WO2020105458A1 - 熱硬化性樹脂組成物 - Google Patents

熱硬化性樹脂組成物

Info

Publication number
WO2020105458A1
WO2020105458A1 PCT/JP2019/043712 JP2019043712W WO2020105458A1 WO 2020105458 A1 WO2020105458 A1 WO 2020105458A1 JP 2019043712 W JP2019043712 W JP 2019043712W WO 2020105458 A1 WO2020105458 A1 WO 2020105458A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermosetting resin
group
formula
triazine
Prior art date
Application number
PCT/JP2019/043712
Other languages
English (en)
French (fr)
Inventor
崇洋 坂口
陽介 大竹
安達 勲
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN201980076609.8A priority Critical patent/CN113166324A/zh
Priority to JP2020558260A priority patent/JP6936449B2/ja
Priority to KR1020217013909A priority patent/KR102461668B1/ko
Publication of WO2020105458A1 publication Critical patent/WO2020105458A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/32Monomers containing only one unsaturated aliphatic radical containing two or more rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention is used for producing a high refractive index flattening film and a high refractive index microlens containing a self-crosslinking copolymer, an ultraviolet absorber having at least one triazine ring in one molecule, and an organic solvent. It relates to a possible thermosetting resin composition.
  • a resin composition using a polymer material having excellent transparency in the visible light region is often used for optical members such as an intralayer lens, an optical waveguide, and a film substrate.
  • optical members such as an intralayer lens, an optical waveguide, and a film substrate.
  • Such an optical member is required to have not only transparency but also excellent heat resistance and light resistance. Further, the optical member is often required to have a high refractive index in order to improve the light extraction efficiency and the light converging property.
  • a method for increasing the refractive index of a polymer material for example, introducing an aromatic ring, a halogen atom other than a fluorine atom, a sulfur atom, a metal atom, or a hydrogen bond into the molecule of the polymer material. It is used.
  • introduction of an aromatic ring introduction of a condensed ring hydrocarbon group such as a naphthalene ring or anthracene ring is more effective than a monocyclic hydrocarbon group such as a phenyl group as an effective means for increasing the refractive index of a polymer material.
  • Patent Document 1 and Patent Document 2 is more effective than a monocyclic hydrocarbon group such as a phenyl group as an effective means for increasing the refractive index of a polymer material.
  • Patent Document 3 and Patent Document 4 an etch back method is known (Patent Document 3 and Patent Document 4). That is, a resist pattern is formed on the resin layer for microlenses formed on the color filter layer, and this resist pattern is reflowed by heat treatment to form a lens pattern. Using the lens pattern formed by reflowing this resist pattern as an etching mask, the underlying resin layer for microlenses is etched back and the lens pattern shape is transferred to the resin layer for microlenses to produce microlenses.
  • the condensed cyclic hydrocarbon group When the condensed cyclic hydrocarbon group is introduced into the molecule of the polymer material, the polymer material is prone to be deteriorated by light such as ultraviolet rays because the absorption wavelength becomes longer. Therefore, an optical member produced by using a resin composition that adopts a polymer material having a condensed cyclic hydrocarbon group introduced therein is likely to cause quality deterioration such as discoloration, and thus has high refractive index and high light resistance. There was a problem that it was difficult to achieve both.
  • the present invention provides a self-crosslinking copolymer having a structural unit represented by the following formula (1), a structural unit represented by the following formula (2) and a structural unit represented by the following formula (3),
  • Ar represents a condensed cyclic hydrocarbon group
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group
  • R 3 represents a single bond or an alkylene group.
  • a 1 represents a group having an oxirane ring
  • R 4 represents an alkyl group
  • a 2 represents an alkoxy group.
  • the condensed cyclic hydrocarbon group is, for example, a naphthyl group, and the oxirane ring-containing group is, for example, an epoxy group.
  • the self-crosslinking copolymer contains, for example, at least 70 mol% of the structural unit represented by the formula (1).
  • the self-crosslinking copolymer has a weight average molecular weight of 6,000 to 25,000, for example.
  • the triazine-based UV absorber is a compound containing a triazine ring and three phenyl groups which may be substituted and which are bonded to carbon atoms of the triazine ring, and at least one of the three phenyl groups.
  • thermosetting resin composition of the present invention may further contain a surfactant.
  • thermosetting resin composition of the present invention is, for example, a resin composition for a flattening film or a resin composition for a microlens.
  • thermosetting resin composition of the present invention does not necessarily require the addition of a crosslinking agent because the copolymer contained in the composition is a self-crosslinking type and has thermosetting properties. Further, the thermosetting resin composition of the present invention is excellent in storage stability because the carboxyl group is blocked (protected) in the structural unit represented by the formula (3) of the copolymer. Furthermore, the cured film formed from the thermosetting resin composition of the present invention has a high refractive index (1.65 or more), excellent transparency, heat resistance, solvent resistance, flatness, and etching equivalent to a resist pattern. Have a rate. Therefore, the thermosetting resin composition of the present invention is suitable as a material for forming a microlens and a flattening film.
  • FIG. 1 is a schematic view showing a cured film formed by applying the resin composition of the present invention on a stepped substrate and baking it.
  • thermosetting resin composition of the present invention the content of the solid content defined as all components excluding the solvent from the composition is usually 1% by mass to 50% by mass. In the present specification, even a liquid component will be treated as "solid content" for convenience.
  • the self-crosslinking copolymer contained in the thermosetting resin composition of the present invention is a copolymer having the structural units represented by the above formulas (1), (2) and (3).
  • the compound (monomer) forming the structural unit represented by the formula (1) include 1-vinylnaphthalene, 2-vinylnaphthalene, 6-methyl-2-vinylnaphthalene, 5,8-dimethyl-2. -Vinylnaphthalene, 6-methoxy-2-vinylnaphthalene, 5,8-dimethoxy-2-vinylnaphthalene, 6-hydroxy-2-vinylnaphthalene, 5,8-dihydroxy-2-vinylnaphthalene, 6-bromo-2- Examples thereof include vinylnaphthalene, 5,8-dibromo-2-vinylnaphthalene, 1-vinylanthracene, 2-vinylanthracene, 9-vinylanthracene, and N-vinylcarbazole. These compounds may be used alone or in combination of two or more.
  • the compound (monomer) forming the structural unit represented by the formula (2) include glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and 3,4-epoxycyclopentylmethyl (meth).
  • ) Acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, 5,6-epoxy-2-bicyclo [2.2.1] heptylmethyl (meth) acrylate, 3,4-epoxytricyclo [5.2. 1.0 2,6 ] decane-8-yl (meth) acrylate may be mentioned.
  • These monomers may be used alone or in combination of two or more.
  • the description such as (meth) acrylate and (meth) acrylic acid represents both methacrylate and acrylate, and methacrylic acid and acrylic acid.
  • the compound (monomer) forming the structural unit represented by the above formula (3) is obtained as an acrylate or methacrylate having a protected carboxyl group by reacting acrylic acid or methacrylic acid with an alkenyl ether compound.
  • the structural unit represented by the above formula (3) can also be formed by a method of reacting an alkenyl ether compound with a structural unit obtained by (co) polymerizing acrylic acid or methacrylic acid.
  • the alkenyl ether compound is represented by the following formula (5).
  • R 5 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 6 represents an alkyl group having 1 to 10 carbon atoms or a cyclic hydrocarbon group having 6 to 10 carbon atoms.
  • reaction between a compound having a carboxyl group and an alkenyl ether compound is carried out at 70 ° C. with monooctyl phosphate, which is one of the phosphoric acid esters, as a catalyst, as described in Japanese Patent No. 3042033. It can be done by
  • alkenyl ether compound represented by the above formula (5) examples include methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether, tert-butyl vinyl ether, n-hexyl vinyl ether, cyclohexyl vinyl ether, 2 -Ethylhexyl vinyl ether.
  • the structural unit represented by the formula (3) is represented by, for example, the following formula (3-1).
  • R 2 represents a hydrogen atom or a methyl group
  • R 6 represents an alkyl group having 1 to 10 carbon atoms or a cyclic hydrocarbon group having 6 to 10 carbon atoms.
  • the compound (monomer) forming the structural unit represented by the formula (3) include 1-methoxyethyl (meth) acrylate, 1-ethoxyethyl (meth) acrylate, 1-propoxyethyl (meth) acrylate. , 1-isopropoxyethyl (meth) acrylate, 1-n-butoxyethyl (meth) acrylate, 1-tert-butoxyethyl (meth) acrylate, 1-n-hexyloxyethyl (meth) acrylate, 1-cyclohexyloxyethyl (Meth) acrylate may be mentioned.
  • these monomers may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the structural unit represented by the formula (1) and the formula (2) The content of the structural unit represented by the formula (1) is from 60 mol% to 95 mol%, preferably 70 mol% with respect to 100 mol% of the total of the structural unit represented by the formula (3) and the structural unit represented by the formula (3).
  • the content of the structural unit represented by the formula (2) is 2 mol% to 20 mol%, preferably 5 mol% to 15 mol%
  • the content of the structural unit represented by the formula (3) is It is 2 mol% to 30 mol%, preferably 5 mol% to 15 mol%.
  • the weight average molecular weight of the self-crosslinking copolymer is usually 1,000 to 100,000, preferably 6,000 to 25,000, and more preferably 6,000 to 20,000.
  • the weight average molecular weight is a value obtained by gel permeation chromatography (GPC) using polystyrene as a standard sample.
  • the content of the self-crosslinking copolymer in the thermosetting resin composition of the present invention is usually 50% by mass to 99% by mass based on the content of the solid content of the thermosetting resin composition. %, And preferably 70% by mass to 95% by mass.
  • the method for obtaining the self-crosslinking copolymer is not particularly limited, but generally, a compound forming a structural unit represented by the formula (1), formula (2) and formula (3)
  • the (monomer) and, if desired, a compound other than the above compounds (hereinafter, abbreviated as compound X in the present specification) are polymerized in a solvent in the presence of a polymerization initiator at a temperature of usually 50 ° C to 120 ° C. It is obtained by The copolymer thus obtained is usually in a solution state in which it is dissolved in a solvent, and can be used in the thermosetting resin composition of the present invention without isolation in this state.
  • the solution of the self-crosslinking copolymer obtained as described above is added to a poor solvent such as diethyl ether, toluene, methanol, ethanol, isopropanol, acetonitrile or water with stirring to obtain the copolymer.
  • a poor solvent such as diethyl ether, toluene, methanol, ethanol, isopropanol, acetonitrile or water with stirring to obtain the copolymer.
  • Re-precipitate, and the resulting precipitate is decanted or filtered, washed if necessary, and then dried at room temperature or heat under normal pressure or reduced pressure to give the copolymer as an oily substance or powder.
  • the polymerization initiator and the unreacted compound that coexist with the copolymer can be removed.
  • the oily substance or powder of the copolymer may be used as it is, or the oily substance or powder may be redissolved in, for example, a solvent described later and used
  • the compound X include styrene, 4-vinylbiphenyl, 2-vinylfluorene, acenaphthylene, (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, cyclohexyl (meth).
  • thermosetting resin composition of the present invention examples include compounds represented by the following formulas (T-1) to (T-15).
  • triazine-based UV absorbers examples include, for example, Tinuvin [registered trademark] 400, 405, 460, 477, 479, 1577ED, 1600 (above, manufactured by BASF Japan Ltd.), ADK STAB. Examples include [registered trademark] LA-46, LA-F70 (above, manufactured by ADEKA Co., Ltd.), and KEMISORB [registered trademark] 102 (manufactured by Chemipro Kasei Co., Ltd.). These triazine-based UV absorbers may be used alone or in combination of two or more.
  • the content of the triazine-based UV absorber contained in the thermosetting resin composition of the present invention is preferably 3% by mass to 20% by mass, more preferably 5% by mass, based on the content of the self-crosslinking copolymer. % To 20% by mass.
  • thermosetting resin composition of the present invention is not particularly limited, but for example, a self-crosslinking copolymer having a structural unit represented by the above formula (1), formula (2) and formula (3). Is dissolved in an organic solvent described below, and the triazine-based ultraviolet absorber is mixed with the obtained solution at a predetermined ratio to form a uniform solution. Furthermore, at a suitable stage of this preparation method, there may be mentioned a method of further adding and mixing other additives, if necessary.
  • the organic solvent contained in the thermosetting resin composition of the present invention is not particularly limited as long as it dissolves the self-crosslinking copolymer and the triazine-based ultraviolet absorber contained in the thermosetting resin composition. ..
  • Examples of such organic solvent include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether.
  • propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol mono from the viewpoint of improving the leveling property of the coating film formed by coating the thermosetting resin composition of the present invention on the substrate.
  • Ethyl ether, propylene glycol monopropyl ether, 2-heptanone, ethyl lactate, butyl lactate, methyl pyruvate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, cyclopentanone, cyclohexanone, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and ⁇ -butyrolactone are preferred.
  • thermosetting resin composition of the present invention may contain a surfactant for the purpose of improving coatability.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene oleyl ether, and other polyoxyethylene alkyl ethers, polyoxyethylene octylphenyl ether, and polyoxyethylene.
  • Polyoxyethylene alkylaryl ethers such as ethylene nonylphenyl ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan Sorbitan fatty acid esters such as tristearate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, etc.
  • Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters, Ftop [registered trademark] EF301, EF303, EF352 (above, manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd.), Megafac [registered trademark] F171, the same.
  • F173, R-30, R-40, R-40-LM (above, manufactured by DIC Corporation), Florard FC430, FC431 (above, manufactured by Sumitomo 3M Ltd.), Asahi Guard [registered trademark] AG710, Surflon [registered trademark] S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Corporation), DFX-18, FTX-206D, FTX-212D, FTX-. 218, FTX-220D, FTX-230D, FTX-240D, FTX-212P, FTX-220P, FTX-228P, FTX-240G, etc.
  • Fluorosurfactants such as Futgent series (manufactured by Neos), organosiloxane Polymer KP341 (produced by Shin-Etsu Chemical Co., Ltd.) can be mentioned. These surfactants may be used alone or in combination of two or more.
  • the content in the thermosetting resin composition of the present invention is usually 0.0001% by mass to 3% by mass based on the content of the solid content of the resin composition. And preferably 0.001 to 1% by mass, and more preferably 0.01 to 0.5% by mass.
  • thermosetting resin composition of the present invention as long as it does not impair the effects of the present invention, if necessary, a curing agent, a curing aid, a sensitizer, a plasticizer, an antioxidant, a light stabilizer ( HALS), an adhesion aid, and other additives can be included.
  • thermosetting resin composition of the present invention A method for producing a cured film using the thermosetting resin composition of the present invention will be described.
  • a substrate for example, PET film, TAC film, semiconductor substrate, glass substrate, quartz substrate, silicon wafer and substrate having various metal films or color filters formed on the surface thereof.
  • the thermosetting resin composition of the present invention is applied by a coating method, it is baked using a heating means such as a hot plate or an oven to form a cured film.
  • the baking conditions are appropriately selected from a baking temperature of 50 ° C. to 300 ° C. and a baking time of 0.1 minutes to 360 minutes.
  • the baking for producing the cured film may be performed in two or more steps.
  • the thickness of the cured film formed from the thermosetting resin composition of the present invention is, for example, 0.001 ⁇ m to 1000 ⁇ m, preferably 0.01 ⁇ m to 100 ⁇ m, and more preferably 0.1 ⁇ m to 10 ⁇ m. Is.
  • a method for producing a microlens using the thermosetting resin composition of the present invention will be described.
  • a resist is applied on the cured film produced through the method for producing a cured film, the resist is exposed through a predetermined mask, post-exposure heating (PEB) is performed if necessary, and further alkali development, rinse, Then, a predetermined resist pattern is formed on the cured film by drying.
  • PEB post-exposure heating
  • a predetermined resist pattern is formed on the cured film by drying.
  • the exposure for example, g-line, i-line, KrF excimer laser, ArF excimer laser can be used.
  • the resist pattern is reflowed to form a lens pattern.
  • the lens pattern as an etching mask, the cured film under the lens pattern is etched back, and the shape of the lens pattern is transferred to the cured film to manufacture a microlens.
  • thermosetting resin composition ⁇ Example 1> 20.0 g of the solution of the copolymer obtained in Synthesis Example 1, 0.3 g of the compound represented by the formula (T-9), which is a triazine-based ultraviolet absorber, and Megafac® R as a surfactant.
  • a solution was obtained by dissolving 0.003 g of -40 (manufactured by DIC Corporation) in 7.4 g of propylene glycol monomethyl ether acetate and 14.3 g of cyclohexanone. Then, the obtained solution was filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m to prepare a thermosetting resin composition.
  • Example 2 20.0 g of the solution of the copolymer obtained in Synthesis Example 2, 0.3 g of the compound represented by the formula (T-9), which is a triazine-based ultraviolet absorber, and Megafac® R as a surfactant.
  • a solution was obtained by dissolving 0.003 g of -40 (manufactured by DIC Corporation) in 7.4 g of propylene glycol monomethyl ether acetate and 14.3 g of cyclohexanone. Then, the obtained solution was filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m to prepare a thermosetting resin composition.
  • Example 3 20.0 g of the solution of the copolymer obtained in Synthesis Example 3, 0.3 g of the compound represented by the formula (T-9) which is a triazine-based ultraviolet absorber, and Megafac® R as a surfactant.
  • a solution was obtained by dissolving 0.003 g of -40 (manufactured by DIC Corporation) in 7.4 g of propylene glycol monomethyl ether acetate and 14.3 g of cyclohexanone. Then, the obtained solution was filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m to prepare a thermosetting resin composition.
  • Example 4 20.0 g of the solution of the copolymer obtained in Synthesis Example 1, 0.18 g of the compound represented by the formula (T-9) which is a triazine-based UV absorber, and Megafac® R as a surfactant.
  • a solution was obtained by dissolving 0.003 g of -40 (manufactured by DIC Corporation) in 7.0 g of propylene glycol monomethyl ether acetate and 14.0 g of cyclohexanone. Then, the obtained solution was filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m to prepare a thermosetting resin composition.
  • Example 5 20.0 g of the solution of the copolymer obtained in Synthesis Example 1, 0.6 g of the compound represented by the formula (T-9) which is a triazine-based ultraviolet absorber, and Megafac® R as a surfactant.
  • a solution was obtained by dissolving 0.003 g of -40 (manufactured by DIC Corporation) in 5.3 g of propylene glycol monomethyl ether acetate and 12.9 g of cyclohexanone. Then, the obtained solution was filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m to prepare a thermosetting resin composition.
  • Example 6 20.0 g of the solution of the copolymer obtained in Synthesis Example 1, 1.2 g of the compound represented by the formula (T-9) which is a triazine-based ultraviolet absorber, and Megafac® R as a surfactant.
  • T-9 the compound represented by the formula (T-9) which is a triazine-based ultraviolet absorber
  • Megafac® R Megafac® R as a surfactant.
  • -40 manufactured by DIC Corporation
  • 0.003 g was dissolved in 3.3 g of propylene glycol monomethyl ether acetate and 11.5 g of cyclohexanone to obtain a solution. Then, the obtained solution was filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m to prepare a thermosetting resin composition.
  • Example 7 20.0 g of the solution of the copolymer obtained in Synthesis Example 2, 0.3 g of the compound represented by the formula (T-7) which is a triazine-based ultraviolet absorber, and Megafac® R as a surfactant.
  • a solution was obtained by dissolving 0.003 g of -40 (manufactured by DIC Corporation) in 7.4 g of propylene glycol monomethyl ether acetate and 14.3 g of cyclohexanone. Then, the obtained solution was filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m to prepare a thermosetting resin composition.
  • Example 8 20.0 g of the solution of the copolymer obtained in Synthesis Example 2, 0.3 g of the compound represented by the formula (T-6) which is a triazine-based ultraviolet absorber, and Megafac® R as a surfactant.
  • a solution was obtained by dissolving 0.003 g of -40 (manufactured by DIC Corporation) in 7.4 g of propylene glycol monomethyl ether acetate and 14.3 g of cyclohexanone. Then, the obtained solution was filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m to prepare a thermosetting resin composition.
  • Example 9 20.0 g of the solution of the copolymer obtained in Synthesis Example 2, 0.3 g of the compound represented by the formula (T-11) which is a triazine-based ultraviolet absorber, and Megafac® R as a surfactant.
  • a solution was obtained by dissolving 0.003 g of -40 (manufactured by DIC Corporation) in 7.4 g of propylene glycol monomethyl ether acetate and 14.3 g of cyclohexanone. Then, the obtained solution was filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m to prepare a thermosetting resin composition.
  • Example 10 20.0 g of the solution of the copolymer obtained in Synthesis Example 2, 0.3 g of the compound represented by the formula (T-13) which is a triazine-based ultraviolet absorber, and Megafac® R as a surfactant.
  • a solution was obtained by dissolving 0.003 g of -40 (manufactured by DIC Corporation) in 7.4 g of propylene glycol monomethyl ether acetate and 14.3 g of cyclohexanone. Then, the obtained solution was filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m to prepare a thermosetting resin composition.
  • Example 11 20.0 g of the solution of the copolymer obtained in Synthesis Example 2, 0.3 g of the compound represented by the formula (T-5) which is a triazine-based ultraviolet absorber, and Megafac® R as a surfactant.
  • a solution was obtained by dissolving 0.003 g of -40 (manufactured by DIC Corporation) in 7.4 g of propylene glycol monomethyl ether acetate and 14.3 g of cyclohexanone. Then, the obtained solution was filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m to prepare a thermosetting resin composition.
  • Example 12 20.0 g of the solution of the copolymer obtained in Synthesis Example 2, 0.3 g of the compound represented by the formula (T-4), which is a triazine-based ultraviolet absorber, and Megafac® R as a surfactant.
  • a solution was obtained by dissolving 0.003 g of -40 (manufactured by DIC Corporation) in 7.4 g of propylene glycol monomethyl ether acetate and 14.3 g of cyclohexanone. Then, the obtained solution was filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m to prepare a thermosetting resin composition.
  • thermosetting resin composition 20.0 g of the solution of the copolymer obtained in Synthesis Example 2, 0.003 g of Megafac [registered trademark] R-40 (manufactured by DIC Corporation) as a surfactant, 6.4 g of propylene glycol monomethyl ether acetate and A solution was obtained by dissolving it in 13.6 g of cyclohexanone. Then, the obtained solution was filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m to prepare a thermosetting resin composition.
  • the thermosetting resin composition prepared in this comparative example does not contain an ultraviolet absorber.
  • BT-1 a compound represented by the following formula
  • Megafac Megafac [registered trademark] as a surfactant.
  • R-40 manufactured by DIC Corporation
  • the obtained solution was filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m to prepare a thermosetting resin composition.
  • BT-2 a compound represented by the following formula
  • Megafac [registered trademark] as a surfactant.
  • R-40 manufactured by DIC Corporation
  • the obtained solution was filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m to prepare a thermosetting resin composition.
  • BT-3 a compound represented by the following formula
  • Megafac Megafac [registered trademark] as a surfactant.
  • R-40 manufactured by DIC Corporation
  • the obtained solution was filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m to prepare a thermosetting resin composition.
  • BT-4 a compound represented by the following formula (BT-4) which is a benzotriazole-based ultraviolet absorber, and Megafac [registered trademark] as a surfactant.
  • R-40 manufactured by DIC Corporation
  • the obtained solution was filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m to prepare a thermosetting resin composition.
  • a solution was obtained by dissolving 0.003 g of -40 (manufactured by DIC Corporation) in 7.4 g of propylene glycol monomethyl ether acetate and 14.3 g of cyclohexanone. Then, the obtained solution was filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m to prepare a thermosetting resin composition.
  • a solution was obtained by dissolving 0.003 g of -40 (manufactured by DIC Corporation) in 7.4 g of propylene glycol monomethyl ether acetate and 14.3 g of cyclohexanone. Then, the obtained solution was filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m to prepare a thermosetting resin composition.
  • a solution was obtained by dissolving 0.003 g of -40 (manufactured by DIC Corporation) in 7.4 g of propylene glycol monomethyl ether acetate and 14.3 g of cyclohexanone. Then, the obtained solution was filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m to prepare a thermosetting resin composition.
  • a solution was obtained by dissolving 0.003 g of -40 (manufactured by DIC Corporation) in 7.4 g of propylene glycol monomethyl ether acetate and 14.3 g of cyclohexanone. Then, the obtained solution was filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m to prepare a thermosetting resin composition.
  • thermosetting resin compositions prepared in Examples 1 to 12 and Comparative Examples 1 to 9 were applied on a silicon wafer using a spin coater, and then applied on a hot plate at 100 ° C. for 1 minute. Further, it was baked at 220 ° C. for 5 minutes to form a cured film having a film thickness of 1 ⁇ m.
  • TMAH tetramethylammonium hydroxide
  • thermosetting resin compositions prepared in Examples 1 to 12 and Comparative Examples 1 to 9 were applied on a silicon wafer using a spin coater, and then applied on a hot plate at 100 ° C. for 1 minute. Further, it was baked at 220 ° C. for 5 minutes to form a cured film having a film thickness of 1 ⁇ m. With respect to these cured films, the refractive index at a wavelength of 550 nm was measured using a spectroscopic ellipsometer M-2000 (JA Woollam Japan Co., Ltd.). The evaluation results are shown in Table 1.
  • thermosetting resin compositions prepared in Examples 1 to 12 and Comparative Examples 1 to 9 were applied on a quartz substrate by using a spin coater, and then on a hot plate at 100 ° C. for 1 minute. Further, it was baked at 220 ° C. for 5 minutes to form a cured film having a film thickness of 1 ⁇ m.
  • the transmittance of these cured films was measured in the wavelength range of 400 nm to 800 nm using an ultraviolet visible spectrophotometer UV-2600 (manufactured by Shimadzu Corporation). Furthermore, after baking these cured films at 260 ° C. for 5 minutes, the transmittance was measured again in the wavelength range of 400 nm to 800 nm. After baking at 220 ° C.
  • the minimum transmittance measured in the wavelength range of 400 nm to 800 nm was 90% or more as “ ⁇ ”, less than 90%.
  • the heat resistance was evaluated as "x”. The evaluation results are shown in Table 1.
  • thermosetting resin compositions prepared in Examples 1 to 12 and Comparative Examples 1 to 9 were applied on a quartz substrate by using a spin coater, and then on a hot plate at 100 ° C. for 1 minute. Further, it was baked at 220 ° C. for 5 minutes to form a cured film having a film thickness of 1 ⁇ m.
  • the transmittance of these cured films was measured in the wavelength range of 400 nm to 800 nm using an ultraviolet visible spectrophotometer UV-2600 (manufactured by Shimadzu Corporation). Furthermore, after performing a light resistance test on these cured films under the following conditions, the transmittance was measured again in the wavelength range of 400 nm to 800 nm.
  • the minimum transmittance measured in the wavelength range of 400 nm to 800 nm was 90% or more as " ⁇ ", and the less than 90% was "x”.
  • the light resistance was evaluated as.
  • the evaluation results are shown in Table 1.
  • thermosetting resin compositions prepared in Examples 1 to 12 were applied onto a stepped substrate (see FIG. 1) having a height of 0.3 ⁇ m, a line width of 10 ⁇ m and a space between lines of 10 ⁇ m using a spin coater.
  • the film was baked on a hot plate at 100 ° C. for 1 minute and then at 220 ° C. for 5 minutes to form a film having a film thickness of 1 ⁇ m. From the values of h1 (step of the stepped substrate) and h2 (step of the cured film, that is, the height difference between the height of the cured film on the line and the height of the cured film on the space) shown in the stepped substrate 1 of FIG.
  • the flattening rate was obtained using (1- (h2 / h1)) ⁇ 100 ′′.
  • “ ⁇ ” was evaluated, when 50% or more and less than 80%, “ ⁇ ”, and when it was less than 50%, “X” was used to evaluate the step flattening property. ..
  • the evaluation results are shown in Table 1.
  • thermosetting resin compositions prepared in Examples 1 to 12 were applied onto a silicon wafer by using a spin coater, and baked on a hot plate at 100 ° C. for 1 minute and further at 220 ° C. for 5 minutes, A cured film having a film thickness of 1 ⁇ m was formed. These cured films were dry-etched using a dry etching device RIE-10NR (manufactured by Samco Co., Ltd.) (etching gas: CF 4 ) to measure the dry etching rate.
  • RIE-10NR manufactured by Samco Co., Ltd.
  • a resist solution (THMR-iP1800 (manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied on a silicon wafer by using a spin coater, and was applied on a hot plate at 90 ° C. for 1.5 minutes and at 110 ° C. for 1.5 minutes.
  • the resist film having a film thickness of 1 ⁇ m was formed by baking for 1 minute at 180 ° C., and the dry etching rate was measured, and the thermosetting resin composition prepared in Examples 1 to 12 was applied to the resist film.
  • the dry etching rate ratio of the cured film obtained from the product was determined, and the evaluation results are shown in Table 1.
  • the cured film formed from the thermosetting resin composition of the present invention has high solvent resistance, high refractive index, and high transparency, and after heating at 260 ° C. and after the light resistance test. All had a minimum transmittance of 90% or more in the wavelength range of 400 nm to 800 nm, and had high heat resistance and high light resistance. Further, all of the cured films formed from the thermosetting resin composition of the present invention had excellent leveling flatness with a leveling rate of 80% or more.
  • the cured films formed from the thermosetting resin compositions prepared in Comparative Examples 1 to 9 have high solvent resistance, high refractive index and high heat resistance, but when subjected to the light resistance test, The minimum transmittance in the wavelength range of 400 nm to 800 nm decreased to less than 90%, resulting in poor light resistance.
  • thermosetting resin composition of the present invention can be used as a protective film, a flattening film, an insulating film, an antireflection film, a refractive index control film, a microlens, an intralayer lens, an optical waveguide, a film substrate, etc. It is useful as a resin composition for forming an optical member.
  • stepped substrate 2 cured film 3: line width 4: interline space h1: stepped substrate step h2: cured film stepped

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

【課題】 新規な熱硬化性樹脂組成物を提供する。 【解決手段】 下記式(1)で表される構造単位、下記式(2)で表される構造単位及び下記式(3)で表される構造単位を有する自己架橋性共重合体、トリアジン系紫外線吸収剤、及び有機溶剤を含み、前記トリアジン系紫外線吸収剤は、前記自己架橋性共重合体の含有量に対し3質量%乃至20質量%の割合で含有される、熱硬化性樹脂組成物である。 [式(1)乃至式(3)中、Arは縮合環式炭化水素基を表し、R及びRはそれぞれ独立に水素原子又はメチル基を表し、Rは単結合又はアルキレン基を表し、Aはオキシラン環を有する基を表し、Rはアルキル基を表し、Aはアルコキシ基を表す。]

Description

熱硬化性樹脂組成物
本発明は、自己架橋性共重合体、トリアジン環を1分子中に少なくとも1つ有する紫外線吸収剤、及び有機溶剤を含む、高屈折率平坦化膜の作製及び高屈折率マイクロレンズの作製に使用可能な、熱硬化性樹脂組成物に関するものである。
近年、液晶ディスプレイ、有機ELディスプレイ、発光ダイオード、太陽電池、CCD/CMOSイメージセンサ等の電子デバイスの分野において、保護膜、平坦化膜、絶縁膜、反射防止膜、屈折率制御膜、マイクロレンズ、層内レンズ、光導波路、フィルム基材等の光学部材向けに、可視光域の透明性に優れた高分子材料を採用した樹脂組成物が多用されている。このような光学部材は、透明性だけでなく、優れた耐熱性及び耐光性も要求される。さらに、該光学部材は、光取り出し効率の向上及び集光性の向上のために、高い屈折率も要求される場合が多い。
一般に、高分子材料を高屈折率化する手法としては、該高分子材料の分子中に、例えば、芳香環、フッ素原子以外のハロゲン原子、硫黄原子、金属原子、又は水素結合を導入することが用いられている。芳香環の導入に関しては、フェニル基等の単環式炭化水素基よりも、ナフタレン環、アントラセン環等の縮合環式炭化水素基の導入が、高分子材料の高屈折率化には有効手段となる(特許文献1及び特許文献2)。
また、CCD/CMOSイメージセンサ用マイクロレンズの製造方法の1つとして、エッチバック法が知られている(特許文献3及び特許文献4)。すなわち、カラーフィルター層上に形成したマイクロレンズ用樹脂層上にレジストパターンを形成し、熱処理によってこのレジストパターンをリフローしてレンズパターンを形成する。このレジストパターンをリフローして形成したレンズパターンをエッチングマスクとして、下層のマイクロレンズ用樹脂層をエッチバックし、レンズパターン形状をマイクロレンズ用樹脂層に転写することによってマイクロレンズを作製する。エッチバック法では、レンズパターン形状を忠実に下層のマイクロレンズ用樹脂層へ転写するにあたり、レジストパターンのドライエッチングレートXとマイクロレンズ用樹脂層のドライエッチングレートYが同等(X:Y=1:0.8乃至1.2)であることが求められる(特許文献5)。
特開平8-53517号公報 国際公開第2008/143095号 特開平1-10666号公報 特開平6-112459号公報 国際公開第2013/005619号
高分子材料の分子中に縮合環式炭化水素基を導入すると、該高分子材料は、吸光波長が長波長化するために、紫外線等の光で劣化しやすくなる。したがって、縮合環式炭化水素基が導入された高分子材料を採用した樹脂組成物を用いて作製された光学部材は、変色等の品質劣化を引き起こしやすくなるため、高屈折率と高耐光性を両立するのが困難となる課題があった。
本発明は、前記の事情に基づいてなされたものであり、その目的は、高い屈折率を有すると共に、優れた透明性、耐熱性、耐光性、耐溶剤性、平坦性及びレジストと同等のドライエッチングレートを有する硬化膜を形成できる、熱硬化性の樹脂組成物を提供することである。また、本発明の他の目的は、高い屈折率を有すると共に、優れた透明性、耐熱性、耐光性及び耐溶剤性を有する平坦化膜及びマイクロレンズを提供することにある。
本発明者らは、前記の課題を解決するべく鋭意検討を行った結果、本発明を完成するに至った。すなわち、本発明は、下記式(1)で表される構造単位、下記式(2)で表される構造単位及び下記式(3)で表される構造単位を有する自己架橋性共重合体、トリアジン系紫外線吸収剤、及び有機溶剤を含み、前記トリアジン系紫外線吸収剤は、前記自己架橋性共重合体の含有量に対し3質量%乃至20質量%の割合で含有される、熱硬化性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000003
[式(1)乃至式(3)中、Arは縮合環式炭化水素基を表し、R及びRはそれぞれ独立に水素原子又はメチル基を表し、Rは単結合又はアルキレン基を表し、Aはオキシラン環を有する基を表し、Rはアルキル基を表し、Aはアルコキシ基を表す。]
前記縮合環式炭化水素基は例えばナフチル基であり、前記オキシラン環を有する基は例えばエポキシ基である。
前記自己架橋性共重合体は、例えば、前記式(1)で表される構造単位を少なくとも70モル%含む。前記自己架橋性共重合体は、例えば6,000乃至25,000の重量平均分子量を有する。
前記トリアジン系紫外線吸収剤は、トリアジン環、及び該トリアジン環の炭素原子と結合した、置換基を有してもよいフェニル基を3つ含む化合物であり、該3つのフェニル基のうち少なくとも1つは下記式(4)で表される基である。
Figure JPOXMLDOC01-appb-C000004
(式中、*は前記トリアジン環の炭素原子との結合手を表し、A及びAはそれぞれ独立に水素原子又は有機基を表す。)
本発明の熱硬化性樹脂組成物は界面活性剤を更に含有してもよい。
本発明の熱硬化性樹脂組成物は、例えば、平坦化膜用樹脂組成物又はマイクロレンズ用樹脂組成物である。
本発明の熱硬化性樹脂組成物は、当該組成物に含まれる共重合体が自己架橋タイプであるため必ずしも架橋剤が添加される必要はなく、熱硬化性を有する。また本発明の熱硬化性樹脂組成物は、前記共重合体の式(3)で表される構造単位においてカルボキシル基がブロック化(保護)されているため、保存安定性に優れる。さらに、本発明の熱硬化性樹脂組成物から形成される硬化膜は、高い屈折率(1.65以上)、優れた透明性、耐熱性、耐溶剤性、平坦性及びレジストパターンと同等のエッチングレートを有する。したがって、本発明の熱硬化性樹脂組成物は、マイクロレンズ及び平坦化膜を形成する材料として好適である。
図1は、段差基板上に本発明の樹脂組成物を塗布し、ベークして形成される硬化膜を示す模式図である。
以下、本発明の熱硬化性樹脂組成物の各成分について、詳細に説明する。本発明の熱硬化性樹脂組成物において、該組成物から溶剤を除いた全成分として定義される固形分の含有量は通常、1質量%乃至50質量%である。なお本明細書において、液状成分であっても便宜的に“固形分”として扱うものとする。
<自己架橋性共重合体> 
本発明の熱硬化性樹脂組成物に含まれる自己架橋性共重合体は、前述の式(1)、式(2)及び式(3)で表される構造単位を有する共重合体である。
前記式(1)で表される構造単位を形成する化合物(モノマー)の具体例としては、1-ビニルナフタレン、2-ビニルナフタレン、6-メチル-2-ビニルナフタレン、5,8-ジメチル-2-ビニルナフタレン、6-メトキシ-2-ビニルナフタレン、5,8-ジメトキシ-2-ビニルナフタレン、6-ヒドロキシ-2-ビニルナフタレン、5,8-ジヒドロキシ-2-ビニルナフタレン、6-ブロモ-2-ビニルナフタレン、5,8-ジブロモ-2-ビニルナフタレン、1-ビニルアントラセン、2-ビニルアントラセン、9-ビニルアントラセン、N-ビニルカルバゾールが挙げられる。これらの化合物は1種単独で使用しても、2種以上を組み合わせて使用してもよい。
前記式(2)で表される構造単位を形成する化合物(モノマー)の具体例としては、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、3,4-エポキシシクロペンチルメチル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、5,6-エポキシ-2-ビシクロ[2.2.1]ヘプチルメチル(メタ)アクリレート、3,4-エポキシトリシクロ[5.2.1.02,6]デカン-8-イル(メタ)アクリレートが挙げられる。これらのモノマーは1種単独で使用しても、2種以上を組み合わせて使用してもよい。なお本明細書において(メタ)アクリレートや(メタ)アクリル酸といった記載は、メタクリレートとアクリレート、メタクリル酸とアクリル酸の双方を表す。
前記式(3)で表される構造単位を形成する化合物(モノマー)は、アクリル酸もしくはメタクリル酸とアルケニルエーテル化合物とを反応させ、保護されたカルボキシル基を有するアクリレートもしくはメタクリレートとして得られる。前記方法に替えて、アクリル酸もしくはメタクリル酸を(共)重合させた構造単位に対してアルケニルエーテル化合物を反応させる方法によって、前記式(3)で表される構造単位を形成することもできる。
前記アルケニルエーテル化合物は下記式(5)で表される。
Figure JPOXMLDOC01-appb-C000005
(式中、Rは水素原子又は炭素原子数1乃至10のアルキル基を表し、Rは炭素原子数1乃至10のアルキル基又は炭素原子数6乃至10の環状炭化水素基を表す。)
カルボキシル基を有する化合物とアルケニルエーテル化合物の反応は、例えば、特許第3042033号公報に記載されているように、リン酸エステル類の1つであるリン酸モノオクチルを触媒とし、70℃で撹拌することにより行なうことができる。
前記式(5)で表されるアルケニルエーテル化合物としては、例えば、メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル、tert-ブチルビニルエーテル、n-ヘキシルビニルエーテル、シクロヘキシルビニルエーテル、2-エチルヘキシルビニルエーテルが挙げられる。
前記式(3)で表される構造単位は、例えば下記式(3-1)で表される。
Figure JPOXMLDOC01-appb-C000006
(式中、Rは水素原子又はメチル基を表し、Rは炭素原子数1乃至10のアルキル基又は炭素原子数6乃至10の環状炭化水素基を表す。) 
前記式(3)で表される構造単位を形成する化合物(モノマー)の具体例としては、1-メトキシエチル(メタ)アクリレート、1-エトキシエチル(メタ)アクリレート、1-プロポキシエチル(メタ)アクリレート、1-イソプロポキシエチル(メタ)アクリレート、1-n-ブトキシエチル(メタ)アクリレート、1-tert-ブトキシエチル(メタ)アクリレート、1-n-ヘキシルオキシエチル(メタ)アクリレート、1-シクロヘキシルオキシエチル(メタ)アクリレートが挙げられる。なお、これらのモノマーは1種単独で使用しても、2種以上を組み合わせて使用してもよい。  
前記式(1)、式(2)及び式(3)で表される構造単位を有する自己架橋性共重合体において、前記式(1)で表される構造単位、前記式(2)で表される構造単位及び前記式(3)で表される構造単位の和100mol%に対し、前記式(1)で表される構造単位の含有率は60mol%乃至95mol%であり、好ましくは70mol%乃至90mol%、前記式(2)で表される構造単位の含有率は2mol%乃至20mol%であり、好ましくは5mol%乃至15mol%、前記式(3)で表される構造単位の含有率は2mol%乃至30mol%であり、好ましくは5mol%乃至15mol%である。
前記自己架橋性共重合体の重量平均分子量は通常、1,000乃至100,000であり、好ましくは6,000乃至25,000、さらに好ましくは6,000乃至20,000である。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準試料としてポリスチレンを用いて得られる値である。
また、本発明の熱硬化性樹脂組成物における前記自己架橋性共重合体の含有量は、当該熱硬化性樹脂組成物の固形分の含有量に基づいて通常、50質量%乃至99質量%であり、好ましくは70質量%乃至95質量%である。 
本発明において、前記自己架橋性共重合体を得る方法は特に限定されないが、一般的には、前記式(1)、式(2)及び式(3)で表される構造単位を形成する化合物(モノマー)、並びに所望により前記化合物以外の化合物(以下、本明細書では化合物Xと略称する。)を、重合開始剤存在下の溶剤中において、通常50℃乃至120℃の温度下で重合反応させることにより得られる。このようにして得られる共重合体は、通常、溶剤に溶解した溶液状態であり、この状態で単離することなく、本発明の熱硬化性樹脂組成物に用いることもできる。
また、前記のようにして得られた自己架橋性共重合体の溶液を、撹拌させたジエチルエーテル、トルエン、メタノール、エタノール、イソプロパノール、アセトニトリル又は水等の貧溶媒に投入して当該共重合体を再沈殿させ、生成した沈殿物をデカンテーション又はろ過し、必要に応じて洗浄後、常圧又は減圧下で常温乾燥又は加熱乾燥することで、当該共重合体をオイル状物又は粉体とすることができる。このような操作により、前記共重合体と共存する重合開始剤や未反応化合物を除去することができる。本発明においては、前記共重合体のオイル状物又は粉体をそのまま用いてもよく、あるいはオイル状物又は粉体を、例えば後述する溶剤に再溶解して溶液の状態として用いてもよい。 
前記化合物Xの具体例としては、スチレン、4-ビニルビフェニル、2-ビニルフルオレン、アセナフチレン、(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、γ-ブチロラクトン(メタ)アクリレート、インデン、マレイミド、N-メチルマレイミド、N-エチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド、N-ベンジルマレイミド、N-(4-ヒドロキシフェニル)マレイミド、2-ヒドロキシエチルビニルエーテル、3-ヒドロキシプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、5-ヒドロキシペンチルビニルエーテル、6-ヒドロキシヘキシルビニルエーテル、4-ヒドロキシシクロヘキシルビニルエーテル、1,4-シクロヘキサンジメタノールモノビニルエーテル、ジエチレングリコールモノビニルエーテル及びジプロピレングリコールモノビニルエーテルが挙げられる。
<トリアジン系紫外線吸収剤> 
本発明の熱硬化性樹脂組成物に含まれるトリアジン系紫外線吸収剤は、例えば、下記式(T-1)乃至式(T-15)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
前記トリアジン系紫外線吸収剤の市販品としては、例えば、Tinuvin〔登録商標〕400、同405、同460、同477、同479、同1577ED、同1600(以上、BASFジャパン(株)製)、アデカスタブ〔登録商標〕LA-46、同LA-F70(以上、(株)ADEKA製)、KEMISORB〔登録商標〕102(ケミプロ化成(株)製)を挙げることができる。これらのトリアジン系紫外線吸収剤は、1種単独で使用しても、2種以上を組み合わせて使用してもよい。
本発明の熱硬化性樹脂組成物に含まれるトリアジン系紫外線吸収剤の含有量は、前記自己架橋性共重合体の含有量に対し、好ましくは3質量%乃至20質量%、より好ましくは5質量%乃至20質量%である。
本発明の熱硬化性樹脂組成物の調製方法は、特に限定されないが、例えば、前記式(1)、式(2)及び式(3)で表される構造単位を有する自己架橋性共重合体を後述する有機溶剤に溶解し、得られた溶液に前記トリアジン系紫外線吸収剤を所定の割合で混合し、均一な溶液とする方法が挙げられる。さらに、この調製方法の適当な段階において、必要に応じて、その他の添加剤を更に添加して混合する方法が挙げられる。
<有機溶剤> 
本発明の熱硬化性樹脂組成物に含まれる有機溶剤としては、該熱硬化性樹脂組成物に含まれる自己架橋性共重合体及びトリアジン系紫外線吸収剤を溶解するものであれば、特に限定されない。そのような有機溶剤としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテル、プロピレングリコールプロピルエーテルアセテート、プロピレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、2-ヘプタノン、γ-ブチロラクトン、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、及びN-エチル-2-ピロリドンを挙げることができる。これらの有機溶剤は、1種単独で使用しても、2種以上を組み合わせて使用してもよい。
前記有機溶剤の中でも、本発明の熱硬化性樹脂組成物を基板上に塗布して形成される塗膜のレベリング性の向上の観点から、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、2-ヘプタノン、乳酸エチル、乳酸ブチル、ピルビン酸メチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、シクロペンタノン、シクロヘキサノン、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン及びγ-ブチロラクトンが好ましい。
<界面活性剤>
また、本発明の熱硬化性樹脂組成物は、塗布性を向上させる目的で、界面活性剤を含有することもできる。該界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアルキルアリールエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、エフトップ〔登録商標〕EF301、同EF303、同EF352(以上、三菱マテリアル電子化成(株)製)、メガファック〔登録商標〕F171、同F173、同R-30、同R-40、同R-40-LM(以上、DIC(株)製)、フロラードFC430、同FC431(以上、住友スリーエム(株)製)、アサヒガード〔登録商標〕AG710、サーフロン〔登録商標〕S-382、同SC101、同SC102、同SC103、同SC104、同SC105、同SC106(AGC(株)製)、DFX-18、FTX-206D、FTX-212D、FTX-218、FTX-220D、FTX-230D、FTX-240D、FTX-212P、FTX-220P、FTX-228P、FTX-240G等フタージェントシリーズ((株)ネオス製)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP341(信越化学工業(株)製)を挙げることができる。これらの界面活性剤は、1種単独で又は2種以上を組み合わせて使用することができる。
また、前記界面活性剤が使用される場合、本発明の熱硬化性樹脂組成物における含有量は、該樹脂組成物の固形分の含有量に基づいて、通常0.0001質量%乃至3質量%であり、好ましくは0.001質量%乃至1質量%であり、より好ましくは0.01質量%乃至0.5質量%である。
また、本発明の熱硬化性樹脂組成物は、本発明の効果を損なわない限りにおいて、必要に応じて、硬化剤、硬化助剤、増感剤、可塑剤、酸化防止剤、光安定剤(HALS)、密着助剤等の添加剤を含むことができる。 
以下、本発明の熱硬化性樹脂組成物の使用について説明する。
<硬化膜の作製方法>
本発明の熱硬化性樹脂組成物を用いた硬化膜の作製方法について説明する。基材(例えば、PETフィルム、TACフィルム、半導体基板、ガラス基板、石英基板、シリコンウエハー及びこれらの表面に各種金属膜又はカラーフィルター等が形成された基板)上に、スピナー、コーター等の適当な塗布方法により本発明の熱硬化性樹脂組成物を塗布後、ホットプレート、オーブン等の加熱手段を用いてベークして硬化膜を作製する。ベーク条件は、ベーク温度50℃乃至300℃、ベーク時間0.1分間乃至360分間の中から適宜選択される。前記硬化膜を作製する際のベークは2ステップ以上処理してもよい。また、本発明の熱硬化性樹脂組成物から形成される硬化膜の膜厚としては、例えば0.001μm乃至1000μmであり、好ましくは0.01μm乃至100μmであり、より好ましくは0.1μm乃至10μmである。
<マイクロレンズの作製方法>
本発明の熱硬化性樹脂組成物を用いたマイクロレンズの作製方法について説明する。前記硬化膜の作製方法を経て作製された硬化膜の上にレジストを塗布し、該レジストを所定のマスクを通して露光し、必要に応じて露光後加熱(PEB)を行い、さらにアルカリ現像、リンス、及び乾燥することにより、該硬化膜上に所定のレジストパターンを形成する。露光には、例えば、g線、i線、KrFエキシマレーザー、ArFエキシマレーザーを使用することができる。次いで、加熱処理することにより、前記レジストパターンをリフローしてレンズパターンを形成する。このレンズパターンをエッチングマスクとして、該レンズパターンの下層の前記硬化膜をエッチバックして、該レンズパターンの形状を前記硬化膜に転写することによってマイクロレンズを作製する。
以下に実施例及び比較例に基づいて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものでない。
〔下記合成例で得られた共重合体の重量平均分子量の測定〕
装置:日本分光(株)製GPCシステム
カラム:Shodex〔登録商標〕GPC KF-804L及びGPC KF-803L
カラムオーブン:40℃
流量:1mL/分
溶離液:テトラヒドロフラン
[自己架橋性共重合体の合成]
<合成例1>
2-ビニルナフタレン15.0g、1-n-ブトキシエチルメタクリレート3.9g、グリシジルメタクリレート3.0g、及び2,2’-アゾビスイソブチロニトリル1.5gをプロピレングリコールモノメチルエーテルアセテート23.3gに溶解させた。得られた溶液を、プロピレングリコールモノメチルエーテルアセテート31.1gを70℃に保持したフラスコ中に、4時間かけて滴下した。滴下終了後、18時間反応させて、共重合体の溶液(固形分濃度30質量%)を得た。得られた共重合体の重量平均分子量Mwは6,000(ポリスチレン換算)であった。
<合成例2>
2-ビニルナフタレン18.0g、1-n-ブトキシエチルメタクリレート2.7g、グリシジルメタクリレート2.1g、及び2,2’-アゾビスイソブチロニトリル0.7gをプロピレングリコールモノメチルエーテルアセテート23.5gに溶解させた。得られた溶液を、プロピレングリコールモノメチルエーテルアセテート31.4gを70℃に保持したフラスコ中に4時間かけて滴下した。滴下終了後、18時間反応させて、共重合体の溶液(固形分濃度30質量%)を得た。得られた共重合体の重量平均分子量Mwは16,000(ポリスチレン換算)であった。
<合成例3>
2-ビニルナフタレン20.0g、1-n-ブトキシエチルメタクリレート1.4g、グリシジルメタクリレート1.1g、及び2,2’-アゾビスイソブチロニトリル0.5gをプロピレングリコールモノメチルエーテルアセテート23.5gに溶解させた後、得られた溶液を、プロピレングリコールモノメチルエーテルアセテート31.4gを70℃に保持したフラスコ中に4時間かけて滴下した。滴下終了後、18時間反応させて、共重合体の溶液(固形分濃度30質量%)を得た。得られた共重合体の重量平均分子量Mwは20,000(ポリスチレン換算)であった。
 [熱硬化性樹脂組成物の調製]
<実施例1>
合成例1で得られた共重合体の溶液20.0g、トリアジン系紫外線吸収剤である前記式(T-9)で表される化合物0.3g及び界面活性剤としてメガファック〔登録商標〕R-40(DIC(株)製)0.003gを、プロピレングリコールモノメチルエーテルアセテート7.4g及びシクロヘキサノン14.3gに溶解させて、溶液を得た。その後、得られた溶液を、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して熱硬化性樹脂組成物を調製した。
<実施例2>
合成例2で得られた共重合体の溶液20.0g、トリアジン系紫外線吸収剤である前記式(T-9)で表される化合物0.3g及び界面活性剤としてメガファック〔登録商標〕R-40(DIC(株)製)0.003gを、プロピレングリコールモノメチルエーテルアセテート7.4g及びシクロヘキサノン14.3gに溶解させて、溶液を得た。その後、得られた溶液を、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して熱硬化性樹脂組成物を調製した。
<実施例3>
合成例3で得られた共重合体の溶液20.0g、トリアジン系紫外線吸収剤である前記式(T-9)で表される化合物0.3g及び界面活性剤としてメガファック〔登録商標〕R-40(DIC(株)製)0.003gを、プロピレングリコールモノメチルエーテルアセテート7.4g及びシクロヘキサノン14.3gに溶解させて溶液を得た。その後、得られた溶液を、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して熱硬化性樹脂組成物を調製した。
<実施例4>
合成例1で得られた共重合体の溶液20.0g、トリアジン系紫外線吸収剤である前記式(T-9)で表される化合物0.18g及び界面活性剤としてメガファック〔登録商標〕R-40(DIC(株)製)0.003gを、プロピレングリコールモノメチルエーテルアセテート7.0g及びシクロヘキサノン14.0gに溶解させて溶液を得た。その後、得られた溶液を、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して熱硬化性樹脂組成物を調製した。
<実施例5>
合成例1で得られた共重合体の溶液20.0g、トリアジン系紫外線吸収剤である前記式(T-9)で表される化合物0.6g及び界面活性剤としてメガファック〔登録商標〕R-40(DIC(株)製)0.003gを、プロピレングリコールモノメチルエーテルアセテート5.3g及びシクロヘキサノン12.9gに溶解させて溶液を得た。その後、得られた溶液を、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して熱硬化性樹脂組成物を調製した。
<実施例6>
合成例1で得られた共重合体の溶液20.0g、トリアジン系紫外線吸収剤である前記式(T-9)で表される化合物1.2g及び界面活性剤としてメガファック〔登録商標〕R-40(DIC(株)製)0.003gを、プロピレングリコールモノメチルエーテルアセテート3.3g及びシクロヘキサノン11.5gに溶解させて溶液を得た。その後、得られた溶液を、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して熱硬化性樹脂組成物を調製した。
<実施例7>
合成例2で得られた共重合体の溶液20.0g、トリアジン系紫外線吸収剤である前記式(T-7)で表される化合物0.3g及び界面活性剤としてメガファック〔登録商標〕R-40(DIC(株)製)0.003gを、プロピレングリコールモノメチルエーテルアセテート7.4g及びシクロヘキサノン14.3gに溶解させて溶液を得た。その後、得られた溶液を、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して熱硬化性樹脂組成物を調製した。
<実施例8>
合成例2で得られた共重合体の溶液20.0g、トリアジン系紫外線吸収剤である前記式(T-6)で表される化合物0.3g及び界面活性剤としてメガファック〔登録商標〕R-40(DIC(株)製)0.003gを、プロピレングリコールモノメチルエーテルアセテート7.4g及びシクロヘキサノン14.3gに溶解させて溶液を得た。その後、得られた溶液を、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して熱硬化性樹脂組成物を調製した。
<実施例9>
合成例2で得られた共重合体の溶液20.0g、トリアジン系紫外線吸収剤である前記式(T-11)で表される化合物0.3g及び界面活性剤としてメガファック〔登録商標〕R-40(DIC(株)製)0.003gを、プロピレングリコールモノメチルエーテルアセテート7.4g及びシクロヘキサノン14.3gに溶解させて溶液を得た。その後、得られた溶液を、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して熱硬化性樹脂組成物を調製した。
<実施例10>
合成例2で得られた共重合体の溶液20.0g、トリアジン系紫外線吸収剤である前記式(T-13)で表される化合物0.3g及び界面活性剤としてメガファック〔登録商標〕R-40(DIC(株)製)0.003gを、プロピレングリコールモノメチルエーテルアセテート7.4g及びシクロヘキサノン14.3gに溶解させて溶液を得た。その後、得られた溶液を、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して熱硬化性樹脂組成物を調製した。
<実施例11>
合成例2で得られた共重合体の溶液20.0g、トリアジン系紫外線吸収剤である前記式(T-5)で表される化合物0.3g及び界面活性剤としてメガファック〔登録商標〕R-40(DIC(株)製)0.003gを、プロピレングリコールモノメチルエーテルアセテート7.4g及びシクロヘキサノン14.3gに溶解させて溶液を得た。その後、得られた溶液を、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して熱硬化性樹脂組成物を調製した。
<実施例12>
合成例2で得られた共重合体の溶液20.0g、トリアジン系紫外線吸収剤である前記式(T-4)で表される化合物0.3g及び界面活性剤としてメガファック〔登録商標〕R-40(DIC(株)製)0.003gを、プロピレングリコールモノメチルエーテルアセテート7.4g及びシクロヘキサノン14.3gに溶解させて溶液を得た。その後、得られた溶液を、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して熱硬化性樹脂組成物を調製した。
<比較例1>
合成例2で得られた共重合体の溶液20.0g及び界面活性剤としてメガファック〔登録商標〕R-40(DIC(株)製)0.003gを、プロピレングリコールモノメチルエーテルアセテート6.4g及びシクロヘキサノン13.6gに溶解させて溶液を得た。その後、得られた溶液を、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して熱硬化性樹脂組成物を調製した。本比較例で調製した熱硬化性樹脂組成物は、紫外線吸収剤を含まない。
<比較例2>
合成例2で得られた共重合体の溶液20.0g、ベンゾトリアゾール系紫外線吸収剤である下記式(BT-1)で表される化合物0.3g及び界面活性剤としてメガファック〔登録商標〕R-40(DIC(株)製)0.003gを、プロピレングリコールモノメチルエーテルアセテート7.4g及びシクロヘキサノン14.3gに溶解させて溶液を得た。その後、得られた溶液を、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して熱硬化性樹脂組成物を調製した。
Figure JPOXMLDOC01-appb-C000008
<比較例3>
合成例2で得られた共重合体の溶液20.0g、ベンゾトリアゾール系紫外線吸収剤である下記式(BT-2)で表される化合物0.3g及び界面活性剤としてメガファック〔登録商標〕R-40(DIC(株)製)0.003gを、プロピレングリコールモノメチルエーテルアセテート7.4g及びシクロヘキサノン14.3gに溶解させて溶液を得た。その後、得られた溶液を、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して熱硬化性樹脂組成物を調製した。
Figure JPOXMLDOC01-appb-C000009
<比較例4>
合成例2で得られた共重合体の溶液20.0g、ベンゾトリアゾール系紫外線吸収剤である下記式(BT-3)で表される化合物0.3g及び界面活性剤としてメガファック〔登録商標〕R-40(DIC(株)製)0.003gを、プロピレングリコールモノメチルエーテルアセテート7.4g及びシクロヘキサノン14.3gに溶解させて溶液を得た。その後、得られた溶液を、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して熱硬化性樹脂組成物を調製した。
Figure JPOXMLDOC01-appb-C000010
<比較例5>
合成例2で得られた共重合体の溶液20.0g、ベンゾトリアゾール系紫外線吸収剤である下記式(BT-4)で表される化合物0.3g及び界面活性剤としてメガファック〔登録商標〕R-40(DIC(株)製)0.003gを、プロピレングリコールモノメチルエーテルアセテート7.4g及びシクロヘキサノン14.3gに溶解させて溶液を得た。その後、得られた溶液を、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して熱硬化性樹脂組成物を調製した。
Figure JPOXMLDOC01-appb-C000011
<比較例6>
 合成例2で得られた共重合体の溶液20.0g、ベンゾフェノン系紫外線吸収剤である下記式(BP-1)で表される化合物0.3g及び界面活性剤としてメガファック〔登録商標〕R-40(DIC(株)製)0.003gを、プロピレングリコールモノメチルエーテルアセテート7.4g及びシクロヘキサノン14.3gに溶解させて溶液を得た。その後、得られた溶液を、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して熱硬化性樹脂組成物を調製した。
Figure JPOXMLDOC01-appb-C000012
<比較例7>
合成例2で得られた共重合体の溶液20.0g、ベンゾフェノン系紫外線吸収剤である下記式(BP-2)で表される化合物0.3g及び界面活性剤としてメガファック〔登録商標〕R-40(DIC(株)製)0.003gを、プロピレングリコールモノメチルエーテルアセテート7.4g及びシクロヘキサノン14.3gに溶解させて溶液を得た。その後、得られた溶液を、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して熱硬化性樹脂組成物を調製した。
Figure JPOXMLDOC01-appb-C000013
<比較例8>
合成例2で得られた共重合体の溶液20.0g、ベンゾフェノン系紫外線吸収剤である下記式(BP-3)で表される化合物0.3g及び界面活性剤としてメガファック〔登録商標〕R-40(DIC(株)製)0.003gを、プロピレングリコールモノメチルエーテルアセテート7.4g及びシクロヘキサノン14.3gに溶解させて溶液を得た。その後、得られた溶液を、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して熱硬化性樹脂組成物を調製した。
Figure JPOXMLDOC01-appb-C000014
<比較例9>
合成例2で得られた共重合体の溶液20.0g、ベンゾフェノン系紫外線吸収剤である下記式(BP-4)で表される化合物0.3g及び界面活性剤としてメガファック〔登録商標〕R-40(DIC(株)製)0.003gを、プロピレングリコールモノメチルエーテルアセテート7.4g及びシクロヘキサノン14.3gに溶解させて溶液を得た。その後、得られた溶液を、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過して熱硬化性樹脂組成物を調製した。
Figure JPOXMLDOC01-appb-C000015
[耐溶剤性試験]
実施例1乃至実施例12及び比較例1乃至比較例9で調製した熱硬化性樹脂組成物を、それぞれ、シリコンウエハー上にスピンコーターを用いて塗布し、ホットプレート上において100℃で1分間、さらに220℃で5分間ベークし、膜厚1μmの硬化膜を形成した。これらの硬化膜に対して、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、シクロヘキサノン、2-プロパノール及び2.38質量%濃度の水酸化テトラメチルアンモニウム(以下、TMAHと略称する。)水溶液に、それぞれ23℃の温度条件下、5分間浸漬した後、100℃で1分間ベークし乾燥させた。浸漬前及び乾燥後それぞれの前記硬化膜の膜厚を測定し、膜厚変化を算出した。前記浸漬に使用した溶剤のうち1つでも、浸漬前の膜厚に対して乾燥後の膜厚が5%以上増減した場合は“×”、前記浸漬に使用した溶剤全てについて、浸漬前の膜厚に対して乾燥後の膜厚の増減が5%未満であった場合は“○”として耐溶剤性を評価した。評価結果を表1に示す。
[屈折率測定]
実施例1乃至実施例12及び比較例1乃至比較例9で調製した熱硬化性樹脂組成物を、それぞれ、シリコンウエハー上にスピンコーターを用いて塗布し、ホットプレート上において100℃で1分間、さらに220℃で5分間ベークし、膜厚1μmの硬化膜を形成した。これらの硬化膜に対して、分光エリプソメーターM-2000(ジェー・エー・ウーラム・ジャパン(株))を用いて波長550nmの屈折率を測定した。評価結果を表1に示す。
[耐熱性試験]
実施例1乃至実施例12及び比較例1乃至比較例9で調製した熱硬化性樹脂組成物を、それぞれ、石英基板上にスピンコーターを用いて塗布し、ホットプレート上において100℃で1分間、さらに220℃で5分間ベークし、膜厚1μmの硬化膜を形成した。これらの硬化膜に対して、紫外線可視分光光度計UV-2600((株)島津製作所製)を用いて、波長400nm乃至800nmの範囲で透過率を測定した。さらに、これらの硬化膜を260℃で5分間ベークした後、再び波長400nm乃至800nmの範囲で透過率を測定した。220℃で5分間ベーク後及び260℃で5分間ベーク後のそれぞれにおいて、波長400nm乃至800nmの範囲で測定された最低透過率が、90%以上であった場合を“〇”、90%未満であった場合を“×”として耐熱性を評価した。評価結果を表1に示す。
[耐光性試験]
実施例1乃至実施例12及び比較例1乃至比較例9で調製した熱硬化性樹脂組成物を、それぞれ、石英基板上にスピンコーターを用いて塗布し、ホットプレート上において100℃で1分間、さらに220℃で5分間ベークし、膜厚1μmの硬化膜を形成した。これらの硬化膜に対して、紫外線可視分光光度計UV-2600((株)島津製作所製)を用いて、波長400nm乃至800nmの範囲で透過率を測定した。さらに、これらの硬化膜に対して下記条件で耐光性試験を行った後、再び波長400nm乃至800nmの範囲で透過率を測定した。耐光性試験前及び耐光性試験後のそれぞれにおいて、波長400nm乃至800nmの範囲で測定された最低透過率が90%以上であった場合を“〇”、90%未満であった場合を“×”として耐光性を評価した。評価結果を表1に示す。
〔耐光性試験条件〕
装置:キセノン促進耐候性試験機Q-Sun Xe-1-B(Q-Lab Corporation製)
光源:キセノンアークランプ
光学フィルター:Window-B/SL
照度:60W/m(波長300nm乃至400nm)
ブラックパネル温度:63℃
試験時間:20時間
[段差平坦化性]
実施例1乃至実施例12で調製した熱硬化性樹脂組成物をそれぞれ、高さ0.3μm、ライン幅10μm、ライン間スペース10μmの段差基板(図1参照)上にスピンコーターを用いて塗布し、ホットプレート上において100℃で1分間、さらに220℃で5分間ベークし、膜厚1μmの膜を形成した。図1の段差基板1に示すh1(段差基板の段差)とh2(硬化膜の段差、即ちライン上の硬化膜の高さとスペース上の硬化膜の高さとの高低差)の値から、“式:(1-(h2/h1))×100”を用いて平坦化率を求めた。平坦化率が80%以上であった場合を“〇”、50%以上80%未満であった場合を“△”、50%未満であった場合を“×”として段差平坦化性を評価した。評価結果を表1に示す。
[ドライエッチングレートの測定]
実施例1乃至実施例12で調製した熱硬化性樹脂組成物をそれぞれ、シリコンウエハー上にスピンコーターを用いて塗布し、ホットプレート上において100℃で1分間、さらに220℃で5分間ベークし、膜厚1μmの硬化膜を形成した。これらの硬化膜に対して、ドライエッチング装置RIE-10NR(サムコ(株)製)(エッチングガス:CF)を用いてドライエッチングし、ドライエッチングレートを測定した。同様に、レジスト溶液(THMR-iP1800(東京応化工業(株)製)を、シリコンウエハー上にスピンコーターを用いて塗布し、ホットプレート上において90℃で1.5分間、110℃で1.5分間、さらに180℃で1分間ベークし、膜厚1μmのレジスト膜を形成し、ドライエッチングレートを測定した。そして、前記レジスト膜に対する、実施例1乃至実施例12で調製した熱硬化性樹脂組成物から得られた硬化膜の、ドライエッチングレート比を求めた。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000016
表1の結果から、本発明の熱硬化性樹脂組成物から形成された硬化膜は、高耐溶剤性、高屈折率、高透明性であると共に、260℃で加熱した後及び耐光性試験後いずれも、波長400nm乃至800nmの範囲における最低透過率が90%以上であり、高耐熱性及び高耐光性を有するものであった。さらに、本発明の熱硬化性樹脂組成物から形成された硬化膜は、いずれも平坦化率80%以上の優れた段差平坦化性を有するものであった。また、エッチバック法では、レンズパターン形状を忠実に下層のマイクロレンズ用樹脂層へ転写するにあたり、レジストのドライエッチングレートXとマイクロレンズ用樹脂層のドライエッチングレートYが同等(X:Y=1:0.8乃至1.2)であることが求められるが、本発明の熱硬化性樹脂組成物から形成された硬化膜は、これを満足する結果となった。
一方、比較例1乃至比較例9で調製した熱硬化性樹脂組成物から形成された硬化膜については、高耐溶剤性、高屈折率及び高耐熱性を有するものの、耐光性試験を行うと、波長400nm乃至800nmの範囲における最低透過率が90%未満に低下し、耐光性に乏しい結果となった。
以上のことから、本発明の熱硬化性樹脂組成物は、保護膜、平坦化膜、絶縁膜、反射防止膜、屈折率制御膜、マイクロレンズ、層内レンズ、光導波路、フィルム基材等の光学部材を形成するための樹脂組成物として有用である。
1:段差基板
2:硬化膜
3:ライン幅
4:ライン間スペース
h1:段差基板の段差
h2:硬化膜の段差

Claims (9)

  1. 下記式(1)で表される構造単位、下記式(2)で表される構造単位及び下記式(3)で表される構造単位を有する自己架橋性共重合体、トリアジン系紫外線吸収剤、及び有機溶剤を含み、前記トリアジン系紫外線吸収剤は、前記自己架橋性共重合体の含有量に対し3質量%乃至20質量%の割合で含有される、熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)乃至式(3)中、Arは縮合環式炭化水素基を表し、R及びRはそれぞれ独立に水素原子又はメチル基を表し、Rは単結合又はアルキレン基を表し、Aはオキシラン環を有する基を表し、Rはアルキル基を表し、Aはアルコキシ基を表す。]
  2. 前記縮合環式炭化水素基はナフチル基である、請求項1に記載の熱硬化性樹脂組成物。
  3. 前記オキシラン環を有する基はエポキシ基である、請求項1又は請求項2に記載の熱硬化性樹脂組成物。
  4. 前記自己架橋性共重合体は、前記式(1)で表される構造単位を少なくとも70モル%含む、請求項1乃至請求項3のいずれか一項に記載の熱硬化性樹脂組成物。
  5. 前記自己架橋性共重合体は、6,000乃至25,000の重量平均分子量を有する、請求項1乃至請求項4のいずれか一項に記載の熱硬化性樹脂組成物。
  6. 前記トリアジン系紫外線吸収剤は、トリアジン環、及び該トリアジン環の炭素原子と結合した、置換基を有してもよいフェニル基を3つ含む化合物であり、該3つのフェニル基のうち少なくとも1つは下記式(4)で表される基である、請求項1乃至請求項5のいずれか一項に記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、*は前記トリアジン環の炭素原子との結合手を表し、A及びAはそれぞれ独立に水素原子又は有機基を表す。)
  7. 界面活性剤を更に含む、請求項1乃至請求項6のいずれか一項に記載の熱硬化性樹脂組成物。
  8. 平坦化膜用である請求項1乃至請求項7のいずれか一項に記載の熱硬化性樹脂組成物。
  9. マイクロレンズ用である請求項1乃至請求項7のいずれか一項に記載の熱硬化性樹脂組成物。
PCT/JP2019/043712 2018-11-21 2019-11-07 熱硬化性樹脂組成物 WO2020105458A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980076609.8A CN113166324A (zh) 2018-11-21 2019-11-07 热固性树脂组合物
JP2020558260A JP6936449B2 (ja) 2018-11-21 2019-11-07 熱硬化性樹脂組成物
KR1020217013909A KR102461668B1 (ko) 2018-11-21 2019-11-07 열경화성 수지조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-218332 2018-11-21
JP2018218332 2018-11-21

Publications (1)

Publication Number Publication Date
WO2020105458A1 true WO2020105458A1 (ja) 2020-05-28

Family

ID=70773418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043712 WO2020105458A1 (ja) 2018-11-21 2019-11-07 熱硬化性樹脂組成物

Country Status (5)

Country Link
JP (1) JP6936449B2 (ja)
KR (1) KR102461668B1 (ja)
CN (1) CN113166324A (ja)
TW (2) TWI786237B (ja)
WO (1) WO2020105458A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003850A1 (ja) * 2004-07-02 2006-01-12 Nissan Chemical Industries, Ltd. ハロゲン原子を有するナフタレン環を含むリソグラフィー用下層膜形成組成物
JP2012128198A (ja) * 2010-12-15 2012-07-05 Fujifilm Corp 感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置、及び、液晶表示装置
JP2014002316A (ja) * 2012-06-20 2014-01-09 Fujifilm Corp 感光性樹脂組成物、硬化膜の製造方法、硬化膜、有機el表示装置および液晶表示装置
WO2016157908A1 (ja) * 2015-04-03 2016-10-06 株式会社クラレ 樹脂組成物およびその製造方法、成形体、フィルム並びに物品
JP2016194079A (ja) * 2011-07-07 2016-11-17 日産化学工業株式会社 マイクロレンズ用又は平坦化膜用樹脂組成物
JP2017137434A (ja) * 2016-02-04 2017-08-10 株式会社Adeka 硬化性組成物、硬化性組成物の硬化方法、その硬化物、およびこれを用いた表示素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2776810B2 (ja) 1987-07-03 1998-07-16 ソニー株式会社 固体撮像装置の製造方法
JP3254759B2 (ja) 1992-09-25 2002-02-12 ソニー株式会社 光学素子およびオンチップレンズの製造方法
JPH0853517A (ja) 1994-08-11 1996-02-27 Nippon Steel Chem Co Ltd 耐熱性に優れた光学材料用高屈折率樹脂
KR101547949B1 (ko) 2007-05-17 2015-08-28 닛산 가가쿠 고교 가부시키 가이샤 감광성 수지 및 마이크로 렌즈의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003850A1 (ja) * 2004-07-02 2006-01-12 Nissan Chemical Industries, Ltd. ハロゲン原子を有するナフタレン環を含むリソグラフィー用下層膜形成組成物
JP2012128198A (ja) * 2010-12-15 2012-07-05 Fujifilm Corp 感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置、及び、液晶表示装置
JP2016194079A (ja) * 2011-07-07 2016-11-17 日産化学工業株式会社 マイクロレンズ用又は平坦化膜用樹脂組成物
JP2014002316A (ja) * 2012-06-20 2014-01-09 Fujifilm Corp 感光性樹脂組成物、硬化膜の製造方法、硬化膜、有機el表示装置および液晶表示装置
WO2016157908A1 (ja) * 2015-04-03 2016-10-06 株式会社クラレ 樹脂組成物およびその製造方法、成形体、フィルム並びに物品
JP2017137434A (ja) * 2016-02-04 2017-08-10 株式会社Adeka 硬化性組成物、硬化性組成物の硬化方法、その硬化物、およびこれを用いた表示素子

Also Published As

Publication number Publication date
JPWO2020105458A1 (ja) 2021-09-02
TW202309178A (zh) 2023-03-01
TW202020040A (zh) 2020-06-01
KR20210092732A (ko) 2021-07-26
TWI811150B (zh) 2023-08-01
JP6936449B2 (ja) 2021-09-15
CN113166324A (zh) 2021-07-23
TWI786237B (zh) 2022-12-11
KR102461668B1 (ko) 2022-11-01

Similar Documents

Publication Publication Date Title
JP5950125B2 (ja) 樹脂組成物
JP5737538B2 (ja) 樹脂組成物
CN106537195B (zh) 滤色器下层膜形成用树脂组合物
JP6264570B2 (ja) 非感光性樹脂組成物
JP7311846B2 (ja) 非感光性樹脂組成物
CN105874355B (zh) 微透镜形成用树脂组合物
JP6936449B2 (ja) 熱硬化性樹脂組成物
JP6687906B2 (ja) 平坦化膜用又はマイクロレンズ用樹脂組成物
WO2017110393A1 (ja) 樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558260

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887988

Country of ref document: EP

Kind code of ref document: A1