WO2020101037A1 - Order-made medical core system - Google Patents

Order-made medical core system Download PDF

Info

Publication number
WO2020101037A1
WO2020101037A1 PCT/JP2019/045092 JP2019045092W WO2020101037A1 WO 2020101037 A1 WO2020101037 A1 WO 2020101037A1 JP 2019045092 W JP2019045092 W JP 2019045092W WO 2020101037 A1 WO2020101037 A1 WO 2020101037A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cancer
information
peptide
antigen
Prior art date
Application number
PCT/JP2019/045092
Other languages
French (fr)
Japanese (ja)
Inventor
友紀 新堀
Original Assignee
株式会社Tnpパートナーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Tnpパートナーズ filed Critical 株式会社Tnpパートナーズ
Publication of WO2020101037A1 publication Critical patent/WO2020101037A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/20Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/30Detection of binding sites or motifs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism

Definitions

  • the present invention relates to a method for producing cells effective for personalized medicine, and particularly to a personalized medical backbone system including the manufacturing method.
  • immune cell therapy cancer cells are treated by artificially proliferating immune cells capable of killing cancer cells and killing the cancer cells using the immune cells. Specifically, a method is used in which the action of immune cells collected from a cancer patient to attack the cancer cells is strengthened, the number is increased, and the cells are returned to the cancer patient.
  • Immune cell therapy using cancer patient's own cells has the advantage of less side effects and burden compared to the three major therapies.
  • Immune cell therapy can be divided into several types depending on the type of cells returned to the patient.
  • One is a method in which cells collected from a cancer patient are differentiated into dendritic cells that have a function of transmitting a marker of a cancer cell targeted for attack to T cells, and then returned to the body of the cancer patient.
  • the other is to collect T cells from a cancer patient and contact them with dendritic cells that serve as markers for the cancer cells to be attacked, making them antigen-specific killer T lymphocytes.
  • Is a method of artificially culturing and returning it to the body of a cancer patient.
  • alpha / beta T cell therapy and gamma delta T cell therapy in which T cells are collected from a cancer patient and activated to be returned to the body of the cancer patient.
  • the present invention has been made in view of the above problems, starting from a cancer cell sample of the cancer patient itself, administering mature dendritic cells specialized for the cancer patient, patient-centered personalized medicine It is aimed to build a new system, which should be called a cycle, and aims to provide a bespoke medical backbone system capable of efficiently producing cells useful for cancer patients. To do.
  • the present inventors have conducted intensive studies to solve the above problems, using an antigen peptide selected by a predetermined method, by sensitizing dendritic cells, found that the above problems can be solved, The present invention has been completed.
  • the present invention is as follows.
  • a database of peptides specific to the cancer cells which is specified based on expression information of gene products in cancer cells and normal cells derived from cancer patients, wherein the amino acid sequences of the peptides and the expression of proteins containing the amino acid sequences Creating a database specific to the cancer patient, including amount information and information regarding the binding strength of the peptide to the human leukocyte antigen type of the cancer patient, and A step of extracting an antigen peptide from the database based on the expression amount information and the information on the binding force; Synthesizing the antigenic peptide according to the amino acid sequence information contained in the database, contacting the synthesized antigenic peptide with immature dendritic cells derived from the cancer patient to obtain mature dendritic cells presenting the antigenic peptide, Have The step of obtaining the mature dendritic cells, from the mononuclear cells from the cancer patient or monocytes separated from mononuclear cells, an induction step of inducing
  • the gene information in cancer cells derived from a cancer patient and the gene information in normal cells of the tissue to which the cancer cells belong are compared to identify a protein expressed only in the cancer cells, and the protein Identifying a peptide specific to the cancer cell from the amino acid sequence of The method for producing cells according to [1] or [2].
  • the database is When there are multiple human leukocyte antigen types of the cancer patient, including information on the binding ability of the peptide to each of the human leukocyte antigen type, The method for producing the cell according to any one of [1] to [4].
  • [6] In the step of creating the database, Obtaining information on the expression of a gene product in the cancer cell derived from the cancer patient, based on a body fluid sample containing DNA or a DNA fragment flowing out from the cancer cell, The method for producing cells according to any one of [1] to [5].
  • [7] In the step of obtaining the mature dendritic cells, Using the immature dendritic cells derived from mononuclear cells from the patient, The method for producing a cell according to any one of [1] to [6]. [8] A step of contacting the mature dendritic cell with a T cell derived from a cancer patient to obtain an antigen-specific killer T lymphocyte, The method for producing a cell according to any one of [1] to [7]. [9] Further comprising the step of introducing a T cell receptor gene that recognizes the antigenic peptide to obtain an antigen-specific receptor gene-introduced T cell, The method for producing cells according to any one of [1] to [8].
  • a step of extracting an antigen peptide from the database based on the expression amount information and information on the binding strength with improved evaluation accuracy The method for producing a cell according to any one of [1] to [10].
  • a database of peptides specific to the cancer cells which is specified based on expression information of gene products in cancer cells and normal cells derived from cancer patients, wherein the amino acid sequences of the peptides and the expression of proteins containing the amino acid sequences Creating a database unique to the cancer patient, including amount information and information regarding the binding strength of the peptide to the human leukocyte antigen type of the cancer patient, and Executing the step of extracting an antigen peptide from the database based on the expression amount information and the information on the binding strength, program.
  • An example of a flow chart of the method for producing cells of the present embodiment is shown.
  • An example of a database created in the cell manufacturing method of the present embodiment is shown.
  • immature dendritic cells (Monocyte-derived DC) derived from monocytes isolated from human PBMC (peripheral blood mononuclear cells) and in immature dendritic cells induced without separating monocytes (Adherent PBMC-derived DC)
  • the results of measuring the Purity (CD80 positive rate) and phenotypic latency (HLA-DR positive rate) by flow cytometry are shown.
  • the detection result of the tetramer assay of the peptide specific CD8 positive cell when changing the pulse concentration and pulse time of a peptide is shown.
  • An example of the hardware constitutions of the information processing apparatus in this embodiment is shown.
  • An example of the block diagram which shows the functional structure of the information processing apparatus in this embodiment is shown.
  • the present invention relates to a bespoke medical backbone system centered on a patient, starting from a cancer cell sample of a cancer patient itself, in a series of cycles of administering mature dendritic cells specialized for the cancer patient, It is intended to provide a method for efficiently producing cells useful for cancer patients.
  • the present embodiment an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail, but the present invention is not limited to this, and various modifications can be made without departing from the gist thereof. Is.
  • the method for producing cells of the present embodiment is a database of peptides specific to cancer cells, which is specified based on the expression information of gene products in cancer cells and normal cells derived from cancer patients, wherein the amino acid sequences of the peptides are: A step of creating a cancer patient-specific database containing information on the expression level of a protein containing the amino acid sequence and information on the binding ability of the peptide to the human leukocyte antigen type of the cancer patient, and information on the expression level information and the binding ability.
  • the antigen peptide is synthesized according to the amino acid sequence information contained in the database, and the synthesized antigen peptide is brought into contact with immature dendritic cells derived from a cancer patient to present the antigen peptide. To obtain mature dendritic cells.
  • peptides that can be easily presented to dendritic cells and can give mature dendritic cells excellent in the attacking ability of cancer cells can be easily identified. Can be specified. This makes it possible to more efficiently obtain mature dendritic cells that effectively attack cancer cells of cancer patients.
  • cancer vaccine used for the treatment or prevention of cancer by using immunity to cancer antigen in personalized medicine. Can be promoted.
  • the “gene product” is a generic term for a functional RNA transcribed from a gene and a protein translated from the mRNA of the transcript.
  • the “gene product expression information” is information on a gene product expressed in cells or tissues, and includes, for example, information obtained by RNA sequence analysis, exome analysis, or proteome analysis.
  • “Expression” as used herein includes the process by which a polypeptide is produced from a polynucleotide such as DNA. The process may involve transcription of the gene into mRNA and translation of this mRNA into a polypeptide. Depending on the context in which the term is used, "expression” may refer to the production of RNA, protein or both.
  • human leukocyte type antigen type means a human major histocompatibility complex (MHC) including leukocyte antigens.
  • MHC human major histocompatibility complex
  • the “database” means one having a data structure in which a peptide specific to a cancer cell and information regarding its expression and the like are linked.
  • cancer cell-specific peptide is a peptide that is not expressed in normal cells and consists of a partial amino acid sequence of a cancer antigen protein (hereinafter, also referred to as “cancer antigen peptide”). means. This cancer cell-specific peptide is also called neoantigen.
  • cancer antigen refers to a protein that is specifically expressed in cancer cells but not in normal cells.
  • treatment of cancer refers to inhibition (delay or arrest) of cancer development, reduction of tumor size (delay or arrest), inhibition of tumor metastasis (delay or arrest), inhibition of tumor growth (delay). Or cessation) and alleviation of one or more symptoms associated with cancer.
  • the subject to which the mature dendritic cells presenting the antigenic peptide according to the present invention are administered can be mammals including humans, and for example, humans, mice, rats, rabbits, cats, dogs, monkeys, sheep, horses, cows. Etc., but is not limited to these.
  • the administration subject is typically a human.
  • mature dendritic cell that presents an antigen peptide means a dendritic cell that presents a complex of a cancer antigen peptide and an MHC class I molecule on the surface in vitro. Cancer antigen peptides are presented on the cell surface upon binding to major histocompatibility complex (MHC) class I molecules of antigen presenting cells.
  • MHC major histocompatibility complex
  • T cell refers to a CD8-positive T cell that has no cytotoxic activity before being stimulated by a complex of an antigen-presenting cell with an MHC class I molecule and an antigen peptide.
  • antigen-specific killer T lymphocyte refers to a complex of MHC class I molecule and cancer antigen peptide by administering to a subject a cancer vaccine containing mature dendritic cells that present the antigen peptide. Refers to activated T cells.
  • Antigen-specific killer T lymphocytes also called cytotoxic T cells (CTL), destroy cells expressing the same cancer antigen.
  • transcriptome refers to the complete set of transcribed RNA molecules, including mRNAs, rRNAs, tRNAs and other non-coding RNAs produced in one cell or population of cells at a given time. Say. The term can be used for the sum of a set of transcripts in a given organism, or for a specific subset of transcripts present in a particular cell type. Unlike the genome, which is loosely fixed in a given cell line (excluding mutations), the transcriptome can fluctuate with external environmental conditions. Since it contains all mRNA transcripts in the cell, the transcriptome reflects genes that are actively expressed at any given time, with the exception of mRNA degradation events such as transcriptional decay.
  • FIG. 1 shows an example of a flowchart of the cell manufacturing method in the present embodiment.
  • FIG. 2 shows an example of the data structure of the database. It should be noted that the processing procedure described below is merely an example, and each processing may be modified as much as possible within the scope of the technical idea of the present invention, and steps may be omitted, replaced, and added as appropriate. is there.
  • FIG. 2 shows an example of a data structure (table 200) included in the antigen peptide database.
  • table 200 a peptide name 201 specific to a cancer cell, its amino acid sequence 202, information 203 on the expression amount of a protein containing the amino acid sequence, and information on the binding power of the peptide to the human leukocyte antigen type of a cancer patient.
  • 204 are stored in association with each other.
  • the database may record the peptide evaluation 205 based on expression level information, binding strength, and the like.
  • the cancer cell-specific peptide name 201 is an ID (identifier) for identifying each peptide.
  • the amino acid sequence 202 is information indicating the amino acid sequence of a peptide specific to cancer cells identified by exome analysis. Based on this information, RNA sequence analysis can be used to evaluate the actual expression level of the amino acid sequence, epitope prediction can be used to evaluate the binding ability of peptides to the human leukocyte antigen type of cancer patients, and peptide synthesis can be performed. To do.
  • the amino acid sequence also contains length information for the peptide.
  • the peptide length information can be used to judge the binding to HLA. As an example, peptides A-1 to A-3 shown in FIG. 2 are all obtained from the same position of the same protein A except that they have different lengths. Is also obtained from the same position of the same protein A.
  • the protein expression amount information 203 including the amino acid sequence is information on the expression amount of the protein specified by the RNA sequence analysis, and is information indicating the actual expression amount of the cancer cell-specific peptide specified by the exome analysis. .. Peptides useful as antigens are extracted based on this information.
  • the information 204 on the avidity of the peptide for the human leukocyte antigen type is obtained by epitope prediction based on the information on one or more human leukocyte antigen types of cancer patients determined by HLA typing and the amino acid sequence of each peptide. This is information that evaluates these binding forces. Peptides useful as antigens are extracted based on this information. Information on one or more human leukocyte-type antigen types of a cancer patient determined by HLA typing can be shown by an allyl notation or the like.
  • Peptide evaluation 205 based on expression level information, binding strength, etc. is an index showing the usefulness of a peptide specific to cancer cells as an antigen.
  • an index for example, an index calculated from the expression level information 203 and the binding force information 204, such as the product or sum of the expression level information 203 multiplied by a predetermined coefficient and the binding force information 204 multiplied by a predetermined coefficient. Is mentioned.
  • the database creation step includes, for example, step S101 of preparing a sample, step S102 of identifying a peptide specific to a cancer cell, step S103 of identifying a human leukocyte antigen type of a cancer patient, and each peptide specific to a cancer cell. And step S104 of evaluating the binding strength with the human leukocyte-type antigen type.
  • the order of these steps is not limited as long as a database as shown in FIG. 2 can be created.
  • the samples of cancer cells and normal cells used in creating the database are preferably derived from the same cancer patient. Cancer cells and normal cells can be directly collected from tissues containing cancer cells by a surgical technique. Further, in the present embodiment, it is not necessary to analyze the collected cancer cells themselves as a method for obtaining the expression information of the gene product in the cancer cells derived from the cancer patient. As a method for obtaining information on expression of gene products in cancer cells without analyzing the cancer cells themselves, instead of the cancer cells, a body fluid sample such as blood containing DNA or DNA fragments that have flowed out from the cancer cells is obtained. A method (liquid biopsy method) for obtaining expression information of a gene product in cancer cells derived from a cancer patient based on this body fluid sample can be adopted.
  • Exome analysis can be used as a method of identifying a peptide specific to a cancer cell.
  • exome analysis is performed on each sample of cancer cells and normal cells to identify gene mutations specific to cancer cells (amino acid sequences specific to cancer cells). Then, the expression level of the protein having the gene mutation identified by the exome analysis is identified by the RNA sequence analysis. Thereby, the peptide specifically expressed in cancer cells can be confirmed, and its amino acid sequence and the information on the expression level of the protein containing the amino acid sequence can be obtained.
  • Exome analysis As a method of identifying a peptide specific to a cancer cell, for example, exome analysis can be used.
  • Exome analysis is a method for efficiently detecting mutations (SNV (SNP) / InDel) on exons by comprehensively analyzing only exon sequences in the entire genome.
  • SNV SNP
  • InDel An exon is a base sequence that remains in mRNA, and is a part that has information such as protein synthesis. Exons are functionally important because they are regions translated into proteins, and it is presumed that most of the inherited diseases are caused by mutations in exon regions.
  • exome analysis By performing exome analysis on both normal cells and cancer cells, it is possible to obtain genetic information on cancer cells derived from a cancer patient and gene information on normal cells of the tissue to which the cancer cells belong. By comparing the genetic information of normal cells and cancer cells, the protein expressed only in cancer cells can be specified. Then, from the amino acid sequence of the protein expressed only in cancer cells, a peptide specific to cancer cells which is not present in normal cells can be identified. Since exons account for 1 to 1.5% of the whole genome, exome analysis enables efficient analysis and identification of disease-related genes at a lower cost than whole genome sequence analysis.
  • an analysis method for example, a method of enriching an exon region (encoding DNA) using a known exome enrichment kit, performing a sequencing for examining a nucleotide sequence, and analyzing the determined nucleotide sequence can be mentioned.
  • DB table that associates a disease with a gene mutation associated with the disease
  • RNA sequence analysis is a method of analyzing the base sequence of transcribed RNA and its transcription amount in a sample extracted from cells. By performing RNA sequence analysis on both normal cells and cancer cells, the expression information of the gene product in the cancer cells derived from the cancer patient and the expression information of the gene product in the normal cells of the tissue to which the cancer cells belong are obtained. be able to. By comparing the expression information of the gene products of normal cells and cancer cells, the protein expressed only in cancer cells can be specified. Then, from the amino acid sequence of the protein expressed only in cancer cells, a peptide specific to cancer cells which is not present in normal cells can be identified. Further, it is possible to obtain information on the expression level of a gene product together with the amino acid sequence of the protein.
  • an exome analysis is performed on each of cancer cell and normal cell samples, and when the protein having the identified gene mutation is identified by exome analysis, RNA sequence analysis is performed on the cancer cell sample. It can also be done only. This makes it possible to obtain whether or not a protein having a mutation specified by exome analysis is expressed in cancer cells, and information on the expression level thereof.
  • identifying the gene mutation by exome analysis prior to RNA sequence analysis it becomes possible to specify the protein to be targeted by RNA sequence analysis. As a result, it is possible to reduce the overall processing time and improve the analysis accuracy, as compared with the case where the gene mutation is specified only by the RNA sequence analysis.
  • RNA sequence analysis makes it possible to analyze RNA (transcriptome) existing in cells under specific conditions.
  • the comparison of expression information of gene products of normal cells and cancer cells may be performed based on data obtained by monitoring transcriptome change.
  • RNA to be subjected to RNA sequence analysis includes mRNA, rRNA, or tRNA, or Total RNA, which is a mixture thereof.
  • the human leukocyte antigen type of a cancer patient can be determined by, for example, HLA (Human Leucocyte Antigen) typing.
  • HLA typing refers to specifying the type of HLA (human leukocyte antigen), which is the major human histocompatibility serotype.
  • the HLA molecule is partially embedded in the cell membrane, and the molecule is divided into the extracellular domain, cell transmembrane domain, and intracellular domain.
  • the extracellular domain is further divided into a position far from the cell membrane (distal domain) and a proximal domain close to the membrane, and each has a different function.
  • the distal domain has a structure involved in selective acceptance of antigenic peptides and presentation of antigens to T cells.
  • the proximal domain has a structure involved in specific binding to molecules in T cells; CD4 and CD8.
  • HLA contributes to the control of innate immunity and the presentation of antigens to T cells in adaptive immunity.
  • the immune system is complicatedly configured to eliminate various non-self, and HLA is involved as the self to obtain non-self information.
  • HLA-A, B, C, etc. HLA-A, B, C, etc.
  • HLA class II HLA-DR, DQ, DP, etc.
  • HLA-DR, DQ, DP, etc. HLA-DR, DQ, DP, etc.
  • Th1 cytokine promotes the activation of antigen-specific killer T lymphocytes
  • Th2 cytokine promotes the immunoglobulin production of B cells.
  • the HLA typing is not particularly limited, but for example, it can be performed by the SBT method (Sequencing Based Typing) and the SSP method (sequence specific primers) that are HLA genotyping methods by DNA typing.
  • SBT method Sequence Based Typing
  • SSP method sequence specific primers
  • DNA is amplified by the PCR method, and the HLA genotype is determined by comparing the base sequence of the amplified product with the base sequence information of existing alleles.
  • the genetic information obtained by whole exome analysis can also be used for HLA typing.
  • the notation of HLA typing recorded in the database can conform to the HLA allele notation.
  • the first section that describes the number corresponding to the HLA plateau (HLA specificity) the second section that describes groups with different amino acid sequences (non-synonymous substitution), and within the exon
  • the avidity of the cancer cell-specific peptide with the human leukocyte-type antigen type can be determined by, for example, epitope prediction.
  • Epitope prediction is a prediction of a part (epitope) of an antigen recognized and bound by an antibody. For example, by predicting the binding strength of the peptide to the human leukocyte antigen type of the cancer patient based on the amino acid sequence of the peptide specific to the cancer cell and the human leukocyte antigen type of the cancer patient by epitope prediction, It is possible to improve the production efficiency of mature dendritic cells that present the antibody.
  • the database preferably contains the results of evaluating the binding ability of the cancer cell-specific peptide for each human leukocyte antigen type.
  • an antigen peptide suitable for cell production is extracted from the database based on the expression amount information and the information on the binding strength.
  • the number of peptides to be extracted is not particularly limited, but may be, for example, about 5 to 10 kinds. This makes it possible to reduce the subsequent in vivo and in vitro operation load.
  • the extraction operation can be performed in silico, that is, on the data. Examples of the extraction method include a method in which a score serving as an evaluation index for extraction is attached to an antigen peptide in a database, and an antigen peptide suitable for cell production is extracted based on the score. Extraction of antigen peptides can be performed by selecting peptides in descending order of score.
  • Examples of the score include, for example, the product (the following formula) or the sum of the expression amount information multiplied by a predetermined coefficient and the binding force multiplied by the predetermined coefficient.
  • the binding strength may be adjusted during extraction.
  • peptides A-1 to A-3 shown in FIG. 2 are all obtained from the same position of the same protein A except that the lengths are different.
  • the difference in the binding strength to HLA changes by changing the length of the peptides, such as peptides A-1 to A-3
  • the peptide with the maximum binding strength to the target HLA is extracted. can do. More specifically, in selecting an antigen peptide for HLA represented by A * 02: 01: ..., the binding amounts of peptides A-1 to A-3 containing gene mutation sites are compared and considered, The one with the highest bond strength can be selected.
  • the antigen peptide is synthesized by a known method based on the amino acid sequence information of the extracted antigen peptide as described above.
  • the binding strength of the synthesized antigen peptide may be evaluated prior to the cell production process.
  • the binding force (affinity) between the antigenic peptide and HLA can be examined using TAP gene-deficient cells.
  • the antigen peptide is supplied to cells expressing HLA to which no peptide is bound.
  • HLA is stabilized on the cell surface.
  • HLA to which no peptide is bound is constantly expressed from within the TAP gene-deficient cell and continues to be expressed on the cell surface. Therefore, cells to which an antigen peptide having a high affinity for HLA is added will present a large amount of the antigen peptide on the surface.
  • TAP gene-deficient cells to which the antigen peptide is added are cultured for a certain period of time, and fluorescence intensity is measured by flow cytometry using anti-HLA alternation.
  • TAP gene-deficient cells to which an antigen peptide is added or TAP gene-deficient cells to which a peptide that does not bind is added are prepared, and fluorescence intensity is measured.
  • TAP gene-deficient cells to which the antigen peptide was added by comparing the flow cytometry evaluation of TAP gene-deficient cells to which the antigen peptide was added with the evaluation of flow cytometry of TAP gene-deficient cells to which the antigen peptide was not added It can be evaluated that the higher the fluorescence intensity of is, the higher the binding force (affinity) between the antigen peptide and HLA. The accuracy of epitope analysis and the like may be improved by feeding back and learning the result of this operation.
  • the extracted antigenic peptide is used to obtain mature dendritic cells that present the antigenic peptide.
  • the antigen peptide extracted as described above is synthesized according to the amino acid sequence information contained in the database, and the synthesized antigen peptide is contacted with immature dendritic cells derived from a cancer patient (pulse), Obtaining mature dendritic cells displaying the peptide.
  • the immature dendritic cells it is preferable to use those derived from patient-derived mononuclear cells, such as by adding granulocyte-monocyte colony stimulating factor (GM-CSF) or interleukin. More preferably, those derived from monocytes are used. Thereby, the production efficiency of mature dendritic cells can be improved.
  • GM-CSF granulocyte-monocyte colony stimulating factor
  • interleukin interleukin
  • Figure 3 shows immature dendritic cells derived from monocytes isolated from human PBMC (peripheral blood mononuclear cells) (Monocyte-derived DC) and immature dendritic cells induced without separating monocytes (Adherent PBMC-). shows the results of flow cytometry of Purity (CD80 positive rate) and phenotypic latency (HLA-DR positive rate) of each immature dendritic cell.
  • PBMC peripheral blood mononuclear cells
  • HLA-DR positive rate phenotypic latency
  • the methods for efficiently obtaining mature dendritic cells that present an antigen peptide it is preferable to contact (pulse) the antigen peptide with immature dendritic cells derived from a cancer patient in the latter half of the maturation stage.
  • a maturation step of maturing immature dendritic cells it is preferable to contact (pulse) the antigen peptide in the maturation step.
  • the immature dendritic cells are contacted (pulsed) with the antigen peptide in the latter half of the maturation step, for example, 12 hours after the contact with the maturation inducer.
  • the maturation step can be completed 24 hours after adding the maturation inducer.
  • the timing of contact with the antigen peptide may be 15 hours, 18 hours, or 21 hours after the addition of the maturation inducer.
  • mature dendritic cells that present the antigen peptide can be efficiently obtained, and the induction efficiency of peptide-specific CD8-positive cells can be improved.
  • the reason for this is not particularly limited, but it is considered that the process of presenting to mature dendritic cells is different between a short antigen peptide such as 12 mer or less and a long antigen peptide such as 13 mer or more.
  • the antigen peptide is incorporated into the immature dendritic cell during maturation by contacting the antigen peptide immediately or simultaneously with the addition of a maturation inducer. This is probably because (phagocytosis) is finely processed and the target antigenic peptide is not presented at the HLA binding site of the resulting mature cells.
  • the binding site of HLA existing on the surface of a mature immature dendritic cell is It is conceivable that the antigen peptide is physically bound and antigen presentation is performed. Therefore, in the present embodiment, after a certain period of time has passed since the addition of the maturation inducer, the immature dendritic cells can be contacted with the antigen peptide to efficiently obtain mature dendritic cells that present the antigen peptide. It is considered possible.
  • the length of the amino acid sequence of the antigen peptide is preferably 6 to 12 mer, more preferably 8 to 11 mer.
  • the length of the amino acid sequence of the antigen peptide is within the above range, mature dendritic cells presenting the antigen peptide can be obtained more efficiently.
  • a mixture of peptides having an amino acid sequence length within the above range and having the same gene mutation site and different amino acid sequence lengths at portions other than the gene mutation site may be used. ..
  • the peptides A-1 to A-3 shown in FIG. 2 may be mixed and used. This makes it possible to obtain mature dendritic cells that present the antigenic peptide having the highest binding strength to HLA.
  • Monocytes were separated from human PBMCs, immature DCs were induced with GM-CSF / IFNa, and EBV-derived peptide (9 mer) was added (pulsed) at the same time as the initiation of maturation, followed by a 24-hour maturation process.
  • the obtained mature dendritic cells and the EBV-derived peptide (9-mer) were added (pulsed) 22 hours after the start of maturation, and the peptide pulse time was set to 2 hours to perform a total of 24 hours of maturation process.
  • the obtained mature dendritic cells were obtained.
  • the resulting two types of mature dendritic cells were collected, frozen, and then thawed on the day of the experiment and cocultured with CD14-negative cells (T cells) for 11 days. Then, the cultured cells were collected, and the peptide-specific CD8-positive cells were detected by FACS by the tetramer assay. The result is shown in FIG.
  • the contact time was 24 hours for mature dendritic cells when the contact time was 2 hours. It was found that the induction efficiency of peptide-specific CD8-positive cells was higher than that of mature dendritic cells in each case. It is considered that this is because the pulsed peptide was a short chain, so that the peptide was physically bound (ridden) to the binding site of HLA by a short pulse and the antigen was presented.
  • the maturation inducer is not particularly limited, but examples include Lipopolysaccharide, TNF ⁇ , and CD40L.
  • Efficacy evaluation after administering the mature dendritic cells obtained as described above to a cancer patient can be performed as follows. For example, blood collected from a cancer patient is analyzed for a certain period (1 to 2 weeks) after administration of a mature dendritic cell vaccine, and the administered mature dendritic cells induce killer T lymphocytes specific to an antigen peptide. Check whether or not. In this evaluation, for example, when a vaccine containing 10 types of mature dendritic cells is used, it can be confirmed that killer T lymphocytes are induced in 3 types of them.
  • information such as induction efficiency of killer T lymphocytes, survival rate, and relationship of cancer tumor shrinkage may be stored in another database.
  • the produced antigen-specific killer T lymphocytes are returned to the body of the cancer patient.
  • the antigen-specific killer T lymphocytes can be obtained by contacting the mature dendritic cells obtained as described above with T cells derived from a cancer patient. The thus-obtained antigen-specific killer T lymphocytes destroy the cancer cells expressing the antigen peptide, that is, the peptide specifically expressed by the cancer cells.
  • the mature dendritic cells produced as described above may be directly returned to the cancer patient's body to produce antigen-specific killer T lymphocytes in the cancer patient's body.
  • Step of obtaining antigen-specific receptor gene-transferred T cell Furthermore, a T cell into which a gene for a T cell receptor that recognizes the above-identified antigen peptide is introduced (hereinafter also referred to as "antigen-specific receptor gene-introduced T cell") is produced, and the produced antigen is produced.
  • the specific receptor gene-transfected T cells may be returned to the body of a cancer patient. Specifically, by cloning the gene of the T cell receptor specific for the antigenic peptide specified as described above, and introducing the cloned gene, an antigen-specific receptor gene-introduced T cell is obtained. Obtainable.
  • a method of identifying and extracting a gene for a T cell receptor from the antigen-specific killer T lymphocyte obtained as described above, cloning the gene, and introducing the cloned gene into another T cell is described. Conceivable. Thereby, an antigen-specific receptor gene-transferred T cell can be obtained.
  • the T cell receptor obtained from an antigen-specific killer T lymphocyte has excellent binding properties to the above-mentioned antigenic peptide, and the T cell into which this is introduced is specific to a protein specifically expressed in cancer cells. It will have sex.
  • the above-mentioned mature dendritic cells or antigen-specific killer T lymphocytes may be administered to a cancer patient to confirm the effect.
  • a body fluid sample such as blood containing DNA or a DNA fragment flowing out from a cancer cell is obtained, and based on this body fluid sample, expression information of a gene product in cancer cells derived from a cancer patient is obtained ( Liquid biopsy method) can be adopted.
  • the cloned T cell receptor gene is obtained once, and the antigenic peptide recognized by the T cell receptor is extracted as described above, the cloned gene is directly expressed. It is also possible to produce an antigen-specific receptor gene-transfected T cell in which is introduced into another T cell and to administer this to a cancer patient. As a result, an antigen-specific receptor gene-introduced T cell can be efficiently produced without performing the step of identifying and extracting the T cell receptor gene again.
  • the liquid biopsy method As a result of applying the liquid biopsy method to a cancer patient administered with the above-mentioned mature dendritic cells or antigen-specific killer T lymphocytes, when the cancer cells do not tend to decrease, the antigen-specific receptor gene transfer It is preferable to start the production of T cells.
  • the database can be created by using the information processing device 300A.
  • the information processing device 300A may be directly or indirectly connected to one or more measuring devices 300B for measuring information stored in the database.
  • Examples of such a measuring device 300B include devices used for RNA sequence analysis, exome analysis, and HLA typing.
  • connection refers to a state in which information can be directly or indirectly transmitted and received, and includes a case where information can be transmitted and received via a recording medium as well as a case where the information is connected via a network. In the following example, a mode via a network is described, but the embodiment is not limited to this.
  • the information processing apparatus 300A includes a processor 301, a memory 302, a storage 303, an input / output interface (input / output I / F) 304, and a communication interface (communication I / F) 305.
  • a bus B for example.
  • the processor 301 executes a function and / or a method realized by a code or an instruction included in a program stored in the storage 303.
  • the processor 301 includes, for example, a central processing unit (CPU), etc., and is formed by a logic circuit or a dedicated circuit formed in an integrated circuit (IC (Integrated Circuit) chip, LSI (Large Scale Integration)) or the like, in each of the embodiments. Processing can be realized.
  • the memory 302 temporarily stores the program loaded from the storage 303 and provides a work area for the processor 301.
  • the memory 302 also temporarily stores various data generated while the processor 301 is executing the program.
  • the memory 302 includes, for example, a RAM (Random Access Memory) and a ROM (Read Only Memory).
  • the storage 303 stores a program.
  • the storage 303 includes, for example, a HDD (Hard Disk Drive), an SSD (Solid State Drive), a flash memory, and the like.
  • the input / output I / F 304 includes an input device that inputs various operations on the information processing device 300A and an output device that outputs a processing result processed by the information processing device 300A.
  • an input device and an output device may be integrated, or an input device and an output device may be separated.
  • the input device is realized by any of all types of devices that can receive an input from a user and transmit information related to the input to the processor 301, or a combination thereof.
  • the input device includes, for example, a hardware key such as a touch panel, a touch display, and a keyboard, a pointing device such as a mouse, a camera (operation input via an image), and a microphone (operation input by voice).
  • the output device is realized by any of all types of devices capable of outputting the processing result processed by the processor 301, or a combination thereof.
  • the output device may be any one or all of the devices capable of displaying the display data according to the display data written in the frame buffer. It is realized by combination.
  • the output device is, for example, a touch panel, a touch display, a monitor (for example, a liquid crystal display, an OELD (Organic Electroluminescence Display), etc.), a head mounted display (HDM: Head Mounted Display), projection mapping, a hologram, in the air (in a vacuum, A device capable of displaying images and text information, a speaker (voice output), a printer, and the like. Note that these output devices may be capable of displaying display data in 3D.
  • the communication I / F 305 sends and receives various data via the network.
  • the communication may be executed by wire or wireless, and any communication protocol may be used as long as mutual communication can be executed.
  • the communication I / F 305 has a function of performing communication with another information processing device via the network.
  • the communication I / F 305 transmits various data to another information processing device according to an instruction from the processor 301. Further, the communication I / F 305 receives various data transmitted from another information processing device and transfers the data to the processor 301.
  • FIG. 6 shows an example of a block diagram showing a functional configuration of the information processing apparatus 300A for creating a database.
  • the information processing device 300A is an example of an information processing device that creates a database, and includes an input / output I / F 411, a communication I / F 412, a control unit 420, and a storage unit 430.
  • the input / output I / F 411 corresponds to the input / output I / F 304 in FIG. 5, and the communication I / F 412 corresponds to the communication I / F 305 in FIG.
  • the storage unit 430 is realized using the memory 302 and / or the storage 303.
  • the functional unit 430 disclosed in FIG. 6 is realized by cooperation of the processor 301, the memory 302, the storage 303, the input / output I / F 304, and the communication I / F 305 included in the information processing device 300A. That is, the processor 301 of the information processing apparatus 300A illustrated in FIG. 5 expands various programs (control program, arithmetic program, etc.) stored in the storage 303 in the memory 302 (for example, RAM). Then, the processor 301 interprets and executes various programs expanded in the memory 302 to control each hardware component, thereby realizing the functional configuration described below.
  • the processor 301 interprets and executes various programs expanded in the memory 302 to control each hardware component, thereby realizing the functional configuration described below.
  • Each function realized by the information processing device 300A may be realized by the processor 301 such as a general-purpose CPU, or a part or all of the function may be realized by one or a plurality of dedicated processors 301. Good. Furthermore, the functional configuration realized by the information processing apparatus 300 may be appropriately omitted, replaced, or added depending on the embodiment or the example.
  • the control unit 420 has a transmission / reception unit 421, a DB creation unit 422, an evaluation unit 423, and an output unit 424.
  • the transmission / reception unit 421, the DB creation unit 422, the evaluation unit 423, and the output unit 424 are realized by the processor 301 reading and executing the program 432 stored in the storage unit 430.
  • the storage unit 430 stores an antigen peptide DB 431 and a program 432.
  • the functional configuration realized by the information processing apparatus 300A may be appropriately omitted, replaced, or added depending on the embodiment or the example.
  • the storage unit 430 will be described below, and then the control unit 420 will be described. :
  • the antigen peptide DB 431 is a database that collects information on peptides specific to cancer cells, and one example is a database having the data structure shown in FIG. 2 above. The database is created for each patient.
  • the transmission / reception unit 421 receives information stored in the antigen peptide DB 431 from a measurement device 300B such as a device used for RNA sequence analysis, exome analysis, HLA typing, or transmits information necessary for analysis to these measurement devices 300B. It is a functional unit that performs processing. Each information received by the transmitting / receiving unit 421 is passed to the DB creating unit 422.
  • the DB creating unit 422 collects information on peptides specific to cancer cells as a base information for selecting an antigen peptide specific to cancer cells of a cancer patient, and creates a database. More specifically, a table is created based on each information passed from the transmitting / receiving unit 421, and an antigen peptide database for each cancer patient is created. The database for each patient created by the DB creation unit 422 is stored in the antigen peptide DB 431.
  • the evaluation unit 423 performs a process of attaching a score as an evaluation index to each antigen peptide stored in the database created by the DB creation unit 422.
  • a score a parameter calculated by the product (the following formula) or the sum of the expression amount information multiplied by a predetermined coefficient and the binding force multiplied by a predetermined coefficient can be added.
  • the score is stored in the antigen peptide DB 431 in association with each antigen peptide.
  • the output unit 424 extracts an antigen peptide suitable for cell production based on the score.
  • the extraction method is not particularly limited, and examples thereof include a method of extracting the top 5 to 10 types of antigen peptides having a high score, and a method of extracting an antigen peptide having a score of a predetermined threshold value or more.
  • the transmission / reception unit 421 receives the gene information regarding the protein having the identified gene mutation from the exome analysis device 300B. Then, the DB creation unit 422, which has received the gene information from the transmission / reception unit 421, specifies a plurality of types of peptide sequences including the gene mutation site and stores them in the antigen peptide DB 431.
  • examples of a plurality of types of peptide sequences containing a gene mutation site include peptides A-1 to A-3 shown in FIG. Peptides A-1 to A-3 were obtained from the same position of the same protein A except that the lengths of the amino acid sequences other than the gene mutation site were different. Therefore, the binding force to HLA is different.
  • the DB creation unit 422 Based on the gene information received from the transmission / reception unit 421, the DB creation unit 422 includes peptides having the same gene mutation site and different amino acid sequence lengths other than the gene mutation site (for example, peptides A-1 to A-3). It is possible to select an antigen peptide having the highest binding strength to HLA by preparing and storing
  • the transmitting / receiving unit 421 transmits the gene information of the peptide stored in the antigen peptide DB 431 by the DB creating unit 422 in this manner to the RNA sequence analysis device 300B.
  • the RNA sequence analysis device 300B analyzes the presence / absence and the expression amount of the gene product (mRNA) having the gene information.
  • the transmitting / receiving unit 421 receives the analysis result from the RNA sequence analysis device 300B.
  • the DB creation unit 422 which has received the information regarding the presence / absence and the expression amount of the gene product (mRNA) from the transmission / reception unit 421, stores the information in the antigen peptide DB 431 in association with each already stored peptide.
  • the transmission / reception unit 421 receives information regarding the HLA type from the HLA typing analysis device 300B. Upon this reception, the transmitting / receiving unit 421 may transmit the gene information (all exome analysis results) of the peptides stored in the antigen peptide DB 431 by the DB creating unit 422 to the HLA typing analysis device 300B. The information on the HLA type received by the transmitting / receiving unit 421 from the HLA typing analysis device 300B is stored in the antigen peptide DB 431 by the DB creating unit 422.
  • the transmission / reception unit 421 transmits the information about the HLA type and the gene information of the peptide stored in the antigen peptide DB 431 to the epitope analysis device 300B, and the information about the binding force between the HLA and the antigen peptide is transmitted from the epitope analysis device 300B.
  • the transmitting / receiving unit 421 stores the received information on the binding force in the antigen peptide DB 431 in association with each of the already stored peptides.
  • the gene information transmitted to the epitope analysis device 300B may be one in which an expression amount above a certain level (threshold value) is recognized in the RNA sequence analysis.
  • the evaluation unit 423 performs a process of assigning a score as an evaluation index to each antigen peptide stored in the database created by the DB creation unit 422 as described above.
  • Peptides that contain the same gene mutation site and differ in the length of the amino acid sequences other than the gene mutation site have the same expression level as proteins and different binding strengths. Therefore, by this scoring process, the peptide sequence having a certain gene mutation site and having the highest binding force can be selected.
  • the output unit 424 extracts an antigen peptide suitable for cell production based on the score.
  • the information processing device 300A may be connected to the peptide synthesis device 300C or the cell culture device 300D.
  • the antigen peptide extracted as described above can be synthesized by the peptide synthesizer 300C.
  • the cell culture device 300D uses the synthesized antigen peptide to perform cell culture of dendritic cells and the like, it is possible to store information about the culture result using the antigen peptide as a key.
  • the present invention has industrial applicability as a method for producing cells effective for personalized medicine.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Biology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Provided is a cell production method comprising: a step of generating a database of peptides specific to cancer cells from a cancer patient, the peptides being identified on the basis of information on the expression of gene products in the cancer cells and normal cells, wherein the database is specific to the cancer patient and includes the amino acid sequences of the peptides, information on the expression levels of proteins including the amino acid sequences, and information on the bonding ability of the peptides with respect to the human leukocyte antigen type of the cancer patient; a step of extracting an antigen peptide from the database on the basis of the expression level information and the information on the bonding ability; and a step of synthesizing the antigen peptide according to amino acid sequence information included in the database, and bringing the synthesized antigen peptide into contact with immature dendritic cells from the cancer patient to obtain mature dendritic cells that present the antigen peptide. The step of obtaining the mature dendritic cells includes: an inducing step for inducing the immature dendritic cells from mononuclear cells, or monocytes isolated from mononuclear cells, from the cancer patient; and a maturation step for bringing the induced immature dendritic cells into contact with a maturation inducer to mature the immature dendritic cells. In the maturation step, the antigen peptide is brought into contact with the immature dendritic cells 12 hours after bringing the maturation inducer into contact therewith.

Description

オーダーメイド医療基幹システムMade-to-order medical backbone system
 本発明は、オーダーメイド医療に有効な細胞の製造方法に関し、特に当該製造方法を含むオーダーメイド医療基幹システムに関する。 The present invention relates to a method for producing cells effective for personalized medicine, and particularly to a personalized medical backbone system including the manufacturing method.
 外科療法、化学療法、及び放射線療法の3種類が、癌の三大療法といわれている。これらを用いた治療は、副作用や負担を伴うことが少なくない。そこで、新たな癌の治療法として、免疫細胞療法が着目されている。免疫細胞療法では、癌細胞を殺すことのできる免疫細胞を人工的に増殖させ、その免疫細胞を用いて癌細胞を死滅させることにより癌治療を行う。具体的には、癌患者から採取した免疫細胞の癌細胞を攻撃する働きを強化し、数を増殖させて、癌患者に戻すという方法が用いられる。 ━ Three types of surgery, chemotherapy, and radiation therapy are said to be the three major therapies for cancer. Treatments using these are often accompanied by side effects and burdens. Therefore, immune cell therapy is drawing attention as a new treatment method for cancer. In immune cell therapy, cancer cells are treated by artificially proliferating immune cells capable of killing cancer cells and killing the cancer cells using the immune cells. Specifically, a method is used in which the action of immune cells collected from a cancer patient to attack the cancer cells is strengthened, the number is increased, and the cells are returned to the cancer patient.
 癌患者自身の細胞を使用する免疫細胞療法では、三大療法と比較して副作用や負担が少ないという利点がある。免疫細胞療法は、患者に戻す細胞の種類によっていくつかの種類に分けることができる。一つは、癌患者から採取した細胞を、T細胞に攻撃対象となる癌細胞の目印を伝える働きをする樹状細胞に分化させて、癌患者の体内に戻す方法である。もう一つは、癌患者からT細胞を採取し、T細胞に攻撃対象となる癌細胞の目印を伝える働きをする樹状細胞と接触させることで、抗原特異的キラーTリンパ球にして、これを人工的に培養し、癌患者の体内に戻す方法である。また、これ以外にも、癌患者からT細胞を採取して、T細胞を活性化させて癌患者の体内に戻す、アルファ・ベータT細胞療法やガンマ・デルタT細胞療法と呼ばれる方法がある。 Immune cell therapy using cancer patient's own cells has the advantage of less side effects and burden compared to the three major therapies. Immune cell therapy can be divided into several types depending on the type of cells returned to the patient. One is a method in which cells collected from a cancer patient are differentiated into dendritic cells that have a function of transmitting a marker of a cancer cell targeted for attack to T cells, and then returned to the body of the cancer patient. The other is to collect T cells from a cancer patient and contact them with dendritic cells that serve as markers for the cancer cells to be attacked, making them antigen-specific killer T lymphocytes. Is a method of artificially culturing and returning it to the body of a cancer patient. Other than this, there are methods called alpha / beta T cell therapy and gamma delta T cell therapy in which T cells are collected from a cancer patient and activated to be returned to the body of the cancer patient.
 しかしながら、免疫細胞療法において、樹状細胞やT細胞に癌細胞の特徴を覚えさせることは容易ではなく、癌細胞を攻撃する免疫細胞を効率的に製造することは容易ではないという問題がある。仮に、癌細胞を攻撃する免疫細胞を、一人一人の癌患者の状態に合わせて効率的に製造することが可能となれば、癌患者の負担が少なく、かつ、有効な個別化医療(オーダーメイド医療)をより広く提供することが可能となる。 However, in immune cell therapy, it is not easy to make dendritic cells and T cells remember the characteristics of cancer cells, and it is not easy to efficiently produce immune cells that attack cancer cells. If it is possible to efficiently produce immune cells that attack cancer cells according to the condition of each cancer patient, the burden on the cancer patient will be reduced and effective personalized medicine (custom-made medicine) Medical care) can be provided more widely.
 本発明は、上記課題に鑑みてなされたものであり、癌患者自身の癌細胞サンプルから始まり、当該癌患者に特化させた成熟樹状細胞を投与するという、患者を中心としたオーダーメイド医療サイクルとでもいうべき、新規システムを構築することを目的になされているものであり、癌患者に有用な細胞を効率的に製造することの可能なオーダーメイド医療基幹システムを提供することを目的とする。 The present invention has been made in view of the above problems, starting from a cancer cell sample of the cancer patient itself, administering mature dendritic cells specialized for the cancer patient, patient-centered personalized medicine It is aimed to build a new system, which should be called a cycle, and aims to provide a bespoke medical backbone system capable of efficiently producing cells useful for cancer patients. To do.
 本発明者らは、上記課題を解決するために鋭意検討した結果、所定の方法により選定した抗原ペプチドを用いて、樹状細胞を感作することにより、上記課題を解決しうることを見出し、本発明を完成するに至った。 The present inventors have conducted intensive studies to solve the above problems, using an antigen peptide selected by a predetermined method, by sensitizing dendritic cells, found that the above problems can be solved, The present invention has been completed.
 すなわち、本発明は以下のとおりである。
〔1〕
 癌患者由来の癌細胞及び正常細胞における遺伝子産物の発現情報に基づいて特定される、前記癌細胞に特異的なペプチドのデータベースであって、前記ペプチドのアミノ酸配列、該アミノ酸配列を含むたんぱく質の発現量情報、及び前記癌患者のヒト白血球型抗原タイプに対する前記ペプチドの結合力に関する情報を含む、前記癌患者固有のデータベースを作成する工程と、
 前記発現量情報及び前記結合力に関する情報に基づいて、前記データベースから抗原ペプチドを抽出する工程と、
 前記データベースに含まれるアミノ酸配列情報に従って前記抗原ペプチドを合成し、合成した該抗原ペプチドを前記癌患者由来の未熟樹状細胞に接触させて、抗原ペプチドを提示する成熟樹状細胞を得る工程と、を有し、
 前記成熟樹状細胞を得る工程は、前記癌患者由来の単核球又は単核球から分離した単球から、前記未熟樹状細胞を誘導する誘導工程と、
 誘導された前記未熟樹状細胞に対して成熟誘導物質を接触して、前記未熟樹状細胞を成熟化する成熟化工程と、を含み、
 前記成熟化工程において、前記成熟誘導物質を接触させてから12時間後に、前記抗原ペプチドを前記未熟樹状細胞に接触させる、
 細胞の製造方法。
〔2〕
 前記データベースを作成する工程において、
 RNAシーケンス解析によって得られる、癌患者由来の癌細胞における遺伝子産物の発現情報と、前記癌細胞が属する組織の正常細胞における遺伝子産物の発現情報と、を比較して、前記癌細胞のみで発現するたんぱく質を特定し、該たんぱく質のアミノ酸配列から前記癌細胞に特異的なペプチドを特定する、
 〔1〕に記載の細胞の製造方法。
〔3〕
 前記データベースを作成する工程において、
 エクソーム解析によって得られる、癌患者由来の癌細胞における遺伝子情報と、前記癌細胞が属する組織の正常細胞における遺伝子情報と、を比較して、前記癌細胞のみで発現するたんぱく質を特定し、該たんぱく質のアミノ酸配列から前記癌細胞に特異的なペプチドを特定する、
 〔1〕又は〔2〕に記載の細胞の製造方法。
〔4〕
 前記データベースを作成する工程において、
 前記癌細胞に特異的なペプチドの前記アミノ酸配列と、前記癌患者のヒト白血球型抗原タイプに基づいて、前記癌患者のヒト白血球型抗原タイプに対する前記ペプチドの結合力を予測する、
 〔1〕~〔3〕のいずれか一項に記載の細胞の製造方法。
〔5〕
 前記データベースは、
 前記癌患者のヒト白血球型抗原タイプが複数ある場合に、それぞれの前記ヒト白血球型抗原タイプに対する前記ペプチドの結合力に関する情報を含む、
 〔1〕~〔4〕のいずれか一項に記載の細胞の製造方法。
〔6〕
 前記データベースを作成する工程において、
 前記癌細胞から流出したDNA又はDNA断片を含む体液サンプルに基づいて、前記癌患者由来の癌細胞における遺伝子産物の発現情報を得る、
 〔1〕~〔5〕のいずれか一項に記載の細胞の製造方法。
〔7〕
 前記成熟樹状細胞を得る工程において、
 前記患者由来の単核球から誘導される前記未熟樹状細胞を用いる、
 〔1〕~〔6〕のいずれか一項に記載の細胞の製造方法。
〔8〕
 前記成熟樹状細胞と、癌患者由来のT細胞とを接触させて、抗原特異的キラーTリンパ球を得る工程を有する、
 〔1〕~〔7〕のいずれか一項に記載の細胞の製造方法。
〔9〕
 前記抗原ペプチドを認識するT細胞受容体の遺伝子を導入して、抗原特異的受容体遺伝子導入T細胞を得る工程をさらに有する、
 〔1〕~〔8〕のいずれか一項に記載の細胞の製造方法。
〔10〕
 前記成熟樹状細胞を得る工程において、
 前記複数の抗原ペプチドと前記癌患者のヒト白血球型抗原タイプの結合力をin vitroでTAP遺伝子欠損細胞を用いて評価し、前記ヒト白血球型抗原タイプに対する結合力が高い前記複数の抗原ペプチドそれぞれを前記癌患者由来の前記未熟樹状細胞に接触させて、前記成熟樹状細胞を得る、
 〔1〕~〔9〕のいずれか一項に記載の細胞の製造方法。
〔11〕
 前記複数の抗原ペプチドと前記癌患者のヒト白血球型抗原タイプの結合力をin vitroでTAP遺伝子欠損細胞を用いて評価し、その評価結果をフィードバックすることでエピトープ解析における結合力の評価精度を向上させる工程と、
 前記発現量情報及び評価精度を向上させた前記結合力に関する情報に基づいて、前記データベースから抗原ペプチドを抽出する工程と、を有する、
 〔1〕~〔10〕のいずれか一項に記載の細胞の製造方法。
〔12〕
 情報処理装置に、
 癌患者由来の癌細胞及び正常細胞における遺伝子産物の発現情報に基づいて特定される、前記癌細胞に特異的なペプチドのデータベースであって、前記ペプチドのアミノ酸配列、該アミノ酸配列を含むたんぱく質の発現量情報、及び前記癌患者のヒト白血球型抗原タイプに対する前記ペプチドの結合力に関する情報を含む、前記癌患者固有のデータベースを作成する工程と、
 前記発現量情報及び前記結合力に関する情報に基づいて、前記データベースから抗原ペプチドを抽出する工程と、を実行させる、
 プログラム。
That is, the present invention is as follows.
[1]
A database of peptides specific to the cancer cells, which is specified based on expression information of gene products in cancer cells and normal cells derived from cancer patients, wherein the amino acid sequences of the peptides and the expression of proteins containing the amino acid sequences Creating a database specific to the cancer patient, including amount information and information regarding the binding strength of the peptide to the human leukocyte antigen type of the cancer patient, and
A step of extracting an antigen peptide from the database based on the expression amount information and the information on the binding force;
Synthesizing the antigenic peptide according to the amino acid sequence information contained in the database, contacting the synthesized antigenic peptide with immature dendritic cells derived from the cancer patient to obtain mature dendritic cells presenting the antigenic peptide, Have
The step of obtaining the mature dendritic cells, from the mononuclear cells from the cancer patient or monocytes separated from mononuclear cells, an induction step of inducing the immature dendritic cells,
A maturation step of contacting a maturation inducer to the induced immature dendritic cells to mature the immature dendritic cells,
In the maturation step, 12 hours after the contact with the maturation inducer, the antigen peptide is contacted with the immature dendritic cell,
Method for producing cells.
[2]
In the step of creating the database,
Expression information of a gene product in a cancer cell derived from a cancer patient, which is obtained by RNA sequence analysis, and expression information of a gene product in a normal cell of a tissue to which the cancer cell belongs are compared, and the gene product is expressed only in the cancer cell. Specifying a protein and specifying a peptide specific to the cancer cell from the amino acid sequence of the protein,
The method for producing cells according to [1].
[3]
In the step of creating the database,
Obtained by exome analysis, the gene information in cancer cells derived from a cancer patient and the gene information in normal cells of the tissue to which the cancer cells belong are compared to identify a protein expressed only in the cancer cells, and the protein Identifying a peptide specific to the cancer cell from the amino acid sequence of
The method for producing cells according to [1] or [2].
[4]
In the step of creating the database,
The amino acid sequence of the peptide specific to the cancer cells, and based on the human leukocyte antigen type of the cancer patient, predict the binding strength of the peptide to the human leukocyte antigen type of the cancer patient,
The method for producing a cell according to any one of [1] to [3].
[5]
The database is
When there are multiple human leukocyte antigen types of the cancer patient, including information on the binding ability of the peptide to each of the human leukocyte antigen type,
The method for producing the cell according to any one of [1] to [4].
[6]
In the step of creating the database,
Obtaining information on the expression of a gene product in the cancer cell derived from the cancer patient, based on a body fluid sample containing DNA or a DNA fragment flowing out from the cancer cell,
The method for producing cells according to any one of [1] to [5].
[7]
In the step of obtaining the mature dendritic cells,
Using the immature dendritic cells derived from mononuclear cells from the patient,
The method for producing a cell according to any one of [1] to [6].
[8]
A step of contacting the mature dendritic cell with a T cell derived from a cancer patient to obtain an antigen-specific killer T lymphocyte,
The method for producing a cell according to any one of [1] to [7].
[9]
Further comprising the step of introducing a T cell receptor gene that recognizes the antigenic peptide to obtain an antigen-specific receptor gene-introduced T cell,
The method for producing cells according to any one of [1] to [8].
[10]
In the step of obtaining the mature dendritic cells,
The binding power of the human leukocyte antigen type of the plurality of antigen peptides and the cancer patient was evaluated in vitro using TAP gene-deficient cells, and each of the plurality of antigen peptides having high binding power to the human leukocyte antigen type was Contacting the immature dendritic cells from the cancer patient to obtain the mature dendritic cells,
The method for producing a cell according to any one of [1] to [9].
[11]
Improve the accuracy of binding power in epitope analysis by evaluating the binding power of the multiple antigenic peptides and the human leukocyte antigen type of the cancer patient in vitro using TAP gene-deficient cells, and feeding back the evaluation results. And the process of
A step of extracting an antigen peptide from the database based on the expression amount information and information on the binding strength with improved evaluation accuracy,
The method for producing a cell according to any one of [1] to [10].
[12]
In the information processing device,
A database of peptides specific to the cancer cells, which is specified based on expression information of gene products in cancer cells and normal cells derived from cancer patients, wherein the amino acid sequences of the peptides and the expression of proteins containing the amino acid sequences Creating a database unique to the cancer patient, including amount information and information regarding the binding strength of the peptide to the human leukocyte antigen type of the cancer patient, and
Executing the step of extracting an antigen peptide from the database based on the expression amount information and the information on the binding strength,
program.
 本発明によれば、癌患者のオーダーメイド医療に有用な細胞を効率的に製造する方法を提供することができる。 According to the present invention, it is possible to provide a method for efficiently producing cells useful for personalized medical treatment of cancer patients.
本実施形態の細胞の製造方法のフローチャートの一例を示す。An example of a flow chart of the method for producing cells of the present embodiment is shown. 本実施形態の細胞の製造方法において作成するデータベースの一例を示す。An example of a database created in the cell manufacturing method of the present embodiment is shown. ヒトPBMC(末梢血単核球)から分離した単球から誘導した未熟樹状細胞(Monocyte-derived DC)と、単球を分離せずに誘導した未熟樹状細胞(Adherent PBMC-derived DC)におけるPurity(CD80陽性率)およびphenotypic potency(HLA-DR陽性率)をフローサイトメトリで測定した結果を示す。In immature dendritic cells (Monocyte-derived DC) derived from monocytes isolated from human PBMC (peripheral blood mononuclear cells) and in immature dendritic cells induced without separating monocytes (Adherent PBMC-derived DC) The results of measuring the Purity (CD80 positive rate) and phenotypic latency (HLA-DR positive rate) by flow cytometry are shown. ペプチドのパルス濃度及びパルス時間を変更した場合における、ペプチド特異的CD8陽性細胞のテトラマーアッセイの検出結果を示す。The detection result of the tetramer assay of the peptide specific CD8 positive cell when changing the pulse concentration and pulse time of a peptide is shown. 本実施形態における情報処理装置のハードウェア構成の一例を示す。An example of the hardware constitutions of the information processing apparatus in this embodiment is shown. 本実施形態における情報処理装置の機能的な構成を示すブロック図の一例を示す。An example of the block diagram which shows the functional structure of the information processing apparatus in this embodiment is shown.
 本発明は、患者を中心としたオーダーメイド医療基幹システムに関するものであり、癌患者自身の癌細胞サンプルから始まり、当該癌患者に特化させた成熟樹状細胞を投与するという一連のサイクルにおいて、癌患者に有用な細胞を効率的に製造する方法を提供するものである。以下、本発明の実施の形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。 The present invention relates to a bespoke medical backbone system centered on a patient, starting from a cancer cell sample of a cancer patient itself, in a series of cycles of administering mature dendritic cells specialized for the cancer patient, It is intended to provide a method for efficiently producing cells useful for cancer patients. Hereinafter, an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail, but the present invention is not limited to this, and various modifications can be made without departing from the gist thereof. Is.
〔細胞の製造方法〕
 本実施形態の細胞の製造方法は、癌患者由来の癌細胞及び正常細胞における遺伝子産物の発現情報に基づいて特定される、癌細胞に特異的なペプチドのデータベースであって、ペプチドのアミノ酸配列、該アミノ酸配列を含むたんぱく質の発現量情報、及び癌患者のヒト白血球型抗原タイプに対するペプチドの結合力に関する情報を含む、癌患者固有のデータベースを作成する工程と、発現量情報及び結合力に関する情報に基づいて、データベースから抗原ペプチドを抽出する工程と、データベースに含まれるアミノ酸配列情報に従って抗原ペプチドを合成し、合成した該抗原ペプチドを癌患者由来の未熟樹状細胞に接触させて、抗原ペプチドを提示する成熟樹状細胞を得る工程と、を有する。
[Method for producing cells]
The method for producing cells of the present embodiment is a database of peptides specific to cancer cells, which is specified based on the expression information of gene products in cancer cells and normal cells derived from cancer patients, wherein the amino acid sequences of the peptides are: A step of creating a cancer patient-specific database containing information on the expression level of a protein containing the amino acid sequence and information on the binding ability of the peptide to the human leukocyte antigen type of the cancer patient, and information on the expression level information and the binding ability. Based on the step of extracting the antigen peptide from the database, the antigen peptide is synthesized according to the amino acid sequence information contained in the database, and the synthesized antigen peptide is brought into contact with immature dendritic cells derived from a cancer patient to present the antigen peptide. To obtain mature dendritic cells.
 かかる実施形態によれば、癌患者の癌細胞に特異的なペプチドのうち、樹状細胞に提示されやすく、かつ癌細胞の攻撃能に優れた成熟樹状細胞を与えることのできるペプチドを、容易に特定することができる。これにより、癌患者の癌細胞を効果的に攻撃することの成熟樹状細胞をより効率的に得ることが可能となる。その結果、オーダーメイド医療における、癌抗原に対する免疫を利用して癌の治療又は予防に用いられる医薬(以下、「癌ワクチン」ともいう。)として、抗原ペプチドを提示する成熟樹状細胞の利用を促進することができる。 According to such an embodiment, among the peptides specific to cancer cells of cancer patients, peptides that can be easily presented to dendritic cells and can give mature dendritic cells excellent in the attacking ability of cancer cells can be easily identified. Can be specified. This makes it possible to more efficiently obtain mature dendritic cells that effectively attack cancer cells of cancer patients. As a result, the use of mature dendritic cells that present an antigenic peptide as a drug (hereinafter, also referred to as “cancer vaccine”) used for the treatment or prevention of cancer by using immunity to cancer antigen in personalized medicine. Can be promoted.
 本明細書において「遺伝子産物」とは、遺伝子から転写される機能性RNAと、さらに転写物のmRNAから翻訳されるタンパク質の総称のことをいう。 In the present specification, the “gene product” is a generic term for a functional RNA transcribed from a gene and a protein translated from the mRNA of the transcript.
 本明細書において「遺伝子産物の発現情報」とは、細胞や組織で発現する遺伝子産物に関する情報であり、例えば、RNAシーケンス解析、エクソーム解析、又はプロテオーム解析により得られた情報等が含まれる。 In the present specification, the “gene product expression information” is information on a gene product expressed in cells or tissues, and includes, for example, information obtained by RNA sequence analysis, exome analysis, or proteome analysis.
 本明細書において「発現」は、ポリペプチドが、DNAのようなポリヌクレオチドから生成されるプロセスを含む。プロセスは、mRNAへの遺伝子の転写と、ポリペプチドへのこのmRNAの翻訳とを含み得る。この用語を用いる文脈に依存して、「発現」は、RNA、タンパク質又はそれらの両方の生成のことをいうことがある。 “Expression” as used herein includes the process by which a polypeptide is produced from a polynucleotide such as DNA. The process may involve transcription of the gene into mRNA and translation of this mRNA into a polypeptide. Depending on the context in which the term is used, "expression" may refer to the production of RNA, protein or both.
 本明細書において「ヒト白血球型抗原タイプ」とは、白血球抗原を含めた、ヒトの主要組織適合遺伝子複合体(MHC; Major Histocompatibility Complex)を意味する。 In the present specification, “human leukocyte type antigen type” means a human major histocompatibility complex (MHC) including leukocyte antigens.
 本明細書において「データベース」とは、癌細胞に特異的なペプチドと、その発現等に関する情報が紐づけられたデータ構造を有するものを意味する。 In the present specification, the “database” means one having a data structure in which a peptide specific to a cancer cell and information regarding its expression and the like are linked.
 本明細書において「癌細胞に特異的なペプチド」は、正常細胞には発現しないペプチドであって癌抗原タンパク質の一部のアミノ酸配列からなるペプチド(以下、「癌抗原ペプチド」ともいう。)を意味する。この癌細胞に特異的なペプチドは、ネオアンチゲンともいう。また、「癌抗原」は、癌細胞に特異的に発現し、正常細胞には発現しないタンパク質をいう。 In the present specification, the "cancer cell-specific peptide" is a peptide that is not expressed in normal cells and consists of a partial amino acid sequence of a cancer antigen protein (hereinafter, also referred to as "cancer antigen peptide"). means. This cancer cell-specific peptide is also called neoantigen. In addition, the "cancer antigen" refers to a protein that is specifically expressed in cancer cells but not in normal cells.
 本明細書において「癌の治療」とは、癌の発生の阻害(遅延又は停止)、腫瘍サイズの低下(遅延又は停止)、腫瘍の転移の阻害(遅延又は停止)、腫瘍増殖の阻害(遅延又は停止)、及びがんと関連する一つ又は複数の症状の緩和、の少なくとも1つを生じさせることをいう。 As used herein, the term “treatment of cancer” refers to inhibition (delay or arrest) of cancer development, reduction of tumor size (delay or arrest), inhibition of tumor metastasis (delay or arrest), inhibition of tumor growth (delay). Or cessation) and alleviation of one or more symptoms associated with cancer.
 本発明に係る抗原ペプチドを提示する成熟樹状細胞の投与対象は、ヒトを含む哺乳動物とすることができ、例えば、ヒト、マウス、ラット、ウサギ、ネコ、イヌ、サル、ヒツジ、ウマ、ウシ等とすることができるがこれらに限定されない。投与対象は典型的にはヒトである。 The subject to which the mature dendritic cells presenting the antigenic peptide according to the present invention are administered can be mammals including humans, and for example, humans, mice, rats, rabbits, cats, dogs, monkeys, sheep, horses, cows. Etc., but is not limited to these. The administration subject is typically a human.
 本明細書において「抗原ペプチドを提示する成熟樹状細胞」は、in vitroにおいて、癌抗原ペプチドとMHCクラスI分子との複合体を表面に提示させた樹状細胞を意味する。癌抗原ペプチドは抗原提示細胞の主要組織適合遺伝子複合体(MHC)クラスI分子と結合すると細胞表面に提示される。 The term “mature dendritic cell that presents an antigen peptide” as used herein means a dendritic cell that presents a complex of a cancer antigen peptide and an MHC class I molecule on the surface in vitro. Cancer antigen peptides are presented on the cell surface upon binding to major histocompatibility complex (MHC) class I molecules of antigen presenting cells.
 本明細書において「T細胞」とは、CD8陽性T細胞であって、抗原提示細胞のMHCクラスI分子と抗原ペプチドとの複合体による刺激を受ける前の、細胞傷害活性を有しないT細胞をいう。 As used herein, the term “T cell” refers to a CD8-positive T cell that has no cytotoxic activity before being stimulated by a complex of an antigen-presenting cell with an MHC class I molecule and an antigen peptide. Say.
 本明細書において「抗原特異的キラーTリンパ球」とは、抗原ペプチドを提示する成熟樹状細胞を含む癌ワクチンを対象に投与することで、MHCクラスI分子と癌抗原ペプチドの複合体を認識したT細胞が活性化されたものをいう。抗原特異的キラーTリンパ球は、細胞傷害性T細胞(CTL)ともいい、同じ癌抗原を発現している細胞を破壊するようになる。 As used herein, the term "antigen-specific killer T lymphocyte" refers to a complex of MHC class I molecule and cancer antigen peptide by administering to a subject a cancer vaccine containing mature dendritic cells that present the antigen peptide. Refers to activated T cells. Antigen-specific killer T lymphocytes, also called cytotoxic T cells (CTL), destroy cells expressing the same cancer antigen.
 本明細書において「トランスクリプトーム」は、所定の時間に1の細胞又は細胞の集団において生成されるmRNA、rRNA、tRNA及びその他の非コードRNAを含む転写されたRNA分子の完全なセットのことをいう。この用語は、所定の生物における転写産物のセットの合計、又は特定の細胞型に存在する転写産物の具体的なサブセットに用いることができる。所定の細胞株(変異を除く)に大まかに固定されるゲノムと違って、トランスクリプトームは、外部環境条件とともに変動しうる。これは、細胞における全てのmRNA転写産物を含むので、トランスクリプトームは、転写減衰のようなmRNA分解現象を例外として、任意の所定の時間に能動的に発現される遺伝子を反映する。 As used herein, the term "transcriptome" refers to the complete set of transcribed RNA molecules, including mRNAs, rRNAs, tRNAs and other non-coding RNAs produced in one cell or population of cells at a given time. Say. The term can be used for the sum of a set of transcripts in a given organism, or for a specific subset of transcripts present in a particular cell type. Unlike the genome, which is loosely fixed in a given cell line (excluding mutations), the transcriptome can fluctuate with external environmental conditions. Since it contains all mRNA transcripts in the cell, the transcriptome reflects genes that are actively expressed at any given time, with the exception of mRNA degradation events such as transcriptional decay.
 以下、図面を参照し本実施形態の製造方法に係る各工程について説明する。図1は、本実施形態における細胞製造方法のフローチャートの一例を示す。また、図2は、データベースが有するデータ構造の一例を示す。なお、以下で説明する処理手順は一例に過ぎず、各処理は、本発明の技術思想の範囲内において可能な限り変更されてよく、また、適宜、ステップの省略、置換、および追加が可能である。 Each step of the manufacturing method of this embodiment will be described below with reference to the drawings. FIG. 1 shows an example of a flowchart of the cell manufacturing method in the present embodiment. FIG. 2 shows an example of the data structure of the database. It should be noted that the processing procedure described below is merely an example, and each processing may be modified as much as possible within the scope of the technical idea of the present invention, and steps may be omitted, replaced, and added as appropriate. is there.
〔データベース作成工程〕
 まず、本実施形態の細胞の製造方法では、癌患者の癌細胞に特異的な抗原ペプチドを選択するベースとなる情報として、癌細胞に特異的なペプチドの情報を収集し、データベースを作成する。
[Database creation process]
First, in the method for producing cells of the present embodiment, information on peptides specific to cancer cells is collected as a base information for selecting an antigen peptide specific to cancer cells of a cancer patient, and a database is created.
 図2は、抗原ペプチドのデータベースが有するデータ構造(テーブル200)の一例を示す。このテーブル200には、癌細胞に特異的なペプチド名201と、そのアミノ酸配列202、当該アミノ酸配列を含むたんぱく質の発現量情報203、及び癌患者のヒト白血球型抗原タイプに対するペプチドの結合力に関する情報204と、が対応付けられて記憶されている。なお、データベースには、発現量情報及び結合力等に基づくペプチドの評価205などが記録されていてもよい。 FIG. 2 shows an example of a data structure (table 200) included in the antigen peptide database. In this table 200, a peptide name 201 specific to a cancer cell, its amino acid sequence 202, information 203 on the expression amount of a protein containing the amino acid sequence, and information on the binding power of the peptide to the human leukocyte antigen type of a cancer patient. And 204 are stored in association with each other. It should be noted that the database may record the peptide evaluation 205 based on expression level information, binding strength, and the like.
 癌細胞に特異的なペプチド名201は、個々のペプチドを識別するためのID(識別子)である。 The cancer cell-specific peptide name 201 is an ID (identifier) for identifying each peptide.
 アミノ酸配列202は、エクソーム解析により特定される癌細胞に特異的なペプチドのアミノ酸配列を示す情報である。この情報に基づいて、RNAシーケンス解析により、そのアミノ酸配列の実際の発現量を評価したり、エピトープ予測により癌患者のヒト白血球型抗原タイプに対するペプチドの結合力を評価したり、ペプチド合成を行ったりする。また、アミノ酸配列は、そのペプチドの長さ情報も含む。ペプチドの長さ情報は、HLAとの結合の判断に用いることができる。一例として図2に示すペプチドA-1~A-3は、長さが異なる以外は、いずれも同じたんぱく質Aの同じ位置から得られたものであり、ペプチドB-1~B-2は、いずれも同じたんぱく質Aの同じ位置から得られたものである。 The amino acid sequence 202 is information indicating the amino acid sequence of a peptide specific to cancer cells identified by exome analysis. Based on this information, RNA sequence analysis can be used to evaluate the actual expression level of the amino acid sequence, epitope prediction can be used to evaluate the binding ability of peptides to the human leukocyte antigen type of cancer patients, and peptide synthesis can be performed. To do. The amino acid sequence also contains length information for the peptide. The peptide length information can be used to judge the binding to HLA. As an example, peptides A-1 to A-3 shown in FIG. 2 are all obtained from the same position of the same protein A except that they have different lengths. Is also obtained from the same position of the same protein A.
 アミノ酸配列を含むたんぱく質の発現量情報203は、RNAシーケンス解析により特定されるたんぱく質の発現量情報であり、エクソーム解析により特定された癌細胞に特異的なペプチドの実際の発現量を示す情報である。この情報に基づいて、抗原として有用なペプチドの抽出を行ったりする。 The protein expression amount information 203 including the amino acid sequence is information on the expression amount of the protein specified by the RNA sequence analysis, and is information indicating the actual expression amount of the cancer cell-specific peptide specified by the exome analysis. .. Peptides useful as antigens are extracted based on this information.
 ヒト白血球型抗原タイプに対するペプチドの結合力に関する情報204は、HLAタイピングにより決定される癌患者の一又複数のヒト白血球型抗原タイプに関する情報と、個々のペプチドのアミノ酸配列に基づいて、エピトープ予測によりこれらの結合力を評価した情報である。この情報に基づいて、抗原として有用なペプチドの抽出を行ったりする。なお、HLAタイピングにより決定される癌患者の一又複数のヒト白血球型抗原タイプに関する情報は、アリル表記法などで示すことができる。 The information 204 on the avidity of the peptide for the human leukocyte antigen type is obtained by epitope prediction based on the information on one or more human leukocyte antigen types of cancer patients determined by HLA typing and the amino acid sequence of each peptide. This is information that evaluates these binding forces. Peptides useful as antigens are extracted based on this information. Information on one or more human leukocyte-type antigen types of a cancer patient determined by HLA typing can be shown by an allyl notation or the like.
 発現量情報及び結合力等に基づくペプチドの評価205は、癌細胞に特異的なペプチドの抗原としての有用性を示す指標である。このような指標としては、例えば、所定の係数を掛けた発現量情報203と所定の係数を掛けた結合力情報204の積又は和など、発現量情報203と結合力情報204から算出される指数が挙げられる。 Peptide evaluation 205 based on expression level information, binding strength, etc. is an index showing the usefulness of a peptide specific to cancer cells as an antigen. As such an index, for example, an index calculated from the expression level information 203 and the binding force information 204, such as the product or sum of the expression level information 203 multiplied by a predetermined coefficient and the binding force information 204 multiplied by a predetermined coefficient. Is mentioned.
 データベース作成工程は、例えば、試料を調製するステップS101癌細胞に特異的なペプチドを特定するステップS102と、癌患者のヒト白血球型抗原タイプを特定するステップS103と、癌細胞に特異的なペプチド毎にヒト白血球型抗原タイプとの結合力を評価するステップS104と、を含む。なお、これらステップは、図2に示すようなデータベースを作成できるものであればその順序は限定されるものではない。 The database creation step includes, for example, step S101 of preparing a sample, step S102 of identifying a peptide specific to a cancer cell, step S103 of identifying a human leukocyte antigen type of a cancer patient, and each peptide specific to a cancer cell. And step S104 of evaluating the binding strength with the human leukocyte-type antigen type. The order of these steps is not limited as long as a database as shown in FIG. 2 can be created.
(S101:試料を調製するステップ)
 データベースの作成において用いる癌細胞及び正常細胞のサンプルは、同一の癌患者に由来するものであることが好ましい。癌細胞及び正常細胞は、癌細胞を含む組織から直接外科的手法により採取することができる。また、本実施形態においては、癌患者由来の癌細胞における遺伝子産物の発現情報などを取得する方法として、採取した癌細胞そのものを分析する必要はない。癌細胞そのものを分析せずに癌細胞における遺伝子産物の発現情報などを取得する方法としては、癌細胞に代えて、癌細胞から流出したDNA又はDNA断片を含む、血液などの体液サンプルを取得し、この体液サンプルに基づいて、癌患者由来の癌細胞における遺伝子産物の発現情報を得る方法(リキッドバイオプシー法)を採用することができる。
(S101: Step of preparing sample)
The samples of cancer cells and normal cells used in creating the database are preferably derived from the same cancer patient. Cancer cells and normal cells can be directly collected from tissues containing cancer cells by a surgical technique. Further, in the present embodiment, it is not necessary to analyze the collected cancer cells themselves as a method for obtaining the expression information of the gene product in the cancer cells derived from the cancer patient. As a method for obtaining information on expression of gene products in cancer cells without analyzing the cancer cells themselves, instead of the cancer cells, a body fluid sample such as blood containing DNA or DNA fragments that have flowed out from the cancer cells is obtained. A method (liquid biopsy method) for obtaining expression information of a gene product in cancer cells derived from a cancer patient based on this body fluid sample can be adopted.
(S102:癌細胞に特異的なペプチドを特定するステップ)
 癌細胞に特異的なペプチドの特定方法としては、エクソーム解析、RNAシーケンス解析などを用いることができる。一つの例として、癌細胞及び正常細胞のサンプルそれぞれに対してエクソーム解析を行い、癌細胞に特異的な遺伝子変異(癌細胞に特異的なアミノ酸配列)を特定する。そして、エクソーム解析により特定した遺伝子変異を有するたんぱく質の発現量を、RNAシーケンス解析により特定する。これにより、癌細胞に特異的に発現するペプチドを確認することができ、そのアミノ酸配列と、当該アミノ酸配列を含むたんぱく質の発現量情報とを得ることができる。
(S102: Step of identifying a peptide specific to cancer cells)
Exome analysis, RNA sequence analysis, etc. can be used as a method of identifying a peptide specific to a cancer cell. As one example, exome analysis is performed on each sample of cancer cells and normal cells to identify gene mutations specific to cancer cells (amino acid sequences specific to cancer cells). Then, the expression level of the protein having the gene mutation identified by the exome analysis is identified by the RNA sequence analysis. Thereby, the peptide specifically expressed in cancer cells can be confirmed, and its amino acid sequence and the information on the expression level of the protein containing the amino acid sequence can be obtained.
 (エクソーム解析)
 癌細胞に特異的なペプチドを特定する方法としては、例えば、エクソーム解析を用いることができる。エクソーム解析とは、全ゲノムのうち、エキソン配列のみを網羅的に解析することにより、効率的にエクソン上の変異 (SNV (SNP)/InDel) を検出する手法である。エキソンとは、mRNAに残る塩基配列であり、タンパク質合成等の情報をもつ部分である。エキソンはタンパク質に翻訳される領域であることから機能的に重要とされ、遺伝性疾患の多くがエキソン領域の変異により引き起こされると推定される。
(Exome analysis)
As a method of identifying a peptide specific to a cancer cell, for example, exome analysis can be used. Exome analysis is a method for efficiently detecting mutations (SNV (SNP) / InDel) on exons by comprehensively analyzing only exon sequences in the entire genome. An exon is a base sequence that remains in mRNA, and is a part that has information such as protein synthesis. Exons are functionally important because they are regions translated into proteins, and it is presumed that most of the inherited diseases are caused by mutations in exon regions.
 正常細胞と癌細胞の両方において、エクソーム解析を行うことで、癌患者由来の癌細胞における遺伝子情報と、癌細胞が属する組織の正常細胞における遺伝子情報と、を取得することができる。正常細胞と癌細胞の遺伝子情報を比較することにより、癌細胞のみで発現するたんぱく質を特定することができる。そして、癌細胞のみで発現するたんぱく質のアミノ酸配列から、正常細胞にはない癌細胞に特異的なペプチドを特定することができる。全ゲノムのうちエキソンは1~1.5%であるため、エクソーム解析によれば、全ゲノム配列解析よりも低コストでありながら効率よく疾患関連遺伝子を解析・同定することができる。 By performing exome analysis on both normal cells and cancer cells, it is possible to obtain genetic information on cancer cells derived from a cancer patient and gene information on normal cells of the tissue to which the cancer cells belong. By comparing the genetic information of normal cells and cancer cells, the protein expressed only in cancer cells can be specified. Then, from the amino acid sequence of the protein expressed only in cancer cells, a peptide specific to cancer cells which is not present in normal cells can be identified. Since exons account for 1 to 1.5% of the whole genome, exome analysis enables efficient analysis and identification of disease-related genes at a lower cost than whole genome sequence analysis.
 解析方法としては、例えば、公知のエクソーム濃縮キット等を用いてエクソン領域を(コードするDNAを)濃縮し、塩基配列を調べるシークエンシングを行い、決定された塩基配列を解析する方法が挙げられる。 As an analysis method, for example, a method of enriching an exon region (encoding DNA) using a known exome enrichment kit, performing a sequencing for examining a nucleotide sequence, and analyzing the determined nucleotide sequence can be mentioned.
 エクソーム解析により、例えば、遺伝子変異の有無、変異がある場合にはその箇所の特定をすることができる。また、その遺伝子変異が疾患に及ぼす影響を予測することも考えられる。この予測にあっては、疾患とその疾患に関連する遺伝子変異とを関連付けるテーブル(DB)を参照してもよい。 By exome analysis, for example, it is possible to identify the presence or absence of a gene mutation and, if there is a mutation, identify the location. It is also possible to predict the effect of the gene mutation on the disease. In this prediction, a table (DB) that associates a disease with a gene mutation associated with the disease may be referred to.
 (RNAシーケンス解析)
 RNAシーケンス解析とは、細胞から抽出したサンプルにおいて、転写されたRNAの塩基配列とその転写量を解析する手法である。正常細胞と癌細胞の両方において、RNAシーケンス解析を行うことで、癌患者由来の癌細胞における遺伝子産物の発現情報と、癌細胞が属する組織の正常細胞における遺伝子産物の発現情報と、を取得することができる。正常細胞と癌細胞の遺伝子産物の発現情報を比較することにより、癌細胞のみで発現するたんぱく質を特定することができる。そして、癌細胞のみで発現するたんぱく質のアミノ酸配列から、正常細胞にはない癌細胞に特異的なペプチドを特定することができる。また、たんぱく質のアミノ酸配列と同時に、遺伝子産物の発現量に関する情報を得ることもできる。
(RNA sequence analysis)
RNA sequence analysis is a method of analyzing the base sequence of transcribed RNA and its transcription amount in a sample extracted from cells. By performing RNA sequence analysis on both normal cells and cancer cells, the expression information of the gene product in the cancer cells derived from the cancer patient and the expression information of the gene product in the normal cells of the tissue to which the cancer cells belong are obtained. be able to. By comparing the expression information of the gene products of normal cells and cancer cells, the protein expressed only in cancer cells can be specified. Then, from the amino acid sequence of the protein expressed only in cancer cells, a peptide specific to cancer cells which is not present in normal cells can be identified. Further, it is possible to obtain information on the expression level of a gene product together with the amino acid sequence of the protein.
 一つの態様として、癌細胞及び正常細胞のサンプルそれぞれに対してエクソーム解析を行い、特定した遺伝子変異を有するたんぱく質がエクソーム解析により特定されている場合には、RNAシーケンス解析は癌細胞のサンプルに対してのみ行うこともできる。これにより、癌細胞においてエクソーム解析により特定した変異を有するたんぱくが発現しているか否か、及びその発現量情報を得ることができる。RNAシーケンス解析に先立ってエクソーム解析により遺伝子変異を特定しておくことで、RNAシーケンス解析で対象とすべきたんぱくを特定することが可能となる。これにより、RNAシーケンス解析のみで遺伝子変異を特定する場合に比べ、全体の処理時間の短縮や解析精度の向上を図ることができる。 As one embodiment, an exome analysis is performed on each of cancer cell and normal cell samples, and when the protein having the identified gene mutation is identified by exome analysis, RNA sequence analysis is performed on the cancer cell sample. It can also be done only. This makes it possible to obtain whether or not a protein having a mutation specified by exome analysis is expressed in cancer cells, and information on the expression level thereof. By identifying the gene mutation by exome analysis prior to RNA sequence analysis, it becomes possible to specify the protein to be targeted by RNA sequence analysis. As a result, it is possible to reduce the overall processing time and improve the analysis accuracy, as compared with the case where the gene mutation is specified only by the RNA sequence analysis.
 また、RNAシーケンス解析により、特定の状況下において細胞中に存在するRNA(トランスクリプトーム(transcriptome))を分析することができる。正常細胞と癌細胞の遺伝子産物の発現情報の比較は、トランスクリプトーム変化のモニタリングにより得られるデータに基づいて行ってもよい。 Also, RNA sequence analysis makes it possible to analyze RNA (transcriptome) existing in cells under specific conditions. The comparison of expression information of gene products of normal cells and cancer cells may be performed based on data obtained by monitoring transcriptome change.
 なお、RNAシーケンス解析の対象となるRNAとしては、mRNA、rRNA、もしくはtRNA、又はこれらの混合物であるTotal RNAが挙げられる。 Note that RNA to be subjected to RNA sequence analysis includes mRNA, rRNA, or tRNA, or Total RNA, which is a mixture thereof.
 上記エクソーム解析及び/又はRNAシーケンス解析により得られる、癌細胞に特異的に発現するペプチド、そのアミノ酸配列、及び当該アミノ酸配列を含むたんぱく質の発現量情報などに関する情報は、適宜、データベースに記録することができる。 Information relating to the peptide specifically expressed in cancer cells, the amino acid sequence thereof, and the expression level information of the protein containing the amino acid sequence, which is obtained by the exome analysis and / or RNA sequence analysis, should be recorded in a database as appropriate. You can
(S103:癌患者のヒト白血球型抗原タイプを特定するステップ)
 癌患者のヒト白血球型抗原タイプは、例えば、HLA(ヒト白血球抗原:Human Leucocyte Antigen)タイピングにより行うことができる。HLAタイピングとは、ヒトの主要組織適合性抗原型であるHLA(ヒト白血球抗原)のタイプを特定することをいう。癌細胞に特異的なペプチドであり、かつ、癌患者のHLAタイプに適合するペプチドを接種することにより、抗がん効果を高めた樹状細胞を製造することができる。また、本実施形態の製造方法により得られる細胞は、癌患者本人に由来する細胞であり、HLA型は完全一致する。
(S103: Step of identifying human leukocyte type antigen type of cancer patient)
The human leukocyte antigen type of a cancer patient can be determined by, for example, HLA (Human Leucocyte Antigen) typing. HLA typing refers to specifying the type of HLA (human leukocyte antigen), which is the major human histocompatibility serotype. By inoculating a peptide that is a cancer cell-specific peptide and is compatible with the HLA type of a cancer patient, dendritic cells with enhanced anti-cancer effect can be produced. Moreover, the cells obtained by the production method of the present embodiment are cells derived from the cancer patient himself, and the HLA types are completely the same.
 HLA分子は一部が細胞膜に埋め込まれており、その分子は、細胞外ドメイン、細胞膜貫通ドメイン、細胞内ドメインの3つに分けられる。細胞外ドメインは細胞膜から遠い位置(遠位ドメイン)と膜に近い近位ドメインにさらに分けられ、それぞれに異なる機能を持っている。遠位ドメインは、抗原ペプチドの選択的受容と、T細胞への抗原提示に関与する構造をもつ。近位ドメインは、T細胞にある分子;CD4・CD8との特異的な結合に関与する構造をもつ。HLAは、自然免疫の制御、獲得免疫におけるT細胞への抗原提示に寄与する。免疫系は様々な非自己を排除できるように複雑に構成されており、非自己の情報を得るための自己として、HLAが関与する。 The HLA molecule is partially embedded in the cell membrane, and the molecule is divided into the extracellular domain, cell transmembrane domain, and intracellular domain. The extracellular domain is further divided into a position far from the cell membrane (distal domain) and a proximal domain close to the membrane, and each has a different function. The distal domain has a structure involved in selective acceptance of antigenic peptides and presentation of antigens to T cells. The proximal domain has a structure involved in specific binding to molecules in T cells; CD4 and CD8. HLA contributes to the control of innate immunity and the presentation of antigens to T cells in adaptive immunity. The immune system is complicatedly configured to eliminate various non-self, and HLA is involved as the self to obtain non-self information.
 HLAには、クラスIとクラスIIの二つがあり、HLAクラスI(HLA-A,B,Cなど)は、内在の9個のアミノ酸を溝に埋め込んだような形で、T細胞に癌抗原ペプチドを提示する。癌抗原ペプチドが提示されたT細胞は、抗原特異的キラーTリンパ球となり、癌細胞を破壊する。また、HLAクラスII(HLA-DR,DQ,DPなど)は、食作用などで取り込んだ外来の15個前後のアミノ酸を溝に埋め込んだような構造を有し、ヘルパーT細胞に癌抗原ペプチドを提示する。ヘルパーT細胞はそれ自身は細胞障害活性をもたないが、非自己のアミノ酸を確認するとTh1サイトカイン、Th2サイトカインを放出する。Th1サイトカインは抗原特異的キラーTリンパ球の活性化を促進し、Th2サイトカインはB細胞の免疫グロブリン産生を促進する。 There are two types of HLA, class I and class II, and HLA class I (HLA-A, B, C, etc.) is a cancer antigen to T cells in a form in which 9 endogenous amino acids are buried in a groove. Present the peptide. The T cells presented with the cancer antigen peptide become antigen-specific killer T lymphocytes and destroy the cancer cells. In addition, HLA class II (HLA-DR, DQ, DP, etc.) has a structure in which about 15 extraneous amino acids taken in by phagocytosis etc. are buried in the groove, and helper T cells receive cancer antigen peptides. Present. Helper T cells do not have cytotoxic activity by themselves, but release non-self amino acids and release Th1 and Th2 cytokines. The Th1 cytokine promotes the activation of antigen-specific killer T lymphocytes, and the Th2 cytokine promotes the immunoglobulin production of B cells.
 HLAタイピングは、特に制限されないが、例えば、DNAタイピングによるHLA遺伝子型解析法であるSBT法(Sequencing Based Typing)、SSP法(sequence specific primers)により行うことができる。一例として、SBT法では、PCR法によりDNAを増幅し、増幅産物の塩基配列を既存アリルの塩基配列情報と照合してHLA遺伝子型を判定する。また、全エクソーム解析により得られた遺伝情報もHLAタイピングに利用することができる。 The HLA typing is not particularly limited, but for example, it can be performed by the SBT method (Sequencing Based Typing) and the SSP method (sequence specific primers) that are HLA genotyping methods by DNA typing. As an example, in the SBT method, DNA is amplified by the PCR method, and the HLA genotype is determined by comparing the base sequence of the amplified product with the base sequence information of existing alleles. In addition, the genetic information obtained by whole exome analysis can also be used for HLA typing.
 データベースに記録されるHLAタイピングの表記は、HLAアリル表記法に準ずることができる。この表記法では、遺伝子名に続いて、HLA高原型に対応する数字(HLA特異性)を表記する第1区域、アミノ酸配列が異なる(非同義置換)群を表記する第2区域、エクソン内のアミノ酸配列に変化がない塩基置換(同義置換)で区別されるアリル(allele:対立遺伝子)を表記する第3区域、エクソン以外の塩基置換(例えば、イントロンの違いなど)でくべされるアリルを表記する第4区域から、標記される。 The notation of HLA typing recorded in the database can conform to the HLA allele notation. In this notation, following the gene name, the first section that describes the number corresponding to the HLA plateau (HLA specificity), the second section that describes groups with different amino acid sequences (non-synonymous substitution), and within the exon The third section that indicates alleles (alleles) that are distinguished by base substitutions that do not change the amino acid sequence (synonymous substitutions), and the alleles that are filled in by base substitutions other than exons (for example, differences in introns) It is marked from the 4th area that does.
(S104:癌細胞に特異的なペプチド毎にヒト白血球型抗原タイプとの結合力を評価するステップ)
 癌細胞に特異的なペプチドとヒト白血球型抗原タイプとの結合力は、例えば、エピトープ予測により行うことができる。エピトープ予測とは、抗体が認識して結合する抗原の一部分(エピトープ)を予測するものである。例えば、エピトープ予測により、癌細胞に特異的なペプチドのアミノ酸配列と、癌患者のヒト白血球型抗原タイプに基づいて、癌患者のヒト白血球型抗原タイプに対するペプチドの結合力を予測することで、特定の抗体を提示する成熟樹状細胞の製造効率を向上させることができる。
(S104: Step of evaluating the binding power to human leukocyte type antigen type for each peptide specific to cancer cells)
The avidity of the cancer cell-specific peptide with the human leukocyte-type antigen type can be determined by, for example, epitope prediction. Epitope prediction is a prediction of a part (epitope) of an antigen recognized and bound by an antibody. For example, by predicting the binding strength of the peptide to the human leukocyte antigen type of the cancer patient based on the amino acid sequence of the peptide specific to the cancer cell and the human leukocyte antigen type of the cancer patient by epitope prediction, It is possible to improve the production efficiency of mature dendritic cells that present the antibody.
 なお、癌患者のヒト白血球型抗原タイプが複数ある場合には、データベースはそれぞれのヒト白血球型抗原タイプに対して、癌細胞に特異的なペプチドの結合力を評価した結果を含むことが好ましい。 Note that if there are multiple human leukocyte antigen types of cancer patients, the database preferably contains the results of evaluating the binding ability of the cancer cell-specific peptide for each human leukocyte antigen type.
〔S105:抽出工程〕
 抽出工程では、発現量情報及び結合力に関する情報に基づいて、上記データベースから細胞製造に適切な抗原ペプチドを抽出する。抽出するペプチド数は、特に制限されないが、例えば、5~10種類ほどとすることができる。これにより、以降のin vivo, in vitroにおける操作負担を軽減することができる。また、抽出動作は、in silico、すなわちデータ上で行うことができる。抽出方法としては、例えば、データベースの抗原ペプチドに抽出のための評価指標となるスコアを付し、そのスコアに基づいて細胞製造に適切な抗原ペプチドを抽出する方法が挙げられる。抗原ペプチドの抽出は、スコアが高い順にペプチドを選定することにより行うことができる。
[S105: Extraction Step]
In the extraction step, an antigen peptide suitable for cell production is extracted from the database based on the expression amount information and the information on the binding strength. The number of peptides to be extracted is not particularly limited, but may be, for example, about 5 to 10 kinds. This makes it possible to reduce the subsequent in vivo and in vitro operation load. In addition, the extraction operation can be performed in silico, that is, on the data. Examples of the extraction method include a method in which a score serving as an evaluation index for extraction is attached to an antigen peptide in a database, and an antigen peptide suitable for cell production is extracted based on the score. Extraction of antigen peptides can be performed by selecting peptides in descending order of score.
 上記スコアの例としては、例えば、所定の係数を掛けた発現量情報と、所定の係数を掛けた結合力と、の積(下記式)又は和などが挙げられる。このようにして算出されるスコアを用いることにより、癌細胞が比較的多く発現しているペプチド(タンパク質)であり、かつ、樹状細胞へ取り込まれやすく成熟樹状細胞を製造しやすいペプチドを評価するものとして有効に用いることができる。なお、スコアの算出式は、以下に限られるものではない。上記スコアは、ペプチドの評価205に記録することができる。
 スコア=(係数×発現量情報)×(係数×結合力)
Examples of the score include, for example, the product (the following formula) or the sum of the expression amount information multiplied by a predetermined coefficient and the binding force multiplied by the predetermined coefficient. By using the scores calculated in this way, we evaluate peptides that are relatively abundantly expressed in cancer cells (proteins) and that are easily taken up by dendritic cells to produce mature dendritic cells. It can be effectively used as a product. Note that the score calculation formula is not limited to the following. The score can be recorded in the peptide rating 205.
Score = (coefficient × expression amount information) × (coefficient × cohesion)
 また、抽出にあたり、結合力の調整処理を行ってもよい。例えば、図2に示すペプチドA-1~A-3は、長さが異なる以外は、いずれも同じたんぱく質Aの同じ位置から得られたものである。このペプチドA-1~A-3のように、ペプチドの長さを変更することでHLAに対する結合力の差が変化する場合には、対象とするHLAへの結合力が最大となるペプチドを抽出することができる。より具体的には、A*02:01:…と表記されるHLAを対象とする抗原ペプチドの選定にあたっては、遺伝子変異部位を含むペプチドA-1~A-3の結合量を比較考慮し、もっとも結合力の評価の高いものを選出することができる。 Also, the binding strength may be adjusted during extraction. For example, peptides A-1 to A-3 shown in FIG. 2 are all obtained from the same position of the same protein A except that the lengths are different. When the difference in the binding strength to HLA changes by changing the length of the peptides, such as peptides A-1 to A-3, the peptide with the maximum binding strength to the target HLA is extracted. can do. More specifically, in selecting an antigen peptide for HLA represented by A * 02: 01: ..., the binding amounts of peptides A-1 to A-3 containing gene mutation sites are compared and considered, The one with the highest bond strength can be selected.
〔S106:ペプチド合成〕
 ペプチド合成工程では、上記のようにして、抽出した抗原ペプチドのアミノ酸配列情報に基づいて、公知の方法により抗原ペプチドの合成を行う。
[S106: Peptide Synthesis]
In the peptide synthesis step, the antigen peptide is synthesized by a known method based on the amino acid sequence information of the extracted antigen peptide as described above.
〔S107:in vitro結合評価(Peptide binding assay)〕
 細胞製造工程に先立って、合成した抗原ペプチドの結合力の評価を行ってもよい。一例として、抗原ペプチドとHLAの結合力(親和性)は、TAP遺伝子欠損細胞を用いて検討することができる。具体的には、ペプチドの結合していないHLAを発現する細胞に、抗原ペプチドを供給する。抗原ペプチドとHLAとの親和性が高い場合には、HLAがその細胞表面で安定化される。なお、TAP遺伝子欠損細胞内からは絶えず、ペプチドの結合していないHLAが発現し、細胞表面に発現し続ける。そのため、HLAとの親和性が高い抗原ペプチドを添加した細胞は、表面に多量の抗原ペプチドを提示するものとなる。
[S107: Peptide binding assay]
The binding strength of the synthesized antigen peptide may be evaluated prior to the cell production process. As an example, the binding force (affinity) between the antigenic peptide and HLA can be examined using TAP gene-deficient cells. Specifically, the antigen peptide is supplied to cells expressing HLA to which no peptide is bound. When the affinity between the antigenic peptide and HLA is high, HLA is stabilized on the cell surface. It should be noted that HLA to which no peptide is bound is constantly expressed from within the TAP gene-deficient cell and continues to be expressed on the cell surface. Therefore, cells to which an antigen peptide having a high affinity for HLA is added will present a large amount of the antigen peptide on the surface.
 このようにして、抗原ペプチドを添加したTAP遺伝子欠損細胞を一定時間培養し、抗HLA交代を用いてフローサイトメトリにより蛍光強度を測定する。また、コントロールとして、抗原ペプチドを添加したTAP遺伝子欠損細胞あるいは、結合しないペプチドを添加したTAP遺伝子欠損細胞を用意し、蛍光強度を測定する。抗原ペプチドを添加したTAP遺伝子欠損細胞のフローサイトメトリの評価と、抗原ペプチドを添加していないTAP遺伝子欠損細胞のフローサイトメトリの評価とを比較することで、抗原ペプチドを添加したTAP遺伝子欠損細胞の蛍光強度が高いほど、抗原ペプチドとHLAの結合力(親和性)が高いと評価することができる。なお、この操作の結果をフィードバックして学習させることで、エピトープ解析などの精度の向上を図ってもよい。 In this way, TAP gene-deficient cells to which the antigen peptide is added are cultured for a certain period of time, and fluorescence intensity is measured by flow cytometry using anti-HLA alternation. In addition, as a control, TAP gene-deficient cells to which an antigen peptide is added or TAP gene-deficient cells to which a peptide that does not bind is added are prepared, and fluorescence intensity is measured. TAP gene-deficient cells to which the antigen peptide was added by comparing the flow cytometry evaluation of TAP gene-deficient cells to which the antigen peptide was added with the evaluation of flow cytometry of TAP gene-deficient cells to which the antigen peptide was not added It can be evaluated that the higher the fluorescence intensity of is, the higher the binding force (affinity) between the antigen peptide and HLA. The accuracy of epitope analysis and the like may be improved by feeding back and learning the result of this operation.
〔S108:細胞製造工程〕
 細胞製造工程では、抽出した抗原ペプチドを用いて、該抗原ペプチドを提示する成熟樹状細胞を得る。具体的には、上記のようにして抽出された抗原ペプチドを、データベースに含まれるアミノ酸配列情報に従って合成し、合成した抗原ペプチドを癌患者由来の未熟樹状細胞に接触させて(パルス)、抗原ペプチドを提示する成熟樹状細胞を得る。
[S108: Cell manufacturing process]
In the cell production step, the extracted antigenic peptide is used to obtain mature dendritic cells that present the antigenic peptide. Specifically, the antigen peptide extracted as described above is synthesized according to the amino acid sequence information contained in the database, and the synthesized antigen peptide is contacted with immature dendritic cells derived from a cancer patient (pulse), Obtaining mature dendritic cells displaying the peptide.
 未熟樹状細胞は、顆粒球単球コロニー刺激因子(GM-CSF)やインターロイキンを加えることなどにより、患者由来の単核球から誘導されるものを用いることが好ましく、単核球から分離した単球から誘導されるものを用いることがより好ましい。これにより、成熟樹状細胞の製造効率を向上することができる。 As the immature dendritic cells, it is preferable to use those derived from patient-derived mononuclear cells, such as by adding granulocyte-monocyte colony stimulating factor (GM-CSF) or interleukin. More preferably, those derived from monocytes are used. Thereby, the production efficiency of mature dendritic cells can be improved.
 図3に、ヒトPBMC(末梢血単核球)から分離した単球から誘導した未熟樹状細胞(Monocyte-derived DC)と、単球を分離せずに誘導した未熟樹状細胞(Adherent PBMC-derived DC)を作製し、それぞれの未熟樹状細胞におけるPurity(CD80陽性率)およびphenotypic potency(HLA-DR陽性率)をフローサイトメトリで測定した結果を示す。 Figure 3 shows immature dendritic cells derived from monocytes isolated from human PBMC (peripheral blood mononuclear cells) (Monocyte-derived DC) and immature dendritic cells induced without separating monocytes (Adherent PBMC-). shows the results of flow cytometry of Purity (CD80 positive rate) and phenotypic latency (HLA-DR positive rate) of each immature dendritic cell.
 図3に示すように、GM-CSF/IL-4およびGM-CSF/IFNaいずれのサイトカインの組み合わせでも、末梢血単核球から単球を分離し、分離した単球から未熟樹状細胞を誘導した方が、得られる未熟樹状細胞のPurityおよびphenotypic potencyが高いことが分かる。 As shown in Fig. 3, with both cytokine combinations of GM-CSF / IL-4 and GM-CSF / IFNa, monocytes were separated from peripheral blood mononuclear cells and immature dendritic cells were induced from the separated monocytes. It was found that the obtained immature dendritic cells had higher Purity and phenotypic potency.
 また、抗原ペプチドを提示する成熟樹状細胞を効率的に得る方法の一つとして、成熟段階の後半で、抗原ペプチドを癌患者由来の未熟樹状細胞に接触(パルス)させることが好ましい。具体的には、癌患者由来の単核球又は単核球から分離した単球から、未熟樹状細胞を誘導する誘導工程と、誘導された未熟樹状細胞に対して成熟誘導物質を接触させて、未熟樹状細胞を成熟化する成熟化工程を行う場合、成熟化工程において抗原ペプチドを接触(パルス)させることが好ましい。特には、成熟化工程の後半、例えば、成熟誘導物質を接触させてから12時間後に、未熟樹状細胞に抗原ペプチドを接触(パルス)させることが好ましい。特に制限されないが、成熟化工程は、成熟誘導物質を加えてから24時間で終えることができる。また、抗原ペプチドを接触させるタイミングは、成熟誘導物質を加えてから、15時間後としてもよいし、18時間後としてもよいし、21時間後としてもよい。 Further, as one of the methods for efficiently obtaining mature dendritic cells that present an antigen peptide, it is preferable to contact (pulse) the antigen peptide with immature dendritic cells derived from a cancer patient in the latter half of the maturation stage. Specifically, an induction step of inducing immature dendritic cells from monocytes isolated from cancer patients or monocytes separated from the mononuclear cells, and contacting a maturation inducer with the induced immature dendritic cells. Then, when performing a maturation step of maturing immature dendritic cells, it is preferable to contact (pulse) the antigen peptide in the maturation step. Particularly, it is preferable that the immature dendritic cells are contacted (pulsed) with the antigen peptide in the latter half of the maturation step, for example, 12 hours after the contact with the maturation inducer. Although not particularly limited, the maturation step can be completed 24 hours after adding the maturation inducer. The timing of contact with the antigen peptide may be 15 hours, 18 hours, or 21 hours after the addition of the maturation inducer.
 これにより、抗原ペプチドを提示する成熟樹状細胞を効率的に得ることができ、ペプチド特異的CD8陽性細胞の誘導効率を向上させることができる。この理由は、特に制限されないが、12mer以下のような短い抗原ペプチドと13mer以上のような長い抗原ペプチドとは、成熟樹状細胞に提示されるプロセスが異なるためと考えられる。本実施形態のように予め短い抗原ペプチドを合成して接触させる場合には、成熟誘導物質を加えてすぐに又は同時に抗原ペプチドを接触させると、成熟中の未熟樹状細胞に抗原ペプチドが取り込まれ(貪食)、細かくプロセスされてしまい、得られる成熟細胞のHLAの結合部位に目的とする抗原ペプチドが提示されないためと考えられる。 By this, mature dendritic cells that present the antigen peptide can be efficiently obtained, and the induction efficiency of peptide-specific CD8-positive cells can be improved. The reason for this is not particularly limited, but it is considered that the process of presenting to mature dendritic cells is different between a short antigen peptide such as 12 mer or less and a long antigen peptide such as 13 mer or more. When a short antigen peptide is previously synthesized and brought into contact as in the present embodiment, the antigen peptide is incorporated into the immature dendritic cell during maturation by contacting the antigen peptide immediately or simultaneously with the addition of a maturation inducer. This is probably because (phagocytosis) is finely processed and the target antigenic peptide is not presented at the HLA binding site of the resulting mature cells.
 一方で、本実施形態のように予め短い抗原ペプチドを合成して接触させる場合には、一般的な貪食プロセスとは異なり、成熟中の未熟樹状細胞表面に存在するHLAの結合部位に対して、抗原ペプチドが物理的に結合し、抗原提示が行われることが考えられる。このため、本実施形態においては、成熟誘導物質を加えてから一定時間経過後に、未熟樹状細胞に抗原ペプチドを接触させることにより、抗原ペプチドを提示する成熟樹状細胞を効率的に得ることができるものと考えられる。 On the other hand, when synthesizing and contacting a short antigen peptide in advance as in the present embodiment, unlike a general phagocytosis process, the binding site of HLA existing on the surface of a mature immature dendritic cell is It is conceivable that the antigen peptide is physically bound and antigen presentation is performed. Therefore, in the present embodiment, after a certain period of time has passed since the addition of the maturation inducer, the immature dendritic cells can be contacted with the antigen peptide to efficiently obtain mature dendritic cells that present the antigen peptide. It is considered possible.
 なお、抗原ペプチドのアミノ酸配列の長さは、好ましくは6~12merであり、より好ましくは8~11merである。抗原ペプチドのアミノ酸配列の長さが上記範囲内であることにより、抗原ペプチドを提示する成熟樹状細胞をより効率的に得ることができる。さらに、パルスする抗原ペプチドとしては、アミノ酸配列の長さが上記範囲内であり、同一の遺伝子変異部位を含み遺伝子変異部位以外の部分のアミノ酸配列の長さが異なるペプチドの混合物を用いてもよい。例えば、図2に示すペプチドA-1~A-3を混合して用いてもよい。これにより、HLAに対する結合力が最も大きい抗原ペプチドを提示する成熟樹状細胞を得ることが可能となる。 The length of the amino acid sequence of the antigen peptide is preferably 6 to 12 mer, more preferably 8 to 11 mer. When the length of the amino acid sequence of the antigen peptide is within the above range, mature dendritic cells presenting the antigen peptide can be obtained more efficiently. Further, as the antigen peptide to be pulsed, a mixture of peptides having an amino acid sequence length within the above range and having the same gene mutation site and different amino acid sequence lengths at portions other than the gene mutation site may be used. .. For example, the peptides A-1 to A-3 shown in FIG. 2 may be mixed and used. This makes it possible to obtain mature dendritic cells that present the antigenic peptide having the highest binding strength to HLA.
 ヒトPBMCから単球分離を行い、GM-CSF/IFNaにて未熟DCを誘導し、成熟化開始と同時にEBV由来ペプチド(9 mer)を添加(パルス)し、24時間の成熟化工程を行って得られた成熟樹状細胞と、成熟化開始から22時間後にEBV由来ペプチド(9 mer)を添加(パルス)し、ペプチドのパルス時間を2時間として、合計24時間の成熟化工程を行って得られた成熟樹状細胞を得た。得られた2種類の成熟樹状細胞を回収し、凍結保存後、実験日に解凍しCD14陰性細胞(T細胞)とともに11日間共培養した。そして、培養後の細胞を回収し、FACSにてペプチド特異的CD8陽性細胞をテトラマーアッセイにて検出した。その結果を、図4に示す。 Monocytes were separated from human PBMCs, immature DCs were induced with GM-CSF / IFNa, and EBV-derived peptide (9 mer) was added (pulsed) at the same time as the initiation of maturation, followed by a 24-hour maturation process. The obtained mature dendritic cells and the EBV-derived peptide (9-mer) were added (pulsed) 22 hours after the start of maturation, and the peptide pulse time was set to 2 hours to perform a total of 24 hours of maturation process. The obtained mature dendritic cells were obtained. The resulting two types of mature dendritic cells were collected, frozen, and then thawed on the day of the experiment and cocultured with CD14-negative cells (T cells) for 11 days. Then, the cultured cells were collected, and the peptide-specific CD8-positive cells were detected by FACS by the tetramer assay. The result is shown in FIG.
 図4に示されるように、接触させたペプチド濃度(3 uM or 20 ug/ml)に関わらず、接触時間を2時間とした場合の成熟樹状細胞の方が、接触時間を24時間とした場合の成熟樹状細胞と比較して、ペプチド特異的CD8陽性細胞の誘導効率が高いことが分かった。これは、パルスしたペプチドが短鎖であるため、短時間のパルスによりHLAの結合部位に物理的に結合し(乗っかり)、抗原提示が行われたためだと考えられる。一方、接触時間を24時間とした場合の成熟樹状細胞は、その過程で、樹状細胞内にペプチドが取り込まれ細かくプロセスされてしまい、樹状細胞のHLA上に目的とする抗原ペプチドが提示されなかったためと考えられる。 As shown in Fig. 4, regardless of the contacted peptide concentration (3, uM, or 20, ug / ml), the contact time was 24 hours for mature dendritic cells when the contact time was 2 hours. It was found that the induction efficiency of peptide-specific CD8-positive cells was higher than that of mature dendritic cells in each case. It is considered that this is because the pulsed peptide was a short chain, so that the peptide was physically bound (ridden) to the binding site of HLA by a short pulse and the antigen was presented. On the other hand, when the contact time is set to 24 hours, mature dendritic cells in the process take up the peptide in the dendritic cell and are finely processed, and the target antigen peptide is presented on HLA of the dendritic cell. Probably because it was not done.
 なお、成熟誘導物質としては、特に制限されないが、例えば、Lipopolysaccharide、TNFα、CD40Lが挙げられる。 The maturation inducer is not particularly limited, but examples include Lipopolysaccharide, TNFα, and CD40L.
 また、成熟樹状細胞は抗原ペプチド毎に製造し、得られた複数種の成熟樹状細胞を混合して1つのワクチンを作成することが好ましい。これにより、より効果の高い成熟樹状細胞ワクチンを得ることができる。 Also, it is preferable to produce mature dendritic cells for each antigenic peptide and mix the obtained multiple types of mature dendritic cells to prepare one vaccine. As a result, a more effective mature dendritic cell vaccine can be obtained.
〔S109:効能評価〕
 上記のようにして得られた成熟樹状細胞を癌患者に投薬した後の効能評価は、以下のように行うことができる。例えば、成熟樹状細胞ワクチンの投薬から一定期間(1~2週間後)に、癌患者から採取した血液を分析し、投薬した成熟樹状細胞が抗原ペプチドに特異的なキラーTリンパ球を誘導しているか否かを確認する。この評価では、例えば、10種類の成熟樹状細胞を混合したワクチンを用いた場合に、そのうちの3種類に対して、キラーTリンパ球が誘導されていることなどを確認することができる。
[S109: Efficacy Evaluation]
Efficacy evaluation after administering the mature dendritic cells obtained as described above to a cancer patient can be performed as follows. For example, blood collected from a cancer patient is analyzed for a certain period (1 to 2 weeks) after administration of a mature dendritic cell vaccine, and the administered mature dendritic cells induce killer T lymphocytes specific to an antigen peptide. Check whether or not. In this evaluation, for example, when a vaccine containing 10 types of mature dendritic cells is used, it can be confirmed that killer T lymphocytes are induced in 3 types of them.
 このような確認結果に基づいて、キラーTリンパ球の誘導効率、生存率、さらには、癌腫瘍の縮小の関係などの情報を別のデータベースに蓄積してもよい。 Based on such confirmation results, information such as induction efficiency of killer T lymphocytes, survival rate, and relationship of cancer tumor shrinkage may be stored in another database.
〔S110:抗原特異的キラーTリンパ球を得る工程〕
 上記のようにして製造した成熟樹状細胞を用いて癌患者の体外で、抗原特異的キラーTリンパ球を製造してから、製造した抗原特異的キラーTリンパ球を癌患者の体内に戻してもよい。具体的には、上記のようにして得られる成熟樹状細胞と癌患者由来のT細胞とを接触させて、抗原特異的キラーTリンパ球を得ることができる。このようにして得られる抗原特異的キラーTリンパ球は、抗原ペプチドすなわち、癌細胞が特異的に発現するペプチドを発現する癌細胞を破壊するものとなる。
[S110: Step of obtaining antigen-specific killer T lymphocytes]
After producing the antigen-specific killer T lymphocytes outside the body of the cancer patient using the mature dendritic cells produced as described above, the produced antigen-specific killer T lymphocytes are returned to the body of the cancer patient. Good. Specifically, the antigen-specific killer T lymphocytes can be obtained by contacting the mature dendritic cells obtained as described above with T cells derived from a cancer patient. The thus-obtained antigen-specific killer T lymphocytes destroy the cancer cells expressing the antigen peptide, that is, the peptide specifically expressed by the cancer cells.
 また、上記のようにして製造した成熟樹状細胞は、そのまま癌患者の体内に戻して、癌患者の体内で抗原特異的キラーTリンパ球を生産させてもよい。 Alternatively, the mature dendritic cells produced as described above may be directly returned to the cancer patient's body to produce antigen-specific killer T lymphocytes in the cancer patient's body.
〔抗原特異的受容体遺伝子導入T細胞を得る工程〕
 さらに、上記のようにして特定した抗原ペプチドを認識するT細胞受容体の遺伝子を導入したT細胞(以下、「抗原特異的受容体遺伝子導入T細胞」ともいう。)を製造し、製造した抗原特異的受容体遺伝子導入T細胞を癌患者の体内に戻してもよい。具体的には、上記のようにして特定した抗原ペプチドに対して特異的なT細胞受容体の遺伝子をクローニングし、該クローニングした遺伝子を導入することにより、抗原特異的受容体遺伝子導入T細胞を得ることができる。
[Step of obtaining antigen-specific receptor gene-transferred T cell]
Furthermore, a T cell into which a gene for a T cell receptor that recognizes the above-identified antigen peptide is introduced (hereinafter also referred to as "antigen-specific receptor gene-introduced T cell") is produced, and the produced antigen is produced. The specific receptor gene-transfected T cells may be returned to the body of a cancer patient. Specifically, by cloning the gene of the T cell receptor specific for the antigenic peptide specified as described above, and introducing the cloned gene, an antigen-specific receptor gene-introduced T cell is obtained. Obtainable.
 一例として、上記のようにして得られる抗原特異的キラーTリンパ球から、T細胞受容体の遺伝子を特定及び抽出し、遺伝子をクローニングして、クローニングした遺伝子を他のT細胞に導入する方法が考えられる。これにより、抗原特異的受容体遺伝子導入T細胞を得ることができる。抗原特異的キラーTリンパ球から得られるT細胞受容体は、上記抗原ペプチドに対する結合性に優れるものであり、これを導入されたT細胞は、癌細胞に特異的に発現するたんぱくに対して特異性を有するものとなる。 As an example, a method of identifying and extracting a gene for a T cell receptor from the antigen-specific killer T lymphocyte obtained as described above, cloning the gene, and introducing the cloned gene into another T cell is described. Conceivable. Thereby, an antigen-specific receptor gene-transferred T cell can be obtained. The T cell receptor obtained from an antigen-specific killer T lymphocyte has excellent binding properties to the above-mentioned antigenic peptide, and the T cell into which this is introduced is specific to a protein specifically expressed in cancer cells. It will have sex.
 なお、抗原特異的受容体遺伝子導入T細胞の製造に先立ち、上記成熟樹状細胞あるいは抗原特異的キラーTリンパ球を癌患者に投与し、その効果の確認をしてもよい。この確認方法には、癌細胞から流出したDNA又はDNA断片を含む、血液などの体液サンプルを取得し、この体液サンプルに基づいて、癌患者由来の癌細胞における遺伝子産物の発現情報を得る方法(リキッドバイオプシー法)を採用することができる。 Prior to the production of antigen-specific receptor gene-transferred T cells, the above-mentioned mature dendritic cells or antigen-specific killer T lymphocytes may be administered to a cancer patient to confirm the effect. In this confirmation method, a body fluid sample such as blood containing DNA or a DNA fragment flowing out from a cancer cell is obtained, and based on this body fluid sample, expression information of a gene product in cancer cells derived from a cancer patient is obtained ( Liquid biopsy method) can be adopted.
 また、一度、クローニングしたT細胞受容体の遺伝子が得られた場合であって、そのT細胞受容体より認識される抗原ペプチドが上記のようにして抽出される場合には、直接、クローニングした遺伝子を他のT細胞に導入した抗原特異的受容体遺伝子導入T細胞を製造し、これを癌患者に投与してもよい。これにより、T細胞受容体の遺伝子を特定及び抽出するステップを再度行うことなく、効率的に抗原特異的受容体遺伝子導入T細胞を製造することができる。 In addition, when the cloned T cell receptor gene is obtained once, and the antigenic peptide recognized by the T cell receptor is extracted as described above, the cloned gene is directly expressed. It is also possible to produce an antigen-specific receptor gene-transfected T cell in which is introduced into another T cell and to administer this to a cancer patient. As a result, an antigen-specific receptor gene-introduced T cell can be efficiently produced without performing the step of identifying and extracting the T cell receptor gene again.
 上記成熟樹状細胞あるいは抗原特異的キラーTリンパ球を投与した癌患者に対してリキッドバイオプシー法を適用した結果、癌細胞が減少する傾向が認められない場合には、抗原特異的受容体遺伝子導入T細胞の製造を開始することが好ましい。 As a result of applying the liquid biopsy method to a cancer patient administered with the above-mentioned mature dendritic cells or antigen-specific killer T lymphocytes, when the cancer cells do not tend to decrease, the antigen-specific receptor gene transfer It is preferable to start the production of T cells.
〔使用方法〕
 上記のように、抗原を負荷された樹状細胞を、例えば、皮下注射などにより同一の癌患者の体内に戻すことにより、体内に戻された樹状細胞が、リンパ節に移動し体内のリンパ球を活性化させる。これにより、癌患者自身の癌細胞サンプルから始まり、当該癌患者に特化させた成熟樹状細胞を投与するという患者を中心としたオーダーメイド医療の一連のサイクルにおいて、癌患者に有用な細胞を効率的に製造する方法を提供することができる。特に、本発明によれば、癌細胞を攻撃する免疫細胞を、一人一人の癌患者の状態に合わせて効率的に製造することが可能となり、癌患者の負担が少なく、かつ、有効な個別化医療(オーダーメイド医療)をより広く提供することが可能となる。
〔how to use〕
As described above, by returning antigen-loaded dendritic cells into the same cancer patient's body by, for example, subcutaneous injection, the restored dendritic cells migrate to lymph nodes and become lymph nodes in the body. Activate the sphere. As a result, cells useful for cancer patients will be generated in a series of personalized medical care cycles centered on the patient, starting with the cancer cell sample of the cancer patient itself and administering mature dendritic cells specialized for the cancer patient. A method for efficiently manufacturing can be provided. In particular, according to the present invention, it becomes possible to efficiently produce immune cells that attack cancer cells according to the state of each cancer patient, reduce the burden on cancer patients, and achieve effective personalization. It becomes possible to provide medical care (made-to-order medical care) more widely.
(データベースの作成から抗原ペプチドの抽出に関する情報処理方法)
 データベースの作成は、情報処理装置300Aを用いて行うことができる。上記データベースを作成するにあたり、情報処理装置300Aは、データベースに記憶される情報を測定するための1以上の測定装置300Bと直接的又は間接的に接続されていてもよい。このような測定装置300Bとしては、RNAシーケンス解析、エクソーム解析、HLAタイピングに用いる装置が挙げられる。なお、「接続」とは、直接的または間接的に情報の送受信が可能な状態を言い、ネットワークにより接続されている場合の他、記録媒体を介した情報の送受信が可能な場合も含まれる。以下の例においては、ネットワークを介した態様について記載するが、これに限られるものではない。
(Information processing method related to extraction of antigen peptide from creation of database)
The database can be created by using the information processing device 300A. In creating the database, the information processing device 300A may be directly or indirectly connected to one or more measuring devices 300B for measuring information stored in the database. Examples of such a measuring device 300B include devices used for RNA sequence analysis, exome analysis, and HLA typing. It should be noted that the term "connection" refers to a state in which information can be directly or indirectly transmitted and received, and includes a case where information can be transmitted and received via a recording medium as well as a case where the information is connected via a network. In the following example, a mode via a network is described, but the embodiment is not limited to this.
 情報処理装置300Aは、プロセッサ301と、メモリ302と、ストレージ303と、入出力インタフェース(入出力I/F)304と、通信インタフェース(通信I/F)305とを含み、情報処理装置300Aのハードウェアの各構成要素は、例えば、バスBを介して相互に接続される。 The information processing apparatus 300A includes a processor 301, a memory 302, a storage 303, an input / output interface (input / output I / F) 304, and a communication interface (communication I / F) 305. Each component of the wear is connected to each other via a bus B, for example.
 プロセッサ301は、ストレージ303に記憶されるプログラムに含まれるコードまたは命令によって実現する機能、および/または、方法を実行する。プロセッサ301は、例えば、中央処理装置(CPU)等を含み、集積回路(IC(Integrated Circuit)チップ、LSI(Large Scale Integration))等に形成された論理回路や専用回路によって、本実施形態における各処理を実現することができる。 The processor 301 executes a function and / or a method realized by a code or an instruction included in a program stored in the storage 303. The processor 301 includes, for example, a central processing unit (CPU), etc., and is formed by a logic circuit or a dedicated circuit formed in an integrated circuit (IC (Integrated Circuit) chip, LSI (Large Scale Integration)) or the like, in each of the embodiments. Processing can be realized.
 メモリ302は、ストレージ303からロードしたプログラムを一時的に記憶し、プロセッサ301に対して作業領域を提供する。メモリ302には、プロセッサ301がプログラムを実行している間に生成される各種データも一時的に格納される。メモリ302は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)などを含む。 The memory 302 temporarily stores the program loaded from the storage 303 and provides a work area for the processor 301. The memory 302 also temporarily stores various data generated while the processor 301 is executing the program. The memory 302 includes, for example, a RAM (Random Access Memory) and a ROM (Read Only Memory).
 ストレージ303は、プログラムを記憶する。ストレージ303は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、フラッシュメモリなどを含む。 The storage 303 stores a program. The storage 303 includes, for example, a HDD (Hard Disk Drive), an SSD (Solid State Drive), a flash memory, and the like.
 入出力I/F304は、情報処理装置300Aに対する各種操作を入力する入力装置、および、情報処理装置300Aで処理された処理結果を出力する出力装置を含む。入出力I/F304は、入力装置と出力装置が一体化していてもよいし、入力装置と出力装置とに分離していてもよい。 The input / output I / F 304 includes an input device that inputs various operations on the information processing device 300A and an output device that outputs a processing result processed by the information processing device 300A. In the input / output I / F 304, an input device and an output device may be integrated, or an input device and an output device may be separated.
 入力装置は、ユーザからの入力を受け付けて、当該入力に係る情報をプロセッサ301に伝達できる全ての種類の装置のいずれか、または、その組み合わせにより実現される。入力装置は、例えば、タッチパネル、タッチディスプレイ、キーボード等のハードウェアキーや、マウス等のポインティングデバイス、カメラ(画像を介した操作入力)、マイク(音声による操作入力)を含む。 The input device is realized by any of all types of devices that can receive an input from a user and transmit information related to the input to the processor 301, or a combination thereof. The input device includes, for example, a hardware key such as a touch panel, a touch display, and a keyboard, a pointing device such as a mouse, a camera (operation input via an image), and a microphone (operation input by voice).
 出力装置は、プロセッサ301で処理された処理結果を出力することができる全ての種類の装置のいずれか、または、その組み合わせにより実現される。当該処理結果を映像、および/または、動画像として出力する場合、出力装置は、フレームバッファに書き込まれた表示データに従って、当該表示データを表示することができる全ての種類の装置のいずれかまたはその組み合わせにより実現される。出力装置は、例えば、タッチパネル、タッチディスプレイ、モニタ(例えば、液晶ディスプレイ、OELD(Organic Electroluminescence Display)など)、ヘッドマウントディスプレイ(HDM:Head Mounted Display)、プロジェクションマッピング、ホログラム、空気中など(真空であってもよい)に画像やテキスト情報等を表示可能な装置、スピーカ(音声出力)、プリンタなどを含む。なお、これらの出力装置は、3Dで表示データを表示可能であってもよい。 The output device is realized by any of all types of devices capable of outputting the processing result processed by the processor 301, or a combination thereof. In the case of outputting the processing result as a video and / or a moving image, the output device may be any one or all of the devices capable of displaying the display data according to the display data written in the frame buffer. It is realized by combination. The output device is, for example, a touch panel, a touch display, a monitor (for example, a liquid crystal display, an OELD (Organic Electroluminescence Display), etc.), a head mounted display (HDM: Head Mounted Display), projection mapping, a hologram, in the air (in a vacuum, A device capable of displaying images and text information, a speaker (voice output), a printer, and the like. Note that these output devices may be capable of displaying display data in 3D.
 通信I/F305は、ネットワークを介して各種データの送受信を行う。当該通信は、有線、無線のいずれで実行されてもよく、互いの通信が実行できるのであれば、どのような通信プロトコルを用いてもよい。通信I/F305は、ネットワークを介して、他の情報処理装置との通信を実行する機能を有する。通信I/F305は、各種データをプロセッサ301からの指示に従って、他の情報処理装置に送信する。また、通信I/F305は、他の情報処理装置から送信された各種データを受信し、プロセッサ301に伝達する。 The communication I / F 305 sends and receives various data via the network. The communication may be executed by wire or wireless, and any communication protocol may be used as long as mutual communication can be executed. The communication I / F 305 has a function of performing communication with another information processing device via the network. The communication I / F 305 transmits various data to another information processing device according to an instruction from the processor 301. Further, the communication I / F 305 receives various data transmitted from another information processing device and transfers the data to the processor 301.
(情報処理装置の機能構成)
 図6は、データベースを作成するための情報処理装置300Aの機能部な構成を示すブロック図の一例を示す。情報処理装置300Aは、データベース作成を行う情報処理装置の一例であり、入出力I/F411と、通信I/F412と、制御部420と、記憶部430とを有する。入出力I/F411は、図5の入出力I/F304に相当し、通信I/F412は、図5の通信I/F305に相当する。記憶部430は、メモリ302及び/又はストレージ303を用いて実現される。
(Functional configuration of information processing device)
FIG. 6 shows an example of a block diagram showing a functional configuration of the information processing apparatus 300A for creating a database. The information processing device 300A is an example of an information processing device that creates a database, and includes an input / output I / F 411, a communication I / F 412, a control unit 420, and a storage unit 430. The input / output I / F 411 corresponds to the input / output I / F 304 in FIG. 5, and the communication I / F 412 corresponds to the communication I / F 305 in FIG. The storage unit 430 is realized using the memory 302 and / or the storage 303.
 図6に開示の機能部430は、情報処理装置300Aが備えるプロセッサ301と、メモリ302と、ストレージ303と、入出力I/F304と、通信I/F305との協働により実現される。すなわち、図5に示す情報処理装置300Aのプロセッサ301は、ストレージ303に記憶された各種プログラム(制御プログラム、演算プログラムなど)をメモリ302(例えばRAM)に展開する。そして、プロセッサ301は、メモリ302に展開された各種プログラムを解釈および実行して、各ハードウェア構成要素を制御することにより、以下に説明する機能構成が実現される。 The functional unit 430 disclosed in FIG. 6 is realized by cooperation of the processor 301, the memory 302, the storage 303, the input / output I / F 304, and the communication I / F 305 included in the information processing device 300A. That is, the processor 301 of the information processing apparatus 300A illustrated in FIG. 5 expands various programs (control program, arithmetic program, etc.) stored in the storage 303 in the memory 302 (for example, RAM). Then, the processor 301 interprets and executes various programs expanded in the memory 302 to control each hardware component, thereby realizing the functional configuration described below.
 なお、情報処理装置300Aで実現される各機能は、汎用のCPUなどのプロセッサ301で実現されてもよく、あるいは、機能の一部又は全部が、一又は複数の専用のプロセッサ301によって実現されてもよい。さらに、情報処理装置300によって実現される機能構成は、実施形態や実施例に応じて、適宜、機能の省略、置換、および追加が行われてもよい。 Each function realized by the information processing device 300A may be realized by the processor 301 such as a general-purpose CPU, or a part or all of the function may be realized by one or a plurality of dedicated processors 301. Good. Furthermore, the functional configuration realized by the information processing apparatus 300 may be appropriately omitted, replaced, or added depending on the embodiment or the example.
 制御部420は、送受信部421と、DB作成部422と、評価部423と、出力部424と、を有する。送受信部421と、DB作成部422と、評価部423と、出力部424とは、プロセッサ301が、記憶部430に格納されているプログラム432を読み出して実行することで実現される。また、記憶部430には、抗原ペプチドDB431と、プログラム432とが記憶されている。情報処理装置300Aによって実現される機能構成は、実施形態や実施例に応じて、適宜、機能の省略、置換、及び追加が行われてもよい。以下、記憶部430について説明し、そのあと、制御部420について説明する。     The control unit 420 has a transmission / reception unit 421, a DB creation unit 422, an evaluation unit 423, and an output unit 424. The transmission / reception unit 421, the DB creation unit 422, the evaluation unit 423, and the output unit 424 are realized by the processor 301 reading and executing the program 432 stored in the storage unit 430. Further, the storage unit 430 stores an antigen peptide DB 431 and a program 432. The functional configuration realized by the information processing apparatus 300A may be appropriately omitted, replaced, or added depending on the embodiment or the example. The storage unit 430 will be described below, and then the control unit 420 will be described. :
 抗原ペプチドDB431は、癌細胞に特異的なペプチドの情報を収集したデータベースであり、一例として、上述の図2で示されるデータ構造を有するものが挙げられる。当該データベースは、患者毎に作成される。 The antigen peptide DB 431 is a database that collects information on peptides specific to cancer cells, and one example is a database having the data structure shown in FIG. 2 above. The database is created for each patient.
 送受信部421は、RNAシーケンス解析、エクソーム解析、HLAタイピングに用いる装置などの測定装置300Bから、抗原ペプチドDB431に記憶する情報を受信、あるいは、これら測定装置300Bにたいして、分析に必要な情報を送信する処理を行う機能部である。送受信部421が受信した各情報はDB作成部422に渡される。 The transmission / reception unit 421 receives information stored in the antigen peptide DB 431 from a measurement device 300B such as a device used for RNA sequence analysis, exome analysis, HLA typing, or transmits information necessary for analysis to these measurement devices 300B. It is a functional unit that performs processing. Each information received by the transmitting / receiving unit 421 is passed to the DB creating unit 422.
 DB作成部422は、癌患者の癌細胞に特異的な抗原ペプチドを選択するベースとなる情報として、癌細胞に特異的なペプチドの情報を収集し、データベースを作成する。より具体的には、送受信部421から渡された各情報に基づいてテーブルを作成し、癌患者毎の抗原ペプチドデータベースを作成する。DB作成部422が作成した患者毎のデータベースは、抗原ペプチドDB431に保存される。 The DB creating unit 422 collects information on peptides specific to cancer cells as a base information for selecting an antigen peptide specific to cancer cells of a cancer patient, and creates a database. More specifically, a table is created based on each information passed from the transmitting / receiving unit 421, and an antigen peptide database for each cancer patient is created. The database for each patient created by the DB creation unit 422 is stored in the antigen peptide DB 431.
 評価部423は、DB作成部422が作成したデータベースに記憶された各抗原ペプチドに対して評価指標となるスコアを付す処理を行う。スコアとしては、上述のとおり、所定の係数を掛けた発現量情報と、所定の係数を掛けた結合力と、の積(下記式)又は和などにより算出されるパラメータを付すことができる。スコアは、各抗原ペプチドに対応付けて抗原ペプチドDB431に保存される。 The evaluation unit 423 performs a process of attaching a score as an evaluation index to each antigen peptide stored in the database created by the DB creation unit 422. As described above, as the score, a parameter calculated by the product (the following formula) or the sum of the expression amount information multiplied by a predetermined coefficient and the binding force multiplied by a predetermined coefficient can be added. The score is stored in the antigen peptide DB 431 in association with each antigen peptide.
 出力部424は、スコアに基づいて、細胞製造に適切な抗原ペプチドを抽出する。抽出方法は特に制限されないが、例えば、高いスコアを有する抗原ペプチドを上位5~10種類ほど抽出する方法や、または、予め定めた閾値以上のスコアを有する抗原ペプチドを抽出する方法が挙げられる。 The output unit 424 extracts an antigen peptide suitable for cell production based on the score. The extraction method is not particularly limited, and examples thereof include a method of extracting the top 5 to 10 types of antigen peptides having a high score, and a method of extracting an antigen peptide having a score of a predetermined threshold value or more.
(情報処理装置による処理の流れ)
 以下、データベースを作成する処理について説明する。なお、以下で説明する処理手順は一例に過ぎず、各処理は、本開示の技術思想の範囲内において可能な限り変更されてもよい。
(Processing flow by the information processing device)
The process of creating a database will be described below. The processing procedure described below is merely an example, and each processing may be modified as much as possible within the scope of the technical idea of the present disclosure.
 はじめに、送受信部421は、エクソーム解析装置300Bから、特定した遺伝子変異を有するたんぱく質に関する遺伝子情報を受信する。そして、送受信部421から遺伝子情報を受け取ったDB作成部422は、その遺伝子変異部位を含む複数種のペプチド配列を特定し、抗原ペプチドDB431に記憶させる。ここで、遺伝子変異部位を含む複数種のペプチド配列の例としては、図2に示すペプチドA-1~A-3が挙げられる。ペプチドA-1~A-3は、長さが異なる以外は、いずれも同じたんぱく質Aの同じ位置から得られたものであり、これらは、遺伝子変異部位以外の部分のアミノ酸配列の長さが異なるために、HLAに対する結合力が相違するものである。送受信部421から受け取った遺伝子情報に基づいて、DB作成部422が同一の遺伝子変異部位を含み遺伝子変異部位以外の部分のアミノ酸配列の長さが異なるペプチド(例えば、ペプチドA-1~A-3)を作成し保存することにより、HLAに対する結合力が最も大きい抗原ペプチドを選択することが可能となる。 First, the transmission / reception unit 421 receives the gene information regarding the protein having the identified gene mutation from the exome analysis device 300B. Then, the DB creation unit 422, which has received the gene information from the transmission / reception unit 421, specifies a plurality of types of peptide sequences including the gene mutation site and stores them in the antigen peptide DB 431. Here, examples of a plurality of types of peptide sequences containing a gene mutation site include peptides A-1 to A-3 shown in FIG. Peptides A-1 to A-3 were obtained from the same position of the same protein A except that the lengths of the amino acid sequences other than the gene mutation site were different. Therefore, the binding force to HLA is different. Based on the gene information received from the transmission / reception unit 421, the DB creation unit 422 includes peptides having the same gene mutation site and different amino acid sequence lengths other than the gene mutation site (for example, peptides A-1 to A-3). It is possible to select an antigen peptide having the highest binding strength to HLA by preparing and storing
 次いで、このようにしてDB作成部422が抗原ペプチドDB431に記憶させたペプチドの遺伝子情報を、送受信部421はRNAシーケンス解析装置300Bに送信する。RNAシーケンス解析装置300Bには、受信した遺伝子情報に基づいて、その遺伝子情報を有する遺伝子産物(mRNA)の発現の有無及び発現量を分析する。そして、送受信部421は、RNAシーケンス解析装置300Bから分析結果を受信する。そして、送受信部421から遺伝子産物(mRNA)の発現の有無及び発現量に関する情報を受け取ったDB作成部422は、その情報を、既に記憶したペプチド毎に対応付けて、抗原ペプチドDB431に記憶させる。 Then, the transmitting / receiving unit 421 transmits the gene information of the peptide stored in the antigen peptide DB 431 by the DB creating unit 422 in this manner to the RNA sequence analysis device 300B. Based on the received gene information, the RNA sequence analysis device 300B analyzes the presence / absence and the expression amount of the gene product (mRNA) having the gene information. Then, the transmitting / receiving unit 421 receives the analysis result from the RNA sequence analysis device 300B. Then, the DB creation unit 422, which has received the information regarding the presence / absence and the expression amount of the gene product (mRNA) from the transmission / reception unit 421, stores the information in the antigen peptide DB 431 in association with each already stored peptide.
 上記と並行して、送受信部421はHLAタイピング解析装置300Bから、HLAタイプに関する情報を受信する。なお、この受信に際し、送受信部421は、DB作成部422が抗原ペプチドDB431に記憶させたペプチドの遺伝子情報(全エクソーム解析結果)をHLAタイピング解析装置300Bに送信してもよい。送受信部421がHLAタイピング解析装置300Bから受信したHLAタイプに関する情報は、DB作成部422が抗原ペプチドDB431に記憶させる。 In parallel with the above, the transmission / reception unit 421 receives information regarding the HLA type from the HLA typing analysis device 300B. Upon this reception, the transmitting / receiving unit 421 may transmit the gene information (all exome analysis results) of the peptides stored in the antigen peptide DB 431 by the DB creating unit 422 to the HLA typing analysis device 300B. The information on the HLA type received by the transmitting / receiving unit 421 from the HLA typing analysis device 300B is stored in the antigen peptide DB 431 by the DB creating unit 422.
 次いで、送受信部421は、抗原ペプチドDB431に記憶させた、HLAタイプに関する情報とペプチドの遺伝子情報を、エピトープ解析装置300Bに送信し、エピトープ解析装置300Bから、HLAと抗原ペプチドの結合力に関する情報を受信する。送受信部421は、受信した結合力に関する情報を既に記憶したペプチド毎に対応付けて、抗原ペプチドDB431に記憶させる。なお、この際にエピトープ解析の処理負担を軽減する観点から、エピトープ解析装置300Bに送信する遺伝子情報は、RNAシーケンス解析において一定(閾値)以上の発現量が認められたものとすることができる。 Then, the transmission / reception unit 421 transmits the information about the HLA type and the gene information of the peptide stored in the antigen peptide DB 431 to the epitope analysis device 300B, and the information about the binding force between the HLA and the antigen peptide is transmitted from the epitope analysis device 300B. To receive. The transmitting / receiving unit 421 stores the received information on the binding force in the antigen peptide DB 431 in association with each of the already stored peptides. In this case, from the viewpoint of reducing the processing load of the epitope analysis, the gene information transmitted to the epitope analysis device 300B may be one in which an expression amount above a certain level (threshold value) is recognized in the RNA sequence analysis.
 そして、以上のようにしてDB作成部422が作成したデータベースに記憶された各抗原ペプチドに対して、評価部423は、評価指標となるスコアを付す処理を行う。同一の遺伝子変異部位を含み遺伝子変異部位以外の部分のアミノ酸配列の長さが異なるペプチドは、たんぱく質としての発現量が同等で、異なる結合力を有するものとなる。そのため、このスコアリング処理により、ある遺伝子変異部位を有するペプチド配列のうち最も結合力の高いものを選出することができる。最後に、出力部424は、スコアに基づいて、細胞製造に適切な抗原ペプチドを抽出する。 Then, the evaluation unit 423 performs a process of assigning a score as an evaluation index to each antigen peptide stored in the database created by the DB creation unit 422 as described above. Peptides that contain the same gene mutation site and differ in the length of the amino acid sequences other than the gene mutation site have the same expression level as proteins and different binding strengths. Therefore, by this scoring process, the peptide sequence having a certain gene mutation site and having the highest binding force can be selected. Finally, the output unit 424 extracts an antigen peptide suitable for cell production based on the score.
 さらに、情報処理装置300Aは、ペプチド合成装置300Cや細胞培養装置300Dと接続されていてもよい。これにより、上記のようにして抽出した抗原ペプチドを、ペプチド合成装置300Cに合成させることができ。また、合成した抗原ペプチドを用いて細胞培養装置300Dが樹状細胞などを細胞培養した場合には、抗原ペプチドをキーとして、その培養結果に関する情報を記憶することもできる。 Further, the information processing device 300A may be connected to the peptide synthesis device 300C or the cell culture device 300D. As a result, the antigen peptide extracted as described above can be synthesized by the peptide synthesizer 300C. Further, when the cell culture device 300D uses the synthesized antigen peptide to perform cell culture of dendritic cells and the like, it is possible to store information about the culture result using the antigen peptide as a key.
 本発明は、オーダーメイド医療に有効な細胞を製造する方法として、産業上の利用可能性を有する。
 
INDUSTRIAL APPLICABILITY The present invention has industrial applicability as a method for producing cells effective for personalized medicine.

Claims (12)

  1.  癌患者由来の癌細胞及び正常細胞における遺伝子産物の発現情報に基づいて特定される、前記癌細胞に特異的なペプチドのデータベースであって、前記ペプチドのアミノ酸配列、該アミノ酸配列を含むたんぱく質の発現量情報、及び前記癌患者のヒト白血球型抗原タイプに対する前記ペプチドの結合力に関する情報を含む、前記癌患者固有のデータベースを作成する工程と、
     前記発現量情報及び前記結合力に関する情報に基づいて、前記データベースから抗原ペプチドを抽出する工程と、
     前記データベースに含まれるアミノ酸配列情報に従って前記抗原ペプチドを合成し、合成した該抗原ペプチドを前記癌患者由来の未熟樹状細胞に接触させて、抗原ペプチドを提示する成熟樹状細胞を得る工程と、を有し、
     前記成熟樹状細胞を得る工程は、前記癌患者由来の単核球又は単核球から分離した単球から、前記未熟樹状細胞を誘導する誘導工程と、
     誘導された前記未熟樹状細胞に対して成熟誘導物質を接触して、前記未熟樹状細胞を成熟化する成熟化工程と、を含み、
     前記成熟化工程において、前記成熟誘導物質を接触させてから12時間後に、前記抗原ペプチドを前記未熟樹状細胞に接触させる、
     細胞の製造方法。
    A database of peptides specific to the cancer cells, which is specified based on the expression information of gene products in cancer cells and normal cells derived from cancer patients, wherein the amino acid sequences of the peptides and the expression of proteins containing the amino acid sequences Creating a database specific to the cancer patient, including amount information and information regarding the binding strength of the peptide to the human leukocyte antigen type of the cancer patient, and
    A step of extracting an antigen peptide from the database based on the expression amount information and the information on the binding force;
    Synthesizing the antigen peptide according to the amino acid sequence information contained in the database, contacting the synthesized antigen peptide with immature dendritic cells derived from the cancer patient, to obtain mature dendritic cells presenting the antigen peptide, Have
    The step of obtaining the mature dendritic cells, from the mononuclear cells from the cancer patient or monocytes separated from mononuclear cells, an induction step of inducing the immature dendritic cells,
    A maturation step of contacting a maturation inducer to the induced immature dendritic cells to mature the immature dendritic cells,
    In the maturation step, 12 hours after the contact with the maturation inducer, the antigen peptide is contacted with the immature dendritic cell,
    Method for producing cells.
  2.  前記データベースを作成する工程において、
     RNAシーケンス解析によって得られる、癌患者由来の癌細胞における遺伝子産物の発現情報と、前記癌細胞が属する組織の正常細胞における遺伝子産物の発現情報と、を比較して、前記癌細胞のみで発現するたんぱく質を特定し、該たんぱく質のアミノ酸配列から前記癌細胞に特異的なペプチドを特定する、
     請求項1に記載の細胞の製造方法。
    In the step of creating the database,
    Expression information of a gene product in a cancer cell derived from a cancer patient, which is obtained by RNA sequence analysis, and expression information of a gene product in a normal cell of a tissue to which the cancer cell belongs are compared, and the gene product is expressed only in the cancer cell. Specifying a protein and specifying a peptide specific to the cancer cell from the amino acid sequence of the protein,
    The method for producing the cell according to claim 1.
  3.  前記データベースを作成する工程において、
     エクソーム解析によって得られる、癌患者由来の癌細胞における遺伝子情報と、前記癌細胞が属する組織の正常細胞における遺伝子情報と、を比較して、前記癌細胞のみで発現するたんぱく質を特定し、該たんぱく質のアミノ酸配列から前記癌細胞に特異的なペプチドを特定する、
     請求項1又は2に記載の細胞の製造方法。
    In the step of creating the database,
    The gene information in cancer cells derived from cancer patients obtained by exome analysis and the gene information in normal cells of the tissue to which the cancer cells belong are compared to identify a protein expressed only in the cancer cells, and the protein is expressed. Identifying a peptide specific to the cancer cell from the amino acid sequence of
    The method for producing the cell according to claim 1 or 2.
  4.  前記データベースを作成する工程において、
     前記癌細胞に特異的なペプチドの前記アミノ酸配列と、前記癌患者のヒト白血球型抗原タイプに基づいて、前記癌患者のヒト白血球型抗原タイプに対する前記ペプチドの結合力を予測する、
     請求項1~3のいずれか一項に記載の細胞の製造方法。
    In the step of creating the database,
    The amino acid sequence of the peptide specific to the cancer cells, and based on the human leukocyte antigen type of the cancer patient, predict the binding strength of the peptide to the human leukocyte antigen type of the cancer patient,
    The method for producing the cell according to any one of claims 1 to 3.
  5.  前記データベースは、
     前記癌患者のヒト白血球型抗原タイプが複数ある場合に、それぞれの前記ヒト白血球型抗原タイプに対する前記ペプチドの結合力に関する情報を含む、
     請求項1~4のいずれか一項に記載の細胞の製造方法。
    The database is
    When there are multiple human leukocyte antigen types of the cancer patient, including information on the binding ability of the peptide to each of the human leukocyte antigen type,
    The method for producing the cell according to any one of claims 1 to 4.
  6.  前記データベースを作成する工程において、
     前記癌細胞から流出したDNA又はDNA断片を含む体液サンプルに基づいて、前記癌患者由来の癌細胞における遺伝子産物の発現情報を得る、
     請求項1~5のいずれか一項に記載の細胞の製造方法。
    In the step of creating the database,
    Obtaining information on the expression of a gene product in the cancer cell derived from the cancer patient, based on a body fluid sample containing DNA or a DNA fragment flowing out from the cancer cell,
    The method for producing a cell according to any one of claims 1 to 5.
  7.  前記成熟樹状細胞を得る工程において、
     前記患者由来の単核球から誘導される前記未熟樹状細胞を用いる、
     請求項1~6のいずれか一項に記載の細胞の製造方法。
    In the step of obtaining the mature dendritic cells,
    Using the immature dendritic cells derived from mononuclear cells from the patient,
    The method for producing the cell according to any one of claims 1 to 6.
  8.  前記成熟樹状細胞と、癌患者由来のT細胞とを接触させて、抗原特異的キラーTリンパ球を得る工程をさらに有する、
     請求項1~7のいずれか一項に記載の細胞の製造方法。
    Further comprising the step of contacting the mature dendritic cell with a T cell derived from a cancer patient to obtain an antigen-specific killer T lymphocyte,
    The method for producing the cell according to any one of claims 1 to 7.
  9.  前記抗原ペプチドを認識するT細胞受容体の遺伝子を導入して、抗原特異的受容体遺伝子導入T細胞を得る工程をさらに有する、
     請求項1~8のいずれか一項に記載の細胞の製造方法。
    Further comprising the step of introducing a T cell receptor gene that recognizes the antigenic peptide to obtain an antigen-specific receptor gene-introduced T cell,
    The method for producing the cell according to any one of claims 1 to 8.
  10.  前記成熟樹状細胞を得る工程において、
     前記複数の抗原ペプチドと前記癌患者のヒト白血球型抗原タイプの結合力をin vitroでTAP遺伝子欠損細胞を用いて評価し、前記ヒト白血球型抗原タイプに対する結合力が高い前記複数の抗原ペプチドそれぞれを前記癌患者由来の前記未熟樹状細胞に接触させて、前記成熟樹状細胞を得る、
     請求項1~9のいずれか一項に記載の細胞の製造方法。
    In the step of obtaining the mature dendritic cells,
    The binding power of the human leukocyte antigen type of the plurality of antigen peptides and the cancer patient was evaluated in vitro using TAP gene-deficient cells, and each of the plurality of antigen peptides having high binding power to the human leukocyte antigen type was Contacting the immature dendritic cells from the cancer patient to obtain the mature dendritic cells,
    The method for producing the cell according to any one of claims 1 to 9.
  11.  前記複数の抗原ペプチドと前記癌患者のヒト白血球型抗原タイプの結合力をin vitroでTAP遺伝子欠損細胞を用いて評価し、その評価結果をフィードバックすることでエピトープ解析における結合力の評価精度を向上させる工程と、
     前記発現量情報及び評価精度を向上させた前記結合力に関する情報に基づいて、前記データベースから抗原ペプチドを抽出する工程と、を有する、
     請求項1~10のいずれか一項に記載の細胞の製造方法。
    Improve the accuracy of binding power in epitope analysis by evaluating the binding power of the multiple antigenic peptides and the human leukocyte antigen type of the cancer patient in vitro using TAP gene-deficient cells, and feeding back the evaluation results. And the process of
    A step of extracting an antigen peptide from the database based on the expression amount information and the information on the binding strength with improved evaluation accuracy,
    The method for producing the cell according to any one of claims 1 to 10.
  12.  情報処理装置に、
     癌患者由来の癌細胞及び正常細胞における遺伝子産物の発現情報に基づいて特定される、前記癌細胞に特異的なペプチドのデータベースであって、前記ペプチドのアミノ酸配列、該アミノ酸配列を含むたんぱく質の発現量情報、及び前記癌患者のヒト白血球型抗原タイプに対する前記ペプチドの結合力に関する情報を含む、前記癌患者固有のデータベースを作成する工程と、
     前記発現量情報及び前記結合力に関する情報に基づいて、前記データベースから抗原ペプチドを抽出する工程と、を実行させる、
     プログラム。
     
    In the information processing device,
    A database of peptides specific to the cancer cells, which is specified based on the expression information of gene products in cancer cells and normal cells derived from cancer patients, wherein the amino acid sequences of the peptides and the expression of proteins containing the amino acid sequences Creating a database specific to the cancer patient, including amount information and information regarding the binding strength of the peptide to the human leukocyte antigen type of the cancer patient, and
    Executing the step of extracting an antigen peptide from the database based on the expression amount information and the information on the binding strength,
    program.
PCT/JP2019/045092 2018-11-16 2019-11-18 Order-made medical core system WO2020101037A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018215428 2018-11-16
JP2018-215428 2018-11-16

Publications (1)

Publication Number Publication Date
WO2020101037A1 true WO2020101037A1 (en) 2020-05-22

Family

ID=70730432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045092 WO2020101037A1 (en) 2018-11-16 2019-11-18 Order-made medical core system

Country Status (1)

Country Link
WO (1) WO2020101037A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100291127A1 (en) * 1998-07-30 2010-11-18 Yeda Research And Development Co., Ltd. Tumor associated antigen peptides and use of same as anti-tumor vaccines
JP2012165743A (en) * 2012-03-12 2012-09-06 Immatics Biotechnologies Gmbh Tumor-associated peptide binding indiscriminately to human leukocyte antigen (hla) class ii molecule
JP2015533473A (en) * 2012-07-12 2015-11-26 ペルシミューン,インコーポレイテッド Individual cancer vaccine and adaptive immune cell therapy
JP2016521128A (en) * 2013-05-10 2016-07-21 バイオエヌテック アーゲーBioNTech AG Prediction of immunogenicity of T cell epitopes
WO2016129335A1 (en) * 2015-02-09 2016-08-18 株式会社ライフアートビレッジ Method for screening for peptide for use in immune cell therapy
WO2017100338A1 (en) * 2015-12-07 2017-06-15 Nant Holdings Ip, Llc Improved compositions and methods for viral delivery of neoepitopes and uses thereof
WO2017159686A1 (en) * 2016-03-15 2017-09-21 Repertoire Genesis株式会社 Monitoring and diagnosis for immunotherapy, and design for therapeutic agent
JP2017530723A (en) * 2014-08-01 2017-10-19 ジェイダブリュ クレアジェン インコーポレイテッド Method for producing dendritic cells, dendritic cells produced thereby, and uses thereof
JP2017534257A (en) * 2014-09-10 2017-11-24 ジェネンテック, インコーポレイテッド Immunogenic variant peptide screening platform

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100291127A1 (en) * 1998-07-30 2010-11-18 Yeda Research And Development Co., Ltd. Tumor associated antigen peptides and use of same as anti-tumor vaccines
JP2012165743A (en) * 2012-03-12 2012-09-06 Immatics Biotechnologies Gmbh Tumor-associated peptide binding indiscriminately to human leukocyte antigen (hla) class ii molecule
JP2015533473A (en) * 2012-07-12 2015-11-26 ペルシミューン,インコーポレイテッド Individual cancer vaccine and adaptive immune cell therapy
JP2016521128A (en) * 2013-05-10 2016-07-21 バイオエヌテック アーゲーBioNTech AG Prediction of immunogenicity of T cell epitopes
JP2017530723A (en) * 2014-08-01 2017-10-19 ジェイダブリュ クレアジェン インコーポレイテッド Method for producing dendritic cells, dendritic cells produced thereby, and uses thereof
JP2017534257A (en) * 2014-09-10 2017-11-24 ジェネンテック, インコーポレイテッド Immunogenic variant peptide screening platform
WO2016129335A1 (en) * 2015-02-09 2016-08-18 株式会社ライフアートビレッジ Method for screening for peptide for use in immune cell therapy
WO2017100338A1 (en) * 2015-12-07 2017-06-15 Nant Holdings Ip, Llc Improved compositions and methods for viral delivery of neoepitopes and uses thereof
WO2017159686A1 (en) * 2016-03-15 2017-09-21 Repertoire Genesis株式会社 Monitoring and diagnosis for immunotherapy, and design for therapeutic agent

Similar Documents

Publication Publication Date Title
JP7480064B2 (en) Methods for identifying neoantigens using pan-allelic models
TWI733719B (en) Improved compositions and methods for viral delivery of neoepitopes and uses thereof
CN104662171B (en) Individualized cancer vaccine and adoptive immunity cell therapy
JP2023162369A (en) Neoantigen identification for t-cell therapy
US11154597B2 (en) Sequence arrangements and sequences for neoepitope presentation
Meixlsperger et al. CD141+ dendritic cells produce prominent amounts of IFN-α after dsRNA recognition and can be targeted via DEC-205 in humanized mice
JP2020536553A (en) Identification of new antigens using hotspots
TW202100168A (en) Identification of neoantigens with mhc class ii model
CN105451759A (en) Predicting immunogenicity of t cell epitopes
JP2020512376A (en) Method for isolating neoantigen-specific T cell receptor sequences
JP6710004B2 (en) Monitoring or diagnosis for immunotherapy and design of therapeutic agents
WO2020101037A1 (en) Order-made medical core system
JP2022514116A (en) New cancer antigens and methods
JP7140280B2 (en) Methods and systems for targeting epitopes for neoantigen-based immunotherapy
US20230236172A1 (en) T Cells That Respond To Patient Neoepitopes
Block et al. MHC class I gene conversion mutations alter the CD8 T cell repertoire
WO2020187143A1 (en) Method for identifying neoantigens
AU2022242012A9 (en) Antigen reactive t-cell receptors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP