WO2020084776A1 - Control unit, aerosol generation device, method and program for controlling heater, and smoking article - Google Patents

Control unit, aerosol generation device, method and program for controlling heater, and smoking article Download PDF

Info

Publication number
WO2020084776A1
WO2020084776A1 PCT/JP2018/039919 JP2018039919W WO2020084776A1 WO 2020084776 A1 WO2020084776 A1 WO 2020084776A1 JP 2018039919 W JP2018039919 W JP 2018039919W WO 2020084776 A1 WO2020084776 A1 WO 2020084776A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
aerosol
heater
target temperature
control unit
Prior art date
Application number
PCT/JP2018/039919
Other languages
French (fr)
Japanese (ja)
Inventor
山田 学
竹内 学
康信 井上
干城 隅井
公隆 打井
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to EP18938030.6A priority Critical patent/EP3871531A4/en
Priority to PCT/JP2018/039919 priority patent/WO2020084776A1/en
Priority to CN201880099021.XA priority patent/CN112955040A/en
Priority to JP2020552485A priority patent/JP7117390B2/en
Priority to TW107140581A priority patent/TW202015564A/en
Publication of WO2020084776A1 publication Critical patent/WO2020084776A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors

Definitions

  • the present invention relates to a control unit, an aerosol generator, a method and program for controlling a heater, and a smoking article.
  • Non-combustion type aerosol generation device that sucks aerosol generated by atomizing an aerosol forming substrate (smoking article) with a heater, instead of the conventional combustion type cigarette (Patent Document 1 and Patent Document 2). ).
  • Patent Document 1 discloses an aerosol generation device having a smoking article including a solid aerosol-forming substrate and a blade-type heater inserted into the aerosol-forming substrate during use. This heater heats the aerosol-forming substrate from the inside.
  • Patent Document 2 discloses an aerosol generation device having a smoking article including a solid aerosol-forming substrate, and a cylindrical heater disposed on the outer periphery of the aerosol-forming substrate during use. This heater heats the aerosol-forming substrate from the outer peripheral side.
  • a first feature is an aerosol generating apparatus, which includes at least one element capable of adjusting the delivery amount of aerosol, and a control section for controlling the element, wherein the control section has a predetermined inhalable period.
  • the delivery profile of the aerosol in the initial period with an increasing slope with respect to the time axis, the end period with a decreasing slope with respect to the time axis, and between the initial period and the end period. It is a gist that the device is configured to include a medium period including one or a plurality of local maximum values.
  • a second feature is the aerosol generating device according to the first feature, wherein the delivery amount of the aerosol at the end point of the inhalable period is larger than the delivery amount of the aerosol at the starting point of the inhalable period.
  • a third feature is the aerosol generating device according to the first feature or the second feature, wherein the maximum value of the gradient at the end of the inhalable period is greater than the maximum value of the gradient at the beginning of the inhalable period. The point is that it is small.
  • a fourth feature is the aerosol generating apparatus according to any one of the first to third features, wherein the minimum value of the gradient at the final stage is smaller than the minimum value of the gradient at the initial stage.
  • the fifth feature is the aerosol generation device according to the first to fourth features, and the gist is that the middle period is longer than each of the initial period and the final period.
  • a sixth feature is the aerosol generating apparatus according to the first to fifth features, wherein the middle period is the same as or longer than the total period of the initial period and the final period. .
  • a seventh feature is the aerosol-generating apparatus according to the first to sixth features, wherein in the middle period, the gradient is smaller than a minimum value of the gradient in the initial period, and The gist is that the stable period is smaller than the minimum value, and the stable period is longer than each of the initial period and the final period.
  • the eighth feature is the aerosol generation device according to the first to seventh features, and the gist is that the element is a heater configured to heat the aerosol source.
  • a ninth feature is the aerosol generator according to the eighth feature, wherein the control unit controls the temperature of the heater toward the first target temperature during the first period, and the second after the first period. During the period, the temperature of the heater is controlled toward the second target temperature lower than the first target temperature, and toward the third target temperature lower than the second target temperature during the third period after the second period.
  • the gist is that it is configured to control the temperature of the heater.
  • a tenth feature is a control unit including a control unit for controlling at least one element capable of adjusting an aerosol delivery amount, wherein the control unit is an aerosol delivery profile in a predetermined inhalable period.
  • the control unit has an increasing initial with a gradually increasing slope with respect to the time axis, an end having a gradually decreasing slope with respect to the time axis, and one or more local maxima between the initial and the final. It is characterized in that it is configured to control the device to include a middle period including a value.
  • the eleventh feature is a method of adjusting the delivery amount of aerosol of an aerosol generation device, wherein an aerosol delivery profile in a predetermined inhalable period is initially increased with a gradually increasing slope with respect to a time axis. And adjusting the delivery amount of the aerosol so as to include a declining end having a tapering slope with respect to a time axis, and a middle stage including one or more local maxima between the initial stage and the final stage. The point is to do.
  • the twelfth feature is summarized as a program that causes a computer to execute the method according to the eleventh feature.
  • a thirteenth feature is a smoking article including an aerosol source, wherein the aerosol delivery profile when used with a device capable of acting on the aerosol source to deliver the aerosol gradually increases with respect to a time axis.
  • FIG. 1 is a diagram showing a flavor inhaler according to an embodiment.
  • FIG. 2 is a diagram showing a flavor inhaler into which a smoking article is inserted.
  • FIG. 3 is a diagram showing an internal structure of the flavor inhaler shown in FIG.
  • FIG. 4 is a diagram showing an internal structure of the smoking article shown in FIG.
  • FIG. 5 is a block diagram of the flavor suction device.
  • FIG. 6 is a schematic enlarged view of the region 5R in FIG.
  • FIG. 7 is a figure which shows simply the positional relationship between the base material part of a smoking article, the heater of an aerosol generation device, and an inner cylinder member.
  • FIG. 8 is a diagram showing the heating profile of the heater and the delivery profile of the major aerosol components.
  • FIG. 9 is a diagram showing a heating profile of the heater.
  • the delivery profile of the main aerosol component described in Patent Document 1 increases at the initial operation of the heater and then remains constant until the heater stops. Therefore, it is difficult for the user to be aware of which of the initial period, the middle period, and the final period of the inhalable period, by the sensation of inhaling the aerosol.
  • the delivery profile of the aerosol during the predetermined inhalable period has an initial increase with a gradual slope to the time axis and an end phase with a gradual slope to the time axis.
  • the aerosol delivery rate is adjusted to include an intermediate period including one or more local maxima between the initial period and the final period.
  • the amount of aerosol delivered increases from the early to mid-term, has a maximum in the mid-term, and decreases from the mid-to the end. This allows the user to be aware of which period of the initial period, the middle period, and the final period of the inhalable period, by the sensation of inhaling the aerosol.
  • the delivery profile of the aerosol has an increasing gradient with respect to the time axis at the beginning, the delivery profile has a downward convex shape.
  • the delivery profile has an upward convex shape. Therefore, the delivered dose of aerosol may change rapidly during the transition from early to mid-phase.
  • the delivery profile of the aerosol has a declining slope over time at the end, resulting in a downwardly convex shape. Therefore, the delivered dose of aerosol may change rapidly during the transition from mid-stage to end-stage. This makes it easier for the user to recognize the transition from the initial stage to the middle stage and the transition from the middle stage to the final stage by the sensation of inhaling the aerosol.
  • FIG. 1 is a diagram showing a flavor inhaler according to an embodiment.
  • FIG. 2 is a diagram showing a flavor inhaler into which a smoking article is inserted.
  • FIG. 3 is a diagram showing an internal structure of the flavor inhaler shown in FIG.
  • FIG. 4 is a diagram showing an internal structure of the smoking article shown in FIG.
  • FIG. 5 is a block diagram of the flavor suction device.
  • the flavor inhaler 100 may be a non-combustion type flavor inhaler for producing aerosol from a smoking article without combustion.
  • the flavor inhaler 100 may be a particularly portable device.
  • the flavor inhaler 100 has a smoking article 110 containing an aerosol source, and an aerosol generation device 120 that generates an aerosol from the smoking article 110.
  • the smoking article 110 is a replaceable cartridge that can contain an aerosol source and a flavor source, and has a columnar shape that extends along the longitudinal direction.
  • the smoking article 110 may be configured to generate aerosols and flavor components by being heated while inserted into the aerosol generating device 120.
  • the smoking article 110 includes a base material portion 11A including a filler 111 and a first wrapping paper 112 around which the filler material 111 is wound, and an end opposite to the base material portion 11A. And a suction portion 11B that forms a portion.
  • the base material portion 11A and the mouthpiece portion 11B are connected by a second wrapping paper 113 different from the first wrapping paper 112.
  • the hollow segment portion 116 is composed of, for example, a filling layer having one or a plurality of hollow channels and a plug wrapper covering the filling layer. Since the packing density of the fibers in the packed bed is high, air and aerosol flow only through the hollow channels during suction, and hardly flow in the packed bed. In the flavor generating article 110, when it is desired to reduce the decrease due to the filtration of the aerosol component in the filter unit 115, it is necessary to shorten the length of the filter unit 115 and replace it with the hollow segment unit 116 in order to increase the amount of delivered aerosol. It is valid.
  • the mouthpiece 11B in FIG. 4 is composed of three segments, but in the present embodiment, the mouthpiece 11B may be composed of one or two segments, or from four or more segments. It may be configured.
  • the hollow segment portion 116 may be omitted, and the paper tube portion 114 and the filter portion 115 may be arranged adjacent to each other to form the suction port portion 11B.
  • the length of the smoking article 110 in the longitudinal direction is preferably 40 to 90 mm, more preferably 50 to 75 mm, and further preferably 50 to 60 mm.
  • the circumference of the smoking article 110 is preferably 15 to 25 mm, more preferably 17 to 24 mm, and further preferably 20 to 23 mm.
  • the length of the base material portion 11A is 20 mm
  • the length of the first wrapping paper 112 is 20 mm
  • the length of the hollow segment portion 116 is 8 mm
  • the length of the filter portion 115 is 7 mm.
  • the length of each of these segments can be appropriately changed depending on the manufacturing suitability, required quality, and the like.
  • the filling material 111 of the smoking article 110 may contain an aerosol source that is heated at a predetermined temperature to generate an aerosol.
  • the type of aerosol source is not particularly limited, and various substances extracted from natural products and / or their constituents can be selected according to the application. Aerosol sources can include, for example, glycerin, propylene glycol, triacetin, 1,3-butanediol, and mixtures thereof.
  • the content of the aerosol source in the filler 111 is not particularly limited, and is usually 5% by weight or more, and preferably 10% by weight or more, from the viewpoint of sufficiently generating an aerosol and imparting a good flavor and taste. In addition, it is usually 50% by weight or less, and preferably 20% by weight or less.
  • the filling 111 of the smoking article 110 may contain cut tobacco as a flavor source.
  • the material for cutting the tobacco is not particularly limited, and known materials such as lamina and medium bone can be used.
  • the range of the content of the filler 111 in the smoking article 110 is, for example, 200 to 400 mg, and preferably 250 to 320 mg when the circumference is 22 mm and the length is 20 mm.
  • the water content of the filler 111 is, for example, 8 to 18% by weight, and preferably 10 to 16% by weight. With such a water content, the occurrence of winding stain is suppressed and the suitability for winding during the production of the base material portion 11A is improved.
  • the size of the tobacco cut used as the filler 111 and the method for preparing it there is no particular limitation on the size of the tobacco cut used as the filler 111 and the method for preparing it.
  • dried tobacco leaves may be chopped to have a width of 0.8 to 1.2 mm.
  • dried tobacco leaves may be crushed to have an average particle size of about 20 to 200 ⁇ m and homogenized, and then processed into a sheet, which is then cut into a width of 0.8 to 1.2 mm.
  • the above-mentioned sheet-processed product may be used as the filling material 111 without being cut and subjected to the gathering process.
  • the filler 111 may include one or more kinds of fragrances.
  • the type of the fragrance is not particularly limited, but from the viewpoint of imparting a good taste, menthol is preferable.
  • the first and second wrapping papers 112, 113 of the smoking article 110 can be made from a base paper having a basis weight of, for example, 20 to 65 gsm, preferably 25 to 45 gsm.
  • the thickness of the wrapping paper 112, 113 is not particularly limited, but is 10 to 100 ⁇ m, preferably 20 to 75 ⁇ m, and more preferably 30 to 50 ⁇ m from the viewpoint of rigidity, air permeability, and ease of adjustment during paper making. Is.
  • the wrapper 112, 113 of the smoking article 110 may include a filler.
  • the content of the filler may be 10% by weight or more and less than 60% by weight, and preferably 15 to 45% by weight, based on the total weight of the wrapping paper 112, 113. In the present embodiment, it is preferable that the filler is 15 to 45% by weight with respect to the preferable range of the basis weight (25 to 45 gsm).
  • the filler for example, calcium carbonate, titanium dioxide, kaolin or the like can be used. Paper containing such a filler exhibits a bright white-based color that is preferable from the viewpoint of appearance used as a cigarette paper of the smoking article 110, and can permanently maintain whiteness.
  • the ISO whiteness of the wrapping paper can be set to 83% or more.
  • the first and second wrapping papers 112, 113 preferably have a tensile strength of 8 N / 15 mm or more. This tensile strength can be increased by reducing the content of the filler. Specifically, this tensile strength can be increased by making the content of the filler smaller than the upper limit of the content of the filler shown in the range of each grammage described above.
  • the aerosol generation device 120 has an insertion hole 130 into which the smoking article 110 can be inserted. That is, the aerosol generation device 120 has the inner cylindrical member 132 that forms the insertion hole 130.
  • the inner tubular member 132 may be made of a heat conductive member such as aluminum or stainless steel (SUS).
  • the aerosol generation device 120 may have a lid portion 140 that closes the insertion hole 130.
  • the lid 140 may be configured to be slidable between a state in which the insertion hole 130 is closed (see FIG. 1) and a state in which the insertion hole 130 is exposed (see FIG. 2).
  • the aerosol generator 120 may have an air flow path 160 communicating with the insertion hole 130.
  • One end of the air flow path 160 is connected to the insertion hole 130, and the other end of the air flow path 160 communicates with the outside (outside air) of the aerosol generation device 120 at a place different from the insertion hole 130.
  • the aerosol generator 120 may have a lid 170 that covers the end of the air flow path 160 on the side communicating with the outside air.
  • the lid portion 170 can be in a state of covering an end portion of the air flow passage 160 on the side communicating with the outside air, or can be in a state of exposing the air flow passage 160.
  • the lid portion 170 does not airtightly close the air passage 160 even when the air passage 160 is covered. That is, even when the lid portion 170 covers the air flow path 160, the outside air can flow into the air flow passage 160 through the vicinity of the lid portion 170.
  • the user holds the smoking article 110 in the flavor inhaler 100 and holds one end of the smoking article 110, specifically, the mouthpiece 11B in FIG. 4, to perform a suction operation.
  • the outside air flows into the air flow path 160 by the user's suction operation.
  • the air that has flowed into the air flow path 160 passes through the smoking article 110 in the insertion hole 130 and is guided into the oral cavity of the user.
  • the lid 140 does not cover the insertion hole 130 and the smoking article 110 is not inserted, that is, when the internal space of the inner tubular member 132 and the air flow path 160 are exposed, the user brushes the brush.
  • the inside of the air flow path 160 of the inner tubular member 132 can be cleaned using a cleaning tool such as the one described above. This cleaning tool may be inserted into the air passage 160 from the upper lid portion 140 side in FIG. 3, or may be inserted into the air passage 160 from the lower lid portion 170 side.
  • the aerosol generation device 120 may have a temperature sensor inside the air flow path 160 or on the outer surface of the wall portion forming the air flow path 160.
  • the temperature sensor may be, for example, a thermistor, a thermocouple, or the like.
  • the internal temperature of the air flow path 160 or the air flow path 160 is configured by the influence of the air flowing in the air flow path 160 toward the lid part 170 side or the heater 30 side.
  • the temperature of the wall part is reduced.
  • the temperature sensor can detect the suction operation of the user by measuring the temperature decrease.
  • the aerosol generation device 120 includes a battery 10, a control unit 20, and a heater 30.
  • the battery 10 stores electric power used by the aerosol generation device 120.
  • the battery 10 may be a rechargeable secondary battery.
  • the battery 10 may be, for example, a lithium ion battery.
  • the heater 30 may be provided around the inner tubular member 132.
  • the space for housing the heater 30 and the space for housing the battery 10 may be separated from each other by a partition wall 180. As a result, the air heated by the heater 30 can be prevented from flowing into the space that houses the battery 10. Therefore, the temperature rise of the battery 10 can be suppressed.
  • the heater 30 preferably has a cylindrical shape capable of heating the outer circumference of the columnar smoking article 110.
  • the heater 30 may be, for example, a film heater.
  • the film heater may include a pair of film-shaped substrates and a resistance heating element sandwiched between the pair of substrates.
  • the film-like substrate is preferably made of a material having excellent heat resistance and electric insulation, and is typically made of polyimide.
  • the resistance heating element is preferably made of one or more metal materials such as copper, nickel alloy, chrome alloy, stainless steel, platinum rhodium, and can be formed of, for example, a stainless steel base material. Further, the resistance heating element may be copper-plated at the connection portion and its lead portion in order to be connected to the power source by the flexible printed circuit (FPC).
  • FPC flexible printed circuit
  • FIG. 6 is a schematic enlarged view of the region 5R of FIG. 3, and is a sectional view in which the heater 30 and its periphery are enlarged.
  • the heater 30 is the film heater described above, and is wound around the outer periphery of the inner tubular member 132 that can receive the smoking article 110. That is, the heater 30 is wound in a cylindrical shape surrounding the inner tubular member 132. Thereby, the heater 30 can surround the outer periphery of the smoking article and heat the smoking article 110 from the outside.
  • the heat shrink tube 136 may be provided outside the heater 30.
  • the heater 30 is preferably provided inside the heat shrinkable tube 136.
  • the heat-shrinkable tube 136 is a tube 136 that shrinks in the radial direction by heat, and may be made of, for example, a thermoplastic elastomer.
  • the heater 30 is pressed against the inner tubular member 132 by the contraction action of the heat-shrinkable tube 136. As a result, the adhesion between the heater 30 and the inner tubular member 132 is increased, so that the heat conductivity from the heater 30 to the smoking article 110 via the inner tubular member 132 is increased.
  • the aerosol generator 120 may have a cylindrical heat insulating material 138 on the outer side of the heater 30 in the radial direction, preferably on the outer side of the heat-shrinkable tube 136.
  • the heat insulating material 138 preferably surrounds the outer circumference of the heater 30.
  • the heat insulating material 138 may serve to prevent the outer surface of the casing of the aerosol generating apparatus 120 from reaching an excessively high temperature by blocking the heat of the heater 30.
  • the heat insulating material 138 can be made of, for example, an aerogel such as silica aerogel, carbon aerogel, or alumina aerogel.
  • the airgel as the heat insulating material 138 may typically be a silica airgel having high heat insulating performance and relatively low manufacturing cost.
  • the heat insulating material 138 may be a fiber heat insulating material such as glass wool or rock wool, or may be a foam heat insulating material such as urethane foam or phenol foam. Alternatively, the heat insulating material 138 may be a vacuum heat insulating material.
  • the heat insulating material 138 may be provided between the inner tubular member 132 facing the smoking article 110 and the outer tubular member 134 outside the heat insulating material 138.
  • the outer tubular member 134 may be made of a heat conductive member such as aluminum or stainless steel (SUS).
  • the heat insulating material 138 is preferably provided in a closed space.
  • FIG. 7 is a simplified axial positional relationship between the base material portion 11A of the smoking article 110, the heater 30 of the aerosol generation device 120, and the inner tubular member 132 in the flavor inhaler 100 of the present embodiment.
  • the axis here means the central axis of the insertion hole 130 in the aerosol generation device 120, and when the smoking article 110 is inserted into the insertion hole 130, the axis and the central axis of the smoking article 110 partially overlap. (See also Figure 3).
  • the axial length D0 of the heater 30 can be made smaller than the axial length L0 of the base material portion 11A of the smoking article 110 (D0 ⁇ L0). Furthermore, the ratio of the length D0 to the length L0 (D0 / L0) is 0.70-0.90, preferably 0.75-0.85, typically 0.80. Good. Therefore, when the length L0 of the base material portion 11A is 20 mm, the length D0 of the heater 30 may be 14 to 18 mm, preferably 15 to 17 mm, and typically 16 mm.
  • the upstream end of the base material portion 11A may protrude to the upstream side of the heater 30 with a length D1.
  • the upstream and the downstream here correspond to the upstream and the downstream of the air flow passing through the air passage 160 by the suction operation of the user (see also FIG. 3). Since the portion of the base material portion 11A protruding from the heater 30 does not have the heater 30 on the outer side in the radial direction, the internal temperature thereof may be somewhat lower than that of the other portions of the base material portion 11A. As a result, the generation of aerosol at the upstream end of the base material portion 11A and in the vicinity thereof can be suppressed, so that the aerosol generated there can be prevented from condensing in the air flow path 160 and flowing back through the air flow path 160. The aerosol generated in the other part of the base material part 11A can be condensed at the upstream end of the base material part 11A and in the vicinity thereof.
  • the ratio (D1 / L0) of the protrusion length D1 to the entire length L0 of the base material portion 11A is 0.25 to 0.40, preferably 0.30 to 0.35, and typically 0. .325. Therefore, when the length L0 of the entire base material portion 11A is 20 mm, the protrusion length D1 may be 5 to 8 mm, preferably 6 to 7 mm, and typically 6.5 mm.
  • the downstream end of the heater 30 may protrude to the downstream side with a length D2 with respect to the downstream end of the base material portion 11A.
  • the ratio (D2 / L0) of the protruding length D2 of the heater 30 to the length L0 of the base material portion 11A is 0.075 to 0.175, preferably 0.1 to 0.15, and typically May be 0.125. Therefore, when the length L0 of the base material portion 11A is 20 mm, the protruding length D2 of the heater 30 is 1.5 to 3.5 mm, preferably 2 to 3 mm, and typically 2.5 mm. You can
  • the axial positions of the upstream end of the inner tubular member 132 and the upstream end of the base material portion 11A may substantially coincide with each other.
  • the downstream end of the inner tubular member 132 may protrude to the downstream side with respect to the downstream end of the base material portion 11A with the length D3, like the downstream end of the heater 30.
  • the upstream end of the paper tube portion 114 and its vicinity can be heated, so that the aerosol generated from the base material portion 11A can be heated at the upstream end of the paper tube portion 114 and its vicinity. It can be prevented from being excessively cooled and condensed in the vicinity.
  • the ratio (D3 / D2) of the protrusion length D3 of the inner tubular member 132 to the protrusion length D2 of the heater 30 is 2.6 to 3.4, preferably 2.8 to 3.2, and more preferably. May be 3.0. Therefore, when the protrusion length D2 of the heater 30 is 2.5 mm, the protrusion length D3 of the inner tubular member 132 is 6.5 to 8.5 mm, preferably 7.0 to 8.0 mm, and typically It may be 7.5 mm.
  • control unit 20 may include a control board, a CPU, a memory and the like.
  • the CPU and the memory form a control unit 22 that controls the heater 30 that heats the aerosol source.
  • the control unit 20 also has a notification unit 40 for notifying the user of various information.
  • the notification unit 40 may be a light emitting element such as an LED or a vibrating element, or a combination thereof.
  • the control unit 22 When the control unit 22 detects the user's activation request, the control unit 22 starts supplying power from the battery 10 to the heater 30.
  • the user's activation request is made by, for example, a user's operation of a push button or a slide switch, or a user's suction operation.
  • the user's activation request is made by pressing the push button 150. More specifically, the user's activation request is made by pressing the push button 150 with the lid 140 open.
  • the user's activation request may be made by detecting the user's suction operation.
  • the suction operation of the user can be detected by the temperature sensor as described above, for example.
  • the heating profile is a graph showing the change over time in the target temperature for controlling the heater 30.
  • the delivery profile is a graph showing the change over time in the amount of the main aerosol component per suction operation, which is delivered into the oral cavity of the user when the user suctions the smoking article 110.
  • FIG. 8 is a diagram showing a heating profile of the heater 30 and a delivery profile of main aerosol components.
  • the vertical axis of FIG. 8 indicates the temperature of the heater or the delivered amount of the main aerosol component.
  • the horizontal axis of FIG. 8 indicates time.
  • the “main aerosol component” is a visible aerosol component generated when various aerosol sources included in a smoking article are heated at a predetermined temperature or higher.
  • the aerosol sources included in smoking articles are typically propylene glycol and glycerin.
  • the aerosol component derived from the flavor source is also included in the main aerosol components.
  • the aerosol component derived from the moisture contained in the smoking article is not considered to be the subject of the main aerosol component.
  • the delivery profile of major aerosol components can be measured by the following methods. First, an aerosol generation device for measuring the delivery profile of the main aerosol component is prepared. Next, with the smoking article inserted in the aerosol generator, suction is performed from the mouthpiece of the smoking article using an automatic smoking device (for example, manufactured by Borgwaldt KC Inc.). At this time, the heater 30 is heated by the control method specified by the prepared aerosol generator. As the suction conditions, those conforming to the HCI conditions (HCI; Health Canada Intense) established by Health Canada are adopted. Specifically, the suction condition is that the suction amount is 27.5 ml / sec, the suction time is 2 sec / times, and the suction interval is 20 sec.
  • HCI HCI
  • Health Canada Intense Health Canada Intense
  • Collect the aerosol sucked with an automatic smoker under the above-mentioned suction conditions with a Cambridge filter (for example, CM-133 manufactured by Borgwaldt KC Inc.). Specifically, the smoke passing through the Cambridge filter was collected in 10 mL of methanol cooled to ⁇ 70 ° C. with a dry ice-isopropanol refrigerant.
  • a Cambridge filter for example, CM-133 manufactured by Borgwaldt KC Inc.
  • Extraction of the content components is performed for each suction. This determines at each inhalation the amount of major aerosol component delivered from the aerosol generator to the automated smoker.
  • the delivery profile of the main aerosol component on the time axis is discretely derived. It should be noted that in FIG. 8, the discretely derived delivery profile is drawn continuously by the approximation curve.
  • the delivery profile of the main aerosol component has an early Q1, a middle Q2, and an end Q3.
  • the initial Q1 is a period in which the gradient of the main aerosol component over time gradually increases.
  • the initial Q1 is a period in which the amount of increase in the delivered amount of the main aerosol component for each inhalation gradually increases.
  • the slope of the delivery profile of the main aerosol component is the absolute value of the slope of each point on the curve forming the delivery profile.
  • the slope of the delivery profile of the major aerosol component can be defined, for example, by the following method. As described above, the delivery profile of the main aerosol component on the time axis is discretely derived. In this case, the slope of the delivery profile of the main aerosol component can be defined by the difference between the delivery profiles of the main aerosol components of the plots adjacent to each other on the time axis divided by the time difference between the plots.
  • the slope of the delivery profile of the main aerosol component may be derived using, for example, an approximated curve derived based on a discrete plot.
  • an approximated curve derived based on a discrete plot.
  • the gradient of the delivery profile of the main aerosol component can be defined by calculating the differential value of the analytical expression.
  • Such an approximate curve may be derived by, for example, a polynomial or a trigonometric function.
  • the starting point S0 of the delivery profile is defined by the starting point of the aerosol inhalable period (inhalable period) (see FIG. 9).
  • the start point S0 of the delivery profile is defined by the notification of the start of the suctionable period (timing T2 in FIG. 9) described later.
  • the boundary S1 between the initial Q1 and the middle Q2 may be defined by the point where the gradient of the main aerosol component in the initial Q1 becomes maximum.
  • the boundary S1 between the early Q1 and the middle Q2 can be said to be the point where the gradient of the main aerosol component starts to decrease first throughout the delivery profile. If the delivery profile is approximated by a continuous approximation curve, the boundary S1 between the initial Q1 and the middle Q2 may be defined by the inflection point.
  • the final Q3 is a period in which the gradient of the main aerosol component with respect to time gradually decreases.
  • the final period Q3 is a period in which the amount of decrease in the delivery amount of the main aerosol component for each inhalation gradually decreases.
  • the end point S3 of the delivery profile is defined by the end point of the aerosol inhalable period (inhalable period) (see FIG. 9).
  • the end point S3 of the delivery profile can be defined by the timing (timing T7 in FIG. 9) at which the end of the suctionable period is notified.
  • the boundary S2 between the middle period Q2 and the final period Q3 may be defined by the point where the gradient of the main aerosol component in the final period Q3 becomes maximum.
  • the boundary S2 between the middle Q2 and the end Q3 can be said to be the point where the gradient of the main aerosol component starts to decrease finally throughout the delivery profile. If the delivery profile is approximated by a continuous approximation curve, the boundary S2 between the middle Q2 and the end Q3 may be defined by the inflection point.
  • the mid-term Q2 is the period between the initial Q1 and the final Q3.
  • Metaphase Q2 comprises one or more maxima that are greater than the beginning and end of the delivery profile.
  • the middle period Q2 contains one maximum value (maximum value).
  • the delivered amount of aerosol increases from the initial Q1 to the middle Q2, has a maximum value in the middle Q2, and decreases from the middle Q2 to the final Q3. This allows the user to be aware of which period of the initial period Q1, the middle period Q2, and the final period Q3 of the inhalable period, by the sensation of inhaling the aerosol.
  • the gradient of the main aerosol component with respect to time gradually increases, and the delivery profile has a downward convex shape.
  • the delivery profile has a convex shape. Therefore, the delivered amount of aerosol can change relatively greatly during the transition from early Q1 to mid Q2.
  • the slope of the major aerosol component over time is gradually reduced, resulting in a downwardly convex delivery profile. Therefore, the delivered amount of the aerosol may change relatively greatly at the transition from the middle Q2 to the final Q3. This makes it easier for the user to recognize the transition from the initial Q1 to the mid-term Q2 and the transition from the mid-term Q2 to the final Q3 by the feeling of inhaling the aerosol.
  • the mid-term Q2 is longer than the initial Q1 and the final Q3. More preferably, the middle period Q2 is equal to or longer than the total period of the initial period Q1 and the final period Q3.
  • mid-term Q2 may be 50-60% of the total period
  • early Q1 and end Q3 may be 20-25% of the total period. This allows the user to inhale the main aerosol component for a relatively long period of time because the period in which the main aerosol component is delivered is relatively long.
  • the delivery amount of the main aerosol component at the end point S3 of the final Q3 is larger than the delivery amount of the main aerosol component at the start point S0.
  • the delivered amount of the aerosol can be suppressed from being excessively reduced in the final Q3.
  • the delivery amount of the main aerosol component can be prevented from decreasing to a low level during the inhalable period, and in particular, the delivery amount of a high level can be maintained until the end of the end Q3.
  • the maximum gradient of the main aerosol component in the final Q3 is smaller than the maximum gradient of the main aerosol component in the initial Q1.
  • the increasing speed of the main aerosol component in the initial Q1 becomes relatively large, it becomes possible to achieve a high level of aerosol delivery amount at a relatively early stage of the inhalable period.
  • the gradient of the main aerosol component in the final Q3 is small, the decreasing speed of the main aerosol component in the final Q3 becomes relatively small. Therefore, it is possible to prevent the aerosol delivery amount from rapidly decreasing in the final Q3. This allows a high level of aerosol delivery to be maintained for a relatively long period of time.
  • the minimum gradient of the main aerosol component in the final Q3 is smaller than the minimum gradient of the main aerosol component in the initial Q1. Since the minimum value of the gradient of the main aerosol component in the final Q3 is small, the decreasing speed of the main aerosol component in the final Q3 becomes relatively small. Therefore, it is possible to prevent the delivered amount of aerosol from rapidly decreasing in the final stage Q3.
  • the middle period Q2 includes a stable period SP in which the absolute value of the gradient of the main aerosol component is smaller than the minimum value of the gradient of the main aerosol component in the initial Q1 and smaller than the minimum value of the gradient of the main aerosol component in the final Q3. You can stay. That is, the stable period SP is a period in which the variation in the delivery amount of the main aerosol component for each inhalation is relatively small.
  • the stable period SP is longer than the initial Q1 and the final Q3.
  • the delivered amount of the main aerosol component is large, and the variation in the delivered amount is small. Therefore, when the stable period SP is longer than the initial Q1 and the final Q3, the main aerosol component can be stably supplied over a relatively long period in the intermediate Q2.
  • the stable period SP is preferably 50 to 60% of the middle period Q2. As a result, in the mid-term Q2, the main aerosol component can be stably supplied over a relatively long period of time.
  • the control unit 22 of the aerosol generation device 120 may be configured to control the heater 30 so that the delivery profile of the main aerosol component described above is realized.
  • the delivery profile of the major aerosol component may depend primarily on the heating profile of the heater 30.
  • FIG. 9 shows an example of the heating profile of the heater. It should be noted that the heating profile shown in FIG. 9 is an example suitable for achieving the delivery profile of the main aerosol component described above, but is not necessarily limited thereto.
  • the heating profile is a graph showing the change over time in the target temperature for controlling the heater 30.
  • the temperature control of the heater 30 can be realized by known feedback control, for example.
  • the control unit 22 of the aerosol generation apparatus 120 can supply the electric power from the battery 22 to the heater 30 in the form of pulses by pulse width modulation (PWM) or pulse frequency modulation (PFM).
  • PWM pulse width modulation
  • PFM pulse frequency modulation
  • the control unit 22 can control the temperature of the heater 30 by adjusting the duty ratio of the power pulse.
  • the control unit 22 measures or estimates the temperature of the heater 30, and based on the difference between the measured or estimated temperature of the heater 30 and the target temperature, the power supplied to the heater 30, for example, the above-described It suffices to control the duty ratio.
  • the feedback control may be PID control, for example.
  • the temperature of the heater 30 can be quantified by, for example, measuring or estimating the electric resistance value of a heating resistor that constitutes the heater 30. This is because the electric resistance value of the heating resistor changes depending on the temperature.
  • the electric resistance value of the heating resistor can be estimated, for example, by measuring the amount of voltage drop in the heating resistor.
  • the amount of voltage drop across the heating resistor can be measured by a voltage sensor that measures the potential difference applied to the heating resistor.
  • the temperature of the heater 30 can be measured by a temperature sensor installed near the heater 30.
  • the electric power supplied to the heater 30 is controlled so that the actual temperature of the heater 30 approaches the target temperature of the heating profile.
  • the heating profile may include a portion where the target temperature changes abruptly, and in such a portion, the deviation of the actual temperature of the heater 30 from the target temperature may temporarily increase.
  • a portion where the deviation of the actual temperature of the heater 30 from the target temperature is large is shown by a broken line.
  • the control unit 22 when the power supply from the battery 10 to the heater 30 is started in response to the user's activation request, the control unit 22 first sets the first target temperature TA1 during the first period P1. The temperature of the heater 30 is controlled toward it. That is, the control unit 22 heats the heater 30 from the initial temperature toward the first target temperature TA1. In the first period P1, when the heater 30 reaches the first target temperature TA1, the control unit 22 controls the temperature of the heater 30 to maintain the first target temperature TA1.
  • the first target temperature TA1 is preferably 225 to 240 ° C., and may be typically 230 ° C.
  • the temperature rising rate of the heater 30 can be increased.
  • the rate of temperature rise of the heater 30 it is possible to shorten the period from the start of power supply to the heater 30 to the time when the aerosol can be suctioned.
  • the controller 22 may be configured to notify the user that the suction-enabled period has started within the period during which the temperature of the heater 30 is maintained at the first target temperature TA1 during the first period P1. .
  • the notification of the start of the suction-enabled period can be performed by the control of the notification unit 40.
  • the emission color of the light emitting element such as an LED is changed, the light emitting pattern is changed, or the vibration element is driven. , Or a combination thereof.
  • the notification that the suctionable period has started is performed at timing T2. More specifically, the notification that the suctionable period has started is made at the timing T2 when a predetermined period P1b has elapsed after the temperature of the heater 30 reaches the first target temperature and from the start of the power supply to the heater 30. It may be performed at the earlier of the timings when the predetermined period has elapsed.
  • the predetermined period P1b is preferably 20 to 26 seconds, and may typically be 23 seconds.
  • control unit 22 may be configured to notify the start of the suction-enabled period in the latter half of the first period P1.
  • the latter half of the first period P1 means a period behind the middle of the first period P1.
  • the control unit 22 shifts to a second period P2, which will be described later, at a timing T3 when a predetermined period P1c has elapsed from the timing T2 at which the suctionable period is notified.
  • the predetermined period P1c is preferably 5 to 15 seconds, and may typically be 10 seconds. This increases the possibility that the user will perform the first suction operation during the first period P1. In this case, the user can perform the first suction operation while the heater temperature is maintained near the first target temperature TA1 which is the maximum temperature of the heating profile.
  • the first period P1 varies depending on the heating state of the heater 30 and the smoking article 110, the ambient temperature, etc., but may typically be in the range of 35 to 55 seconds. However, it is preferable that the control unit 22 be configured to be able to change the length of the first period P1 based on the rate of temperature rise of the heater 30 in the first period P1. More specifically, the initial temperature rising period P1a of the first period P1 may be configured to be changeable based on the rate of temperature rise of the heater 30. Specifically, the control unit 22 is preferably configured to change the length of the first period P1 to be shorter as the period from when the heater 30 starts heating to when the temperature reaches the predetermined temperature is shorter.
  • the first period P1 ends when a predetermined period (P1b + P1c) elapses after the temperature of the heater 30 reaches the first target temperature TA1. That is, if the temperature of the heater 30 rises quickly, the period P1a from the time T0 when the power supply to the heater 30 starts to reach the first target temperature TA1 is shortened.
  • the predetermined period (P1b + P1c) is preferably 25 to 41 seconds, and may typically be 33 seconds.
  • the power consumption used during the preheating period can be suppressed by shortening the preheating period.
  • the variable range of the first period P1, more specifically, the variable range of the period (P1a + P1b) until the notification of the start of the suctionable period preferably has a predetermined upper limit value.
  • the upper limit value of the period (P1a + P1b) from the start T0 of power supply to the notification T2 of the start of the suctionable period is preferably 40 to 60 seconds, and typically 50 seconds.
  • control unit 22 controls the temperature of the heater 30 toward the second target temperature TA2 lower than the first target temperature TA1 during the second period P2 after the first period P1. That is, the control unit 22 controls the heater 30 so as to reduce the temperature of the heater 30 from the first target temperature TA1 and maintain the temperature at the second target temperature TA2.
  • the second target temperature TA2 is preferably in the range of 190 to 210 ° C, typically 200 ° C.
  • the second period P2 is preferably in the range of 105 to 160 seconds and may typically be 130 seconds.
  • the second period P2 is preferably longer than the first period P1 and a third period P3 described later.
  • the second period is a period in which the temperature is maintained higher than that in the third period P3, and thus is a period in which the aerosol can be stably supplied. This makes it possible to relatively lengthen the period during which the aerosol can be stably supplied.
  • the control unit 22 may have a first off period in which the power supply to the heater 30 is stopped from the end of the first period P1 to the beginning of the second period P2. By providing the first off period, the temperature decrease from the first target temperature TA1 to the second target temperature TA2 can be achieved in the shortest time.
  • the control unit 22 can continue to measure the temperature of the heater 30 during the first off period. In this case, the control unit 22 can be configured to restart the power supply to the heater 30 when the temperature of the heater 30 drops to around the second target temperature TA2.
  • the first off period is preferably a time interval such that a general user does not perform the suction operation twice or more. If the user performs the suction operation twice or more during the off period, the temperature of the heater 30 may drop sharply and fall significantly below the second target temperature TA2. In this case, the amount of aerosol generated from the smoking article 110 may decrease. Assuming that the time interval of the normal suction operation by a general user is about 20 seconds, the first off period is preferably in the range of 15 to 20 seconds, for example.
  • the first target temperature TA1 and the second target temperature TA2 are set such that the temperature decrease from the first target temperature TA1 to the second target temperature TA2 by the natural cooling during the first off period is performed within the above time range. Can be done.
  • control unit 22 may be configured to measure the elapsed time of the first off period and forcibly restart the power supply to the heater 30 when the first off period reaches a predetermined upper limit value.
  • the upper limit value of the first off period is preferably 15 to 20 seconds.
  • the control unit 22 controls the temperature of the heater 30 toward the third target temperature TA3 lower than the second target temperature TA2 during the third period P3 after the second period P2. That is, the control unit 22 controls the heater 30 to further lower the temperature of the heater 30 from the second target temperature TA1 and maintain the temperature at the third target temperature TA3.
  • the third target temperature TA3 is preferably in the range of 175 to 190 ° C, typically 185 ° C.
  • the third period P3 is preferably in the range 30 to 90 seconds and may typically be 60 seconds. By further reducing the target temperature in the third period P3, it is possible to further reduce the power consumed in the third period P3.
  • the temperature difference between the first target temperature TA1 and the second target temperature TA2 is preferably larger than the temperature difference between the second target temperature TA2 and the third target temperature TA3 ( ⁇ T23). Since the power consumption of the heater 30 is larger in the second period P2 than in the third period P3, the first period P1 to the second period P2 is larger than the temperature difference ( ⁇ T23) at the transition from the second period P2 to the third period P3. Increasing the temperature difference ( ⁇ T12) at the time of shifting to the period P2 leads to reduction in power consumption throughout the period. Therefore, ⁇ T12 / ⁇ T23 is preferably larger than 1.
  • ⁇ T12 / ⁇ T23 preferably has a predetermined upper limit value.
  • the upper limit of ⁇ T12 / ⁇ T23 may be 2.5, for example.
  • ⁇ T12 / ⁇ T23 is preferably 1.0 to 2.5, and may typically be 2.0.
  • the control unit 22 may have a second off period in which the power supply to the heater 30 is stopped from the end of the second period P2 to the beginning of the third period P3.
  • the second off period By providing the second off period, the temperature decrease from the second target temperature TA2 to the third target temperature TA3 can be achieved in the shortest time.
  • the control unit 22 can continue to measure the temperature of the heater 30 during the second off period.
  • the control unit 22 can be configured to restart the power supply to the heater 30 when the temperature of the heater 30 drops to around the third target temperature TA3.
  • the second off period is preferably a time interval such that a general user does not perform the suction operation twice or more, for example, in the range of 15 to 20 seconds. Preferably there is.
  • the second target temperature TA2 and the third target temperature TA3 are set such that the temperature decrease from the second target temperature TA2 to the third target temperature TA3 by natural cooling during the second off period is performed within the above time range. Can be done.
  • the control unit 22 may be configured to measure the elapsed time of the second off period and forcibly restart the power supply to the heater 30 when the second off period reaches a predetermined upper limit value. .
  • the temperature difference ( ⁇ T12) between the first target temperature TA1 and the second target temperature TA2 is larger than the temperature difference ( ⁇ T23) between the second target temperature TA2 and the third target temperature TA3 from the viewpoint of power consumption reduction.
  • this relationship is also preferable from the viewpoint of making the first off period and the second off period as close as possible to each other.
  • the temperature decrease rate during natural cooling is higher in the high temperature zone than in the low temperature zone. Therefore, in order to approximate the first off period and the second off period as much as possible, It is necessary to relatively increase the temperature difference ( ⁇ T12) between the first target temperature TA1 and the second target temperature TA2.
  • the temperature difference ( ⁇ T12) between the first target temperature TA1 and the second target temperature TA2 is made equal to the temperature difference ( ⁇ T23) between the second target temperature TA2 and the third target temperature TA3, or the former temperature difference ( ⁇ T12). If the value of () is smaller than the latter temperature difference ( ⁇ T23), the first off period is always shorter than the second off period, and thus it is theoretically impossible to make the two off periods the same.
  • the ratio of the difference between the first target temperature TA1 and the second target temperature TA2 to the difference between the second target temperature TA2 and the third target temperature TA3 is preferably less than 2.5. This is because the difference between the first target temperature TA1 and the second target temperature TA2 is not made too large, so that the aerosol can be stably generated in the middle of the puffable period.
  • the heater 30 may be preferable to control the heater 30 at the third target temperature TA3 without passing through the first target temperature TA1 and the second target temperature TA2.
  • the period from the first target temperature TA1 to the third target temperature TA3 becomes relatively long. Since the power supply to the heater 30 is stopped during the period in which the first target temperature TA1 reaches the third target temperature TA3, if the user performs the suction operation a plurality of times during this period, the temperature of the heater 30 becomes the third temperature. There is a risk that the temperature will drop significantly below.
  • the second target temperature TA2 between the first target temperature TA1 and the third target temperature TA2 is passed, so that between the one target temperature and the other target temperature TA2. It is possible to shorten the period required to shift to the target temperature. As a result, the continuous time of the off period in which the power supply to the heater 30 is stopped becomes relatively short, so that the temperature of the smoking article excessively decreases due to a plurality of suction operations, and as a result, aerosol generation becomes unstable. Can be prevented.
  • the control unit 22 stops the power supply to the heater 30 at the same time as the end of the third period P3.
  • the control unit 22 notifies the end of the suction-enabled period at timing T7 after a lapse of a predetermined period after stopping the power supply to the heater 30 (timing T6). That is, even after the power supply to the heater 30 is stopped, the user is prompted to perform the aerosol suction operation until the predetermined period of time elapses, and the residual heat of the heater 30 and the smoking article 110 allows the user to taste the aerosol. be able to.
  • the notification of the end of the suctionable period can be performed by the notification unit 40, and for example, control of changing the emission color of the light emitting element such as an LED, changing the light emitting pattern, or driving the vibrating element, or It can be performed by a combination of these.
  • the heat of the heater 30 is sufficiently transmitted to the inside of the smoking article 110. Therefore, during the period from the end of the third period P3 to the end of the inhalable period, that is, the fourth period P4 in FIG. 8, a certain amount of aerosol can be generated only by the residual heat of the heater 30 and the smoking article 110. .
  • the fourth period P4 is preferably 5 to 15 seconds, and typically 10 seconds.
  • control unit 22 can notify the user that the end of the suction possible period is approaching at a timing T5 which is earlier than the timing T7 for notifying the end of the suction possible period by a predetermined period Pe.
  • Such notification can be performed, for example, 20 to 40 seconds before the end of the suctionable period.
  • Such notification can be performed by the notification unit 40, and is performed, for example, by controlling the emission color of the light emitting element such as an LED, changing the light emitting pattern, driving the vibrating element, or a combination thereof. be able to.
  • control unit 22 stops the supply of electric power to the heater 30 at the end of the third period P3.
  • control unit 22 may stop the power supply to the heater 30 even within the second period P2 or the third period P3.
  • the puff operation by the user can be detected by, for example, the above-mentioned temperature sensor.
  • the delivery profile of the major aerosol component may depend primarily on the heating profile of the heater 30.
  • the delivery profile of the primary aerosol component can be essentially a profile that corresponds to the temperature profile inside the smoking article 110. Since the temperature profile inside the smoking article 110 follows the heating profile of the heater 30, in general, the temperature profile tends to be delayed with respect to the heating profile.
  • the delivery profile of the main aerosol component is likely to form a steep rising curve in the initial Q1. Further, by maintaining the temperature of the heater 30 at the second target temperature TA2 in most of the second period P2 after the first period P1, the delivery profile of the main aerosol component is stable with little fluctuation for each suction in the middle period Q2. It becomes easy to form the period SP. Further, by controlling the temperature of the heater 30 toward the third target temperature TA3 lower than the second target temperature TA2 during the third period P3 after the second period P2, the delivery profile of the main aerosol component is set to the final Q3. It becomes easier to form a descending curve at.
  • the delivery profile of the main aerosol component is likely to form a gentler descending curve in the final stage Q3.
  • the delivery profile of the main aerosol component can easily form an upwardly convex curve having a maximum point in the middle Q2 as a whole. , It becomes easy to form a steep ascending curve in the initial Q1, and it becomes easy to form a gentle descending curve in the final Q3.
  • the delivery profile of the main aerosol component mainly depends on the heating profile of the heater 30.
  • the delivery profile of the major aerosol component is determined by the shape of the heater 30, the presence and shape of the insulation 138, the size of the smoking article 110, the contact between the heater 30 and the smoking article 110, and the heating portion of the heater 30 relative to the smoking article 110. Can vary depending on factors such as the position of the. Therefore, in order to achieve a desired delivery profile of the main aerosol component, the heating profile of the heater 30 and these elements may be appropriately combined.
  • the heater 30 has a cylindrical shape that surrounds the outer circumference of a columnar smoking article, the heat transmitted to the smoking article 110 is unlikely to escape to the outside, so that the delivery profile of the main aerosol component easily follows the heating profile of the heater 30. Become.
  • the tubular heat insulating material 138 is arranged on the outer side of the heater 30 in the radial direction, the heat transmitted to the smoking article 110 is unlikely to escape to the outside, so the delivery profile of the main aerosol component is the heating profile of the heater 30.
  • the delivery profile of the main aerosol component is the heating profile of the heater 30.
  • the smaller the size of the smoking article 110 more specifically, the smaller the diameter of the smoking article 110, the more easily heat from the outside of the smoking article 110 is transferred to the inside of the smoking article 110. Therefore, the smaller the diameter of the smoking article 110, the easier the delivery profile of the primary aerosol component will follow the heating profile of the heater 30.
  • the higher the degree of contact between the heater 30 and the smoking article 110 during use the more easily the heat from the heater 30 is transferred to the smoking article 110. That is, when the smoking article 110 is inserted into the insertion hole 130 and the gap between the smoking article 110 and the inner tubular member 132 is small, the delivery profile of the main aerosol component can easily follow the heating profile of the heater 30. Become.
  • the delivery profile of the main aerosol component may also depend on the positional relationship between the smoking article 110 and the heater 30.
  • the heater 30 is preferably arranged so as to extend from the base material portion 11A containing the aerosol source to the paper tube portion 114 not containing the aerosol source in the smoking article 110.
  • the heat from the heater 30 is easily transmitted to the downstream end surface of the base material portion 11A and the vicinity thereof, so that the delivery profile of the main aerosol component easily follows the heating profile of the heater 30.
  • the inner cylindrical member 132 that contacts the smoking article 110 on the inner peripheral surface and contacts the heater 3 on the outer peripheral surface extends from the base material portion 11A containing the aerosol source to the paper tube portion 114 not containing the aerosol source.
  • the downstream end of the inner tubular member 132 projects further downstream than the downstream end of the heater 30.
  • the heating portion 31 of the heater 30 is a portion that is actively heated. In the case of a heater including a heating resistor, the heating portion 31 of the heater 30 refers to the heating resistor.
  • the delivery profile of the main aerosol component may also be due to the components that make up the smoking article 110. More specifically, the amount of water contained in smoking article 110 can affect the rate of increase in the initial Q1 of the delivery profile of the major aerosol component. For example, if the smoking article 110 contains a relatively large amount of water, heat from the heater 30 is used to vaporize the water instead of heating the aerosol source, thus reducing the rate at which the delivery profile of the major aerosol component increases. Can be a factor. This may result in a generally gentler delivery profile in early Q1. As mentioned above, aerosols derived from water in smoking article 110 are typically not included in the primary aerosol component.
  • the desired delivery profile of the main aerosol component described above can be realized.
  • the control flow for realizing the heating profile and / or the delivery profile of the main aerosol component described above can be executed by the control unit 22. That is, the present invention may include a program that causes the flavor inhaler 100 and / or the aerosol generation device 120 to execute the above-described method, and a storage medium that stores the program. Such a storage medium may be a non-transitory storage medium.
  • the aerosol generation device includes the heater 30 as an element capable of adjusting the delivery amount of the aerosol.
  • the element capable of adjusting the delivery amount of the aerosol is not limited to the heater 30.
  • the adjustable aerosol delivery element is any element capable of adjusting the amount of aerosol produced from an aerosol source in a smoking article, or the delivery of produced aerosol. Good.
  • the element capable of adjusting the delivered amount of aerosol may be an ultrasonic transducer capable of atomizing an aerosol source.
  • the aerosol generating device may include a plurality of elements capable of adjusting the delivery amount of the aerosol.
  • the control unit 22 may be configured to control the element capable of adjusting the delivery amount of the aerosol so that the delivery profile of the main aerosol component on the time axis draws the profile described above.

Landscapes

  • Cigarettes, Filters, And Manufacturing Of Filters (AREA)
  • Manufacture Of Tobacco Products (AREA)

Abstract

This aerosol generation device is provided with at least one element that makes it possible to adjust an aerosol delivery amount, and a controller for controlling the element. The controller is configured to control the element so that an aerosol delivery profile in a preset period in which suction is possible includes an initial period in which said aerosol delivery profile increases with a gradually increasing gradient relative to a time axis, a final period in which said aerosol delivery profile decreases with a gradually decreasing gradient relative to the time axis, and an intermediate period that includes one or more local maximum values between the initial period and the final period.

Description

制御ユニット、エアロゾル生成装置、ヒータを制御する方法及びプログラム、並びに喫煙物品Control unit, aerosol generator, heater control method and program, and smoking article
 本発明は、制御ユニット、エアロゾル生成装置、ヒータを制御する方法及びプログラム、並びに喫煙物品に関する。 The present invention relates to a control unit, an aerosol generator, a method and program for controlling a heater, and a smoking article.
 従来の燃焼式シガレットに代わり、エアロゾル形成基材(喫煙物品)をヒータで霧化することによって生じたエアロゾルを吸引する非燃焼式のエアロゾル生成装置が知られている(特許文献1及び特許文献2)。 There is known a non-combustion type aerosol generation device that sucks aerosol generated by atomizing an aerosol forming substrate (smoking article) with a heater, instead of the conventional combustion type cigarette (Patent Document 1 and Patent Document 2). ).
 特許文献1は、固体エアロゾル形成基材を含む喫煙物品と、使用時にエアロゾル形成基材に挿入されるブレード型のヒータと、を有するエアロゾル生成装置を開示する。このヒータは、内部からエアロゾル形成基材を加熱する。 Patent Document 1 discloses an aerosol generation device having a smoking article including a solid aerosol-forming substrate and a blade-type heater inserted into the aerosol-forming substrate during use. This heater heats the aerosol-forming substrate from the inside.
 特許文献2は、固体エアロゾル形成基材を含む喫煙物品と、使用時にエアロゾル形成基材の外周に配置される筒型のヒータと、を有するエアロゾル生成装置を開示する。このヒータは、外周側からエアロゾル形成基材を加熱する。 Patent Document 2 discloses an aerosol generation device having a smoking article including a solid aerosol-forming substrate, and a cylindrical heater disposed on the outer periphery of the aerosol-forming substrate during use. This heater heats the aerosol-forming substrate from the outer peripheral side.
 特許文献1及び特許文献2に開示されたエアロゾル生成装置は、従来の燃焼式シガレットとは異なり、ユーザの吸引動作に応じた外観変化が乏しいので、ユーザは自身が吸引可能期間のどの段階にいるのかを感覚的に理解するのが難しい場合があった。 Unlike conventional combustion cigarettes, the aerosol generation devices disclosed in Patent Document 1 and Patent Document 2 do not show a significant change in appearance according to the user's suction operation. It was sometimes difficult to intuitively understand what it was.
特開2017-113016号公報JP, 2017-113016, A 国際公開第2018/019786号公報International Publication No. 2018/019786
 第1の特徴は、エアロゾル生成装置であって、エアロゾルの送達量を調整可能な少なくとも1つの素子と、前記素子を制御する制御部と、を備え、前記制御部は、予め定めた吸引可能期間におけるエアロゾルの送達プロファイルが、時間軸に対して漸増する勾配を有して増加する初期と、時間軸に対して漸減する勾配を有して減少する終期と、前記初期と前記終期の間で1つ又は複数の極大値を含む中期と、を含むように、前記素子を制御するよう構成されていることを要旨とする。 A first feature is an aerosol generating apparatus, which includes at least one element capable of adjusting the delivery amount of aerosol, and a control section for controlling the element, wherein the control section has a predetermined inhalable period. The delivery profile of the aerosol in the initial period with an increasing slope with respect to the time axis, the end period with a decreasing slope with respect to the time axis, and between the initial period and the end period. It is a gist that the device is configured to include a medium period including one or a plurality of local maximum values.
 第2の特徴は、第1の特徴におけるエアロゾル生成装置であって、前記吸引可能期間の終点におけるエアロゾルの送達量は、前記吸引可能期間の始点におけるエアロゾルの送達量よりも大きいことを要旨とする。 A second feature is the aerosol generating device according to the first feature, wherein the delivery amount of the aerosol at the end point of the inhalable period is larger than the delivery amount of the aerosol at the starting point of the inhalable period. .
 第3の特徴は、第1の特徴又は第2の特徴におけるエアロゾル生成装置であって、前記吸引可能期間の終期における前記勾配の最大値は、前記吸引可能期間の初期における前記勾配の最大値よりも小さいことを要旨とする。 A third feature is the aerosol generating device according to the first feature or the second feature, wherein the maximum value of the gradient at the end of the inhalable period is greater than the maximum value of the gradient at the beginning of the inhalable period. The point is that it is small.
 第4の特徴は、第1の特徴から第3の特徴のいずれかにおけるエアロゾル生成装置であって、前記終期における前記勾配の最小値は、前記初期における前記勾配の最小値よりも小さいことを要旨とする。 A fourth feature is the aerosol generating apparatus according to any one of the first to third features, wherein the minimum value of the gradient at the final stage is smaller than the minimum value of the gradient at the initial stage. And
 第5の特徴は、第1の特徴から第4の特徴におけるエアロゾル生成装置であって、前記中期は、前記初期及び前記終期の各々よりも長いことを要旨とする。 The fifth feature is the aerosol generation device according to the first to fourth features, and the gist is that the middle period is longer than each of the initial period and the final period.
 第6の特徴は、第1の特徴から第5の特徴におけるエアロゾル生成装置であって、前記中期は、前記初期と前記終期の合計の期間と同じか又は当該期間よりも長いことを要旨とする。 A sixth feature is the aerosol generating apparatus according to the first to fifth features, wherein the middle period is the same as or longer than the total period of the initial period and the final period. .
 第7の特徴は、第1の特徴から第6の特徴におけるエアロゾル生成装置であって、前記中期は、前記勾配が、前記初期における前記勾配の最小値よりも小さく、かつ前記終期における前記勾配の最小値よりも小さい安定期間を含み、前記安定期間は、前記初期及び前記終期の各々よりも長いことを要旨とする。 A seventh feature is the aerosol-generating apparatus according to the first to sixth features, wherein in the middle period, the gradient is smaller than a minimum value of the gradient in the initial period, and The gist is that the stable period is smaller than the minimum value, and the stable period is longer than each of the initial period and the final period.
 第8の特徴は、第1の特徴から第7の特徴におけるエアロゾル生成装置であって、前記素子は、エアロゾル源を加熱可能に構成されたヒータであることを要旨とする。 The eighth feature is the aerosol generation device according to the first to seventh features, and the gist is that the element is a heater configured to heat the aerosol source.
 第9の特徴は、第8の特徴におけるエアロゾル生成装置であって、前記制御部は、第1期間中に第1目標温度に向けて前記ヒータの温度を制御し、第1期間後の第2期間中に前記第1目標温度よりも低い第2目標温度に向けて前記ヒータの温度を制御し、第2期間後の第3期間中に前記第2目標温度よりも低い第3目標温度に向けて前記ヒータの温度を制御するよう構成されていることを要旨とする。 A ninth feature is the aerosol generator according to the eighth feature, wherein the control unit controls the temperature of the heater toward the first target temperature during the first period, and the second after the first period. During the period, the temperature of the heater is controlled toward the second target temperature lower than the first target temperature, and toward the third target temperature lower than the second target temperature during the third period after the second period. The gist is that it is configured to control the temperature of the heater.
 第10の特徴は、エアロゾルの送達量を調整可能な少なくとも1つの素子を制御するための制御部を備えた制御ユニットであって、前記制御部は、予め定めた吸引可能期間におけるエアロゾルの送達プロファイルが、時間軸に対して漸増する勾配を有して増加する初期と、時間軸に対して漸減する勾配を有して減少する終期と、前記初期と前記終期の間で1つ又は複数の極大値を含む中期と、を含むように、前記素子を制御するよう構成されていることを要旨とする。 A tenth feature is a control unit including a control unit for controlling at least one element capable of adjusting an aerosol delivery amount, wherein the control unit is an aerosol delivery profile in a predetermined inhalable period. Has an increasing initial with a gradually increasing slope with respect to the time axis, an end having a gradually decreasing slope with respect to the time axis, and one or more local maxima between the initial and the final. It is characterized in that it is configured to control the device to include a middle period including a value.
 第11の特徴は、エアロゾル生成装置のエアロゾルの送達量を調整する方法であって、予め定めた吸引可能期間におけるエアロゾルの送達プロファイルが、時間軸に対して漸増する勾配を有して増加する初期と、時間軸に対して漸減する勾配を有して減少する終期と、前記初期と前記終期の間で1つ又は複数の極大値を含む中期と、を含むように、エアロゾルの送達量を調整することを要旨とする。 The eleventh feature is a method of adjusting the delivery amount of aerosol of an aerosol generation device, wherein an aerosol delivery profile in a predetermined inhalable period is initially increased with a gradually increasing slope with respect to a time axis. And adjusting the delivery amount of the aerosol so as to include a declining end having a tapering slope with respect to a time axis, and a middle stage including one or more local maxima between the initial stage and the final stage. The point is to do.
 第12の特徴は、第11の特徴における方法をコンピュータに実行させるプログラムであることを要旨とする。 The twelfth feature is summarized as a program that causes a computer to execute the method according to the eleventh feature.
 第13の特徴は、エアロゾル源を含む喫煙物品であって、前記エアロゾル源に作用してエアロゾルを送達可能な装置と一緒に使用されるときのエアロゾルの送達プロファイルが、時間軸に対して漸増する勾配を有して上昇する初期と、時間軸に対して漸減する勾配を有して下降する終期と、前記初期と前記終期の間で1つ又は複数の極大値を有する中期と、を含むように構成されていることを要旨とする。 A thirteenth feature is a smoking article including an aerosol source, wherein the aerosol delivery profile when used with a device capable of acting on the aerosol source to deliver the aerosol gradually increases with respect to a time axis. An initial stage of rising with a slope, a final stage of falling with a decreasing slope with respect to a time axis, and a middle stage having one or more local maxima between the initial stage and the final stage. The summary is that it is configured.
図1は、一実施形態に係る香味吸引器を示す図である。FIG. 1 is a diagram showing a flavor inhaler according to an embodiment. 図2は、喫煙物品が挿入された香味吸引器を示す図である。FIG. 2 is a diagram showing a flavor inhaler into which a smoking article is inserted. 図3は、図2に示す香味吸引器の内部構造を示す図である。FIG. 3 is a diagram showing an internal structure of the flavor inhaler shown in FIG. 図4は、図2に示す喫煙物品の内部構造を示す図である。FIG. 4 is a diagram showing an internal structure of the smoking article shown in FIG. 図5は、香味吸引器のブロック図である。FIG. 5 is a block diagram of the flavor suction device. 図6は、図3の領域5Rの模式的拡大図である。FIG. 6 is a schematic enlarged view of the region 5R in FIG. 図7は、喫煙物品の基材部と、エアロゾル生成装置のヒータ及び内側筒部材と、の間の位置関係を簡略的に示す図である。FIG. 7: is a figure which shows simply the positional relationship between the base material part of a smoking article, the heater of an aerosol generation device, and an inner cylinder member. 図8は、ヒータの加熱プロファイルと、主要エアロゾル成分の送達プロファイルと、を示す図である。FIG. 8 is a diagram showing the heating profile of the heater and the delivery profile of the major aerosol components. 図9は、ヒータの加熱プロファイルを示す図である。FIG. 9 is a diagram showing a heating profile of the heater.
 以下において、実施形態について説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なる場合があることに留意すべきである。 The embodiment will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic and the ratio of each dimension may be different from the actual one.
 したがって、具体的な寸法などは以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれる場合があることは勿論である。 Therefore, specific dimensions should be judged by taking the following explanation into consideration. Further, it is needless to say that the drawings may include portions having different dimensional relationships and ratios.
 [開示の概要]
 従来の燃焼式シガレットであれば、ユーザは、シガレットの燃焼位置を視認することで、自身が吸引可能期間の初期、中期、及び終期のうちのどの段階にいるのかを、容易に認識することができる。しかしながら、多くのエアロゾル生成装置においては、エアロゾル源を含む喫煙物品の加熱状態をユーザが目視で確認するのは難しい。
[Summary of Disclosure]
In the case of the conventional combustion type cigarette, the user can easily recognize at which stage of the initial period, the middle period and the final period of the suction possible period by visually recognizing the burning position of the cigarette. it can. However, in many aerosol generators, it is difficult for the user to visually confirm the heating state of the smoking article including the aerosol source.
 特許文献1に記載された主要エアロゾル成分の送達プロファイルは、ヒータの作動初期に増加し、その後、ヒータが停止するまで一定を保つ。したがって、ユーザは、吸引可能期間の初期、中期及び終期のうちのどの期間にあるのかを、エアロゾルを吸引した感覚によって意識し難い。 The delivery profile of the main aerosol component described in Patent Document 1 increases at the initial operation of the heater and then remains constant until the heater stops. Therefore, it is difficult for the user to be aware of which of the initial period, the middle period, and the final period of the inhalable period, by the sensation of inhaling the aerosol.
 本態様では、予め定めた吸引可能期間におけるエアロゾルの送達プロファイルは、時間軸に対して漸増する勾配を有して増加する初期と、時間軸に対して漸減する勾配を有して減少する終期と、前記初期と前記終期の間で1つ又は複数の極大値を含む中期と、を含むように、エアロゾルの送達量が調整される。 In this aspect, the delivery profile of the aerosol during the predetermined inhalable period has an initial increase with a gradual slope to the time axis and an end phase with a gradual slope to the time axis. The aerosol delivery rate is adjusted to include an intermediate period including one or more local maxima between the initial period and the final period.
 したがって、エアロゾルの送達量は、初期から中期にかけて増大し、中期で極大値を有し、中期から終期にかけて減少する。これにより、ユーザは、吸引可能期間の初期、中期及び終期のうちのどの期間にあるのかを、エアロゾルを吸引した感覚によって意識することができる。 Therefore, the amount of aerosol delivered increases from the early to mid-term, has a maximum in the mid-term, and decreases from the mid-to the end. This allows the user to be aware of which period of the initial period, the middle period, and the final period of the inhalable period, by the sensation of inhaling the aerosol.
 さらに、エアロゾルの送達プロファイルは、初期では、時間軸に対して漸増する勾配を有するため、送達プロファイルは下に凸の形状となる。一方、中期では、送達プロファイルは上に凸の形状となる。したがって、エアロゾルの送達量は、初期から中期への移行時に急激に変化し得る。また、エアロゾルの送達プロファイルは、終期では、時間に対して漸減する勾配を有するため、送達プロファイルは下に凸の形状となる。したがって、エアロゾルの送達量は、中期から終期への移行時に急激に変化し得る。これにより、ユーザは、初期から中期への移行、及び中期から終期への移行を、エアロゾルを吸引した感覚によって、より認識しやすくなる。 Furthermore, since the delivery profile of the aerosol has an increasing gradient with respect to the time axis at the beginning, the delivery profile has a downward convex shape. On the other hand, in the middle stage, the delivery profile has an upward convex shape. Therefore, the delivered dose of aerosol may change rapidly during the transition from early to mid-phase. Also, the delivery profile of the aerosol has a declining slope over time at the end, resulting in a downwardly convex shape. Therefore, the delivered dose of aerosol may change rapidly during the transition from mid-stage to end-stage. This makes it easier for the user to recognize the transition from the initial stage to the middle stage and the transition from the middle stage to the final stage by the sensation of inhaling the aerosol.
 (香味吸引器)
 以下において、一実施形態に係る香味吸引器について説明する。図1は、一実施形態に係る香味吸引器を示す図である。図2は、喫煙物品が挿入された香味吸引器を示す図である。図3は、図2に示す香味吸引器の内部構造を示す図である。図4は、図2に示す喫煙物品の内部構造を示す図である。図5は、香味吸引器のブロック図である。
(Flavor suction device)
Below, the flavor suction device which concerns on one Embodiment is demonstrated. FIG. 1 is a diagram showing a flavor inhaler according to an embodiment. FIG. 2 is a diagram showing a flavor inhaler into which a smoking article is inserted. FIG. 3 is a diagram showing an internal structure of the flavor inhaler shown in FIG. FIG. 4 is a diagram showing an internal structure of the smoking article shown in FIG. FIG. 5 is a block diagram of the flavor suction device.
 香味吸引器100は、燃焼を伴わずに、喫煙物品からエアロゾルを生成するための非燃焼型の香味吸引器であってよい。香味吸引器100は、特に携帯型の機器であってよい。 The flavor inhaler 100 may be a non-combustion type flavor inhaler for producing aerosol from a smoking article without combustion. The flavor inhaler 100 may be a particularly portable device.
 香味吸引器100は、エアロゾル源を含有する喫煙物品110と、喫煙物品110からエアロゾルを生成させるエアロゾル生成装置120と、を有する。 The flavor inhaler 100 has a smoking article 110 containing an aerosol source, and an aerosol generation device 120 that generates an aerosol from the smoking article 110.
 喫煙物品110は、エアロゾル源及び香味源を含有し得る交換可能なカートリッジであり、長手方向に沿って延びる柱状形状を有する。喫煙物品110はエアロゾル生成装置120に挿入された状態で加熱されることによってエアロゾル及び香味成分を発生するように構成されていてよい。 The smoking article 110 is a replaceable cartridge that can contain an aerosol source and a flavor source, and has a columnar shape that extends along the longitudinal direction. The smoking article 110 may be configured to generate aerosols and flavor components by being heated while inserted into the aerosol generating device 120.
 図4に示す実施形態において、喫煙物品110は、充填物111と、充填物111を巻装する第1の巻紙112と、を含む基材部11Aと、基材部11Aとは反対側の端部を形成する吸口部11Bと、を有する。基材部11Aと吸口部11Bは、第1の巻紙112とは異なる第2の巻紙113によって連結されている。ただし、第2の巻紙113を省略し、第1の巻紙112を用いて基材部11Aと吸口部11Bを連結することもできる。 In the embodiment shown in FIG. 4, the smoking article 110 includes a base material portion 11A including a filler 111 and a first wrapping paper 112 around which the filler material 111 is wound, and an end opposite to the base material portion 11A. And a suction portion 11B that forms a portion. The base material portion 11A and the mouthpiece portion 11B are connected by a second wrapping paper 113 different from the first wrapping paper 112. However, it is also possible to omit the second wrapping paper 113 and use the first wrapping paper 112 to connect the base portion 11A and the mouthpiece portion 11B.
 図4中の吸口部11Bは、紙管部114と、フィルタ部115と、紙管部114とフィルタ部115との間に配置された中空セグメント部116と、を有する。中空セグメント部116は、例えば、1つ又は複数の中空チャネルを有する充填層と、充填層を覆うプラグラッパーとで構成される。充填層は繊維の充填密度が高いため、吸引時は、空気やエアロゾルは中空チャンネルのみを流れることになり、充填層内はほとんど流れない。香味発生物品110において、フィルタ部115でのエアロゾル成分の濾過による減少を少なくしたいときに、フィルタ部115の長さを短くして中空セグメント部116で置き換えることはエアロゾルのデリバリ量を増大させるために有効である。 4 has a paper tube section 114, a filter section 115, and a hollow segment section 116 arranged between the paper tube section 114 and the filter section 115. The hollow segment portion 116 is composed of, for example, a filling layer having one or a plurality of hollow channels and a plug wrapper covering the filling layer. Since the packing density of the fibers in the packed bed is high, air and aerosol flow only through the hollow channels during suction, and hardly flow in the packed bed. In the flavor generating article 110, when it is desired to reduce the decrease due to the filtration of the aerosol component in the filter unit 115, it is necessary to shorten the length of the filter unit 115 and replace it with the hollow segment unit 116 in order to increase the amount of delivered aerosol. It is valid.
 図4中の吸口部11Bは3つのセグメントから構成されているが、本実施形態において、吸口部11Bは1つ又は2つのセグメントから構成されていてもよいし、4つ又はそれ以上のセグメントから構成されていてもよい。例えば、中空セグメント部116を省略し、紙管部114とフィルタ部115を互いに隣接配置して吸口部11Bを形成することもできる。 The mouthpiece 11B in FIG. 4 is composed of three segments, but in the present embodiment, the mouthpiece 11B may be composed of one or two segments, or from four or more segments. It may be configured. For example, the hollow segment portion 116 may be omitted, and the paper tube portion 114 and the filter portion 115 may be arranged adjacent to each other to form the suction port portion 11B.
 図4に示す実施形態において、喫煙物品110の長手方向の長さは、40~90mmであることが好ましく、50~75mmであることがより好ましく、50~60mmであることがさらに好ましい。喫煙物品110の円周は15~25mmであることが好ましく、17~24mmであることがより好ましく、20~23mmであることがさらに好ましい。また、喫煙物品110の長手方向において、基材部11Aの長さは20mm、第1の巻紙112の長さは20mm、中空セグメント部116の長さは8mm、フィルタ部115の長さは7mmであってよいが、これら個々のセグメントの長さは、製造適性、要求品質等に応じて、適宜変更できる。 In the embodiment shown in FIG. 4, the length of the smoking article 110 in the longitudinal direction is preferably 40 to 90 mm, more preferably 50 to 75 mm, and further preferably 50 to 60 mm. The circumference of the smoking article 110 is preferably 15 to 25 mm, more preferably 17 to 24 mm, and further preferably 20 to 23 mm. In the longitudinal direction of the smoking article 110, the length of the base material portion 11A is 20 mm, the length of the first wrapping paper 112 is 20 mm, the length of the hollow segment portion 116 is 8 mm, and the length of the filter portion 115 is 7 mm. However, the length of each of these segments can be appropriately changed depending on the manufacturing suitability, required quality, and the like.
 本実施形態において、喫煙物品110の充填物111は、所定温度で加熱されてエアロゾルを発生するエアロゾル源を含有し得る。エアロゾル源の種類は、特に限定されず、用途に応じて種々の天然物からの抽出物質及び/又はそれらの構成成分を選択することができる。エアロゾル源として、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及びこれらの混合物を挙げることができる。充填物111中のエアロゾル源の含有量は、特に限定されず、十分にエアロゾルを発生するとともに、良好な香喫味の付与の観点から、通常5重量%以上であり、好ましくは10重量%以上であり、また、通常50重量%以下であり、好ましくは20重量%以下である。 In the present embodiment, the filling material 111 of the smoking article 110 may contain an aerosol source that is heated at a predetermined temperature to generate an aerosol. The type of aerosol source is not particularly limited, and various substances extracted from natural products and / or their constituents can be selected according to the application. Aerosol sources can include, for example, glycerin, propylene glycol, triacetin, 1,3-butanediol, and mixtures thereof. The content of the aerosol source in the filler 111 is not particularly limited, and is usually 5% by weight or more, and preferably 10% by weight or more, from the viewpoint of sufficiently generating an aerosol and imparting a good flavor and taste. In addition, it is usually 50% by weight or less, and preferably 20% by weight or less.
 本実施形態における喫煙物品110の充填物111は、香味源としてたばこ刻みを含有し得る。たばこ刻みの材料は特に限定されず、ラミナや中骨等の公知のものを用いることができる。喫煙物品110における充填物111の含有量の範囲は、円周22mm、長さ20mmの場合、例えば、200~400mgであり、250~320mgであることが好ましい。充填物111の水分含有量は、例えば、8~18重量%であり、10~16重量%であることが好ましい。このような水分含有量であると、巻染みの発生を抑制し、基材部11Aの製造時の巻上適性を良好にする。充填物111として用いるたばこ刻みの大きさやその調製法については特に制限はない。例えば、乾燥したたばこ葉を、幅0.8~1.2mmに刻んだものを用いてもよい。また、乾燥したたばこ葉を平均粒径が20~200μm程度になるように粉砕して均一化したものをシート加工し、それを幅0.8~1.2mmに刻んだものを用いてもよい。さらに、上記のシート加工したものについて刻まずにギャザー加工したものを充填物111として用いてもよい。また、充填物111は、1種又は2種以上の香料を含んでいてもよい。当該香料の種類は特に限定されないが、良好な喫味の付与の観点から、好ましくはメンソールである。 The filling 111 of the smoking article 110 according to the present embodiment may contain cut tobacco as a flavor source. The material for cutting the tobacco is not particularly limited, and known materials such as lamina and medium bone can be used. The range of the content of the filler 111 in the smoking article 110 is, for example, 200 to 400 mg, and preferably 250 to 320 mg when the circumference is 22 mm and the length is 20 mm. The water content of the filler 111 is, for example, 8 to 18% by weight, and preferably 10 to 16% by weight. With such a water content, the occurrence of winding stain is suppressed and the suitability for winding during the production of the base material portion 11A is improved. There is no particular limitation on the size of the tobacco cut used as the filler 111 and the method for preparing it. For example, dried tobacco leaves may be chopped to have a width of 0.8 to 1.2 mm. Further, dried tobacco leaves may be crushed to have an average particle size of about 20 to 200 μm and homogenized, and then processed into a sheet, which is then cut into a width of 0.8 to 1.2 mm. . Further, the above-mentioned sheet-processed product may be used as the filling material 111 without being cut and subjected to the gathering process. In addition, the filler 111 may include one or more kinds of fragrances. The type of the fragrance is not particularly limited, but from the viewpoint of imparting a good taste, menthol is preferable.
 本実施形態において、喫煙物品110の第1及び第2の巻紙112,113は、坪量が例えば20~65gsmであり、好ましくは25~45gsmである原紙から作られることができる。巻紙112,113の厚みは、特に限定されないが、剛性、通気性、及び製紙時の調整の容易性の観点から、10~100μmであり、好ましくは20~75μmであり、より好ましくは30~50μmである。 In the present embodiment, the first and second wrapping papers 112, 113 of the smoking article 110 can be made from a base paper having a basis weight of, for example, 20 to 65 gsm, preferably 25 to 45 gsm. The thickness of the wrapping paper 112, 113 is not particularly limited, but is 10 to 100 μm, preferably 20 to 75 μm, and more preferably 30 to 50 μm from the viewpoint of rigidity, air permeability, and ease of adjustment during paper making. Is.
 本実施形態において、喫煙物品110の巻紙112,113には填料が含まれうる。填料の含有量は、巻紙112,113の全重量に対して10重量%以上60重量%未満を挙げることができ、15~45重量%であることが好ましい。本実施形態において、好ましい坪量の範囲(25~45gsm)に対して、填料が15~45重量%であることが好ましい。填料としては、例えば、炭酸カルシウム、二酸化チタン、カオリン等を使用することができる。このような填料を含む紙は、喫煙物品110の巻紙として利用する外観上の観点から好ましい白色系の明るい色を呈し、恒久的に白さを保つことができる。そのような填料を多く含有させることで、例えば、巻紙のISO白色度を83%以上にすることができる。また、喫煙物品110の巻紙として利用する実用上の観点から、第1及び第2の巻紙112,113は8N/15mm以上の引張強度を有することが好ましい。この引張強度は、填料の含有量を少なくすることで高めることができる。具体的には、この引張強度は、上記で例示した各坪量の範囲において示した填料の含有量の上限よりも填料の含有量を少なくすることで、高めることができる。 In the present embodiment, the wrapper 112, 113 of the smoking article 110 may include a filler. The content of the filler may be 10% by weight or more and less than 60% by weight, and preferably 15 to 45% by weight, based on the total weight of the wrapping paper 112, 113. In the present embodiment, it is preferable that the filler is 15 to 45% by weight with respect to the preferable range of the basis weight (25 to 45 gsm). As the filler, for example, calcium carbonate, titanium dioxide, kaolin or the like can be used. Paper containing such a filler exhibits a bright white-based color that is preferable from the viewpoint of appearance used as a cigarette paper of the smoking article 110, and can permanently maintain whiteness. By including a large amount of such filler, for example, the ISO whiteness of the wrapping paper can be set to 83% or more. Further, from the viewpoint of practical use as a wrapping paper for the smoking article 110, the first and second wrapping papers 112, 113 preferably have a tensile strength of 8 N / 15 mm or more. This tensile strength can be increased by reducing the content of the filler. Specifically, this tensile strength can be increased by making the content of the filler smaller than the upper limit of the content of the filler shown in the range of each grammage described above.
 図3を参照すると、エアロゾル生成装置120は、喫煙物品110を挿入可能な挿入孔130を有する。すなわち、エアロゾル生成装置120は、挿入孔130を構成する内側筒部材132を有する。内側筒部材132は、例えばアルミニウムやステンレス(SUS)のような熱伝導部材によって構成されていてよい。 Referring to FIG. 3, the aerosol generation device 120 has an insertion hole 130 into which the smoking article 110 can be inserted. That is, the aerosol generation device 120 has the inner cylindrical member 132 that forms the insertion hole 130. The inner tubular member 132 may be made of a heat conductive member such as aluminum or stainless steel (SUS).
 また、エアロゾル生成装置120は、挿入孔130を塞ぐ蓋部140を有していてよい。蓋部140は、挿入孔130を塞いだ状態(図1参照)と、挿入孔130を露出させた状態(図2参照)との間をスライド可能に構成されていてよい。 Further, the aerosol generation device 120 may have a lid portion 140 that closes the insertion hole 130. The lid 140 may be configured to be slidable between a state in which the insertion hole 130 is closed (see FIG. 1) and a state in which the insertion hole 130 is exposed (see FIG. 2).
 エアロゾル生成装置120は、挿入孔130に連通する空気流路160を有していてよい。空気流路160の一端は、挿入孔130に連結されており、空気流路160の他端は、挿入孔130とは別のところでエアロゾル生成装置120の外部(外気)に連通している。 The aerosol generator 120 may have an air flow path 160 communicating with the insertion hole 130. One end of the air flow path 160 is connected to the insertion hole 130, and the other end of the air flow path 160 communicates with the outside (outside air) of the aerosol generation device 120 at a place different from the insertion hole 130.
 エアロゾル生成装置120は、空気流路160の、外気に連通する側の端部を覆う蓋部170を有していてよい。蓋部170は、空気流路160の、外気に連通する側の端部を覆った状態にすることもでき、空気流路160を露出させた状態にすることもできる。 The aerosol generator 120 may have a lid 170 that covers the end of the air flow path 160 on the side communicating with the outside air. The lid portion 170 can be in a state of covering an end portion of the air flow passage 160 on the side communicating with the outside air, or can be in a state of exposing the air flow passage 160.
 蓋部170は、空気流路160を覆った状態であっても空気流路160に気密に閉塞することはない。すなわち、蓋部170が空気流路160を覆った状態であっても、蓋部170付近を介して空気流路160内に外気が流入可能に構成されている。 The lid portion 170 does not airtightly close the air passage 160 even when the air passage 160 is covered. That is, even when the lid portion 170 covers the air flow path 160, the outside air can flow into the air flow passage 160 through the vicinity of the lid portion 170.
 ユーザは、香味吸引器100に喫煙物品110を挿入した状態で、喫煙物品110の一端部、具体的には、図4中の吸口部11Bを咥え、吸引動作を行う。ユーザの吸引動作により、空気流路160に外気が流入する。空気流路160内に流入した空気は、挿入孔130内の喫煙物品110を通って、ユーザの口腔内に導かれる。 The user holds the smoking article 110 in the flavor inhaler 100 and holds one end of the smoking article 110, specifically, the mouthpiece 11B in FIG. 4, to perform a suction operation. The outside air flows into the air flow path 160 by the user's suction operation. The air that has flowed into the air flow path 160 passes through the smoking article 110 in the insertion hole 130 and is guided into the oral cavity of the user.
 なお、蓋部140が挿入孔130を覆っておらず、かつ喫煙物品110が挿入されていない状態、すなわち、内側筒部材132の内部空間及び空気流路160が露出した状態では、ユーザは、ブラシのような清掃用具を用いて、内側筒部材132の空気流路160内を清掃することができる。この清掃用具は、図3中の上方の蓋部140側から空気流路160内に挿入されてもよいし、下方の蓋部170側から空気流路160内に挿入されてもよい。 In addition, when the lid 140 does not cover the insertion hole 130 and the smoking article 110 is not inserted, that is, when the internal space of the inner tubular member 132 and the air flow path 160 are exposed, the user brushes the brush. The inside of the air flow path 160 of the inner tubular member 132 can be cleaned using a cleaning tool such as the one described above. This cleaning tool may be inserted into the air passage 160 from the upper lid portion 140 side in FIG. 3, or may be inserted into the air passage 160 from the lower lid portion 170 side.
 エアロゾル生成装置120は、空気流路160内又は空気流路160を構成する壁部の外面に、温度センサを有していてよい。温度センサは、例えば、サーミスタや熱電対等であってよい。ユーザが喫煙物品110の吸口部11Bを吸引すると、空気流路160内を蓋部170側かヒータ30側に向かって流れる空気の影響で、空気流路160の内部温度又は空気流路160を構成する壁部の温度が低下する。温度センサは、この温度低下を測定することによってユーザの吸引動作を検知することができる。 The aerosol generation device 120 may have a temperature sensor inside the air flow path 160 or on the outer surface of the wall portion forming the air flow path 160. The temperature sensor may be, for example, a thermistor, a thermocouple, or the like. When the user sucks the mouthpiece 11B of the smoking article 110, the internal temperature of the air flow path 160 or the air flow path 160 is configured by the influence of the air flowing in the air flow path 160 toward the lid part 170 side or the heater 30 side. The temperature of the wall part is reduced. The temperature sensor can detect the suction operation of the user by measuring the temperature decrease.
 エアロゾル生成装置120は、バッテリ10と、制御ユニット20と、ヒータ30と、を有する。バッテリ10は、エアロゾル生成装置120で用いる電力を蓄積する。バッテリ10は、充放電可能な二次電池であってよい。バッテリ10は、例えばリチウムイオン電池であってよい。 The aerosol generation device 120 includes a battery 10, a control unit 20, and a heater 30. The battery 10 stores electric power used by the aerosol generation device 120. The battery 10 may be a rechargeable secondary battery. The battery 10 may be, for example, a lithium ion battery.
 ヒータ30は、内側筒部材132の周りに設けられていてよい。ヒータ30を収容する空間と、バッテリ10を収容する空間は、隔壁180によって互いに分離されていてよい。これにより、ヒータ30により加熱された空気が、バッテリ10を収容する空間内に流入することを抑制することができる。したがって、バッテリ10の温度上昇を抑制することができる。 The heater 30 may be provided around the inner tubular member 132. The space for housing the heater 30 and the space for housing the battery 10 may be separated from each other by a partition wall 180. As a result, the air heated by the heater 30 can be prevented from flowing into the space that houses the battery 10. Therefore, the temperature rise of the battery 10 can be suppressed.
 ヒータ30は、柱状の喫煙物品110の外周を加熱可能な筒形状であることが好ましい。ヒータ30は、例えばフィルムヒータであってよい。フィルムヒータは、一対のフィルム状の基板と、一対の基板の間に挟まれた抵抗発熱体と、を有していてよい。フィルム状の基板は、耐熱性及び電気絶縁性に優れた材料から作られることが好ましく、典型的には、ポリイミドから作られる。抵抗発熱体は、銅、ニッケル合金、クロム合金、ステンレス、白金ロジウム等の金属材料の1つ又は2つ以上から作られることが好ましく、例えば、ステンレス製の基材によって形成され得る。さらに、抵抗発熱体はフレキシブルプリント回路(FPC)によって電源と接続するために接続部位及びそのリード部に銅メッキを施してもよい。 The heater 30 preferably has a cylindrical shape capable of heating the outer circumference of the columnar smoking article 110. The heater 30 may be, for example, a film heater. The film heater may include a pair of film-shaped substrates and a resistance heating element sandwiched between the pair of substrates. The film-like substrate is preferably made of a material having excellent heat resistance and electric insulation, and is typically made of polyimide. The resistance heating element is preferably made of one or more metal materials such as copper, nickel alloy, chrome alloy, stainless steel, platinum rhodium, and can be formed of, for example, a stainless steel base material. Further, the resistance heating element may be copper-plated at the connection portion and its lead portion in order to be connected to the power source by the flexible printed circuit (FPC).
 図6は、図3の領域5Rの模式的拡大図であり、ヒータ30及びその周辺を拡大した断面図である。図6に示す例では、ヒータ30は、前述したフィルムヒータであり、喫煙物品110を受け入れ可能な内側筒部材132の外周に巻かれている。すなわち、ヒータ30は、内側筒部材132を囲む円筒状に巻かれている。これにより、ヒータ30は、喫煙物品の外周を取り囲み、喫煙物品110を外側から加熱することができる。 FIG. 6 is a schematic enlarged view of the region 5R of FIG. 3, and is a sectional view in which the heater 30 and its periphery are enlarged. In the example shown in FIG. 6, the heater 30 is the film heater described above, and is wound around the outer periphery of the inner tubular member 132 that can receive the smoking article 110. That is, the heater 30 is wound in a cylindrical shape surrounding the inner tubular member 132. Thereby, the heater 30 can surround the outer periphery of the smoking article and heat the smoking article 110 from the outside.
 好ましくは、熱収縮チューブ136が、ヒータ30の外側に設けられていてよい。言い換えると、ヒータ30は、熱収縮チューブ136内に設けられていることが好ましい。熱収縮チューブ136は、熱により半径方向に収縮するチューブ136であり、例えば熱可塑性エラストマによって構成されていてよい。熱収縮チューブ136の収縮作用により、ヒータ30が内側筒部材132に押し付けられる。これにより、ヒータ30と内側筒部材132の密着性が高まるので、ヒータ30から喫煙物品110への内側筒部材132を介した熱の伝導性が高まる。 Preferably, the heat shrink tube 136 may be provided outside the heater 30. In other words, the heater 30 is preferably provided inside the heat shrinkable tube 136. The heat-shrinkable tube 136 is a tube 136 that shrinks in the radial direction by heat, and may be made of, for example, a thermoplastic elastomer. The heater 30 is pressed against the inner tubular member 132 by the contraction action of the heat-shrinkable tube 136. As a result, the adhesion between the heater 30 and the inner tubular member 132 is increased, so that the heat conductivity from the heater 30 to the smoking article 110 via the inner tubular member 132 is increased.
 エアロゾル生成装置120は、ヒータ30の半径方向の外側、好ましくは熱収縮チューブ136の外側に、筒状の断熱材138を有していてもよい。断熱材138は、ヒータ30の外周を取り囲んでいることが好ましい。断熱材138は、ヒータ30の熱を遮断することによって、エアロゾル生成装置120の筐体外面が過度な高温に達するのを防止する役割を果たし得る。断熱材138は、例えば、シリカエアロゲル、カーボンエアロゲル、アルミナエアロゲル等のエアロゲルから作られることができる。断熱材138としてのエアロゲルは、典型的には、断熱性能が高くかつ製造コストが比較的低いシリカエアロゲルであってよい。ただし、断熱材138は、グラスウールやロックウール等の繊維系断熱材であってもよいし、ウレタンフォームやフェノールフォームの発泡系断熱材であってもよい。或いは、断熱材138は真空断熱材であってもよい。 The aerosol generator 120 may have a cylindrical heat insulating material 138 on the outer side of the heater 30 in the radial direction, preferably on the outer side of the heat-shrinkable tube 136. The heat insulating material 138 preferably surrounds the outer circumference of the heater 30. The heat insulating material 138 may serve to prevent the outer surface of the casing of the aerosol generating apparatus 120 from reaching an excessively high temperature by blocking the heat of the heater 30. The heat insulating material 138 can be made of, for example, an aerogel such as silica aerogel, carbon aerogel, or alumina aerogel. The airgel as the heat insulating material 138 may typically be a silica airgel having high heat insulating performance and relatively low manufacturing cost. However, the heat insulating material 138 may be a fiber heat insulating material such as glass wool or rock wool, or may be a foam heat insulating material such as urethane foam or phenol foam. Alternatively, the heat insulating material 138 may be a vacuum heat insulating material.
 断熱材138は、喫煙物品110に面する内側筒部材132と、断熱材138の外側の外側筒部材134と、の間に設けられていてよい。外側筒部材134は、例えばアルミニウムやステンレス(SUS)のような熱伝導部材によって構成されていてよい。断熱材138は、密閉された空間内に設けられることが好ましい。 The heat insulating material 138 may be provided between the inner tubular member 132 facing the smoking article 110 and the outer tubular member 134 outside the heat insulating material 138. The outer tubular member 134 may be made of a heat conductive member such as aluminum or stainless steel (SUS). The heat insulating material 138 is preferably provided in a closed space.
 図7は、本実施形態の香味吸引器100における、喫煙物品110の基材部11Aと、エアロゾル生成装置120のヒータ30及び内側筒部材132と、の間の、軸線方向の位置関係を簡略的に示す図である。ここでいう軸線とは、エアロゾル生成装置120における挿入孔130の中心軸を意味し、挿入孔130に喫煙物品110が挿入されたときには、その軸線と喫煙物品110の中心軸とが部分的に重なり合う(図3も参照)。 FIG. 7 is a simplified axial positional relationship between the base material portion 11A of the smoking article 110, the heater 30 of the aerosol generation device 120, and the inner tubular member 132 in the flavor inhaler 100 of the present embodiment. FIG. The axis here means the central axis of the insertion hole 130 in the aerosol generation device 120, and when the smoking article 110 is inserted into the insertion hole 130, the axis and the central axis of the smoking article 110 partially overlap. (See also Figure 3).
 ヒータ30の軸線方向長さD0は、喫煙物品110の基材部11Aの軸線方向長さL0よりも小さくされることができる(D0<L0)。さらに、長さL0に対する長さD0の比(D0/L0)は、0.70~0.90であり、好ましくは0.75~0.85であり、典型的には0.80であってよい。よって、基材部11Aの長さL0が20mmである場合、ヒータ30の長さD0は14~18mmであり、好ましくは15~17mmであり、典型的には16mmであってよい。 The axial length D0 of the heater 30 can be made smaller than the axial length L0 of the base material portion 11A of the smoking article 110 (D0 <L0). Furthermore, the ratio of the length D0 to the length L0 (D0 / L0) is 0.70-0.90, preferably 0.75-0.85, typically 0.80. Good. Therefore, when the length L0 of the base material portion 11A is 20 mm, the length D0 of the heater 30 may be 14 to 18 mm, preferably 15 to 17 mm, and typically 16 mm.
 基材部11Aの上流端は、ヒータ30の上流端よりも上流側に長さD1で突き出していてよい。ここでいう上流及び下流とは、ユーザの吸引動作により空気流路160内を通る空気流の上流及び下流にそれぞれ対応する(図3も参照)。基材部11Aのヒータ30からの突き出し部分は、その半径方向外側にヒータ30を有さないので、基材部11Aの他の部分と比較して、その内部温度が幾分低くなり得る。これにより、基材部11Aの上流端及びその近傍でのエアロゾル生成を抑制できるので、そこで発生したエアロゾルが空気流路160で凝縮したり、空気流路160を逆流したりするのを防止できる。基材部11Aの他の部分で発生したエアロゾルは基材部11Aの上流端及びその近傍で凝縮しうる。 The upstream end of the base material portion 11A may protrude to the upstream side of the heater 30 with a length D1. The upstream and the downstream here correspond to the upstream and the downstream of the air flow passing through the air passage 160 by the suction operation of the user (see also FIG. 3). Since the portion of the base material portion 11A protruding from the heater 30 does not have the heater 30 on the outer side in the radial direction, the internal temperature thereof may be somewhat lower than that of the other portions of the base material portion 11A. As a result, the generation of aerosol at the upstream end of the base material portion 11A and in the vicinity thereof can be suppressed, so that the aerosol generated there can be prevented from condensing in the air flow path 160 and flowing back through the air flow path 160. The aerosol generated in the other part of the base material part 11A can be condensed at the upstream end of the base material part 11A and in the vicinity thereof.
 基材部11A全体の長さL0に対する突き出し長さD1の比(D1/L0)は、0.25~0.40であり、好ましくは0.30~0.35であり、典型的には0.325であってよい。よって、基材部11A全体の長さL0が20mmである場合、突き出し長さD1は5~8mmであり、好ましくは6~7mmであり、典型的には6.5mmであってよい。 The ratio (D1 / L0) of the protrusion length D1 to the entire length L0 of the base material portion 11A is 0.25 to 0.40, preferably 0.30 to 0.35, and typically 0. .325. Therefore, when the length L0 of the entire base material portion 11A is 20 mm, the protrusion length D1 may be 5 to 8 mm, preferably 6 to 7 mm, and typically 6.5 mm.
 ヒータ30の下流端は、基材部11Aの下流端よりも下流側に長さD2で突き出していてよい。これにより、基材部11Aの下流端及びその近傍を十分に加熱できるので、そこでのエアロゾル生成量が不足したりエアロゾル凝縮が発生したりするのを防止できる。基材部11Aの長さL0に対するヒータ30の突き出し長さD2の比(D2/L0)は、0.075~0.175であり、好ましくは0.1~0.15であり、典型的には0.125であってよい。よって、基材部11Aの長さL0が20mmである場合、ヒータ30の突き出し長さD2は1.5~3.5mmであり、好ましくは2~3mmであり、典型的には2.5mmであってよい。 The downstream end of the heater 30 may protrude to the downstream side with a length D2 with respect to the downstream end of the base material portion 11A. As a result, the downstream end of the base material portion 11A and the vicinity thereof can be sufficiently heated, so that it is possible to prevent a shortage of the amount of generated aerosol and the occurrence of aerosol condensation. The ratio (D2 / L0) of the protruding length D2 of the heater 30 to the length L0 of the base material portion 11A is 0.075 to 0.175, preferably 0.1 to 0.15, and typically May be 0.125. Therefore, when the length L0 of the base material portion 11A is 20 mm, the protruding length D2 of the heater 30 is 1.5 to 3.5 mm, preferably 2 to 3 mm, and typically 2.5 mm. You can
 内側筒部材132の上流端と基材部11Aの上流端の軸線方向位置は概ね一致していてよい。その一方で、内側筒部材132の下流端は、ヒータ30の下流端と同じく、基材部11Aの下流端よりも下流側に長さD3で突き出していてよい。これにより、基材部11Aの下流端及びその近傍に加えて、紙管部114の上流端及びその近傍を加熱できるので、基材部11Aから発生したエアロゾルが紙管部114の上流端及びその近傍で過度に冷却されて凝縮するのを防止できる。ヒータ30の突き出し長さD2に対する内側筒部材132の突き出し長さD3の比(D3/D2)は、2.6~3.4であり、好ましくは2.8~3.2であり、さらに好ましくは3.0であってよい。よって、ヒータ30の突き出し長さD2が2.5mmである場合、内側筒部材132の突き出し長さD3は6.5~8.5mmであり、好ましくは7.0~8.0mmであり、典型的には7.5mmであってよい。 The axial positions of the upstream end of the inner tubular member 132 and the upstream end of the base material portion 11A may substantially coincide with each other. On the other hand, the downstream end of the inner tubular member 132 may protrude to the downstream side with respect to the downstream end of the base material portion 11A with the length D3, like the downstream end of the heater 30. As a result, in addition to the downstream end of the base material portion 11A and its vicinity, the upstream end of the paper tube portion 114 and its vicinity can be heated, so that the aerosol generated from the base material portion 11A can be heated at the upstream end of the paper tube portion 114 and its vicinity. It can be prevented from being excessively cooled and condensed in the vicinity. The ratio (D3 / D2) of the protrusion length D3 of the inner tubular member 132 to the protrusion length D2 of the heater 30 is 2.6 to 3.4, preferably 2.8 to 3.2, and more preferably. May be 3.0. Therefore, when the protrusion length D2 of the heater 30 is 2.5 mm, the protrusion length D3 of the inner tubular member 132 is 6.5 to 8.5 mm, preferably 7.0 to 8.0 mm, and typically It may be 7.5 mm.
 図5を参照すると、制御ユニット20は、制御基板、CPU、及びメモリ等を含んでいてよい。CPU及びメモリは、エアロゾル源を加熱するヒータ30を制御する制御部22を構成する。また、制御ユニット20は、ユーザに各種情報を報知するための通知部40を有する。通知部40は、例えばLEDのような発光素子もしくは振動素子、又はこれらの組み合わせであってよい。 Referring to FIG. 5, the control unit 20 may include a control board, a CPU, a memory and the like. The CPU and the memory form a control unit 22 that controls the heater 30 that heats the aerosol source. The control unit 20 also has a notification unit 40 for notifying the user of various information. The notification unit 40 may be a light emitting element such as an LED or a vibrating element, or a combination thereof.
 制御部22は、ユーザの起動要求を検知したら、バッテリ10からヒータ30への電力供給を開始する。ユーザの起動要求は、例えば、ユーザによる押しボタンやスライド式スイッチの操作や、ユーザの吸引動作によって成される。本実施形態では、ユーザの起動要求は、押しボタン150の押下によって成される。より具体的には、ユーザの起動要求は、蓋部140が開いた状態での押しボタン150の押下によって成される。或いは、ユーザの起動要求は、ユーザの吸引動作の検知によって成されてもよい。ユーザの吸引動作は、例えば前述したような温度センサによって検知できる。 When the control unit 22 detects the user's activation request, the control unit 22 starts supplying power from the battery 10 to the heater 30. The user's activation request is made by, for example, a user's operation of a push button or a slide switch, or a user's suction operation. In this embodiment, the user's activation request is made by pressing the push button 150. More specifically, the user's activation request is made by pressing the push button 150 with the lid 140 open. Alternatively, the user's activation request may be made by detecting the user's suction operation. The suction operation of the user can be detected by the temperature sensor as described above, for example.
 次に、エアロゾル生成装置における主要エアロゾル成分の送達プロファイルについて図8を用いて説明する。本実施形態において、加熱プロファイルとは、ヒータ30の制御上の目標温度の時間変化を示すグラフである。また、送達プロファイルとは、ユーザが喫煙物品110を吸引したときにユーザの口腔内に送達される、吸引動作1回当たりの主要エアロゾル成分量の時間変化を示すグラフである。図8は、ヒータ30の加熱プロファイルと、主要エアロゾル成分の送達プロファイルと、を示す図である。図8の縦軸は、ヒータの温度又は主要エアロゾル成分の送達量を示す。図8の横軸は、時間を示す。 Next, the delivery profile of the main aerosol component in the aerosol generating device will be described with reference to FIG. In the present embodiment, the heating profile is a graph showing the change over time in the target temperature for controlling the heater 30. In addition, the delivery profile is a graph showing the change over time in the amount of the main aerosol component per suction operation, which is delivered into the oral cavity of the user when the user suctions the smoking article 110. FIG. 8 is a diagram showing a heating profile of the heater 30 and a delivery profile of main aerosol components. The vertical axis of FIG. 8 indicates the temperature of the heater or the delivered amount of the main aerosol component. The horizontal axis of FIG. 8 indicates time.
 ここで、「主要エアロゾル成分」とは、喫煙物品に含まれる種々のエアロゾル源を所定温度以上で加熱したときに発生する可視性のエアロゾル成分である。喫煙物品に含まれるエアロゾル源は、典型的にはプロピレングリコール及びグリセリンである。また、喫煙物品がたばこ等の香味源を含有する場合には、当該香味源に由来するエアロゾル成分も主要エアロゾル成分に含まれる。他方、本明細書において、喫煙物品に含まれる水分に由来するエアロゾル成分は、主要エアロゾル成分の対象とは考えない。 Here, the “main aerosol component” is a visible aerosol component generated when various aerosol sources included in a smoking article are heated at a predetermined temperature or higher. The aerosol sources included in smoking articles are typically propylene glycol and glycerin. When the smoking article contains a flavor source such as tobacco, the aerosol component derived from the flavor source is also included in the main aerosol components. On the other hand, herein, the aerosol component derived from the moisture contained in the smoking article is not considered to be the subject of the main aerosol component.
 主要エアロゾル成分の送達プロファイルは、以下のような方法により測定できる。まず、主要エアロゾル成分の送達プロファイルを測定すべきエアロゾル生成装置を準備する。次に、エアロゾル生成装置に喫煙物品を挿入した状態で、自動喫煙器(例えば、Borgwaldt KC Inc.製)を用いて喫煙物品の吸口部から吸引を行う。この際、準備したエアロゾル生成装置で規定されている制御方法にてヒータ30を加熱する。吸引条件としては、カナダ保健省が定めたHCI条件(HCI;Health Canada Intense)に準ずるものが採用される。具体的には、吸引条件は、吸引量27.5ml/秒、吸引時間2秒/回、吸引間隔20秒というものである。 The delivery profile of major aerosol components can be measured by the following methods. First, an aerosol generation device for measuring the delivery profile of the main aerosol component is prepared. Next, with the smoking article inserted in the aerosol generator, suction is performed from the mouthpiece of the smoking article using an automatic smoking device (for example, manufactured by Borgwaldt KC Inc.). At this time, the heater 30 is heated by the control method specified by the prepared aerosol generator. As the suction conditions, those conforming to the HCI conditions (HCI; Health Canada Intense) established by Health Canada are adopted. Specifically, the suction condition is that the suction amount is 27.5 ml / sec, the suction time is 2 sec / times, and the suction interval is 20 sec.
 前述した吸引条件にて自動喫煙器で吸引したエアロゾルをケンブリッジフィルター(例えば、Borgwaldt KC Inc.製、CM-133)で捕集する。具体的には、上記ケンブリッジフィルターを通過した煙をドライアイス-イソプロパノール冷媒で-70℃に冷却したメタノール10mLに捕集した。ケンブリッジフィルターに、たばこ煙を捕集したメタノール溶液10mLおよび内標溶液(d-32ペンタデカン0.05mg/mL,d-1-エタノール50mL/L,アネトール2mL/L,1,3-ブタンジオール4mL/L)1mLを加え30分間振とうし、内容成分を抽出した。 ∙ Collect the aerosol sucked with an automatic smoker under the above-mentioned suction conditions with a Cambridge filter (for example, CM-133 manufactured by Borgwaldt KC Inc.). Specifically, the smoke passing through the Cambridge filter was collected in 10 mL of methanol cooled to −70 ° C. with a dry ice-isopropanol refrigerant. To the Cambridge filter, 10 mL of a methanol solution that collected tobacco smoke and an internal standard solution (d-32 pentadecane 0.05 mg / mL, d-1-ethanol 50 mL / L, anethole 2 mL / L, 1,3-butanediol 4 mL / L) 1 mL was added and shaken for 30 minutes to extract the content components.
 内容成分の抽出は、各々の吸引ごとに行われる。これにより、エアロゾル生成装置から自動喫煙器まで送達された主要エアロゾル成分の量が、各吸引において定まる。各吸引が行われた時間ごとに送達された主要エアロゾル成分の量をプロットすることで、時間軸上での主要エアロゾル成分の送達プロファイルが離散的に導出される。なお、図8では、離散的に導出された送達プロファイルが近似曲線によって連続的に描かれていることに留意されたい。 Extraction of the content components is performed for each suction. This determines at each inhalation the amount of major aerosol component delivered from the aerosol generator to the automated smoker. By plotting the amount of the main aerosol component delivered for each time when each inhalation was performed, the delivery profile of the main aerosol component on the time axis is discretely derived. It should be noted that in FIG. 8, the discretely derived delivery profile is drawn continuously by the approximation curve.
 本実施形態において、主要エアロゾル成分の送達プロファイルは、初期Q1と、中期Q2と、終期Q3と、を有する。初期Q1は、時間に対する主要エアロゾル成分の勾配が徐々に増加する期間である。言い換えると、初期Q1は、吸引ごとの主要エアロゾル成分の送達量の増大分が、徐々に増加する期間とも言える。 In the present embodiment, the delivery profile of the main aerosol component has an early Q1, a middle Q2, and an end Q3. The initial Q1 is a period in which the gradient of the main aerosol component over time gradually increases. In other words, it can be said that the initial Q1 is a period in which the amount of increase in the delivered amount of the main aerosol component for each inhalation gradually increases.
 ここで、主要エアロゾル成分の送達プロファイルの勾配とは、送達プロファイルを形成する曲線上の各点の傾きの絶対値である。主要エアロゾル成分の送達プロファイルの勾配は、例えば以下の方法によって規定することができる。前述したように、時間軸上での主要エアロゾル成分の送達プロファイルは、離散的に導出される。この場合、主要エアロゾル成分の送達プロファイルの勾配は、時間軸上で互いに隣接するプロットについて、主要エアロゾル成分の送達プロファイルの差分を当該プロット間の時間差で割った値によって規定することができる。 Here, the slope of the delivery profile of the main aerosol component is the absolute value of the slope of each point on the curve forming the delivery profile. The slope of the delivery profile of the major aerosol component can be defined, for example, by the following method. As described above, the delivery profile of the main aerosol component on the time axis is discretely derived. In this case, the slope of the delivery profile of the main aerosol component can be defined by the difference between the delivery profiles of the main aerosol components of the plots adjacent to each other on the time axis divided by the time difference between the plots.
 この代わりに、主要エアロゾル成分の送達プロファイルの勾配は、例えば離散的なプロットに基づき導出された近似曲線を用いて導出してもよい。この場合、近似曲線の解析式が定まれば、主要エアロゾル成分の送達プロファイルの勾配は、解析式の微分値を算出することによって規定できる。このような近似曲線は、例えば多項式によって導出されてもよく、三角関数によって導出されてもよい。 Alternatively, the slope of the delivery profile of the main aerosol component may be derived using, for example, an approximated curve derived based on a discrete plot. In this case, if the analytical expression of the approximate curve is determined, the gradient of the delivery profile of the main aerosol component can be defined by calculating the differential value of the analytical expression. Such an approximate curve may be derived by, for example, a polynomial or a trigonometric function.
 本実施形態において、送達プロファイルの始点S0は、エアロゾル吸引可能期間(吸引可能期間)の始点によって規定される(図9参照)。具体的には、送達プロファイルの始点S0は、後述する吸引可能期間の開始の報知(図9のタイミングT2)によって規定される。 In the present embodiment, the starting point S0 of the delivery profile is defined by the starting point of the aerosol inhalable period (inhalable period) (see FIG. 9). Specifically, the start point S0 of the delivery profile is defined by the notification of the start of the suctionable period (timing T2 in FIG. 9) described later.
 また、初期Q1と中期Q2との境界S1は、初期Q1における主要エアロゾル成分の勾配が最大となる点によって規定されていてよい。言い換えると、初期Q1と中期Q2との境界S1は、主要エアロゾル成分の勾配が、送達プロファイルの全体を通じて最初に減少し始める点とも言える。送達プロファイルが連続的な近似曲線で近似される場合、初期Q1と中期Q2との境界S1は、変曲点によって規定されてもよい。 Also, the boundary S1 between the initial Q1 and the middle Q2 may be defined by the point where the gradient of the main aerosol component in the initial Q1 becomes maximum. In other words, the boundary S1 between the early Q1 and the middle Q2 can be said to be the point where the gradient of the main aerosol component starts to decrease first throughout the delivery profile. If the delivery profile is approximated by a continuous approximation curve, the boundary S1 between the initial Q1 and the middle Q2 may be defined by the inflection point.
 終期Q3は、時間に対する主要エアロゾル成分の勾配が徐々に減少する期間である。言い換えると、終期Q3は、吸引ごとの主要エアロゾル成分の送達量の減少分が、徐々に小さくなる期間とも言える。 The final Q3 is a period in which the gradient of the main aerosol component with respect to time gradually decreases. In other words, it can be said that the final period Q3 is a period in which the amount of decrease in the delivery amount of the main aerosol component for each inhalation gradually decreases.
 本実施形態において、送達プロファイルの終点S3は、エアロゾル吸引可能期間(吸引可能期間)の終点によって規定される(図9参照)。具体的には、送達プロファイルの終点S3は、吸引可能期間の終了の報知があったタイミング(図9のタイミングT7)によって規定できる。 In the present embodiment, the end point S3 of the delivery profile is defined by the end point of the aerosol inhalable period (inhalable period) (see FIG. 9). Specifically, the end point S3 of the delivery profile can be defined by the timing (timing T7 in FIG. 9) at which the end of the suctionable period is notified.
 また、中期Q2と終期Q3との境界S2は、終期Q3における主要エアロゾル成分の勾配が最大となる点によって規定されていてよい。言い換えると、中期Q2と終期Q3との境界S2は、主要エアロゾル成分の勾配が、送達プロファイルの全体を通じて最後に減少し始める点とも言える。送達プロファイルが連続的な近似曲線で近似される場合、中期Q2と終期Q3との境界S2は、変曲点によって規定されてもよい。 Also, the boundary S2 between the middle period Q2 and the final period Q3 may be defined by the point where the gradient of the main aerosol component in the final period Q3 becomes maximum. In other words, the boundary S2 between the middle Q2 and the end Q3 can be said to be the point where the gradient of the main aerosol component starts to decrease finally throughout the delivery profile. If the delivery profile is approximated by a continuous approximation curve, the boundary S2 between the middle Q2 and the end Q3 may be defined by the inflection point.
 中期Q2は、初期Q1と終期Q3との間の期間である。中期Q2は、送達プロファイルの始点及び終点よりも大きい1つ又は複数の極大値を含む。図8に示す送達プロファイルでは、中期Q2は1つの極大値(最大値)を含んでいる。 The mid-term Q2 is the period between the initial Q1 and the final Q3. Metaphase Q2 comprises one or more maxima that are greater than the beginning and end of the delivery profile. In the delivery profile shown in FIG. 8, the middle period Q2 contains one maximum value (maximum value).
 前述したエアロゾルの送達プロファイルによれば、エアロゾルの送達量は、初期Q1から中期Q2にかけて増大し、中期Q2で極大値を有し、中期Q2から終期Q3にかけて減少する。これにより、ユーザは、吸引可能期間の初期Q1、中期Q2、及び終期Q3のうちのどの期間にあるのかを、エアロゾルを吸引した感覚によって意識することができる。 According to the above-mentioned aerosol delivery profile, the delivered amount of aerosol increases from the initial Q1 to the middle Q2, has a maximum value in the middle Q2, and decreases from the middle Q2 to the final Q3. This allows the user to be aware of which period of the initial period Q1, the middle period Q2, and the final period Q3 of the inhalable period, by the sensation of inhaling the aerosol.
 さらに、初期Q1では、時間に対する主要エアロゾル成分の勾配が徐々に増加し、送達プロファイルは下に凸の形状となる。一方、中期Q2では、送達プロファイルは上に凸の形状となる。したがって、エアロゾルの送達量は、初期Q1から中期Q2への移行時に比較的大きく変化し得る。また、終期Q3では、時間に対する主要エアロゾル成分の勾配が徐々に減少し、送達プロファイルは下に凸の形状となる。したがって、エアロゾルの送達量は、中期Q2から終期Q3への移行時に比較的大きく変化し得る。これにより、ユーザは、初期Q1から中期Q2への移行、及び中期Q2から終期Q3への移行を、エアロゾルを吸引した感覚によって、より認識しやすくなる。 Furthermore, in the initial Q1, the gradient of the main aerosol component with respect to time gradually increases, and the delivery profile has a downward convex shape. On the other hand, in the middle Q2, the delivery profile has a convex shape. Therefore, the delivered amount of aerosol can change relatively greatly during the transition from early Q1 to mid Q2. Also, in terminal Q3, the slope of the major aerosol component over time is gradually reduced, resulting in a downwardly convex delivery profile. Therefore, the delivered amount of the aerosol may change relatively greatly at the transition from the middle Q2 to the final Q3. This makes it easier for the user to recognize the transition from the initial Q1 to the mid-term Q2 and the transition from the mid-term Q2 to the final Q3 by the feeling of inhaling the aerosol.
 好ましくは、中期Q2は、初期Q1及び終期Q3よりも長い。より好ましくは、中期Q2は、初期Q1と終期Q3の合計の期間以上である。例えば、中期Q2は全期間の50~60%であり、初期Q1及び終期Q3は全期間の20~25%であってよい。これにより、主要エアロゾル成分の送達量が多い期間が相対的に長くなるため、ユーザは、主要エアロゾル成分を比較的長期間にわたって吸引することができる。 Preferably, the mid-term Q2 is longer than the initial Q1 and the final Q3. More preferably, the middle period Q2 is equal to or longer than the total period of the initial period Q1 and the final period Q3. For example, mid-term Q2 may be 50-60% of the total period, and early Q1 and end Q3 may be 20-25% of the total period. This allows the user to inhale the main aerosol component for a relatively long period of time because the period in which the main aerosol component is delivered is relatively long.
 終期Q3の終点S3における主要エアロゾル成分の送達量は、始点S0における主要エアロゾル成分の送達量よりも大きいことが好ましい。この場合、エアロゾルの送達量が、終期Q3において、過度に減少するのを抑制することができる。これにより、主要エアロゾル成分の送達量が、吸引可能期間の途中で、低い水準まで減少するのを防止することができ、特に、終期Q3の最後まで高い水準の送達量を維持することができる。 It is preferable that the delivery amount of the main aerosol component at the end point S3 of the final Q3 is larger than the delivery amount of the main aerosol component at the start point S0. In this case, the delivered amount of the aerosol can be suppressed from being excessively reduced in the final Q3. Thereby, the delivery amount of the main aerosol component can be prevented from decreasing to a low level during the inhalable period, and in particular, the delivery amount of a high level can be maintained until the end of the end Q3.
 終期Q3における主要エアロゾル成分の勾配の最大値は、初期Q1における主要エアロゾル成分の勾配の最大値よりも小さいことが好ましい。この場合、初期Q1における主要エアロゾル成分の増大スピードが比較的大きくなるので、吸引可能期間の比較的早い段階で、高い水準のエアロゾル送達量を達成できるようになる。一方、終期Q3における主要エアロゾル成分の勾配が小さいため、終期Q3における主要エアロゾル成分の減少スピードが比較的小さくなる。したがって、エアロゾル送達量が終期Q3において急激に減少するのを抑制することができる。これにより、高い水準のエアロゾル送達量を比較的長期間にわたって維持することができる。 It is preferable that the maximum gradient of the main aerosol component in the final Q3 is smaller than the maximum gradient of the main aerosol component in the initial Q1. In this case, since the increasing speed of the main aerosol component in the initial Q1 becomes relatively large, it becomes possible to achieve a high level of aerosol delivery amount at a relatively early stage of the inhalable period. On the other hand, since the gradient of the main aerosol component in the final Q3 is small, the decreasing speed of the main aerosol component in the final Q3 becomes relatively small. Therefore, it is possible to prevent the aerosol delivery amount from rapidly decreasing in the final Q3. This allows a high level of aerosol delivery to be maintained for a relatively long period of time.
 終期Q3における主要エアロゾル成分の勾配の最小値は、初期Q1における主要エアロゾル成分の勾配の最小値よりも小さいことが好ましい。終期Q3における主要エアロゾル成分の勾配の最小値が小さいため、終期Q3における主要エアロゾル成分の減少スピードが比較的小さくなる。したがって、エアロゾルの送達量が、終期Q3において急激に減少するのを抑制することができる。 It is preferable that the minimum gradient of the main aerosol component in the final Q3 is smaller than the minimum gradient of the main aerosol component in the initial Q1. Since the minimum value of the gradient of the main aerosol component in the final Q3 is small, the decreasing speed of the main aerosol component in the final Q3 becomes relatively small. Therefore, it is possible to prevent the delivered amount of aerosol from rapidly decreasing in the final stage Q3.
 中期Q2は、主要エアロゾル成分の勾配の絶対値が、初期Q1における主要エアロゾル成分の勾配の最小値よりも小さく、かつ終期Q3における主要エアロゾル成分の勾配の最小値よりも小さい安定期間SPを含んでいてよい。すなわち、安定期間SPは、吸引ごとの主要エアロゾル成分の送達量の変動が比較的小さい期間である。 The middle period Q2 includes a stable period SP in which the absolute value of the gradient of the main aerosol component is smaller than the minimum value of the gradient of the main aerosol component in the initial Q1 and smaller than the minimum value of the gradient of the main aerosol component in the final Q3. You can stay. That is, the stable period SP is a period in which the variation in the delivery amount of the main aerosol component for each inhalation is relatively small.
 安定期間SPは、初期Q1及び終期Q3よりも長いことが好ましい。安定期間SPでは、主要エアロゾル成分の送達量が多く、当該送達量の変動が小さい。したがって、安定期間SPが初期Q1及び終期Q3よりも長いと、中期Q2において主要エアロゾル成分を比較的長期間にわたって安定的に供給することができる。また、安定期間SPは、中期Q2の50~60%であることが好ましい。これにより、中期Q2において、主要エアロゾル成分を比較的長期間にわたって安定的に供給することができる。 It is preferable that the stable period SP is longer than the initial Q1 and the final Q3. During the stable period SP, the delivered amount of the main aerosol component is large, and the variation in the delivered amount is small. Therefore, when the stable period SP is longer than the initial Q1 and the final Q3, the main aerosol component can be stably supplied over a relatively long period in the intermediate Q2. Further, the stable period SP is preferably 50 to 60% of the middle period Q2. As a result, in the mid-term Q2, the main aerosol component can be stably supplied over a relatively long period of time.
 前述した送達プロファイル、及びその有利な点は、本願発明者が鋭意研究の結果、見出したものであることに留意されたい。 Note that the above-mentioned delivery profile and its advantages have been found by the inventors of the present invention as a result of diligent research.
 エアロゾル生成装置120の制御部22は、前述した主要エアロゾル成分の送達プロファイルが実現されるように、ヒータ30を制御するよう構成されていてよい。ここで、主要エアロゾル成分の送達プロファイルは、主には、ヒータ30の加熱プロファイルに依存し得る。 The control unit 22 of the aerosol generation device 120 may be configured to control the heater 30 so that the delivery profile of the main aerosol component described above is realized. Here, the delivery profile of the major aerosol component may depend primarily on the heating profile of the heater 30.
 図9は、ヒータの加熱プロファイルの一例を示している。図9に示す加熱プロファイルは、前述した主要エアロゾル成分の送達プロファイルを実現するために適した一例であり、必ずしもこれに限定されないことに留意されたい。 FIG. 9 shows an example of the heating profile of the heater. It should be noted that the heating profile shown in FIG. 9 is an example suitable for achieving the delivery profile of the main aerosol component described above, but is not necessarily limited thereto.
 前述した通り、加熱プロファイルとは、ヒータ30の制御上の目標温度の時間変化を表すグラフである。ヒータ30の温度制御は、例えば公知のフィードバック制御によって実現できる。具体的には、エアロゾル生成装置120の制御部22は、バッテリ22からの電力を、パルス幅変調(PWM)又はパルス周波数変調(PFM)によるパルスの形態でヒータ30に供給することができる。この場合、制御部22は、電力パルスのデューティ比を調整することによって、ヒータ30の温度制御を行うことができる。 As described above, the heating profile is a graph showing the change over time in the target temperature for controlling the heater 30. The temperature control of the heater 30 can be realized by known feedback control, for example. Specifically, the control unit 22 of the aerosol generation apparatus 120 can supply the electric power from the battery 22 to the heater 30 in the form of pulses by pulse width modulation (PWM) or pulse frequency modulation (PFM). In this case, the control unit 22 can control the temperature of the heater 30 by adjusting the duty ratio of the power pulse.
 フィードバック制御では、制御部22は、ヒータ30の温度を測定又は推定し、測定又は推定されたヒータ30の温度と目標温度との差分等に基づいて、ヒータ30へ供給する電力、例えば、前述のデューティ比を制御すればよい。フィードバック制御は、例えばPID制御であってよい。ヒータ30の温度は、例えば、ヒータ30を構成する発熱抵抗体の電気抵抗値を測定又は推定することによって定量できる。これは、発熱抵抗体の電気抵抗値は、温度に応じて変化するためである。発熱抵抗体の電気抵抗値は、例えば、発熱抵抗体での電圧降下量を測定することによって推定できる。発熱抵抗体での電圧降下量は、発熱抵抗体に印加される電位差を測定する電圧センサによって測定できる。他の例では、ヒータ30の温度は、ヒータ30付近に設置された温度センサによって測定されることができる。 In the feedback control, the control unit 22 measures or estimates the temperature of the heater 30, and based on the difference between the measured or estimated temperature of the heater 30 and the target temperature, the power supplied to the heater 30, for example, the above-described It suffices to control the duty ratio. The feedback control may be PID control, for example. The temperature of the heater 30 can be quantified by, for example, measuring or estimating the electric resistance value of a heating resistor that constitutes the heater 30. This is because the electric resistance value of the heating resistor changes depending on the temperature. The electric resistance value of the heating resistor can be estimated, for example, by measuring the amount of voltage drop in the heating resistor. The amount of voltage drop across the heating resistor can be measured by a voltage sensor that measures the potential difference applied to the heating resistor. In another example, the temperature of the heater 30 can be measured by a temperature sensor installed near the heater 30.
 以上のように、本実施形態では、ヒータ30の実温度が、加熱プロファイルの目標温度に近づくように、ヒータ30への供給電力を制御している。ただし、加熱プロファイルは目標温度が急激に変化する箇所を含む場合があり、そのような箇所ではヒータ30の実温度の目標温度からの乖離が一時的に大きくなる場合がある。図9に例示した加熱プロファイルにおいて、ヒータ30の実温度の目標温度からの乖離が大きくなる箇所を破線で示している。 As described above, in the present embodiment, the electric power supplied to the heater 30 is controlled so that the actual temperature of the heater 30 approaches the target temperature of the heating profile. However, the heating profile may include a portion where the target temperature changes abruptly, and in such a portion, the deviation of the actual temperature of the heater 30 from the target temperature may temporarily increase. In the heating profile illustrated in FIG. 9, a portion where the deviation of the actual temperature of the heater 30 from the target temperature is large is shown by a broken line.
 図9に示す加熱プロファイルでは、ユーザの起動要求を受けて、バッテリ10からヒータ30への電力供給が開始されると、制御部22は、まず、第1期間P1中に第1目標温度TA1に向けてヒータ30の温度を制御する。すなわち、制御部22は、初期温度から第1目標温度TA1に向けてヒータ30を加熱する。第1期間P1では、ヒータ30が第1目標温度TA1に達すると、制御部22は、ヒータ30の温度が第1目標温度TA1を維持するよう制御する。 In the heating profile shown in FIG. 9, when the power supply from the battery 10 to the heater 30 is started in response to the user's activation request, the control unit 22 first sets the first target temperature TA1 during the first period P1. The temperature of the heater 30 is controlled toward it. That is, the control unit 22 heats the heater 30 from the initial temperature toward the first target temperature TA1. In the first period P1, when the heater 30 reaches the first target temperature TA1, the control unit 22 controls the temperature of the heater 30 to maintain the first target temperature TA1.
 第1目標温度TA1は、好ましくは225~240℃であり、典型的には230℃であってよい。 The first target temperature TA1 is preferably 225 to 240 ° C., and may be typically 230 ° C.
 第1期間P1において第1目標温度TA1を比較的高く設定することにより、ヒータ30の昇温速度を大きくすることができる。ヒータ30の昇温速度を大きくすることにより、ヒータ30への電力供給を開始してからエアロゾルの吸引が可能になるまでの期間を短くすることができる。 By setting the first target temperature TA1 to be relatively high in the first period P1, the temperature rising rate of the heater 30 can be increased. By increasing the rate of temperature rise of the heater 30, it is possible to shorten the period from the start of power supply to the heater 30 to the time when the aerosol can be suctioned.
 制御部22は、第1期間P1中であってヒータ30の温度が第1目標温度TA1に維持されている期間内に、吸引可能期間が開始したことをユーザに報知するよう構成されていてよい。吸引可能期間が開始したことの報知は、通知部40の制御によって行うことができ、例えば、LED等の発光素子の発光色を変えたり、発光パターンを変えたり、振動素子を駆動したりする制御、又はこれらの組み合わせによって行うことができる。 The controller 22 may be configured to notify the user that the suction-enabled period has started within the period during which the temperature of the heater 30 is maintained at the first target temperature TA1 during the first period P1. . The notification of the start of the suction-enabled period can be performed by the control of the notification unit 40. For example, the emission color of the light emitting element such as an LED is changed, the light emitting pattern is changed, or the vibration element is driven. , Or a combination thereof.
 図9に示す例では、吸引可能期間が開始したことの報知は、タイミングT2で行われる。より具体的には、吸引可能期間が開始したことの報知は、ヒータ30の温度が第1目標温度に到達してから所定の期間P1b経過したタイミングT2、及びヒータ30への電力供給の開始から所定の期間経過したタイミングのどちらか早い方で行われればよい。所定の期間P1bは、好ましくは20~26秒であり、典型的には23秒であってよい。 In the example shown in FIG. 9, the notification that the suctionable period has started is performed at timing T2. More specifically, the notification that the suctionable period has started is made at the timing T2 when a predetermined period P1b has elapsed after the temperature of the heater 30 reaches the first target temperature and from the start of the power supply to the heater 30. It may be performed at the earlier of the timings when the predetermined period has elapsed. The predetermined period P1b is preferably 20 to 26 seconds, and may typically be 23 seconds.
 好ましくは、制御部22は、第1期間P1の後半に、吸引可能期間が開始したことを報知するよう構成されていてよい。第1期間P1の後半とは、第1期間P1の真ん中よりも後ろの期間を意味する。 Preferably, the control unit 22 may be configured to notify the start of the suction-enabled period in the latter half of the first period P1. The latter half of the first period P1 means a period behind the middle of the first period P1.
 制御部22は、吸引可能期間が開始したことを報知したタイミングT2から所定の期間P1cが経過したタイミングT3において、後述する第2期間P2に移行する。所定の期間P1cは、5~15秒であることが好ましく、典型的には10秒であってよい。これにより、ユーザが第1期間P1中に1回目の吸引動作を行う可能性が高くなる。この場合、ヒータ温度が、加熱プロファイルの最高温度である第1目標温度TA1の付近に維持されている間に、ユーザに1回目の吸引動作を行わせることができる。 The control unit 22 shifts to a second period P2, which will be described later, at a timing T3 when a predetermined period P1c has elapsed from the timing T2 at which the suctionable period is notified. The predetermined period P1c is preferably 5 to 15 seconds, and may typically be 10 seconds. This increases the possibility that the user will perform the first suction operation during the first period P1. In this case, the user can perform the first suction operation while the heater temperature is maintained near the first target temperature TA1 which is the maximum temperature of the heating profile.
 第1期間P1は、ヒータ30及び喫煙物品110の加熱状態や周辺温度等によって変動するが、典型的には35~55秒の範囲であってよい。ただし、制御部22は、第1期間P1におけるヒータ30の温度上昇の速さに基づき第1期間P1の長さを変更可能に構成されていることが好ましい。より具体的には、第1期間P1のうちの初期の昇温期間P1aが、ヒータ30の温度上昇の速さに基づき変更可能に構成されていてよい。具体的には、制御部22は、ヒータ30が加熱し始めてから所定の温度に達するまでの期間が短いほど、第1期間P1の長さを短く変更するよう構成されていることが好ましい。 The first period P1 varies depending on the heating state of the heater 30 and the smoking article 110, the ambient temperature, etc., but may typically be in the range of 35 to 55 seconds. However, it is preferable that the control unit 22 be configured to be able to change the length of the first period P1 based on the rate of temperature rise of the heater 30 in the first period P1. More specifically, the initial temperature rising period P1a of the first period P1 may be configured to be changeable based on the rate of temperature rise of the heater 30. Specifically, the control unit 22 is preferably configured to change the length of the first period P1 to be shorter as the period from when the heater 30 starts heating to when the temperature reaches the predetermined temperature is shorter.
 本実施形態では、ヒータ30の温度が第1目標温度TA1に達してから所定の期間(P1b+P1c)が経過したときに、第1期間P1が終了する。すなわち、ヒータ30の温度上昇が速ければ、ヒータ30に電力供給し始める時点T0からヒータ30の温度が第1目標温度TA1に達するまでの期間P1aが短くなる。所定の期間(P1b+P1c)は、好ましくは25~41秒であり、典型的には33秒であってよい。 In the present embodiment, the first period P1 ends when a predetermined period (P1b + P1c) elapses after the temperature of the heater 30 reaches the first target temperature TA1. That is, if the temperature of the heater 30 rises quickly, the period P1a from the time T0 when the power supply to the heater 30 starts to reach the first target temperature TA1 is shortened. The predetermined period (P1b + P1c) is preferably 25 to 41 seconds, and may typically be 33 seconds.
 このように、ヒータ30の温度上昇が速い場合には、予備加熱期間を短くすることで、予備加熱期間で使用される消費電力を抑えることができる。 As described above, when the temperature of the heater 30 rises quickly, the power consumption used during the preheating period can be suppressed by shortening the preheating period.
 第1期間P1の可変範囲、より具体的には、吸引可能期間の開始の報知までの期間(P1a+P1b)の可変範囲は、所定の上限値を有することが好ましい。例えば、電力供給の開始T0から吸引可能期間の開始の報知T2までの期間(P1a+P1b)の上限値は、好ましくは40~60秒であり、典型的には50秒であってよい。これにより、ヒータ30の温度が第1目標温度TA1に達しない場合に、制御部22が第2期間P2に移行することなく予備加熱をし続けてしまうことを防止することができる。 The variable range of the first period P1, more specifically, the variable range of the period (P1a + P1b) until the notification of the start of the suctionable period preferably has a predetermined upper limit value. For example, the upper limit value of the period (P1a + P1b) from the start T0 of power supply to the notification T2 of the start of the suctionable period is preferably 40 to 60 seconds, and typically 50 seconds. As a result, when the temperature of the heater 30 does not reach the first target temperature TA1, it is possible to prevent the control unit 22 from continuing preheating without shifting to the second period P2.
 次に、制御部22は、第1期間P1後の第2期間P2中に第1目標温度TA1よりも低い第2目標温度TA2に向けてヒータ30の温度を制御する。すなわち、制御部22は、ヒータ30の温度を第1目標温度TA1から低下させ、第2目標温度TA2に維持するようヒータ30を制御する。 Next, the control unit 22 controls the temperature of the heater 30 toward the second target temperature TA2 lower than the first target temperature TA1 during the second period P2 after the first period P1. That is, the control unit 22 controls the heater 30 so as to reduce the temperature of the heater 30 from the first target temperature TA1 and maintain the temperature at the second target temperature TA2.
 第2目標温度TA2は、好ましくは190~210℃の範囲であり、典型的には200℃であってよい。第2期間P2は、好ましくは105~160秒の範囲であり、典型的には130秒であってよい。第2期間P2は、第1期間P1と、後述する第3期間P3よりも長いことが好ましい。第2期間は、第3期間P3よりも高い温度に維持される期間であるため、安定的にエアロゾル供給できる期間となる。これにより、安定的にエアロゾルを供給できる期間を相対的に長くできる。 The second target temperature TA2 is preferably in the range of 190 to 210 ° C, typically 200 ° C. The second period P2 is preferably in the range of 105 to 160 seconds and may typically be 130 seconds. The second period P2 is preferably longer than the first period P1 and a third period P3 described later. The second period is a period in which the temperature is maintained higher than that in the third period P3, and thus is a period in which the aerosol can be stably supplied. This makes it possible to relatively lengthen the period during which the aerosol can be stably supplied.
 第2期間P2において目標温度を低下させることにより、第2期間P2で消費する電力を低下させることができる。 By lowering the target temperature in the second period P2, it is possible to reduce the power consumed in the second period P2.
 制御部22は、第1期間P1の終了時から第2期間P2の初期にわたってヒータ30への電力供給を停止する第1オフ期間を有していてよい。第1オフ期間を設けることにより、第1目標温度TA1から第2目標温度TA2への温度低下を最短時間で達成することができる。制御部22は、第1オフ期間中もヒータ30の温度測定を継続することができる。この場合、制御部22は、ヒータ30の温度が第2目標温度TA2付近まで低下したときにヒータ30への電力供給を再開するように構成されることができる。 The control unit 22 may have a first off period in which the power supply to the heater 30 is stopped from the end of the first period P1 to the beginning of the second period P2. By providing the first off period, the temperature decrease from the first target temperature TA1 to the second target temperature TA2 can be achieved in the shortest time. The control unit 22 can continue to measure the temperature of the heater 30 during the first off period. In this case, the control unit 22 can be configured to restart the power supply to the heater 30 when the temperature of the heater 30 drops to around the second target temperature TA2.
 第1オフ期間は、一般的なユーザが2回又はそれ以上の吸引動作を行うことのないような時間間隔であることが好ましい。オフ期間中にユーザが2回又はそれ以上の吸引動作を行うと、ヒータ30の温度が急激に低下し、第2目標温度TA2を大きく下回ることがある。この場合には、喫煙物品110から発生するエアロゾル量が減少するおそれがある。一般的なユーザによる通常の吸引動作の時間間隔を約20秒と想定した場合、第1オフ期間は、例えば15~20秒の範囲であることが好ましい。第1目標温度TA1及び第2目標温度TA2は、第1オフ期間中の自然冷却による第1目標温度TA1から第2目標温度TA2への温度低下が、上記の時間範囲内で行われるように設定されることができる。或いは、制御部22は、第1オフ期間の時間経過を計測し、第1オフ期間が所定の上限値に達したら強制的にヒータ30への電力供給を再開するように構成されることもできる。この場合の第1オフ期間の上限値は15~20秒であることが好ましい。 The first off period is preferably a time interval such that a general user does not perform the suction operation twice or more. If the user performs the suction operation twice or more during the off period, the temperature of the heater 30 may drop sharply and fall significantly below the second target temperature TA2. In this case, the amount of aerosol generated from the smoking article 110 may decrease. Assuming that the time interval of the normal suction operation by a general user is about 20 seconds, the first off period is preferably in the range of 15 to 20 seconds, for example. The first target temperature TA1 and the second target temperature TA2 are set such that the temperature decrease from the first target temperature TA1 to the second target temperature TA2 by the natural cooling during the first off period is performed within the above time range. Can be done. Alternatively, the control unit 22 may be configured to measure the elapsed time of the first off period and forcibly restart the power supply to the heater 30 when the first off period reaches a predetermined upper limit value. . In this case, the upper limit value of the first off period is preferably 15 to 20 seconds.
 次に、制御部22は、第2期間P2後の第3期間P3中に第2目標温度TA2よりも低い第3目標温度TA3に向けてヒータ30の温度を制御する。すなわち、制御部22は、ヒータ30の温度を第2目標温度TA1からさらに低下させ、第3目標温度TA3に維持するようヒータ30を制御する。第3目標温度TA3は、好ましくは175~190℃の範囲であり、典型的には185℃であってよい。第3期間P3は、好ましくは30~90秒の範囲であり、典型的には60秒であってよい。第3期間P3において目標温度をより低下させることにより、第3期間P3で消費する電力をより低下させることができる。 Next, the control unit 22 controls the temperature of the heater 30 toward the third target temperature TA3 lower than the second target temperature TA2 during the third period P3 after the second period P2. That is, the control unit 22 controls the heater 30 to further lower the temperature of the heater 30 from the second target temperature TA1 and maintain the temperature at the third target temperature TA3. The third target temperature TA3 is preferably in the range of 175 to 190 ° C, typically 185 ° C. The third period P3 is preferably in the range 30 to 90 seconds and may typically be 60 seconds. By further reducing the target temperature in the third period P3, it is possible to further reduce the power consumed in the third period P3.
 第1目標温度TA1と第2目標温度TA2の温度差は(ΔT12)、第2目標温度TA2と第3目標温度TA3の温度差(ΔT23)よりも大きいことが好ましい。ヒータ30の消費電力は第3期間P3よりも第2期間P2の方が大きいので、第2期間P2から第3期間P3への移行時の温度差(ΔT23)よりも第1期間P1から第2期間P2への移行時の温度差(ΔT12)を大きくした方が、全期間を通じた消費電力の削減につながる。そのためΔT12/ΔT23は1よりも大きいことが好ましい。他方、ΔT23に対してΔT12を過度に大きくすると、エアロゾルの安定供給を意図した第2期間P2の目標温度TA2が相対的に低くなるので、第2期間P2でのエアロゾル生成が不安定になるおそれがある。そのため、ΔT12/ΔT23は所定の上限値を有することが好ましい。ΔT12/ΔT23の上限値は、例えば2.5であってよい。ΔT12/ΔT23は、好ましくは1.0~2.5であり、典型的には2.0であってよい。 The temperature difference between the first target temperature TA1 and the second target temperature TA2 (ΔT12) is preferably larger than the temperature difference between the second target temperature TA2 and the third target temperature TA3 (ΔT23). Since the power consumption of the heater 30 is larger in the second period P2 than in the third period P3, the first period P1 to the second period P2 is larger than the temperature difference (ΔT23) at the transition from the second period P2 to the third period P3. Increasing the temperature difference (ΔT12) at the time of shifting to the period P2 leads to reduction in power consumption throughout the period. Therefore, ΔT12 / ΔT23 is preferably larger than 1. On the other hand, if ΔT12 is excessively increased with respect to ΔT23, the target temperature TA2 in the second period P2 intended to stably supply the aerosol becomes relatively low, so that the aerosol generation may become unstable in the second period P2. There is. Therefore, ΔT12 / ΔT23 preferably has a predetermined upper limit value. The upper limit of ΔT12 / ΔT23 may be 2.5, for example. ΔT12 / ΔT23 is preferably 1.0 to 2.5, and may typically be 2.0.
 制御部22は、第2期間P2の終了時から第3期間P3の初期にわたってヒータ30への電力供給を停止する第2オフ期間を有していてよい。第2オフ期間を設けることにより、第2目標温度TA2から第3目標温度TA3への温度低下を最短時間で達成することができる。制御部22は、第2オフ期間中もヒータ30の温度測定を継続することができる。この場合、制御部22は、ヒータ30の温度が第3目標温度TA3付近まで低下したときにヒータ30への電力供給を再開するように構成されることができる。第2オフ期間は、第1オフ期間と同様に、一般的なユーザが2回又はそれ以上の吸引動作を行うことのないような時間間隔であることが好ましく、例えば15~20秒の範囲であることが好ましい。第2目標温度TA2及び第3目標温度TA3は、第2オフ期間中の自然冷却による第2目標温度TA2から第3目標温度TA3への温度低下が、上記の時間範囲内で行われるように設定されることができる。或いは、制御部22は、第2オフ期間の時間経過を計測し、第2オフ期間が所定の上限値に達したら強制的にヒータ30への電力供給を再開するように構成されることもできる。 The control unit 22 may have a second off period in which the power supply to the heater 30 is stopped from the end of the second period P2 to the beginning of the third period P3. By providing the second off period, the temperature decrease from the second target temperature TA2 to the third target temperature TA3 can be achieved in the shortest time. The control unit 22 can continue to measure the temperature of the heater 30 during the second off period. In this case, the control unit 22 can be configured to restart the power supply to the heater 30 when the temperature of the heater 30 drops to around the third target temperature TA3. Like the first off period, the second off period is preferably a time interval such that a general user does not perform the suction operation twice or more, for example, in the range of 15 to 20 seconds. Preferably there is. The second target temperature TA2 and the third target temperature TA3 are set such that the temperature decrease from the second target temperature TA2 to the third target temperature TA3 by natural cooling during the second off period is performed within the above time range. Can be done. Alternatively, the control unit 22 may be configured to measure the elapsed time of the second off period and forcibly restart the power supply to the heater 30 when the second off period reaches a predetermined upper limit value. .
 前述した通り、第1目標温度TA1と第2目標温度TA2の温度差(ΔT12)は、第2目標温度TA2と第3目標温度TA3の温度差(ΔT23)よりも大きいことが消費電力削減の観点から好ましいが、この関係は第1オフ期間と第2オフ期間をなるべく近似した値にするという観点でも好ましい。ニュートン冷却法則から、低温度帯よりも高温度帯の方が自然冷却時の温度低下速度が大きいので、第1オフ期間と第2オフ期間をなるべく近似させるためには、高温度帯に属する第1目標温度TA1と第2目標温度TA2の温度差(ΔT12)を相対的に大きくする必要がある。仮に、第1目標温度TA1と第2目標温度TA2の温度差(ΔT12)を、第2目標温度TA2と第3目標温度TA3の温度差(ΔT23)と等しくするか、又は前者の温度差(ΔT12)を後者の温度差(ΔT23)よりも小さくした場合は、第1オフ期間は第2オフ期間よりも常時短くなるので、2つのオフ期間を同じにすることは理論上できなくなる。 As described above, the temperature difference (ΔT12) between the first target temperature TA1 and the second target temperature TA2 is larger than the temperature difference (ΔT23) between the second target temperature TA2 and the third target temperature TA3 from the viewpoint of power consumption reduction. However, this relationship is also preferable from the viewpoint of making the first off period and the second off period as close as possible to each other. According to Newton's cooling law, the temperature decrease rate during natural cooling is higher in the high temperature zone than in the low temperature zone. Therefore, in order to approximate the first off period and the second off period as much as possible, It is necessary to relatively increase the temperature difference (ΔT12) between the first target temperature TA1 and the second target temperature TA2. Temporarily, the temperature difference (ΔT12) between the first target temperature TA1 and the second target temperature TA2 is made equal to the temperature difference (ΔT23) between the second target temperature TA2 and the third target temperature TA3, or the former temperature difference (ΔT12). If the value of () is smaller than the latter temperature difference (ΔT23), the first off period is always shorter than the second off period, and thus it is theoretically impossible to make the two off periods the same.
 また、第2目標温度TA2と第3目標温度TA3との差に対する第1目標温度TA1と第2目標温度TA2との差の比は、2.5未満であることが好ましい。これは、第1目標温度TA1と第2目標温度TA2との差を大きくしすぎないことによって、パフ可能期間の中盤において、安定的にエアロゾルを生成させることができるようにするためである。 The ratio of the difference between the first target temperature TA1 and the second target temperature TA2 to the difference between the second target temperature TA2 and the third target temperature TA3 is preferably less than 2.5. This is because the difference between the first target temperature TA1 and the second target temperature TA2 is not made too large, so that the aerosol can be stably generated in the middle of the puffable period.
 なお、消費電力削減の観点からは、第1目標温度TA1から第2目標温度TA2を経ることなく第3目標温度TA3でヒータ30を制御することが好ましい場合もある。しかしながら、その場合には、第1目標温度TA1から第3目標温度TA3に到達する期間(第2オフ期間)が相対的に長くなる。第1目標温度TA1から第3目標温度TA3に到達する期間はヒータ30への電力供給が停止されるため、この期間内にユーザが複数回の吸引動作を行うと、ヒータ30の温度が第3温度を大きく下回ってしまうおそれがある。第1目標温度TA1から第3目標温度TA3に移行する前に、第1目標温度TA1と第3目標温度TA2との間の第2目標温度TA2を経ることで、一の目標温度間から他の目標温度への移行にかかる期間を短くすることができる。これにより、ヒータ30への電力供給が停止されるオフ期間の連続時間が相対的に短くなるので、複数回の吸引動作により喫煙物品の温度が過度に低下し、その結果エアロゾル生成が不安定になるのを防止することができる。 From the viewpoint of power consumption reduction, it may be preferable to control the heater 30 at the third target temperature TA3 without passing through the first target temperature TA1 and the second target temperature TA2. However, in that case, the period from the first target temperature TA1 to the third target temperature TA3 (second off period) becomes relatively long. Since the power supply to the heater 30 is stopped during the period in which the first target temperature TA1 reaches the third target temperature TA3, if the user performs the suction operation a plurality of times during this period, the temperature of the heater 30 becomes the third temperature. There is a risk that the temperature will drop significantly below. Before the transition from the first target temperature TA1 to the third target temperature TA3, the second target temperature TA2 between the first target temperature TA1 and the third target temperature TA2 is passed, so that between the one target temperature and the other target temperature TA2. It is possible to shorten the period required to shift to the target temperature. As a result, the continuous time of the off period in which the power supply to the heater 30 is stopped becomes relatively short, so that the temperature of the smoking article excessively decreases due to a plurality of suction operations, and as a result, aerosol generation becomes unstable. Can be prevented.
 制御部22は、第3期間P3の終了と同時にヒータ30への電力供給を停止する。次いで、制御部22は、ヒータ30への電力供給を停止(タイミングT6)してから所定の期間経過後のタイミングT7で吸引可能期間の終了を報知する。つまり、ヒータ30への電力供給が停止した後であっても、所定の期間を経過するまでは、ユーザにエアロゾルの吸引動作を促し、ヒータ30及び喫煙物品110の余熱によりユーザにエアロゾルを味わわせることができる。なお、吸引可能期間の終了の報知は、通知部40によって行うことができ、例えば、LED等の発光素子の発光色を変えたり、発光パターンを変えたり、振動素子を駆動したりする制御、又はこれらの組み合わせによって行うことができる。 The control unit 22 stops the power supply to the heater 30 at the same time as the end of the third period P3. Next, the control unit 22 notifies the end of the suction-enabled period at timing T7 after a lapse of a predetermined period after stopping the power supply to the heater 30 (timing T6). That is, even after the power supply to the heater 30 is stopped, the user is prompted to perform the aerosol suction operation until the predetermined period of time elapses, and the residual heat of the heater 30 and the smoking article 110 allows the user to taste the aerosol. be able to. Note that the notification of the end of the suctionable period can be performed by the notification unit 40, and for example, control of changing the emission color of the light emitting element such as an LED, changing the light emitting pattern, or driving the vibrating element, or It can be performed by a combination of these.
 ヒータ30が加熱プロファイルの第1期間P1、第2期間P2、第3期間P3を経過した後は、ヒータ30の熱が喫煙物品110の内部まで十分に伝達されている。そのため、第3期間P3が終了してから吸引可能期間が終了するまで期間、すなわち、図8中の第4期間P4においては、ヒータ30及び喫煙物品110の余熱だけで一定量のエアロゾルを生成できる。ただし、第4期間P4は、第1オフ期間及び第2オフ期間と同じくエアロゾル生成が不安定になりやすいので、ユーザが2回又はそれ以上の吸引動作を行わないような時間間隔であることが好ましい。そのため、第4期間P4は、好ましくは5~15秒であり、典型的には10秒であってよい。 After the heater 30 has passed the first period P1, the second period P2, and the third period P3 of the heating profile, the heat of the heater 30 is sufficiently transmitted to the inside of the smoking article 110. Therefore, during the period from the end of the third period P3 to the end of the inhalable period, that is, the fourth period P4 in FIG. 8, a certain amount of aerosol can be generated only by the residual heat of the heater 30 and the smoking article 110. . However, since the aerosol generation is likely to be unstable in the fourth period P4 as in the first off period and the second off period, it may be a time interval in which the user does not perform the suction operation twice or more. preferable. Therefore, the fourth period P4 is preferably 5 to 15 seconds, and typically 10 seconds.
 また、制御部22は、吸引可能期間の終了を報知するタイミングT7から所定の期間Peだけ早いタイミングT5で、吸引可能期間の終了が近付いたことをユーザに報知することができる。このような報知は、例えば吸引可能期間が終了する20~40秒前に行うことができる。このような報知は、通知部40によって行うことができ、例えば、LED等の発光素子の発光色を変えたり、発光パターンを変えたり、振動素子を駆動したりする制御、又はこれらの組み合わせによって行うことができる。 Further, the control unit 22 can notify the user that the end of the suction possible period is approaching at a timing T5 which is earlier than the timing T7 for notifying the end of the suction possible period by a predetermined period Pe. Such notification can be performed, for example, 20 to 40 seconds before the end of the suctionable period. Such notification can be performed by the notification unit 40, and is performed, for example, by controlling the emission color of the light emitting element such as an LED, changing the light emitting pattern, driving the vibrating element, or a combination thereof. be able to.
 前述した態様では、制御部22は、第3期間P3の終了時点でヒータ30への電力の供給を停止する。この他にも、制御部22は、ユーザによる吸引動作の回数が所定回数を超過した場合、第2期間P2又は第3期間P3内であってもヒータ30への電力供給を停止してもよい。ユーザによるパフ動作は、例えば前述した温度センサによって検出できる。 In the above-mentioned aspect, the control unit 22 stops the supply of electric power to the heater 30 at the end of the third period P3. In addition to this, when the number of suction operations by the user exceeds a predetermined number, the control unit 22 may stop the power supply to the heater 30 even within the second period P2 or the third period P3. . The puff operation by the user can be detected by, for example, the above-mentioned temperature sensor.
 再び図8を参照する。主要エアロゾル成分の送達プロファイルは、主には、ヒータ30の加熱プロファイルに依存し得る。具体的には、主要エアロゾル成分の送達プロファイルは、基本的には、喫煙物品110の内部の温度プロファイルに対応したプロファイルであり得る。喫煙物品110の内部の温度プロファイルは、ヒータ30の加熱プロファイルに追従するため、概して、加熱プロファイルに対して時間的に遅れた形状になり易い。 Refer to FIG. 8 again. The delivery profile of the major aerosol component may depend primarily on the heating profile of the heater 30. Specifically, the delivery profile of the primary aerosol component can be essentially a profile that corresponds to the temperature profile inside the smoking article 110. Since the temperature profile inside the smoking article 110 follows the heating profile of the heater 30, in general, the temperature profile tends to be delayed with respect to the heating profile.
 したがって、第1期間P1における第1目標温度TA1を、加熱プロファイル全体を通じた最高温度に設定することによって、主要エアロゾル成分の送達プロファイルは、初期Q1において、急勾配の上昇カーブを形成し易くなる。また、第1期間P1後の第2期間P2の大半においてヒータ30の温度を第2目標温度TA2に維持することによって、主要エアロゾル成分の送達プロファイルは、中期Q2において、吸引ごとの変動が少ない安定期間SPを形成し易くなる。さらに、第2期間P2後の第3期間P3中に第2目標温度TA2よりも低い第3目標温度TA3に向けてヒータ30の温度を制御することによって、主要エアロゾル成分の送達プロファイルは、終期Q3において下降カーブを形成し易くなる。特に、第2目標温度TA2と第3目標温度TA3の温度差T23を小さくすることによって、主要エアロゾル成分の送達プロファイルは、終期Q3において、より緩勾配の下降カーブを形成し易くなる。以上のように、図8に例示した加熱プロファイルに従ってヒータ30の加熱制御を行うことによって、主要エアロゾル成分の送達プロファイルは、中期Q2において極大点を有する上に凸のカーブを全体として形成し易くなり、初期Q1において急勾配の上昇カーブを形成し易くなり、かつ終期Q3において緩勾配の下降カーブを形成し易くなる。 Therefore, by setting the first target temperature TA1 in the first period P1 to the maximum temperature throughout the heating profile, the delivery profile of the main aerosol component is likely to form a steep rising curve in the initial Q1. Further, by maintaining the temperature of the heater 30 at the second target temperature TA2 in most of the second period P2 after the first period P1, the delivery profile of the main aerosol component is stable with little fluctuation for each suction in the middle period Q2. It becomes easy to form the period SP. Further, by controlling the temperature of the heater 30 toward the third target temperature TA3 lower than the second target temperature TA2 during the third period P3 after the second period P2, the delivery profile of the main aerosol component is set to the final Q3. It becomes easier to form a descending curve at. In particular, by reducing the temperature difference T23 between the second target temperature TA2 and the third target temperature TA3, the delivery profile of the main aerosol component is likely to form a gentler descending curve in the final stage Q3. As described above, by controlling the heating of the heater 30 in accordance with the heating profile illustrated in FIG. 8, the delivery profile of the main aerosol component can easily form an upwardly convex curve having a maximum point in the middle Q2 as a whole. , It becomes easy to form a steep ascending curve in the initial Q1, and it becomes easy to form a gentle descending curve in the final Q3.
 前述したように、主要エアロゾル成分の送達プロファイルは、主に、ヒータ30の加熱プロファイルに依存する。しかしながら、主要エアロゾル成分の送達プロファイルは、ヒータ30の形状、断熱材138の有無及び形状、喫煙物品110の大きさ、ヒータ30と喫煙物品110の接触度、並びに喫煙物品110に対するヒータ30の加熱部分の位置等の要素に応じて変化し得る。したがって、所望の主要エアロゾル成分の送達プロファイルを実現するために、ヒータ30の加熱プロファイルと、これらの要素を適宜組みあわせればよい。 As mentioned above, the delivery profile of the main aerosol component mainly depends on the heating profile of the heater 30. However, the delivery profile of the major aerosol component is determined by the shape of the heater 30, the presence and shape of the insulation 138, the size of the smoking article 110, the contact between the heater 30 and the smoking article 110, and the heating portion of the heater 30 relative to the smoking article 110. Can vary depending on factors such as the position of the. Therefore, in order to achieve a desired delivery profile of the main aerosol component, the heating profile of the heater 30 and these elements may be appropriately combined.
 例えば、ヒータ30が柱状の喫煙物品の外周を取り囲む筒形状を有する場合、喫煙物品110に伝わった熱が外部に逃げにくいため、主要エアロゾル成分の送達プロファイルは、ヒータ30の加熱プロファイルに追従しやすくなる。同様に、ヒータ30の半径方向外側に筒状の断熱材138が配置されている場合、喫煙物品110に伝わった熱が外部に逃げにくいため、主要エアロゾル成分の送達プロファイルは、ヒータ30の加熱プロファイルにより追従しやすくなる。この場合、初期Q1における送達プロファイルの増大スピードが相対的に大きくなるので、初期Q1における送達プロファイルの上昇カーブが、全体的に、より急勾配になりうる。一方、終期Q3における送達プロファイルの減少スピードが相対的に小さくなるので、終期Q3における送達プロファイルの下降カーブが、全体的に、より緩勾配になりうる。 For example, when the heater 30 has a cylindrical shape that surrounds the outer circumference of a columnar smoking article, the heat transmitted to the smoking article 110 is unlikely to escape to the outside, so that the delivery profile of the main aerosol component easily follows the heating profile of the heater 30. Become. Similarly, when the tubular heat insulating material 138 is arranged on the outer side of the heater 30 in the radial direction, the heat transmitted to the smoking article 110 is unlikely to escape to the outside, so the delivery profile of the main aerosol component is the heating profile of the heater 30. Makes it easier to follow. In this case, since the increasing speed of the delivery profile in the initial Q1 is relatively large, the ascending curve of the delivery profile in the initial Q1 can be steeper overall. On the other hand, since the decreasing rate of the delivery profile in the final Q3 is relatively small, the downward curve of the delivery profile in the final Q3 may be a gentler slope overall.
 また、喫煙物品110の大きさ、より具体的には喫煙物品110の径が小さいほど、喫煙物品110の外側からの熱が喫煙物品110の内部まで伝わりやすい。したがって、喫煙物品110の径が小さいほど、主要エアロゾル成分の送達プロファイルは、ヒータ30の加熱プロファイルに追従しやすくなる。 Further, the smaller the size of the smoking article 110, more specifically, the smaller the diameter of the smoking article 110, the more easily heat from the outside of the smoking article 110 is transferred to the inside of the smoking article 110. Therefore, the smaller the diameter of the smoking article 110, the easier the delivery profile of the primary aerosol component will follow the heating profile of the heater 30.
 また、使用時にヒータ30と喫煙物品110の接触度が高いほど、ヒータ30からの熱が喫煙物品110に伝わりやすい。すなわち、喫煙物品110を挿入孔130に挿入した状態で、喫煙物品110と内側筒部材132との間に隙間が少ない方が、主要エアロゾル成分の送達プロファイルは、ヒータ30の加熱プロファイルに追従しやすくなる。 Further, the higher the degree of contact between the heater 30 and the smoking article 110 during use, the more easily the heat from the heater 30 is transferred to the smoking article 110. That is, when the smoking article 110 is inserted into the insertion hole 130 and the gap between the smoking article 110 and the inner tubular member 132 is small, the delivery profile of the main aerosol component can easily follow the heating profile of the heater 30. Become.
 また、主要エアロゾル成分の送達プロファイルは、喫煙物品110とヒータ30との位置関係にも依存し得る。再び図7を参照すると、ヒータ30は、喫煙物品110においてエアロゾル源を含有する基材部11Aから、エアロゾル源を含有しない紙管部114にわたって延びるよう配置されることが好ましい。これにより、ヒータ30からの熱が基材部11Aの下流側端面及びその近傍に十分に伝わりやすいため、主要エアロゾル成分の送達プロファイルは、ヒータ30の加熱プロファイルに追従しやすくなる。さらに、内周面で喫煙物品110に接触し、外周面でヒータ3に接触する内側筒部材132も、エアロゾル源を含有する基材部11Aから、エアロゾル源を含有しない紙管部114にわたって延びるよう配置されることが好ましい。特に、内側筒部材132の下流側端部は、ヒータ30の下流側端部よりも下流側に突き出していることが好ましい。これにより、基材部11Aの下流側端面だけでなく、紙管部114の上流側端面及びその近傍も十分加熱できるので、そこでのエアロゾルの凝集が抑制されるため、送達プロファイルが全体的に増加する要因となる。なお、ヒータ30の加熱部分31は、積極的に加熱される部分である。発熱抵抗体を含むヒータの場合、ヒータ30の加熱部分31は、発熱抵抗体を指す。 The delivery profile of the main aerosol component may also depend on the positional relationship between the smoking article 110 and the heater 30. Referring again to FIG. 7, the heater 30 is preferably arranged so as to extend from the base material portion 11A containing the aerosol source to the paper tube portion 114 not containing the aerosol source in the smoking article 110. Thereby, the heat from the heater 30 is easily transmitted to the downstream end surface of the base material portion 11A and the vicinity thereof, so that the delivery profile of the main aerosol component easily follows the heating profile of the heater 30. Furthermore, the inner cylindrical member 132 that contacts the smoking article 110 on the inner peripheral surface and contacts the heater 3 on the outer peripheral surface extends from the base material portion 11A containing the aerosol source to the paper tube portion 114 not containing the aerosol source. It is preferably arranged. In particular, it is preferable that the downstream end of the inner tubular member 132 projects further downstream than the downstream end of the heater 30. As a result, not only the downstream end surface of the base material portion 11A, but also the upstream end surface of the paper tube portion 114 and its vicinity can be sufficiently heated, so that the aggregation of the aerosol there is suppressed, and the delivery profile overall increases. Will be a factor. The heating portion 31 of the heater 30 is a portion that is actively heated. In the case of a heater including a heating resistor, the heating portion 31 of the heater 30 refers to the heating resistor.
 さらに、主要エアロゾル成分の送達プロファイルは、喫煙物品110を構成する成分にも起因し得る。より具体的には、喫煙物品110に含まれる水分量が、主要エアロゾル成分の送達プロファイルの初期Q1における増大スピードに影響することがある。例えば、喫煙物品110に含まれる水分量が比較的多い場合、ヒータ30からの熱がエアロゾル源を加熱する代わりに水分を気化するのに用いられるため、主要エアロゾル成分の送達プロファイルの増大スピードを小さくする要因となり得る。これにより、初期Q1における送達プロファイルが、全体的に、より緩勾配になることがある。前述した通り、喫煙物品110中の水分に由来するエアロゾルは、通常、主要エアロゾル成分には含まれない。 Furthermore, the delivery profile of the main aerosol component may also be due to the components that make up the smoking article 110. More specifically, the amount of water contained in smoking article 110 can affect the rate of increase in the initial Q1 of the delivery profile of the major aerosol component. For example, if the smoking article 110 contains a relatively large amount of water, heat from the heater 30 is used to vaporize the water instead of heating the aerosol source, thus reducing the rate at which the delivery profile of the major aerosol component increases. Can be a factor. This may result in a generally gentler delivery profile in early Q1. As mentioned above, aerosols derived from water in smoking article 110 are typically not included in the primary aerosol component.
 以上のような送達プロファイルに影響を与える要素を考慮しつつ、ヒータ30の加熱プロファイルを適宜設定することによって、前述した望ましい主要エアロゾル成分の送達プロファイルを実現できる。 By appropriately setting the heating profile of the heater 30 while considering the factors affecting the delivery profile as described above, the desired delivery profile of the main aerosol component described above can be realized.
 (プログラム及び記憶媒体)
 前述した加熱プロファイル及び/又は主要エアロゾル成分の送達プロファイルを実現するための制御フローは、制御部22が実行することができる。すなわち、本発明は、香味吸引器100及び/又はエアロゾル生成装置120に前述の方法を実行させるプログラム、当該プログラムが格納された記憶媒体をも含んでいてよい。このような記憶媒体は、非一過性の記憶媒体であってよい。
(Program and storage medium)
The control flow for realizing the heating profile and / or the delivery profile of the main aerosol component described above can be executed by the control unit 22. That is, the present invention may include a program that causes the flavor inhaler 100 and / or the aerosol generation device 120 to execute the above-described method, and a storage medium that stores the program. Such a storage medium may be a non-transitory storage medium.
 [その他の実施形態]
 本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
[Other Embodiments]
Although the present invention has been described with reference to the above-described embodiments, it should not be understood that the descriptions and drawings forming a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples, and operation techniques will be apparent to those skilled in the art.
 上記実施形態では、エアロゾル生成装置は、エアロゾルの送達量を調整可能な素子としてヒータ30を備えている。しかしながら、本発明において、エアロゾルの送達量を調整可能な素子は、ヒータ30に限定されない。エアロゾルの送達量を調整可能な素子は、喫煙物品中のエアロゾル源から生成されるエアロゾルの量を調整可能、又は生成されたエアロゾルの送達量を調整可能であれば、どのような素子であってもよい。例えば、エアロゾルの送達量を調整可能な素子は、エアロゾル源を霧化可能な超音波振動子であってもよい。さらに、エアロゾル生成装置は、エアロゾルの送達量を調整可能な素子を複数備えていてもよい。この場合、制御部22は、時間軸上での主要エアロゾル成分の送達プロファイルが前述したプロファイルを描くように、エアロゾルの送達量を調整可能な素子を制御するよう構成されていればよい。 In the above embodiment, the aerosol generation device includes the heater 30 as an element capable of adjusting the delivery amount of the aerosol. However, in the present invention, the element capable of adjusting the delivery amount of the aerosol is not limited to the heater 30. The adjustable aerosol delivery element is any element capable of adjusting the amount of aerosol produced from an aerosol source in a smoking article, or the delivery of produced aerosol. Good. For example, the element capable of adjusting the delivered amount of aerosol may be an ultrasonic transducer capable of atomizing an aerosol source. Further, the aerosol generating device may include a plurality of elements capable of adjusting the delivery amount of the aerosol. In this case, the control unit 22 may be configured to control the element capable of adjusting the delivery amount of the aerosol so that the delivery profile of the main aerosol component on the time axis draws the profile described above.

Claims (13)

  1.  エアロゾルの送達量を調整可能な少なくとも1つの素子と、
     前記素子を制御する制御部と、を備え、
     前記制御部は、予め定めた吸引可能期間におけるエアロゾルの送達プロファイルが、
      時間軸に対して漸増する勾配を有して増加する初期と、
      時間軸に対して漸減する勾配を有して減少する終期と、
      前記初期と前記終期の間で1つ又は複数の極大値を有する中期と、
      を含むように、前記素子を制御するよう構成されている、エアロゾル生成装置。
    At least one element capable of adjusting the delivered amount of aerosol;
    A control unit for controlling the element,
    The control unit controls the delivery profile of the aerosol during a predetermined inhalable period,
    An increasing initial with an increasing slope with respect to the time axis,
    An end that decreases with a decreasing slope with respect to the time axis,
    A metaphase having one or more maxima between said early and said end;
    And an aerosol generating device configured to control the element.
  2.  前記吸引可能期間の終点におけるエアロゾルの送達量は、前記吸引可能期間の始点におけるエアロゾルの送達量よりも大きい、請求項1に記載のエアロゾル生成装置。 The aerosol generator according to claim 1, wherein the amount of delivered aerosol at the end point of the inhalable period is larger than the delivered amount of aerosol at the start point of the inhalable period.
  3.  前記吸引可能期間の終期における前記勾配の最大値は、前記吸引可能期間の初期における前記勾配の最大値よりも小さい、請求項1又は2に記載のエアロゾル生成装置。 The aerosol generator according to claim 1 or 2, wherein the maximum value of the gradient at the end of the inhalable period is smaller than the maximum value of the gradient at the beginning of the inhalable period.
  4.  前記終期における前記勾配の最小値は、前記初期における前記勾配の最小値よりも小さい、請求項1から3のいずれか1項に記載のエアロゾル生成装置。 The aerosol generator according to any one of claims 1 to 3, wherein the minimum value of the gradient at the final stage is smaller than the minimum value of the gradient at the initial stage.
  5.  前記中期は、前記初期及び前記終期の各々よりも長い、請求項1から4のいずれか1項に記載のエアロゾル生成装置。 The aerosol generator according to any one of claims 1 to 4, wherein the middle period is longer than each of the initial period and the final period.
  6.  前記中期は、前記初期と前記終期の合計の期間と同じか又は当該期間よりも長い、請求項1から5のいずれか1項に記載のエアロゾル生成装置。 The aerosol generator according to any one of claims 1 to 5, wherein the middle period is equal to or longer than the total period of the initial period and the final period.
  7.  前記中期は、前記勾配が、前記初期における前記勾配の最小値よりも小さく、かつ前記終期における前記勾配の最小値よりも小さい安定期間を含み、
     前記安定期間は、前記初期及び前記終期の各々よりも長い、請求項1から6のいずれか1項に記載のエアロゾル生成装置。
    The middle period includes a stable period in which the slope is smaller than the minimum value of the slope at the initial stage and smaller than the minimum value of the slope at the final stage,
    The aerosol generation device according to claim 1, wherein the stable period is longer than each of the initial period and the final period.
  8.  前記素子は、エアロゾル源を加熱可能に構成されたヒータである、請求項1から7のいずれか1項に記載のエアロゾル生成装置。 The aerosol generator according to any one of claims 1 to 7, wherein the element is a heater configured to heat an aerosol source.
  9.  前記制御部は、第1期間中に第1目標温度に向けて前記ヒータの温度を制御し、第1期間後の第2期間中に前記第1目標温度よりも低い第2目標温度に向けて前記ヒータの温度を制御し、第2期間後の第3期間中に前記第2目標温度よりも低い第3目標温度に向けて前記ヒータの温度を制御するよう構成されている、請求項8に記載のエアロゾル生成装置。 The control unit controls the temperature of the heater toward the first target temperature during the first period, and toward the second target temperature lower than the first target temperature during the second period after the first period. The temperature of the heater is controlled, and the temperature of the heater is controlled toward a third target temperature lower than the second target temperature during a third period after the second period. An aerosol generating device as described.
  10.  エアロゾルの送達量を調整可能な少なくとも1つの素子を制御するための制御部を備えた制御ユニットであって、
     前記制御部は、予め定めた吸引可能期間におけるエアロゾルの送達プロファイルが、
      時間軸に対して漸増する勾配を有して増加する初期と、
      時間軸に対して漸減する勾配を有して減少する終期と、
      前記初期と前記終期の間で1つ又は複数の極大値を有する中期と、
     を含むように、前記素子を制御するよう構成されている、制御ユニット。
    A control unit comprising a control unit for controlling at least one element capable of adjusting an aerosol delivery amount, the control unit comprising:
    The control unit controls the delivery profile of the aerosol during a predetermined inhalable period,
    An increasing initial with an increasing slope with respect to the time axis,
    An end that decreases with a decreasing slope with respect to the time axis,
    A metaphase having one or more maxima between said early and said end;
    And a control unit configured to control the element.
  11.  エアロゾル生成装置のエアロゾルの送達量を調整する方法であって、
     予め定めた吸引可能期間におけるエアロゾルの送達プロファイルが、
      時間軸に対して漸増する勾配を有して増加する初期と、
      時間軸に対して漸減する勾配を有して減少する終期と、
      前記初期と前記終期の間で1つ又は複数の極大値を有する中期と、
      を含むように、エアロゾルの送達量を調整する、方法。
    A method of adjusting the aerosol delivery of an aerosol generator, comprising:
    The delivery profile of the aerosol during the predetermined inhalable period is
    An increasing initial with an increasing slope with respect to the time axis,
    An end that decreases with a decreasing slope with respect to the time axis,
    A metaphase having one or more maxima between said early and said end;
    Adjusting the delivered amount of the aerosol to include.
  12.  請求項11に記載の方法をコンピュータに実行させるプログラム。 A program that causes a computer to execute the method according to claim 11.
  13.  エアロゾル源を含む喫煙物品であって、
    前記エアロゾル源に作用してエアロゾルを送達可能な装置と一緒に使用されるときのエアロゾルの送達プロファイルが、
      時間軸に対して漸増する勾配を有して上昇する初期と、
      時間軸に対して漸減する勾配を有して下降する終期と、
      前記初期と前記終期の間で1つ又は複数の極大値を有する中期と、
      を含むように構成されている、喫煙物品。
    A smoking article comprising an aerosol source, comprising:
    The delivery profile of the aerosol when used with a device capable of acting on the aerosol source to deliver the aerosol,
    An initial ascending with an increasing slope with respect to the time axis,
    An end with a declining slope with respect to the time axis, and
    A metaphase having one or more maxima between said early and said end;
    A smoking article configured to include.
PCT/JP2018/039919 2018-10-26 2018-10-26 Control unit, aerosol generation device, method and program for controlling heater, and smoking article WO2020084776A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18938030.6A EP3871531A4 (en) 2018-10-26 2018-10-26 Control unit, aerosol generation device, method and program for controlling heater, and smoking article
PCT/JP2018/039919 WO2020084776A1 (en) 2018-10-26 2018-10-26 Control unit, aerosol generation device, method and program for controlling heater, and smoking article
CN201880099021.XA CN112955040A (en) 2018-10-26 2018-10-26 Control unit, aerosol-generating device, method and program for controlling heater, and smoking article
JP2020552485A JP7117390B2 (en) 2018-10-26 2018-10-26 Control unit, aerosol generator, method and program for controlling heater, and smoking article
TW107140581A TW202015564A (en) 2018-10-26 2018-11-15 Control unit, aerosol generating device, method and program for controlling heater, and smoking article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/039919 WO2020084776A1 (en) 2018-10-26 2018-10-26 Control unit, aerosol generation device, method and program for controlling heater, and smoking article

Publications (1)

Publication Number Publication Date
WO2020084776A1 true WO2020084776A1 (en) 2020-04-30

Family

ID=70331447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039919 WO2020084776A1 (en) 2018-10-26 2018-10-26 Control unit, aerosol generation device, method and program for controlling heater, and smoking article

Country Status (5)

Country Link
EP (1) EP3871531A4 (en)
JP (1) JP7117390B2 (en)
CN (1) CN112955040A (en)
TW (1) TW202015564A (en)
WO (1) WO2020084776A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022101954A1 (en) 2020-11-10 2022-05-19 日本たばこ産業株式会社 Information processing device, information processing method, and program
WO2022101955A1 (en) 2020-11-10 2022-05-19 日本たばこ産業株式会社 Information processing device, information processing method, and program
WO2022230320A1 (en) * 2021-04-28 2022-11-03 日本たばこ産業株式会社 Aerosol generation device, control method, and computer program
WO2023002633A1 (en) * 2021-07-21 2023-01-26 日本たばこ産業株式会社 Aerosol generation system
WO2023032088A1 (en) * 2021-09-01 2023-03-09 日本たばこ産業株式会社 Dried tobacco filler, non-combustion heating-type flavor inhalation article, non-combustion heating-type flavor inhaler, and packaging product
WO2023032089A1 (en) * 2021-09-01 2023-03-09 日本たばこ産業株式会社 Dry tobacco filler, non-combustion heating-type flavor inhalation article, non-combustion heating-type flavor inhaler, and packaged product
WO2023033042A1 (en) * 2021-09-01 2023-03-09 日本たばこ産業株式会社 Tobacco sheet for non-combustion-heating-type flavor inhaler, non-combustion-heating-type flavor inhaler, and non-combustion-heating-type flavor inhalation system
WO2023073931A1 (en) * 2021-10-29 2023-05-04 日本たばこ産業株式会社 Inhalation device, base material, and control method
WO2023181280A1 (en) * 2022-03-24 2023-09-28 日本たばこ産業株式会社 Aerosol generation system, control method, and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512207A (en) * 2011-04-22 2014-05-22 チョン・コーポレーション Drug delivery system
JP2014530632A (en) * 2011-10-27 2014-11-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generation system with improved aerosol generation
JP2017509339A (en) * 2014-03-13 2017-04-06 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド Aerosol delivery device and related method and computer program product for controlling an aerosol delivery device based on input characteristics
JP2017113016A (en) 2012-12-28 2017-06-29 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Heating type aerosol generation device, and method for generating aerosol of consistent characteristics
WO2018019786A1 (en) 2016-07-26 2018-02-01 British American Tobacco (Investments) Limited Apparatus for heating smokable material
WO2018020599A1 (en) * 2016-07-27 2018-02-01 日本たばこ産業株式会社 Flavor inhaler
JP2018108100A (en) * 2013-10-09 2018-07-12 ニコベンチャーズ ホールディングス リミテッド Electronic vapor supply device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016075746A1 (en) * 2014-11-10 2016-05-19 日本たばこ産業株式会社 Non-combusting flavor inhaler and control method
CN107530511B (en) * 2015-04-30 2020-08-04 日本烟草产业株式会社 Non-combustion type aroma aspirator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512207A (en) * 2011-04-22 2014-05-22 チョン・コーポレーション Drug delivery system
JP2014530632A (en) * 2011-10-27 2014-11-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generation system with improved aerosol generation
JP2017113016A (en) 2012-12-28 2017-06-29 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Heating type aerosol generation device, and method for generating aerosol of consistent characteristics
JP2018108100A (en) * 2013-10-09 2018-07-12 ニコベンチャーズ ホールディングス リミテッド Electronic vapor supply device
JP2017509339A (en) * 2014-03-13 2017-04-06 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド Aerosol delivery device and related method and computer program product for controlling an aerosol delivery device based on input characteristics
WO2018019786A1 (en) 2016-07-26 2018-02-01 British American Tobacco (Investments) Limited Apparatus for heating smokable material
WO2018020599A1 (en) * 2016-07-27 2018-02-01 日本たばこ産業株式会社 Flavor inhaler

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3871531A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022101954A1 (en) 2020-11-10 2022-05-19 日本たばこ産業株式会社 Information processing device, information processing method, and program
WO2022101955A1 (en) 2020-11-10 2022-05-19 日本たばこ産業株式会社 Information processing device, information processing method, and program
WO2022230320A1 (en) * 2021-04-28 2022-11-03 日本たばこ産業株式会社 Aerosol generation device, control method, and computer program
WO2023002633A1 (en) * 2021-07-21 2023-01-26 日本たばこ産業株式会社 Aerosol generation system
WO2023032088A1 (en) * 2021-09-01 2023-03-09 日本たばこ産業株式会社 Dried tobacco filler, non-combustion heating-type flavor inhalation article, non-combustion heating-type flavor inhaler, and packaging product
WO2023032089A1 (en) * 2021-09-01 2023-03-09 日本たばこ産業株式会社 Dry tobacco filler, non-combustion heating-type flavor inhalation article, non-combustion heating-type flavor inhaler, and packaged product
WO2023033042A1 (en) * 2021-09-01 2023-03-09 日本たばこ産業株式会社 Tobacco sheet for non-combustion-heating-type flavor inhaler, non-combustion-heating-type flavor inhaler, and non-combustion-heating-type flavor inhalation system
WO2023073931A1 (en) * 2021-10-29 2023-05-04 日本たばこ産業株式会社 Inhalation device, base material, and control method
WO2023181280A1 (en) * 2022-03-24 2023-09-28 日本たばこ産業株式会社 Aerosol generation system, control method, and program

Also Published As

Publication number Publication date
EP3871531A1 (en) 2021-09-01
JP7117390B2 (en) 2022-08-12
TW202015564A (en) 2020-05-01
JPWO2020084776A1 (en) 2021-09-02
EP3871531A4 (en) 2022-07-13
CN112955040A (en) 2021-06-11

Similar Documents

Publication Publication Date Title
WO2020084776A1 (en) Control unit, aerosol generation device, method and program for controlling heater, and smoking article
WO2020084773A1 (en) Control unit, aerosol generation device, and method and program for controlling heater
WO2020084775A1 (en) Control unit, aerosol generation device, method and program for controlling heater, and smoking article
JP7242773B2 (en) ELECTRONIC SMOKING ARTICLES INCLUDING HEATING DEVICES EMPLOYING SOLID AEROSOL GENERATING SOURCES, AND RELATED APPARATUS AND METHODS
CN111052857B (en) Adaptive power output smoking article for identifying attributes of aerosol generating element and related methods
EP3361888B1 (en) A method for operating an electronic vapour inhaler
WO2020039589A1 (en) Suction component generator, method for controlling suction component generator, and program therefor
CN111542240A (en) Aerosol generating device, control method for aerosol generating device, and device for aerosol generating device
JP7345014B2 (en) Aerosol generation device and method for controlling it
JP2021531736A (en) Aerosol generation device
KR20210075108A (en) Aerosol-generating device and heating chamber for aerosol-generating device
KR20150130458A (en) Heating control arrangement for an electronic smoking article and associated system and method
EP4064909A1 (en) Aerosol generation device, controller for an aerosol generation device, method of controlling an aerosol generation device
JP7316361B2 (en) Aerosol generator and method of operation
JP7190554B2 (en) Control unit, aerosol generator, method and program for controlling heater, and smoking article
JP7496315B2 (en) Control unit, aerosol generating device, and method and program for controlling heater
RU2772162C1 (en) Control unit, an aerosol generating device, a method and a computer-readable data carrier for controlling the heater, as well as a smoking product
RU2772840C1 (en) Control unit, aerosol generation device, heater control method, computer readable data medium and smoking product
KR20230011091A (en) Aerosol generating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020552485

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018938030

Country of ref document: EP

Effective date: 20210526