WO2020085040A1 - Vehicle drive control device, vehicle drive control method, and program - Google Patents

Vehicle drive control device, vehicle drive control method, and program Download PDF

Info

Publication number
WO2020085040A1
WO2020085040A1 PCT/JP2019/039246 JP2019039246W WO2020085040A1 WO 2020085040 A1 WO2020085040 A1 WO 2020085040A1 JP 2019039246 W JP2019039246 W JP 2019039246W WO 2020085040 A1 WO2020085040 A1 WO 2020085040A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
road
deceleration
acceleration
drive
Prior art date
Application number
PCT/JP2019/039246
Other languages
French (fr)
Japanese (ja)
Inventor
宏之 坂本
関口 秀樹
鈴木 圭介
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2020085040A1 publication Critical patent/WO2020085040A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle drive control device, a vehicle drive control method, and a program.
  • Known driving support technologies include a cruise control function, a lane keeping support function, an automatic driving function, an automatic emergency braking function, and an emergency steering avoidance support function.
  • Patent Document 1 states that "when an obstacle exists in front of the own vehicle, the vehicle characteristics are changed according to the remaining road width at the position where the obstacle exists, that is, the remaining road width through which the own vehicle can pass". Have been described.
  • Patent Document 1 mainly contributes to the improvement of safety during driving, and is not frequently required in a normal driving scene, so that it is necessary for the driver from the viewpoint of drivability. There are few parts corresponding to the problem.
  • Patent Document 1 in order to reflect the driver's driving intention with respect to deceleration, it is known that a change in road width as a vehicle condition has a great influence on the driving intention.
  • Patent Document 1 has a description regarding the reduction of the road width remaining amount, it does not describe the expansion of the road width.
  • the technique disclosed in Patent Document 1 does not improve the drivability of the driver, because the main content is a construction for avoiding danger by construction and parking vehicles.
  • the driver has a request to reduce the speed if the road width of the road on which the vehicle is traveling is narrow, and does not want to decrease the speed if the road width is wide. Since the difference in the speed feeling intended by the driver correlates with the magnitude of the acceleration / deceleration requested by the driver, it is considered that the request for acceleration / deceleration according to the width of the road width is generated similarly to the speed request. To be For this reason, even in a scene in which the driver does not actually recognize the danger, the conventional technique has not been able to sufficiently support the increase or decrease in the driver's sense of security.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a driver with comfortable drivability even when the road width of a road on which a vehicle travels changes.
  • the vehicle drive control device based on the road width or the shoulder width of the road in the traveling direction of the vehicle that accelerates or decelerates the road, the driving force for the vehicle to reach a target acceleration or deceleration.
  • the rotational speed of the target generator that corrects the braking force and outputs the corrected driving force or braking force information and the corrected driving force or braking force information that drives the vehicle.
  • a drive command unit that outputs the drive command.
  • the vehicle travels so as to reach the target acceleration or deceleration by the driving force or the braking force corrected based on the road width or the shoulder width of the road in the traveling direction of the vehicle that accelerates or decelerates. Therefore, the driver can be provided with comfortable drivability. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
  • FIG. 3 is an explanatory diagram showing an example of a speed limit set for each road on which a vehicle travels according to the first embodiment of the present invention and an acceleration correction coefficient for a vehicle speed (actual vehicle speed) of a vehicle traveling on this road. is there.
  • 5 is a flowchart showing an example of processing in which the vehicle drive target generation unit according to the first embodiment of the present invention determines whether or not control of braking / driving force is applicable.
  • 6 is a chart showing an example of timing of limiting the rate of change with respect to the target acceleration / deceleration according to the first embodiment of the present invention. It is a functional block diagram which shows the system structural example of the vehicle which has the internal combustion engine which concerns on the 2nd Embodiment of this invention.
  • the driver was driving based on road conditions. Normally, the acceleration / deceleration control operated by the driver is performed on the assumption that a general road is used, and thus it has not been possible to cope with changes in the visual information of the driver.
  • the change in road width has a large effect on the change in visual information. For example, at the time of deceleration of the vehicle, when the road width in the forward direction, which is the traveling direction of the vehicle, is wide, there is no problem even if the control for slowing down is performed. The discomfort in sex becomes stronger. On the contrary, if the road width is narrowed, the frequency of the driver's stepping on the brake pedal is increased in the case of a vehicle in which the driver is required to decelerate earlier, but the vehicle is controlled so as to decelerate slowly.
  • the present inventor improves the driver's sense of security and comfort by further setting the acceleration / deceleration using the road width of the road information of the road on which the vehicle is traveling, and further enhances the drivability.
  • We examined possible controls. Embodiments for carrying out the present invention will be described below with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same function or configuration are designated by the same reference numerals, and duplicate description will be omitted.
  • FIG. 1 is a schematic diagram showing a system configuration example of a vehicle 10 according to the first embodiment of the present invention.
  • Vehicle 10 according to the present embodiment is, for example, an electric vehicle.
  • This vehicle 10 includes a vehicle drive control device 1, a road information output device 2, a friction braking control device 3, a power equipment control device 4, a power equipment 5, a differential gear 6, a right drive shaft 7a and a right tire 7, a left drive shaft. 8a and the left tire 8.
  • the vehicle drive control device 1 is an example of a computer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the CPU reads the program code of the software that realizes each function according to the present embodiment from the ROM and executes the program code. Variables, parameters, etc. generated during the arithmetic processing are temporarily written in the RAM.
  • the ROM is used as an example of a computer-readable non-transitory recording medium that stores programs and data necessary for the CPU to operate.
  • the vehicle drive control device 1 is connected to the road information output device 2, the friction braking control device 3 and the power equipment control device 4 by an in-vehicle communication function via a communication line.
  • the vehicle drive control device 1 inputs the road information output from the road information output device 2.
  • the road information output device 2 is a navigation system, a vehicle-mounted camera, or the like, and outputs road information regarding the road on which the vehicle 10 travels.
  • the road information includes information such as road width, shoulder width, and road sidewall height of the road on which the vehicle 10 travels.
  • the vehicle drive control device 1 is also based on the position of the select lever, the depression state of the accelerator or the brake, and the like, the system start / stop of the vehicle drive system, the target drive force calculation, the friction braking control device 3 (an example of the braking control device). And the command value output to the power equipment control device 4 (an example of the power control device) can be performed.
  • the friction braking control device 3 performs control for applying friction braking force to a brake pad (an example of a braking device) (not shown) provided on the right tire 7 and the left tire 8 of the vehicle 10. By the control of the friction braking control device 3, for example, the brake pad comes into contact with the brake disc to generate a friction braking force, and the vehicle 10 is decelerated.
  • the power equipment control device 4 performs control for applying a driving force to the power equipment 5 by electrically controlling an electric motor shown as the power equipment 5 (an example of the power equipment).
  • the output shaft of the power device 5 is connected to the differential device 6 and is power-divided into a right drive shaft 7a and a left drive shaft 8a to drive the right tire 7 and the left tire 8 (an example of a drive unit) to drive the vehicle.
  • the vehicle drive control device 1 includes an input processing unit 11, a system control unit 12, a vehicle drive target generation unit 13, a road width correction amount 14, a distribution unit 15, and a drive command unit 16.
  • the road information output from the road information output device 2, the friction braking result output from the friction braking control device 3, and the power equipment control result output from the power equipment control device 4 are input to the input processing unit 11. . Then, the input processing unit 11 outputs the road information, the friction braking result, and the power device control result to the system control unit 12 and the vehicle drive target generation unit 13.
  • the system control unit 12 performs various controls such as system start and system stop for each device in the vehicle 10.
  • the control instruction given by the system control unit 12 is output to the drive instruction unit 16.
  • the vehicle drive target generation unit 13 grasps the traveling state of the vehicle 10 and generates a vehicle drive target.
  • the vehicle driving target is, for example, an index indicating how to change the acceleration or deceleration (also referred to as “acceleration / deceleration”), the braking force or the driving force (also referred to as “braking / driving force”) of the vehicle 10. . Therefore, the vehicle drive target generation unit 13 calculates the driving force or the braking force for controlling the rotation speed of the drive unit that causes the vehicle 10 to travel in accordance with the road on which the vehicle 10 travels.
  • the vehicle drive target generation unit 13 drives the vehicle 10 to reach a target acceleration or deceleration based on the road width or shoulder width of the road in the traveling direction of the vehicle 10 that accelerates or decelerates the road.
  • the force or the braking force is corrected, and the corrected driving force or braking force information is output.
  • the vehicle drive target generation unit 13 may target acceleration / deceleration or braking / driving force (vehicle drive force) based on the road width input from the input processing unit 11, the current traveling state of the vehicle 10, the road width correction amount 14, and the like. Target) can be corrected.
  • the vehicle drive target generation unit 13 determines the deceleration or the braking force for reaching the deceleration of the road in which the change rate of the road width in the traveling direction of the vehicle 10 (referred to as the road width change rate) exceeds the threshold. It can be calculated or corrected based on the road width.
  • the road width change rate focusing on the change in road width is calculated by, for example, the following equation (1).
  • Road width change rate [%] width change width [m] / change distance (traveling direction distance) [m] ⁇ 100 ... (1)
  • the road width is changed based on the change width of the road width (for example, 4 m).
  • the rate of change is calculated to be 40%. If the road width does not change, the width change width is 0 m, and the road width change rate is 0%. On the other hand, if the road width change rate is about 40%, the road width is decreasing or increasing. Therefore, the vehicle drive target generator 13 can determine whether the road width decreases or increases by comparing the threshold value with the road width change rate.
  • the road width change rate is about 0%, so the vehicle drive target generation unit 13 decreases the road width. It is possible to avoid making an erroneous decision.
  • the vehicle drive target generation unit 13 outputs the calculated acceleration / deceleration or braking / driving force information or the corrected acceleration / deceleration or braking / driving force information to the distribution unit 15.
  • the distribution unit 15 determines the distribution of the driving force or the driving torque of the right tire 7 and the left tire 8 and / or the distribution of the braking force or the braking torque (collectively referred to as “distribution result”).
  • the distribution result determined by the distribution unit 15 is output to the first drive command unit 16a and the second drive command unit 16b included in the drive command unit 16.
  • the drive command unit 16 outputs a drive command for controlling the rotation speeds of the right tire 7 and the left tire 8 based on the input driving force or braking force information distributed by the distribution unit 15. This drive command is used to drive or brake the right tire 7 and the left tire 8.
  • the first drive command unit 16a outputs a drive command to the friction braking control device 3 based on the control instruction input from the system control unit 12 and the distribution result input from the distribution unit 15.
  • This drive command is the corrected braking force and is used by the brake pad to brake the right tire 7 and the left tire 8.
  • the friction braking control device 3 is driven by this drive command, and a braking force is generated on the right tire 7 and the left tire 8. At this time, the brake pad reduces the rotational speeds of the right tire 7 and the left tire 8 to reach the target deceleration of the vehicle 10.
  • the second drive command unit 16b outputs a drive command to the power equipment control device 4 based on the control instruction input from the system control unit 12 and the distribution result input from the distribution unit 15.
  • This drive command is used by the power equipment 5 to drive the right tire 7 and the left tire 8 with the corrected drive force.
  • This drive command drives the power equipment control device 4 to generate a driving force for the right tire 7 and the left tire 8.
  • the power device 5 increases the number of rotations of the right tire 7 and the left tire 8 to reach the target acceleration of the vehicle 10.
  • the vehicle drive control device 1 can comprehensively control the system of the vehicle 10.
  • the vehicle drive target generator 13 can determine the acceleration / deceleration of the vehicle as the target drive force. Therefore, the vehicle drive control device 1 can embody the driver's intention of acceleration / deceleration according to the depression state of the accelerator pedal and the brake pedal by the driver.
  • the vehicle drive target generator 13 calculates the driving force or braking force of the vehicle 10. Then, the vehicle drive target generation unit 13 uses the road width correction amount 14 as a target for the driving force or the braking force of the vehicle 10 so that the vehicle 10 reaches the target acceleration or deceleration (target acceleration / deceleration). Correct the value (target braking / driving force). Then, the first drive command unit 16a outputs a drive command for braking the vehicle 10 to the friction braking control device 3 based on the corrected target braking force. The second drive command unit 16b outputs a drive command for driving the vehicle 10 to the power equipment control device 4 based on the corrected target drive force. As a result, the rotations of the right tire 7 and the left tire 8 are driven or braked, and a comfortable longitudinal acceleration can be provided to the driver.
  • FIG. 2 is an explanatory diagram showing an example of changes in road conditions and deceleration when the road width decreases.
  • Scenes (1) and (2) in FIG. 2 represent the vehicle 10 traveling on the road, and a chart (3) in FIG. 2 represents an example of changes in the target braking force in the scenes (1) and (2).
  • Scene (1) in FIG. 2 represents an example of a road whose road width gradually decreases
  • scene (2) in FIG. 2 represents an example of a road whose road width suddenly decreases.
  • the deceleration state is, for example, a state in which the driver depresses the brake pedal, or a state in which the driver releases the accelerator pedal to decelerate by engine braking.
  • the driver of the vehicle 10 starts the deceleration state from a position before the road width starts to decrease.
  • the target braking force is constant, as indicated by the alternate long and short dash line 30 in the chart (3) of FIG. Therefore, the driver tends to feel a sense of oppression when the vehicle 10 travels on a road with a narrow road width while the deceleration remains unchanged.
  • control for increasing the target braking force is performed.
  • the expressions “with control” and “without control” do not indicate during control and other than during control, but indicate the difference in control amount. That is, in the portion described as “with control”, the control amount (target braking force or target driving force) is described as “without control” because the control according to the present embodiment is performed. Indicates that the number has increased or decreased than the number of points.
  • the vehicle drive target generation unit 13 is corrected to a target braking force that increases the deceleration by the deceleration control correction amount 32 according to the road conditions. Since the deceleration of the vehicle 10 increases by the deceleration control correction amount 32, the driver can increase the sense of security by determining that the vehicle 10 is increasing the deceleration as the road width decreases. In this way, the value of the deceleration control correction amount 32 is set for the purpose of increasing the driver's sense of security.
  • the deceleration control correction amount 32 is a value included in the road width correction amount 14 of FIG.
  • the vehicle drive target generation unit 13 limits the deceleration or the change in the braking force for reaching the deceleration during the period in which the friction braking control device 3 is braked based on the drive command. For example, as represented by the change rate limit during deceleration 34 in the chart (3) of FIG. 2, the vehicle drive target generation unit 13 sets a limit on the change rate of the target braking force. By providing the restriction on the rate of change, it is possible to increase the target braking force by following the decrease in the road width while reducing the driver's discomfort during deceleration of the vehicle 10.
  • the vehicle 10 can behave according to the driver's forward vision. Therefore, the start of the road width used for the calculation is the road width in front of the vehicle 10 like the front distance 35 when the width is reduced. Therefore, the target braking force does not increase at the point where the vehicle 10 actually reduces the road width, but the target braking force increases before the road width starts to decrease, which causes the driver to increase the deceleration. You can give a sense of security.
  • FIG. 3 is an explanatory diagram showing an example of changes in road conditions and deceleration when the road width increases.
  • Scenes (1) and (2) in FIG. 3 represent an example in which the vehicle 10 travels on a road without changing lanes
  • a chart (3) in FIG. 3 shows a target braking force in scenes (1) and (2).
  • scene (4) in FIG. 3 shows a state in which the vehicle 10 changes lanes and approaches the front vehicle 20
  • chart (5) in FIG. 3 shows an example of changes in the target braking force in scene (4).
  • Scene (1) in FIG. 3 shows an example of a road in which the road width gradually expands
  • scene (2) in FIG. 3 shows an example of a road in which the road width suddenly expands.
  • scenes (1) and (2) of FIG. 3 it is assumed that the traveling vehicle 10 (own vehicle) is in a decelerating state when passing a point where the road width increases.
  • the driver of the vehicle 10 maintains the deceleration state, but if there is no control for correcting the target braking force, the target braking force is constant as indicated by the one-dot chain line 30 in the chart (3) of FIG. is there. For this reason, the vehicle 10 remains decelerated at the point where the road width has increased, and the driver feels that the vehicle 10 is decelerating too much.
  • the vehicle drive target generator 13 calculates a target braking force that reduces the deceleration by the deceleration control correction amount 32 according to the road condition.
  • the deceleration control correction amount 32 may be set separately for the increase or decrease of the road width, or may be a value according to the road width. Since the deceleration of the vehicle 10 is reduced by the deceleration control correction amount 32, the driver can increase the sense of security by determining that the vehicle 10 is weakening the deceleration as the road width increases. In this way, the value of the deceleration control correction amount 32 is set in order to suppress the decrease in the speed of the vehicle 10.
  • a limit on the change rate of the target braking force is set. Since the restriction of the rate of change is provided, it is possible to increase the target braking force by following the expansion of the road width while reducing the driver's discomfort during deceleration of the vehicle 10.
  • the start of the road width used for the calculation when the road width increases is separated from the road width decrease front distance 35 shown in the chart (3) of FIG. 2 in the road width decrease as shown by the road width increase front distance 44.
  • the width increasing front distance 44 is set to a value longer than the width decreasing front distance 35.
  • scene (4) in FIG. 3 shows a case where the vehicle 10 changes lanes because the road width has expanded and the one-lane road has become two lanes. It should be noted that scene (4) in FIG. 3 collectively expresses the moderate increase in road width shown in scene (1) in FIG. 3 and the sudden increase in road width shown in scene (2) in FIG.
  • the vehicle drive target generator 13 increases the deceleration by the deceleration control correction amount 41.
  • a target braking force that causes the calculation is calculated.
  • the deceleration control correction amount 41 is a value included in the road width correction amount 14 of FIG. Therefore, the reduced target braking force indicated by the thick solid line 31 increases to the target braking force indicated by the thick broken line 43. By this control, it is possible to prevent the vehicle 10 from approaching the forward vehicle 20 too much.
  • a change rate limit such as the change rate 42 at the time of control release
  • a change rate limit is set within the range of the target change time for risk avoidance so as not to make a sudden change during the time required to shift to the required deceleration. Since the change rate limit is provided, the target braking force increases according to the change rate 42 during control release, and the vehicle 10 decelerates. For this reason, it is possible to achieve appropriate deceleration so that the vehicle 10 does not approach the front vehicle 20 too much, and at the same time, it is possible to reduce shock to the driver during deceleration.
  • FIG. 4 is an explanatory diagram showing an example of changes in road condition and acceleration when the road width decreases.
  • Scenes (1) and (2) in FIG. 4 represent the vehicle 10 traveling on the road, and a chart (3) in FIG. 4 represents an example of changes in the target driving force in the scenes (1) and (2).
  • Scene (1) in FIG. 4 represents an example of a road whose road width gradually decreases
  • scene (2) in FIG. 4 represents an example of a road whose road width suddenly decreases.
  • the acceleration state is a state in which the vehicle accelerates when the driver depresses the accelerator pedal.
  • the driver of the vehicle 10 starts the acceleration state by depressing the accelerator pedal from a position before the road width starts to decrease.
  • the target driving force is constant, as indicated by the chain line 50 in the chart (3) of FIG. Therefore, the driver is likely to feel a sense of oppression when the vehicle 10 travels on a road with a narrow road width while the acceleration remains unchanged.
  • the vehicle drive target generator 13 corrects the target drive force so as to reduce the acceleration by the acceleration control correction amount 52 according to the road condition.
  • the corrected target driving force reduces the acceleration of the vehicle 10 by the acceleration control correction amount 52. Therefore, the driver can determine that the acceleration of the vehicle 10 is weakened as the road width decreases and increase the sense of security. .
  • the value of the acceleration control correction amount 52 is set aiming at the effect of increasing the driver's sense of security.
  • the acceleration control correction amount 52 is a value included in the road width correction amount 14 of FIG.
  • the vehicle drive target generation unit 13 limits the acceleration or the change in the driving force for reaching the acceleration during the period in which the power equipment control device 4 is controlled based on the drive command. For example, as shown by the change rate limit during acceleration 54 in the chart (3) of FIG. 4, the change rate limit of the target driving force is limited. By limiting the rate of change, it is possible to reduce the target driving force by following the decrease in road width while reducing the driver's discomfort during deceleration of the vehicle 10.
  • the vehicle 10 can behave according to the driver's forward vision. Therefore, the start of the road width used for the calculation is the road width in front of the vehicle 10 like the front distance 55 when the width is reduced. For this reason, the target driving force does not decrease at the point where the vehicle 10 actually decreases the road width, but the target driving force decreases before the road width starts to decrease, so the driver is relieved that the acceleration decreases. It can give a feeling.
  • FIG. 5 is an explanatory diagram showing an example of changes in road conditions and acceleration when the road width increases.
  • Scenes (1) and (2) of FIG. 5 represent an example in which the vehicle 10 travels on a road without changing lanes
  • a chart (3) of FIG. 5 shows a target driving force in scenes (1) and (2).
  • scene (4) in FIG. 5 shows the vehicle 10 changing lanes and approaching the vehicle 20 in front
  • chart (5) in FIG. 5 shows an example of changes in the target driving force in scene (4).
  • Scene (1) in FIG. 5 shows an example of a road whose road width gradually expands
  • scene (2) in FIG. 5 shows an example of a road whose road width suddenly expands.
  • scenes (1) and (2) of FIG. 5 it is assumed that the moving vehicle 10 (own vehicle) is in an accelerating state when passing a point where the road width increases.
  • the driver of the vehicle 10 maintains the accelerating state, but if the control for correcting the target driving force is not performed, the target driving force is constant as indicated by the chain line 50 in the chart (3) of FIG. is there. For this reason, the vehicle 10 remains accelerated at the point where the road width is increased, and the driver feels that the vehicle 10 is decelerating.
  • the vehicle drive target generator 13 calculates a target drive force that increases the acceleration by the acceleration control correction amount 52 according to the road condition.
  • the acceleration control correction amount 52 may be set separately for the increase or decrease of the road width, or may be a value according to the road width. Since the acceleration of the vehicle 10 increases by the acceleration control correction amount 52, the driver may determine that the vehicle 10 is increasing in acceleration as the road width increases, and a sense of discomfort may occur. Therefore, the value of the acceleration control correction amount 52 is set aiming at an acceleration that does not cause a feeling of strangeness due to the smallest possible increase.
  • the target drive force change rate is limited.
  • the target driving force can be increased by following the expansion of the road width while reducing the discomfort during acceleration of the vehicle 10 so that the driver does not feel an increase in acceleration that is not intended due to the restriction on the rate of change.
  • the width increasing front distance 64 is set to a value longer than the width decreasing front distance 55.
  • scene (4) in FIG. 5 shows a case where the vehicle 10 has changed lanes because the road width has expanded and the one-lane road has become two lanes. Note that the scene (4) in FIG. 5 collectively expresses the gradual expansion of the road width shown in the scene (1) of FIG. 5 and the sudden expansion of the road width shown in the scene (2) of FIG.
  • the vehicle drive target generator 13 determines the acceleration of the vehicle 10 by the acceleration control correction amount 61.
  • a target driving force that reduces the amount is calculated.
  • the acceleration control correction amount 61 is a value included in the road width correction amount 14 of FIG. Therefore, the increased target driving force indicated by the thick solid line 51 is corrected to the decreased target driving force indicated by the thick broken line 63. Therefore, the acceleration of the vehicle 10 is reduced, and it is possible to prevent the vehicle 10 from approaching the forward vehicle 20 too much.
  • a change rate limit such as the change rate 62 at control release
  • the target driving force decreases according to the change rate 62 at the time of control release, and the vehicle 10 decelerates. For this reason, it is possible to achieve appropriate acceleration so that the vehicle 10 does not approach the front vehicle 20 too much, and at the same time, it is possible to reduce shock to the driver during deceleration.
  • FIG. 6 is a characteristic diagram showing the relationship between the road width and the correction amount of deceleration.
  • the horizontal axis is the road width and the vertical axis is the deceleration correction amount.
  • the vehicle drive target generation unit 13 determines the deceleration of the vehicle 10 traveling at a reduced speed or the braking force for reaching the deceleration based on the road width or the shoulder width of the road in the traveling direction of the vehicle 10. Correct to reach the target deceleration. Therefore, the vehicle drive target generation unit 13 calculates or corrects the deceleration of the vehicle 10 or the braking force for reaching the deceleration based on the road width of the road whose rate of change of the road width exceeds the threshold value. The process of calculating the braking force is performed based on the characteristic diagram showing the relationship between the road width and the correction amount shown in FIG. The vehicle drive target generation unit 13 may calculate or correct the deceleration of the vehicle 10 or the braking force for reaching the deceleration by multiplying the road width by a predetermined coefficient.
  • the straight line 71 shown in FIG. 6 shows that the wider the road width, the larger the correction amount and the deceleration, and the narrower the road width, the smaller the correction amount and the smaller the deceleration. Therefore, for example, if the road on which the vehicle 10 is traveling is two lanes, the deceleration correction amount is set to 0, and if the road is one lane, the deceleration correction amount is set to be large, and the road is three lanes. If so, it is possible to make a correction such as reducing the correction amount of deceleration.
  • the correction amount of deceleration may be changed according to the width of the road shoulder width.
  • straight lines 70, 71 and 72 showing the respective deceleration correction amounts when the road shoulder width is narrow to wide.
  • the deceleration correction amount is obtained by multiplying the correction amount of the straight line 71 by 0.8 as a predetermined coefficient when the road shoulder width is narrow with the straight line 71 as a reference, and when the road shoulder width is wide.
  • 1.2 is obtained as a straight line 72 obtained by multiplying the correction amount of the straight line 71 by 1.2. Therefore, the vehicle drive target generation unit 13 can correct the deceleration or the braking force for reaching the deceleration by the shoulder width included in the road information. By adding a correction amount according to the road shoulder width to the deceleration in this way, finer control for calculating the deceleration becomes possible.
  • the relationship between the road width and the correction amount is shown by a straight line, but it may be shown by a curve. Further, it is effective to change the correction amount so that the driver does not assume acceleration due to the reduction in deceleration feeling that occurs when the road width increases.
  • FIG. 7 is an image diagram showing an example of road conditions in front of the vehicle 10 viewed from the driver. In FIG. 7, the road condition when the driver sees the road with two lanes on each side will be described.
  • Road width 80 shown in FIG. 7 represents the width of a two-lane road.
  • the road shoulder width 81 represents the width of the road shoulders provided on the left and right of the road.
  • the wall height 82 represents the height of the side wall of the road standing upright from the end of each road shoulder.
  • the vehicle drive target generation unit 13 corrects the deceleration or the braking force for reaching the deceleration based on the height of the road side wall included in the road information.
  • the wall height correction value obtained by the following equation (2) can be added to the deceleration correction amount.
  • the first correction coefficient in Expression (2) is used to increase the deceleration as the wall height 82 increases.
  • Wall height correction value wall height ⁇ first correction coefficient (2)
  • the acceleration / deceleration can be performed in consideration of the driver's intention by correcting the deceleration in consideration of the road shoulder width 81, the wall height 82 and the like. Furthermore, by correcting the vehicle speed, which is an index of the drivability of the driver, it is possible to perform acceleration / deceleration for further improving the driver's sense of security.
  • FIG. 8 is an explanatory diagram showing an example of a speed limit set for each road on which the vehicle 10 travels and a deceleration correction coefficient for the vehicle speed (actual vehicle speed) of the vehicle 10 traveling on this road.
  • the correction coefficient is a value smaller than 1 as shown in the range 91. Therefore, the deceleration is weakly reduced to reduce the driver's feeling of deceleration more than necessary. It is possible to On the other hand, when the vehicle speed is higher than the speed limit, it is possible to increase the driver's sense of security by performing a strong deceleration as shown in a range 92.
  • FIG. 9 is a characteristic diagram showing the relationship between the deceleration correction amount change time constant and the road width change rate.
  • the horizontal axis represents the road width change rate
  • the vertical axis represents the deceleration correction amount change time constant.
  • the road width change rate is calculated by the above-described equation (1).
  • the correction amount change time constant increases as the road width change rate shown in FIG.
  • the relationship between the road width change rate and the correction amount change time constant is represented by a straight line, but it may be represented by a curve. Further, it is effective to increase the correction amount change time constant so that the reduction rate of deceleration change that occurs when the road width increases does not cause the driver to assume acceleration.
  • the vehicle drive target generation unit 13 supplies the acceleration of the vehicle 10 that is accelerating and travels, or the driving force for reaching the acceleration to the road width or shoulder of the road in the traveling direction of the vehicle 10. Based on the width, the vehicle 10 is corrected to reach the target acceleration. Therefore, the vehicle drive target generation unit 13 can calculate or correct the acceleration of the vehicle 10 or the driving force for reaching the acceleration based on the road width of the road whose road width change rate exceeds the threshold.
  • the setting of the acceleration due to the width of the road width or the width of the shoulder width can be realized by changing the characteristics of the road width or the width of the shoulder width with respect to the reference characteristic diagram shown in FIG. 10.
  • FIG. 10 is a characteristic diagram showing the relationship between the target driving force and the accelerator opening.
  • the horizontal axis represents the accelerator opening and the vertical axis represents the target driving force.
  • the relationship with the driving force for the accelerator operation performed by the driver of the vehicle 10 is represented by a curve defined for each road width.
  • the target driving force can be set as a mathematical expression as shown in the following expression (3).
  • Target driving force line without control in characteristic diagram x (road width x coefficient) (3)
  • a curve 100 shown by a solid line in FIG. 10 represents a relationship between the accelerator opening and the target driving force when the control according to the present embodiment is not performed.
  • a curved line 101 indicated by a broken line represents the relationship between the accelerator opening and the target driving force when the control according to the present embodiment is performed when the road width is wide.
  • a curve 102 indicated by a one-dot chain line represents a relationship of the target driving force with respect to the accelerator opening when the control according to the present embodiment is performed when the road width is narrow
  • a curve 103 is a curve according to the road shoulder width. 5 shows a relationship between the accelerator opening and the target driving force when the control according to the embodiment is performed.
  • the road shoulder width assumed by the curve 103 is narrower than the road width assumed by the curve 102.
  • the vehicle drive target generation unit 13 can calculate or correct the acceleration of the vehicle 10 or the driving force for reaching the acceleration according to this characteristic diagram. At this time, the vehicle drive target generation unit 13 may set the target drive force so that the feeling of acceleration generated when the road width increases does not cause the driver to assume unintentional acceleration.
  • the vehicle drive target generation unit 13 corrects the acceleration or the driving force for reaching the acceleration by the shoulder width included in the road information. For example, the vehicle drive target generation unit 13 performs correction so that the target drive force becomes smaller based on the characteristic line obtained from the shoulder width shown by the alternate long and short dash line 103 in FIG. 10. Even when the shoulder width is wide, the vehicle drive target generator 13 may correct the target drive force so that the driver does not feel an unintentional acceleration feeling.
  • the vehicle drive target generator 13 corrects the acceleration or the driving force for reaching the acceleration based on the height of the road sidewall included in the road information.
  • the vehicle drive target generation unit 13 can further finely set the driver's intention by correcting the acceleration in consideration of the wall height 82.
  • the wall height correction value obtained by the following equation (4) can be added to the acceleration correction amount.
  • the second correction coefficient of Expression (4) is used to reduce the acceleration as the wall height 82 increases.
  • Wall height correction value wall height ⁇ second correction coefficient (4)
  • acceleration correction value by speed limit and actual speed As described above, the acceleration and deceleration can be performed in consideration of the driver's intention by correcting the acceleration in consideration of the road shoulder width 81 and the wall height 82. Furthermore, by correcting the vehicle speed, which is an index of the drivability of the driver, it is possible to perform acceleration / deceleration for further improving the driver's sense of security.
  • FIG. 11 is an explanatory diagram showing an example of a speed limit set for each road on which the vehicle 10 travels and an acceleration correction coefficient for the vehicle speed (actual vehicle speed) of the vehicle 10 traveling on this road.
  • the correction coefficient is a value larger than 1 as shown in the range 111, and therefore the correction for increasing the acceleration is performed. Therefore, it is possible to reduce the driver's feeling of deceleration more than necessary.
  • the correction coefficient becomes a value of 1 or less as shown in the range 112. At this time, since the vehicle 10 is not accelerated too much by performing the correction for weakening the acceleration, it is possible to increase the driver's sense of security.
  • the process of setting the deceleration correction amount change time constant is performed using the characteristic diagram shown in FIG. 9 described above.
  • the correction amount change time constant during acceleration may also be changed according to the road width using the characteristic diagram shown in FIG.
  • the correction amount change time constant becomes smaller.
  • scene (1) of FIGS. 4 and 5 as the road width change rate becomes slower, the correction amount change time constant becomes larger.
  • the vehicle 10 may be corrected to be gradually accelerated by increasing the time constant of change in the correction amount of acceleration.
  • the acceleration is gradually decreased rather than the acceleration feeling is rapidly decreased. Therefore, there is no problem even if the characteristics for acceleration correction are not divided according to the increase or decrease of the road width.
  • FIG. 12 is a flowchart showing an example of a process in which the vehicle drive target generator 13 determines whether or not the control of the braking / driving force is applicable.
  • the vehicle drive target generation unit 13 calculates a set value or a correction value to be set according to the road width input from the input processing unit 11 (S1).
  • the vehicle drive target generator 13 limits the rate of change in target acceleration / deceleration or performs filter processing by the method shown in FIG. 13 described later (S2).
  • the restriction of the rate of change of the target acceleration / deceleration is a process performed so that the target acceleration / deceleration does not suddenly change at the start or end of the control of the braking / driving force, as shown in FIG.
  • the filtering process is, for example, a process of applying the change rate limit during deceleration 34 so that the target braking force shown in FIG. 2 does not suddenly rise.
  • the vehicle drive target generator 13 determines whether or not to use the calculated value based on the determination condition, and determines the target acceleration / deceleration or the target braking / driving force as an index.
  • the vehicle drive target generation unit 13 operates the safety support function based on the determination condition, for example, when a parameter including an unclear road width is abnormal, or when another vehicle approaches the vehicle 10 from the front, rear, left, or right. When there is an abnormality in the in-vehicle device, the judgment is made based on the presence or absence.
  • the vehicle drive target generation unit 13 determines the start condition of the control performed on the power equipment 5 or the brake pad based on the drive command based on the detection state of the road width, the failure of the drive system, and the presence / absence of other driving support control. Judge. For example, if the drive system is out of order, control for immediately stopping the vehicle 10 is performed. Further, if other driving support control is performed, it is determined whether or not the braking / driving force control according to the present embodiment is performed according to the priority. As described above, the control of the braking / driving force according to the present embodiment can contribute to the driver's sense of security and the improvement of drivability in cooperation with various situation changes.
  • the vehicle drive target generation unit 13 determines whether or not the application of the braking / driving force control according to the present embodiment is permitted (S3). If the application is permitted (YES in S3), the vehicle drive target generation unit 13 applies the braking / driving force control (S4). If not applicable (NO in S3), the vehicle drive target generation unit 13 does not apply the braking / driving force control (S4). After steps S4 and S5, the process returns to step S1 again, and the vehicle drive target generation unit 13 repeatedly executes this processing.
  • FIG. 13 is a chart showing an example of the timing of limiting the rate of change with respect to the target acceleration / deceleration.
  • the chart (1) in FIG. 13 shows an example of the timing for determining whether to start or cancel the control of the braking / driving force according to the present embodiment.
  • the braking / driving force is not controlled.
  • the vehicle drive target generation unit 13 determines that “the control is in progress” from the time when the control is turned on (arrow 120 in the drawing). After that, when the control of the braking / driving force is released, it is determined to be “control released” from the time when the control is turned off (arrow 121 in the figure).
  • the current time 122 and the switching target time 123 are defined after the control is turned off.
  • the switching target time 123 is a time defined by the target arrival time 127 shown in the chart (2). Then, a period 124 obtained by subtracting the current time 122 from the switching target time 123 is shown in the figure.
  • the chart (2) in FIG. 13 shows an example of the target acceleration / deceleration that changes with the control of the braking / driving force shown in the chart (1).
  • the vehicle 10 is traveling at a constant target acceleration / deceleration.
  • the acceleration / deceleration gradually changes from the time when the control is turned on (arrow 120 in the drawing).
  • the target acceleration / deceleration decreases.
  • the target acceleration / deceleration remains low during the control of the braking / driving force.
  • the target acceleration / deceleration increases from the time when the control is turned off (arrow 121 in the figure).
  • the target reaching time 127 is required before the reduced target acceleration / deceleration returns to the original value.
  • Chart (2) shows the start change rate limit 125 at the start of control of the braking / driving force.
  • the change rate of the target acceleration / deceleration at the time of releasing the control of the braking / driving force will be described below.
  • the rate of change of the target acceleration / deceleration at the time of releasing the control can be calculated using the following equation (5) with the braking / driving force without control, the braking / driving force with control, and the switching target time as variables.
  • Change rate of target acceleration / deceleration (braking / driving force without control-braking / driving force with control) x ratio + braking / driving force without control (5)
  • the ratio of the equation (5) is a value calculated by using, for example, the following equation (6) when the control is ON and 100% and the control is 0%.
  • the current time in the equation is represented by the arrow 122
  • the switching target time is represented by the arrow 123
  • the switching target time-current time is represented by the arrow 124.
  • Ratio (switch target time-current time) / switch target time (6)
  • the braking / driving force with control and the braking force without control are set as 100% from the time when the control is turned off (arrow 121 in the figure) to the switching target time (arrow 123 in the figure).
  • the driving force is switched according to the current time ratio from the control switching (arrow 121 indicating the change of control OFF). Therefore, the control of the braking / driving force is gradually weakened from the time when the control is turned off, and when the current time 122 reaches the switching target time 123, the control of the braking / driving force can be stopped.
  • the change rate at release when the control of the braking / driving force is released is limited by the change rate limit at release 126. Therefore, it is possible to suppress a sudden change in the target acceleration / deceleration from the state in which the braking / driving force is controlled to the state in which the braking / driving force is not controlled.
  • the road width of the road on which the vehicle 10 travels should be obtained from the front of the vehicle 10, which is the traveling direction of the vehicle 10.
  • the travel distance to be considered when determining the road width is a distance within a range that the driver can visually recognize, and is equal to or longer than the time required for the driver to normally operate the vehicle 10 to adjust the acceleration / deceleration. It is desirable that the distance is the distance that the vehicle 10 moves.
  • the driver's recognition range is quite wide, if the acceleration / deceleration of the vehicle 10 changes in the extreme front, the driver feels uncomfortable even though the road width does not change.
  • the shoulder width also affects the driver's feeling. Therefore, the braking / driving force is corrected when the acceleration / deceleration is set, so that the driver is provided with a comfortable acceleration / deceleration.
  • the driver's drivability is improved by automatically adjusting the acceleration / deceleration by considering the height of the road side wall, the speed limit and the actual traveling speed, and the rate of change of the acceleration / deceleration based on the parameters. .
  • the vehicle drive target generation unit 13 determines whether the acceleration or deceleration or the braking / driving force changes at the start and end of the control according to the present embodiment due to control other than the control according to the present embodiment. Limits the rate of change of acceleration or deceleration and the rate of change of braking / driving force by other control. By limiting the rate of change, the control according to the present embodiment works effectively, and the driver does not feel uncomfortable in the drivability of vehicle 10.
  • FIG. 14 is a functional block diagram showing a system configuration example of a vehicle 200 having an internal combustion engine.
  • the external world recognition device 201 included in the vehicle 200 is an imaging device such as a camera and can image the surroundings of the vehicle 200.
  • the position information acquisition device 202 included in the vehicle 200 is a GPS (Global Positioning System), a navigation system, or the like, and acquires position information indicating the current position of the vehicle 200.
  • the outside world recognition device 201 and the position information acquisition device 202 output image data to the road information output device 203 connected by a communication line, and display position information of the vehicle 200, road information of the road on which the vehicle 200 travels, and the like. It is possible to output.
  • the road information output device 203, the vehicle drive control device 204, the transmission control device 205, the braking control device 206, and the prime mover control device 207 included in the vehicle 200 are connected by a communication line, and each device transmits its own information. Information can be shared through communication lines.
  • the internal configuration and functions of the vehicle drive control device 204 are similar to those of the vehicle drive control device 1 shown in FIG. That is, the vehicle drive control device 204 increases the target braking force to prevent sudden braking when the road width in front of the vehicle 200 is narrowed during deceleration of the vehicle 200, and when the road width is widened, The target braking force is reduced so that a feeling of acceleration can be obtained. On the other hand, when the vehicle 200 accelerates, the vehicle drive control device 204 reduces the target driving force so that sudden braking does not occur when the road width in front of the vehicle 200 narrows, and when the road width widens, The target driving force is increased so that a feeling of acceleration can be obtained.
  • the decrease or increase of the target braking force and the target driving force in the present embodiment changes not only with the road width but also with the road shoulder width and the height of the road side wall.
  • the vehicle drive control device 204 changes the correction coefficient of the acceleration / deceleration with respect to the vehicle speed of the vehicle 200 according to the difference between the speed limit and the actual vehicle speed, and also changes the correction both sides or the time constant according to the road width change rate.
  • the vehicle drive control device 204 can also change the target braking force according to the accelerator opening and the width of the road.
  • the prime mover 208 included in the vehicle 200 is a drive source for causing the vehicle 200 to travel, and may be an internal combustion engine or another power source as long as it can generate a deceleration force.
  • a starting device 210 such as a clutch or a torque converter is generally connected to a prime mover output shaft 209 of the prime mover 208. Then, the prime mover output shaft 209 is connected to the transmission input shaft 211 of the transmission 212 via the starting device 210.
  • the transmission output shaft 213 connected to the transmission 212 is connected to the differential device 214.
  • the differential device 214 power-divides the right drive shaft 215a and the left drive shaft 216a and drives the right tire 215 and the left tire 216 to drive the vehicle.
  • vehicle 200 shown in FIG. 14 The difference between vehicle 200 shown in FIG. 14 and vehicle 10 shown in FIG. 1 is that a prime mover having a drive source such as an internal combustion engine is mounted as a device for generating braking / driving force of vehicle 200. Therefore, the vehicle 200 needs a mechanism such as the starting device 210 and the transmission 212.
  • a prime mover having a drive source such as an internal combustion engine
  • the vehicle 10 shown in FIG. 1 is an electric vehicle
  • deceleration occurs when the vehicle 10 is decelerated by setting the torque of the electric motor of the power equipment 5 to the deceleration side.
  • the vehicle drive target generation unit 13 can improve the responsiveness by largely correcting the deceleration change rate.
  • the width reduction front distance 35 shown in the chart (3) of FIG. 2 is switched to the width reduction front distance 55 shown in the chart (3) of FIG.
  • the width increase front distance 44 shown in the chart (3) of FIG. 3 is switched to the width increase front distance 64 shown in the chart (3) of FIG.
  • the power source of the vehicle may include at least one of an electric motor and an internal combustion engine.
  • FIG. 1 illustrates an example of system control of a vehicle 10 that is an electric vehicle
  • FIG. 14 illustrates a system control of a vehicle 200 that is a conventional vehicle.
  • the system control according to the present embodiment is applied to a hybrid vehicle including both an electric motor and an internal combustion engine. May be applied.
  • the present invention is not limited to the above-described embodiments, and it goes without saying that various other application examples and modifications can be made without departing from the gist of the present invention described in the claims.
  • the above-described embodiment is a detailed and specific description of the configuration of an apparatus and a system in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of the embodiment described here can be replaced with the configuration of another embodiment, and further, the configuration of another embodiment can be added to the configuration of one embodiment. It is possible. Further, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
  • the control lines and information lines are shown as being considered necessary for explanation, and not all control lines and information lines are shown in the product. In reality, it may be considered that almost all the configurations are connected to each other.
  • SYMBOLS 1 Vehicle drive control device, 2 ... Road information output device, 3 ... Friction braking control device, 4 ... Power equipment control device, 5 ... Power equipment, 6 ... Differential device, 7 ... Right tire, 8 ... Left tire, 10 ... vehicle, 11 ... input processing unit, 12 ... system control unit, 13 ... vehicle drive target generation unit, 14 ... road width correction amount, 15 ... distribution unit, 16 ... drive command unit, 16a ... first drive command unit, 16b ... Second drive command unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

There has been a problem in that, if the acceleration/deceleration of a vehicle does not change in response to a change in the road width, the drivability for a driver may decrease. To address the above problem, the vehicle drive target generation unit 13 of a vehicle drive control device 1 corrects the driving force or the braking force so that the vehicle 10 reaches a target acceleration or deceleration, on the basis of the road width or the road shoulder width of a road in the travel direction of a vehicle 10 traveling while accelerating or decelerating on the road, and outputs information of the corrected driving force or braking force. A drive command unit 16 outputs a drive command for controlling the rotational speed of a right tire 7 and a left tire 8 which cause the vehicle 10 to travel, according to the information of the corrected driving force or braking force.

Description

車両駆動制御装置、車両の駆動制御方法及びプログラムVehicle drive control device, vehicle drive control method, and program
 本発明は、車両駆動制御装置、車両の駆動制御方法及びプログラムに関する。 The present invention relates to a vehicle drive control device, a vehicle drive control method, and a program.
 近年、車両の運転支援技術の開発が進められている。運転支援技術として、例えば、巡航制御機能、車線維持支援機能、自動運転機能、自動緊急ブレーキ機能や緊急操舵回避支援機能が知られている。 ▽ Recently, development of vehicle driving support technology is in progress. Known driving support technologies include a cruise control function, a lane keeping support function, an automatic driving function, an automatic emergency braking function, and an emergency steering avoidance support function.
 特許文献1には、「自車前方に障害物が存在する場合、障害物が存在する位置における道幅残量、すなわち自車両が通過可能な残りの道幅に応じて車両特性が変更される」と記載されている。 Patent Document 1 states that "when an obstacle exists in front of the own vehicle, the vehicle characteristics are changed according to the remaining road width at the position where the obstacle exists, that is, the remaining road width through which the own vehicle can pass". Have been described.
特開平11-348598号公報JP, 11-348598, A
 特許文献1に開示された技術により、前方の工事領域に対する車両の通過時、運転者のアクセル操作を起点とする通過車速を想定して減速度を制御することで、安全な速度で車両を走行することができる。従来、運転支援や自動運転が行われる際に、安全性を向上したり、減速性能を向上したりすることが、運転者が認識する運転性の向上につながると考えられていた。以下の説明で、運転性とは、運転者が、安全又は快適さを感じるような運転者の感覚を表す指標とする。 According to the technique disclosed in Patent Document 1, when the vehicle passes through the construction area in front, the vehicle is driven at a safe speed by controlling the deceleration by assuming the passing vehicle speed starting from the accelerator operation by the driver. can do. Conventionally, it has been considered that improving safety or improving deceleration performance when driving assistance or automatic driving is performed leads to improvement of drivability recognized by a driver. In the following description, drivability is an index representing the driver's sense of safety or comfort.
 しかしながら、特許文献1に開示された技術は、主に運転時における安全性の向上に寄与するものであり、通常の運転シーンにおいて頻繁に必要とされないため、運転性の観点から運転者に必要となる課題に対応する部分が少ない。特に減速度に関して運転者の運転意図を反映させるためには、車両の状況として特に道路幅員の変化が運転意図に大きな影響があることが知られている。しかし、特許文献1には、道幅残量の減少に関する記載があるものの道路幅員の拡大については記載されていない。また、特許文献1に開示された技術は、工事や駐車車両による危険回避のための構成が主たる内容であるため、運転者の運転性を向上するものではない。 However, the technique disclosed in Patent Document 1 mainly contributes to the improvement of safety during driving, and is not frequently required in a normal driving scene, so that it is necessary for the driver from the viewpoint of drivability. There are few parts corresponding to the problem. In particular, in order to reflect the driver's driving intention with respect to deceleration, it is known that a change in road width as a vehicle condition has a great influence on the driving intention. However, although Patent Document 1 has a description regarding the reduction of the road width remaining amount, it does not describe the expansion of the road width. Further, the technique disclosed in Patent Document 1 does not improve the drivability of the driver, because the main content is a construction for avoiding danger by construction and parking vehicles.
 しかし、運転者には、車両が走行している道路の道路幅員が狭ければ速度を下げたい要求があり、道路幅員が広ければ速度を下げたくないという要求がある。運転者が意図する速度感の相違は、運転者が要求する加減速の大小と相関があるため、道路幅員の広狭に応じた加減速に対する要求も、速度要求と同様に発生していると考えられる。このため、実際には運転者が危険と認識しないシーンであっても、従来の技術では運転者の安心感の増減に対して十分なサポートができていなかった。 However, the driver has a request to reduce the speed if the road width of the road on which the vehicle is traveling is narrow, and does not want to decrease the speed if the road width is wide. Since the difference in the speed feeling intended by the driver correlates with the magnitude of the acceleration / deceleration requested by the driver, it is considered that the request for acceleration / deceleration according to the width of the road width is generated similarly to the speed request. To be For this reason, even in a scene in which the driver does not actually recognize the danger, the conventional technique has not been able to sufficiently support the increase or decrease in the driver's sense of security.
 本発明はこのような状況に鑑みて成されたものであり、車両が走行する道路の道路幅員が変化した場合でも、運転者に快適な運転性を提供することを目的とする。 The present invention has been made in view of such a situation, and an object thereof is to provide a driver with comfortable drivability even when the road width of a road on which a vehicle travels changes.
 本発明に係る車両駆動制御装置は、道路を加速又は減速して走行する車両の進行方向における道路の道路幅員又は路肩幅員に基づいて、車両が目標とする加速度又は減速度に達するように駆動力又は制動力を補正して、補正した駆動力又は制動力の情報を出力する目標生成部と、補正された駆動力又は制動力の情報により、車両を走行させる駆動部の回転数を制御するための駆動指令を出力する駆動指令部と、を備える。 The vehicle drive control device according to the present invention, based on the road width or the shoulder width of the road in the traveling direction of the vehicle that accelerates or decelerates the road, the driving force for the vehicle to reach a target acceleration or deceleration. Alternatively, in order to control the rotational speed of the target generator that corrects the braking force and outputs the corrected driving force or braking force information and the corrected driving force or braking force information that drives the vehicle. And a drive command unit that outputs the drive command.
 本発明によれば、加速又は減速する車両の進行方向における道路の道路幅員又は路肩幅員に基づいて補正された駆動力又は制動力により、目標とする加速度又は減速度に達するように車両が走行するため、運転者に快適な運転性を提供することができる。
 上記した以外の課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。
According to the present invention, the vehicle travels so as to reach the target acceleration or deceleration by the driving force or the braking force corrected based on the road width or the shoulder width of the road in the traveling direction of the vehicle that accelerates or decelerates. Therefore, the driver can be provided with comfortable drivability.
Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の第1の実施の形態に係る車両のシステム構成例を示す概略図である。It is a schematic diagram showing an example of system composition of a vehicle concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る道路幅員が減少する場合における、道路状況と減速度の変化の例を示す説明図である。It is explanatory drawing which shows the example of a change of road conditions and deceleration when the road width which concerns on the 1st Embodiment of this invention decreases. 本発明の第1の実施の形態に係る道路幅員が増加する場合における、道路状況と減速度の変化の例を示す説明図である。It is explanatory drawing which shows the example of a change of road conditions and deceleration when the road width increases which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る道路幅員が減少する場合における、道路状況と加速度の変化の例を示す説明図である。It is explanatory drawing which shows the example of the change of the road condition and acceleration when the road width which concerns on the 1st Embodiment of this invention decreases. 本発明の第1の実施の形態に係る道路幅員が増加する場合における、道路状況と加速度の変化の例を示す説明図である。It is explanatory drawing which shows the example of the change of the road condition and acceleration when the road width increases which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る道路幅員に対する減速度の補正量の関係を示す特性線図である。It is a characteristic diagram which shows the relationship of the correction amount of deceleration with respect to the road width which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る運転者から見た車両の前方の道路状況の例を示すイメージ図である。It is an image figure which shows the example of the road condition ahead of the vehicle seen from the driver | operator which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る車両が走行する道路毎に設定される制限速度と、この道路を走行中の車両の車速(実車速)に対する減速度の補正係数の例を示す説明図である。An explanatory view showing an example of a speed limit set for each road on which a vehicle travels according to the first embodiment of the present invention, and a deceleration correction coefficient for a vehicle speed (actual vehicle speed) of a vehicle traveling on this road. Is. 本発明の第1の実施の形態に係る道路幅員変化率に対する減速度の補正量変化時定数の関係を示す特性線図である。It is a characteristic diagram which shows the relationship of the correction amount change time constant of deceleration with respect to the road width change rate which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係るアクセル開度に対する目標駆動力の関係を示す特性線図である。It is a characteristic diagram which shows the relationship of the target driving force with respect to the accelerator opening which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る車両が走行する道路毎に設定される制限速度と、この道路を走行中の車両の車速(実車速)に対する加速度の補正係数の例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of a speed limit set for each road on which a vehicle travels according to the first embodiment of the present invention and an acceleration correction coefficient for a vehicle speed (actual vehicle speed) of a vehicle traveling on this road. is there. 本発明の第1の実施の形態に係る車両駆動目標生成部が制駆動力の制御の適用可否を判断する処理の例を示すフローチャートである。5 is a flowchart showing an example of processing in which the vehicle drive target generation unit according to the first embodiment of the present invention determines whether or not control of braking / driving force is applicable. 本発明の第1の実施の形態に係る目標加減速度に対する変化率の制限を行うタイミングの例を示すチャートである。6 is a chart showing an example of timing of limiting the rate of change with respect to the target acceleration / deceleration according to the first embodiment of the present invention. 本発明の第2の実施の形態に係る内燃機関を有する車両のシステム構成例を示す機能ブロック図である。It is a functional block diagram which shows the system structural example of the vehicle which has the internal combustion engine which concerns on the 2nd Embodiment of this invention.
 従来は、リスクの低い運転シーンでは、運転者が道路状況を基に走行を行っていた。通常、運転者が操作する加減速の制御は一般的な道路を想定して行われるため、運転者の視覚情報の変化に対応できていなかった。視覚情報の変化には、道路幅員の変化が大きく作用する。例えば、車両の減速時において、車両の進行方向である前方の道路幅員が広がっているときには、緩やかに減速する制御が行われても問題ないが、急減速する制御が行われると運転者にとって運転性の違和感が強くなる。逆に、道路幅員が狭くなれば、運転者が早めに減速したくなるにも関わらず、緩やかに減速する制御が行われる車両であれば、運転者がブレーキペダルを踏み込む頻度が増加する。 Previously, in low-risk driving scenes, the driver was driving based on road conditions. Normally, the acceleration / deceleration control operated by the driver is performed on the assumption that a general road is used, and thus it has not been possible to cope with changes in the visual information of the driver. The change in road width has a large effect on the change in visual information. For example, at the time of deceleration of the vehicle, when the road width in the forward direction, which is the traveling direction of the vehicle, is wide, there is no problem even if the control for slowing down is performed. The discomfort in sex becomes stronger. On the contrary, if the road width is narrowed, the frequency of the driver's stepping on the brake pedal is increased in the case of a vehicle in which the driver is required to decelerate earlier, but the vehicle is controlled so as to decelerate slowly.
 一方、車両の加速時において、前方の道路幅員が広がっていれば、運転者がアクセルペダルを踏み込んでも加速感が小さくなる。このため、緩やかに加速する制御が行われる車両であれば、運転者がアクセルペダルを再度踏み込む操作が行われる。逆に前方の道路幅員が狭くなると、運転者が加速する操作を止めたくなるので、アクセルペダルを戻す操作が行われる。このように道路幅員の変化に応じて、車両の減速時におけるブレーキペダルの頻繁な操作、車両の加速時におけるアクセルペダルの頻繁な操作が必要であった。 On the other hand, when the vehicle is accelerating, if the width of the road ahead is widened, the feeling of acceleration will decrease even if the driver depresses the accelerator pedal. For this reason, in the case of a vehicle in which control is performed to gently accelerate, the driver performs an operation of depressing the accelerator pedal again. On the contrary, when the road width in front is narrowed, the driver wants to stop the operation of accelerating, so the operation of returning the accelerator pedal is performed. As described above, it is necessary to frequently operate the brake pedal during deceleration of the vehicle and the frequent operation of the accelerator pedal during acceleration of the vehicle according to the change in the road width.
 そこで、本発明者は、車両が走行中の道路の道路情報の内、特に道路幅員を用いて加減速度を設定することで運転者の安心感や快適性を向上させ、さらには運転性を高めることが可能な制御を検討した。以下に、本発明を実施するための形態について、添付図面を参照して説明する。本明細書及び図面において、実質的に同一の機能又は構成を有する構成要素については、同一の符号を付することにより重複する説明を省略する。 Therefore, the present inventor improves the driver's sense of security and comfort by further setting the acceleration / deceleration using the road width of the road information of the road on which the vehicle is traveling, and further enhances the drivability. We examined possible controls. Embodiments for carrying out the present invention will be described below with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same function or configuration are designated by the same reference numerals, and duplicate description will be omitted.
[第1の実施の形態]
(全体概要)
 図1は、本発明の第1の実施の形態に係る車両10のシステム構成例を示す概略図である。
 本実施の形態に係る車両10は、例えば、電動車両である。この車両10は、車両駆動制御装置1、道路情報出力装置2、摩擦制動制御装置3、動力機器制御装置4、動力機器5、差動装置6、右ドライブシャフト7aと右タイヤ7、左ドライブシャフト8aと左タイヤ8を備える。
[First Embodiment]
(Overview)
FIG. 1 is a schematic diagram showing a system configuration example of a vehicle 10 according to the first embodiment of the present invention.
Vehicle 10 according to the present embodiment is, for example, an electric vehicle. This vehicle 10 includes a vehicle drive control device 1, a road information output device 2, a friction braking control device 3, a power equipment control device 4, a power equipment 5, a differential gear 6, a right drive shaft 7a and a right tire 7, a left drive shaft. 8a and the left tire 8.
 車両駆動制御装置1は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等によって構成される計算機の一例である。CPUは、本実施の形態に係る各機能を実現するソフトウェアのプログラムコードをROMから読み出して実行する。RAMには、演算処理の途中に発生した変数やパラメーター等が一時的に書き込まれる。ROMは、CPUが動作するために必要なプログラムやデータ等を格納したコンピュータ読取可能な非一過性の記録媒体の一例として用いられる。 The vehicle drive control device 1 is an example of a computer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. The CPU reads the program code of the software that realizes each function according to the present embodiment from the ROM and executes the program code. Variables, parameters, etc. generated during the arithmetic processing are temporarily written in the RAM. The ROM is used as an example of a computer-readable non-transitory recording medium that stores programs and data necessary for the CPU to operate.
 この車両駆動制御装置1は、道路情報出力装置2、摩擦制動制御装置3及び動力機器制御装置4と通信線を介した車載通信機能により接続される。車両駆動制御装置1は、道路情報出力装置2から出力された道路情報を入力する。道路情報出力装置2は、ナビゲーションシステムや車載カメラなどであり、車両10が走行する道路に関する道路情報を出力する。道路情報には、車両10が走行する道路の道路幅員、路肩幅員、道路側壁の高さといった情報が含まれる。 The vehicle drive control device 1 is connected to the road information output device 2, the friction braking control device 3 and the power equipment control device 4 by an in-vehicle communication function via a communication line. The vehicle drive control device 1 inputs the road information output from the road information output device 2. The road information output device 2 is a navigation system, a vehicle-mounted camera, or the like, and outputs road information regarding the road on which the vehicle 10 travels. The road information includes information such as road width, shoulder width, and road sidewall height of the road on which the vehicle 10 travels.
 車両駆動制御装置1は、他にもセレクトレバーの位置やアクセルやブレーキの踏み込み状態などに基づき、車両駆動系のシステム起動停止、目標駆動力算出、摩擦制動制御装置3(制動制御装置の一例)との協調、動力機器制御装置4(動力制御装置の一例)への指令値出力などを行うことができる。摩擦制動制御装置3は、車両10の右タイヤ7と左タイヤ8に設けられた不図示のブレーキパッド(制動装置の一例)に摩擦制動力を付与するための制御を行う。摩擦制動制御装置3の制御により、例えば、ブレーキパッドがブレーキディスクに接触することにより摩擦制動力が発生し、車両10が減速する。 The vehicle drive control device 1 is also based on the position of the select lever, the depression state of the accelerator or the brake, and the like, the system start / stop of the vehicle drive system, the target drive force calculation, the friction braking control device 3 (an example of the braking control device). And the command value output to the power equipment control device 4 (an example of the power control device) can be performed. The friction braking control device 3 performs control for applying friction braking force to a brake pad (an example of a braking device) (not shown) provided on the right tire 7 and the left tire 8 of the vehicle 10. By the control of the friction braking control device 3, for example, the brake pad comes into contact with the brake disc to generate a friction braking force, and the vehicle 10 is decelerated.
 動力機器制御装置4は、動力機器5(動力装置の一例)として示される電動機を電気的に制御することで、動力機器5に駆動力を付与するための制御を行う。動力機器5の出力軸は差動装置6に接続され右ドライブシャフト7aと左ドライブシャフト8aに動力分割されて右タイヤ7と左タイヤ8(駆動部の一例)を駆動して車両を走行させる。 The power equipment control device 4 performs control for applying a driving force to the power equipment 5 by electrically controlling an electric motor shown as the power equipment 5 (an example of the power equipment). The output shaft of the power device 5 is connected to the differential device 6 and is power-divided into a right drive shaft 7a and a left drive shaft 8a to drive the right tire 7 and the left tire 8 (an example of a drive unit) to drive the vehicle.
 車両駆動制御装置1は、入力処理部11、システム制御部12、車両駆動目標生成部13、道路幅員補正分14、配分部15及び駆動指令部16を備える。 The vehicle drive control device 1 includes an input processing unit 11, a system control unit 12, a vehicle drive target generation unit 13, a road width correction amount 14, a distribution unit 15, and a drive command unit 16.
 入力処理部11には、道路情報出力装置2から出力される道路情報、摩擦制動制御装置3から出力される摩擦制動結果、及び動力機器制御装置4から出力される動力機器制御結果が入力される。そして、入力処理部11は、道路情報、摩擦制動結果、及び動力機器制御結果をシステム制御部12及び車両駆動目標生成部13に出力する。 The road information output from the road information output device 2, the friction braking result output from the friction braking control device 3, and the power equipment control result output from the power equipment control device 4 are input to the input processing unit 11. . Then, the input processing unit 11 outputs the road information, the friction braking result, and the power device control result to the system control unit 12 and the vehicle drive target generation unit 13.
 システム制御部12は、車両10内の各装置に対するシステム起動、システム停止などの各種制御を行う。システム制御部12が行う制御指示は、駆動指令部16に出力される。 The system control unit 12 performs various controls such as system start and system stop for each device in the vehicle 10. The control instruction given by the system control unit 12 is output to the drive instruction unit 16.
 車両駆動目標生成部13(目標生成部の一例)は、車両10の走行状況を把握して、車両駆動目標を生成する。車両駆動目標とは、例えば、車両10の加速度又は減速度(「加減速度」とも呼ぶ)、制動力又は駆動力(「制駆動力」とも呼ぶ)をどのように変化させるかを示す指標である。このため、車両駆動目標生成部13は、車両10が走行する道路に合わせて、車両10を走行させる駆動部の回転数を制御するための駆動力又は制動力を算出する。 The vehicle drive target generation unit 13 (an example of a target generation unit) grasps the traveling state of the vehicle 10 and generates a vehicle drive target. The vehicle driving target is, for example, an index indicating how to change the acceleration or deceleration (also referred to as “acceleration / deceleration”), the braking force or the driving force (also referred to as “braking / driving force”) of the vehicle 10. . Therefore, the vehicle drive target generation unit 13 calculates the driving force or the braking force for controlling the rotation speed of the drive unit that causes the vehicle 10 to travel in accordance with the road on which the vehicle 10 travels.
 この車両駆動目標生成部13は、道路を加速又は減速して走行する車両10の進行方向における道路の道路幅員又は路肩幅員に基づいて、車両10が目標とする加速度又は減速度に達するように駆動力又は制動力を補正して、補正した駆動力又は制動力の情報を出力する。車両駆動目標生成部13は、例えば、入力処理部11から入力した道路幅員、現在の車両10の走行状況、道路幅員補正分14などに基づいて、目標とする加減速度又は制駆動力(車両駆動目標)を補正することが可能である。 The vehicle drive target generation unit 13 drives the vehicle 10 to reach a target acceleration or deceleration based on the road width or shoulder width of the road in the traveling direction of the vehicle 10 that accelerates or decelerates the road. The force or the braking force is corrected, and the corrected driving force or braking force information is output. The vehicle drive target generation unit 13 may target acceleration / deceleration or braking / driving force (vehicle drive force) based on the road width input from the input processing unit 11, the current traveling state of the vehicle 10, the road width correction amount 14, and the like. Target) can be corrected.
 ここで、車両駆動目標生成部13は、減速度、又は減速度に達するための制動力を、車両10の進行方向における道路幅員の変化率(道路幅員変化率と呼ぶ)が閾値を超える道路の道路幅員に基づいて算出し、又は補正することができる。道路幅員の変化に注目した道路幅員変化率は、例えば、次式(1)により算出される。
 道路幅員変化率[%] = 幅員変化幅[m]/変化距離(進行方向距離)[m]×100…(1)
Here, the vehicle drive target generation unit 13 determines the deceleration or the braking force for reaching the deceleration of the road in which the change rate of the road width in the traveling direction of the vehicle 10 (referred to as the road width change rate) exceeds the threshold. It can be calculated or corrected based on the road width. The road width change rate focusing on the change in road width is calculated by, for example, the following equation (1).
Road width change rate [%] = width change width [m] / change distance (traveling direction distance) [m] × 100 ... (1)
 例えば、道路幅員の変化が開始してから、変化が終了するまでの道路の長さを変化距離(例えば、10m)としたとき、道路幅員の変化幅(例えば、4m)に基づいて、道路幅員変化率が40%と算出される。道路幅員が変化しなければ、幅員変化幅が0mであるため、道路幅員変化率も0%となる。一方、道路幅員変化率が40%程度であれば道路幅員が減少し、又は増加している。このため、車両駆動目標生成部13が、閾値と、道路幅員変化率とを比べることで、道路幅員の減少又は増加を判断できる。例えば、道路脇の駐車車両や障害物等により、道路幅員が減少していたとしても、道路幅員変化率は0%程度であるため、車両駆動目標生成部13が、道路幅員が減少していると誤って判断することが避けられる。 For example, when the length of the road from the start of the change of the road width to the end of the change is the change distance (for example, 10 m), the road width is changed based on the change width of the road width (for example, 4 m). The rate of change is calculated to be 40%. If the road width does not change, the width change width is 0 m, and the road width change rate is 0%. On the other hand, if the road width change rate is about 40%, the road width is decreasing or increasing. Therefore, the vehicle drive target generator 13 can determine whether the road width decreases or increases by comparing the threshold value with the road width change rate. For example, even if the road width decreases due to a parked vehicle or an obstacle on the side of the road, the road width change rate is about 0%, so the vehicle drive target generation unit 13 decreases the road width. It is possible to avoid making an erroneous decision.
 その後、車両駆動目標生成部13は、算出した加減速度又は制駆動力の情報、又は補正した加減速度又は制駆動力の情報を配分部15に出力する。配分部15は、右タイヤ7と左タイヤ8の駆動力又は駆動トルク、及び/又は、制動力又は制動トルクの配分(「配分結果」と総称する)を決定する。配分部15が決定した配分結果は、駆動指令部16が備える第1駆動指令部16a,第2駆動指令部16bに出力される。 After that, the vehicle drive target generation unit 13 outputs the calculated acceleration / deceleration or braking / driving force information or the corrected acceleration / deceleration or braking / driving force information to the distribution unit 15. The distribution unit 15 determines the distribution of the driving force or the driving torque of the right tire 7 and the left tire 8 and / or the distribution of the braking force or the braking torque (collectively referred to as “distribution result”). The distribution result determined by the distribution unit 15 is output to the first drive command unit 16a and the second drive command unit 16b included in the drive command unit 16.
 駆動指令部16は、配分部15により配分され、入力した駆動力又は制動力の情報により、右タイヤ7と左タイヤ8の回転数を制御するための駆動指令を出力する。この駆動指令は、右タイヤ7と左タイヤ8を駆動し、又は制動するために用いられる。 The drive command unit 16 outputs a drive command for controlling the rotation speeds of the right tire 7 and the left tire 8 based on the input driving force or braking force information distributed by the distribution unit 15. This drive command is used to drive or brake the right tire 7 and the left tire 8.
 第1駆動指令部16aは、システム制御部12から入力した制御指示、及び配分部15から入力した配分結果に基づいて摩擦制動制御装置3に対する駆動指令を出力する。この駆動指令は、補正された制動力で、ブレーキパッドが右タイヤ7と左タイヤ8を制動するために用いられる。この駆動指令により摩擦制動制御装置3が駆動して、右タイヤ7と左タイヤ8に対する制動力が発生する。このとき、ブレーキパッドが右タイヤ7と左タイヤ8の回転数を減少させることで車両10が目標とする減速度に達する。 The first drive command unit 16a outputs a drive command to the friction braking control device 3 based on the control instruction input from the system control unit 12 and the distribution result input from the distribution unit 15. This drive command is the corrected braking force and is used by the brake pad to brake the right tire 7 and the left tire 8. The friction braking control device 3 is driven by this drive command, and a braking force is generated on the right tire 7 and the left tire 8. At this time, the brake pad reduces the rotational speeds of the right tire 7 and the left tire 8 to reach the target deceleration of the vehicle 10.
 第2駆動指令部16bは、システム制御部12から入力した制御指示、及び配分部15から入力した配分結果に基づいて動力機器制御装置4に対する駆動指令を出力する。この駆動指令は、補正された駆動力で動力機器5が右タイヤ7と左タイヤ8を駆動するために用いられる。この駆動指令により動力機器制御装置4が駆動して、右タイヤ7と左タイヤ8に対する駆動力が発生する。このとき、動力機器5が右タイヤ7と左タイヤ8の回転数を増加させることで車両10が目標とする加速度に達する。 The second drive command unit 16b outputs a drive command to the power equipment control device 4 based on the control instruction input from the system control unit 12 and the distribution result input from the distribution unit 15. This drive command is used by the power equipment 5 to drive the right tire 7 and the left tire 8 with the corrected drive force. This drive command drives the power equipment control device 4 to generate a driving force for the right tire 7 and the left tire 8. At this time, the power device 5 increases the number of rotations of the right tire 7 and the left tire 8 to reach the target acceleration of the vehicle 10.
 このように車両駆動制御装置1は、車両10のシステムを総合的に制御することが可能である。特に、車両駆動目標生成部13は、目標駆動力として車両の加減速度を決定することができる。このため、車両駆動制御装置1は、運転者によるアクセルペダルとブレーキペダルの踏み込み状態に応じて、運転者の加減速意図を具現化することが可能となる。 As described above, the vehicle drive control device 1 can comprehensively control the system of the vehicle 10. In particular, the vehicle drive target generator 13 can determine the acceleration / deceleration of the vehicle as the target drive force. Therefore, the vehicle drive control device 1 can embody the driver's intention of acceleration / deceleration according to the depression state of the accelerator pedal and the brake pedal by the driver.
 上述したように車両駆動目標生成部13は、車両10の駆動力又は制動力を算出する。そして、車両駆動目標生成部13は、道路幅員補正分14を用いて、車両10が目標とする加速度又は減速度(目標加減速度)に達するように、車両10の駆動力又は制動力を目標とする値(目標制駆動力)に補正する。そして、第1駆動指令部16aは、補正された目標制動力に基づいて、摩擦制動制御装置3に車両10を制動するための駆動指令を出力する。第2駆動指令部16bは、補正された目標駆動力に基づいて、動力機器制御装置4に車両10を駆動するための駆動指令を出力する。この結果、右タイヤ7及び左タイヤ8の回転が駆動又は制動され、運転者に快適な前後加速度を提供することが可能となる。 As described above, the vehicle drive target generator 13 calculates the driving force or braking force of the vehicle 10. Then, the vehicle drive target generation unit 13 uses the road width correction amount 14 as a target for the driving force or the braking force of the vehicle 10 so that the vehicle 10 reaches the target acceleration or deceleration (target acceleration / deceleration). Correct the value (target braking / driving force). Then, the first drive command unit 16a outputs a drive command for braking the vehicle 10 to the friction braking control device 3 based on the corrected target braking force. The second drive command unit 16b outputs a drive command for driving the vehicle 10 to the power equipment control device 4 based on the corrected target drive force. As a result, the rotations of the right tire 7 and the left tire 8 are driven or braked, and a comfortable longitudinal acceleration can be provided to the driver.
 (道路幅員を用いた加減速制御に必要な項目と概要)
 次に、本実施の形態に係る加減速度及び制駆動力の制御の例について、図2~図5に示す走行シーンを参照して説明する。始めに、図2と図3を参照して減速時の制御の例を説明し、次に、図4と図5を参照して加速時の制御の例を説明する。
(Items and outline required for acceleration / deceleration control using road width)
Next, an example of control of acceleration / deceleration and braking / driving force according to the present embodiment will be described with reference to the traveling scenes shown in FIGS. 2 to 5. First, an example of control during deceleration will be described with reference to FIGS. 2 and 3, and then an example of control during acceleration will be described with reference to FIGS. 4 and 5.
(減速時の制御)
 図2は、道路幅員が減少する場合における、道路状況と減速度の変化の例を示す説明図である。図2のシーン(1)、(2)は、道路を走行する車両10を表し、図2のチャート(3)は、シーン(1)、(2)における目標制動力の変化の例を表す。
(Control during deceleration)
FIG. 2 is an explanatory diagram showing an example of changes in road conditions and deceleration when the road width decreases. Scenes (1) and (2) in FIG. 2 represent the vehicle 10 traveling on the road, and a chart (3) in FIG. 2 represents an example of changes in the target braking force in the scenes (1) and (2).
 図2のシーン(1)は、道路幅員が緩やかに減少する道路の例を表し、図2のシーン(2)は、道路幅員が急に減少する道路の例を表す。図2のシーン(1)、(2)に示すように走行中の車両10(自車両)が、道路幅員が減少する地点を通過する際に減速状態であったとする。減速状態とは、例えば、運転者がブレーキペダルを踏み込んだ状態、又はアクセルペダルから足を離してエンジンブレーキにより減速する状態である。 Scene (1) in FIG. 2 represents an example of a road whose road width gradually decreases, and scene (2) in FIG. 2 represents an example of a road whose road width suddenly decreases. As shown in scenes (1) and (2) of FIG. 2, it is assumed that the traveling vehicle 10 (own vehicle) is in a decelerating state when passing a point where the road width decreases. The deceleration state is, for example, a state in which the driver depresses the brake pedal, or a state in which the driver releases the accelerator pedal to decelerate by engine braking.
 このとき、車両10の運転者は、道路幅員が減少し始めるより手前の位置から減速状態を開始する。ここで、目標制動力を補正する制御がなければ、図2のチャート(3)に一点鎖線30で示すように、目標制動力が一定である。このため、運転者は、減速度が変わらないまま道路幅員が狭い道路に車両10が走行することで圧迫感を感じやすい。 At this time, the driver of the vehicle 10 starts the deceleration state from a position before the road width starts to decrease. Here, if there is no control for correcting the target braking force, the target braking force is constant, as indicated by the alternate long and short dash line 30 in the chart (3) of FIG. Therefore, the driver tends to feel a sense of oppression when the vehicle 10 travels on a road with a narrow road width while the deceleration remains unchanged.
 このため、図2のチャート(3)の太実線31で示すように目標制動力を強める制御が行われる。以下の説明及び図面において、「制御あり」と「制御なし」と表記しているのは、制御中と制御中以外を表しているのではなく、制御量の相違を表している。すなわち、「制御あり」と記載している箇所は、本実施の形態に係る制御が行われたことにより、制御量(目標制動力又は目標駆動力)が、「制御なし」と記載している箇所よりも増減したことを表す。 Therefore, as shown by the thick solid line 31 in the chart (3) of FIG. 2, control for increasing the target braking force is performed. In the following description and the drawings, the expressions “with control” and “without control” do not indicate during control and other than during control, but indicate the difference in control amount. That is, in the portion described as “with control”, the control amount (target braking force or target driving force) is described as “without control” because the control according to the present embodiment is performed. Indicates that the number has increased or decreased than the number of points.
 このとき、車両駆動目標生成部13は、道路状況に応じて減速度を減速制御補正分32だけ増加させるような目標制動力に補正される。車両10の減速度は、減速制御補正分32だけ増加するので、運転者は道路幅の減少に従い車両10が減速度を強めていると判断して安心感を増すことができる。このように運転者の安心感を増すための効果を狙って減速制御補正分32の値が設定される。なお、減速制御補正分32は、図1の道路幅員補正分14に含まれる値である。 At this time, the vehicle drive target generation unit 13 is corrected to a target braking force that increases the deceleration by the deceleration control correction amount 32 according to the road conditions. Since the deceleration of the vehicle 10 increases by the deceleration control correction amount 32, the driver can increase the sense of security by determining that the vehicle 10 is increasing the deceleration as the road width decreases. In this way, the value of the deceleration control correction amount 32 is set for the purpose of increasing the driver's sense of security. The deceleration control correction amount 32 is a value included in the road width correction amount 14 of FIG.
 また、制動力を増加させる場合に、道路幅員の減少が緩やかな変化であれば、一定の変化率33で制動力を変化させることで問題ない。しかし、道路幅員の減少が急激に変化するのであれば、減速度も急激に変わると、運転者に減速時のショックが加わって不快感が起きやすい。このため、急激な減速度の変化を防ぐ必要がある。 Also, when increasing the braking force, if the decrease in road width is a gradual change, there is no problem in changing the braking force at a constant change rate 33. However, if the decrease in road width changes abruptly, if the deceleration also changes abruptly, the driver is likely to be shocked during deceleration and to feel discomfort. Therefore, it is necessary to prevent a sudden change in deceleration.
 そこで、車両駆動目標生成部13は、駆動指令に基づいて摩擦制動制御装置3が制動される期間における、減速度、又は減速度に達するための制動力の変化を制限する。例えば、図2のチャート(3)に減速時変化率制限34で表すように、車両駆動目標生成部13は、目標制動力の変化率の制限を設ける。変化率の制限が設けられたことにより運転者への車両10の減速時における違和感を低減させながら、道路幅員の減少に追従させて目標制動力を増加させることができる。 Therefore, the vehicle drive target generation unit 13 limits the deceleration or the change in the braking force for reaching the deceleration during the period in which the friction braking control device 3 is braked based on the drive command. For example, as represented by the change rate limit during deceleration 34 in the chart (3) of FIG. 2, the vehicle drive target generation unit 13 sets a limit on the change rate of the target braking force. By providing the restriction on the rate of change, it is possible to increase the target braking force by following the decrease in the road width while reducing the driver's discomfort during deceleration of the vehicle 10.
 さらに、実際に道路幅員が減少する手前から減速度の増加を始めることで、運転者の前方視覚に合わせて車両10を挙動させることができる。そこで、演算に用いる道路幅員の開始は幅員減少時前方距離35のように車両10の前方の道路幅員とする。このため、車両10が実際に道路幅員が減少する地点で目標制動力が増加するのでなく、道路幅員が減少し始める手前から目標制動力が増加するので、運転者に減速度が増加することによる安心感を与えることができる。 Furthermore, by starting to increase the deceleration before the road width actually decreases, the vehicle 10 can behave according to the driver's forward vision. Therefore, the start of the road width used for the calculation is the road width in front of the vehicle 10 like the front distance 35 when the width is reduced. Therefore, the target braking force does not increase at the point where the vehicle 10 actually reduces the road width, but the target braking force increases before the road width starts to decrease, which causes the driver to increase the deceleration. You can give a sense of security.
 図3は、道路幅員が増加する場合における、道路状況と減速度の変化の例を示す説明図である。図3のシーン(1)、(2)は、車両10が車線変更せずに道路を走行する例を表し、図3のチャート(3)は、シーン(1)、(2)における目標制動力の変化の例を表す。同様に、図3のシーン(4)は、車両10が車線変更して前方車両20に接近する様子を表し、図3のチャート(5)は、シーン(4)における目標制動力の変化の例を表す。 FIG. 3 is an explanatory diagram showing an example of changes in road conditions and deceleration when the road width increases. Scenes (1) and (2) in FIG. 3 represent an example in which the vehicle 10 travels on a road without changing lanes, and a chart (3) in FIG. 3 shows a target braking force in scenes (1) and (2). Represents an example of the change of. Similarly, scene (4) in FIG. 3 shows a state in which the vehicle 10 changes lanes and approaches the front vehicle 20, and chart (5) in FIG. 3 shows an example of changes in the target braking force in scene (4). Represents
 図3のシーン(1)は、道路幅員が緩やかに拡大する道路の例を表し、図3のシーン(2)は、道路幅員が急に拡大する道路の例を表す。図3のシーン(1)、(2)に示すように走行中の車両10(自車両)が、道路幅員が拡大する地点を通過する際に減速状態であったとする。 Scene (1) in FIG. 3 shows an example of a road in which the road width gradually expands, and scene (2) in FIG. 3 shows an example of a road in which the road width suddenly expands. As shown in scenes (1) and (2) of FIG. 3, it is assumed that the traveling vehicle 10 (own vehicle) is in a decelerating state when passing a point where the road width increases.
 このとき、車両10の運転者は、減速状態を維持するが、目標制動力を補正する制御がなければ、図3のチャート(3)に一点鎖線30で示すように、目標制動力が一定である。このため、道路幅員が拡大した地点で車両10は減速したままとなるので、運転者は、車両10が減速しすぎているように感じてしまう。 At this time, the driver of the vehicle 10 maintains the deceleration state, but if there is no control for correcting the target braking force, the target braking force is constant as indicated by the one-dot chain line 30 in the chart (3) of FIG. is there. For this reason, the vehicle 10 remains decelerated at the point where the road width has increased, and the driver feels that the vehicle 10 is decelerating too much.
 そこで、図3のチャート(3)の太実線31で示すように目標制動力を弱める制御が行われる。このとき、車両駆動目標生成部13は、道路状況に応じて減速度を減速制御補正分32だけ減少させるような目標制動力を算出する。減速制御補正分32は道路幅員の増減に対して別々に設定してもよいし、道路幅員に応じた値としてもよい。車両10の減速度は、減速制御補正分32だけ減少するので、運転者は道路幅員の増加に従い、車両10が減速度を弱めていると判断して安心感を増すことができる。このように車両10の速度の減少を抑えることを狙って減速制御補正分32の値が設定される。 Then, as shown by the thick solid line 31 in the chart (3) of FIG. 3, control for weakening the target braking force is performed. At this time, the vehicle drive target generator 13 calculates a target braking force that reduces the deceleration by the deceleration control correction amount 32 according to the road condition. The deceleration control correction amount 32 may be set separately for the increase or decrease of the road width, or may be a value according to the road width. Since the deceleration of the vehicle 10 is reduced by the deceleration control correction amount 32, the driver can increase the sense of security by determining that the vehicle 10 is weakening the deceleration as the road width increases. In this way, the value of the deceleration control correction amount 32 is set in order to suppress the decrease in the speed of the vehicle 10.
 また、図2に示した道路幅員の減少と同様に、目標制動力を減少させる場合に、道路幅員の拡大が緩やかな変化であれば、一定の変化率33で制動力を変化させることで問題ない。しかし、道路幅員の拡大が急激に変化するのであれば、減速度も急激に変わると、運転者が減速状態を維持しているにも関わらず、車両10が加速し過ぎるかのような違和感が起きやすい。このため、急激な減速度の変化を防ぐ必要がある。 Further, similar to the reduction of the road width shown in FIG. 2, when the target braking force is reduced and the expansion of the road width is a gradual change, the braking force is changed at a constant change rate 33. Absent. However, if the expansion of the road width changes abruptly, if the deceleration also changes abruptly, there is a feeling of strangeness as if the vehicle 10 accelerated too much even though the driver maintained a decelerated state. Easy to get up. Therefore, it is necessary to prevent a sudden change in deceleration.
 そこで、図3のチャート(3)に減速時変化率制限34で表すように、目標制動力の変化率の制限を設ける。変化率の制限が設けられたことにより運転者への車両10の減速時における違和感を低減させながら、道路幅員の拡大に追従させて目標制動力を増加させることができる。 Therefore, as shown by the change rate limit 34 during deceleration in the chart (3) of FIG. 3, a limit on the change rate of the target braking force is set. Since the restriction of the rate of change is provided, it is possible to increase the target braking force by following the expansion of the road width while reducing the driver's discomfort during deceleration of the vehicle 10.
 さらに、図2を参照して説明した道路幅員が減少する場合と同様に、実際に道路幅員が拡大する手前から減速度を弱め始めると、道路幅員が狭いにも関わらず、運転者は、車両10が加速しようとしている感覚になる可能性がある。そこで、道路幅員の増加時に演算に用いる道路幅員の開始は幅員増加時前方距離44に示すように、道路幅員の減少における図2のチャート(3)に示した幅員減少時前方距離35とは分けて設定する。例えば、幅員増加時前方距離44は、幅員減少時前方距離35より長い値とする。幅員増加時前方距離44を設けたことにより、道路幅員が拡大し始める手前から目標制動力が減少するので、運転者に減速度が減少すること、すなわち自然に車両10が加速するような安心感を与えることができる。 Further, as in the case where the road width is reduced as described with reference to FIG. 2, when the deceleration is started to be weakened before the road width is actually increased, the driver may feel It can be a feeling that 10 is about to accelerate. Therefore, the start of the road width used for the calculation when the road width increases is separated from the road width decrease front distance 35 shown in the chart (3) of FIG. 2 in the road width decrease as shown by the road width increase front distance 44. To set. For example, the width increasing front distance 44 is set to a value longer than the width decreasing front distance 35. By providing the front distance 44 at the time of increasing the width, the target braking force decreases before the road width starts to increase, so the driver is less decelerated, that is, the vehicle 10 naturally feels as if the vehicle is accelerating. Can be given.
 また、図3のシーン(4)は、道路幅員が拡大して、1車線の道路が2車線になったことにより、車両10が車線変更した場合について表している。なお、図3のシーン(4)では、図3のシーン(1)に示す道路幅員の緩やかな拡大、図3のシーン(2)に示す道路幅員の急な拡大をまとめて表現している。 Also, scene (4) in FIG. 3 shows a case where the vehicle 10 changes lanes because the road width has expanded and the one-lane road has become two lanes. It should be noted that scene (4) in FIG. 3 collectively expresses the moderate increase in road width shown in scene (1) in FIG. 3 and the sudden increase in road width shown in scene (2) in FIG.
 車両10が車線変更した場合についても、図3のチャート(3)と同様の制御が行われる。すなわち、道路幅員が拡大したことで、目標制動力が減少される。しかし、車両10が車線変更した先には、前方車両20が走行中であるため、車両10の目標制動力が減少したままだと、車両10が前方車両20に接近し過ぎてしまう。車両10の危険回避のために減速度を増加させなければならないため、本実施の形態に係る制御から外れて他の制御機能の減速度を用いるように変化させる。 Even when the vehicle 10 changes lanes, the same control as the chart (3) in FIG. 3 is performed. That is, the target braking force is reduced due to the increased road width. However, since the front vehicle 20 is traveling before the vehicle 10 changes lanes, if the target braking force of the vehicle 10 remains reduced, the vehicle 10 approaches the front vehicle 20 too much. Since the deceleration must be increased in order to avoid the danger of the vehicle 10, the control according to the present embodiment is deviated so that the deceleration of another control function is used.
 例えば、目標制動力の制御が行われていなければ、一点鎖線30で示される一定の目標制動力から、図3のチャート(5)の二点鎖線40に示す目標制動力に増加する。
 一方、減速制御力が減少した状態であれば、運転者が意図したよりも早く車両10が前方車両20に接近するため、車両駆動目標生成部13は、減速度を減速制御補正分41だけ増加させるような目標制動力を算出する。減速制御補正分41は、図1の道路幅員補正分14に含まれる値である。このため、太実線31で示される減少した目標制動力が、太破線43で示される目標制動力に増加する。この制御により、車両10が前方車両20に接近し過ぎることが避けられる。
For example, if the target braking force is not controlled, the constant target braking force indicated by the one-dot chain line 30 increases to the target braking force indicated by the two-dot chain line 40 in the chart (5) of FIG.
On the other hand, if the deceleration control force is reduced, the vehicle 10 approaches the preceding vehicle 20 earlier than the driver intended, so the vehicle drive target generator 13 increases the deceleration by the deceleration control correction amount 41. A target braking force that causes the calculation is calculated. The deceleration control correction amount 41 is a value included in the road width correction amount 14 of FIG. Therefore, the reduced target braking force indicated by the thick solid line 31 increases to the target braking force indicated by the thick broken line 43. By this control, it is possible to prevent the vehicle 10 from approaching the forward vehicle 20 too much.
 ただし、必要な減速度に移行する時間の間で急激な変化を行わないように危険回避の目標変化時間の範囲内で制御解除時変化率42のような変化率制限を設けておく。変化率制限が設けられたことにより、制御解除時変化率42に従って、目標制動力が増加し、車両10が減速する。このため、車両10が前方車両20に接近し過ぎないような適切な減速度を実現しつつ、運転者への減速時のショック等の軽減を図ることができる。 However, a change rate limit, such as the change rate 42 at the time of control release, is set within the range of the target change time for risk avoidance so as not to make a sudden change during the time required to shift to the required deceleration. Since the change rate limit is provided, the target braking force increases according to the change rate 42 during control release, and the vehicle 10 decelerates. For this reason, it is possible to achieve appropriate deceleration so that the vehicle 10 does not approach the front vehicle 20 too much, and at the same time, it is possible to reduce shock to the driver during deceleration.
(加速時の制御)
 図4は、道路幅員が減少する場合における、道路状況と加速度の変化の例を示す説明図である。図4のシーン(1)、(2)は、道路を走行する車両10を表し、図4のチャート(3)は、シーン(1)、(2)における目標駆動力の変化の例を表す。
(Control during acceleration)
FIG. 4 is an explanatory diagram showing an example of changes in road condition and acceleration when the road width decreases. Scenes (1) and (2) in FIG. 4 represent the vehicle 10 traveling on the road, and a chart (3) in FIG. 4 represents an example of changes in the target driving force in the scenes (1) and (2).
 図4のシーン(1)は、道路幅員が緩やかに減少する道路の例を表し、図4のシーン(2)は、道路幅員が急に減少する道路の例を表す。図4のシーン(1)、(2)に示すように走行中の車両10(自車両)が、道路幅員が減少する地点を通過する際に加速状態であったとする。加速状態とは、運転者が、アクセルペダルを踏み込んだことで車両が加速する状態である。 Scene (1) in FIG. 4 represents an example of a road whose road width gradually decreases, and scene (2) in FIG. 4 represents an example of a road whose road width suddenly decreases. As shown in scenes (1) and (2) of FIG. 4, it is assumed that the running vehicle 10 (own vehicle) is in an accelerating state when passing a point where the road width decreases. The acceleration state is a state in which the vehicle accelerates when the driver depresses the accelerator pedal.
 このとき、車両10の運転者は、道路幅員が減少し始めるより手前の位置からアクセルペダルを踏み込むことで加速状態を開始する。ここで、目標駆動力を補正する制御がなければ、図4のチャート(3)に一点鎖線50で示すように、目標駆動力が一定である。このため、運転者は、加速度が変わらないまま道路幅員が狭い道路に車両10が走行することで圧迫感を感じやすい。 At this time, the driver of the vehicle 10 starts the acceleration state by depressing the accelerator pedal from a position before the road width starts to decrease. Here, if there is no control for correcting the target driving force, the target driving force is constant, as indicated by the chain line 50 in the chart (3) of FIG. Therefore, the driver is likely to feel a sense of oppression when the vehicle 10 travels on a road with a narrow road width while the acceleration remains unchanged.
 このため、図4のチャート(3)の太実線51で示すように目標駆動力を弱める制御が行われる。このとき、車両駆動目標生成部13は、道路状況に応じて加速度を加速制御補正分52だけ減少させるように目標駆動力を補正する。補正された目標駆動力により車両10の加速度は、加速制御補正分52だけ減少するので、運転者は道路幅の減少に従い車両10が加速度を弱めていると判断して安心感を増すことができる。このように運転者の安心感を増すための効果を狙って加速制御補正分52の値が設定される。なお、加速制御補正分52は、図1の道路幅員補正分14に含まれる値である。 Therefore, as shown by the thick solid line 51 in the chart (3) of FIG. 4, control for weakening the target driving force is performed. At this time, the vehicle drive target generator 13 corrects the target drive force so as to reduce the acceleration by the acceleration control correction amount 52 according to the road condition. The corrected target driving force reduces the acceleration of the vehicle 10 by the acceleration control correction amount 52. Therefore, the driver can determine that the acceleration of the vehicle 10 is weakened as the road width decreases and increase the sense of security. . In this way, the value of the acceleration control correction amount 52 is set aiming at the effect of increasing the driver's sense of security. The acceleration control correction amount 52 is a value included in the road width correction amount 14 of FIG.
 また、駆動力を増加させる場合に、道路幅員の減少が緩やかな変化であれば、一定の変化率53で駆動力を変化させることで問題ない。しかし、道路幅員の減少が急激に変化するのであれば、加速度も急激に変わると、運転者に減速時のショックが加わって不快感が起きやすい。このため、急激な加速度の変化を防ぐ必要がある。 Also, when increasing the driving force, if the decrease in road width is a gradual change, there is no problem in changing the driving force at a constant rate of change 53. However, if the decrease in road width changes abruptly, if the acceleration also changes abruptly, a shock during deceleration is applied to the driver, and discomfort is likely to occur. Therefore, it is necessary to prevent a rapid change in acceleration.
 そこで、車両駆動目標生成部13は、駆動指令に基づいて動力機器制御装置4が制御されている期間における、加速度、又は加速度に達するための駆動力の変化を制限する。例えば、図4のチャート(3)に加速時変化率制限54で表すように、目標駆動力の変化率の制限を設ける。変化率の制限により運転者への車両10の減速時における違和感を低減させながら、道路幅員の減少に追従させて目標駆動力を減少させることができる。 Therefore, the vehicle drive target generation unit 13 limits the acceleration or the change in the driving force for reaching the acceleration during the period in which the power equipment control device 4 is controlled based on the drive command. For example, as shown by the change rate limit during acceleration 54 in the chart (3) of FIG. 4, the change rate limit of the target driving force is limited. By limiting the rate of change, it is possible to reduce the target driving force by following the decrease in road width while reducing the driver's discomfort during deceleration of the vehicle 10.
 さらに、実際に道路幅員が減少する手前から加速度の減少を始めることで、運転者の前方視覚に合わせて車両10を挙動させることができる。そこで、演算に用いる道路幅員の開始は幅員減少時前方距離55のように車両10の前方の道路幅員とする。このため、車両10が実際に道路幅員が減少する地点で目標駆動力が減少するのでなく、道路幅員が減少し始める手前から目標駆動力が減少するので、運転者に加速度が減少することによる安心感を与えることができる。 Furthermore, by starting to decrease the acceleration before the road width actually decreases, the vehicle 10 can behave according to the driver's forward vision. Therefore, the start of the road width used for the calculation is the road width in front of the vehicle 10 like the front distance 55 when the width is reduced. For this reason, the target driving force does not decrease at the point where the vehicle 10 actually decreases the road width, but the target driving force decreases before the road width starts to decrease, so the driver is relieved that the acceleration decreases. It can give a feeling.
 図5は、道路幅員が増加する場合における、道路状況と加速度の変化の例を示す説明図である。図5のシーン(1)、(2)は、車両10が車線変更せずに道路を走行する例を表し、図5のチャート(3)は、シーン(1)、(2)における目標駆動力の変化の例を表す。同様に、図5のシーン(4)は、車両10が車線変更して前方車両20に接近する様子を表し、図5のチャート(5)は、シーン(4)における目標駆動力の変化の例を表す。 FIG. 5 is an explanatory diagram showing an example of changes in road conditions and acceleration when the road width increases. Scenes (1) and (2) of FIG. 5 represent an example in which the vehicle 10 travels on a road without changing lanes, and a chart (3) of FIG. 5 shows a target driving force in scenes (1) and (2). Represents an example of the change of. Similarly, scene (4) in FIG. 5 shows the vehicle 10 changing lanes and approaching the vehicle 20 in front, and chart (5) in FIG. 5 shows an example of changes in the target driving force in scene (4). Represents
 図5のシーン(1)は、道路幅員が緩やかに拡大する道路の例を表し、図5のシーン(2)は、道路幅員が急に拡大する道路の例を表す。図5のシーン(1)、(2)に示すように走行中の車両10(自車両)が、道路幅員が拡大する地点を通過する際に加速状態であったとする。 Scene (1) in FIG. 5 shows an example of a road whose road width gradually expands, and scene (2) in FIG. 5 shows an example of a road whose road width suddenly expands. As shown in scenes (1) and (2) of FIG. 5, it is assumed that the moving vehicle 10 (own vehicle) is in an accelerating state when passing a point where the road width increases.
 このとき、車両10の運転者は、加速状態を維持するが、目標駆動力を補正する制御がなければ、図5のチャート(3)に一点鎖線50で示すように、目標駆動力が一定である。このため、道路幅員が拡大した地点で車両10は加速したままとなるので、運転者は、車両10が減速しているように感じてしまう。 At this time, the driver of the vehicle 10 maintains the accelerating state, but if the control for correcting the target driving force is not performed, the target driving force is constant as indicated by the chain line 50 in the chart (3) of FIG. is there. For this reason, the vehicle 10 remains accelerated at the point where the road width is increased, and the driver feels that the vehicle 10 is decelerating.
 このため、図5のチャート(3)の太実線51で示すように目標駆動力を強める制御が行われる。このとき、車両駆動目標生成部13は、道路状況に応じて加速度を加速制御補正分52だけ増加させるような目標駆動力を算出する。加速制御補正分52は道路幅員の増減に対して別々に設定してもよいし、道路幅員に応じた値としてもよい。車両10の加速度は、加速制御補正分52だけ増加するので、運転者は道路幅員の増加に従い、車両10が加速度を強めていると判断し、違和感が発生する可能性がある。そこでなるべく低い増加分により違和感の発生しない加速度を狙って加速制御補正分52の値が設定される。 Therefore, as shown by the thick solid line 51 in the chart (3) of FIG. 5, control for increasing the target driving force is performed. At this time, the vehicle drive target generator 13 calculates a target drive force that increases the acceleration by the acceleration control correction amount 52 according to the road condition. The acceleration control correction amount 52 may be set separately for the increase or decrease of the road width, or may be a value according to the road width. Since the acceleration of the vehicle 10 increases by the acceleration control correction amount 52, the driver may determine that the vehicle 10 is increasing in acceleration as the road width increases, and a sense of discomfort may occur. Therefore, the value of the acceleration control correction amount 52 is set aiming at an acceleration that does not cause a feeling of strangeness due to the smallest possible increase.
 また、図4に示した道路幅員の減少と同様に、目標駆動力を増加させる場合に、道路幅員の拡大が緩やかな変化であれば、一定の変化率53で駆動力を変化させることで問題ない。しかし、道路幅員の拡大が急激に変化するのであれば、加速度も急激に変わると、運転者が、車両10が加速し過ぎるかのような違和感が起きやすい。この違和感を低減するため、急激な加速度の変化を防ぐ必要がある。 Further, similar to the reduction of the road width shown in FIG. 4, when the target driving force is increased, if the expansion of the road width is a gradual change, the driving force is changed at a constant change rate 53. Absent. However, if the expansion of the road width changes abruptly, if the acceleration changes abruptly, the driver is likely to feel uncomfortable as if the vehicle 10 accelerated too much. In order to reduce this discomfort, it is necessary to prevent a sudden change in acceleration.
 そこで、図5のチャート(3)に加速時変化率制限54で表すように、目標駆動力の変化率の制限を設ける。変化率の制限により運転者の意図しない加速度の増加を感じさせないように、車両10の加速時における違和感を低減させながら、道路幅員の拡大に追従させて目標駆動力を増加させることができる。 Therefore, as indicated by the acceleration change rate limit 54 in the chart (3) of FIG. 5, the target drive force change rate is limited. The target driving force can be increased by following the expansion of the road width while reducing the discomfort during acceleration of the vehicle 10 so that the driver does not feel an increase in acceleration that is not intended due to the restriction on the rate of change.
 さらに、図4を参照して説明した道路幅員が減少する場合と同様に、実際に道路幅員が拡大する手前から加速度の減少を始めると、道路幅員が狭いにも関わらず、運転者は、車両10が意図しない加速をしようとしている感覚になる可能性がある。そこで、道路幅員の増加時に演算に用いる道路幅員の開始は幅員増加時前方距離64に示すように、図4のチャート(3)に示した道路幅員の減少における幅員減少時前方距離55とは分けて設定する。例えば、幅員増加時前方距離64は、幅員減少時前方距離55より長い値とする。
幅員増加時前方距離64を設定したことにより、道路幅員が拡大し始める手前から目標駆動力が減少するので、運転者に加速度が減少することによる安心感を与えることができる。
Further, similarly to the case where the road width decreases as described with reference to FIG. 4, when the decrease in acceleration starts before the road width actually increases, the driver is The 10 may feel like trying to accelerate unintentionally. Therefore, the start of the road width used for the calculation when the road width is increased is separated from the front distance 55 when the road width is decreased in the road width decrease shown in the chart (3) of FIG. To set. For example, the width increasing front distance 64 is set to a value longer than the width decreasing front distance 55.
By setting the front distance 64 when increasing the width, the target driving force decreases before the road width starts to increase, so that the driver can be reassured that the acceleration decreases.
 また、図5のシーン(4)は、道路幅員が拡大して、1車線の道路が2車線になったことにより、車両10が車線変更した場合について表している。なお、図5のシーン(4)では、図5のシーン(1)に示す道路幅員の緩やかな拡大、図5のシーン(2)に示す道路幅員の急な拡大をまとめて表現している。 Also, scene (4) in FIG. 5 shows a case where the vehicle 10 has changed lanes because the road width has expanded and the one-lane road has become two lanes. Note that the scene (4) in FIG. 5 collectively expresses the gradual expansion of the road width shown in the scene (1) of FIG. 5 and the sudden expansion of the road width shown in the scene (2) of FIG.
 車両10が車線変更した場合についても、図5のチャート(3)と同様の制御が行われる。すなわち、道路幅員が拡大したことで、目標駆動力が増加される。しかし、車両10が車線変更した先には、前方車両20が走行中であるため、車両10の目標駆動力が増加したままだと、車両10が前方車両20に接近し過ぎてしまう。車両10の危険回避のために加速度を減少させなければならないため、本実施の形態に係る制御から外れて他の制御機能の加速度を用いるように変化させる。 Even when the vehicle 10 changes lanes, the same control as in chart (3) of FIG. 5 is performed. That is, the target driving force is increased because the road width is expanded. However, since the front vehicle 20 is traveling before the vehicle 10 changes lanes, if the target driving force of the vehicle 10 continues to increase, the vehicle 10 approaches the front vehicle 20 too much. Since the acceleration has to be reduced in order to avoid the danger of the vehicle 10, the control according to the present embodiment is deviated so that the acceleration of another control function is used.
 例えば、目標駆動力の制御が行われていなければ、一点鎖線50で示される一定の目標駆動力から、図5のチャート(5)の二点鎖線60に示す目標駆動力に減少する。
 一方、目標駆動力が増加した状態であれば、運転者が意図したよりも早く車両10が前方車両20に接近するため、車両駆動目標生成部13は、車両10の加速度を加速制御補正分61だけ減少させるような目標駆動力を算出する。加速制御補正分61は、図1の道路幅員補正分14に含まれる値である。このため、太実線51で示される増加した目標駆動力が、太破線63で示される減少した目標駆動力に補正される。従って、車両10の加速度が減少し、車両10が前方車両20に接近し過ぎることが避けられる。
For example, if the target driving force is not controlled, the constant target driving force indicated by the one-dot chain line 50 is reduced to the target driving force indicated by the two-dot chain line 60 in the chart (5) of FIG.
On the other hand, if the target driving force is increased, the vehicle 10 approaches the front vehicle 20 earlier than the driver intended, so the vehicle drive target generator 13 determines the acceleration of the vehicle 10 by the acceleration control correction amount 61. A target driving force that reduces the amount is calculated. The acceleration control correction amount 61 is a value included in the road width correction amount 14 of FIG. Therefore, the increased target driving force indicated by the thick solid line 51 is corrected to the decreased target driving force indicated by the thick broken line 63. Therefore, the acceleration of the vehicle 10 is reduced, and it is possible to prevent the vehicle 10 from approaching the forward vehicle 20 too much.
 ただし、必要な加速度に移行する時間の間で急激な変化を行わないように危険回避の目標変化時間の範囲内で制御解除時変化率62のような変化率制限を設けておく。変化率制限が設けられたことにより、制御解除時変化率62に従って、目標駆動力が減少し、車両10が減速する。このため、車両10が前方車両20に接近し過ぎないような適切な加速度を実現しつつ、運転者への減速時のショック等の軽減を図ることができる。 However, a change rate limit, such as the change rate 62 at control release, is set within the target change time range for danger avoidance so as not to make a sudden change during the time required to shift to the required acceleration. Since the change rate limit is provided, the target driving force decreases according to the change rate 62 at the time of control release, and the vehicle 10 decelerates. For this reason, it is possible to achieve appropriate acceleration so that the vehicle 10 does not approach the front vehicle 20 too much, and at the same time, it is possible to reduce shock to the driver during deceleration.
 (道路幅員の減速度補正値)
 ここで、減速度の補正値を算出する例について、図6~図9を参照して説明する。
 図2と図3に示した、道路幅員の減少に伴う、目標制動力の増加、すなわち車両10の減速度の設定は、図6に示す特性線図を用いることで実現可能である。
 図6は、道路幅員に対する減速度の補正量の関係を示す特性線図である。この特性線図において横軸を道路幅員とし、縦軸を減速度の補正量とする。
(Deceleration correction value for road width)
Here, an example of calculating the deceleration correction value will be described with reference to FIGS. 6 to 9.
The increase of the target braking force, that is, the setting of the deceleration of the vehicle 10 with the decrease of the road width shown in FIGS. 2 and 3 can be realized by using the characteristic diagram shown in FIG.
FIG. 6 is a characteristic diagram showing the relationship between the road width and the correction amount of deceleration. In this characteristic diagram, the horizontal axis is the road width and the vertical axis is the deceleration correction amount.
 車両駆動目標生成部13は、減速して走行する車両10の減速度、又は減速度に達するための制動力を、車両10の進行方向における道路の道路幅員又は路肩幅員に基づいて、車両10が目標とする減速度に達するように補正する。そこで、車両駆動目標生成部13は、車両10の減速度、又は減速度に達するための制動力を、道路幅員の変化率が閾値を超える道路の道路幅員に基づいて算出し、又は補正する。この制動力を算出する処理は、図6に示す道路幅員に対する補正量の関係を示す特性線図に基づいて行われる。なお、車両駆動目標生成部13は、道路幅員に所定の係数を掛けて、車両10の減速度、又は減速度に達するための制動力を算出し、又は補正してもよい。 The vehicle drive target generation unit 13 determines the deceleration of the vehicle 10 traveling at a reduced speed or the braking force for reaching the deceleration based on the road width or the shoulder width of the road in the traveling direction of the vehicle 10. Correct to reach the target deceleration. Therefore, the vehicle drive target generation unit 13 calculates or corrects the deceleration of the vehicle 10 or the braking force for reaching the deceleration based on the road width of the road whose rate of change of the road width exceeds the threshold value. The process of calculating the braking force is performed based on the characteristic diagram showing the relationship between the road width and the correction amount shown in FIG. The vehicle drive target generation unit 13 may calculate or correct the deceleration of the vehicle 10 or the braking force for reaching the deceleration by multiplying the road width by a predetermined coefficient.
 図6に示す直線71により、道路幅員が広くなるほど補正量が多くなって減速度が大きくなり、道路幅員が狭くなるほど補正量が少なくなって減速度が小さくなることが示される。このため、例えば、車両10が走行中の道路が2車線であれば、減速度の補正量を0とし、道路が1車線であれば、減速度の補正量を大きくし、道路が3車線であれば、減速度の補正量を小さくするといった補正が可能となる。 The straight line 71 shown in FIG. 6 shows that the wider the road width, the larger the correction amount and the deceleration, and the narrower the road width, the smaller the correction amount and the smaller the deceleration. Therefore, for example, if the road on which the vehicle 10 is traveling is two lanes, the deceleration correction amount is set to 0, and if the road is one lane, the deceleration correction amount is set to be large, and the road is three lanes. If so, it is possible to make a correction such as reducing the correction amount of deceleration.
 (路肩幅員の減速度補正値)
 また、路肩幅員の広狭に応じて減速度の補正量を変化させてもよい。図6では、路肩幅員が狭い場合から広い場合における、それぞれの減速度の補正量を示す直線70,71,72で表す。例えば、減速度の補正量は、直線71を基準として、路肩幅員が狭い場合に、所定の係数として0.8を、直線71の補正量に掛けて得られる直線70、路肩幅員が広い場合に、所定の係数として1.2を、直線71の補正量に掛けて得られる直線72として求められる。このため、車両駆動目標生成部13は、減速度、又は減速度に達するための制動力を、道路情報に含まれる路肩幅員により補正することが可能である。このように路肩幅員に応じた補正量を減速度に加えることで、減速度を算出するためのより細かい制御が可能となる。
(Deceleration correction value for shoulder width)
Further, the correction amount of deceleration may be changed according to the width of the road shoulder width. In FIG. 6, straight lines 70, 71 and 72 showing the respective deceleration correction amounts when the road shoulder width is narrow to wide. For example, the deceleration correction amount is obtained by multiplying the correction amount of the straight line 71 by 0.8 as a predetermined coefficient when the road shoulder width is narrow with the straight line 71 as a reference, and when the road shoulder width is wide. , 1.2 is obtained as a straight line 72 obtained by multiplying the correction amount of the straight line 71 by 1.2. Therefore, the vehicle drive target generation unit 13 can correct the deceleration or the braking force for reaching the deceleration by the shoulder width included in the road information. By adding a correction amount according to the road shoulder width to the deceleration in this way, finer control for calculating the deceleration becomes possible.
 図6では、道路幅員と補正量の関係を直線で表しているが、曲線で表してもよい。また、道路幅員が増加する時に生じる減速感の減少が、運転者に加速を想定させてしまわないように補正量を変化させることが効果的である。 In FIG. 6, the relationship between the road width and the correction amount is shown by a straight line, but it may be shown by a curve. Further, it is effective to change the correction amount so that the driver does not assume acceleration due to the reduction in deceleration feeling that occurs when the road width increases.
 (道路側壁の高さの減速度補正値)
 ところで、図6にて説明したように道路幅員を用いて減速度を補正するためには、運転者の視点を明確にイメージする必要がある。
 図7は、運転者から見た車両10の前方の道路状況の例を示すイメージ図である。図7では、片側2車線の道路を運転者が見た場合における道路状況について説明する。
(Deceleration correction value for the height of the side wall of the road)
By the way, as described with reference to FIG. 6, in order to correct the deceleration by using the road width, it is necessary to clearly image the driver's viewpoint.
FIG. 7 is an image diagram showing an example of road conditions in front of the vehicle 10 viewed from the driver. In FIG. 7, the road condition when the driver sees the road with two lanes on each side will be described.
 図7に示す道路幅員80は、2車線の道路の幅員を表す。また、路肩幅員81は、道路の左右に設けられた路肩の幅員を表す。また、壁高さ82は、各路肩の端から直立する道路側壁の高さを表す。ここで、路肩幅員81だけでなく、壁高さ82に対しても運転者の視覚による変化が発生することで、車両10の加速感又は減速感に影響が及ぶと考えられる。 Road width 80 shown in FIG. 7 represents the width of a two-lane road. The road shoulder width 81 represents the width of the road shoulders provided on the left and right of the road. The wall height 82 represents the height of the side wall of the road standing upright from the end of each road shoulder. Here, it is considered that not only the road shoulder width 81 but also the wall height 82 is changed by the driver's visual sense, which affects the feeling of acceleration or deceleration of the vehicle 10.
 そこで、車両駆動目標生成部13は、減速度、又は減速度に達するための制動力を、道路情報に含まれる道路側壁の高さにより補正する。壁高さ82を考慮して、減速度の補正を行うことで運転者意図をさらに細かく設定可能となる。この設定については、次式(2)にて求めた壁高さ補正値を、減速度の補正量に加えることができる。式(2)の第1補正係数は、壁高さ82が大きいほど、減速度を大きくするために用いられる。
 壁高さ補正値=壁高さ×第1補正係数…(2)
Therefore, the vehicle drive target generation unit 13 corrects the deceleration or the braking force for reaching the deceleration based on the height of the road side wall included in the road information. By correcting the deceleration in consideration of the wall height 82, the driver's intention can be set more finely. For this setting, the wall height correction value obtained by the following equation (2) can be added to the deceleration correction amount. The first correction coefficient in Expression (2) is used to increase the deceleration as the wall height 82 increases.
Wall height correction value = wall height × first correction coefficient (2)
 (制限速度と実速度による減速度補正値)
 上述したように路肩幅員81や壁高さ82等の指標を考慮して減速度を補正することで運転者意図を考慮した加減速が可能となる。さらに運転者の運転性の指標となる車速についても補正を行うことで、運転者に対してさらに安心感を向上させる加減速を行うことができる。
(Deceleration correction value based on speed limit and actual speed)
As described above, the acceleration / deceleration can be performed in consideration of the driver's intention by correcting the deceleration in consideration of the road shoulder width 81, the wall height 82 and the like. Furthermore, by correcting the vehicle speed, which is an index of the drivability of the driver, it is possible to perform acceleration / deceleration for further improving the driver's sense of security.
 図8は、車両10が走行する道路毎に設定される制限速度と、この道路を走行中の車両10の車速(実車速)に対する減速度の補正係数の例を示す説明図である。 FIG. 8 is an explanatory diagram showing an example of a speed limit set for each road on which the vehicle 10 travels and a deceleration correction coefficient for the vehicle speed (actual vehicle speed) of the vehicle 10 traveling on this road.
 車両駆動目標生成部13は、減速度、又は減速度に達するための制動力を、道路毎に規定された制限速度と、車両10の実車速により補正することが可能である。例えば、制限速度と車両10の実車速とが等しい場合、制限速度-実車速=0である。このため、補正係数は、1より小さい値となり、減速度が低下する補正が行われる。ここで、制限速度よりも車速が小さい場合、範囲91に示すように、補正係数は、1より小さい値であるため、減速度を弱く低下させることで、運転者の必要以上の減速感を低減することが可能である。一方、車速が制限速度よりも上回っている場合、範囲92に示すように、強めの減速にすることで運転者の安心感を増加させることが可能である。 The vehicle drive target generator 13 can correct the deceleration, or the braking force for reaching the deceleration, based on the speed limit specified for each road and the actual vehicle speed of the vehicle 10. For example, when the speed limit and the actual vehicle speed of the vehicle 10 are equal, the speed limit−the actual vehicle speed = 0. For this reason, the correction coefficient becomes a value smaller than 1, and the correction in which the deceleration is reduced is performed. Here, when the vehicle speed is lower than the speed limit, the correction coefficient is a value smaller than 1 as shown in the range 91. Therefore, the deceleration is weakly reduced to reduce the driver's feeling of deceleration more than necessary. It is possible to On the other hand, when the vehicle speed is higher than the speed limit, it is possible to increase the driver's sense of security by performing a strong deceleration as shown in a range 92.
 (道路幅員の減速度算出に用いる変化量の値)
 図2と図3のシーン(1)、(2)に示した、道路幅員変化率に基づく減速度変化率の設定は、図9に示す特性線図を用いることで実現可能である。
 図9は、道路幅員変化率に対する減速度の補正量変化時定数の関係を示す特性線図である。この特性線図において横軸を道路幅員変化率とし、縦軸を減速度の補正量変化時定数とする。ここで、道路幅員変化率は、既に説明した式(1)によって算出される。
(Value of the amount of change used to calculate the deceleration of the road width)
The setting of the deceleration change rate based on the road width change rate shown in scenes (1) and (2) in FIGS. 2 and 3 can be realized by using the characteristic diagram shown in FIG.
FIG. 9 is a characteristic diagram showing the relationship between the deceleration correction amount change time constant and the road width change rate. In this characteristic diagram, the horizontal axis represents the road width change rate, and the vertical axis represents the deceleration correction amount change time constant. Here, the road width change rate is calculated by the above-described equation (1).
 図9に示す直線により、図2と図3のシーン(2)に示した、道路幅員変化率が急であるほど、補正量変化時定数が小さくなり、図2と図3のシーン(1)に示した、道路幅員変化率が緩くなるほど、補正量変化時定数が大きくなることが示される。
 図9では、道路幅員変化率と補正量変化時定数との関係を直線で表しているが、曲線で表してもよい。
 また、道路幅員が増加する時に生じる減速変化率の減少が、運転者に加速を想定させてしまわないように補正量変化時定数を大きくさせることが効果的である。
According to the straight line shown in FIG. 9, the steeper the road width change rate shown in the scene (2) of FIGS. 2 and 3, the smaller the correction amount change time constant becomes, and the scene (1) of FIGS. 2 and 3 is obtained. It is shown that the correction amount change time constant increases as the road width change rate shown in FIG.
In FIG. 9, the relationship between the road width change rate and the correction amount change time constant is represented by a straight line, but it may be represented by a curve.
Further, it is effective to increase the correction amount change time constant so that the reduction rate of deceleration change that occurs when the road width increases does not cause the driver to assume acceleration.
 (道路幅員の加速度補正値)
 次に、加速度の補正値を算出する例について、図10と図11を参照して説明する。
(Acceleration correction value of road width)
Next, an example of calculating the acceleration correction value will be described with reference to FIGS. 10 and 11.
 図4と図5に示したように車両駆動目標生成部13は、加速して走行する車両10の加速度、又は加速度に達するための駆動力を、車両10の進行方向における道路の道路幅員又は路肩幅員に基づいて、車両10が目標とする加速度に達するように補正する。そこで、車両駆動目標生成部13は、車両10の加速度、又は加速度に達するための駆動力を、道路幅員変化率が閾値を超える道路の道路幅員に基づいて算出し、又は補正することができる。ここで、道路幅員又は路肩幅員の広狭に伴う加速度の設定は、図10に示す基準となる特性線図に対して、道路幅員又は路肩幅員により特性変更を行うことで実現可能である。 As shown in FIGS. 4 and 5, the vehicle drive target generation unit 13 supplies the acceleration of the vehicle 10 that is accelerating and travels, or the driving force for reaching the acceleration to the road width or shoulder of the road in the traveling direction of the vehicle 10. Based on the width, the vehicle 10 is corrected to reach the target acceleration. Therefore, the vehicle drive target generation unit 13 can calculate or correct the acceleration of the vehicle 10 or the driving force for reaching the acceleration based on the road width of the road whose road width change rate exceeds the threshold. Here, the setting of the acceleration due to the width of the road width or the width of the shoulder width can be realized by changing the characteristics of the road width or the width of the shoulder width with respect to the reference characteristic diagram shown in FIG. 10.
 図10は、アクセル開度に対する目標駆動力の関係を示す特性線図である。この特性線図において横軸をアクセル開度とし、縦軸を目標駆動力とする。この特性線図により、車両10の運転者が行うアクセル操作に対する駆動力との関係が、道路幅員毎に規定される曲線によって表される。 FIG. 10 is a characteristic diagram showing the relationship between the target driving force and the accelerator opening. In this characteristic diagram, the horizontal axis represents the accelerator opening and the vertical axis represents the target driving force. With this characteristic diagram, the relationship with the driving force for the accelerator operation performed by the driver of the vehicle 10 is represented by a curve defined for each road width.
 例えば、次式(3)に示すように目標駆動力を数式として設定することも可能である。
 目標駆動力=特性図の制御なし線×(道路幅員×係数)…(3)
For example, the target driving force can be set as a mathematical expression as shown in the following expression (3).
Target driving force = line without control in characteristic diagram x (road width x coefficient) (3)
 図10に実線で示す曲線100は、本実施の形態に係る制御を行わない場合におけるアクセル開度に対する目標駆動力の関係を表す。
 一方、破線で示す曲線101は、道路幅員が広いときに本実施の形態に係る制御を行った場合におけるアクセル開度に対する目標駆動力の関係を表す。
 また、一点鎖線で示す曲線102は、道路幅員が狭いときに本実施の形態に係る制御を行った場合におけるアクセル開度に対する目標駆動力の関係を表し、曲線103は、路肩幅員に応じて本実施の形態に係る制御を行った場合におけるアクセル開度に対する目標駆動力の関係を表す。ここで、曲線102で想定される道路幅員よりも、曲線103で想定される路肩幅員の方が狭いものとする。
A curve 100 shown by a solid line in FIG. 10 represents a relationship between the accelerator opening and the target driving force when the control according to the present embodiment is not performed.
On the other hand, a curved line 101 indicated by a broken line represents the relationship between the accelerator opening and the target driving force when the control according to the present embodiment is performed when the road width is wide.
Further, a curve 102 indicated by a one-dot chain line represents a relationship of the target driving force with respect to the accelerator opening when the control according to the present embodiment is performed when the road width is narrow, and a curve 103 is a curve according to the road shoulder width. 5 shows a relationship between the accelerator opening and the target driving force when the control according to the embodiment is performed. Here, it is assumed that the road shoulder width assumed by the curve 103 is narrower than the road width assumed by the curve 102.
 曲線101,102で示した道路幅員に応じて特性を直接変更することで、アクセル開度に対する目標駆動力の関係を変更することができる。このため、車両駆動目標生成部13は、この特性線図に従って、車両10が加速度、又は加速度に達するための駆動力を算出し、又は補正することが可能である。このとき、車両駆動目標生成部13は、道路幅員が増加する時に生じる加速感が、運転者に意図しない加速を想定させてしまわないように目標駆動力を設定するとよい。 By directly changing the characteristics according to the road width shown by the curves 101 and 102, the relationship between the target driving force and the accelerator opening can be changed. Therefore, the vehicle drive target generation unit 13 can calculate or correct the acceleration of the vehicle 10 or the driving force for reaching the acceleration according to this characteristic diagram. At this time, the vehicle drive target generation unit 13 may set the target drive force so that the feeling of acceleration generated when the road width increases does not cause the driver to assume unintentional acceleration.
 (路肩幅員の加速度補正値)
 また、運転者が加速する時、路肩幅員が狭い場合は、横からの人、物などの飛び出しなどの懸念が大きくなる。このため、運転者としてはアクセルペダルを踏み込み難い状況にあり、車両10についてもなるべく加速しないようにしたいという要望がある。
(Acceleration correction value for shoulder width)
Further, when the driver accelerates and the shoulder width is narrow, there is a great concern that a person, an object, or the like jumps out from the side. Therefore, it is difficult for the driver to depress the accelerator pedal, and there is a demand for the vehicle 10 not to accelerate as much as possible.
 そこで、車両駆動目標生成部13は、加速度、又は加速度に達するための駆動力を、道路情報に含まれる路肩幅員により補正する。例えば、車両駆動目標生成部13は、図10の一点鎖線103で示す路肩幅員から求められる特性線に基づいて、目標駆動力が小さくなるように補正を行う。
 なお、路肩幅員が広い場合においても、やはり運転者が意図しない加速感を感じないように、車両駆動目標生成部13が目標駆動力を補正するとよい。
Therefore, the vehicle drive target generation unit 13 corrects the acceleration or the driving force for reaching the acceleration by the shoulder width included in the road information. For example, the vehicle drive target generation unit 13 performs correction so that the target drive force becomes smaller based on the characteristic line obtained from the shoulder width shown by the alternate long and short dash line 103 in FIG. 10.
Even when the shoulder width is wide, the vehicle drive target generator 13 may correct the target drive force so that the driver does not feel an unintentional acceleration feeling.
 (道路側壁の高さの加速度補正値)
 また、図10に示したように道路幅員を考慮して目標駆動力を設定し、又は補正する際には、運転者の視点を明確にイメージする必要がある。
 そこで、減速時における目標制動力を設定する際に用いた図7を参照する。加速時における目標駆動力についても、車両10が走行する道路の左右の路肩幅員81だけでなく、壁高さ82に対しても運転者の視覚による変化が発生することで、車両10の加速感に影響が及ぶと考えられる。
(Correction value for acceleration of road side wall height)
In addition, as shown in FIG. 10, when setting or correcting the target driving force in consideration of the road width, it is necessary to clearly image the driver's viewpoint.
Therefore, reference is made to FIG. 7 used when setting the target braking force during deceleration. Regarding the target driving force at the time of acceleration, not only the shoulder width 81 on the left and right of the road on which the vehicle 10 travels, but also the wall height 82 is changed by the driver's visual sense, and the acceleration feeling of the vehicle 10 is increased. Will be affected.
 そこで、車両駆動目標生成部13は、加速度、又は加速度に達するための駆動力を、道路情報に含まれる道路側壁の高さにより補正する。例えば、車両駆動目標生成部13は、壁高さ82を考慮して、加速度の補正を行うことで運転者意図をさらに細かく設定可能である。この設定について、次式(4)で求めた壁高さ補正値を、加速度の補正量に加えることができる。式(4)の第2補正係数は、壁高さ82が大きいほど、加速度を小さくするために用いられる。
 壁高さ補正値=壁高さ×第2補正係数…(4)
Therefore, the vehicle drive target generator 13 corrects the acceleration or the driving force for reaching the acceleration based on the height of the road sidewall included in the road information. For example, the vehicle drive target generation unit 13 can further finely set the driver's intention by correcting the acceleration in consideration of the wall height 82. For this setting, the wall height correction value obtained by the following equation (4) can be added to the acceleration correction amount. The second correction coefficient of Expression (4) is used to reduce the acceleration as the wall height 82 increases.
Wall height correction value = wall height × second correction coefficient (4)
 (制限速度と実速度による加速度補正値)
 上述したように路肩幅員81や壁高さ82などの指標を考慮して加速度を補正することで運転者意図を考慮した加減速が可能となる。さらに運転者の運転性の指標となる車速についても補正を行うことで、運転者に対してさらに安心感を向上させる加減速を行うことができる。
(Acceleration correction value by speed limit and actual speed)
As described above, the acceleration and deceleration can be performed in consideration of the driver's intention by correcting the acceleration in consideration of the road shoulder width 81 and the wall height 82. Furthermore, by correcting the vehicle speed, which is an index of the drivability of the driver, it is possible to perform acceleration / deceleration for further improving the driver's sense of security.
 図11は、車両10が走行する道路毎に設定される制限速度と、この道路を走行中の車両10の車速(実車速)に対する加速度の補正係数の例を示す説明図である。 FIG. 11 is an explanatory diagram showing an example of a speed limit set for each road on which the vehicle 10 travels and an acceleration correction coefficient for the vehicle speed (actual vehicle speed) of the vehicle 10 traveling on this road.
 車両駆動目標生成部13は、加速度、又は加速度に達するための駆動力を、道路毎に規定された制限速度と、車両10の実車速により補正することが可能である。例えば、制限速度と車両10の実車速とが等しい場合、制限速度-実車速=0である。このため、補正係数は、1より大きい値となり、加速度を強める補正が行われる。ここで、制限速度よりも車速が小さい場合、範囲111に示すように、補正係数は、1より大きい値であるため、加速度を強める補正が行われる。このため、運転者の必要以上の減速感を低減することが可能である。 The vehicle drive target generator 13 can correct the acceleration or the driving force for reaching the acceleration based on the speed limit specified for each road and the actual vehicle speed of the vehicle 10. For example, when the speed limit and the actual vehicle speed of the vehicle 10 are equal, the speed limit−the actual vehicle speed = 0. Therefore, the correction coefficient becomes a value larger than 1, and the correction for increasing the acceleration is performed. Here, when the vehicle speed is lower than the speed limit, the correction coefficient is a value larger than 1 as shown in the range 111, and therefore the correction for increasing the acceleration is performed. Therefore, it is possible to reduce the driver's feeling of deceleration more than necessary.
 一方、車速が制限速度よりも上回っている場合、範囲112に示すように、補正係数が1以下の値になる。このとき、加速度を弱める補正が行われることで車両10が加速し過ぎないので、運転者の安心感を増加させることが可能である。 On the other hand, when the vehicle speed is higher than the speed limit, the correction coefficient becomes a value of 1 or less as shown in the range 112. At this time, since the vehicle 10 is not accelerated too much by performing the correction for weakening the acceleration, it is possible to increase the driver's sense of security.
 (道路幅員の加速度算出に用いる変化量の値)
 なお、減速度の補正量変化時定数を設定する処理は、上述した図9に示す特性線図を用いて行われることを説明した。ここで、減速時と同様に、加速時の補正量変化時定数についても、図9に示す特性線図を用いて、道路幅員に合わせて変化させてもよい。例えば、加速時において、図4と図5のシーン(2)に示したように、道路幅員変化率が急であるほど、補正量変化時定数が小さくなる。一方、図4と図5のシーン(1)に示したように、道路幅員変化率が緩くなるほど、補正量変化時定数が大きくなる。
(Value of the amount of change used to calculate the acceleration of the road width)
It has been described that the process of setting the deceleration correction amount change time constant is performed using the characteristic diagram shown in FIG. 9 described above. Here, as in the case of deceleration, the correction amount change time constant during acceleration may also be changed according to the road width using the characteristic diagram shown in FIG. For example, during acceleration, as shown in scene (2) of FIGS. 4 and 5, as the road width change rate becomes steeper, the correction amount change time constant becomes smaller. On the other hand, as shown in scene (1) of FIGS. 4 and 5, as the road width change rate becomes slower, the correction amount change time constant becomes larger.
 ただし、道路幅員の急激な増加に対して急激に加速する補正を行うと、運転者が意図しない加速となる可能性がある。このため、加速度の補正量変化時定数を大きくすることで、車両10が緩やかに加速するように補正してもよい。
 また、道路幅員が減少する場合の加速においても加速感が急減するよりは緩やかに加速が減少した方がよいと感じる場合もある。このため、道路幅員の増加又は減少で加速度の補正における特性を分けなくても問題はない。
However, if a correction is made to accelerate rapidly with respect to a rapid increase in road width, there is a possibility that the driver may unintentionally accelerate. Therefore, the vehicle 10 may be corrected to be gradually accelerated by increasing the time constant of change in the correction amount of acceleration.
In addition, even in the case of acceleration when the road width is reduced, it may be preferable that the acceleration is gradually decreased rather than the acceleration feeling is rapidly decreased. Therefore, there is no problem even if the characteristics for acceleration correction are not divided according to the increase or decrease of the road width.
 (道路幅員に応じた制駆動力の制御開始又は終了の条件)
 ここで、本実施の形態に係る制駆動力の制御開始又は終了の条件について説明する。
 図12は、車両駆動目標生成部13が制駆動力の制御の適用可否を判断する処理の例を示すフローチャートである。
(Conditions for starting or ending control of braking / driving force according to road width)
Here, the conditions for starting or ending the control of the braking / driving force according to the present embodiment will be described.
FIG. 12 is a flowchart showing an example of a process in which the vehicle drive target generator 13 determines whether or not the control of the braking / driving force is applicable.
 始めに、車両駆動目標生成部13は、入力処理部11から入力した道路幅員に応じて、設定する設定値又は補正値を演算する(S1)。次に、車両駆動目標生成部13は、後述する図13に示す方法により目標加減速度の変化率の制限、又はフィルタ処理を行う(S2)。目標加減速度の変化率の制限は、後述する図13に示すように制駆動力の制御開始又は終了時に、目標加減速度が急激に変化しないようにするために行われる処理である。
フィルタ処理は、例えば、図2に示した目標制動力が急な立ち上がりとならないように、減速時変化率制限34を適用する処理である。
First, the vehicle drive target generation unit 13 calculates a set value or a correction value to be set according to the road width input from the input processing unit 11 (S1). Next, the vehicle drive target generator 13 limits the rate of change in target acceleration / deceleration or performs filter processing by the method shown in FIG. 13 described later (S2). The restriction of the rate of change of the target acceleration / deceleration is a process performed so that the target acceleration / deceleration does not suddenly change at the start or end of the control of the braking / driving force, as shown in FIG.
The filtering process is, for example, a process of applying the change rate limit during deceleration 34 so that the target braking force shown in FIG. 2 does not suddenly rise.
 そして、車両駆動目標生成部13は、演算された値を使用するかどうかを判定条件により適用許可判断を行い、目標加減速度又は目標制駆動力などを指標として求める。車両駆動目標生成部13は、判定条件を、例えば、道路幅員が不明確などを含むパラメータの異常時、車両10に対する前後又は左右から他の車両が接近する場合などで安全支援機能が動作している時、車載機器の異常時などの有無に基づいて判断する。 Then, the vehicle drive target generator 13 determines whether or not to use the calculated value based on the determination condition, and determines the target acceleration / deceleration or the target braking / driving force as an index. The vehicle drive target generation unit 13 operates the safety support function based on the determination condition, for example, when a parameter including an unclear road width is abnormal, or when another vehicle approaches the vehicle 10 from the front, rear, left, or right. When there is an abnormality in the in-vehicle device, the judgment is made based on the presence or absence.
 また、車両駆動目標生成部13は、駆動指令に基づいて動力機器5又はブレーキパッドに行われる制御の開始条件を、道路幅員の検知状態、駆動系の故障、その他の運転支援制御の有無に基づいて判断する。例えば、駆動系が故障していれば、直ちに車両10を停止する制御が行われる。また、その他の運転支援制御が行われていれば、優先度に応じて本実施の形態に係る制駆動力の制御を行うか否かが判断される。このように、本実施の形態に係る制駆動力の制御は、様々な状況変化と協調して運転者の安心感や運転性向上に貢献することができる。 In addition, the vehicle drive target generation unit 13 determines the start condition of the control performed on the power equipment 5 or the brake pad based on the drive command based on the detection state of the road width, the failure of the drive system, and the presence / absence of other driving support control. Judge. For example, if the drive system is out of order, control for immediately stopping the vehicle 10 is performed. Further, if other driving support control is performed, it is determined whether or not the braking / driving force control according to the present embodiment is performed according to the priority. As described above, the control of the braking / driving force according to the present embodiment can contribute to the driver's sense of security and the improvement of drivability in cooperation with various situation changes.
 次に、車両駆動目標生成部13は、本実施の形態に係る制駆動力の制御を適用許可とするか否かを判断する(S3)。適用許可であれば(S3のYES)、車両駆動目標生成部13は、制駆動力の制御を適用する(S4)。適用不可であれば(S3のNO)、車両駆動目標生成部13は、制駆動力の制御を適用しない(S4)。ステップS4,S5の後、再び、ステップS1に戻り、車両駆動目標生成部13は、本処理を繰り返し実行する。 Next, the vehicle drive target generation unit 13 determines whether or not the application of the braking / driving force control according to the present embodiment is permitted (S3). If the application is permitted (YES in S3), the vehicle drive target generation unit 13 applies the braking / driving force control (S4). If not applicable (NO in S3), the vehicle drive target generation unit 13 does not apply the braking / driving force control (S4). After steps S4 and S5, the process returns to step S1 again, and the vehicle drive target generation unit 13 repeatedly executes this processing.
 (道路幅員の開始又は終了に用いる変化量の値)
 次に、本実施の形態に係る制御の開始又は終了時に、実車速を目標加減速度に変化させる際の変化率の制限を行うタイミングについて説明する。
 図13は、目標加減速度に対する変化率の制限を行うタイミングの例を示すチャートである。
(Value of the amount of change used to start or end the road width)
Next, the timing of limiting the rate of change when changing the actual vehicle speed to the target acceleration / deceleration at the start or end of the control according to the present embodiment will be described.
FIG. 13 is a chart showing an example of the timing of limiting the rate of change with respect to the target acceleration / deceleration.
 図13のチャート(1)には、本実施の形態に係る制駆動力の制御開始又は解除判定のタイミングの例が示される。初めは、制駆動力の制御が行われていない状態である。制駆動力の制御が開始されると、車両駆動目標生成部13は、制御ONに変化した時点(図中の矢印120)から「制御中」と判定する。その後、制駆動力の制御が解除されると、制御OFFに変化した時点(図中の矢印121)から「制御解除」と判定される。ここで、チャート(1)には、制御OFFに変化した後、現在時間122、切替目標時間123が定義される。切替目標時間123は、チャート(2)に示す目標到達時間127により規定される時間である。そして、切替目標時間123から現在時間122を減じた期間124が図中に示される。 The chart (1) in FIG. 13 shows an example of the timing for determining whether to start or cancel the control of the braking / driving force according to the present embodiment. Initially, the braking / driving force is not controlled. When the control of the braking / driving force is started, the vehicle drive target generation unit 13 determines that “the control is in progress” from the time when the control is turned on (arrow 120 in the drawing). After that, when the control of the braking / driving force is released, it is determined to be “control released” from the time when the control is turned off (arrow 121 in the figure). Here, in the chart (1), the current time 122 and the switching target time 123 are defined after the control is turned off. The switching target time 123 is a time defined by the target arrival time 127 shown in the chart (2). Then, a period 124 obtained by subtracting the current time 122 from the switching target time 123 is shown in the figure.
 図13のチャート(2)には、チャート(1)で示される制駆動力の制御に伴って変化する目標加減速度の例が示される。初めは制御なしの状態であり、車両10が一定の目標加減速度で走行している。車両駆動目標生成部13により制駆動力の制御が開始されると、制御ONに変化した時点(図中の矢印120)から緩やかに加減速度が変化する。その後、制御あり制駆動力の状態となるため、目標加減速度が低下する。制駆動力の制御中は、目標加減速度は低下したままとなる。制駆動力の制御が解除されると、制御OFFに変化した時点(図中の矢印121)から目標加減速度が上昇する。低下していた目標加減速度が、元に戻るまでには、目標到達時間127が必要である。 The chart (2) in FIG. 13 shows an example of the target acceleration / deceleration that changes with the control of the braking / driving force shown in the chart (1). Initially, there is no control, and the vehicle 10 is traveling at a constant target acceleration / deceleration. When the control of the braking / driving force is started by the vehicle drive target generation unit 13, the acceleration / deceleration gradually changes from the time when the control is turned on (arrow 120 in the drawing). After that, since the braking / driving force with control is established, the target acceleration / deceleration decreases. The target acceleration / deceleration remains low during the control of the braking / driving force. When the control of the braking / driving force is released, the target acceleration / deceleration increases from the time when the control is turned off (arrow 121 in the figure). The target reaching time 127 is required before the reduced target acceleration / deceleration returns to the original value.
 本実施の形態に係る制駆動力への制御の有無で加減速度が相違する場合、急激な加減速度の変化がもたらされないように、加減速度の変化を制限することが必要である。ただし、制駆動力の制御開始時は、一定の時間内に完了する制約はないため、運転者の違和感にならないように設定を行ってよい。チャート(2)には、制駆動力の制御開始時における開始時変化率制限125が示される。 When acceleration / deceleration is different depending on whether the braking / driving force is controlled according to the present embodiment, it is necessary to limit the change in acceleration / deceleration so as not to cause a sudden change in acceleration / deceleration. However, when the control of the braking / driving force is started, there is no restriction that the control is completed within a fixed time, so the setting may be made so that the driver does not feel uncomfortable. Chart (2) shows the start change rate limit 125 at the start of control of the braking / driving force.
 以下に、制駆動力の制御解除時における目標加減速度の変化率について説明する。
例えば、制御解除時における目標加減速度の変化率は、制御なし制駆動力、制御あり制駆動力、切替目標時間を変数として、次式(5)を用いて算出できる。
 目標加減速度の変化率=(制御なし制駆動力-制御あり制駆動力)×比率+制御なし制駆動力 …(5)
The change rate of the target acceleration / deceleration at the time of releasing the control of the braking / driving force will be described below.
For example, the rate of change of the target acceleration / deceleration at the time of releasing the control can be calculated using the following equation (5) with the braking / driving force without control, the braking / driving force with control, and the switching target time as variables.
Change rate of target acceleration / deceleration = (braking / driving force without control-braking / driving force with control) x ratio + braking / driving force without control (5)
 また、式(5)の比率とは、制御ONのときに100%、制御OFFのときに0%としたときに、例えば次式(6)を用いて算出される値である。上述したように図13のチャート(1)にて、式中の現在時間は矢印122で表され、切替目標時間は矢印123で表され、切替目標時間-現在時間は矢印124で表される。
 比率=(切替目標時間-現在時間)/切替目標時間 …(6)
Further, the ratio of the equation (5) is a value calculated by using, for example, the following equation (6) when the control is ON and 100% and the control is 0%. As described above, in the chart (1) of FIG. 13, the current time in the equation is represented by the arrow 122, the switching target time is represented by the arrow 123, and the switching target time-current time is represented by the arrow 124.
Ratio = (switch target time-current time) / switch target time (6)
 チャート(1)に示すように、制御OFFに変化した時点(図中の矢印121)から、切替目標時間(図中の矢印123)までを100%として、制御あり制駆動力と、制御なし制駆動力とを、制御切替(制御OFFの変化を示す矢印121)からの現在時間比率に応じて切替える。このため、制御OFFに変化した時点から緩やかに制駆動力の制御を弱めていき、現在時間122が切替目標時間123に達した時点で、制駆動力の制御なしとすることができる。制駆動力の制御を解除したときの解除時変化率は、解除時変化率制限126により制限される。このため、制駆動力の制御ありの状態から制駆動力の制御なしの状態に至るまでの目標加減速度の急な変化を抑えることができる。 As shown in chart (1), the braking / driving force with control and the braking force without control are set as 100% from the time when the control is turned off (arrow 121 in the figure) to the switching target time (arrow 123 in the figure). The driving force is switched according to the current time ratio from the control switching (arrow 121 indicating the change of control OFF). Therefore, the control of the braking / driving force is gradually weakened from the time when the control is turned off, and when the current time 122 reaches the switching target time 123, the control of the braking / driving force can be stopped. The change rate at release when the control of the braking / driving force is released is limited by the change rate limit at release 126. Therefore, it is possible to suppress a sudden change in the target acceleration / deceleration from the state in which the braking / driving force is controlled to the state in which the braking / driving force is not controlled.
 なお、本実施の形態に係る制駆動力への制御により加減速度の変化が制限されている途中でも、例えば、車両10が前方車両20に接近し過ぎた場合等であれば、車両10の加速を停止し、又は減速する高優先度の制御に移行する。この場合には、一定の時間内に加減速度の変化の制限が解除されるため、直ちに加減速度が変化する。 Even if the change in acceleration / deceleration is limited by the control of the braking / driving force according to the present embodiment, if the vehicle 10 approaches the front vehicle 20 too much, the vehicle 10 is accelerated. To shift to high-priority control for stopping or decelerating. In this case, since the restriction on the change in acceleration / deceleration is released within a certain period of time, the acceleration / deceleration immediately changes.
 (前方幅員を規定)
 また、車両10が走行する道路の道路幅員は、車両10の走行方向である、車両10の前方から求めるべきである。そして、道路幅員を求める際に考慮すべき走行距離は、運転者が視覚的に認識できる範囲内の距離でかつ、運転者が車両10を通常操作して加減速度を合わせるのに必要な時間以上で車両10が移動する距離であることが望ましい。ここで、運転者の認識範囲はかなり広いため、極端な前方では、道路幅員が変わらないにも関わらず、車両10の加減速度が変化すると、運転者にとって違和感が大きくなる。
(Specify front width)
The road width of the road on which the vehicle 10 travels should be obtained from the front of the vehicle 10, which is the traveling direction of the vehicle 10. The travel distance to be considered when determining the road width is a distance within a range that the driver can visually recognize, and is equal to or longer than the time required for the driver to normally operate the vehicle 10 to adjust the acceleration / deceleration. It is desirable that the distance is the distance that the vehicle 10 moves. Here, since the driver's recognition range is quite wide, if the acceleration / deceleration of the vehicle 10 changes in the extreme front, the driver feels uncomfortable even though the road width does not change.
 逆に、運転者が操作に必要な時間は、例えば減速停止時の空走距離などに基づき明白である。このため、車両駆動目標生成部13は、本実施の形態に係る制御において参照する道路幅員、路肩幅員、路肩高さは、少なくとも車両10の空走距離以上前方の道路に関する道路情報から求める。例えば、車両駆動目標生成部13は、車両10の車速に応じて、空走距離[m]=(車速[km/h]×1000/3600×0.75[s])以上前方の道路に関する道路情報から必要な値(例えば、道路幅員)を取ることが望ましい。そして、路肩幅員、側壁の高さについても、車両10の空走距離以上前方の道路の道路幅員を使用して求めるよい。 On the contrary, the time required for the driver to operate is clear, for example, based on the idling distance when decelerating and stopping. Therefore, the vehicle drive target generation unit 13 obtains the road width, the road shoulder width, and the road shoulder height that are referred to in the control according to the present embodiment from the road information regarding the road ahead at least the free running distance of the vehicle 10. For example, the vehicle drive target generation unit 13 determines, according to the vehicle speed of the vehicle 10, a traveling distance [m] = (vehicle speed [km / h] × 1000/3600 × 0.75 [s]) or more roads ahead of the road. It is desirable to take the required value (eg road width) from the information. Then, the road shoulder width and the height of the side wall may be obtained by using the road width of the road ahead of the idling distance of the vehicle 10.
 上述したように運転者の速度感に大きく影響するものには道路幅員と、道路幅員の変化とがある。また、路肩幅員も運転者の感覚に影響を及ぼす。このため、加減速の設定に際して制駆動力が補正されることで、運転者に快適な加減速度が提供される。さらに、道路側壁の高さ、制限速度と実際の走行速度、パラメータを基にした加減速度の変化率も考慮することで自動的に加減速が調整されることにより運転者の運転性が向上する。 As mentioned above, there are road widths and changes in road widths that greatly affect the driver's speed. The shoulder width also affects the driver's feeling. Therefore, the braking / driving force is corrected when the acceleration / deceleration is set, so that the driver is provided with a comfortable acceleration / deceleration. In addition, the driver's drivability is improved by automatically adjusting the acceleration / deceleration by considering the height of the road side wall, the speed limit and the actual traveling speed, and the rate of change of the acceleration / deceleration based on the parameters. .
 なお、車両駆動目標生成部13は、本実施の形態に係る制御の開始時及び終了時に、本実施の形態に係る制御以外の他の制御により加速度又は減速度、制駆動力が変化する場合には、他の制御による加速度又は減速度の変化率、制駆動力の変化率を制限する。変化率が制限されることにより、本実施の形態に係る制御が有効に働き、運転者に対して、車両10の運転性に違和感を生じさせなくなる。 It should be noted that the vehicle drive target generation unit 13 determines whether the acceleration or deceleration or the braking / driving force changes at the start and end of the control according to the present embodiment due to control other than the control according to the present embodiment. Limits the rate of change of acceleration or deceleration and the rate of change of braking / driving force by other control. By limiting the rate of change, the control according to the present embodiment works effectively, and the driver does not feel uncomfortable in the drivability of vehicle 10.
[第2の実施の形態]
(道路幅員の減速度算出に用いる変化量の値(電動車両と従来車両の相違))
 次に、本発明の第2の実施の形態に係る車両について説明する。ここでは、駆動源として内燃機関を有する車両(「従来車両」とも呼ぶ)のシステム構成例について説明する。
 図14は、内燃機関を有する車両200のシステム構成例を示す機能ブロック図である。
[Second Embodiment]
(Value of amount of change used to calculate deceleration of road width (difference between electric vehicle and conventional vehicle))
Next, a vehicle according to the second embodiment of the present invention will be described. Here, a system configuration example of a vehicle (also referred to as a “conventional vehicle”) having an internal combustion engine as a drive source will be described.
FIG. 14 is a functional block diagram showing a system configuration example of a vehicle 200 having an internal combustion engine.
 車両200が備える外界認識装置201は、カメラなどの撮像装置であり、車両200の周囲を撮像可能である。また、車両200が備える位置情報取得装置202は、GPS(Global Positioning System)やナビゲーションシステムなどであり、車両200の現在位置を示す位置情報を取得する。外界認識装置201及び位置情報取得装置202は、通信線で接続された道路情報出力装置203に対して、映像データを出力し、車両200の位置情報、車両200が走行する道路の道路情報などを出力することが可能である。 The external world recognition device 201 included in the vehicle 200 is an imaging device such as a camera and can image the surroundings of the vehicle 200. The position information acquisition device 202 included in the vehicle 200 is a GPS (Global Positioning System), a navigation system, or the like, and acquires position information indicating the current position of the vehicle 200. The outside world recognition device 201 and the position information acquisition device 202 output image data to the road information output device 203 connected by a communication line, and display position information of the vehicle 200, road information of the road on which the vehicle 200 travels, and the like. It is possible to output.
 車両200が備える道路情報出力装置203、車両駆動制御装置204、変速機制御装置205、制動制御装置206、及び原動機制御装置207は、通信線で接続されており、各装置は、各々の情報を通信線を通じて情報により共有することができる。 The road information output device 203, the vehicle drive control device 204, the transmission control device 205, the braking control device 206, and the prime mover control device 207 included in the vehicle 200 are connected by a communication line, and each device transmits its own information. Information can be shared through communication lines.
 車両駆動制御装置204の内部構成及び機能は、図1に示した車両駆動制御装置1と同様である。すなわち、車両駆動制御装置204は、車両200の減速時において、車両200の前方の道路幅員が狭まる場合には、急制動とならないように目標制動力を増加し、道路幅員が広がる場合には、加速感が得られるように目標制動力を減少する。一方、車両駆動制御装置204は、車両200の加速時において、車両200の前方の道路幅員が狭まる場合には、急制動とならないように目標駆動力を減少し、道路幅員が広がる場合には、加速感が得られるように目標駆動力を増加する。本実施の形態における目標制動力及び目標駆動力の減少又は増加は、道路幅員だけでなく、路肩幅員、道路側壁の高さによっても変化する。また、車両駆動制御装置204は、制限速度と実車速の差に応じて、車両200の車速に対する加減速度の補正係数を変え、道路幅員変化率に応じて補正両辺か時定数も変える。また、車両駆動制御装置204は、アクセル開度と道路幅員の広狭に応じて目標制動力を変えることもできる。 The internal configuration and functions of the vehicle drive control device 204 are similar to those of the vehicle drive control device 1 shown in FIG. That is, the vehicle drive control device 204 increases the target braking force to prevent sudden braking when the road width in front of the vehicle 200 is narrowed during deceleration of the vehicle 200, and when the road width is widened, The target braking force is reduced so that a feeling of acceleration can be obtained. On the other hand, when the vehicle 200 accelerates, the vehicle drive control device 204 reduces the target driving force so that sudden braking does not occur when the road width in front of the vehicle 200 narrows, and when the road width widens, The target driving force is increased so that a feeling of acceleration can be obtained. The decrease or increase of the target braking force and the target driving force in the present embodiment changes not only with the road width but also with the road shoulder width and the height of the road side wall. Further, the vehicle drive control device 204 changes the correction coefficient of the acceleration / deceleration with respect to the vehicle speed of the vehicle 200 according to the difference between the speed limit and the actual vehicle speed, and also changes the correction both sides or the time constant according to the road width change rate. The vehicle drive control device 204 can also change the target braking force according to the accelerator opening and the width of the road.
 車両200が備える原動機208は車両200を走行させるための駆動源であり、減速力が出せるものであれば内燃機関であっても、その他の動力源であってもよい。この原動機208の原動機出力軸209には、一般的にクラッチやトルクコンバーターといった発進装置210が接続される。そして、発進装置210を介して、原動機出力軸209が、変速機212の変速機入力軸211に接続される。変速機212に接続されている変速機出力軸213は、差動装置214に接続される。差動装置214は、右ドライブシャフト215aと左ドライブシャフト216aに動力分割し、右タイヤ215と左タイヤ216を駆動して車両を走行させる。 The prime mover 208 included in the vehicle 200 is a drive source for causing the vehicle 200 to travel, and may be an internal combustion engine or another power source as long as it can generate a deceleration force. A starting device 210 such as a clutch or a torque converter is generally connected to a prime mover output shaft 209 of the prime mover 208. Then, the prime mover output shaft 209 is connected to the transmission input shaft 211 of the transmission 212 via the starting device 210. The transmission output shaft 213 connected to the transmission 212 is connected to the differential device 214. The differential device 214 power-divides the right drive shaft 215a and the left drive shaft 216a and drives the right tire 215 and the left tire 216 to drive the vehicle.
 図14に示した車両200と、図1に示した車両10との違いは、車両200の制駆動力を発生する装置として、内燃機関などの駆動源を有する原動機を搭載したことである。
このため、車両200は、発進装置210や変速機212などの機構が必要である。
The difference between vehicle 200 shown in FIG. 14 and vehicle 10 shown in FIG. 1 is that a prime mover having a drive source such as an internal combustion engine is mounted as a device for generating braking / driving force of vehicle 200.
Therefore, the vehicle 200 needs a mechanism such as the starting device 210 and the transmission 212.
 また、図1に示した車両10は電動車両であるため、車両10を減速する際、動力機器5の電動機のトルクを減速側にすることで減速度が発生する。一方、内燃機関を用いた車両200を減速する際には、燃料カットなどを行い、ポンピングロスなどのフリクションによって発生するマイナストルクを変速機で増幅するか、又は摩擦ブレーキを用いることになる。しかし、車両200が備えるこれらの機構は、加速から減速に変わる際などに応答性が悪く、目標とする減速度に対する実際の減速度のばらつきが発生しやすい。そこで、車両200のように、駆動源として内燃機関を用いる場合、車両駆動目標生成部13は、減速度変化率を大きく補正することで、応答性を上げることが可能となる。 Since the vehicle 10 shown in FIG. 1 is an electric vehicle, deceleration occurs when the vehicle 10 is decelerated by setting the torque of the electric motor of the power equipment 5 to the deceleration side. On the other hand, when decelerating the vehicle 200 using the internal combustion engine, fuel cut or the like is performed, and a negative torque generated by friction such as pumping loss is amplified by the transmission or a friction brake is used. However, these mechanisms provided in the vehicle 200 have poor responsiveness when changing from acceleration to deceleration, and the actual deceleration tends to vary with respect to the target deceleration. Therefore, when the internal combustion engine is used as the drive source like the vehicle 200, the vehicle drive target generation unit 13 can improve the responsiveness by largely correcting the deceleration change rate.
 (前方の道路幅員の規定(電動車両と従来車両の相違))
 また、車両200の応答性の悪さに対応するためには、以下の手法も用いてもよい。例えば、図2のチャート(3)に示した幅員減少時前方距離35を、図4のチャート(3)に示した幅員減少時前方距離55に切替える。同様に、図3のチャート(3)に示した幅員増加時前方距離44を、図5のチャート(3)に示した幅員増加時前方距離64に切替える。このように車両200の場合は、加減速度の判断に使用する道路幅員の変化が影響する前方距離を多く取ることで、車両200が備える各機構の変化開始を早め、加減速の応答性を改善することができる。このため、電動車両と比べて加減速の応答性が悪い内燃機関を用いる車両200であっても、電動車両である車両10に相当する加減速感を実現可能となる。
(Regulation of road width in front (difference between electric vehicle and conventional vehicle))
Further, in order to cope with the poor responsiveness of the vehicle 200, the following method may also be used. For example, the width reduction front distance 35 shown in the chart (3) of FIG. 2 is switched to the width reduction front distance 55 shown in the chart (3) of FIG. Similarly, the width increase front distance 44 shown in the chart (3) of FIG. 3 is switched to the width increase front distance 64 shown in the chart (3) of FIG. As described above, in the case of the vehicle 200, by increasing the forward distance affected by the change in the road width used for the acceleration / deceleration determination, the change start of each mechanism included in the vehicle 200 is accelerated, and the acceleration / deceleration response is improved. can do. Therefore, even in a vehicle 200 that uses an internal combustion engine that has a poorer acceleration / deceleration response than an electric vehicle, it is possible to realize an acceleration / deceleration feeling equivalent to that of the vehicle 10 that is an electric vehicle.
 (道路幅員の加速度算出に用いる変化量の値(電動車両と従来車両の相違))
 図1と図14のシステム相違について前述したように、内燃機関の減速から加速などの応答性は悪いため、実現される加速度にばらつきが発生しやすい。そこで、駆動源が内燃機関である場合、車両駆動目標生成部13は、加速度変化率を大きく補正することで、内燃機関の応答性を上げ、加速度を制御することが可能となる。
(Value of amount of change used to calculate road width acceleration (difference between electric vehicle and conventional vehicle))
As described above with respect to the system difference between FIG. 1 and FIG. 14, since the responsiveness of the internal combustion engine from deceleration to acceleration is poor, the realized acceleration tends to vary. Therefore, when the drive source is the internal combustion engine, the vehicle drive target generation unit 13 can increase the responsiveness of the internal combustion engine and control the acceleration by largely correcting the acceleration change rate.
[変形例]
 なお、車両の動力源は、電動機又は内燃機関の少なくとも一つを含んでいればよい。図1には電動車両である車両10、図14には従来車両である車両200のシステム制御の例について説明したが、電動機と内燃機関の両方を備えるハイブリッド自動車に本実施の形態に係るシステム制御を適用してもよい。
[Modification]
The power source of the vehicle may include at least one of an electric motor and an internal combustion engine. FIG. 1 illustrates an example of system control of a vehicle 10 that is an electric vehicle, and FIG. 14 illustrates a system control of a vehicle 200 that is a conventional vehicle. However, the system control according to the present embodiment is applied to a hybrid vehicle including both an electric motor and an internal combustion engine. May be applied.
 また、本発明は上述した実施の形態に限られるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りその他種々の応用例、変形例を取り得ることは勿論である。
 例えば、上述した実施の形態は本発明を分かりやすく説明するために装置及びシステムの構成を詳細かつ具体的に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、ここで説明した実施の形態の構成の一部を他の実施の形態の構成に置き換えることは可能であり、さらにはある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
Further, the present invention is not limited to the above-described embodiments, and it goes without saying that various other application examples and modifications can be made without departing from the gist of the present invention described in the claims.
For example, the above-described embodiment is a detailed and specific description of the configuration of an apparatus and a system in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of the embodiment described here can be replaced with the configuration of another embodiment, and further, the configuration of another embodiment can be added to the configuration of one embodiment. It is possible. Further, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
Further, the control lines and information lines are shown as being considered necessary for explanation, and not all control lines and information lines are shown in the product. In reality, it may be considered that almost all the configurations are connected to each other.
 1…車両駆動制御装置、2…道路情報出力装置、3…摩擦制動制御装置、4…動力機器制御装置、5…動力機器、6…差動装置、7…右タイヤ、8…左タイヤ、10…車両、11…入力処理部、12…システム制御部、13…車両駆動目標生成部、14…道路幅員補正分、15…配分部、16…駆動指令部、16a…第1駆動指令部、16b…第2駆動指令部 DESCRIPTION OF SYMBOLS 1 ... Vehicle drive control device, 2 ... Road information output device, 3 ... Friction braking control device, 4 ... Power equipment control device, 5 ... Power equipment, 6 ... Differential device, 7 ... Right tire, 8 ... Left tire, 10 ... vehicle, 11 ... input processing unit, 12 ... system control unit, 13 ... vehicle drive target generation unit, 14 ... road width correction amount, 15 ... distribution unit, 16 ... drive command unit, 16a ... first drive command unit, 16b ... Second drive command unit

Claims (15)

  1.  道路を加速又は減速して走行する車両の進行方向における前記道路の道路幅員又は路肩幅員に基づいて、前記車両が目標とする加速度又は減速度に達するように駆動力又は制動力を補正して、補正した前記駆動力又は前記制動力の情報を出力する目標生成部と、
     補正された前記駆動力又は前記制動力の情報により、前記車両を走行させる駆動部の回転数を制御するための駆動指令を出力する駆動指令部と、を備える
     車両駆動制御装置。
    Based on the road width or shoulder width of the road in the traveling direction of the vehicle traveling by accelerating or decelerating the road, correcting the driving force or the braking force so that the vehicle reaches the target acceleration or deceleration, A target generation unit that outputs information on the corrected driving force or the braking force,
    A vehicle drive control device, comprising: a drive command unit that outputs a drive command for controlling the rotation speed of a drive unit that drives the vehicle based on the corrected information on the drive force or the braking force.
  2.  前記駆動指令部は、
     補正された前記制動力で制動装置が前記駆動部を制動するための前記駆動指令を、前記制動装置を制御する制動制御装置に出力する第1駆動指令部と、
     補正された前記駆動力で動力装置が前記駆動部を駆動するための前記駆動指令を、前記動力装置を制御する動力制御装置に出力する第2駆動指令部と、を含み、
     前記制動装置が前記駆動部の回転数を減少させることで前記車両が目標とする前記減速度に達し、又は前記動力装置が前記駆動部の回転数を増加させることで前記車両が目標とする前記加速度に達する
     請求項1に記載の車両駆動制御装置。
    The drive command unit,
    A first drive command unit that outputs the drive command for the braking device to brake the drive unit with the corrected braking force to a braking control device that controls the braking device;
    A second drive command unit that outputs the drive command for the power unit to drive the drive unit with the corrected driving force, to a power control unit that controls the power unit,
    The braking device reduces the rotational speed of the drive unit to reach the target deceleration of the vehicle, or the power device increases the rotational speed of the drive unit to target the vehicle. The vehicle drive control device according to claim 1, which reaches acceleration.
  3.  前記目標生成部は、前記減速度、又は前記減速度に達するための前記制動力を、前記道路幅員の変化率が閾値を超える前記道路の前記道路幅員に基づいて算出し、又は補正する
     請求項2に記載の車両駆動制御装置。
    The target generation unit calculates or corrects the deceleration or the braking force for reaching the deceleration based on the road width of the road whose rate of change of the road width exceeds a threshold value. 2. The vehicle drive control device according to 2.
  4.  前記目標生成部は、前記減速度、又は前記減速度に達するための前記制動力を、前記路肩幅員、又は前記道路の道路側壁の高さにより補正する
     請求項3に記載の車両駆動制御装置。
    The vehicle drive control device according to claim 3, wherein the target generation unit corrects the deceleration or the braking force for reaching the deceleration by the shoulder width or the height of a road side wall of the road.
  5.  前記目標生成部は、前記減速度、又は前記減速度に達するための前記制動力を、前記道路毎に規定された制限速度と、前記車両の実車速により補正する
     請求項2に記載の車両駆動制御装置。
    The vehicle drive according to claim 2, wherein the target generation unit corrects the deceleration or the braking force for reaching the deceleration based on a speed limit defined for each road and an actual vehicle speed of the vehicle. Control device.
  6.  前記目標生成部は、前記駆動指令に基づいて前記制動制御装置が制御されている期間における、前記減速度、又は前記減速度に達するための前記制動力の変化を制限する
     請求項2に記載の車両駆動制御装置。
    The said target production | generation part limits the change of the said braking force for reaching the said deceleration or the said deceleration during the period when the said braking control apparatus is controlled based on the said drive command. Vehicle drive control device.
  7.  前記目標生成部は、前記加速度、又は前記加速度に達するための前記駆動力を、前記道路幅員の変化率が閾値を超える前記道路の前記道路幅員に基づいて算出し、又は補正する
     請求項2に記載の車両駆動制御装置。
    The target generation unit calculates or corrects the acceleration or the driving force for reaching the acceleration based on the road width of the road whose rate of change of the road width exceeds a threshold value. The vehicle drive control device described.
  8.  前記目標生成部は、前記車両の運転者によるアクセル操作に対する前記駆動力との関係を表し、前記道路幅員毎に規定される特性線図に従って、前記加速度、又は前記加速度に達するための前記駆動力を算出し、又は補正する
     請求項7に記載の車両駆動制御装置。
    The target generation unit represents a relationship with the driving force with respect to an accelerator operation performed by a driver of the vehicle, and according to a characteristic diagram defined for each road width, the acceleration, or the driving force for reaching the acceleration. The vehicle drive control device according to claim 7, which calculates or corrects.
  9.  前記目標生成部は、前記加速度、又は前記加速度に達するための前記駆動力を、前記路肩幅員、又は前記道路の道路側壁の高さにより補正する
     請求項7に記載の車両駆動制御装置。
    The vehicle drive control device according to claim 7, wherein the target generation unit corrects the acceleration or the driving force for reaching the acceleration based on the shoulder width or the height of a road side wall of the road.
  10.  前記目標生成部は、前記加速度、又は前記加速度に達するための前記駆動力を、前記道路毎に規定された制限速度と、前記車両の実車速により補正する
     請求項2に記載の車両駆動制御装置。
    The vehicle drive control device according to claim 2, wherein the target generation unit corrects the acceleration or the driving force for reaching the acceleration based on a speed limit specified for each road and an actual vehicle speed of the vehicle. .
  11.  前記目標生成部は、前記駆動指令に基づいて前記動力制御装置が制御されている期間における、前記加速度、又は前記加速度に達するための前記駆動力の変化を制限する
     請求項2に記載の車両駆動制御装置。
    The vehicle drive according to claim 2, wherein the target generation unit limits the acceleration or a change in the driving force for reaching the acceleration during a period in which the power control device is controlled based on the drive command. Control device.
  12.  前記目標生成部は、前記車両の空走距離以上前方の前記道路幅員に基づいて、前記制動力又は前記駆動力を算出し、又は補正する
     請求項3又は7に記載の車両駆動制御装置。
    The vehicle drive control device according to claim 3 or 7, wherein the target generation unit calculates or corrects the braking force or the driving force based on the road width ahead of an idling distance of the vehicle or more.
  13.  前記車両の動力源は、電動機又は内燃機関の少なくとも一つを含む
     請求項1~11のいずれか一項に記載の車両駆動制御装置。
    The vehicle drive control device according to any one of claims 1 to 11, wherein the power source of the vehicle includes at least one of an electric motor and an internal combustion engine.
  14.  道路を加速又は減速して走行する車両の進行方向における前記道路の道路幅員又は路肩幅員に基づいて、前記車両が目標とする加速度又は減速度に達するように補正して、補正した駆動力又は制動力の情報を出力するステップと、
     補正された前記駆動力又は前記制動力の情報により、前記車両を走行させる駆動部の回転数を制御するための駆動指令を出力するステップと、を含む
     車両の駆動制御方法。
    Based on the road width or shoulder width of the road in the traveling direction of the vehicle that accelerates or decelerates the road, the vehicle is corrected to reach the target acceleration or deceleration, and the corrected driving force or control is applied. Outputting the power information,
    A drive control method for a vehicle, comprising the step of outputting a drive command for controlling the rotation speed of a drive unit that drives the vehicle based on the corrected information on the drive force or the braking force.
  15.  道路を加速又は減速して走行する車両の進行方向における前記道路の道路幅員又は路肩幅員に基づいて、前記車両が目標とする加速度又は減速度に達するように補正して、補正した駆動力又は制動力の情報を出力する手順と、
     補正された前記駆動力又は前記制動力の情報により、前記車両を走行させる駆動部の回転数を制御するための駆動指令を出力する手順と、を
     コンピューターに実行させるためのプログラム。
     
    Based on the road width or shoulder width of the road in the traveling direction of the vehicle that accelerates or decelerates the road, the vehicle is corrected to reach the target acceleration or deceleration, and the corrected driving force or control is applied. Procedure to output power information,
    A program for causing a computer to execute a procedure for outputting a drive command for controlling the rotation speed of a drive unit that drives the vehicle based on the corrected information on the drive force or the braking force.
PCT/JP2019/039246 2018-10-26 2019-10-04 Vehicle drive control device, vehicle drive control method, and program WO2020085040A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-201588 2018-10-26
JP2018201588A JP2022031987A (en) 2018-10-26 2018-10-26 Vehicle drive control device, vehicle drive control method and program

Publications (1)

Publication Number Publication Date
WO2020085040A1 true WO2020085040A1 (en) 2020-04-30

Family

ID=70331163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039246 WO2020085040A1 (en) 2018-10-26 2019-10-04 Vehicle drive control device, vehicle drive control method, and program

Country Status (2)

Country Link
JP (1) JP2022031987A (en)
WO (1) WO2020085040A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7287291B2 (en) * 2020-01-16 2023-06-06 トヨタ自動車株式会社 Information processing device, program, and information processing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006264533A (en) * 2005-03-24 2006-10-05 Toyota Motor Corp Automobile and method for controlling the same
JP2014115754A (en) * 2012-12-07 2014-06-26 Honda Motor Co Ltd Operation support device
JP2016007989A (en) * 2014-06-26 2016-01-18 クラリオン株式会社 Vehicle control system and vehicle control method
JP2016215979A (en) * 2015-05-26 2016-12-22 株式会社デンソー Vehicle travel control device
JP2017056827A (en) * 2015-09-16 2017-03-23 トヨタ自動車株式会社 Vehicular automatic deceleration control apparatus
WO2018029758A1 (en) * 2016-08-08 2018-02-15 日産自動車株式会社 Control method and control device for automatically driven vehicles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006264533A (en) * 2005-03-24 2006-10-05 Toyota Motor Corp Automobile and method for controlling the same
JP2014115754A (en) * 2012-12-07 2014-06-26 Honda Motor Co Ltd Operation support device
JP2016007989A (en) * 2014-06-26 2016-01-18 クラリオン株式会社 Vehicle control system and vehicle control method
JP2016215979A (en) * 2015-05-26 2016-12-22 株式会社デンソー Vehicle travel control device
JP2017056827A (en) * 2015-09-16 2017-03-23 トヨタ自動車株式会社 Vehicular automatic deceleration control apparatus
WO2018029758A1 (en) * 2016-08-08 2018-02-15 日産自動車株式会社 Control method and control device for automatically driven vehicles

Also Published As

Publication number Publication date
JP2022031987A (en) 2022-02-24

Similar Documents

Publication Publication Date Title
JP6670901B2 (en) Method and apparatus for assisting driving of a vehicle
JP6981837B2 (en) Vehicle driving support control device
JP6333655B2 (en) Method and apparatus for assisting in driving a vehicle
US11117559B2 (en) Vehicle movement control device, vehicle movement control method, and vehicle movement control program
WO2013180206A1 (en) Vehicle control device
US8321117B2 (en) Vehicle control system
US8306718B2 (en) Vehicle control apparatus
WO2011048865A1 (en) Vehicle movement controller
JP6157412B2 (en) Vehicle travel control device
JP2013126823A (en) Traveling assist device and traveling assist method
JP4301162B2 (en) Acceleration / deceleration controller
JP6668640B2 (en) Driving support device and driving support method
JP7413840B2 (en) Driving support method and driving support device
JP2007326429A (en) Speed limiting device
DE102014207065A1 (en) Custom recuperation
WO2020085040A1 (en) Vehicle drive control device, vehicle drive control method, and program
JP2010241245A (en) Driving power controller for vehicle
DE102014207068A1 (en) Custom recuperation
JP6313834B2 (en) Vehicle control device
JP6018375B2 (en) Vehicle travel control device
US11541852B2 (en) Method for operating an accelerator pedal-controlled distance controller of a vehicle and control unit
JP2019119298A (en) Vehicular control device
JP7347457B2 (en) Driving support device and driving support method
WO2022196205A1 (en) Vehicle control device and vehicle control method
WO2020095720A1 (en) Vehicle braking device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19877051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP