required reagent and a large amount of pure water are consumed, development of a new stripping method is required.
  • a high voltage of 1100V was applied by immersing an anode, a cathode, and a graphite powder in an organic electrolytic solution containing tetrabutylammonium tetrafluoroborate (Bu 4 NBF 4 ) and N-methyl-2-pyrrolidone (NMP). After that, a method of obtaining graphene by performing high shearing treatment at 330000 / s for 1 hour is known (see Non-Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2012-131691
  • Patent Document 2 Japanese Patent Publication No. 2016-534010
  • Patent Document 3 Japanese Patent Publication No. 2017-502168
  • Patent Document 4 Japanese Patent Publication No. 2017-538041
  • Patent Publication 5 International Publication No. 2012/073861
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2018-35056
  • Patent Document 7 International Publication No. 2017/100968
  • the present disclosure has been made in view of the above circumstances, and provides a graphene manufacturing method and a graphene manufacturing apparatus that can use graphite particles or powder as a raw material and can relatively easily manufacture graphene.
  • the purpose is to do.
  • Means for solving the above problems include the following aspects.
  • a pair of electrodes is arranged in an electrolytic solution containing at least one electrolyte selected from the group consisting of an inorganic acid, an inorganic salt, an organic acid, and a base, and water, and between the pair of electrodes.
  • a recovery step of recovering graphene generated by peeling from the graphite Of producing graphene including.
  • ⁇ 3> The method for producing graphene according to ⁇ 2>, wherein the concentration of the sulfuric acid in the electrolytic solution is 1 mM or more and 0.5 M or less.
  • ⁇ 4> The method for producing graphene according to any one of ⁇ 1> to ⁇ 3>, wherein the graphite is in the form of particles or powder.
  • ⁇ 5> The method for producing graphene according to any one of ⁇ 1> to ⁇ 4>, in which a voltage is applied between the pair of electrodes in a state where the graphite is housed in a filter through which the electrolytic solution can pass. ..
  • ⁇ 6> The method for producing graphene according to any one of ⁇ 1> to ⁇ 5>, in which the voltage applied between the pair of electrodes is in the range of 5 V to 80 V.
  • the graphene production apparatus includes a holding member that holds the graphite.
  • the holding member contains the graphite and includes an insulating filter that is permeable to the electrolytic solution.
  • the graphene production apparatus including a stirring device that disperses the graphite in the electrolytic solution by stirring the electrolytic solution.
  • the graphene production apparatus including a moving device that moves the graphite between the pair of electrodes.
  • a graphene production method and a graphene production apparatus which can use graphite particles or powder as a raw material and can relatively easily produce graphene.
  • the numerical range represented by “to” means the range including the numerical values before and after “to” as the lower limit value and the upper limit value.
  • the term “process” in the present specification is not limited to an independent process, and even when it cannot be clearly distinguished from other processes, the term is used as long as the intended purpose of the process is achieved. included.
  • bipolar electrochemistry a sample to be treated (bipolar electrode) is placed between insoluble drive electrodes, and a voltage is applied to the drive electrodes, and the potential gradient formed between the drive electrodes is used to create a bipolar electrode.
  • bipolar electrode a sample to be treated
  • it is a method of performing asymmetric electrolytic treatment.
  • the present inventors used an electrolytic solution containing at least one electrolyte selected from the group consisting of an inorganic acid, an inorganic salt, an organic acid, and a base, and arranged graphite as a bipolar electrode between a pair of electrodes. It has been found that the graphene can be easily manufactured by applying a voltage to peel the graphite surface regardless of the shape of the graphite.
  • At least one electrolyte selected from the group consisting of an inorganic acid, an inorganic salt, an organic acid, and a base, and water.
  • a pair of electrodes (may be referred to as “driving electrodes”) are arranged in an electrolyte solution containing (hereinafter, may be simply referred to as “electrolyte solution”), and between the pair of electrodes, In a state where graphite is arranged without contact with the pair of electrodes, a step of peeling graphene from the graphite by applying a voltage between the pair of electrodes, and a graphene produced by peeling from the graphite The method includes a collecting step of collecting.
  • Electrode As the at least one electrolyte selected from the group consisting of an inorganic acid, an inorganic salt, an organic acid, and a base contained in the electrolytic solution, graphite is placed between a pair of electrodes to apply a voltage to the graphite. There is no particular limitation as long as the graphene can be peeled off.
  • Examples of the electrolytic solution that can be used in the method for producing graphene of the present disclosure include an electrolytic solution containing sulfuric acid, phosphoric acid, oxalic acid, sodium sulfate, ammonium sulfate, potassium sulfate, potassium hydroxide, sodium hydroxide, or hydrogen peroxide.
  • a mixed electrolytic solution containing two or more kinds of these electrolytes is preferred.
  • sulfuric acid is preferred as the electrolyte.
  • water can be used because it can be used as an electrolytic solution by dissolving the electrolyte to be used, and water is preferable from the viewpoint of handleability and cost.
  • another solvent or additive may be added as long as it does not prevent the exfoliation of graphene from graphite by the method of the present disclosure.
  • a sulfuric acid solution When a sulfuric acid solution is used as the electrolytic solution, a low-concentration sulfuric acid solution that is easy to handle can be preferably used in the method for producing graphene of the present disclosure. If the concentration of sulfuric acid in the electrolytic solution is too low, it is difficult to conduct electricity between the drive electrodes, and it is difficult for graphite to peel off. If the concentration of sulfuric acid is too high, graphite is difficult to peel off. From the viewpoint of easily exfoliating graphene from graphite, the sulfuric acid concentration is preferably 1 mM to 0.5 M, more preferably 10 mM to 0.2 M, and particularly preferably 10 mM to 0.1 M.
  • the temperature of the electrolytic solution is not particularly limited, but if the temperature of the electrolytic solution is too low, the voltage applied between the driving electrodes may increase, while if it is too high, the driving electrodes (anode, cathode) may be energized during electrolysis. ), The temperature of the electrolytic solution rises, and the concentration of the electrolytic solution may change due to evaporation of the solvent. Therefore, the temperature of the electrolytic solution during electrolysis is, for example, preferably 5 to 70 ° C., more preferably 10 to 60 ° C., and particularly preferably 20 to 50 ° C.
  • the drive electrode is not particularly limited as long as it is made of a material that is not corroded by the electrolytic solution and does not easily chemically change even when a voltage is applied.
  • a platinum (Pt) electrode, a gold electrode, and a carbon electrode are preferable, and an electrode obtained by coating a highly corrosion-resistant metal (for example, titanium, tantalum, niobium, etc.) with platinum, gold or the like may be used, but particularly a Pt electrode. Is preferred.
  • the voltage applied between the pair of electrodes is preferably 5 to 80 V, more preferably 15 to 75 V, and particularly preferably 20 to 75 V.
  • the position of the pair of electrodes is not particularly limited as long as graphite is arranged between the electrodes and graphene can be separated from the graphite when a voltage is applied between the electrodes, but a higher voltage is required as the distance between the electrodes increases. Become. Therefore, the distance between the electrodes is preferably 5 to 100 mm, for example.
  • the shape and size of graphite which is a raw material for graphene, is not particularly limited, and may be any shape such as plate-like, rod-like, particle-like, and powder-like.
  • the graphite may be arranged between the pair of drive electrodes (anode and cathode), may be located between the anode and the cathode, or may be arranged on the cathode side or a position close to the anode side.
  • graphite obtained from nature is usually in the form of particles or powder, and can be obtained at a lower cost than a graphite plate molded from natural graphite.
  • the graphene production apparatus of the present disclosure includes a container containing an electrolytic solution containing at least one electrolyte selected from the group consisting of an inorganic acid, an inorganic salt, an organic acid, and a base, and the container, Graphite for arranging graphite between the pair of electrodes arranged, a power supply for applying a voltage between the pair of electrodes, and the pair of electrodes arranged in the container without contacting the pair of electrodes Arranging means, and.
  • FIG. 1 schematically illustrates an example (first embodiment) of a graphene manufacturing apparatus that performs a peeling step in the graphene manufacturing method of the present disclosure.
  • the pair of electrodes 30, 32 are arranged in the container 40 in which the electrolytic solution 20 is stored, and the graphite plate 10 held by the holding member 12 such as a clip as the graphite arranging means is the pair of electrodes 30, 32.
  • the electrodes 30 and 32 are arranged in a suspended state without coming into contact with the electrodes 30 and 32. Then, a voltage is applied between the electrodes 30 and 32 to energize them.
  • the graphite plate 10 functions as a bipolar electrode, and the graphene can be separated from the surface of the graphite plate 10 with the energization between the pair of electrodes 30 and 32.
  • the graphene generated by peeling from the graphite plate 10 may be recovered from the electrolytic solution using a filter or the like, and then washed with water, alcohol or the like, if necessary, and dispersed in a solvent or dried. ..
  • FIG. 2 schematically illustrates another example (second embodiment) of the graphene production apparatus that performs the peeling step in the graphene production method of the present disclosure.
  • an insulating filter 14 that accommodates graphite between the pair of electrodes 30 and 32 and that is permeable to the electrolytic solution 20 is arranged.
  • the graphite in the filter 14 serves as a bipolar electrode. It can function and exfoliate graphene from graphite.
  • the graphene generated by peeling from the graphite can be retained in the filter 14, so that it can be efficiently collected.
  • FIG. 3 schematically illustrates another example (third embodiment) of the graphene manufacturing apparatus that performs the peeling step in the graphene manufacturing method of the present disclosure.
  • a pair of electrodes 30 and 32 are arranged facing each other along the side wall surface of the container 40, and graphite 50 in the form of particles or powder is dispersed in the electrolytic solution 20 between the pair of electrodes 30 and 32.
  • graphite 50 in the form of particles or powder is dispersed in the electrolytic solution 20 between the pair of electrodes 30 and 32.
  • the graphite 50 is placed between the pair of electrodes 30, 32 without contacting the electrodes 30, 32 and functions as a bipolar electrode.
  • the graphene can be separated from the graphite 50.
  • the particulate or powdery graphite 50 is dispersed in the electrolyte solution 20, some graphite may come into contact with one of the electrodes 30, 32, but most of the graphite 50 has electrodes 30, 32.
  • the graphene can be separated from the graphite 50 by being disposed between the electrodes 30 and 32 without making contact with the.
  • the electrolytic solution 20 may be stirred by a stirrer so that the particulate or powdery graphite 50 in the electrolytic solution 20 is placed between the electrodes 30 and 32 as much as possible.
  • the stirrer 16 may be placed in the container 40 and stirred to suppress the precipitation of the graphite 50, and the graphene may be separated from the entire graphite 50 dispersed in the electrolytic solution, or air may be sent from a blower pump. You may stir by bubbling.
  • the graphene manufacturing method and the manufacturing apparatus of the present disclosure are not limited to the above-described embodiments, and other embodiments may be used. It may be performed, and may include other steps other than the peeling step and the collecting step. As another step, for example, a step of sonicating an electrolytic solution containing graphene to miniaturize the graphene after the peeling step can be mentioned.
  • FIG. 15 shows an example of a method (graphene production apparatus) for exfoliating graphene from graphite while circulating an electrolytic solution.
  • FIG. 15 is a schematic view seen from above the container 40, and illustration of the power source connected to the drive electrodes 30 and 32 is omitted.
  • a pipe 62 for circulating the electrolytic solution 20 is connected to both sides of the container 40, and the electrolytic solution 40 in the container 40 is circulated through the pipe 62 by a circulation pump 60.
  • a rise in bath temperature can be suppressed.
  • a trap such as a filter for collecting the graphene separated from the graphite 10 in the middle of the tube 62, the graphene can be efficiently collected.
  • graphene may be peeled off while moving the graphite between the pair of electrodes by using a moving device that moves the graphite in the peeling step.
  • 16 to 18 show an example of a method of exfoliating graphene while moving graphite (an example of a graphene manufacturing apparatus). 16 to 18, the electrolytic solution and the container are not shown.
  • the graphite 10 is held in the in-plane direction of the electrodes 30 and 32 (direction perpendicular and horizontal to the direction in which the electrodes 30 and 32 face each other) (see FIG. (Not shown) together with the drive electrodes 30 and 32, or as shown in FIG.
  • the filter 14 accommodating graphite in the form of particles or powder is driven electrode 30. , 32 may be used.
  • the graphene is peeled off while moving the graphite between the electrodes, it is possible to continuously process and mass production becomes possible.
  • the method and apparatus for manufacturing graphene of the present disclosure are not limited to the above-described embodiments, and a plurality of embodiments may be combined.
  • a sulfuric acid concentration of 1 mmol / dm 3 to 0.5 mol / dm 3 (1 mM to 0.1 mm) was applied to a graphite plate (sample immersion area: 6.7 cm 2 ) having a width of 10 mm and a thickness of 1 mm. 5 M) and constant current electrolysis was performed for 60 minutes.
  • FIG. 6 shows an optical microscope image and a scanning electron microscope (SEM) image of a peeled product obtained by performing electrolytic treatment at 20 mmol / dm 3 . Since a large number of flaky substances have been confirmed, even if the electricity is not directly applied, a graphite plate is placed between a pair of driving electrodes and subjected to electrolytic treatment, so that minute graphite is exfoliated and graphene is generated. It became clear. From the viewpoint of the peeling ratio, the optimum concentration of sulfuric acid was determined to be 20 mmol / dm 3 , and the voltage at this time was about 50 V, which is a voltage that can be sufficiently realized even in consideration of industrial use. I can say.
  • SEM scanning electron microscope
  • an electrolytic solution containing an inexpensive inorganic acid such as sulfuric acid can be used, and since the shape and size of graphite used as a raw material for graphene are not limited, inexpensive natural graphite powder is applied. By doing so, it is possible that graphene can be mass-produced at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Provided are: a method for producing graphene, the method including a stripping step for applying a voltage between a pair of electrodes 30, 32 in a state in which the pair of electrodes are disposed in an electrolyte solution 20 that includes water and at least one electrolyte selected from the group consisting of inorganic acids, inorganic salts, organic acids, and bases, and in which graphite 10 is disposed between the pair of electrodes without being in contact with the electrodes, whereby graphene is stripped from the graphite, and a recovery step for recovering the graphene generated by stripping from the graphite; and graphene production equipment for implementing the method.

Description

グラフェンの製造方法及びグラフェン製造装置Graphene manufacturing method and graphene manufacturing apparatus
 本開示は、グラフェンの製造方法及びグラフェン製造装置に関する。 The present disclosure relates to a graphene manufacturing method and a graphene manufacturing apparatus.
 炭素原子から構成されるシート状の結晶炭素であるグラフェンは、導電性、熱安定性、強靱性、柔軟性など優れた特性を有しており、半導体素子、太陽電池、透明導電膜等の種々の分野での利用が期待されている。 Graphene, which is a sheet-like crystalline carbon composed of carbon atoms, has excellent properties such as conductivity, thermal stability, toughness, and flexibility, and is used in various devices such as semiconductor devices, solar cells, and transparent conductive films. Is expected to be used in the field of.
 グラフェンの実用的な生産手法として、グラファイトを出発物質として層間剥離によりグラフェンを得るトップダウン的手法が注目されている。
 一般的には、過マンガン酸カリウムのような強力な酸化剤とインターカラントである濃硫酸(強酸)を用いて、グラファイトを化学的に剥離して、グラフェンを作製するが、取扱いに特に注意を要する試薬と大量の純水を消費するため、新しい剥離法の開発が求められている。
As a practical production method of graphene, a top-down method in which graphene is obtained by delamination using graphite as a starting material is drawing attention.
Generally, graphite is chemically exfoliated using strong oxidizer such as potassium permanganate and concentrated sulfuric acid (strong acid), which is an intercalant, to prepare graphene. Since a required reagent and a large amount of pure water are consumed, development of a new stripping method is required.
 近年、グラファイトを電極として電解液中で通電することで、グラファイトの層間剥離を起こし、グラフェンを得る電気化学的剥離法が注目されている(例えば、特許文献1~7参照)。例えば、グラファイトを陽極として低濃度硫酸を用いて比較的低い電圧(例えば10V)で電解を行うと、1時間以内という短時間でグラファイトを剥離し、グラフェンを得ることができる。 In recent years, attention has been paid to an electrochemical stripping method in which graphite is used as an electrode in an electrolytic solution to cause delamination of graphite to obtain graphene (see, for example, Patent Documents 1 to 7). For example, when graphite is used as an anode and low-concentration sulfuric acid is used to perform electrolysis at a relatively low voltage (for example, 10 V), the graphite can be exfoliated in a short time of less than 1 hour to obtain graphene.
 一方、テトラブチルアンモニウムテトラフルオロボレート(BuNBF)及びN-メチル-2-ピロリドン(NMP)を含む有機電解液中に、陽極、陰極、グラファイト粉末を浸漬して1100Vの高電圧を印加した後、330000/sで1時間の高剪断処理を施すことでグラフェンを得る方法が知られている(非特許文献1参照)。 On the other hand, a high voltage of 1100V was applied by immersing an anode, a cathode, and a graphite powder in an organic electrolytic solution containing tetrabutylammonium tetrafluoroborate (Bu 4 NBF 4 ) and N-methyl-2-pyrrolidone (NMP). After that, a method of obtaining graphene by performing high shearing treatment at 330000 / s for 1 hour is known (see Non-Patent Document 1).
  特許文献1:特開2012-131691号公報
  特許文献2:特表2016-534010号公報
  特許文献3:特表2017-502168号公報
  特許文献4:特表2017-538041号公報
  特許文献5:国際公開第2012/073861号
  特許文献6:特開2018-35056号公報
  特許文献7:国際公開第2017/100968号
Patent Document 1: Japanese Patent Application Laid-Open No. 2012-131691 Patent Document 2: Japanese Patent Publication No. 2016-534010 Patent Document 3: Japanese Patent Publication No. 2017-502168 Japanese Patent Document 4: Japanese Patent Publication No. 2017-538041 Japanese Patent Publication 5: International Publication No. 2012/073861 Patent Document 6: Japanese Unexamined Patent Publication No. 2018-35056 Patent Document 7: International Publication No. 2017/100968
 グラフェンを応用した末端製品の市場予測は2030年において数兆円にものぼるとの予測があるが、グラフェンの安価な製造方法が確立していないため、現在市場に出回っている高品位グラフェンは極めて高価である。
 例えば特許文献1~5に開示されているようなグラファイト電極に通電してグラフェンを製造する手法を適用する場合、電極として使用するグラフェンを得るために、例えば、ポリイミドを約3000℃で加熱して作製した高価なグラファイト単一箔やグラファイトの成形体を用いる必要がある。また、グラファイト電極からグラフェンが剥離するに伴い、グラファイト電極は徐々に小さくなるため、ある程度小さくなったこところでグラファイト電極を交換する必要がある。
It is predicted that the market for end products using graphene will reach several trillion yen in 2030, but the high-quality graphene currently on the market is extremely low because a cheap manufacturing method for graphene has not been established. It is expensive.
For example, when applying a method of producing graphene by energizing a graphite electrode as disclosed in Patent Documents 1 to 5, in order to obtain graphene to be used as an electrode, for example, polyimide is heated at about 3000 ° C. It is necessary to use the produced expensive graphite single foil or a molded body of graphite. Further, as the graphene is peeled off from the graphite electrode, the graphite electrode gradually becomes smaller, so it is necessary to replace the graphite electrode when it becomes small to some extent.
 一方、天然黒鉛粉末は安価(グラファイト単一箔の1/100程度)に入手することができるが、黒鉛粉末には電極を取り付けることができない。そのため、グラファイトを電極として通電させてグラフェンを得る手法では、天然黒鉛粉末を用いて電解処理を施すことができない。
 この点、非特許文献1に開示されている方法では、グラファイト粉末からグラフェンを製造することが可能であるが、高価な有機電解液と1100Vという著しく高い電圧が必要であり、更には電解後に機械的な剪断処理が必要であり、工業的適用性は極めて低い。
On the other hand, natural graphite powder can be obtained at low cost (about 1/100 of that of graphite single foil), but electrodes cannot be attached to graphite powder. Therefore, it is not possible to perform electrolytic treatment using natural graphite powder by the method of obtaining electric power by using graphite as an electrode to obtain graphene.
In this respect, according to the method disclosed in Non-Patent Document 1, it is possible to produce graphene from graphite powder, but an expensive organic electrolytic solution and a remarkably high voltage of 1100 V are required, and further, after the electrolysis, a machine is used. Shear treatment is required, and industrial applicability is extremely low.
 本開示は、上記事情に鑑みてなされたものであり、原料としてグラファイトの粒子又は粉末を用いることもでき、比較的簡便にグラフェンを製造することができるグラフェンの製造方法及びグラフェンの製造装置を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and provides a graphene manufacturing method and a graphene manufacturing apparatus that can use graphite particles or powder as a raw material and can relatively easily manufacture graphene. The purpose is to do.
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> 無機酸、無機塩、有機酸、及び塩基からなる群より選ばれる少なくとも1種の電解質と水とを含む電解液中に、一対の電極を配置し、かつ、前記一対の電極間に、前記一対の電極とは接触せずにグラファイトを配置した状態で、前記一対の電極間に電圧を印加することにより、前記グラファイトからグラフェンを剥離させる剥離工程と、
 前記グラファイトから剥離して生成したグラフェンを回収する回収工程と、
を含むグラフェンの製造方法。
<2> 前記電解液が、前記電解質として硫酸を含む<1>に記載のグラフェンの製造方法。
<3> 前記電解液における前記硫酸の濃度が、1mM以上0.5M以下である<2>に記載のグラフェンの製造方法。
<4> 前記グラファイトが、粒子状又は粉末状である<1>~<3>のいずれか1つに記載のグラフェンの製造方法。
<5> 前記グラファイトを、前記電解液が透過可能なフィルターに収容した状態で、前記一対の電極間に電圧を印加する<1>~<4>のいずれか1つに記載のグラフェンの製造方法。
<6> 前記一対の電極間に印加する電圧が、5V~80Vの範囲である<1>~<5>のいずれか1つに記載のグラフェンの製造方法。
<7> 無機酸、無機塩、有機酸、及び塩基からなる群より選ばれる少なくとも1種の電解質と水とを含む電解液が収容された容器と、
 前記容器内に配置された一対の電極と、
 前記一対の電極間に電圧を印加する電源と、
 前記容器内に配置された前記一対の電極間に、前記一対の電極とは接触せずにグラファイトを配置させるグラファイト配置手段と、
を有するグラフェン製造装置。
<8> 前記グラファイト配置手段が、前記グラファイトを保持する保持部材を含む<7>に記載のグラフェン製造装置。
<9> 前記保持部材が、前記グラファイトを収容し、かつ、前記電解液が透過可能な絶縁性のフィルターを含む<8>に記載のグラフェン製造装置。
<10> 前記電解液を攪拌することにより、前記電解液中の前記グラファイトを分散させる撹拌装置を含む<7>に記載のグラフェン製造装置。
<11> 前記グラファイトを前記一対の電極間で移動させる移動装置を含む<7>~<10>のいずれか1つに記載のグラフェン製造装置。
<12> 前記容器内の前記電解液を循環させる循環装置を含む<7>~<11>のいずれか1つに記載のグラフェン製造装置。
Means for solving the above problems include the following aspects.
<1> A pair of electrodes is arranged in an electrolytic solution containing at least one electrolyte selected from the group consisting of an inorganic acid, an inorganic salt, an organic acid, and a base, and water, and between the pair of electrodes. A peeling step of peeling graphene from the graphite by applying a voltage between the pair of electrodes in a state where the graphite is arranged without contact with the pair of electrodes,
A recovery step of recovering graphene generated by peeling from the graphite,
Of producing graphene including.
<2> The method for producing graphene according to <1>, wherein the electrolytic solution contains sulfuric acid as the electrolyte.
<3> The method for producing graphene according to <2>, wherein the concentration of the sulfuric acid in the electrolytic solution is 1 mM or more and 0.5 M or less.
<4> The method for producing graphene according to any one of <1> to <3>, wherein the graphite is in the form of particles or powder.
<5> The method for producing graphene according to any one of <1> to <4>, in which a voltage is applied between the pair of electrodes in a state where the graphite is housed in a filter through which the electrolytic solution can pass. ..
<6> The method for producing graphene according to any one of <1> to <5>, in which the voltage applied between the pair of electrodes is in the range of 5 V to 80 V.
<7> A container containing an electrolytic solution containing at least one electrolyte selected from the group consisting of an inorganic acid, an inorganic salt, an organic acid, and a base, and water,
A pair of electrodes arranged in the container,
A power supply for applying a voltage between the pair of electrodes,
Between the pair of electrodes arranged in the container, graphite arrangement means for arranging graphite without contacting the pair of electrodes,
And a graphene manufacturing apparatus having the same.
<8> The graphene production apparatus according to <7>, wherein the graphite placement means includes a holding member that holds the graphite.
<9> The graphene production apparatus according to <8>, wherein the holding member contains the graphite and includes an insulating filter that is permeable to the electrolytic solution.
<10> The graphene production apparatus according to <7>, including a stirring device that disperses the graphite in the electrolytic solution by stirring the electrolytic solution.
<11> The graphene production apparatus according to any one of <7> to <10>, including a moving device that moves the graphite between the pair of electrodes.
<12> The graphene production apparatus according to any one of <7> to <11>, including a circulation device that circulates the electrolytic solution in the container.
 本開示によれば、原料としてグラファイトの粒子又は粉末を用いることもでき、比較的簡便にグラフェンを製造することができるグラフェンの製造方法及びグラフェンの製造装置が提供される。 According to the present disclosure, there are provided a graphene production method and a graphene production apparatus, which can use graphite particles or powder as a raw material and can relatively easily produce graphene.
本開示のグラフェンの製造方法においてグラファイト板を用いて剥離工程を行うグラフェン製造装置の一例(第一実施形態)を示す概略図である。It is a schematic diagram showing an example (first embodiment) of a graphene manufacturing device which performs a peeling process using a graphite board in a manufacturing method of graphene of the present disclosure. 本開示のグラフェンの製造方法において剥離工程を行うグラフェン製造装置の他の例(第二実施形態)を示す概略図である。It is a schematic diagram showing other examples (2nd embodiment) of a graphene manufacturing device which performs a peeling process in a manufacturing method of graphene of this indication. 本開示のグラフェンの製造方法において剥離工程を行うグラフェン製造装置の他の例(第三実施形態)を示す概略図である。It is a schematic diagram showing other examples (third embodiment) of a graphene manufacturing device which performs a peeling process in a manufacturing method of graphene of this indication. バイポーラ電極としてグラファイト板を用いて電解処理を行った場合の電解液(硫酸)濃度、電解時間、及び駆動電極間の印加電圧の関係を示す図である。It is a figure which shows the relationship of the electrolytic solution (sulfuric acid) density | concentration when electrolysis processing is performed using a graphite plate as a bipolar electrode, electrolysis time, and the applied voltage between drive electrodes. バイポーラ電極としてグラファイト板を用いて電解処理を行った場合の電解液(硫酸)濃度、電解時間、及び電解液温度の関係を示す図である。It is a figure which shows the relationship of electrolyte solution (sulfuric acid) density | concentration, electrolysis time, and electrolyte solution temperature at the time of performing an electrolysis process using a graphite plate as a bipolar electrode. 電解液の硫酸濃度、電解後のグラファイト板の外観、剥離割合、及び平均電圧値の関係を示す図である。It is a figure which shows the sulfuric acid density | concentration of an electrolyte solution, the external appearance of the graphite plate after electrolysis, the peeling rate, and the average voltage value. グラファイト板の電解処理で得られたグラフェンの(A)光学顕微鏡像と(B)走査型電子顕微鏡像を示す図である。It is a figure which shows the (A) optical microscope image and the (B) scanning electron microscope image of the graphene obtained by the electrolytic treatment of the graphite plate. グラファイト板の電解処理における電解時間、駆動電極間の印加電圧、及びグラファイト板の変化の関係を示す図である。It is a figure which shows the electrolysis time in the electrolysis process of a graphite plate, the applied voltage between drive electrodes, and the relationship of the change of a graphite plate. グラファイト板を電解処理した場合の電解時間、電解液(硫酸)濃度、及び温度の関係を示す図である。It is a figure which shows the electrolysis time at the time of electrolyzing a graphite plate, the electrolytic solution (sulfuric acid) density | concentration, and the relationship of temperature. グラファイト板を電解処理した場合の電解時間及び剥離物の質量変化の関係を示す図である。It is a figure which shows the electrolysis time at the time of electrolytically processing a graphite plate, and the relationship of the mass change of the peeled material. グラファイト板を電解処理した場合の電解時間及び剥離量の割合の関係を示す図である。It is a figure which shows the relationship of the ratio of the electrolysis time and the amount of exfoliation at the time of electrolytically treating a graphite plate. グラファイト板を電解処理した場合の各時間で得られたグラフェンの(A)光学顕微鏡像と(B)走査型電子顕微鏡像を示す図である。It is a figure which shows the (A) optical microscope image and (B) scanning electron microscope image of the graphene obtained at each time at the time of electrolytically treating a graphite plate. グラファイト粒子を電解処理した場合の電解時間、試料外観及び電圧の関係を示す図である。It is a figure which shows the electrolysis time at the time of electrolytically treating a graphite particle, the sample external appearance, and the relationship of voltage. グラファイト粒子を電解処理した場合の電解液温度の経時変化を示す図である。It is a figure which shows the time-dependent change of the electrolytic solution temperature at the time of electrolyzing graphite particles. グラファイト粒子を電解処理して得られたグラフェンの(A)光学顕微鏡像と(B)走査型電子顕微鏡像を示す図である。It is a figure which shows the (A) optical microscope image and the (B) scanning electron microscope image of the graphene obtained by carrying out the electrolytic treatment of the graphite particle. グラファイトの粒子又は粉末を電解処理した場合の電解時間、試料外観及び電圧の関係を示す図である。It is a figure which shows the electrolysis time, the external appearance of a sample, and the relationship of a voltage at the time of electrolyzing a graphite particle or powder. グラファイト粉末を電解処理した場合の電解液温度の経時変化を示す図である。It is a figure which shows the time-dependent change of the electrolytic solution temperature at the time of electrolyzing graphite powder. グラファイト粉末(電解前)と電解処理して得られたグラフェン(電解後)の(A)光学顕微鏡像と(B)走査型電子顕微鏡像を示す図である。It is a figure which shows the (A) optical microscope image and (B) scanning electron microscope image of the graphite powder (before electrolysis) and the graphene (after electrolysis) obtained by electrolytic treatment. 電解前のグラファイト、グラファイトの板、粒子、又は粉末をそれぞれ電解処理して作製したグラフェンのX線回折によるXRDパターンを示す図である。It is a figure which shows the XRD pattern by the X-ray diffraction of the graphene produced by electrolyzing graphite before electrolysis, a graphite plate, particles, or powder, respectively. 本開示のグラフェンの製造方法において剥離工程を行う他の方法(グラフェン製造装置の一例)を示す概略図である。It is a schematic diagram showing other methods (an example of a graphene manufacturing device) which performs a peeling process in a manufacturing method of graphene of this indication. 本開示のグラフェンの製造方法において剥離工程を行う他の方法(グラフェン製造装置の一例)を示す概略図である。It is a schematic diagram showing other methods (an example of a graphene manufacturing device) which performs a peeling process in a manufacturing method of graphene of this indication. 本開示のグラフェンの製造方法において剥離工程を行う他の方法(グラフェン製造装置の一例)を示す概略図である。It is a schematic diagram showing other methods (an example of a graphene manufacturing device) which performs a peeling process in a manufacturing method of graphene of this indication. 本開示のグラフェンの製造方法において剥離工程を行う他の方法(グラフェン製造装置の一例)を示す概略図である。It is a schematic diagram showing other methods (an example of a graphene manufacturing device) which performs a peeling process in a manufacturing method of graphene of this indication.
 以下、本開示の実施形態について図面を参照しながら説明する。
 なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本明細書中の「工程」の用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば本用語に含まれる。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
In the present specification, the numerical range represented by “to” means the range including the numerical values before and after “to” as the lower limit value and the upper limit value.
In addition, the term “process” in the present specification is not limited to an independent process, and even when it cannot be clearly distinguished from other processes, the term is used as long as the intended purpose of the process is achieved. included.
 本発明者らは、直接的な通電を取らずに、粒子や粉末などの微細なグラファイト試料であっても電解剥離によってグラフェンを製造するための新しい手法を開発すべく鋭意検討を行う中で、バイポーラ電気化学をグラファイト試料に適用することを試みた。バイポーラ電気化学とは、不溶性の駆動電極間に処理したい試料(バイポーラ電極)を配置し、駆動電極に電圧を印加することで、駆動電極間に形成される電位勾配を利用して、バイポーラ電極に対して非対称な電解処理を行う手法である。
 そして、本発明者らは、無機酸、無機塩、有機酸、及び塩基からなる群より選ばれる少なくとも1種の電解質を含む電解液を用い、一対の電極間にバイポーラ電極としてグラファイトを配置した状態で電圧を印加すれば、グラファイトの形状にかかわらずグラファイトの表面が剥離し、グラフェンを簡便に製造することができることを見出した。
The inventors of the present invention have been earnestly studying to develop a new method for producing graphene by electrolytic stripping even for fine graphite samples such as particles and powders without directly applying electric current. Attempts were made to apply bipolar electrochemistry to graphite samples. In bipolar electrochemistry, a sample to be treated (bipolar electrode) is placed between insoluble drive electrodes, and a voltage is applied to the drive electrodes, and the potential gradient formed between the drive electrodes is used to create a bipolar electrode. On the other hand, it is a method of performing asymmetric electrolytic treatment.
Then, the present inventors used an electrolytic solution containing at least one electrolyte selected from the group consisting of an inorganic acid, an inorganic salt, an organic acid, and a base, and arranged graphite as a bipolar electrode between a pair of electrodes. It has been found that the graphene can be easily manufactured by applying a voltage to peel the graphite surface regardless of the shape of the graphite.
 すなわち、本開示のグラフェンの製造方法は、無機酸、無機塩、有機酸、及び塩基からなる群より選ばれる少なくとも1種の電解質(以下、単に「電解質」と記す場合がある。)と水とを含む電解液(以下、単に「電解液」と称する場合がある。)中に、一対の電極(「駆動電極」と称する場合がある。)を配置し、かつ、前記一対の電極間に、前記一対の電極とは接触せずにグラファイトを配置した状態で、前記一対の電極間に電圧を印加することにより、前記グラファイトからグラフェンを剥離させる工程と、前記グラファイトから剥離して生成したグラフェンを回収する回収工程と、を含む手法である。 That is, in the method for producing graphene of the present disclosure, at least one electrolyte (hereinafter sometimes simply referred to as “electrolyte”) selected from the group consisting of an inorganic acid, an inorganic salt, an organic acid, and a base, and water. A pair of electrodes (may be referred to as “driving electrodes”) are arranged in an electrolyte solution containing (hereinafter, may be simply referred to as “electrolyte solution”), and between the pair of electrodes, In a state where graphite is arranged without contact with the pair of electrodes, a step of peeling graphene from the graphite by applying a voltage between the pair of electrodes, and a graphene produced by peeling from the graphite The method includes a collecting step of collecting.
(電解液)
 電解液に含まれる無機酸、無機塩、有機酸、及び塩基からなる群より選ばれる少なくとも1種の電解質としては、一対の電極間にグラファイトを配置した状態で電圧を印加することにより、グラファイトからグラフェンを剥離させることができれば特に限定されない。本開示のグラフェンの製造方法において使用可能な電解液としては、例えば、硫酸、リン酸、シュウ酸、硫酸ナトリウム、硫酸アンモニウム、硫酸カリウム、水酸化カリウム、水酸化ナトリウム、又は過酸化水素を含む電解液、あるいはそれらの2種以上の電解質を含む混合電解液などが挙げられる。グラファイトからグラフェンを剥離させ易いほか、入手容易性などの観点から、電解質として硫酸が好ましい。
 溶媒としては、使用する電解質を溶かして電解液として使用することができ、取扱い性、コストの観点から、水が好適である。なお、本開示の方法によりグラファイトからグラフェンを剥離させることを妨げなければ、水に加えて、他の溶媒、添加剤を加えてもよい。
(Electrolyte)
As the at least one electrolyte selected from the group consisting of an inorganic acid, an inorganic salt, an organic acid, and a base contained in the electrolytic solution, graphite is placed between a pair of electrodes to apply a voltage to the graphite. There is no particular limitation as long as the graphene can be peeled off. Examples of the electrolytic solution that can be used in the method for producing graphene of the present disclosure include an electrolytic solution containing sulfuric acid, phosphoric acid, oxalic acid, sodium sulfate, ammonium sulfate, potassium sulfate, potassium hydroxide, sodium hydroxide, or hydrogen peroxide. Or a mixed electrolytic solution containing two or more kinds of these electrolytes. From the viewpoint of easy exfoliation of graphene from graphite and availability, sulfuric acid is preferred as the electrolyte.
As the solvent, water can be used because it can be used as an electrolytic solution by dissolving the electrolyte to be used, and water is preferable from the viewpoint of handleability and cost. In addition to water, another solvent or additive may be added as long as it does not prevent the exfoliation of graphene from graphite by the method of the present disclosure.
-電解液濃度-
 電解液として硫酸溶液を用いる場合、本開示のグラフェンの製造方法では、取扱いが容易な低濃度硫酸液を好適に用いることができる。電解液中の硫酸濃度が低過ぎると駆動電極間で通電し難く、グラファイトが剥離し難く、硫酸濃度が高過ぎてもグラファイトが剥離し難くなる。グラファイトからグラフェンを剥離させ易くする観点から、硫酸濃度は、1mM~0.5Mが好ましく、10mM~0.2Mがより好ましく、10mM~0.1Mが特に好ましい。
-Electrolyte concentration-
When a sulfuric acid solution is used as the electrolytic solution, a low-concentration sulfuric acid solution that is easy to handle can be preferably used in the method for producing graphene of the present disclosure. If the concentration of sulfuric acid in the electrolytic solution is too low, it is difficult to conduct electricity between the drive electrodes, and it is difficult for graphite to peel off. If the concentration of sulfuric acid is too high, graphite is difficult to peel off. From the viewpoint of easily exfoliating graphene from graphite, the sulfuric acid concentration is preferably 1 mM to 0.5 M, more preferably 10 mM to 0.2 M, and particularly preferably 10 mM to 0.1 M.
-電解液温度-
 電解液の温度は特に限定されないが、電解液の温度が低過ぎると駆動電極間に印加させる電圧が上昇する可能性があり、一方、高すぎると電解処理中、通電によって駆動電極(陽極、陰極)が加熱することで電解液の温度が上昇し、溶媒の蒸発により電解液濃度が変化する可能性がある。そのため、電解中の電解液の温度は、例えば5~70℃が好ましく、10~60℃がより好ましく、20~50℃が特に好ましい。
-Electrolyte temperature-
The temperature of the electrolytic solution is not particularly limited, but if the temperature of the electrolytic solution is too low, the voltage applied between the driving electrodes may increase, while if it is too high, the driving electrodes (anode, cathode) may be energized during electrolysis. ), The temperature of the electrolytic solution rises, and the concentration of the electrolytic solution may change due to evaporation of the solvent. Therefore, the temperature of the electrolytic solution during electrolysis is, for example, preferably 5 to 70 ° C., more preferably 10 to 60 ° C., and particularly preferably 20 to 50 ° C.
(一対の電極)
 駆動電極は、電解液に浸食されず、電圧を印加されても化学変化しにくい材料で構成されていれば特に限定されない。化学的安定性の観点から、白金(Pt)電極、金電極、炭素電極が好ましく、高耐食性金属(例えばチタン、タンタル、ニオブなど)に白金や金などを被覆した電極でもよいが、特にPt電極が好ましい。
(A pair of electrodes)
The drive electrode is not particularly limited as long as it is made of a material that is not corroded by the electrolytic solution and does not easily chemically change even when a voltage is applied. From the viewpoint of chemical stability, a platinum (Pt) electrode, a gold electrode, and a carbon electrode are preferable, and an electrode obtained by coating a highly corrosion-resistant metal (for example, titanium, tantalum, niobium, etc.) with platinum, gold or the like may be used, but particularly a Pt electrode. Is preferred.
-印加電圧-
 一対の電極間に印加される電圧が低過ぎるとグラファイトの剥離が生じ難く、高過ぎると消費電力が上昇してしまう。かかる観点から、一対の電極間に印加される電圧は、5~80Vが好ましく、15~75Vがより好ましく、20~75Vが特に好ましい。
-Applied voltage-
If the voltage applied between the pair of electrodes is too low, the exfoliation of graphite will not occur easily, and if it is too high, the power consumption will increase. From this viewpoint, the voltage applied between the pair of electrodes is preferably 5 to 80 V, more preferably 15 to 75 V, and particularly preferably 20 to 75 V.
-電極の位置-
 一対の電極の位置は、電極間にグラファイトを配置し、電極間に電圧を印加した際にグラファイトからグラフェンが剥離することができれば特に限定されないが、電極間の距離が大きくなるほど高い電圧が必要となる。そのため、電極間の距離は、例えば5~100mmが好ましい。
-Electrode position-
The position of the pair of electrodes is not particularly limited as long as graphite is arranged between the electrodes and graphene can be separated from the graphite when a voltage is applied between the electrodes, but a higher voltage is required as the distance between the electrodes increases. Become. Therefore, the distance between the electrodes is preferably 5 to 100 mm, for example.
(グラファイト)
 グラフェンの原料となるグラファイトの形状、大きさなどは特に限定されず、板状、棒状、粒子状、粉末状など、いずれの形状であってもよい。
 グラファイトは、一対の駆動電極(陽極及び陰極)間に配置されていればよく、陽極及び陰極の中間でもよいし、陰極側又は陽極側に近い位置に配置されていてもよい。
(Graphite)
The shape and size of graphite, which is a raw material for graphene, is not particularly limited, and may be any shape such as plate-like, rod-like, particle-like, and powder-like.
The graphite may be arranged between the pair of drive electrodes (anode and cathode), may be located between the anode and the cathode, or may be arranged on the cathode side or a position close to the anode side.
 例えば、グラファイト板を用いる場合、電解時間の経過に伴い、グラファイト板からグラフェンとして徐々に剥離し、グラファイト板は徐々に小さく(細く)なる。グラファイト板は、駆動電極ではなく、直接的な通電を取らないバイポーラ電極として機能するため、電解液中で駆動電極間に配置されている部分が最終的に消滅するまでグラフェンの原料として使用することができる。 For example, when a graphite plate is used, it will gradually separate from the graphite plate as graphene with the passage of electrolysis time, and the graphite plate will gradually become smaller (thinner). Since the graphite plate functions not as a driving electrode but as a bipolar electrode that does not receive direct current, use it as a raw material for graphene until the part located between the driving electrodes in the electrolyte solution eventually disappears. You can
 一方、天然から採取されるグラファイト(天然黒鉛)は通常、粒子状又は粉末状であり、天然黒鉛から成形したグラファイト板よりも安価に入手することができる。本開示のグラフェンの製造方法では、グラファイト自体に直接通電する必要はないため、粒子状又は粉末状のグラファイト(天然黒鉛)を好適に用いることができる。 On the other hand, graphite obtained from nature (natural graphite) is usually in the form of particles or powder, and can be obtained at a lower cost than a graphite plate molded from natural graphite. In the method for producing graphene according to the present disclosure, it is not necessary to directly energize graphite itself, and therefore particulate or powdery graphite (natural graphite) can be preferably used.
 本開示のグラフェンの製造方法を実施するための装置は特に限定されないが、例えば、以下のような構成を有するグラフェン製造装置を用いて剥離工程を好適に実施することができる。すなわち、本開示のグラフェン製造装置は、無機酸、無機塩、有機酸、及び塩基からなる群より選ばれる少なくとも1種の電解質と水とを含む電解液が収容された容器と、前記容器内に配置された一対の電極と、前記一対の電極間に電圧を印加する電源と、前記容器内に配置された前記一対の電極間に、前記一対の電極とは接触せずにグラファイトを配置させるグラファイト配置手段と、を有する。 An apparatus for carrying out the method for producing graphene of the present disclosure is not particularly limited, but for example, the peeling step can be suitably performed using a graphene production apparatus having the following configuration. That is, the graphene production apparatus of the present disclosure includes a container containing an electrolytic solution containing at least one electrolyte selected from the group consisting of an inorganic acid, an inorganic salt, an organic acid, and a base, and the container, Graphite for arranging graphite between the pair of electrodes arranged, a power supply for applying a voltage between the pair of electrodes, and the pair of electrodes arranged in the container without contacting the pair of electrodes Arranging means, and.
<第一実施形態>
 図1は、本開示のグラフェンの製造方法における剥離工程を実施するグラフェン製造装置の一例(第一実施形態)を概略的に示している。本実施形態では、電解液20が収容された容器40内で一対の電極30,32が配置され、グラファイト配置手段としてクリップ等の保持部材12で保持されたグラファイト板10が一対の電極30,32の間に電極30,32とは接触せずに吊り下げられた状態で配置されている。
 そして、電極30,32間に電圧を印加して通電させる。このとき、グラファイト板10はバイポーラ電極として機能し、一対の電極30,32間の通電に伴い、グラファイト板10の表面からグラフェンを剥離させることができる。
<First embodiment>
FIG. 1 schematically illustrates an example (first embodiment) of a graphene manufacturing apparatus that performs a peeling step in the graphene manufacturing method of the present disclosure. In the present embodiment, the pair of electrodes 30, 32 are arranged in the container 40 in which the electrolytic solution 20 is stored, and the graphite plate 10 held by the holding member 12 such as a clip as the graphite arranging means is the pair of electrodes 30, 32. The electrodes 30 and 32 are arranged in a suspended state without coming into contact with the electrodes 30 and 32.
Then, a voltage is applied between the electrodes 30 and 32 to energize them. At this time, the graphite plate 10 functions as a bipolar electrode, and the graphene can be separated from the surface of the graphite plate 10 with the energization between the pair of electrodes 30 and 32.
 グラファイト板10から剥離して生成したグラフェンは、回収工程として、フィルター等を用いて電解液から回収した後、必要に応じて水、アルコール等で洗浄し、溶媒に分散させるか乾燥させればよい。 The graphene generated by peeling from the graphite plate 10 may be recovered from the electrolytic solution using a filter or the like, and then washed with water, alcohol or the like, if necessary, and dispersed in a solvent or dried. ..
<第二実施形態>
 図2は、本開示のグラフェンの製造方法における剥離工程を実施するグラフェン製造装置の他の例(第二実施形態)を概略的に示している。本実施形態では、一対の電極30,32間にグラファイトを収容し、かつ、電解液20が透過可能な絶縁性のフィルター14が配置されている。
 このように電解液20中でフィルター14内に粒子状又は粉末状のグラファイトを収容した状態で両電極30,32間に配置して電圧を印加した場合でも、フィルター14内のグラファイトがバイポーラ電極として機能し、グラファイトからグラフェンを剥離させることができる。また、本実施形態では、グラファイトから剥離して生成したグラフェンをフィルター14内に留まらせることができるため、効率よく回収することができる。
<Second embodiment>
FIG. 2 schematically illustrates another example (second embodiment) of the graphene production apparatus that performs the peeling step in the graphene production method of the present disclosure. In the present embodiment, an insulating filter 14 that accommodates graphite between the pair of electrodes 30 and 32 and that is permeable to the electrolytic solution 20 is arranged.
As described above, even when a voltage or a voltage is applied by arranging the particulate or powdery graphite in the electrolyte solution 20 between the electrodes 30 and 32 in the electrolytic solution 20, the graphite in the filter 14 serves as a bipolar electrode. It can function and exfoliate graphene from graphite. In addition, in the present embodiment, the graphene generated by peeling from the graphite can be retained in the filter 14, so that it can be efficiently collected.
 なお、図1に示したようなグラファイト板10を用いて電解処理する場合も、図2に示すようなフィルター14内にグラファイト板10を収容して電解処理すれば、生成したグラフェンはフィルター14内に留まるため、効率よく回収することができる。 Even in the case where the graphite plate 10 shown in FIG. 1 is used for electrolytic treatment, if the graphite plate 10 is housed in the filter 14 shown in FIG. Therefore, it can be efficiently collected.
<第三実施形態>
 図3は、本開示のグラフェンの製造方法における剥離工程を実施するグラフェン製造装置の他の例(第三実施形態)を概略的に示している。本実施形態では、容器40の側壁面に沿って一対の電極30,32が対向配置され、一対の電極30,32間で粒子状又は粉末状のグラファイト50が電解液20中に分散して配置されている。このような形態であれば、グラファイト50がフィルター14内に収容されていなくても一対の電極30,32間に電極30,32とは接触せずに配置された状態となってバイポーラ電極として機能し、両電極30,32間に電圧を印加することでグラファイト50からグラフェンを剥離させることができる。なお、電解液20中に粒子状又は粉末状のグラファイト50を分散させた場合、一部のグラファイトは一方の電極30,32に接触する可能性があるが、ほとんどのグラファイト50は電極30,32に接触せずに両電極30,32間に配置され、グラファイト50からグラフェンを剥離させることができる。
 また、攪拌装置により電解液20を攪拌することで、電解液20中の粒子状又は粉末状のグラファイト50をできるだけ両電極30,32間に配置させる状態としてもよい。例えば、容器40内に撹拌子16を入れて攪拌させることでグラファイト50の沈殿を抑制し、電解液中に分散したグラファイト50全体からグラフェンを剥離させてもよいし、送風ポンプから空気を送り込んでバブリングによって撹拌させてもよい。
<Third embodiment>
FIG. 3 schematically illustrates another example (third embodiment) of the graphene manufacturing apparatus that performs the peeling step in the graphene manufacturing method of the present disclosure. In the present embodiment, a pair of electrodes 30 and 32 are arranged facing each other along the side wall surface of the container 40, and graphite 50 in the form of particles or powder is dispersed in the electrolytic solution 20 between the pair of electrodes 30 and 32. Has been done. With such a configuration, even if the graphite 50 is not housed in the filter 14, the graphite 50 is placed between the pair of electrodes 30, 32 without contacting the electrodes 30, 32 and functions as a bipolar electrode. Then, by applying a voltage between the electrodes 30 and 32, the graphene can be separated from the graphite 50. When the particulate or powdery graphite 50 is dispersed in the electrolyte solution 20, some graphite may come into contact with one of the electrodes 30, 32, but most of the graphite 50 has electrodes 30, 32. The graphene can be separated from the graphite 50 by being disposed between the electrodes 30 and 32 without making contact with the.
Alternatively, the electrolytic solution 20 may be stirred by a stirrer so that the particulate or powdery graphite 50 in the electrolytic solution 20 is placed between the electrodes 30 and 32 as much as possible. For example, the stirrer 16 may be placed in the container 40 and stirred to suppress the precipitation of the graphite 50, and the graphene may be separated from the entire graphite 50 dispersed in the electrolytic solution, or air may be sent from a blower pump. You may stir by bubbling.
 以上、本開示のグラフェンの製造方法における主に剥離工程を実施する具体的な形態を説明したが、本開示のグラフェンの製造方法及び製造装置は上記実施形態に限定されず、他の実施形態で実施してもよいし、剥離工程及び回収工程以外の他の工程を含んでもよい。他の工程としては、例えば、剥離工程後、グラフェンを含む電解液を超音波処理してグラフェンを微小化させる工程が挙げられる。 As described above, the specific mode of mainly performing the peeling step in the graphene manufacturing method of the present disclosure has been described, but the graphene manufacturing method and the manufacturing apparatus of the present disclosure are not limited to the above-described embodiments, and other embodiments may be used. It may be performed, and may include other steps other than the peeling step and the collecting step. As another step, for example, a step of sonicating an electrolytic solution containing graphene to miniaturize the graphene after the peeling step can be mentioned.
 また、剥離工程では、循環装置を用いて容器内の電解液を循環させてもよい。図15は電解液を循環させながらグラファイトからグラフェンを剥離させる方法(グラフェン製造装置)の一例を示している。なお、図15は容器40の上方から見た概略図であり、駆動電極30,32に連結する電源は図示を省略している。図15に示すように、容器40の両側に電解液20を循環させるための管62を連結し、容器40内の電解液40を循環ポンプ60によって管62を通じて循環させることで、電解液20の浴温上昇を抑制することができる。また、グラファイト10から剥離したグラフェンを回収するためのフィルター等のトラップ(図示せず)を管62の途中に設けることでグラフェンを効率的に回収することができる。 Also, in the peeling process, the electrolytic solution in the container may be circulated by using a circulation device. FIG. 15 shows an example of a method (graphene production apparatus) for exfoliating graphene from graphite while circulating an electrolytic solution. Note that FIG. 15 is a schematic view seen from above the container 40, and illustration of the power source connected to the drive electrodes 30 and 32 is omitted. As shown in FIG. 15, a pipe 62 for circulating the electrolytic solution 20 is connected to both sides of the container 40, and the electrolytic solution 40 in the container 40 is circulated through the pipe 62 by a circulation pump 60. A rise in bath temperature can be suppressed. Further, by providing a trap (not shown) such as a filter for collecting the graphene separated from the graphite 10 in the middle of the tube 62, the graphene can be efficiently collected.
 また、剥離工程においてグラファイトを移動させる移動装置を用い、一対の電極間でグラファイトを移動させながらグラフェンを剥離させてもよい。図16~図18はグラファイトを移動させながらグラフェンを剥離させる方法の例(グラフェン製造装置の例)を示している。なお、図16~図18では、電解液及び容器は図示を省略している。例えば、図16又は図17に示すように、両電極30,32の面内方向(両電極30,32が対向する方向に対して垂直かつ水平となる方向)に、グラファイト10を保持部材(図示せず)と共に駆動電極30,32間を移動させる方法、あるいは、図18に示すように(電解液及び容器は図示を省略)、粒子状又は粉末状のグラファイトを収容したフィルター14を駆動電極30,32間を移動させる方法が挙げられる。このようにグラファイトを電極間で移動させながらグラフェンの剥離を行えば、連続的に処理することができ、大量生産が可能となる。 Alternatively, graphene may be peeled off while moving the graphite between the pair of electrodes by using a moving device that moves the graphite in the peeling step. 16 to 18 show an example of a method of exfoliating graphene while moving graphite (an example of a graphene manufacturing apparatus). 16 to 18, the electrolytic solution and the container are not shown. For example, as shown in FIG. 16 or FIG. 17, the graphite 10 is held in the in-plane direction of the electrodes 30 and 32 (direction perpendicular and horizontal to the direction in which the electrodes 30 and 32 face each other) (see FIG. (Not shown) together with the drive electrodes 30 and 32, or as shown in FIG. 18 (electrolyte solution and container are not shown), the filter 14 accommodating graphite in the form of particles or powder is driven electrode 30. , 32 may be used. Thus, if the graphene is peeled off while moving the graphite between the electrodes, it is possible to continuously process and mass production becomes possible.
 本開示のグラフェンの製造方法及び製造装置は、上述した各実施形態に限定されず、複数の実施形態を組み合わせてもよい。 The method and apparatus for manufacturing graphene of the present disclosure are not limited to the above-described embodiments, and a plurality of embodiments may be combined.
 以下、本開示のグラフェンの製造方法について、実施例を挙げてさらに具体的に説明する。ただし、これら各実施例は、本発明を制限するものではない。
 駆動電極として白金板を用い、バイポーラ電極として種々の形態のグラファイト試料を用いて実験を行った。なお、実施例において使用した機器が以下のとおりである。
・構造観察:光学顕微鏡(OLYMPUS,BX51M)
      走査型電子顕微鏡(JEOL,JSM-6701F)
・結晶構造解析:X線回折法(Rigaku,MiniFlex600)
Hereinafter, the method for producing graphene of the present disclosure will be described more specifically with reference to Examples. However, each of these examples does not limit the present invention.
Experiments were conducted using a platinum plate as a driving electrode and various types of graphite samples as a bipolar electrode. The equipment used in the examples is as follows.
・ Structure observation: Optical microscope (OLYMPUS, BX51M)
Scanning electron microscope (JEOL, JSM-6701F)
・ Crystal structure analysis: X-ray diffraction method (Rigaku, MiniFlex600)
[グラファイト板を用いた実験例]
 グラファイト粉末に対する電解処理を行うにあたって、最適な電解液濃度等を調べるため、グラファイト板を用いてグラファイトの剥離に及ぼす電解液濃度の影響を調査した。
 電解条件としては、直接直流電解において、グラファイト板を短時間で剥離させることのできた、高電流条件(5Aの定電流電解)を用いた。駆動電極間距離を20mmとして、幅10mm、厚さ1mmのグラファイト板(試料浸漬面積:6.7cm)に対して、硫酸濃度を1mmol/dm~0.5mol/dm(1mM~0.5M)と変化させて定電流電解を60分間行った。
[Experimental example using graphite plate]
In order to investigate the optimum electrolytic solution concentration and the like when performing electrolytic treatment on graphite powder, the effect of electrolytic solution concentration on the exfoliation of graphite was investigated using a graphite plate.
As the electrolysis condition, a high current condition (constant current electrolysis of 5 A) was used, which was capable of peeling the graphite plate in a short time in direct DC electrolysis. With a distance between the driving electrodes of 20 mm, a sulfuric acid concentration of 1 mmol / dm 3 to 0.5 mol / dm 3 (1 mM to 0.1 mm) was applied to a graphite plate (sample immersion area: 6.7 cm 2 ) having a width of 10 mm and a thickness of 1 mm. 5 M) and constant current electrolysis was performed for 60 minutes.
<電解液濃度と電圧及び液温との関係>
 上記電解条件にて電解時の電圧をモニタリングし、電解時間に対して駆動電極間に印加された電圧及び電解液温をプロットした(図4A、図4B)。高電流での電解のため、いずれの濃度においても電解中の特に初期段階には電解液温度が上昇した。定常電圧値は電解液濃度の上昇とともに低下し、1mmol/dmを除いて、電圧が低くなると温度上昇が抑制された。
<Relationship between electrolyte concentration and voltage and liquid temperature>
The voltage during electrolysis was monitored under the above electrolysis conditions, and the voltage applied between the drive electrodes and the electrolyte temperature were plotted against electrolysis time (FIGS. 4A and 4B). Because of the high current electrolysis, the electrolyte temperature increased during the electrolysis, especially at the initial stage, at any concentration. The steady-state voltage value decreased with the increase of the electrolyte concentration, and the temperature increase was suppressed as the voltage decreased except for 1 mmol / dm 3 .
<電解液濃度と剥離割合との関係>
 電解前後のグラファイト板の質量を測定し、剥離割合を計算した。電解液の硫酸濃度に対し、電解後の試料外観、剥離割合、平均電圧値をまとめて図5に示す。外観写真から分かるように、グラファイト板は、駆動電極の陰極に対向していた側から剥離が進行し、その進行度は電解液濃度に依存することがわかった。剥離割合は硫酸濃度が高くなるにつれて高くなり、20mmol/dmで最大値を示した後に、50mmol/dm以上で減少することが分かった。
<Relationship between electrolytic solution concentration and peeling ratio>
The mass of the graphite plate before and after electrolysis was measured, and the peeling ratio was calculated. The appearance of the sample after electrolysis, the peeling ratio, and the average voltage value are shown together in FIG. 5 with respect to the sulfuric acid concentration of the electrolytic solution. As can be seen from the appearance photograph, it was found that the graphite plate was peeled off from the side of the drive electrode facing the cathode, and the degree of progress thereof depended on the electrolyte concentration. It was found that the peeling ratio increased as the sulfuric acid concentration increased, showed the maximum value at 20 mmol / dm 3 , and then decreased at 50 mmol / dm 3 or more.
 20mmol/dmで電解処理を行って得られた剥離物の光学顕微鏡像と走査型電子顕微鏡(SEM)像を図6に示す。薄片状の物質が多数確認されたことから、直接通電を取らなくても、一対の駆動電極間にグラファイト板を配置して電解処理を行うことにより、微小なグラファイトが剥離し、グラフェンが生成することが明らかとなった。剥離割合の観点から、硫酸の最適濃度は20mmol/dmであると判断され、この際の電圧は約50Vであることから、工業的利用を考慮しても十分に実現可能な電圧であると言える。 FIG. 6 shows an optical microscope image and a scanning electron microscope (SEM) image of a peeled product obtained by performing electrolytic treatment at 20 mmol / dm 3 . Since a large number of flaky substances have been confirmed, even if the electricity is not directly applied, a graphite plate is placed between a pair of driving electrodes and subjected to electrolytic treatment, so that minute graphite is exfoliated and graphene is generated. It became clear. From the viewpoint of the peeling ratio, the optimum concentration of sulfuric acid was determined to be 20 mmol / dm 3 , and the voltage at this time was about 50 V, which is a voltage that can be sufficiently realized even in consideration of industrial use. I can say.
<電解時間と剥離割合との関係>
 電解時間60分では、グラファイト板は完全に剥離しきれなかったため、電解時間を検討した。電解時間を10~120分で処理した結果を図7A~図9に示す。120分間処理するとグラファイト板の電解液中で露出していた部分は全て剥離して消失した(図7A)。なお、電解液温度の変化によって電圧値が変動したが(図7B)、基本的な電解挙動には再現性が確認された。剥離物の質量を測定したところ、電解時間が長くなるにつれて、剥離量(割合)が増加していた(図8A、図8B)。
 また、各時間で得られた剥離物の構造を光学顕微鏡像と走査型電子顕微鏡で観察したところ、いずれも薄片状物質が確認され、グラフェンが生成していることが確認された(図9)。
<Relationship between electrolysis time and peeling rate>
At the electrolysis time of 60 minutes, the graphite plate could not be completely peeled off, so the electrolysis time was examined. The results obtained by treating the electrolysis for 10 to 120 minutes are shown in FIGS. 7A to 9. After the treatment for 120 minutes, all the exposed parts of the graphite plate in the electrolytic solution were peeled off and disappeared (FIG. 7A). Although the voltage value fluctuated due to the change in the electrolytic solution temperature (Fig. 7B), reproducibility was confirmed in the basic electrolytic behavior. When the mass of the exfoliated product was measured, the exfoliated amount (ratio) increased as the electrolysis time increased (FIGS. 8A and 8B).
Further, when the structure of the exfoliated material obtained at each time was observed with an optical microscope image and a scanning electron microscope, it was confirmed that flaky substances were observed and that graphene was generated (FIG. 9). ..
[グラファイト粒子又はグラファイト粉末を用いた実験例]
 次に、硫酸濃度を20mmol/dmとして、グラファイト粒子(1mm角)とグラファイト粉末(粒径20~500μm)に対して、同様の処理を行った。この際、粒子や粉末を電解液中で駆動電極間に保持するために、絶縁性フィルターバッグ内にグラファイト試料を入れて電解処理を行った。実験方法の詳細は以下のとおりである。
(実験方法)
・試料(バイポーラ電極、絶縁性フィルターバッグ内に試料を保持)
  グラファイト粒子(表面積:6mm
  グラファイト粉末(粒径:20~500μm) 
・電解条件
  駆動電極:Pt板(30mm×30mm×2mm)
  駆動電極間距離:20mm
  電解液:20mM硫酸(10℃)
  電流:5A
  電解時間:30min
・後処理
 (1)ろ過、洗浄(純水、エタノール)、N,N-ジメチルホルムアミド(DMF)中で超音波処理(1min)
 (2)ろ過、洗浄後に乾燥
[Experimental Example Using Graphite Particles or Graphite Powder]
Next, the same treatment was performed on the graphite particles (1 mm square) and the graphite powder (particle size 20 to 500 μm) at a sulfuric acid concentration of 20 mmol / dm 3 . At this time, in order to hold particles or powder in the electrolytic solution between the driving electrodes, a graphite sample was placed in an insulating filter bag and subjected to electrolytic treatment. The details of the experimental method are as follows.
(experimental method)
・ Sample (hold the sample in a bipolar electrode and an insulating filter bag)
Graphite particles (surface area: 6 mm 2 )
Graphite powder (particle size: 20-500 μm)
-Electrolysis conditions Drive electrode: Pt plate (30 mm x 30 mm x 2 mm)
Distance between driving electrodes: 20 mm
Electrolyte: 20 mM sulfuric acid (10 ° C)
Current: 5A
Electrolysis time: 30 min
-Post-treatment (1) Filtration, washing (pure water, ethanol), ultrasonic treatment in N, N-dimethylformamide (DMF) (1 min)
(2) Dry after filtration and washing
<グラファイト粒子を用いた電解処理>
 まず、グラファイト粒子1つを収容した絶縁性フィルターバッグを駆動電極間に配置して電解処理を行った。試料外観及び電圧時間曲線を図10Aに、浴温の経時変化を図10Bに示す。電解初期には上限電圧の75Vに達し、浴温が上昇するとともに電圧は低下し、最終的には約55Vを示した。電解中、フィルターバッグ内が徐々に黒く変色し、30分間電解を行った後に試料を確認すると粒が残っていなかったことから、30分の電解で十分に剥離が完了することがわかった。剥離した試料の構造を光学顕微鏡とSEMで確認したところ、グラフェンが生成していた(図11)。
<Electrolytic treatment using graphite particles>
First, an insulative filter bag containing one graphite particle was placed between the drive electrodes for electrolytic treatment. The sample appearance and voltage-time curve are shown in FIG. 10A, and the change in bath temperature with time is shown in FIG. 10B. The upper limit voltage of 75 V was reached at the initial stage of electrolysis, and the voltage dropped as the bath temperature increased, and finally reached about 55 V. During the electrolysis, the inside of the filter bag gradually turned black, and when the sample was checked after electrolysis for 30 minutes, it was found that the peeling was sufficiently completed by electrolysis for 30 minutes because no particles remained. When the structure of the peeled sample was confirmed by an optical microscope and SEM, graphene was generated (FIG. 11).
<グラファイト粉末を用いた電解処理>
 さらに、グラファイト粉末を絶縁性フィルターバッグに収容して、グラファイト粒子と同様に電解処理を行った。電解挙動と浴温の変化は、粒子の挙動と同様であった(図12A、図12B)。処理後の試料を光学顕微鏡とSEMで観察したところ、グラフェンが生成していることが確認された(図13)。
<Electrolytic treatment using graphite powder>
Further, graphite powder was housed in an insulating filter bag and subjected to electrolytic treatment in the same manner as graphite particles. The changes in electrolysis behavior and bath temperature were similar to those of particles (FIGS. 12A and 12B). Observation of the treated sample with an optical microscope and SEM confirmed that graphene was generated (FIG. 13).
-X線回折-
 電解前の試料と、板、粒子、粉末を電解処理して作製した試料(剥離物)についてX線回折による分析を行った。XRDパターンを図14に示す。グラファイト(002)面に対応するシャープなピークが電解処理により急激に低くなっていることから、層間剥離が進行したことを確認した。
 以上の結果より、低濃度硫酸を用いたグラファイトのバイポーラ電解において、グラファイト板だけでなく、微細なグラファイト粒子やグラファイト粉末を剥離し、グラフェンを作製することが可能であることがわかる。
-X-ray diffraction-
The sample before electrolysis and the sample (exfoliated product) produced by electrolytically treating the plate, particles and powder were analyzed by X-ray diffraction. The XRD pattern is shown in FIG. Since the sharp peak corresponding to the graphite (002) plane was sharply lowered by the electrolytic treatment, it was confirmed that delamination proceeded.
From the above results, it is understood that in the bipolar electrolysis of graphite using low-concentration sulfuric acid, not only the graphite plate but also fine graphite particles or graphite powder can be exfoliated to produce graphene.
 本開示のグラフェンの製造方法では、硫酸等の安価な無機酸を含む電解液を用いることができ、また、グラフェンの原料として用いるグラファイトの形状、サイズは限定されないため、安価な天然黒鉛粉末を適用することで、グラフェンを低コストで大量生産することができる可能性がある。 In the graphene production method of the present disclosure, an electrolytic solution containing an inexpensive inorganic acid such as sulfuric acid can be used, and since the shape and size of graphite used as a raw material for graphene are not limited, inexpensive natural graphite powder is applied. By doing so, it is possible that graphene can be mass-produced at low cost.
10 グラファイト板
12 保持部材(グラファイト配置手段の一例)
14 フィルター(グラファイト配置手段の一例)
16 撹拌子
20 電解液
30,32 電極
40 容器
50 グラファイト(粒子又は粉末)
60 循環ポンプ
62 管
10 graphite plate 12 holding member (an example of graphite arranging means)
14 Filter (an example of graphite placement means)
16 Stirrer 20 Electrolyte 30, 32 Electrode 40 Container 50 Graphite (particle or powder)
60 circulation pumps 62 tubes
 2018年11月21日に出願された日本国特許出願2018-218478の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application 2018-218478 filed on Nov. 21, 2018 is incorporated herein by reference in its entirety.
All publications, patent applications, and technical standards mentioned herein are to the same extent as if each individual publication, patent application, and technical standard were specifically and individually noted to be incorporated by reference, Incorporated herein by reference.

Claims (12)

  1.  無機酸、無機塩、有機酸、及び塩基からなる群より選ばれる少なくとも1種の電解質と水とを含む電解液中に、一対の電極を配置し、かつ、前記一対の電極間に、前記一対の電極とは接触せずにグラファイトを配置した状態で、前記一対の電極間に電圧を印加することにより、前記グラファイトからグラフェンを剥離させる剥離工程と、
     前記グラファイトから剥離して生成したグラフェンを回収する回収工程と、
    を含むグラフェンの製造方法。
    An inorganic acid, an inorganic salt, an organic acid, and an electrolytic solution containing at least one electrolyte selected from the group consisting of a base and water, a pair of electrodes is arranged, and between the pair of electrodes, the pair of electrodes. In a state in which graphite is arranged without contacting the electrodes of, a peeling step of peeling graphene from the graphite by applying a voltage between the pair of electrodes,
    A recovery step of recovering graphene generated by peeling from the graphite,
    Of producing graphene including.
  2.  前記電解液が、前記電解質として硫酸を含む請求項1に記載のグラフェンの製造方法。 The method for producing graphene according to claim 1, wherein the electrolytic solution contains sulfuric acid as the electrolyte.
  3.  前記電解液における前記硫酸の濃度が、1mM以上0.5M以下である請求項2に記載のグラフェンの製造方法。 The method for producing graphene according to claim 2, wherein the concentration of the sulfuric acid in the electrolytic solution is 1 mM or more and 0.5 M or less.
  4.  前記グラファイトが、粒子状又は粉末状である請求項1~請求項3のいずれか1項に記載のグラフェンの製造方法。 The method for producing graphene according to any one of claims 1 to 3, wherein the graphite is in the form of particles or powder.
  5.  前記グラファイトを、前記電解液が透過可能なフィルターに収容した状態で、前記一対の電極間に電圧を印加する請求項1~請求項4のいずれか1項に記載のグラフェンの製造方法。 The method for producing graphene according to any one of claims 1 to 4, wherein a voltage is applied between the pair of electrodes in a state where the graphite is housed in a filter through which the electrolytic solution can pass.
  6.  前記一対の電極間に印加する電圧が、5V~80Vの範囲である請求項1~請求項5のいずれか1項に記載のグラフェンの製造方法。 The method for producing graphene according to any one of claims 1 to 5, wherein the voltage applied between the pair of electrodes is in the range of 5V to 80V.
  7.  無機酸、無機塩、有機酸、及び塩基からなる群より選ばれる少なくとも1種の電解質と水とを含む電解液が収容された容器と、
     前記容器内に配置された一対の電極と、
     前記一対の電極間に電圧を印加する電源と、
     前記容器内に配置された前記一対の電極間に、前記一対の電極とは接触せずにグラファイトを配置させるグラファイト配置手段と、
    を備えるグラフェン製造装置。
    A container containing an electrolytic solution containing at least one electrolyte selected from the group consisting of inorganic acids, inorganic salts, organic acids, and bases; and water,
    A pair of electrodes arranged in the container,
    A power supply for applying a voltage between the pair of electrodes,
    Between the pair of electrodes arranged in the container, graphite arrangement means for arranging graphite without contacting the pair of electrodes,
    An apparatus for producing graphene including.
  8.  前記グラファイト配置手段が、前記グラファイトを保持する保持部材を含む請求項7に記載のグラフェン製造装置。 The graphene production apparatus according to claim 7, wherein the graphite placement means includes a holding member that holds the graphite.
  9.  前記保持部材が、前記グラファイトを収容し、かつ、前記電解液が透過可能な絶縁性のフィルターを含む請求項8に記載のグラフェン製造装置。 The graphene production apparatus according to claim 8, wherein the holding member contains an insulating filter that contains the graphite and allows the electrolytic solution to pass therethrough.
  10.  前記電解液を攪拌することにより、前記電解液中の前記グラファイトを分散させる撹拌装置を含む請求項7に記載のグラフェン製造装置。 The graphene production apparatus according to claim 7, further comprising a stirring device that disperses the graphite in the electrolytic solution by stirring the electrolytic solution.
  11.  前記グラファイトを前記一対の電極間で移動させる移動装置を含む請求項7~請求項10のいずれか1項に記載のグラフェン製造装置。 The graphene production apparatus according to any one of claims 7 to 10, including a moving device that moves the graphite between the pair of electrodes.
  12.  前記容器内の前記電解液を循環させる循環装置を含む請求項7~請求項11のいずれか1項に記載のグラフェン製造装置。 The graphene production apparatus according to any one of claims 7 to 11, including a circulation device that circulates the electrolytic solution in the container.
PCT/JP2019/045320 2018-11-21 2019-11-19 Method for producing graphene, and graphene production equipment WO2020105646A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020557568A JP7357936B2 (en) 2018-11-21 2019-11-19 Graphene manufacturing method and graphene manufacturing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-218478 2018-11-21
JP2018218478 2018-11-21

Publications (1)

Publication Number Publication Date
WO2020105646A1 true WO2020105646A1 (en) 2020-05-28

Family

ID=70773799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045320 WO2020105646A1 (en) 2018-11-21 2019-11-19 Method for producing graphene, and graphene production equipment

Country Status (2)

Country Link
JP (1) JP7357936B2 (en)
WO (1) WO2020105646A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111908459A (en) * 2020-09-23 2020-11-10 广西师范大学 Free combination square device for producing graphene by electrically stripping graphite powder and stripping method
CN112225206A (en) * 2020-10-20 2021-01-15 陕西理工大学 Method for preparing water-soluble graphene by electric field driving of double graphite electrodes
CN113929087A (en) * 2021-10-19 2022-01-14 深圳市汉嵙新材料技术有限公司 Graphene sheet, and preparation method and application thereof
CN114408909A (en) * 2022-03-02 2022-04-29 广西师范大学 Method for preparing graphene by electrochemically stripping graphite
US11352703B2 (en) * 2020-06-10 2022-06-07 The Florida International University Board Of Trustees Bipolar exfoliation and in-situ deposition of high-quality reduced graphene
JP2022534090A (en) * 2019-06-11 2022-07-27 中国科学院上海微系統与信息技術研究所 Method for producing high quality graphene materials

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696020B1 (en) * 1998-07-10 2004-02-24 Imperial College Of Science, Technology And Medicine Electrochemiluminescence cell with floating reaction electrodes
US20090026086A1 (en) * 2007-07-27 2009-01-29 Aruna Zhamu Electrochemical method of producing nano-scaled graphene platelets
US20140166475A1 (en) * 2012-12-18 2014-06-19 Chung-Shan Institute Of Science And Technology Device designed for continuous production of graphene flakes by electrochemical method
EP3178967A1 (en) * 2015-12-10 2017-06-14 Pei-Chih Yao Graphene mass production equipment and manufacturing method thereof
KR20170112026A (en) * 2016-03-30 2017-10-12 주식회사 엘지화학 Method for preparation of graphene
US20180072573A1 (en) * 2016-09-14 2018-03-15 Alpha Metals, Inc. Production of Graphene

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696020B1 (en) * 1998-07-10 2004-02-24 Imperial College Of Science, Technology And Medicine Electrochemiluminescence cell with floating reaction electrodes
US20090026086A1 (en) * 2007-07-27 2009-01-29 Aruna Zhamu Electrochemical method of producing nano-scaled graphene platelets
US20140166475A1 (en) * 2012-12-18 2014-06-19 Chung-Shan Institute Of Science And Technology Device designed for continuous production of graphene flakes by electrochemical method
EP3178967A1 (en) * 2015-12-10 2017-06-14 Pei-Chih Yao Graphene mass production equipment and manufacturing method thereof
KR20170112026A (en) * 2016-03-30 2017-10-12 주식회사 엘지화학 Method for preparation of graphene
US20180072573A1 (en) * 2016-09-14 2018-03-15 Alpha Metals, Inc. Production of Graphene

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANIS ALLAGUI: "Reduced Graphene Oxide Thin Film on Conductive Substrates by Bipolar Electrochemistry", SCIENTIFIC REPORTS, vol. 6, no. 1, 21282, 17 February 2016 (2016-02-17), XP055710047 *
HIDEKI HASHIMOTO ET AL: "Bipolar anodic electrochemical exfoliation of graphite powders", ELECTROCHEMISTRY COMMUNICATIONS, vol. 104, 6 June 2019 (2019-06-06), pages 1 - 5, XP085749856, ISSN: 1388-2481, DOI: 10.1016/j.elecom.2019.06.001 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022534090A (en) * 2019-06-11 2022-07-27 中国科学院上海微系統与信息技術研究所 Method for producing high quality graphene materials
US11352703B2 (en) * 2020-06-10 2022-06-07 The Florida International University Board Of Trustees Bipolar exfoliation and in-situ deposition of high-quality reduced graphene
CN111908459A (en) * 2020-09-23 2020-11-10 广西师范大学 Free combination square device for producing graphene by electrically stripping graphite powder and stripping method
CN112225206A (en) * 2020-10-20 2021-01-15 陕西理工大学 Method for preparing water-soluble graphene by electric field driving of double graphite electrodes
CN113929087A (en) * 2021-10-19 2022-01-14 深圳市汉嵙新材料技术有限公司 Graphene sheet, and preparation method and application thereof
CN114408909A (en) * 2022-03-02 2022-04-29 广西师范大学 Method for preparing graphene by electrochemically stripping graphite
CN114408909B (en) * 2022-03-02 2024-03-15 广西师范大学 Method for preparing graphene by electrochemical stripping of graphite

Also Published As

Publication number Publication date
JP7357936B2 (en) 2023-10-10
JPWO2020105646A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
WO2020105646A1 (en) Method for producing graphene, and graphene production equipment
WO2020248462A1 (en) Method for preparing high-quality graphene material
US9840782B2 (en) Electrochemical process for producing graphene, graphene oxide, metal composites, and coated substrates
CN106245104B (en) A method of preparing graphene based on electrochemical process stripping dual graphite electrodes
CN105731429B (en) Graphene manufacturing equipment and manufacturing method
CN106119927B (en) The method that electrochemical treatments prepare anisotropy water-oil separating copper mesh
Anitha et al. Electrochemical tuning of titania nanotube morphology in inhibitor electrolytes
CN104876211A (en) Method for preparing graphene by rotationally shearing in electric field environment
CN108840327A (en) A kind of electrochemical method preparing nitrogen-doped graphene material
CN104404566B (en) A kind of to modify TiO 2nano-tube array is the ti-lead dioxide anode in middle layer and preparation method thereof and application
CN110316729A (en) A method of graphene is prepared based on high concentration aqueous solutions of organic salts electrochemical intercalation
CN102418118A (en) Method for electrochemically aided preparation of silver powder with special form
Benke et al. The electrochemical dissolution of platinum
CN112607729A (en) Device for stripping graphene by using alternating electric field and using method thereof
Asoh et al. Indirect oxidation of aluminum under an AC electric field
CN109898122A (en) Magnesium alloy surface micro-arc oxidation/graphene oxide composite film preparation method
CN111217361A (en) Method for preparing graphene nanosheet through electrochemical cathode stripping
TW200936816A (en) Method of electrolysis
CN106367795A (en) Sodium gluconate anodizing solution and preparation method and application thereof
CN107902729A (en) A kind of titanium-based mixes lanthanum lead dioxide electrode and preparation method thereof
CN113666366A (en) Method for preparing graphene through electrochemical anode stripping
KR20180038321A (en) Metal-coatable Graphene ink, method of fabricating the same, method of coating metal surface with metal-coatable graphene ink and metals coated with graphene
JP5837307B2 (en) Method for producing porous fine particles
CN108588810A (en) A kind of preparation process of porous tantalum piece
CN113479868A (en) Method for preparing graphene through bipolar electrochemical stripping of organic acid ammonium fused salt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557568

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887703

Country of ref document: EP

Kind code of ref document: A1