WO2020100463A1 - Hydrogen production apparatus - Google Patents

Hydrogen production apparatus Download PDF

Info

Publication number
WO2020100463A1
WO2020100463A1 PCT/JP2019/039389 JP2019039389W WO2020100463A1 WO 2020100463 A1 WO2020100463 A1 WO 2020100463A1 JP 2019039389 W JP2019039389 W JP 2019039389W WO 2020100463 A1 WO2020100463 A1 WO 2020100463A1
Authority
WO
WIPO (PCT)
Prior art keywords
reformed gas
hydrogen
water
heat exchanger
gas
Prior art date
Application number
PCT/JP2019/039389
Other languages
French (fr)
Japanese (ja)
Inventor
晃平 江口
拓人 櫛
広基 飯沼
Original Assignee
東京瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京瓦斯株式会社 filed Critical 東京瓦斯株式会社
Publication of WO2020100463A1 publication Critical patent/WO2020100463A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification

Definitions

  • the present disclosure relates to a hydrogen production apparatus, for example, a hydrogen production apparatus that reforms a hydrocarbon raw material to produce hydrogen.
  • a PSA (Pressure Swing Adsorption) device that is, a device for supplying hydrogen to a hydrogen purifier after reforming a raw material hydrocarbon into a reformed gas by a steam reforming device. ing.
  • a compressor for compressing the reformed gas is provided upstream of the PSA device.
  • a chiller is provided on the upstream side of the compressor in the reformed gas flow path. This is the gas supplied to the compressor by cooling the reformed gas supplied to the compressor to condense steam, removing steam from the reformed gas, and then supplying the reformed gas to the compressor. It is excellent in that it reduces the flow rate and the load on the compressor.
  • the present disclosure is to provide a hydrogen production device that is downsized while ensuring the cooling capacity of the reformed gas.
  • a first aspect of the present disclosure is a reformer that supplies hydrocarbon as a raw material from a hydrocarbon supply source and that reforms the hydrocarbon to generate a reformed gas containing hydrogen as a main component.
  • a hydrogen booster connected to a reformer and boosting the reformed gas, and a hydrogen purifier connected to the booster and separating the reformed gas into product hydrogen and off gas which is an impurity to purify product hydrogen.
  • a first non-refrigerant heat exchanger provided on a reformed gas flow path connecting the reformer and the booster unit and cooled by heat exchange of the reformed gas with a refrigerant; Refrigerant circulation provided on the reformed gas flow path downstream of the first heat exchanger to cool the reformed gas by exchanging heat with the refrigerant and to condense the water vapor contained in the reformed gas. And a second heat exchanger of the mold.
  • the first heat exchanger and the second heat exchanger are arranged from the upstream side on the reformed gas flow path through which the reformed gas flows from the reformer to the booster section. That is, the high-temperature reformed gas generated in the reformer is cooled by heat exchange with the refrigerant in the first heat exchanger and then cooled by heat exchange with the refrigerant in the second heat exchanger. The water vapor contained in the reformed gas is condensed and removed, and is supplied to the pressurizing unit.
  • the reformed gas supplied to the second heat exchanger since the reformed gas is supplied to the second heat exchanger after being cooled by the first heat exchanger, the reformed gas supplied to the second heat exchanger has a relatively low temperature. For this reason, the cooling load of the second heat exchanger is relatively small as compared with the case where the reformed gas supplied to the booster is cooled only by the second heat exchanger.
  • the refrigerant circulation type second heat exchanger can be downsized.
  • the first heat exchanger is a non-refrigerant type in which a refrigerant is supplied from the outside of the hydrogen production apparatus and the heat-exchanged refrigerant is discharged to the outside of the hydrogen production apparatus. Therefore, upsizing of the hydrogen production device due to the addition of the first heat exchanger is suppressed.
  • the hydrogen production device can be downsized while ensuring a predetermined cooling capacity.
  • the refrigerant used in the first heat exchanger may be industrial water.
  • the first heat exchanger can be easily installed in the hydrogen production device by simply connecting the industrial water supply source and the first heat exchanger. can do. That is, the hydrogen production device can be downsized while ensuring a predetermined cooling capacity with a simple configuration.
  • industrial water includes not only industrial water supplied from industrial water supply, but also water supplied from wells, the sea, rivers, etc. and water supplied from tap water.
  • the hydrogen production device of the present disclosure can achieve downsizing of the device while ensuring the cooling capacity of the reformed gas.
  • FIGS. 1 and 2 An example of a hydrogen production device according to an embodiment of the present disclosure will be described with reference to FIGS. 1 and 2.
  • the hydrogen production device 10 is a multi-cylinder reformer (hereinafter, may be referred to as a “reformer”) that produces a reformed gas obtained by steam reforming hydrocarbons, for example, city gas. 12, a compressor 80 for compressing the reformed gas, and a hydrogen purifier 90 for purifying hydrogen gas by removing impurities from the compressed reformed gas. Further, the hydrogen production device 10 includes a pre-pressurization water separation unit 50, a post-pressurization water separation unit 60, which separates and removes water from the reformed gas on the upstream side and the downstream side of the compressor 80, respectively, and the reformer 12 to be described later. And a combustion exhaust gas water separation unit 70 for separating and removing water from the combustion exhaust gas.
  • a combustion exhaust gas water separation unit 70 for separating and removing water from the combustion exhaust gas.
  • the hydrogen production device 10 includes a heat exchanger HE1 and a chiller 100 between the reformer 12 and the pre-pressurization water separation unit 50, and a chiller 110 between the compressor 80 and the post-pressurization water separation unit 60. There is.
  • the hydrogen production device 10 produces hydrogen from a hydrocarbon raw material, and in the present embodiment, a case where city gas containing methane as a main component is used as an example of the hydrocarbon raw material will be described.
  • the multi-tubular reformer 12 has a plurality of tubular walls 21, 22, 23, 24 (hereinafter, may be referred to as “cylindrical walls 21-24”) arranged in multiple layers.
  • the plurality of cylindrical walls 21 to 24 are formed in, for example, a cylindrical shape or an elliptic cylindrical shape.
  • a combustion chamber 25 is formed inside the first cylindrical wall 21 from the inner side among the plurality of cylindrical walls 21 to 24, and a burner 26 is arranged downward on the combustion chamber 25.
  • the multi-tubular reformer 12 is an example of a reformer.
  • an air supply pipe 40 for supplying combustion air from the outside is connected to the upper end of the combustion chamber 25.
  • a raw material branch pipe 33A branched from a raw material supply pipe 33 for further supplying city gas is connected to the burner 26.
  • An air branch pipe 40A branched from the air supply pipe 40 is connected to the raw material branch pipe 33A.
  • An offgas recirculation pipe 120 is connected to the burner 26. Therefore, the burner 26 is configured to be supplied with gas in which city gas is mixed with air or off gas.
  • a combustion exhaust gas passage 27 is formed between the first tubular wall 21 and the second tubular wall 22.
  • a lower end portion of the combustion exhaust gas passage 27 communicates with the combustion chamber 25, and a gas exhaust pipe 28 for exhausting gas is connected to an upper end portion of the combustion exhaust gas passage 27.
  • the combustion exhaust gas discharged from the combustion chamber 25 flows from the lower side to the upper side in the combustion exhaust gas flow path 27 and is sent to the combustion exhaust gas water separation unit 70 through the gas discharge pipe 28.
  • a first flow path 31 is formed between the second tubular wall 22 and the third tubular wall 23.
  • An upper portion of the first flow passage 31 is formed as a preheating flow passage 32, and a raw material supply pipe 33 for supplying city gas and reforming water are supplied to an upper end portion of the preheating flow passage 32. Is connected to the reforming water supply pipe 34.
  • a spiral member 35 is provided between the second cylindrical wall 22 and the third cylindrical wall 23, and the preheating flow passage 32 is formed in a spiral shape by the spiral member 35. There is.
  • the city gas can be supplied to the preheating channel 32 from the raw material supply pipe 33, and further the reforming water can be supplied from the reforming water supply pipe 34.
  • the city gas and the reforming water flow from the upper side to the lower side in the preheating channel 32, and are heat-exchanged with the combustion exhaust gas through the second cylindrical wall 22 to vaporize the water.
  • the city gas and the reforming water in the vapor phase that is, the steam are mixed to generate a mixed gas.
  • a reforming catalyst layer 36 is provided below the preheating channel 32 in the first channel 31, and the mixed gas generated in the preheating channel 32 is supplied to the reforming catalyst layer 36. It is a configuration.
  • the reforming catalyst layer 36 receives heat from the combustion exhaust gas flowing through the combustion exhaust gas passage 27 and undergoes a steam reforming reaction of the mixed gas to generate a reformed gas containing hydrogen as a main component.
  • a second flow path 42 is formed between the third cylindrical wall 23 and the fourth cylindrical wall 24.
  • the lower end of the second flow path 42 communicates with the lower end of the first flow path 31.
  • a lower portion of the second flow passage 42 is formed as a reformed gas flow passage 43, and a reformed gas discharge pipe 44 is connected to an upper end portion of the second flow passage 42.
  • a CO shift conversion catalyst layer 45 is provided above the reformed gas passage 43 in the second passage 42, and the reformed gas generated in the reformed catalyst layer 36 is the reformed gas flow. After passing through the passage 43, it is supplied to the CO shift catalyst layer 45.
  • the CO conversion catalyst layer 45 carbon monoxide and water vapor contained in the reformed gas are converted into hydrogen and carbon dioxide by an aqueous shift reaction, and carbon monoxide can be reduced.
  • an oxidant gas supply pipe 46 is connected to the upper side of the CO shift catalyst layer 45, and a CO selective oxidation catalyst layer 47 is provided above the CO shift catalyst layer 45 in the second flow path 42. ing.
  • the oxidizing gas introduced through the oxidizing gas supply pipe 46 and the reformed gas that has passed through the CO shift catalyst layer 45 are supplied to the CO selective oxidation catalyst layer 47.
  • carbon monoxide reacts with oxygen and is converted into carbon dioxide on a noble metal catalyst such as platinum or ruthenium, and carbon monoxide can be removed.
  • the reformed gas G1 in which carbon monoxide is reduced in the CO shift catalyst layer 45 and the CO selective oxidation catalyst layer 47 is discharged through the reformed gas discharge pipe 44.
  • the reformed gas generated in the multi-tubular reformer 12 passes through the pre-pressurization water separation unit 50, the compressor 80, the post-pressurization water separation unit 60, and the hydrogen purifier 90 in this order.
  • Flowing That is, in the gas flow direction, from the upstream side to the downstream side, the multi-tubular reformer 12, the pre-pressurization water separation unit 50, the compressor 80, the post-pressurization water separation unit 60, and the hydrogen purifier 90 are arranged in this order. It is arranged.
  • Pre-pressurization water separator The downstream end of a reformed gas discharge pipe 44, into which the reformed gas G1 flows from the multi-cylinder reformer 12, is connected to the pre-pressurization water separation unit 50.
  • a water recovery pipe 59 is connected to the bottom of the pre-pressurization water separation unit 50, and a communication flow path pipe 56 is connected to the top of the pre-pressurization water separation unit 50.
  • the reformed gas G1 is separated by condensing water by cooling by heat exchange with a refrigerant in a heat exchanger HE1 and a chiller 100 which are arranged in a reformed gas discharge pipe 44 upstream of the pre-pressurization water separation unit 50.
  • the liquid-phase water can be stored under the pre-pressurization water separation unit 50.
  • the liquid phase water is sent to the water recovery pipe 59.
  • the reformed gas G2 after the water is condensed is sent to the communication flow path pipe 56.
  • the reformed gas discharge pipe 44 corresponds to the “reformed gas passage”.
  • the heat exchanger HE1 is connected to an industrial water supply pipe 51 that communicates with an industrial water supply source outside the hydrogen production device 10 and an industrial water discharge pipe 52 that communicates with the outside of the hydrogen production device 10. Therefore, in the heat exchanger HE1, the industrial water supplied from the industrial water supply pipe 51 is heat-exchanged with the reformed gas G1, that is, the reformed gas is cooled, and the industrial water after the heat exchange is the industrial water discharge pipe 52. It is configured to be discharged to the outside of the hydrogen production device 10 through the.
  • the heat exchanger HE1 corresponds to the “first heat exchanger”. Further, the industrial water corresponds to the "refrigerant" of the first heat exchanger.
  • the chiller 100 is located on the reformed gas exhaust pipe 44 downstream of the heat exchanger HE1. As shown in FIG. 1, the heat exchange section 102 disposed on the reformed gas exhaust pipe 44, the radiator 104 disposed at a position separated from the heat exchange section 102, the heat exchange section 102 and the radiator 104. And a chiller water circulation channel 106 through which chiller water is circulated.
  • a pump 107 for circulating the chiller water is arranged in the chiller water circulation passage 106. Further, the radiator 104 is provided with a fan 108 for cooling the chiller water that has become high temperature due to heat exchange in the heat exchange section 102.
  • the chiller water cooled in the radiator 104 is supplied to the heat exchange section 102 via the chiller water circulation flow path 106 and exchanges heat with the reformed gas flowing through the reformed gas discharge pipe 44, that is, the reformed gas is generated.
  • the structure is cooled.
  • the chiller 100 corresponds to the "second heat exchanger”.
  • the chiller water corresponds to the "refrigerant" of the second heat exchanger.
  • compressor 80 In the compressor 80, there are a communication flow passage pipe 56 through which the reformed gas G2 from the pre-pressurization water separation unit 50 flows, and a communication flow passage pipe 66 through which the reformed gas G2 supplied to the post-pressurization water separation unit 60 flows. It is connected.
  • the compressor 80 is capable of compressing the reformed gas G2 supplied from the pre-pressurization water separation unit 50 and supplying it to the post-pressurization water separation unit 60.
  • the compressor 80 corresponds to a “pressure booster”.
  • a downstream end of a communication flow pipe 66 that allows the reformed gas G2 to flow from the compressor 80 is connected to the post-pressurization water separation unit 60.
  • a water recovery pipe 69 is connected to the bottom of the post-pressurization water separation unit 60, and a communication channel pipe 68 is connected to the top of the post-pressurization water separation unit 60.
  • the reformed gas G2 is separated and condensed in a chiller 110, which will be described later, disposed in the communication flow path pipe 66 upstream of the post-pressurization water separation unit 60 by cooling by heat exchange with a refrigerant, that is, chiller water.
  • liquid phase water can be stored in the lower part of the water separation unit 60.
  • the liquid phase water is sent to the water recovery pipe 69.
  • the reformed gas G3 after the water is condensed is sent to the communication flow path pipe 68.
  • the chiller 110 Like the chiller 100, the chiller 110 includes a heat exchange section 112, a radiator 114, a chiller water circulation passage 116, and a pump 117. In addition, the radiator 114 is provided with a fan 118, like the radiator 104.
  • the hydrogen purifier 90 is connected to the downstream end of the communication flow pipe 68 through which the reformed gas G3 from the post-pressurization water separation unit 60 flows and the upstream end of the offgas reflux pipe 120 through which the offgas of the hydrogen purifier 90 flows. ing.
  • the hydrogen purifier 90 includes a pair of adsorption tanks, one adsorption tank performs an adsorption step of adsorbing impurities on the adsorbent, and the other adsorption tank performs a desorption step of desorbing the impurities adsorbed on the adsorbent, Next, the desorption process is performed in one adsorption tank, and the adsorption process is performed in the other adsorption tank. By repeating this periodically, the reformed gas G3 is continuously separated into hydrogen and impurities containing carbon monoxide, that is, off-gas OG, and hydrogen is purified.
  • the purified hydrogen is sent to the hydrogen supply pipe 92, can be stored in a tank (not shown), or can be sent to the hydrogen supply line.
  • the off gas of the hydrogen purifier 90 can be supplied to the burner 26 of the reformer 12 via the off gas reflux pipe 120. It should be noted that the off-gas tank 122 for temporarily storing the off-gas on the off-gas recirculation pipe 120 and flowing the same to the burner 26 to equalize the composition and flow rate of the off-gas supplied from the hydrogen purifier 90 and supply the off-gas to the burner 26. Is provided.
  • combustion exhaust gas water separation unit The downstream end of a gas exhaust pipe 28 that guides the combustion exhaust gas from the combustion exhaust gas flow path 27 of the reformer 12 is connected to the combustion exhaust gas water separation unit 70.
  • a water recovery pipe 78 is connected to the bottom of the combustion exhaust gas water separation unit 70, and a gas discharge pipe 76 is connected to the upper portion of the combustion exhaust gas water separation unit 70.
  • the combustion exhaust gas discharged from the combustion chamber 25 is separated and condensed in the heat exchanger HE3 arranged in the gas discharge pipe 28 upstream of the combustion exhaust gas water separation unit 70 by cooling by heat exchange with cooling water.
  • the liquid water can be stored under the combustion exhaust gas water separation unit 70.
  • the liquid phase water is sent to the water recovery pipe 78.
  • the combustion exhaust gas after the water is condensed is discharged from the gas discharge pipe 76 into the outside air.
  • each of the water recovery pipes 59, 69, 78 is connected to the reforming water supply pipe 34.
  • the reforming water supply pipe 34 is provided with a water treatment device 34A made of an ion exchange resin for removing dissolved ion components.
  • the external water supply unit 17 is connected to the reforming water supply pipe 34. For example, pure water or city water is supplied from the external water supply unit 17 to the reforming water supply pipe 34.
  • the reforming water supply pipe 34 is provided with a pump P1.
  • the water separated by the pre-pressurization water separation unit 50, the post-pressurization water separation unit 60, the combustion exhaust gas water separation unit 70, or the water supplied from the external water supply unit 17 is sent to the multi-tubular reformer 12 by the pump P1. It is a configuration to be supplied.
  • City gas is supplied from the raw material supply pipe 33 to the multi-cylinder reformer 12.
  • the city gas supplied to the multi-cylinder reformer 12 is heated while being mixed with the reforming water in the preheating channel 32 of the multi-cylinder reformer 12, and the reforming catalyst It is supplied to the layer 36.
  • the mixed gas receives heat from the combustion exhaust gas flowing through the combustion exhaust gas passage 27 to cause a steam reforming reaction, and a reformed gas containing hydrogen as a main component is generated.
  • the reformed gas is supplied to the CO shift catalyst layer 45 through the reformed gas passage 43.
  • carbon monoxide contained in the reformed gas reacts with steam to be converted into hydrogen and carbon dioxide, and carbon monoxide is reduced.
  • the reformed gas that has passed through the CO conversion catalyst layer 45 is supplied to the CO selective oxidation catalyst layer 47 together with the oxidizing gas (air) supplied from the oxidizing gas supply pipe 46, and carbon monoxide is converted into oxygen on the precious metal catalyst. Reacts with and is converted to carbon dioxide, and carbon monoxide is removed.
  • the reformed gas G1 in which carbon monoxide is reduced in the CO selective oxidation catalyst layer 47 is sent to the reformed gas discharge pipe 44.
  • a gas obtained by mixing the city gas and air supplied from the raw material branch pipe 33A and the air branch pipe 40A or an off gas supplied from the off gas recirculation pipe 120. are burned by the burner 26.
  • the combustion exhaust gas is supplied from the combustion chamber 25 to the combustion exhaust gas water separation unit 70 via the combustion exhaust gas flow passage 27 and the gas exhaust pipe 28.
  • the water contained in the combustion exhaust gas is cooled and condensed by heat exchange in the heat exchanger HE3, stored in the combustion exhaust gas water separation unit 70, and sent to the water recovery pipe 78.
  • the combustion exhaust gas from which the water has been separated is discharged from the gas discharge pipe 76 into the outside air.
  • the reformed gas G1 is heated to a high temperature, for example, 100 ° C. in the reformer 12 by a steam reforming reaction or an aqueous shift reaction.
  • the reformed gas G1 flowing through the reformed gas discharge pipe 44 is first heat-exchanged with industrial water by the heat exchanger HE1 and cooled to, for example, 32 ° C.
  • the reformed gas G1 cooled in the heat exchanger HE1 is further heat-exchanged with the chiller water in the heat exchange section 102 of the chiller 100, and further cooled to, for example, 10 ° C.
  • the reformed gas G1 flowing through the reformed gas discharge pipe 44 is cooled by the heat exchanger HE1 and the chiller 100, so that the steam is condensed.
  • the reformed gas G1 is supplied to the pre-pressurization water separation unit 50 via the reformed gas discharge pipe 44.
  • water condensed by cooling by heat exchange in the heat exchanger HE1 and the chiller 100 is stored and sent to the water recovery pipe 59.
  • the reformed gas G2 from which the water has been separated is supplied to the compressor 80 from the communication flow path pipe 56 and is compressed by the compressor 80.
  • the compressed reformed gas G2 is supplied to the water separation unit 60 after pressurization from the communication flow pipe 66.
  • water condensed by cooling by heat exchange in the chiller 110 is stored and sent to the water recovery pipe 69.
  • the reformed gas G3 from which water has been separated is supplied to the hydrogen purifier 90 from the communication flow path pipe 68.
  • the water sent from the pre-pressurization water separation unit 50, the post-pressurization water separation unit 60, and the combustion exhaust gas water separation unit 70 to the water recovery pipes 59, 69, and 78 is returned to the reforming water supply pipe 34.
  • the reforming water supply pipe 34 supplies the reforming water to the multi-cylinder reformer 12.
  • the hydrogen purifier 90 employs a pressure swing method, in which one of the pair of adsorption tanks adsorbs impurities other than hydrogen in the adsorbent and the other adsorption tank desorbs the impurities adsorbed in the adsorbent. ..
  • the adsorption step and the desorption step are repeated in each adsorption tank at a constant cycle to continuously separate hydrogen and impurities from the reformed gas G3 to purify hydrogen.
  • Hydrogen as a product purified by the hydrogen purifier 90 is sent to the hydrogen supply pipe 92, stored in a tank (not shown), or sent to the hydrogen supply line.
  • the off-gas OG discharged from the hydrogen purifier 90 flows through the off-gas recirculation pipe 120, is temporarily stored in the off-gas tank 122, and is then stored in the burner 26 provided in the combustion chamber 25 of the reformer 12 in terms of flow rate and composition. Is leveled and supplied.
  • the high temperature reformed gas G1 sent from the reformer 12 is first cooled by the heat exchanger HE1 and then cooled by the chiller 100 on the reformed gas discharge pipe 44. Water is supplied to the pre-pressurization water separation unit 50 to separate condensed water from the reformed gas G1.
  • the heat exchanger HE1 is provided on the upstream side of the chiller 100, the cooling load of the chiller 100 is reduced, and the chiller 100 can be downsized.
  • the heat exchanger HE1 is for exchanging heat between the industrial water supplied to the factory and the reformed gas G1, and the industrial water is supplied from an industrial water supply source outside the hydrogen production apparatus 10 to perform heat exchange.
  • the industrial water is a refrigerant non-circulation type that is discharged to the outside of the hydrogen production apparatus 10. Therefore, the heat exchanger HE1 is smaller than the refrigerant circulation type heat exchanger, and an increase in the size of the hydrogen production device 10 due to the addition of the heat exchanger HE1 is suppressed.
  • the heat exchanger HE1 is provided with an industrial water supply pipe 51 and an industrial water discharge pipe 52 except for the portion where the reformed gas G1 and the industrial water exchange heat, and the industrial water supply pipe 51 is connected to the outside of the hydrogen production apparatus 10. Since it suffices to connect it to the industrial water supply source described above, it has a simple structure and further suppresses the increase in size of the hydrogen production device 10 due to the provision of the heat exchanger HE1.
  • the combination of the refrigerant non-circulation type heat exchanger HE1 and the refrigerant circulation type chiller 100 can reduce the size of the hydrogen production device 10.
  • the reformed gas G1 discharged from the reformer 12 can be sufficiently cooled at a high temperature, for example, 100 ° C. That is, a predetermined cooling capacity can be secured by combining the non-refrigerant heat exchanger HE1 and the downsized refrigerant circulation chiller 100.
  • the hydrogen production device 10 secures (maintains) the cooling capacity as compared with the case where the reformed gas G1 supplied to the compressor 80 (pre-pressurizing water separation unit 50) is cooled by a single chiller. It can be miniaturized.
  • the heat exchanger HE1 in which industrial water exchanges heat with the reformed gas G1 is described as a refrigerant non-circulation type heat exchanger, but the present invention is not limited to this.
  • it may be a heat exchanger that utilizes the cold heat of liquefied natural gas.
  • an air fin cooler that exchanges heat with the reformed gas G1 may be used.
  • a part of the reformed gas discharge pipe 44 is branched into a large number of pipes, air that is a refrigerant is introduced from the outside of the hydrogen production apparatus 10 and blown to this branched portion to cool the reformed gas G1.
  • the heat-exchanged air may be discharged to the outside of the hydrogen production device 10.
  • the refrigerant non-circulation type heat exchanger may be any one as long as the refrigerant is supplied from the outside of the hydrogen producing apparatus 10 and the heat-exchanged refrigerant is discharged to the outside of the hydrogen producing apparatus 10.
  • the industrial water of the present embodiment includes not only industrial water supplied from the industrial water supply, but also water supplied from wells, the sea, rivers, etc. and water supplied from the tap water.
  • the reformer 12 is a multi-cylinder reformer, but the invention is not limited to this. It is only necessary that the city gas can be reformed into a reformed gas containing hydrogen as a main component.
  • the hydrogen purifier 90 is a PSA device
  • the hydrogen purifier 90 is not limited to this as long as hydrogen can be purified from the reformed gas G3.
  • the CO shift conversion catalyst layer 45 and the CO selective oxidation catalyst layer 47 are provided in order to remove carbon monoxide from the reformed gas in the reformer 12, You may comprise only the CO conversion catalyst layer 45.
  • the compressor 80 has been described as an example of the pressure increasing unit, but if the pressure is high and the reformed gas G2 is supplied to the hydrogen purifier 90, the present invention is not limited thereto. Absent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Provided is a hydrogen production apparatus provided with: a reformer which generates reformed gas containing a hydrocarbon as a main component by reforming hydrogen and to which the hydrocarbon is supplied as a raw material from a hydrocarbon supply source; a pressure increasing part that is connected to the reformer and that increases the pressure of the reformed gas; a hydrogen purifier that is connected to the pressure increasing part and that purifies a product hydrogen by separating the reformed gas into the product hydrogen and an off-gas being an impurity; a refrigerant-noncirculation-type first heat exchanger which is provided in a reformed gas flow path connecting the reformer and the pressure increasing part and in which the reformed gas is cooled through heat exchange with a refrigerant; and a refrigerant-circulation-type second heat exchanger which is provided in the reformed gas flow path on the downstream side of the first heat exchanger and in which the reformed gas is cooled through heat exchange with the refrigerant and water vapor contained in the reformed gas is condensed.

Description

水素製造装置Hydrogen production equipment
 本開示は、水素製造装置に関し、例えば、炭化水素原料を改質して水素を製造する水素製造装置に関する。 The present disclosure relates to a hydrogen production apparatus, for example, a hydrogen production apparatus that reforms a hydrocarbon raw material to produce hydrogen.
 従来、水素を得るための水素製造装置としては、原料炭化水素を水蒸気改質装置で改質ガスに改質した後、PSA(Pressure Swing Adsorption)装置、すなわち水素精製器へ供給するものが知られている。この際、PSA装置における吸着反応に必要な圧力で改質ガスをPSA装置に供給するために、PSA装置の上流側には、改質ガスを圧縮する圧縮機が設けられている。 Conventionally, as a hydrogen production device for obtaining hydrogen, a PSA (Pressure Swing Adsorption) device, that is, a device for supplying hydrogen to a hydrogen purifier after reforming a raw material hydrocarbon into a reformed gas by a steam reforming device is known. ing. At this time, in order to supply the reformed gas to the PSA device at a pressure necessary for the adsorption reaction in the PSA device, a compressor for compressing the reformed gas is provided upstream of the PSA device.
 また、例えば、特開2017-88490号公報に示されるように、改質ガスの流路上において、圧縮機の上流側には、チラーが設けられている。これは、圧縮機に供給される改質ガスを冷却して水蒸気を凝縮させ、改質ガスから水蒸気を除去した後、圧縮機に改質ガスを供給することで、圧縮機に供給されるガス流量を低減させ、圧縮機の負荷を低減させている点で優れている。
 
Further, for example, as disclosed in JP-A-2017-88490, a chiller is provided on the upstream side of the compressor in the reformed gas flow path. This is the gas supplied to the compressor by cooling the reformed gas supplied to the compressor to condense steam, removing steam from the reformed gas, and then supplying the reformed gas to the compressor. It is excellent in that it reduces the flow rate and the load on the compressor.
 しかし、圧縮機に供給される改質ガスの冷却、すなわち、水蒸気の凝縮をチラーのみで行うと、チラーの冷却負荷が大きく、冷媒を循環させるチラーが大型化するという不都合があった。 However, if the reformed gas supplied to the compressor is cooled, that is, the steam is condensed only by the chiller, there is a disadvantage that the chiller has a large cooling load and the chiller for circulating the refrigerant becomes large.
 すなわち、水素製造装置の小型化という点で改善の余地があった。 That is, there was room for improvement in terms of downsizing of the hydrogen production equipment.
 本開示は、改質ガスの冷却能力を確保しつつ、装置の小型化を図った水素製造装置を提供することである。 The present disclosure is to provide a hydrogen production device that is downsized while ensuring the cooling capacity of the reformed gas.
 本開示の第1の態様は、炭化水素供給源から炭化水素が原料として供給されると共に、前記炭化水素を改質して水素を主成分とした改質ガスを生成する改質器と、前記改質器と接続され、前記改質ガスを昇圧する昇圧部と、前記昇圧部と接続され、前記改質ガスを製品水素と不純物であるオフガスとに分離して製品水素を精製する水素精製器と、前記改質器と前記昇圧部とを結ぶ改質ガス流路上に設けられ、前記改質ガスが冷媒と熱交換することにより冷却される冷媒非循環型の第1熱交換器と、前記改質ガス流路上で前記第1熱交換器の下流側に設けられ、前記改質ガスが冷媒と熱交換することによりを冷却されて当該改質ガスに含有された水蒸気が凝縮される冷媒循環型の第2熱交換器と、を備える、水素製造装置である。 A first aspect of the present disclosure is a reformer that supplies hydrocarbon as a raw material from a hydrocarbon supply source and that reforms the hydrocarbon to generate a reformed gas containing hydrogen as a main component. A hydrogen booster connected to a reformer and boosting the reformed gas, and a hydrogen purifier connected to the booster and separating the reformed gas into product hydrogen and off gas which is an impurity to purify product hydrogen. A first non-refrigerant heat exchanger provided on a reformed gas flow path connecting the reformer and the booster unit and cooled by heat exchange of the reformed gas with a refrigerant; Refrigerant circulation provided on the reformed gas flow path downstream of the first heat exchanger to cool the reformed gas by exchanging heat with the refrigerant and to condense the water vapor contained in the reformed gas. And a second heat exchanger of the mold.
 この水素製造装置では、改質器から昇圧部に向って改質ガスが流れる改質ガス流路上に上流側から第1熱交換器と第2熱交換器が配設されている。すなわち、改質器で生成された高温の改質ガスは、第1熱交換器で冷媒との熱交換により冷却された後、第2熱交換器において冷媒との熱交換で冷却されることにより改質ガスに含有される水蒸気が凝縮されて除去され、昇圧部に供給される。 In this hydrogen production device, the first heat exchanger and the second heat exchanger are arranged from the upstream side on the reformed gas flow path through which the reformed gas flows from the reformer to the booster section. That is, the high-temperature reformed gas generated in the reformer is cooled by heat exchange with the refrigerant in the first heat exchanger and then cooled by heat exchange with the refrigerant in the second heat exchanger. The water vapor contained in the reformed gas is condensed and removed, and is supplied to the pressurizing unit.
 すなわち、改質ガスは、第1熱交換器で冷却された後に第2熱交換器に供給されるため、第2熱交換器に供給される改質ガスは比較的に低温とされる。このため、第2熱交換器のみで昇圧部に供給される改質ガスを冷却していた場合と比較して、第2熱交換器の冷却負荷が相対的に小さくなる。 That is, since the reformed gas is supplied to the second heat exchanger after being cooled by the first heat exchanger, the reformed gas supplied to the second heat exchanger has a relatively low temperature. For this reason, the cooling load of the second heat exchanger is relatively small as compared with the case where the reformed gas supplied to the booster is cooled only by the second heat exchanger.
 すなわち、冷媒循環型の第2熱交換器を小型化することができる。 That is, the refrigerant circulation type second heat exchanger can be downsized.
 また、第1熱交換器は、水素製造装置の外部から冷媒が供給され、熱交換された冷媒が水素製造装置の外部に排出される冷媒非循環型である。したがって、第1熱交換器を追加したことによる水素製造装置の大型化が抑制される。 Also, the first heat exchanger is a non-refrigerant type in which a refrigerant is supplied from the outside of the hydrogen production apparatus and the heat-exchanged refrigerant is discharged to the outside of the hydrogen production apparatus. Therefore, upsizing of the hydrogen production device due to the addition of the first heat exchanger is suppressed.
 この結果、昇圧部に導入される改質ガスを第2熱交換器のみで冷却していた場合と比較して、所定の冷却能力を確保しつつ水素製造装置を小型化することができる。 As a result, compared with the case where the reformed gas introduced into the booster is cooled only by the second heat exchanger, the hydrogen production device can be downsized while ensuring a predetermined cooling capacity.
 本開示の第2の態様は、上記第1の態様において、前記第1熱交換器で使用される冷媒は、工業用水であっても良い。 In the second aspect of the present disclosure, in the first aspect, the refrigerant used in the first heat exchanger may be industrial water.
 この水素製造装置では、第1熱交換器の冷媒として工業用水を使用すれば、工業用水供給源と第1熱交換器を接続するだけで、簡単に水素製造装置に第1熱交換器を設置することができる。すなわち、水素製造装置は、簡単な構成で所定の冷却能力を確保しつつ、小型化することができる。 In this hydrogen production device, if industrial water is used as the refrigerant of the first heat exchanger, the first heat exchanger can be easily installed in the hydrogen production device by simply connecting the industrial water supply source and the first heat exchanger. can do. That is, the hydrogen production device can be downsized while ensuring a predetermined cooling capacity with a simple configuration.
 なお、工業用水とは、工業用水道から供給される工業用水のみならず、井戸、海、河川等から供給される水や中水道から供給される水等を含むものである。 Note that industrial water includes not only industrial water supplied from industrial water supply, but also water supplied from wells, the sea, rivers, etc. and water supplied from tap water.
 上記態様によれば、本開示の水素製造装置は、改質ガスの冷却能力を確保しつつ、装置の小型化を達成できる。 According to the above aspect, the hydrogen production device of the present disclosure can achieve downsizing of the device while ensuring the cooling capacity of the reformed gas.
一実施形態に係る水素製造装置を示した概略構成図である。It is a schematic block diagram which showed the hydrogen production apparatus which concerns on one Embodiment. 一実施形態に係る多重筒型改質器を示した断面図である。It is a sectional view showing a multi-cylinder type reformer concerning one embodiment.
 本開示の一実施形態に係る水素製造装置の一例を図1及び図2を参照して説明する。 An example of a hydrogen production device according to an embodiment of the present disclosure will be described with reference to FIGS. 1 and 2.
〈水素製造装置〉
 水素製造装置10は、図1に示すように、炭化水素、例えば、都市ガスから水蒸気改質した改質ガスを生成する多重筒型改質器(以下、「改質器」という場合がある)12と、改質ガスを圧縮する圧縮機80と、圧縮された改質ガスから不純物を除去して水素ガスを精製する水素精製器90と、を備えている。また、水素製造装置10は、圧縮機80の上流側、下流側でそれぞれ改質ガスから水分を分離・除去する昇圧前水分離部50、昇圧後水分離部60と、改質器12の後述する燃焼排ガスから水分を分離・除去する燃焼排ガス水分離部70と、を備えている。
<Hydrogen production equipment>
As shown in FIG. 1, the hydrogen production device 10 is a multi-cylinder reformer (hereinafter, may be referred to as a “reformer”) that produces a reformed gas obtained by steam reforming hydrocarbons, for example, city gas. 12, a compressor 80 for compressing the reformed gas, and a hydrogen purifier 90 for purifying hydrogen gas by removing impurities from the compressed reformed gas. Further, the hydrogen production device 10 includes a pre-pressurization water separation unit 50, a post-pressurization water separation unit 60, which separates and removes water from the reformed gas on the upstream side and the downstream side of the compressor 80, respectively, and the reformer 12 to be described later. And a combustion exhaust gas water separation unit 70 for separating and removing water from the combustion exhaust gas.
 さらに、水素製造装置10は、改質器12と昇圧前水分離部50との間に熱交換器HE1とチラー100、圧縮機80と昇圧後水分離部60との間にチラー110を備えている。 Further, the hydrogen production device 10 includes a heat exchanger HE1 and a chiller 100 between the reformer 12 and the pre-pressurization water separation unit 50, and a chiller 110 between the compressor 80 and the post-pressurization water separation unit 60. There is.
 なお、この水素製造装置10は、炭化水素原料から水素を製造するものであり、本実施形態では、炭化水素原料の一例としてメタンを主成分とする都市ガスが用いられる場合について説明する。 The hydrogen production device 10 produces hydrogen from a hydrocarbon raw material, and in the present embodiment, a case where city gas containing methane as a main component is used as an example of the hydrocarbon raw material will be described.
  (多重筒型改質器)
 多重筒型改質器12は、図2に示すように、多重に配置された複数の筒状壁21、22、23、24(以下、「筒状壁21~24」という場合がある)を有している。複数の筒状壁21~24は、例えば円筒状や楕円筒状に形成される。複数の筒状壁21~24のうち内側から一番目の筒状壁21の内部には、燃焼室25が形成されており、この燃焼室25の上部には、バーナー26が下向きに配置されている。この多重筒型改質器12は、改質器の一例である。
(Multiple cylinder reformer)
As shown in FIG. 2, the multi-tubular reformer 12 has a plurality of tubular walls 21, 22, 23, 24 (hereinafter, may be referred to as “cylindrical walls 21-24”) arranged in multiple layers. Have The plurality of cylindrical walls 21 to 24 are formed in, for example, a cylindrical shape or an elliptic cylindrical shape. A combustion chamber 25 is formed inside the first cylindrical wall 21 from the inner side among the plurality of cylindrical walls 21 to 24, and a burner 26 is arranged downward on the combustion chamber 25. There is. The multi-tubular reformer 12 is an example of a reformer.
 さらに、この燃焼室25の上端部には、外部から燃焼用空気を供給するための空気供給管40が接続されている。バーナー26には、さらに都市ガスを供給するための原料供給管33から分岐された原料分岐管33Aが接続されている。原料分岐管33Aには、空気供給管40から分岐された空気分岐管40Aが接続されている。また、バーナー26には、オフガス還流管120が接続されている。したがって、バーナー26には、都市ガスに空気が混合された気体又はオフガスが供給される構成である。 Further, an air supply pipe 40 for supplying combustion air from the outside is connected to the upper end of the combustion chamber 25. A raw material branch pipe 33A branched from a raw material supply pipe 33 for further supplying city gas is connected to the burner 26. An air branch pipe 40A branched from the air supply pipe 40 is connected to the raw material branch pipe 33A. An offgas recirculation pipe 120 is connected to the burner 26. Therefore, the burner 26 is configured to be supplied with gas in which city gas is mixed with air or off gas.
 一番目の筒状壁21と二番目の筒状壁22との間には、燃焼排ガス流路27が形成されている。燃焼排ガス流路27の下端部は、燃焼室25と連通されており、燃焼排ガス流路27の上端部には、ガスを排出するためのガス排出管28が接続されている。燃焼室25から排出された燃焼排ガスは、燃焼排ガス流路27を下側から上側に流れ、ガス排出管28を通じて燃焼排ガス水分離部70へ送出される構成である。 A combustion exhaust gas passage 27 is formed between the first tubular wall 21 and the second tubular wall 22. A lower end portion of the combustion exhaust gas passage 27 communicates with the combustion chamber 25, and a gas exhaust pipe 28 for exhausting gas is connected to an upper end portion of the combustion exhaust gas passage 27. The combustion exhaust gas discharged from the combustion chamber 25 flows from the lower side to the upper side in the combustion exhaust gas flow path 27 and is sent to the combustion exhaust gas water separation unit 70 through the gas discharge pipe 28.
 また、二番目の筒状壁22と三番目の筒状壁23との間には、第1流路31が形成されている。この第1流路31の上部は、予熱流路32として形成されており、この予熱流路32の上端部には、都市ガスを供給するための原料供給管33と、改質用水を供給するための改質用水供給管34とが接続されている。さらに、二番目の筒状壁22と三番目の筒状壁23との間には、螺旋部材35が設けられており、この螺旋部材35により、予熱流路32は、螺旋状に形成されている。 Also, a first flow path 31 is formed between the second tubular wall 22 and the third tubular wall 23. An upper portion of the first flow passage 31 is formed as a preheating flow passage 32, and a raw material supply pipe 33 for supplying city gas and reforming water are supplied to an upper end portion of the preheating flow passage 32. Is connected to the reforming water supply pipe 34. Further, a spiral member 35 is provided between the second cylindrical wall 22 and the third cylindrical wall 23, and the preheating flow passage 32 is formed in a spiral shape by the spiral member 35. There is.
 予熱流路32には、都市ガスが原料供給管33から供給可能とされ、さらに、改質用水が改質用水供給管34から供給可能とされている。都市ガス及び改質用水は、予熱流路32を上側から下側に流れ、二番目の筒状壁22を介して燃焼排ガスと熱交換され水が気化される構成である。この予熱流路32では、都市ガス及び気相の改質用水、すなわち、水蒸気が混合されることにより、混合ガスが生成される構成である。 The city gas can be supplied to the preheating channel 32 from the raw material supply pipe 33, and further the reforming water can be supplied from the reforming water supply pipe 34. The city gas and the reforming water flow from the upper side to the lower side in the preheating channel 32, and are heat-exchanged with the combustion exhaust gas through the second cylindrical wall 22 to vaporize the water. In the preheating channel 32, the city gas and the reforming water in the vapor phase, that is, the steam are mixed to generate a mixed gas.
 また、第1流路31における予熱流路32の下側には、改質触媒層36が設けられており、予熱流路32にて生成された混合ガスは、改質触媒層36へ供給される構成である。改質触媒層36では、燃焼排ガス流路27を流れる燃焼排ガスからの熱を受け、混合ガスが水蒸気改質反応することによって、水素を主成分とする改質ガスが生成される構成である。 A reforming catalyst layer 36 is provided below the preheating channel 32 in the first channel 31, and the mixed gas generated in the preheating channel 32 is supplied to the reforming catalyst layer 36. It is a configuration. The reforming catalyst layer 36 receives heat from the combustion exhaust gas flowing through the combustion exhaust gas passage 27 and undergoes a steam reforming reaction of the mixed gas to generate a reformed gas containing hydrogen as a main component.
 さらに、三番目の筒状壁23と四番目の筒状壁24との間には、第2流路42が形成されている。第2流路42の下端部は、第1流路31の下端部と連通されている。第2流路42の下部は、改質ガス流路43として形成されており、第2流路42の上端部には、改質ガス排出管44が接続されている。 Furthermore, a second flow path 42 is formed between the third cylindrical wall 23 and the fourth cylindrical wall 24. The lower end of the second flow path 42 communicates with the lower end of the first flow path 31. A lower portion of the second flow passage 42 is formed as a reformed gas flow passage 43, and a reformed gas discharge pipe 44 is connected to an upper end portion of the second flow passage 42.
 また、第2流路42における改質ガス流路43よりも上側には、CO変成触媒層45が設けられており、改質触媒層36にて生成された改質ガスは、改質ガス流路43を通過した後、CO変成触媒層45へ供給される構成である。CO変成触媒層45では、改質ガスに含まれる一酸化炭素と水蒸気が水性シフト反応により水素と二酸化炭素に変換され、一酸化炭素が低減可能とされている。 Further, a CO shift conversion catalyst layer 45 is provided above the reformed gas passage 43 in the second passage 42, and the reformed gas generated in the reformed catalyst layer 36 is the reformed gas flow. After passing through the passage 43, it is supplied to the CO shift catalyst layer 45. In the CO conversion catalyst layer 45, carbon monoxide and water vapor contained in the reformed gas are converted into hydrogen and carbon dioxide by an aqueous shift reaction, and carbon monoxide can be reduced.
 さらに、CO変成触媒層45の上側には、酸化剤ガス供給管46が接続されており、第2流路42におけるCO変成触媒層45よりも上側には、CO選択酸化触媒層47が設けられている。酸化剤ガス供給管46を通じて取り入れられた酸化剤ガス、及び、CO変成触媒層45を通過した改質ガスは、CO選択酸化触媒層47へ供給される構成である。CO選択酸化触媒層47では、例えば白金やルテニウム等の貴金属触媒上で一酸化炭素が酸素と反応して二酸化炭素に変換され、一酸化炭素が除去可能とされている。CO変成触媒層45及びCO選択酸化触媒層47で一酸化炭素が低減された改質ガスG1は、改質ガス排出管44を通じて排出される構成である。 Further, an oxidant gas supply pipe 46 is connected to the upper side of the CO shift catalyst layer 45, and a CO selective oxidation catalyst layer 47 is provided above the CO shift catalyst layer 45 in the second flow path 42. ing. The oxidizing gas introduced through the oxidizing gas supply pipe 46 and the reformed gas that has passed through the CO shift catalyst layer 45 are supplied to the CO selective oxidation catalyst layer 47. In the CO selective oxidation catalyst layer 47, carbon monoxide reacts with oxygen and is converted into carbon dioxide on a noble metal catalyst such as platinum or ruthenium, and carbon monoxide can be removed. The reformed gas G1 in which carbon monoxide is reduced in the CO shift catalyst layer 45 and the CO selective oxidation catalyst layer 47 is discharged through the reformed gas discharge pipe 44.
 多重筒型改質器12において生成された改質ガスは、図1に示すように、昇圧前水分離部50、圧縮機80、昇圧後水分離部60、及び水素精製器90をこの順番で流れる。つまり、ガスの流れ方向において、上流側から下流側に、多重筒型改質器12、昇圧前水分離部50、圧縮機80、昇圧後水分離部60、及び水素精製器90がこの順番で配置されている。 As shown in FIG. 1, the reformed gas generated in the multi-tubular reformer 12 passes through the pre-pressurization water separation unit 50, the compressor 80, the post-pressurization water separation unit 60, and the hydrogen purifier 90 in this order. Flowing. That is, in the gas flow direction, from the upstream side to the downstream side, the multi-tubular reformer 12, the pre-pressurization water separation unit 50, the compressor 80, the post-pressurization water separation unit 60, and the hydrogen purifier 90 are arranged in this order. It is arranged.
 (昇圧前水分離部)
 昇圧前水分離部50には、多重筒型改質器12から改質ガスG1を流入させる改質ガス排出管44の下流端が接続されている。昇圧前水分離部50の底部には水回収管59が接続され、昇圧前水分離部50の上部には連絡流路管56が接続されている。改質ガスG1は、昇圧前水分離部50の上流の改質ガス排出管44に配置された後述する熱交換器HE1とチラー100において、冷媒との熱交換による冷却により水が凝縮されて分離され、昇圧前水分離部50の下部に液相の水が貯留可能とされている。当該液相の水は、水回収管59へ送出される構成である。水が凝縮された後の改質ガスG2は、連絡流路管56へ送出される構成である。なお、改質ガス排出管44が「改質ガス流路」に相当する。
(Pre-pressurization water separator)
The downstream end of a reformed gas discharge pipe 44, into which the reformed gas G1 flows from the multi-cylinder reformer 12, is connected to the pre-pressurization water separation unit 50. A water recovery pipe 59 is connected to the bottom of the pre-pressurization water separation unit 50, and a communication flow path pipe 56 is connected to the top of the pre-pressurization water separation unit 50. The reformed gas G1 is separated by condensing water by cooling by heat exchange with a refrigerant in a heat exchanger HE1 and a chiller 100 which are arranged in a reformed gas discharge pipe 44 upstream of the pre-pressurization water separation unit 50. The liquid-phase water can be stored under the pre-pressurization water separation unit 50. The liquid phase water is sent to the water recovery pipe 59. The reformed gas G2 after the water is condensed is sent to the communication flow path pipe 56. The reformed gas discharge pipe 44 corresponds to the “reformed gas passage”.
(熱交換器)
 熱交換器HE1は、水素製造装置10の外部の工業用水供給源と連通された工業用水供給管51と、水素製造装置10の外部と連通された工業用水排出管52とが接続されている。したがって、熱交換器HE1は、工業用水供給管51から供給された工業用水が改質ガスG1と熱交換され、すなわち、改質ガスが冷却され、熱交換後の工業用水が工業用水排出管52を通って水素製造装置10の外部に排出される構成である。なお、熱交換器HE1が「第1熱交換器」に相当する。また、工業用水が第1熱交換器の「冷媒」に相当する。
(Heat exchanger)
The heat exchanger HE1 is connected to an industrial water supply pipe 51 that communicates with an industrial water supply source outside the hydrogen production device 10 and an industrial water discharge pipe 52 that communicates with the outside of the hydrogen production device 10. Therefore, in the heat exchanger HE1, the industrial water supplied from the industrial water supply pipe 51 is heat-exchanged with the reformed gas G1, that is, the reformed gas is cooled, and the industrial water after the heat exchange is the industrial water discharge pipe 52. It is configured to be discharged to the outside of the hydrogen production device 10 through the. The heat exchanger HE1 corresponds to the “first heat exchanger”. Further, the industrial water corresponds to the "refrigerant" of the first heat exchanger.
(チラー)
 チラー100は、改質ガス排出管44上において熱交換器HE1の下流側に位置する。図1に示すように、改質ガス排出管44上に配設される熱交換部102と、熱交換部102と離間した位置に配設されるラジエータ104と、熱交換部102とラジエータ104との間でチラー水が循環されるチラー水循環流路106と、を有している。
(Chiller)
The chiller 100 is located on the reformed gas exhaust pipe 44 downstream of the heat exchanger HE1. As shown in FIG. 1, the heat exchange section 102 disposed on the reformed gas exhaust pipe 44, the radiator 104 disposed at a position separated from the heat exchange section 102, the heat exchange section 102 and the radiator 104. And a chiller water circulation channel 106 through which chiller water is circulated.
 チラー水循環流路106には、チラー水を循環させるためのポンプ107が配設されている。また、ラジエータ104には、熱交換部102における熱交換により高温となったチラー水を冷却するためのファン108が設けられている。 A pump 107 for circulating the chiller water is arranged in the chiller water circulation passage 106. Further, the radiator 104 is provided with a fan 108 for cooling the chiller water that has become high temperature due to heat exchange in the heat exchange section 102.
 すなわち、ラジエータ104において冷却されたチラー水がチラー水循環流路106を介して熱交換部102に供給され、改質ガス排出管44を流れる改質ガスと熱交換される、すなわち、改質ガスが冷却される構成である。なお、チラー100が「第2熱交換器」に相当する。また、チラー水が第2熱交換器の「冷媒」に相当する。 That is, the chiller water cooled in the radiator 104 is supplied to the heat exchange section 102 via the chiller water circulation flow path 106 and exchanges heat with the reformed gas flowing through the reformed gas discharge pipe 44, that is, the reformed gas is generated. The structure is cooled. The chiller 100 corresponds to the "second heat exchanger". The chiller water corresponds to the "refrigerant" of the second heat exchanger.
 (圧縮機)
 圧縮機80には、昇圧前水分離部50からの改質ガスG2が流れる連絡流路管56と、昇圧後水分離部60へ供給される改質ガスG2が流れる連絡流路管66とが接続されている。圧縮機80は、昇圧前水分離部50から供給された改質ガスG2を圧縮し、昇圧後水分離部60へ供給可能とされている。なお、圧縮機80が「昇圧部」に相当する。
(Compressor)
In the compressor 80, there are a communication flow passage pipe 56 through which the reformed gas G2 from the pre-pressurization water separation unit 50 flows, and a communication flow passage pipe 66 through which the reformed gas G2 supplied to the post-pressurization water separation unit 60 flows. It is connected. The compressor 80 is capable of compressing the reformed gas G2 supplied from the pre-pressurization water separation unit 50 and supplying it to the post-pressurization water separation unit 60. In addition, the compressor 80 corresponds to a “pressure booster”.
 (昇圧後水分離部)
 昇圧後水分離部60には、圧縮機80から改質ガスG2を流入させる連絡流路管66の下流端が接続されている。昇圧後水分離部60の底部には水回収管69が接続され、昇圧後水分離部60の上部には連絡流路管68が接続されている。改質ガスG2は、昇圧後水分離部60の上流の連絡流路管66に配置された後述するチラー110において、冷媒、すなわち、チラー水との熱交換による冷却により水が凝縮されて分離され、昇圧後水分離部60の下部に液相の水が貯留可能されている。当該液相の水は、水回収管69へ送出される構成である。水が凝縮された後の改質ガスG3は、連絡流路管68へ送出される構成である。
(Water separation unit after pressurization)
To the post-pressurization water separation unit 60, a downstream end of a communication flow pipe 66 that allows the reformed gas G2 to flow from the compressor 80 is connected. A water recovery pipe 69 is connected to the bottom of the post-pressurization water separation unit 60, and a communication channel pipe 68 is connected to the top of the post-pressurization water separation unit 60. The reformed gas G2 is separated and condensed in a chiller 110, which will be described later, disposed in the communication flow path pipe 66 upstream of the post-pressurization water separation unit 60 by cooling by heat exchange with a refrigerant, that is, chiller water. After the pressurization, liquid phase water can be stored in the lower part of the water separation unit 60. The liquid phase water is sent to the water recovery pipe 69. The reformed gas G3 after the water is condensed is sent to the communication flow path pipe 68.
(チラー)
 チラー110は、チラー100と同様に、熱交換部112、ラジエータ114、チラー水循環流路116、ポンプ117を備えている。また、ラジエータ114には、ラジエータ104と同様にファン118が設けられている。
(Chiller)
Like the chiller 100, the chiller 110 includes a heat exchange section 112, a radiator 114, a chiller water circulation passage 116, and a pump 117. In addition, the radiator 114 is provided with a fan 118, like the radiator 104.
 (水素精製器)
 水素精製器90には、昇圧後水分離部60からの改質ガスG3が流れる連絡流路管68の下流端と、水素精製器90のオフガスが流れるオフガス還流管120の上流端とが接続されている。
(Hydrogen refiner)
The hydrogen purifier 90 is connected to the downstream end of the communication flow pipe 68 through which the reformed gas G3 from the post-pressurization water separation unit 60 flows and the upstream end of the offgas reflux pipe 120 through which the offgas of the hydrogen purifier 90 flows. ing.
 水素精製器90は、一例として、PSA装置が使用されている。この水素精製器90では、一対の吸着槽を備え、一方の吸着槽で吸着剤に不純物を吸着させる吸着工程を行い、他方の吸着槽で吸着剤に吸着した不純物を脱着させる脱着工程を行い、次に一方の吸着槽で脱着工程、他方の吸着槽で吸着工程を行う。これを周期的に繰り返すことで、改質ガスG3を水素と一酸化炭素を含む不純物、すなわち、オフガスOGとに連続的に分離して、水素が精製される構成である。精製された水素は、水素供給管92へ送出され、不図示のタンクへ貯留されたり、水素供給ラインへ送出可能とされている。 As the hydrogen purifier 90, a PSA device is used as an example. The hydrogen purifier 90 includes a pair of adsorption tanks, one adsorption tank performs an adsorption step of adsorbing impurities on the adsorbent, and the other adsorption tank performs a desorption step of desorbing the impurities adsorbed on the adsorbent, Next, the desorption process is performed in one adsorption tank, and the adsorption process is performed in the other adsorption tank. By repeating this periodically, the reformed gas G3 is continuously separated into hydrogen and impurities containing carbon monoxide, that is, off-gas OG, and hydrogen is purified. The purified hydrogen is sent to the hydrogen supply pipe 92, can be stored in a tank (not shown), or can be sent to the hydrogen supply line.
 水素精製器90のオフガスは、オフガス還流管120を介して改質器12のバーナー26へ供給可能とされている。なお、オフガス還流管120上には、オフガスを一旦貯留してバーナー26に流すことにより、水素精製器90から供給されるオフガスの組成や流量を平準化してバーナー26に供給するためのオフガスタンク122が設けられている。 The off gas of the hydrogen purifier 90 can be supplied to the burner 26 of the reformer 12 via the off gas reflux pipe 120. It should be noted that the off-gas tank 122 for temporarily storing the off-gas on the off-gas recirculation pipe 120 and flowing the same to the burner 26 to equalize the composition and flow rate of the off-gas supplied from the hydrogen purifier 90 and supply the off-gas to the burner 26. Is provided.
 (燃焼排ガス水分離部)
 燃焼排ガス水分離部70には、改質器12の燃焼排ガス流路27から燃焼排ガスを導くガス排出管28の下流端が接続されている。燃焼排ガス水分離部70の底部には水回収管78が接続され、燃焼排ガス水分離部70の上部にはガス排出管76が接続されている。燃焼室25から排出される燃焼排ガスは、燃焼排ガス水分離部70の上流のガス排出管28に配置された熱交換器HE3において、冷却水との熱交換による冷却により水が凝縮されて分離され、燃焼排ガス水分離部70の下部に液相の水が貯留可能とされている。当該液相の水は、水回収管78へ送出される構成である。水が凝縮された後の燃焼排ガスは、ガス排出管76から外気中へ排出される構成である。
(Combustion exhaust gas water separation unit)
The downstream end of a gas exhaust pipe 28 that guides the combustion exhaust gas from the combustion exhaust gas flow path 27 of the reformer 12 is connected to the combustion exhaust gas water separation unit 70. A water recovery pipe 78 is connected to the bottom of the combustion exhaust gas water separation unit 70, and a gas discharge pipe 76 is connected to the upper portion of the combustion exhaust gas water separation unit 70. The combustion exhaust gas discharged from the combustion chamber 25 is separated and condensed in the heat exchanger HE3 arranged in the gas discharge pipe 28 upstream of the combustion exhaust gas water separation unit 70 by cooling by heat exchange with cooling water. The liquid water can be stored under the combustion exhaust gas water separation unit 70. The liquid phase water is sent to the water recovery pipe 78. The combustion exhaust gas after the water is condensed is discharged from the gas discharge pipe 76 into the outside air.
 水回収管59、69、78の各々の下流端は、改質用水供給管34に接続されている。改質用水供給管34には、溶存イオン成分を除去するためのイオン交換樹脂からなる水処理器34Aが設けられている。また、改質用水供給管34には、外部水供給部17が接続されている。外部水供給部17から改質用水供給管34に、例えば純水または市水が供給される構成である。 The downstream end of each of the water recovery pipes 59, 69, 78 is connected to the reforming water supply pipe 34. The reforming water supply pipe 34 is provided with a water treatment device 34A made of an ion exchange resin for removing dissolved ion components. The external water supply unit 17 is connected to the reforming water supply pipe 34. For example, pure water or city water is supplied from the external water supply unit 17 to the reforming water supply pipe 34.
 さらに、改質用水供給管34には、ポンプP1が設けられている。昇圧前水分離部50、昇圧後水分離部60、燃焼排ガス水分離部70で分離された水、又は外部水供給部17から供給された水は、ポンプP1によって多重筒型改質器12へ供給される構成である。 Further, the reforming water supply pipe 34 is provided with a pump P1. The water separated by the pre-pressurization water separation unit 50, the post-pressurization water separation unit 60, the combustion exhaust gas water separation unit 70, or the water supplied from the external water supply unit 17 is sent to the multi-tubular reformer 12 by the pump P1. It is a configuration to be supplied.
 (作用)
 次に、水素製造装置10の作用について説明する。
(Action)
Next, the operation of the hydrogen production device 10 will be described.
 都市ガスが、原料供給管33から多重筒型改質器12に供給される。図2に示すように、多重筒型改質器12へ供給された都市ガスは、多重筒型改質器12の予熱流路32で改質用の水と混合されつつ加熱され、改質触媒層36へ供給される。改質触媒層36では、混合ガスが燃焼排ガス流路27を流れる燃焼排ガスからの熱を受けて水蒸気改質反応を生じ、水素を主成分とする改質ガスが生成される。この改質ガスは、改質ガス流路43を通ってCO変成触媒層45へ供給される。CO変成触媒層45では、改質ガスに含まれる一酸化炭素と水蒸気が反応して、水素と二酸化炭素に変換され、一酸化炭素が低減される。 City gas is supplied from the raw material supply pipe 33 to the multi-cylinder reformer 12. As shown in FIG. 2, the city gas supplied to the multi-cylinder reformer 12 is heated while being mixed with the reforming water in the preheating channel 32 of the multi-cylinder reformer 12, and the reforming catalyst It is supplied to the layer 36. In the reforming catalyst layer 36, the mixed gas receives heat from the combustion exhaust gas flowing through the combustion exhaust gas passage 27 to cause a steam reforming reaction, and a reformed gas containing hydrogen as a main component is generated. The reformed gas is supplied to the CO shift catalyst layer 45 through the reformed gas passage 43. In the CO conversion catalyst layer 45, carbon monoxide contained in the reformed gas reacts with steam to be converted into hydrogen and carbon dioxide, and carbon monoxide is reduced.
 さらに、CO変成触媒層45を通過した改質ガスは、酸化剤ガス供給管46から供給される酸化ガス(空気)と共にCO選択酸化触媒層47へ供給され、貴金属触媒上で一酸化炭素が酸素と反応して二酸化炭素に変換され、一酸化炭素が除去される。CO選択酸化触媒層47で一酸化炭素が低減された改質ガスG1は、改質ガス排出管44へ送出される。 Further, the reformed gas that has passed through the CO conversion catalyst layer 45 is supplied to the CO selective oxidation catalyst layer 47 together with the oxidizing gas (air) supplied from the oxidizing gas supply pipe 46, and carbon monoxide is converted into oxygen on the precious metal catalyst. Reacts with and is converted to carbon dioxide, and carbon monoxide is removed. The reformed gas G1 in which carbon monoxide is reduced in the CO selective oxidation catalyst layer 47 is sent to the reformed gas discharge pipe 44.
 この際、多重筒型改質器12の燃焼室25では、原料分岐管33Aと空気分岐管40Aから供給された都市ガスと空気とが混合された気体、又はオフガス還流管120から供給されるオフガスがバーナー26によって燃焼される。燃焼排ガスは、燃焼室25から燃焼排ガス流路27、ガス排出管28を介して燃焼排ガス水分離部70へ供給される。図1に示すように、燃焼排ガスに含まれる水は、熱交換器HE3での熱交換により冷却されて凝縮され、燃焼排ガス水分離部70に貯留され、水回収管78へ送出される。水が分離された燃焼排ガスは、ガス排出管76から外気中へ排出される。 At this time, in the combustion chamber 25 of the multi-cylinder reformer 12, a gas obtained by mixing the city gas and air supplied from the raw material branch pipe 33A and the air branch pipe 40A or an off gas supplied from the off gas recirculation pipe 120. Are burned by the burner 26. The combustion exhaust gas is supplied from the combustion chamber 25 to the combustion exhaust gas water separation unit 70 via the combustion exhaust gas flow passage 27 and the gas exhaust pipe 28. As shown in FIG. 1, the water contained in the combustion exhaust gas is cooled and condensed by heat exchange in the heat exchanger HE3, stored in the combustion exhaust gas water separation unit 70, and sent to the water recovery pipe 78. The combustion exhaust gas from which the water has been separated is discharged from the gas discharge pipe 76 into the outside air.
 一方、図1に示すように、改質ガスG1は、改質器12において水蒸気改質反応や水性シフト反応によって高温、例えば、100℃にされる。改質ガス排出管44を流れる改質ガスG1は、先ず熱交換器HE1で工業用水と熱交換され、例えば32℃まで冷却される。熱交換器HE1で冷却された改質ガスG1は、さらにチラー100の熱交換部102でチラー水と熱交換され、さらに、例えば10℃まで冷却される。 On the other hand, as shown in FIG. 1, the reformed gas G1 is heated to a high temperature, for example, 100 ° C. in the reformer 12 by a steam reforming reaction or an aqueous shift reaction. The reformed gas G1 flowing through the reformed gas discharge pipe 44 is first heat-exchanged with industrial water by the heat exchanger HE1 and cooled to, for example, 32 ° C. The reformed gas G1 cooled in the heat exchanger HE1 is further heat-exchanged with the chiller water in the heat exchange section 102 of the chiller 100, and further cooled to, for example, 10 ° C.
 この結果、改質ガス排出管44を流れる改質ガスG1は、熱交換器HE1、チラー100で冷却されることにより、水蒸気が凝縮される。 As a result, the reformed gas G1 flowing through the reformed gas discharge pipe 44 is cooled by the heat exchanger HE1 and the chiller 100, so that the steam is condensed.
 この改質ガスG1が、改質ガス排出管44を経て、昇圧前水分離部50へ供給される。昇圧前水分離部50では、熱交換器HE1とチラー100での熱交換による冷却により凝縮された水が貯留され、水回収管59へ送出される。水が分離された改質ガスG2は、連絡流路管56から圧縮機80へ供給され、圧縮機80によって圧縮される。 The reformed gas G1 is supplied to the pre-pressurization water separation unit 50 via the reformed gas discharge pipe 44. In the pre-pressurization water separation unit 50, water condensed by cooling by heat exchange in the heat exchanger HE1 and the chiller 100 is stored and sent to the water recovery pipe 59. The reformed gas G2 from which the water has been separated is supplied to the compressor 80 from the communication flow path pipe 56 and is compressed by the compressor 80.
 圧縮された改質ガスG2は、連絡流路管66から昇圧後水分離部60へ供給される。昇圧後水分離部60では、チラー110での熱交換による冷却により凝縮された水が貯留され、水回収管69へ送出される。水が分離された改質ガスG3は、連絡流路管68から水素精製器90へ供給される。 The compressed reformed gas G2 is supplied to the water separation unit 60 after pressurization from the communication flow pipe 66. In the post-pressurization water separation unit 60, water condensed by cooling by heat exchange in the chiller 110 is stored and sent to the water recovery pipe 69. The reformed gas G3 from which water has been separated is supplied to the hydrogen purifier 90 from the communication flow path pipe 68.
 なお、昇圧前水分離部50、昇圧後水分離部60、燃焼排ガス水分離部70からそれぞれ水回収管59、69、78に送出された水は、改質用水供給管34に戻される。ポンプP1の駆動により、改質用水供給管34から多重筒型改質器12に改質用水として供給される。 The water sent from the pre-pressurization water separation unit 50, the post-pressurization water separation unit 60, and the combustion exhaust gas water separation unit 70 to the water recovery pipes 59, 69, and 78 is returned to the reforming water supply pipe 34. By driving the pump P1, the reforming water supply pipe 34 supplies the reforming water to the multi-cylinder reformer 12.
 水素精製器90では、圧力スイング方式が採用されており、一対の吸着槽の一方では吸着剤に水素以外の不純物が吸着され、他方の吸着槽では吸着剤に吸着された不純物が脱着されている。水素精製器90では、この吸着工程と脱着工程をそれぞれの吸着槽で一定の周期で繰り返すことにより、改質ガスG3から連続的に水素と不純物が分離されて水素が精製される。 The hydrogen purifier 90 employs a pressure swing method, in which one of the pair of adsorption tanks adsorbs impurities other than hydrogen in the adsorbent and the other adsorption tank desorbs the impurities adsorbed in the adsorbent. .. In the hydrogen purifier 90, the adsorption step and the desorption step are repeated in each adsorption tank at a constant cycle to continuously separate hydrogen and impurities from the reformed gas G3 to purify hydrogen.
 水素精製器90で精製された製品としての水素は水素供給管92へ送出され、不図示のタンクへ貯留されたり、水素供給ラインへ送られたりする。 Hydrogen as a product purified by the hydrogen purifier 90 is sent to the hydrogen supply pipe 92, stored in a tank (not shown), or sent to the hydrogen supply line.
 一方、水素精製器90から排出されたオフガスOGは、オフガス還流管120を流れ、オフガスタンク122に一旦貯留された後、改質器12の燃焼室25に配設されたバーナー26に流量や組成が平準化されて供給される。 On the other hand, the off-gas OG discharged from the hydrogen purifier 90 flows through the off-gas recirculation pipe 120, is temporarily stored in the off-gas tank 122, and is then stored in the burner 26 provided in the combustion chamber 25 of the reformer 12 in terms of flow rate and composition. Is leveled and supplied.
 このように、水素製造装置10では、改質ガス排出管44上で、改質器12から送出された高温の改質ガスG1を、先ず熱交換器HE1で冷却した後、チラー100で冷却して昇圧前水分離部50に供給し、改質ガスG1から凝縮された水を分離している。 As described above, in the hydrogen production device 10, the high temperature reformed gas G1 sent from the reformer 12 is first cooled by the heat exchanger HE1 and then cooled by the chiller 100 on the reformed gas discharge pipe 44. Water is supplied to the pre-pressurization water separation unit 50 to separate condensed water from the reformed gas G1.
 すなわち、チラー100の上流側に熱交換器HE1を設けたため、チラー100の冷却負荷が軽減され、チラー100の小型化を図ることができる。 That is, since the heat exchanger HE1 is provided on the upstream side of the chiller 100, the cooling load of the chiller 100 is reduced, and the chiller 100 can be downsized.
 また、熱交換器HE1は、工場等に供給される工業用水と改質ガスG1が熱交換するものであり、水素製造装置10の外部の工業水供給源から工業用水が供給され、熱交換された工業用水が水素製造装置10の外部に排出されている冷媒非循環型である。したがって、熱交換器HE1は、冷媒循環型の熱交換器と比較して小型であり、熱交換器HE1を追加することによる水素製造装置10の大型化が抑制される。 The heat exchanger HE1 is for exchanging heat between the industrial water supplied to the factory and the reformed gas G1, and the industrial water is supplied from an industrial water supply source outside the hydrogen production apparatus 10 to perform heat exchange. The industrial water is a refrigerant non-circulation type that is discharged to the outside of the hydrogen production apparatus 10. Therefore, the heat exchanger HE1 is smaller than the refrigerant circulation type heat exchanger, and an increase in the size of the hydrogen production device 10 due to the addition of the heat exchanger HE1 is suppressed.
 特に、熱交換器HE1は、改質ガスG1と工業用水が熱交換する部分を除けば、工業用水供給管51と工業用水排出管52を設け、工業用水供給管51を水素製造装置10の外部の工業用水供給源に接続するだけで良いので、簡単な構成であると共に、熱交換器HE1を設けることによる水素製造装置10の大型化が一層抑制される。 In particular, the heat exchanger HE1 is provided with an industrial water supply pipe 51 and an industrial water discharge pipe 52 except for the portion where the reformed gas G1 and the industrial water exchange heat, and the industrial water supply pipe 51 is connected to the outside of the hydrogen production apparatus 10. Since it suffices to connect it to the industrial water supply source described above, it has a simple structure and further suppresses the increase in size of the hydrogen production device 10 due to the provision of the heat exchanger HE1.
 したがって、冷媒循環型のチラー単独で冷却していた場合と比較して、冷媒非循環型の熱交換器HE1と冷媒循環型のチラー100の組み合わせにした方が水素製造装置10を小型化することができる。 Therefore, as compared with the case where the refrigerant circulation type chiller alone is used for cooling, the combination of the refrigerant non-circulation type heat exchanger HE1 and the refrigerant circulation type chiller 100 can reduce the size of the hydrogen production device 10. You can
 一方、熱交換器HE1で用いられる工業用水は、例えば32℃程度なので、高温、例えば100℃で改質器12から排出される改質ガスG1を十分に冷却することができる。すなわち、冷媒非循環型の熱交換器HE1と小型化された冷媒循環型のチラー100との組み合わせで所定の冷却能力を確保することができる。 On the other hand, since the industrial water used in the heat exchanger HE1 is, for example, about 32 ° C., the reformed gas G1 discharged from the reformer 12 can be sufficiently cooled at a high temperature, for example, 100 ° C. That is, a predetermined cooling capacity can be secured by combining the non-refrigerant heat exchanger HE1 and the downsized refrigerant circulation chiller 100.
 このように、水素製造装置10は、圧縮機80(昇圧前水分離部50)に供給される改質ガスG1を単独のチラーで冷却するものと比較して、冷却能力を確保(維持)しつつ小型化することができる。 As described above, the hydrogen production device 10 secures (maintains) the cooling capacity as compared with the case where the reformed gas G1 supplied to the compressor 80 (pre-pressurizing water separation unit 50) is cooled by a single chiller. It can be miniaturized.
 また、水素製造装置10の設置場所で既に工業用水が使用されている場合には、この工業用水の一部を熱交換器HE1に供給するだけで、簡単に熱交換器HE1による冷却が可能になる。 Further, when industrial water is already used at the installation location of the hydrogen production device 10, it is possible to easily cool it by the heat exchanger HE1 by only supplying a part of this industrial water to the heat exchanger HE1. Become.
[その他]
 なお、本実施形態に係る水素製造装置10では、冷媒非循環型の熱交換器として工業用水が改質ガスG1と熱交換する熱交換器HE1を説明したが、これに限定するものではない。例えば、液化天然ガスの冷熱を活用する熱交換器であっても良い。
[Other]
In the hydrogen production device 10 according to the present embodiment, the heat exchanger HE1 in which industrial water exchanges heat with the reformed gas G1 is described as a refrigerant non-circulation type heat exchanger, but the present invention is not limited to this. For example, it may be a heat exchanger that utilizes the cold heat of liquefied natural gas.
 また、例えば、改質ガスG1と熱交換するエアフィンクーラーでも良い。この場合には、改質ガス排出管44の一部を多数の管に分岐し、水素製造装置10の外部から冷媒である空気を導入してこの分岐部分に吹き付けることにより改質ガスG1を冷却すると共に、熱交換された空気を水素製造装置10の外部に排出すれば良い。 Also, for example, an air fin cooler that exchanges heat with the reformed gas G1 may be used. In this case, a part of the reformed gas discharge pipe 44 is branched into a large number of pipes, air that is a refrigerant is introduced from the outside of the hydrogen production apparatus 10 and blown to this branched portion to cool the reformed gas G1. At the same time, the heat-exchanged air may be discharged to the outside of the hydrogen production device 10.
 すなわち、冷媒非循環型の熱交換器としては、水素製造装置10の外部から冷媒が供給され、熱交換された冷媒が水素製造装置10の外部に排出されるものであれば良い。 That is, the refrigerant non-circulation type heat exchanger may be any one as long as the refrigerant is supplied from the outside of the hydrogen producing apparatus 10 and the heat-exchanged refrigerant is discharged to the outside of the hydrogen producing apparatus 10.
 また、本実施形態の工業用水とは、工業用水道から供給される工業用水のみならず、井戸、海、河川等から供給される水や中水道から供給される水等を含むものである。 Further, the industrial water of the present embodiment includes not only industrial water supplied from the industrial water supply, but also water supplied from wells, the sea, rivers, etc. and water supplied from the tap water.
 実施形態に係る水素製造装置10では、それぞれ改質器12を多重筒型改質器としたが、これに限定されるものではない。都市ガスから水素を主成分とする改質ガスに改質可能なものであれば良い。 In the hydrogen production device 10 according to the embodiment, the reformer 12 is a multi-cylinder reformer, but the invention is not limited to this. It is only necessary that the city gas can be reformed into a reformed gas containing hydrogen as a main component.
 また、実施形態に係る水素製造装置10では、水素精製器90がPSA装置である場合について説明したが、改質ガスG3から水素を精製できるものであれば、これに限定するものではない。 Further, in the hydrogen production device 10 according to the embodiment, the case where the hydrogen purifier 90 is a PSA device has been described, but the hydrogen purifier 90 is not limited to this as long as hydrogen can be purified from the reformed gas G3.
 さらに、実施形態に係る水素製造装置10では、改質器12において改質ガスから一酸化炭素を除去するために、CO変成触媒層45とCO選択酸化触媒層47とが設けられているが、CO変成触媒層45のみで構成しても良い。 Further, in the hydrogen production device 10 according to the embodiment, the CO shift conversion catalyst layer 45 and the CO selective oxidation catalyst layer 47 are provided in order to remove carbon monoxide from the reformed gas in the reformer 12, You may comprise only the CO conversion catalyst layer 45.
 また、実施形態に係る水素製造装置では、昇圧部の一例として圧縮機80について説明したが、改質ガスG2を昇圧して水素精製器90に供給するものではあれば、これに限定するものではない。 Further, in the hydrogen production apparatus according to the embodiment, the compressor 80 has been described as an example of the pressure increasing unit, but if the pressure is high and the reformed gas G2 is supplied to the hydrogen purifier 90, the present invention is not limited thereto. Absent.
 2018年11月12付けの日本国特許出願2018-212518の開示はその全体が参照により本明細書に取り込まれる。 The disclosure of Japanese Patent Application 2018-212518 dated November 12, 2018 is incorporated herein by reference in its entirety.
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All publications, patent applications, and technical standards mentioned herein are to the same extent as if each individual publication, patent application, and technical standard were specifically and individually noted to be incorporated by reference, Incorporated herein by reference.

Claims (2)

  1.  炭化水素供給源から炭化水素が原料として供給されると共に、前記炭化水素を改質して水素を主成分とした改質ガスを生成する改質器と、
     前記改質器と接続され、前記改質ガスを昇圧する昇圧部と、
     前記昇圧部と接続され、前記改質ガスを製品水素と不純物であるオフガスとに分離して製品水素を精製する水素精製器と、
     前記改質器と前記昇圧部とを結ぶ改質ガス流路上に設けられ、前記改質ガスが冷媒と熱交換することにより冷却される冷媒非循環型の第1熱交換器と、
     前記改質ガス流路上で前記第1熱交換器の下流側に設けられ、前記改質ガスが冷媒と熱交換することによりを冷却されて当該改質ガスに含有された水蒸気が凝縮される冷媒循環型の第2熱交換器と、
     を備える水素製造装置。
    A hydrocarbon is supplied as a raw material from a hydrocarbon supply source, and a reformer that reforms the hydrocarbon to generate a reformed gas containing hydrogen as a main component,
    A booster connected to the reformer and boosting the reformed gas;
    A hydrogen purifier that is connected to the booster unit and that purifies the product hydrogen by separating the reformed gas into product hydrogen and off gas that is an impurity,
    A first heat exchanger of a refrigerant non-circulation type, which is provided on a reformed gas flow path connecting the reformer and the booster, and is cooled by heat exchange of the reformed gas with a refrigerant,
    A refrigerant provided on the reformed gas passage downstream of the first heat exchanger and cooled by heat exchange of the reformed gas with a refrigerant to condense steam contained in the reformed gas. A circulation type second heat exchanger,
    Hydrogen production device equipped with.
  2.  前記第1熱交換器で使用される冷媒は、工業用水である請求項1記載の水素製造装置。 The hydrogen generator according to claim 1, wherein the refrigerant used in the first heat exchanger is industrial water.
PCT/JP2019/039389 2018-11-12 2019-10-04 Hydrogen production apparatus WO2020100463A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018212518A JP6553273B1 (en) 2018-11-12 2018-11-12 Hydrogen production equipment
JP2018-212518 2018-11-12

Publications (1)

Publication Number Publication Date
WO2020100463A1 true WO2020100463A1 (en) 2020-05-22

Family

ID=67473280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039389 WO2020100463A1 (en) 2018-11-12 2019-10-04 Hydrogen production apparatus

Country Status (2)

Country Link
JP (1) JP6553273B1 (en)
WO (1) WO2020100463A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913220B (en) * 2020-07-10 2022-12-02 中国石油化工股份有限公司 Reformed hydrogen separation method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213559A (en) * 2010-04-01 2011-10-27 Toshiba Corp Reformed gas or hydrogen production system
JP2017088490A (en) * 2015-11-09 2017-05-25 東京瓦斯株式会社 Hydrogen production apparatus
WO2017154044A1 (en) * 2016-03-10 2017-09-14 日揮株式会社 Novel production equipment and production method of liquefied hydrogen and liquefied natural gas
JP2018123038A (en) * 2017-02-03 2018-08-09 東京瓦斯株式会社 Hydrogen production apparatus
JP2018162194A (en) * 2017-03-27 2018-10-18 東京瓦斯株式会社 Hydrogen production apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213559A (en) * 2010-04-01 2011-10-27 Toshiba Corp Reformed gas or hydrogen production system
JP2017088490A (en) * 2015-11-09 2017-05-25 東京瓦斯株式会社 Hydrogen production apparatus
JP2017088489A (en) * 2015-11-09 2017-05-25 東京瓦斯株式会社 Hydrogen production apparatus
WO2017154044A1 (en) * 2016-03-10 2017-09-14 日揮株式会社 Novel production equipment and production method of liquefied hydrogen and liquefied natural gas
JP2018123038A (en) * 2017-02-03 2018-08-09 東京瓦斯株式会社 Hydrogen production apparatus
JP2018162194A (en) * 2017-03-27 2018-10-18 東京瓦斯株式会社 Hydrogen production apparatus

Also Published As

Publication number Publication date
JP6553273B1 (en) 2019-07-31
JP2020079178A (en) 2020-05-28

Similar Documents

Publication Publication Date Title
JP2008500940A (en) Apparatus and method for cooling in a hydrogen plant
JP2010138051A (en) Method of coproducing methanol and ammonia
JP5743215B2 (en) Helium gas purification method and purification apparatus
JP2017088490A (en) Hydrogen production apparatus
JP5614808B2 (en) Helium gas purification method and purification apparatus
JP5896467B2 (en) Argon gas purification method and purification apparatus
JP5748272B2 (en) Helium gas purification method and purification apparatus
JP5683390B2 (en) Helium gas purification method and purification apparatus
JP5791113B2 (en) Argon gas purification method and purification apparatus
WO2020100463A1 (en) Hydrogen production apparatus
JP5729765B2 (en) Helium gas purification method and purification apparatus
JP6530123B1 (en) Hydrogen production equipment
KR101720799B1 (en) Purifying method and purifying apparatus for argon gas
KR101909291B1 (en) Purifying method and purifying apparatus for argon gas
KR20020007068A (en) Multi Purpose Oxygen Generator using Pressure Swing Adsorption and Method
JP2004075439A (en) Hydrogen generating apparatus
JP7129332B2 (en) Hydrogen production equipment
JP7181080B2 (en) Hydrogen production equipment
JP2019151537A (en) Hydrogen production device
JP2019055893A (en) Hydrogen production apparatus
JP2012106904A (en) Method and apparatus for purifying argon gas
JP2020079176A (en) Hydrogen production system
JP2020111492A (en) Hydrogen production system
JP7082939B2 (en) Hydrogen production equipment
JP5761751B2 (en) Argon gas purification method and purification apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884789

Country of ref document: EP

Kind code of ref document: A1