WO2020079838A1 - Capacitance sensor substrate and electronic device - Google Patents

Capacitance sensor substrate and electronic device Download PDF

Info

Publication number
WO2020079838A1
WO2020079838A1 PCT/JP2018/039045 JP2018039045W WO2020079838A1 WO 2020079838 A1 WO2020079838 A1 WO 2020079838A1 JP 2018039045 W JP2018039045 W JP 2018039045W WO 2020079838 A1 WO2020079838 A1 WO 2020079838A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
oxide
conductive
sensor substrate
thin film
Prior art date
Application number
PCT/JP2018/039045
Other languages
French (fr)
Japanese (ja)
Inventor
港 浩一
福吉 健蔵
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to PCT/JP2018/039045 priority Critical patent/WO2020079838A1/en
Publication of WO2020079838A1 publication Critical patent/WO2020079838A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present invention relates to a capacitance sensor substrate having a capacitance type touch sensing function, and an electronic device having the capacitance sensor substrate.
  • a display device that can directly input to the display screen with a finger or a pointer, such as a smartphone or a tablet terminal having a capacitance-based touch sensing function, is becoming common.
  • Capacitive touch sensing technology is also used as fingerprint authentication technology for detecting uneven shapes such as fingerprints.
  • Various types of detection are possible, such as pen input, feather touch input (light touch input that is close to non-contact), and touch input that applies a large pressing force to the board, and it is expanded and applied to detect the pressing force on the board. Is being done.
  • the self-capacitance type touch sensing method uses an individual electrode pattern in which a plurality of electrodes formed of a transparent conductive film such as ITO are electrically independently formed to measure the capacitance generated in each electrode. This is a detection method.
  • the mutual capacitance type touch sensing method is a method of arranging touch sensing wirings (hereinafter, abbreviated as touch wirings) in the X direction and the Y direction, and detecting a capacitance generated between the X direction wiring and the Y direction wiring. Is.
  • touch wirings hereinafter, abbreviated as touch wirings
  • the mutual capacitance type touch sensing method can realize a simple circuit configuration. However, it is often inferior to the self-capacitance type touch sensing method from the viewpoint of touch signal accuracy.
  • Patent Document 1 discloses a fingerprint input device using MOS-FETs arranged in a grid.
  • the fingerprint input device disclosed in Patent Document 1 is formed on a silicon substrate. Silicon substrates are expensive and easily broken. Further, from the viewpoint of substrate size, it is difficult to apply a silicon substrate to an electronic device including a large substrate or a resin substrate that constitutes a display device or the like.
  • Patent Document 2 discloses a fingerprint sensor that employs glass for a substrate and employs sensor electrodes in which conductive layers such as ITO are arranged in a matrix in the X and Y directions.
  • conductive layers such as ITO are arranged in a matrix in the X and Y directions.
  • an oxide semiconductor or amorphous silicon formed of polycrystalline silicon may be used as the first semiconductor layer SC1 formed in the sensor circuit. ing. This technique solves the problem of the fingerprint sensor using a silicon substrate.
  • Patent Document 3 discloses a mutual capacitance type touch panel having a dielectric structure having a relative dielectric constant in the range of about 20 to about 100.
  • the touch panel 100 is an ITO touch panel having drive electrodes 102 such as ITO drive traces / tracks that intersect each other (crossover), as shown in paragraph [0010].
  • Disclosed in paragraph [0015] is a dielectric structure 104 of a ferroelectric such as barium titanate, or a dielectric material such as niobium pentoxide or titanium dioxide.
  • the dielectric structure 104 is disposed on the sensor electrode 110 with a film thickness ranging from about 10 nanometers to about 100 nanometers.
  • Patent Document 3 does not specifically disclose the method for forming the dielectric material, it is assumed from the description in paragraph [0002] that a display is provided below the touch panel.
  • the dielectric structure is a thin film having a thickness of 10 to 100 nanometers, it is assumed to be a visible light transparent laminated thin film including an ITO underlayer in a thin film process such as vacuum film formation.
  • It Patent Document 3 discloses an increase in power consumption due to a large dielectric loss (tan ⁇ ) when a ferroelectric material such as barium titanate is used as a dielectric material, and further after touch input by a pointer such as a finger or a pen ( Or before resetting the capacitance that occurs before the next touch input) is not considered.
  • Patent Document 4 discloses a liquid crystal display device having a touch sensing function that utilizes the capacitance between the electrode 37 and the common electrode 33 for touch sensing.
  • a color filter and an interlayer insulating film are provided between the electrode 37 and the electrode 33.
  • the electrode 37 and the electrode 33 have translucency.
  • the transistor 31 is a transistor including an oxide semiconductor in a semiconductor layer.
  • Patent Document 5 discloses a technique for providing a thin film transistor having improved field effect mobility by using a multilayer structure including an oxide semiconductor film or by devising composition and crystallinity of a multilayer oxide semiconductor. Disclosure.
  • the film thickness of the oxide semiconductor which is the channel layer of the thin film transistor is a very thin film thickness region of several tens nm.
  • paragraphs [0170] to [0176] disclose respective film thicknesses in a multilayer oxide semiconductor of 1 nm or more and less than 20 nm, or 20 nm or more and 100 nm or less. In the process of forming a multi-layer film in the region of several tens of nm, for example, variations easily occur between film formation lots.
  • a plurality of sputtering targets starting materials
  • a film formation apparatus having different chambers film formation chambers
  • Patent Document 6 discloses a laminated structure of a light absorbing resin layer pattern and a metal layer pattern, and it is shown that the metal layer pattern is an alloy layer containing copper as a main material and a copper layer.
  • the light absorbing material is carbon, and the optical density for suppressing light reflection is described.
  • No transistor is provided on the first transparent substrate (counter substrate) having such a laminated structure, and for example, as a dielectric layer, electrical characteristics required for touch sensing are not disclosed.
  • the present invention has been made in view of the above background art and problems, and is a capacitive sensor substrate applicable to high-definition and highly accurate fingerprint authentication and pen input, and an electronic device including the capacitive sensor substrate. I will provide a.
  • a capacitive sensor substrate includes a substrate having a first surface and a second surface, a dielectric layer including carbon, the dielectric layer being provided above the second surface, and a gate electrode.
  • a thin film transistor which has a source electrode, a drain electrode, a channel layer formed of an oxide semiconductor layer, and a gate insulating layer and is provided above the second surface; and a metal layer, which is above the second surface.
  • a second conductive layer having a metal layer and provided above the second surface, the first conductive layer being provided on the first surface and forming at least the capacitor pattern and the gate electrode.
  • the gate electrode is electrically associated with the capacitor pattern, the dielectric layer overlaps the capacitor pattern in a plan view, and the dielectric layer is more touch-sensitive than the capacitor pattern in the thickness direction of the substrate. It is near the input surface.
  • the dielectric layer is carbon, and at least one or more fine particles selected from the group consisting of metal oxides, metal oxynitrides, and metal nitrides, It may be a resin dispersion containing.
  • the dielectric layer may have an electrical resistivity of 1 ⁇ 10 8 ⁇ cm or more and less than 1 ⁇ 10 13 ⁇ cm.
  • the dielectric loss of the dielectric layer may be 0.01 or more and less than 0.2.
  • the film thickness of the dielectric layer may be in the range of 0.2 ⁇ m or more and 10 ⁇ m or less.
  • each of the first conductive layer and the second conductive layer may have a three-layer structure in which the metal layer is sandwiched by conductive oxide layers. Good.
  • the thin film transistor in a cross-sectional view along the thickness direction of the thin film transistor, has an overlapping portion in which an end portion of the channel layer is covered with the second conductive layer.
  • An interface where the conductive oxide layer and the channel layer contact each other may be formed in the overlapping portion.
  • the conductive oxide layer may include indium oxide.
  • the oxide semiconductor layer may include indium oxide and at least one of antimony oxide and bismuth oxide.
  • the oxide semiconductor layer may include at least one of cerium oxide and tin oxide.
  • the electronic device includes the capacitive sensor substrate according to the first aspect and the antenna.
  • An electronic device includes the capacitance sensor substrate according to the first aspect, an array substrate having a substrate surface on which a thin film transistor array is arranged, and a display functional layer, and the capacitance sensor substrate The display function layer is sandwiched between the capacitive sensor substrate and the array substrate so that the second surface of the array substrate faces the substrate surface of the array substrate.
  • FIG. 3 is a partially enlarged view showing the configuration of the capacitive sensor substrate according to the first embodiment of the present invention, which is a circuit diagram showing a unit cell including a capacitor pattern and a thin film transistor (first thin film transistor).
  • FIG. 3 is a partial cross-sectional view showing the configuration of the capacitive sensor substrate according to the first embodiment of the present invention, which is a cross-sectional view showing a unit cell taken along the line A-A ′ shown in FIG. 1.
  • FIG. 3 is a partial cross-sectional view showing the configuration of the capacitive sensor substrate according to the first embodiment of the present invention, which is an enlarged cross-sectional view showing the thin film transistor in FIG. 1.
  • FIG. 1 is a circuit diagram showing a unit cell including a capacitor pattern and a thin film transistor (first thin film transistor).
  • FIG. 3 is a partial cross-sectional view showing the configuration of the capacitive sensor substrate according to the first embodiment of the present invention, which is a cross-sectional view showing a unit cell taken
  • FIG. 5 is an enlarged cross-sectional view illustrating a portion where the end surface of the first channel layer and the conductive layer in the first thin film transistor according to the first embodiment of the present invention overlap with each other. It is an expanded sectional view explaining a reference example of a thin film transistor which has a portion where an end face of a conductive layer and a channel layer contact.
  • FIG. 7 is a partially enlarged view showing the configuration of the capacitance sensor substrate according to the modified example of the first embodiment of the present invention, and a circuit diagram showing a unit cell including a capacitor pattern and a thin film transistor (second thin film transistor).
  • FIG. 7 is a partial cross-sectional view showing the configuration of the capacitance sensor substrate according to the modified example of the first embodiment of the present invention, which is a cross-sectional view showing a unit cell taken along line B-B ′ shown in FIG. 6.
  • FIG. 7 is a partial cross-sectional view showing the configuration of a capacitance sensor substrate according to a modification of the first embodiment of the present invention, which is a cross-sectional view showing the thin film transistor in FIG. 6.
  • FIG. 6 is a cross-sectional view partially showing a display device which is an electronic device according to a second embodiment of the invention.
  • FIG. 6 is a plan view showing a capacitive sensor substrate that constitutes a display device that is an electronic device according to a second embodiment of the invention.
  • FIG. 6 is a circuit diagram illustrating a circuit configuration of an array substrate of a display device that is an electronic device according to a second embodiment of the present invention.
  • FIG. 6 is a plan view showing a unit cell of a display device which is an electronic device according to a second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a thin film transistor included in a capacitive sensor substrate that constitutes a display device that is an electronic device according to a second embodiment of the present invention. It is a top view which shows the IC card which is an electronic device which concerns on 3rd Embodiment of this invention.
  • planar view means “planar view from the first surface” and “planar view from the second surface”. Further, the “plan view seen from the first surface” is the “plan view” in the configuration in which the dielectric layer, the insulating layer, and the capacitor pattern stacked on the second surface (back surface) of the substrate are stacked in this order. Means The phrase “planar view seen from the second surface” means a planar view seen from a direction opposite to the “planar view seen from the first surface”. The “plan view seen from the second surface” means “plan view” in the configuration in which the capacitor pattern, the insulating layer, and the dielectric layer are laminated in this order on the second surface of the substrate. In other words, in the embodiment of the present invention, it means that the pointer (finger or the like) used for touch sensing is arranged in a position closer to the pointer than the capacitor pattern in the direction in which the substrate approaches. To do.
  • the first conductive pattern and the second conductive pattern may be simply referred to as a conductive pattern or a conductive layer.
  • Each of the conductive layers (conductive patterns) has a three-layer structure in which a metal layer or an alloy layer is sandwiched by conductive oxide layers.
  • a structure or pattern obtained by processing a conductive layer so as to have a shape of a wiring, a capacitor, an electrode, or the like may be referred to as a conductive pattern.
  • the main thin film transistor includes an oxide semiconductor layer as a channel layer.
  • the thin film transistor may include a polysilicon semiconductor layer as a channel layer, if necessary.
  • the drain electrode and the source electrode in the embodiments described later may be arranged interchangeably.
  • the scanning line may also serve as the power supply line in some cases.
  • the “display function layer” included in the electronic device includes a plurality of light emitting diode elements referred to as LEDs (Light Emitting Diodes) and a plurality of organic EL elements referred to as OLEDs ( Either an organic electroluminescence device or a liquid crystal layer can be used.
  • LEDs Light Emitting Diodes
  • OLEDs Organic Electrode Electrode Electrode Electrode Electrode Electrode Electrode Electrode Electrode
  • Either an organic electroluminescence device or a liquid crystal layer can be used.
  • FIG. 1 is a partially enlarged view showing a configuration of a unit cell (sensing element) of a capacitive sensor substrate 100A according to the first embodiment of the present invention, which shows a unit cell including a capacitor pattern 12 and a thin film transistor (first thin film transistor 31). It is a circuit diagram shown.
  • the minimum element configuration is shown as the configuration of the unit cell. That is, FIG. 1 exemplifies the minimum element configuration in which the first thin film transistor 31 includes only one in the partitioned region partitioned by the scanning line 13 and the output line 21. Note that, although FIG.
  • the capacitor pattern 12 is arranged in a unit cell 19 defined by a scanning line and an output line.
  • the capacitor pattern 12 may have a parallelogram shape instead of a rectangular shape, and an opening may be formed inside the capacitor pattern 12.
  • the unit cell 19 detects the electrostatic capacity of an operation including the contact of a pointer such as a finger, or the electrostatic capacity of a minute uneven portion such as a fingerprint.
  • the “fingerprint sensor” means a sensor that detects the unevenness of the skin of the living body by capacitance and is not limited to the “fingerprint”.
  • the fingerprint authentication may be alternative authentication using a part of the body (body) such as a palm wider than the area of the finger.
  • the unit cell 19 is a region divided by the scanning line 13 that drives the first thin film transistor 31 and the output line 21 to which an output signal is applied from the first thin film transistor 31. As will be described later, if it is limited to the outermost periphery of the display area, apparently one of the scanning line 13 and the output line 21 is not arranged, and the unit cell is not partitioned by the scanning line 13 and the output line 21. However, in the embodiment of the present invention, such a unit cell is also treated as a “unit cell”. In addition, the unit cell can also be referred to as a “sensing unit related to touch sensing”.
  • a conductive layer in which a dielectric layer, a metal layer or an alloy layer is sandwiched by conductive oxides, a first thin film transistor, one capacitor pattern, a light absorbing layer, etc., if necessary.
  • the sensing element constituted by is defined as a unit cell 19.
  • a plurality of unit cells 19 are arranged in a matrix on the capacitive sensor substrate 100A.
  • the sensing element or the unit cell may be used as a technical term for the description.
  • the sensing element or unit cell 19 has the same meaning as a region where the capacitor pattern 12 is formed, that is, a region defined by the scanning line 13 and the output line 21.
  • the scanning line 13 extends parallel to the first direction
  • the output line 21 extends parallel to the second direction orthogonal to the first direction.
  • the scanning line also serves as the power supply line. Further, the roles (functions) of the scanning line and the output line can be interchanged.
  • the change in capacitance when a pointer such as a finger comes into contact with or comes close to the capacitance sensor substrate 100A is a change in capacitance of the dielectric layer 3 on each capacitor pattern 12 via the first thin film transistor 31. Detected. From this point of view, a general mutual capacitance type touch sensing technology for detecting a capacitance change between conductive wirings such as a plurality of orthogonal ITO (transparent conductive films) and the technology according to the first embodiment of the present invention are basically. Differently.
  • the technology according to the first embodiment of the present invention is a technology close to the self-capacitance method.
  • the sensing element (unit cell 19) includes a first conductive pattern 10P, a second conductive pattern 20P, a first thin film transistor 31, and a capacitor pattern 12.
  • the first thin film transistor 31 includes a first source electrode 22 and a first drain electrode 23 that are a part of the second conductive pattern 20P, and a first gate electrode 11 that is a part of the first conductive pattern 10P.
  • the first thin film transistor 31 includes at least a first source electrode 22, a first drain electrode 23, and a first gate electrode 11.
  • the first thin film transistor 31 has a first gate electrode 11, a first source electrode 22, a first drain electrode 23, a first channel layer 16 (described later, an oxide semiconductor layer), and a gate insulating layer 18. .
  • the first source electrode 22 is connected to the scanning line 13 via the contact hole 29.
  • the first drain electrode 23 is electrically linked to the output line 21.
  • the output line 21, the first source electrode 22, and the first drain electrode 23 form a second conductive pattern 20P.
  • the second conductive pattern 20P is formed of the second conductive layer 20.
  • the capacitor pattern 12, the first gate electrode 11, and the scanning line 13 form a first conductive pattern 10P.
  • the first conductive pattern 10P is formed of the first conductive layer 10.
  • the first conductive pattern 10P and the second conductive pattern 20P may be simply referred to as a conductive pattern.
  • the first conductive layer 10 and the second conductive layer 20 may be simply referred to as conductive layers.
  • the conductive layer preferably has a structure in which a metal layer or an alloy layer is sandwiched between conductive oxide layers.
  • FIG. 2 is a partial cross-sectional view showing the configuration of the capacitive sensor substrate 100A according to the first embodiment of the present invention, which is a cross-sectional view showing a unit cell along the line AA ′ shown in FIG.
  • FIG. 2 mainly shows the cross-sectional structure of the capacitor pattern 12 and the first thin film transistor 31.
  • the capacitive sensor substrate 100A has a substrate 102 having a first surface 1 and a second surface 2.
  • the first surface 1 is a touch input surface (touch sensing input surface) with which a pointer such as a finger approaches or touches (touches).
  • Reference numeral TD in FIG. 2 indicates a direction in which a pointer such as a finger approaches or contacts the first surface 1.
  • a dielectric layer 3 is formed above the second surface 2, and a first conductive pattern 10P and a second conductive pattern 20P are formed on the dielectric layer 3.
  • the dielectric layer 3 is formed on the second surface 2 so as to cover the entire surface of the unit cell 19. In the thickness direction of the substrate 102, the dielectric layer 3 is located closer to the first surface 1 (touch sensing input surface) than the capacitor pattern 12.
  • the first insulating layer 17, the scanning line 13 and the capacitor pattern 12 forming the first conductive pattern 10P are formed on the dielectric layer 3. Has been done.
  • the dielectric layer 3 overlaps with the capacitor pattern 12 in a plan view.
  • the first insulating layer 17 and the first source electrode 22 and the first drain electrode forming the second conductive pattern 20P are formed on the dielectric layer 3. 23 and an output line 21 are formed. Further, the first channel layer 16 which is a component of the first thin film transistor 31 is formed on the first insulating layer 17, and the first channel layer 16 is formed on the first channel layer 16 with the gate insulating layer 18 interposed therebetween. The first gate electrode 11 forming the conductive pattern 10P is formed.
  • the dielectric layer 3, the first insulating layer 17, and the second conductive layer 20 are formed on the second surface 2 of the substrate 102. 20P) are laminated in this order. Further, the first conductive layer 10 (first conductive pattern 10P) is formed on the second conductive layer 20 via the gate insulating layer 18. Further, the second insulating layer 27 and the third insulating layer 28 are stacked in this order on the first conductive layer 10. That is, the first conductive layer 10 and the second conductive layer 20 are provided above the second surface 2.
  • the dielectric layer 3 and the first insulating layer 17 are laminated in this order on the second surface 2 of the substrate 102.
  • the dielectric layer 3 is provided on the second surface 2
  • the first insulating layer 17 is provided so as to cover the exposed surface (surface) of the second surface 2 and the surface of the dielectric layer 3. ing.
  • the output line 21, the first source electrode 22, the first drain electrode 23, and the like that form the second conductive pattern 20P, and the first channel layer 16 are provided on the first insulating layer 17, the output line 21, the first source electrode 22, the first drain electrode 23, and the like that form the second conductive pattern 20P, and the first channel layer 16 are provided.
  • a gate insulating layer 18 is provided so as to cover the first channel layer 16, the first source electrode 22, the first drain electrode 23, and the like.
  • the capacitor pattern 12 and the first gate electrode 11 which form the first conductive pattern 10P are provided. As shown in FIG. 1, the capacitor pattern 12 and the first gate electrode 11 are electrically linked.
  • the dielectric layer 3 is provided closer to the touch input surface (first surface 1) than the capacitor pattern 12.
  • the position of the first channel layer 16 which is an oxide semiconductor will be described in detail later.
  • the second insulating layer 27 and the third insulating layer 28 may be formed of, for example, an inorganic insulating film made of silicon oxide or silicon nitride, or a flattening film made of a transparent resin is laminated. It may have a different configuration.
  • the third insulating layer 28 serves as a protective substrate that protects the capacitive sensor substrate 100A when a finger or a pointer contacts (touches) the capacitive sensor substrate 100A.
  • a substrate having strength such as tempered glass and sapphire substrate can be adopted.
  • a hard resin plate can be used as the third insulating layer 28.
  • the thickness of the third insulating layer 28 is appropriately set, the resolution related to touch sensing in the capacitive sensor substrate 100A can be easily improved when the thickness of the third insulating layer 28 is thin.
  • a sapphire substrate As a specific substrate material of the substrate 102 applicable to the capacitance sensor substrate 100A, a sapphire substrate, a substrate made of aluminosilicate glass, an acrylic substrate, a polyester film, a polyimide film, or a TAC film used for a polarizing plate, Various substrates such as a resin substrate laminated with polyvinyl chloride used for IC cards (including security cards, data cards, smart cards) and the like can be used.
  • the substrate 102 does not need to be transparent, and a substrate colored in white or another color may be used as the substrate 102.
  • the capacitive sensor substrate 100A when used in a device that performs fingerprint authentication, it is desirable that the capacitive sensor substrate 100A be a substrate that is rigid like a glass substrate and has a highly accurate flatness and flatness.
  • a glass substrate reinforced by an ion exchange method or a quenching method can be applied to the substrate 102.
  • the thickness of the substrate 102 can be selected from the range of 0.1 mm to 1.5 mm, for example. However, the thickness of the substrate 102 is not limited to this thickness range. In the case of the present embodiment, the resolution of touch sensing can be improved by reducing the thickness of the substrate 102.
  • the capacitive sensor substrate 100A according to the present embodiment is applied to a laminated body of resin substrates such as an IC card, an antenna, a control IC chip, and an antenna and a control IC are provided on a resin sheet called an inlet. Conductor wiring for electrically connecting to the IC chip may be provided, and then a plurality of layers of resin sheets may be attached to the capacitive sensor substrate 100A to form a card-shaped laminated body.
  • the dielectric layer 3 according to the embodiment of the present invention contains carbon. Therefore, the dielectric layer according to the embodiment of the present invention can also be referred to as a black dielectric layer.
  • the dielectric layer 3 is composed of a dispersion in which carbon is dispersed in a resin, or a dispersion in which fine particles such as a metal oxide or a metal nitride are further added to carbon. That is, the dielectric layer 3 is a resin dispersion containing carbon and at least one fine particle selected from the group consisting of metal oxides, metal oxynitrides, and metal nitrides.
  • the carbon dispersion can be adjusted in various electrical characteristics as a dielectric for touch sensing applications.
  • the carbon dispersion is suitable as a dielectric used for capacitance-type touch sensing because it can adjust electrical characteristics such as relative permittivity, dielectric loss, and resistivity in a wide range.
  • the dielectric layer 3 covers at least the capacitor pattern 12 in plan view.
  • the size of the dielectric layer 3 in plan view may be equal to the size of the capacitor pattern 12.
  • the dielectric layer 3 may be formed so as to cover the whole of the plurality of unit cells.
  • the relative permittivity of the dielectric layer 3 can be set to 150 or more by adjusting the dispersed state of carbon or adding fine particles of ferroelectric substance or fine particles of paraelectric substance to the dielectric layer 3.
  • the capacitive sensor substrate 100A according to the present embodiment When the capacitive sensor substrate 100A according to the present embodiment is applied to an electronic device in which an increase in power consumption is a problem due to the dielectric loss (tan ⁇ ) of the dielectric layer 3 (for example, mobile device), the dielectric layer 3 of The relative dielectric constant may be suppressed within the range of 15 to 100.
  • the dielectric layer 3 As a material forming the dielectric layer 3 according to the embodiment of the present invention, a dispersion in which carbon is dispersed in a resin such as acryl, epoxy, or polyimide can be used. Furthermore, carbon nanotubes, carbon nanohorns, carbon nanobrushes, etc. may be mixed and dispersed in the resin. Alternatively, part of the structure of the dielectric layer 3 may be replaced with carbon and the carbon nanotubes may be dispersed in the resin. Hereinafter, the dielectric layer 3 may be simply referred to as a dielectric.
  • a paraelectric material is a dielectric material that does not have electric polarization in a state where an electric field is not applied and has a small dielectric loss.
  • the paraelectric metal oxide or metal nitride has a relative dielectric constant of 110 or less and a dielectric loss of 0.00001 to 0.1. It is defined as the powder of the product.
  • the measurement frequency of these electrical characteristics is a touch sensing frequency described below, and is measured at room temperature of 20 ° C., for example.
  • the measurement voltage may be in the range of 0.5V to 10V, for example.
  • As the measurement voltage and the measurement frequency it is desirable to use values close to the measurement voltage and the measurement frequency used for actual touch sensing.
  • the dielectric layer 3 includes extender pigments such as calcium oxide, calcium carbonate, barium sulfate, silicon dioxide, kaolin, and clay for the purpose of adjusting the dispersed state of carbon and adjusting the relative dielectric constant. Can be added to the dielectric layer 3.
  • extender pigments such as calcium oxide, calcium carbonate, barium sulfate, silicon dioxide, kaolin, and clay for the purpose of adjusting the dispersed state of carbon and adjusting the relative dielectric constant.
  • a dispersion of resin in which titanium oxide, titanium nitride, titanium oxynitride, titanium black, barium zirconate, magnesium titanate, calcium sulfate, or another dielectric powder having a high dielectric constant is added.
  • the fine particles are, for example, fine particles having an average particle diameter in the range of 0.02 ⁇ m or more and 2 ⁇ m or less.
  • barium titanate which is known as a ferroelectric material, is not a preferable material as a dielectric material used for
  • the dielectric layer 3 is composed of fine particles of metal oxide such as carbon or titanium oxide dispersed in a resin and having a relative dielectric constant of 10 to 700, or 15 to 100.
  • the dielectric loss (tan ⁇ ) of the dispersion (solid) of the dielectric layer 3 may be in the range of 0.01 or more and less than 0.2 at the touch sensing frequency in the range of 200 Hz to 500 KHz, for example. Further, the value of the dielectric loss is preferably 0.08 or less. If the value of dielectric loss exceeds 0.2, power consumption related to touch sensing increases, which is not preferable.
  • a dispersion having a small dielectric loss of 0.01 or less is used in a dielectric layer using a resin dispersion such as carbon or titanium oxide, it may be difficult to secure a large relative dielectric constant.
  • the resistivity of the dielectric layer 3 may be adjusted so that the reset is completed within the reset period.
  • the resistivity of the dielectric is set to less than 1 ⁇ 10 13 ⁇ cm, and the relaxation time (or time constant) is shortened.
  • the resistivity of the dielectric layer 3 may be 1 ⁇ 10 13 ⁇ cm or more.
  • the resistivity of the dielectric is set to 1 ⁇ 10 14 ⁇ cm or more, the relaxation time may be adversely affected. Therefore, the technical value of making the resistivity of the dielectric material 1 ⁇ 10 14 ⁇ cm or more is low.
  • the potential of the capacitor pattern 12 is reset (in the reset period after touch sensing by a pointer such as a finger). For example, it may be difficult to completely perform (return to the ground potential).
  • the reset period can be shortened. If the dielectric layer has a resistivity lower than 1 ⁇ 10 7 ⁇ cm, sufficient capacitance cannot be ensured, and there is a concern that touch sensing accuracy may be reduced.
  • the dielectric layer 3 it is possible to adopt a multilayer structure in which a plurality of layers having different electrical characteristics such as relative permittivity and resistivity are laminated.
  • electrical characteristics such as. In this film thickness direction, the relative dielectric constant of the dielectric located near the capacitor pattern 12 may be increased, and the relative dielectric constant of the dielectric located away from the capacitor pattern 12 may be decreased.
  • the carbon concentration contained in the dielectric layer 3 may be adjusted along the thickness direction of the dielectric layer 3. Furthermore, the dispersion state of carbon may be changed along the thickness direction of the dielectric layer 3.
  • the dielectric layer 3 may have a gradient of dielectric constant along the thickness direction.
  • the dielectric layer 3 may partially have a high relative dielectric constant near the interface between the capacitor pattern 12 and the first insulating layer 17.
  • a substrate having a low relative permittivity or a material having a relative permittivity of 8 or less can be used as the substrate 102.
  • the relative dielectric constant of the substrate 102 may be, for example, 5 or less.
  • the member located at the interface between the substrate 102 and the capacitor pattern 12 has a high relative dielectric constant.
  • the dielectric layer 3 located at the interface between the substrate 102 and the capacitor pattern 12 has a high relative permittivity.
  • the protective substrate eg, cover glass
  • the dielectric layer 3 have a relative dielectric constant that is three times or more the relative dielectric constant of.
  • the electrical characteristics of the dielectric layer 3 can be adjusted variously according to the content of touch sensing as described above.
  • the fine particles are, for example, fine particles having an average particle size in the range of 0.02 to 2 ⁇ m.
  • the distance Pz between the pointer such as a finger and the dielectric layer may practically be in the range of 0.1 mm to 1.5 mm.
  • the distance Pz includes the thickness of a cover glass for protection, a polarizing plate, a retardation plate and the like.
  • the capacitive sensor substrate 100A is not applied to the display device, for example, when the capacitive sensor substrate 100A is applied to a fingerprint sensor, the above members are unnecessary and the distance Pz between the pointer such as a finger and the dielectric layer is small. it can.
  • the distance Pz is important for the resolution of the capacitive sensor substrate 100A.
  • the thickness of the dielectric layer 3 is not so important from this point of view.
  • the resin dispersion containing mainly carbon is used for the dielectric layer 3, and the thickness of the dielectric layer 3 may be in the range of 0.2 ⁇ m to 10 ⁇ m.
  • the viscosity of the resin dispersion containing mainly carbon is adjusted by adding an organic solvent and the like, and the resin dispersion can be formed by using a general coating technique such as a curtain coater or a spin coater.
  • FIG. 3 is a partial cross-sectional view showing the configuration of the capacitive sensor substrate 100A according to the first embodiment of the present invention, which is a partially enlarged view of the first thin film transistor 31 shown in FIG.
  • the dielectric layer 3 is formed on the substrate 102, and the first insulating layer 17 is formed on the dielectric layer 3.
  • the first channel layer 16, the first source electrode 22, the first drain electrode 23, the first gate electrode 11, and the like, which form the first thin film transistor, are formed on the first insulating layer 17. That is, the first thin film transistor 31 is provided above the second surface 2.
  • the first thin film transistor 31 shown in FIG. 3 is a top-gate transistor. That is, the first gate electrode 11 is provided above the first source electrode 22, the first drain electrode 23, and the first channel layer 16 in a cross-sectional view. Each of the first source electrode 22, the first drain electrode 23, and the first gate electrode 11 is formed of a conductive layer, and a metal layer or an alloy layer is sandwiched between conductive oxide layers as described later. (Three-layer structure). On the other hand, the first channel layer 16 is made of an oxide semiconductor. Both ends of the first channel layer 16 are covered with a conductive oxide layer (reference numeral 41 in FIG. 4) forming the second conductive layer 20. That is, as shown in FIG.
  • the first thin film transistor 31 has an overlapping portion in which the end portion of the first channel layer 16 is covered with the second conductive layer 20. It has a section 44.
  • the overlapping portion 44 forms an interface where the first conductive oxide layer 41 and the first channel layer 16 are in contact with each other.
  • oxide semiconductor layer examples of the oxide semiconductor applicable to the first channel layer 16 include oxide semiconductors selected from two or more of indium oxide, zinc oxide, gallium oxide, silicon oxide, antimony oxide, bismuth oxide, cerium oxide, tin oxide and the like.
  • oxide semiconductor layer may include indium oxide and at least one of antimony oxide and bismuth oxide.
  • oxide semiconductor layer may include at least one of cerium oxide and tin oxide.
  • the film thickness of the oxide semiconductor layer can be, for example, 30 nm or more and 90 nm or less.
  • An oxide semiconductor obtained by adding at least one of antimony oxide and bismuth oxide to indium oxide has an advantage that it can be crystallized by low temperature annealing at 340 ° C. or lower.
  • the heat treatment at a temperature higher than 350 ° C. has a problem that copper contained in the conductive layer (conductive pattern) is diffused in the semiconductor layer.
  • the diffusion of copper impairs the problem that the resistance value of the copper wiring increases and the characteristics of the thin film transistor. Therefore, it is preferable to employ an oxide semiconductor that is crystallized by annealing at 350 ° C. or lower.
  • the film can be formed at room temperature (20 ° C.), for example. Therefore, a resin substrate having poor heat resistance can be applied to the substrate 102.
  • the semiconductor forming step includes a laser annealing step of heating the semiconductor at around 600 ° C.
  • a structure in which a channel layer is made of an amorphous silicon semiconductor or a structure made of a polysilicon semiconductor is known.
  • the structure using an amorphous silicon semiconductor has a low electron mobility and is insufficient as a semiconductor for a touch sensor application.
  • the polysilicon semiconductor has a high electron mobility, but there is a drawback in that the leakage current becomes large as the performance of the transistor and it is difficult to maintain the electrostatic capacity during touch sensing.
  • both the amorphous silicon semiconductor and the polysilicon semiconductor have a low electrical breakdown voltage, and there is a drawback that the transistor is destroyed depending on the degree of change in capacitance during touch sensing.
  • the electrical resistance of the oxide semiconductor according to this embodiment is 10 times or more higher than that of the silicon-based semiconductor, and the electron mobility is also high.
  • An oxide semiconductor is preferable as a channel layer of a thin film transistor which drives a touch sensor.
  • An oxide semiconductor is suitable as a semiconductor material forming a fingerprint sensor.
  • the oxide semiconductor forming the first channel layer 16 may include cerium oxide in the oxide semiconductor.
  • the amount of cerium is 0.2 at% or more and 10 at% or less.
  • the oxide semiconductor is a complex oxide containing indium oxide, antimony oxide, indium oxide, and cerium oxide having an amount less than each amount of antimony oxide, and counting oxygen. If the total of the elements not to be added is 100 at%, the amount of each of indium and antimony is 40 at% or more. For example, when the total of elements that do not count oxygen in this oxide semiconductor is 100 at%, the amount of each of indium and antimony is 48 at%, and the amount of cerium is 4 at%.
  • antimony oxide and cerium oxide have high industrial value because they can be obtained at a low price.
  • cerium oxide may be replaced with tin oxide.
  • the oxide semiconductor a complex oxide containing one or both of cerium oxide and tin oxide in an amount smaller than the amounts of indium oxide, antimony oxide, indium oxide, and antimony oxide is adopted. Good.
  • a complex oxide containing indium oxide as a base material in an oxide semiconductor, a base material is defined as containing 40 at% of indium in terms of indium which does not count oxygen
  • tin it is possible to obtain a composite oxide having enhanced acid resistance.
  • the carrier (electron) Fermi levels of the oxide semiconductor layer including indium oxide as a base material and the conductive oxide layer including indium oxide as a base material are close to each other. It becomes easy to supply carriers to the channel layer from the overlapping portion 44 (interface described later) where the conductive oxide layer (first conductive oxide layer 41 described below) and the channel layer overlap.
  • the carrier concentration of the oxide semiconductor layer can be 1 ⁇ 10 18 / cm 3 or lower and 1 ⁇ 10 12 / cm 3 or higher.
  • the carrier concentration of the conductive oxide layer can be set within the range of 1 ⁇ 10 21 / cm 3 or less and 1 ⁇ 10 19 / cm 3 or more.
  • the indium oxide concentration or the cerium oxide concentration may be changed in the thickness direction of the first channel layer 16.
  • tin oxide may be added to such an oxide semiconductor to change the tin oxide concentration.
  • the acid resistance of the first channel layer 16 can be increased by making the composition of the surface layer of the first channel layer 16 rich in cerium oxide or tin oxide in order to extend the wet etching processability of the source electrode or the like.
  • an etching stopper layer may be laminated on the first channel layer 16, the complex oxide thin film containing cerium oxide or tin oxide becomes a film with high acid resistance by annealing at 180 ° C. or higher. Therefore, it is not necessary to positively insert the etching stopper layer, and the step of forming the etching stopper layer can be omitted.
  • This acid resistance can also be obtained by increasing the concentrations of cerium oxide and tin oxide in the composite oxide film.
  • the annealing temperature may be in the range of 180 ° C to 340 ° C, and a temperature higher than 200 ° C is more preferable.
  • oxide semiconductor layer described above can be applied to other thin film transistors different from the first thin film transistor 31, in addition to the first channel layer 16 forming the first thin film transistor 31.
  • the first gate electrode 11, the capacitor pattern 12 (capacitor electrode), and the scan line 13 form a first conductive pattern 10P.
  • the first conductive pattern 10P may have a configuration including a reset line or a power line.
  • These first conductive patterns 10P are formed of the first conductive layer 10.
  • the shape of the capacitor pattern 12 in plan view is not limited to the rectangular shape shown in FIG. 1, but may be a parallelogram or a polygonal shape (dog-leg pattern) in which the center line is a dogleg, and a plurality of parallelograms with different angles are continuous. Shape).
  • the capacitor pattern 12 is connected to the first gate electrode 11.
  • the capacitor pattern 12 supplies the first thin film transistor 31 with a change in capacitance when a pointer such as a finger comes into contact with or approaches the first surface 1 as a signal. In this sense, the capacitor pattern 12 may be referred to as a capacitor electrode.
  • the first conductive layer 10 includes at least a metal layer having high conductivity.
  • the second conductive layer 20 also includes at least a highly conductive metal layer.
  • the second conductive layer 20 includes at least a source electrode and a drain electrode as the second conductive pattern 20P.
  • the structure of a thin film transistor is roughly classified into a bottom gate structure (see FIG. 8) in which a gate electrode is formed before forming a source electrode and a top gate structure (see FIG. 3) in which a gate electrode is formed after forming a source electrode. It Therefore, the structure of the thin film transistor may be reversed depending on the order of forming the first conductive layer 10 and the second conductive layer 20.
  • the structure of the thin film transistor may be a multi-gate structure in which one transistor is provided with a plurality of gate electrodes, or the back gate electrode may be formed on the opposite surface via the channel layer. It may be a back gate structure provided.
  • the potential of the back gate electrode can be 0 V or ground, for example.
  • the threshold value (Vth) can be controlled by controlling the voltage applied to the back gate electrode.
  • the output line 21, the first source electrode 22, and the first drain electrode 23 form the second conductive layer 20 having the second conductive pattern 20P.
  • the roles (functions) of the scanning line and the output line can be interchanged. Further, the roles (functions) of the source electrode and the drain electrode can be switched. That is, in FIG. 1, reference numeral 13 may be an output line, reference numeral 21 may be a scanning line, reference numeral 22 may be a first drain electrode, and reference numeral 23 may be a first source electrode.
  • the capacitor pattern 12 is laminated on the dielectric layer 3, and the dielectric layer 3 is closer to the first surface 1 where the touch sensing is input than the capacitor pattern 12.
  • the capacitor pattern 12 and the first gate electrode 11 are formed of the same first conductive layer 10.
  • the first conductive layer 10 is located farther from the first conductive layer 20 than the second conductive layer 20 from which the touch sensing input is made.
  • the first conductive layer 10 and the second conductive layer 20 have a structure (three-layer structure) in which a metal layer or an alloy layer is sandwiched between conductive oxide layers.
  • the film thickness of the metal layer forming each of the first conductive layer 10 and the second conductive layer 20 can be, for example, 500 nm or more and 3000 nm or less.
  • the thickness of the conductive oxide layer forming each of the first conductive layer 10 and the second conductive layer 20 can be, for example, 200 nm or more and 2000 nm or less.
  • the thickness of the conductive oxide layer can be 200 nm or more to suppress the diffusion of copper in the thickness direction.
  • the formation of the metal layer having a film thickness of 3000 nm or more and the formation of the conductive oxide layer having a film thickness of 2000 nm or more are inefficient in terms of production.
  • Metal layer, alloy layer As the metal layer or alloy layer, a metal having excellent conductivity such as silver, copper, aluminum or zinc, or an alloy layer of the above metals can be applied.
  • a metal having excellent conductivity such as silver, copper, aluminum or zinc, or an alloy layer of the above metals can be applied.
  • copper and a copper alloy will be described as typical examples, but the basic technical means according to the embodiment of the present invention can be applied to metals such as silver and zinc.
  • the alloying element to be added to copper it is possible to select an alloying element whose specific resistance increase rate of the copper alloy layer is 1 ⁇ cm / at% or less.
  • the specific resistance (electrical resistivity) of the copper alloy layer can be set within the range of 1.9 ⁇ cm to 6 ⁇ cm, for example.
  • an additive element having a small effect on the electric resistivity of the copper alloy (alloy element of copper) is palladium (Pd), magnesium (Mg), beryllium (Be), Examples include gold (Au), calcium (Ca), cadmium (Cd), zinc (Zn), and silver (Ag).
  • the increase in electrical resistivity when such an element is added to pure copper at 1 at% is approximately 1 ⁇ cm or less.
  • the increase in electrical resistivity when calcium (Ca), cadmium (Cd), zinc (Zn), and silver (Ag) are added to pure copper is 0.4 ⁇ cm / at% or less.
  • Zinc and calcium can each be added as alloying elements to copper up to 5 at%.
  • the conductive layer When the thickness of the copper layer or copper alloy layer is 100 nm or more or 150 nm or more, the conductive layer hardly transmits visible light. Therefore, if the copper layer or the copper alloy layer forming the conductive layer according to the present embodiment has a film thickness of 100 nm to 500 nm, for example, sufficient light shielding properties can be obtained. The thickness of the copper alloy layer may exceed 500 nm. As will be described later, the material of the conductive layer can be applied to wirings and electrodes provided on the substrates of electronic devices and display devices.
  • a structure of a wiring electrically associated with an active element for example, as a structure of a gate electrode or a gate line, a laminated structure in which a copper alloy layer is sandwiched by conductive metal oxide layers A structure can be adopted.
  • the conductive layer (conductive pattern) according to the embodiment of the present invention may have a laminated structure in which a copper alloy layer is sandwiched by conductive metal oxide layers.
  • a mixed oxide containing 40 at% or more of indium oxide can be exemplified.
  • a method of forming a three-layer structure in which a copper layer or a copper alloy layer is sandwiched by two conductive oxide layers first, for example, a mixed oxide layer A / copper alloy layer is formed on a substrate such as glass. Deposit three layers consisting of B / mixed oxide layer C). After that, the three layers are processed by a wet etching process so as to have almost equal line widths.
  • the line widths of the mixed oxide layer A, the copper alloy layer B, and the mixed oxide layer C, which are sequentially formed on the surface of the glass substrate by the wet etching step are determined by the condition "line width of mixed oxide layer A> It is preferable that the line width of the copper alloy layer B> the line width of the mixed oxide layer C is satisfied so that the line width becomes smaller in order.
  • ITO mixed oxide containing indium oxide and tin oxide
  • copper is selectively etched, and the line widths of the three layers do not satisfy the above conditions. Therefore, the corrosion potential is adjusted by adding an easily soluble oxide such as zinc oxide, gallium oxide, or antimony oxide to indium oxide to obtain a mixed oxide layer having the same corrosion potential as the metal layer such as copper.
  • each of the first conductive layer 10 and the second conductive layer 20 is composed of a structure (three-layer structure) in which a metal layer or an alloy layer is sandwiched by conductive oxide layers. That is, the first gate electrode 11, the capacitor pattern 12, the scanning line 13, which forms the first conductive layer 10, and the output line 21, which forms the second conductive layer 20, are made of a metal or alloy having excellent conductivity. Therefore, the responsiveness of capacitance detection and the S / N ratio can be improved.
  • the metal having a high conductivity as described above include silver, copper, aluminum and the like. In consideration of reliability, silver alloy, copper alloy, aluminum alloy may be adopted.
  • silver and copper have higher conductivity than aluminum, it is preferable to use silver or copper, or a silver alloy or a copper alloy for the metal layer.
  • a conductive layer in which a metal layer or an alloy layer is sandwiched by conductive oxide layers as the configuration of the capacitor pattern 12, the scanning line 13, and the output line 21, a plurality of advantages described below can be obtained.
  • Adhesiveness For example, when wiring having a single layer of copper alloy (copper alloy wiring) is used as the structure of the conductive layer (in the case of a structure not using conductive oxide), a pointer such as a finger Depending on the magnitude of the electrostatic capacity of the copper alloy, electrostatic breakdown may occur and the copper alloy wiring may be chipped or peeled off. Furthermore, silver, silver alloys, copper, or copper alloys have insufficient adhesion to resin or glass. Further, electrostatic breakdown often occurs during pure water cleaning in the manufacturing process.
  • a conductive layer in which a metal layer or an alloy layer is sandwiched by conductive oxide layers is adopted.
  • the conductive oxide has extremely high adhesion to silver, a silver alloy, copper, a copper alloy, or the like, and further has extremely high adhesion to resin or glass. Therefore, the copper alloy wiring is hardly chipped or peeled off due to electrostatic breakdown.
  • Second merit Improvement of reliability
  • silver alloy wiring or copper alloy wiring is adopted as the structure of the conductive layer (in the case where the conductive oxide is not used)
  • silver or copper is resin or glass-based. It may diffuse into the material and cause a decrease in reliability.
  • the manufacturing process has a treatment process at a temperature higher than 250 ° C., copper or copper alloy is easily oxidized.
  • the conductive oxide layer diffuses silver or copper into the glass substrate. Suppress and suppress copper oxidation. By suppressing the diffusion and oxidation of silver and copper, the reliability of the capacitive sensor substrate 100A can be improved.
  • Silver, silver alloy, copper, or copper alloy is a relatively soft metal. Therefore, the wiring made of silver, a silver alloy, copper, or a copper alloy is easily scratched when electrically mounted at the end of the touch panel.
  • the conductive oxide is also one of the ceramic materials, and thus the conductive oxide By sandwiching the oxide layer with silver, silver alloy, copper, or copper alloy, it is possible to perform a hard and reliable mounting.
  • the first source electrode 22 is electrically connected to the scanning line 13 via the contact hole 29.
  • the conductive oxide layer provides good electrical connection in the contact hole 29.
  • copper oxide is easily formed on the surface of copper or copper alloy. Copper oxide increases the thickness over time and destabilizes electrical packaging. Similarly, oxides and sulfides are easily formed on the surface of silver.
  • a conductive oxide layer is formed on the surface of the conductive layer (conductive pattern), and ohmic contact is possible.
  • the conductive layer according to the embodiment of the present invention can be applied to source wirings, source electrodes, drain electrodes, gate electrodes, gate wirings, and touch sensing wirings of various TFTs (thin film transistors).
  • FIG. 4 is an enlarged cross-sectional view illustrating a portion where the end surface of the first channel layer 16 and the conductive layer in the first thin film transistor 31 according to the first embodiment of the present invention overlap with each other.
  • the first source electrode 22 and the first drain electrode 23 that form the second conductive layer 20 are stacked on the first channel layer 16.
  • the second conductive layer 20 has a structure in which the metal layer 5 (alloy layer) is sandwiched between the conductive oxide layers (the first conductive oxide layer 41 and the second conductive oxide layer 42). Have.
  • the first source electrode 22 and the first drain electrode 23 having such a structure have high conductivity.
  • the high conductivity obtained by the conductive oxide is expressed by the product of electron mobility and high electron concentration.
  • the first conductive oxide layer 41 which is a part of the first source electrode 22 and the first drain electrode 23 stacked on the first channel layer 16, is composed of a conductive oxide having high conductivity. .
  • the first conductive oxide layer 41 can compensate for the lack of electron mobility and carrier concentration. The characteristics of the thin film transistor can be improved.
  • the first channel layer 16 carriers (electrons) deficient in the oxide semiconductor from the overlapping portion 44 (interface) of the first conductive oxide layer 41 and the first channel layer 16 are included.
  • the high conductivity of the first conductive oxide layer 41 can be utilized.
  • the conductivity can be expressed by the product of electron concentration and electron mobility.
  • the characteristics of the first channel layer 16 can be made close to the characteristics of a single-layer intrinsic semiconductor with few carriers.
  • the threshold value (Vth) of the first thin film transistor including the first channel layer 16 having characteristics close to that of an intrinsic semiconductor can be easily made positive (normally off), and reliability of the thin film transistor can be improved.
  • the switching of the thin film transistor according to the first embodiment of the present invention can be operated more steeply.
  • a conductive layer having a three-layer structure in which a metal layer such as copper is sandwiched between conductive oxide layers can be easily patterned by wet etching, unlike the laminated structure of copper / titanium, and has a channel length L. It is also possible to form a thin film transistor having a small size.
  • a technique of forming a channel layer with a multi-layer structure including oxide semiconductors having different electrical characteristics is known.
  • the thickness of the channel layer is extremely thin, for example, about 50 nm.
  • Forming a channel layer (thin film) having such a film thickness with a three-layer structure (multilayer structure) including an oxide semiconductor tends to cause variations in the manufacturing process. In other words, variations in the characteristics of thin film transistors are likely to occur.
  • a single-layer channel layer for a thin film transistor it is possible to provide a thin film transistor with less variation in characteristics.
  • the present invention it becomes possible to form a (single-layer) oxide semiconductor layer having characteristics close to what is called an intrinsic semiconductor in a portion corresponding to the channel length L. Accordingly, by utilizing the conductive oxide layer laminated on the end of the channel layer, a thin film transistor having excellent characteristics can be provided.
  • FIG. 5 is a cross-sectional view illustrating a reference example of a thin film transistor having a portion where an end surface of a conductive layer and a channel layer are in contact with each other.
  • reference numerals 141 and 142 denote conductive oxide layers
  • reference numeral 105 denotes a metal layer.
  • the channel layer 116 contacts the exposed cross section of the metal layer 105 as shown in the Dd portion (and Ds portion). To do.
  • the oxide semiconductor included in the channel layer 116 is reduced by coming into contact with the metal layer 105 and the carrier concentration is easily changed.
  • the metal layer 105 contains copper or silver, there is a problem that copper or the like diffuses into the oxide semiconductor layer (channel layer 116) and the semiconductor characteristics are easily deteriorated. Therefore, in order to solve such a problem, the end of the channel layer 116 needs to be covered with the second conductive layer 20 (conductive oxide layer) as shown in FIG.
  • the conductive oxide layer containing indium oxide suppresses the diffusion of metal from the metal layer in the temperature range of 340 ° C. or lower, and easily stabilizes the characteristics of the thin film transistor. As proposed in FIG. 4 and the like, it is preferable that the first channel layer 16 does not contact the metal layer 5.
  • FIG. 6 is a partially enlarged view showing the configuration of the capacitance sensor substrate 100B according to the first modification of the first embodiment of the present invention, and is a circuit diagram showing a unit cell including a capacitor pattern 12 and a thin film transistor (second thin film transistor 32).
  • FIG. 7 is a partial cross-sectional view showing the configuration of the capacitive sensor substrate 100B according to the modified example of the first embodiment of the present invention, and is a cross-sectional view showing the unit cell along the line BB ′ shown in FIG. FIG.
  • FIG. 8 is a partial cross-sectional view showing the configuration of the capacitance sensor substrate 100B according to the modified example of the first embodiment of the present invention, and is a cross-sectional view showing the second thin film transistor 32 in FIG.
  • Reference numeral TD in FIG. 7 indicates the direction in which a pointer such as a finger approaches or contacts the touch input surface 28T.
  • the second thin film transistor 32 shown in FIG. 8 is a bottom-gate transistor. That is, in the cross-sectional view, the first gate electrode 11 is provided below the first source electrode 22, the first drain electrode 23, and the first channel layer 16. As described above, both ends of the first channel layer 16 are covered with the conductive oxide layer.
  • the unit cell of the capacitive sensor substrate 100B has a structure similar to that of the capacitive sensor substrate 100A shown in FIG.
  • the second conductive pattern 20P first source electrode 22, first drain electrode 23, and output line 21
  • the first conductive pattern 10P first It is arranged on the gate electrode 11, the capacitor pattern 12, and the scanning line 13. That is, the configuration of the capacitance sensor substrate 100B shown in FIG. 7 is the reverse of the configuration of the capacitance sensor substrate 100A shown in FIG.
  • the first insulating layer 17 is formed on the substrate 202 that constitutes the capacitance sensor substrate 100B, and the capacitor pattern 12 is formed on the first insulating layer 17. Further, the first gate electrode 11, the capacitor pattern 12, and the scan line 13 that form the first conductive layer 10 are formed on the first insulating layer 17. A gate insulating layer 18 is formed so as to cover the first gate electrode 11, the capacitor pattern 12, and the scanning line 13.
  • the dielectric layer 3 is formed above the capacitor pattern 12 with the gate insulating layer 18 interposed therebetween. That is, the dielectric layer 3 is formed above the second surface 2.
  • the dielectric layer 3 overlaps with the capacitor pattern 12 in a plan view. In the thickness direction of the substrate 202, the dielectric layer 3 is located closer to the touch input surface 28T (touch sensing input surface) than the capacitor pattern 12.
  • the dielectric layer 3 is formed on the second surface 2 on the entire surface of the unit cell 19, whereas in the example shown in FIG. 7, the planar shape of the dielectric layer 3 and the capacitor pattern are formed. 12 corresponds to the planar shape. In other words, in the unit cell 19, the dielectric layer 3 is locally formed.
  • the planar shape of the dielectric layer 3 does not necessarily have to match the planar shape of the capacitor pattern 12, but the dielectric layer 3 is disposed between the touch input surface 28T and the capacitor pattern 12. There is a need. Therefore, the dielectric layer 3 needs to be formed so as to cover the capacitor pattern 12 in a plan view.
  • the first channel layer 16 is formed above the first gate electrode 11 via the gate insulating layer 18. Further, on the first channel layer 16, a first source electrode 22 and a first drain electrode 23 forming the second conductive layer 20 are formed so as to cover both ends of the first channel layer 16. At the same time when the first source electrode 22 and the first drain electrode 23 are formed, the output line 21 (second conductive layer 20) is formed.
  • FIG. 9 is a circuit diagram showing a unit cell that constitutes a capacitive sensor substrate 100C according to Modification 2 of the first embodiment.
  • the capacitive sensor substrate 100C according to the second modification includes a unit cell 119.
  • the unit cell 119 includes a third thin film transistor 33 (reset transistor) in addition to the configuration of the unit cell 19 including the second thin film transistor 32 shown in FIG.
  • the third thin film transistor 33 is second via the second gate electrode 127 (first conductive layer 10), the second source electrode 25 (second conductive layer 20), and the contact hole 129 that are electrically connected to the first gate electrode 11.
  • This is a bottom-gate transistor including the second drain electrode 26 (second conductive layer 20) electrically connected (short-circuited) to the gate electrode 127, the second channel layer 24, and the gate insulating layer 118.
  • a part of the first conductive pattern 10P constitutes the second gate electrode 127.
  • a part of the second conductive pattern 20P constitutes the second source electrode 25 and the second drain electrode 26.
  • a part of the oxide semiconductor layer forms the second channel layer 24.
  • a part of the gate insulating layer 18 constitutes the gate insulating layer 118 of the third thin film transistor 33.
  • the second channel layer 24 is formed at the same time when the above-mentioned first channel layer 16 is formed.
  • the gate insulating layer 118 of the third thin film transistor 33 is formed at the same time when the gate insulating layer 18 is formed.
  • the scanning line 13 not only supplies the scanning signal to the first source electrode 22 of the second thin film transistor 32, but also supplies the reset signal (for example, the ground potential) to the second source electrode 25 of the third thin film transistor 33. ) Supply.
  • FIG. 10 is a circuit diagram showing a unit cell that constitutes a capacitive sensor substrate 100D according to Modification 3 of the first embodiment.
  • the capacitive sensor substrate 100D according to the third modification includes unit cells 219.
  • the unit cell 219 includes a third thin film transistor 33 shown in FIG. 9, a source extended line 128 (second conductive layer 20) obtained by extending the second source electrode 25 of the third thin film transistor 33, and a reset line 15 (first conductive layer). 10) and are provided.
  • the source extension line 128 is not connected to the scanning line 13 but is connected to the reset line 15 via the contact hole 229.
  • the reset line 15 supplies a reset signal to the third thin film transistor 33 via the source extension line 128 and the second source electrode 25.
  • the unit cell 219 can receive the reset signal from the reset line 15 independently of the scanning signal from the scanning line 13. In the unit cell 219, it is not necessary to supply both the scanning signal and the reset signal to the scanning line 13 as shown in FIG.
  • the reset line 15 may supply only the reset signal to the third thin film transistor 33, and the scanning line 13 may supply only the scanning signal to the second thin film transistor 32.
  • FIG. 1 shows a circuit diagram in which one unit cell includes one thin film transistor
  • FIGS. 9 and 10 show circuit diagrams in which one unit cell includes two thin film transistors.
  • the number of thin film transistors in one unit cell can be increased as necessary.
  • FIG. 11 is a sectional view partially showing a liquid crystal display device 200 (display device) which is an electronic device according to the second embodiment of the invention.
  • FIG. 12 is a plan view showing a capacitance sensor substrate 201 that constitutes the liquid crystal display device 200. It should be noted that FIG. 12 shows the capacitance as viewed in the direction opposite to the touch direction TD (the direction in which a pointer such as a finger approaches or contacts the first surface 1), that is, the direction from the second surface 2 to the first surface 1.
  • 3 is a plan view showing a sensor substrate 201.
  • FIG. 13 is a typical circuit diagram illustrating the circuit configuration of the array substrate of the liquid crystal display device 200, and is a circuit diagram including a thin film transistor that drives the liquid crystal layer 60.
  • FIG. 14 is a plan view showing the unit cell 19 of the capacitance sensor substrate 201 that constitutes the liquid crystal display device 200.
  • the DD ′ section shown in FIG. 14 corresponds to the DD ′ section shown in FIG.
  • FIG. 14 is a plan view representatively showing two unit cells including the red pixel R and the green pixel G indicated by the chain double-dashed line in FIG. 11.
  • FIG. 15 is a diagram showing a thin film transistor included in the capacitance sensor substrate 201 that constitutes the liquid crystal display device 200, and is a cross-sectional view taken along the line CC ′ of FIG. 14.
  • the liquid crystal display device 200 includes a capacitance sensor substrate 201, an array substrate 203, and a liquid crystal layer 60 (display function layer) sandwiched between the capacitance sensor substrate 201 and the array substrate 203.
  • the array substrate 203 has a substrate surface 203T on which the thin film transistor array is arranged. That is, in the liquid crystal display device 200, the capacitance sensor substrate 201 and the array substrate 203 are separated from each other via the liquid crystal layer 60 so that the second surface 2 of the capacitance sensor substrate 201 and the substrate surface 203T of the array substrate 203 face each other. Pasted together.
  • the array substrate 203 includes a plurality of active elements (thin film transistor array) such as thin film transistors that drive the liquid crystal layer 60, but since such active elements are well known, they are omitted in FIG. 11.
  • the capacitance sensor substrate 201 includes the capacitance sensor substrate 100A according to the first embodiment described above and the color filter CF.
  • the color filter CF includes a red pixel R, a green pixel G, a blue pixel B, and a black matrix 8 (light absorption layer).
  • a capacitor pattern 12, a scanning line 13, a power supply line 14, an output line 21 and the like are formed on the dielectric layer 103.
  • the dielectric layer 103 has basically the same configuration as the dielectric layer 3 according to the above-described first embodiment, but the dielectric layer 103 of the present embodiment is different in that the dielectric layer 103 includes the opening Op. , And is different from the dielectric layer 3 of the first embodiment.
  • the opening Op of the dielectric layer 103 is a portion where the dielectric layer 103 is removed, and corresponds to a pixel that transmits light (corresponding to a red pixel R, a green pixel G, and a blue pixel B).
  • the plurality of scanning lines 13 are connected to the scanning line driver 205 (scanning signal circuit).
  • the plurality of output lines 21 are connected to the output line driver 204 (output signal circuit).
  • Reference symbols RGB in FIGS. 11 and 12 indicate the arrangement of the color filters CF of the red pixel R, the green pixel G, and the blue pixel B, respectively.
  • the thin film transistors (reference numeral 71 in FIG. 13) formed on the array substrate 203 are arranged in a matrix and drive the liquid crystal layer 60.
  • a plurality of gate lines 64 extending from the scanning signal circuit 72 and a plurality of source lines 65 extending from the video signal circuit 73 are formed on the array substrate 203.
  • the thin film transistor 71 is driven by the gate signal output from the gate line 64 and the video signal output from the source line 65.
  • the liquid crystal 63 liquid crystal layer 60
  • the liquid crystal 63 liquid crystal layer 60
  • the liquid crystal display device 200 has a configuration in which the second surface 2 of the capacitive sensor substrate 201 in which the plurality of unit cells 19 are formed and the array substrate 203 are bonded together via the liquid crystal layer 60.
  • the capacitive sensor substrate 201 has a dielectric layer 103 provided on the second surface 2 of the substrate 202. Further, on the dielectric layer 103, the capacitor pattern 12 forming the first conductive pattern 10P, the scanning line 13, and the power supply line 14 are laminated. As shown in the touch direction TD, when a pointer such as a finger approaches or contacts the first surface 1, touch sensing is performed by the capacitive sensor substrate 201.
  • the dielectric layer 103 is located closer to the touch sensing input surface (first surface 1) than the capacitor pattern 12.
  • the fourth thin film transistor 34 shown in FIG. 15 has the same configuration as the first thin film transistor 31 according to the first embodiment described above.
  • the dielectric layer 103 according to the second embodiment has a role of a black matrix of the liquid crystal display device 200.
  • the dielectric layer 103 of the second embodiment has an opening Op that is indispensable for the liquid crystal display device 200.
  • the opening Op has a role of transmitting light of a backlight not shown in FIG. 11 and displaying an image.
  • the opening Op is an opening corresponding to each pixel of RGB, as illustrated in FIGS. 11, 12, and 14, and the like.
  • FIG. 14 shows two unit cells as a typical example.
  • Each unit cell includes two transistors, a fourth thin film transistor 34 and a fifth thin film transistor 35 (selection transistor).
  • the change in capacitance of the capacitor pattern 12 is output to the output line 21 as a signal from the fourth thin film transistor 34 in response to the selection signal from the scanning line 13.
  • the fourth thin film transistor 34 has the function of amplifying the signal from the capacitor pattern 12.
  • FIG. 16 is a plan view showing an IC card 300 which is an electronic device according to the third embodiment.
  • the IC card 300 includes a capacitance sensor substrate 301 having the same configuration as the capacitance sensor substrate 100A according to the first embodiment described above, an antenna 310, and an IC chip.
  • the capacitance sensor substrate 301 functions as a fingerprint sensor that performs fingerprint authentication in the IC card 300.
  • the capacitance sensor substrate 301, the antenna 310, the memory 313, the IC chip, and the like are previously attached to a resin film called an inlet.
  • the IC chip may be an IC chip in which the control circuit 312, the antenna power supply unit 314, and the sensor control circuit 316 are integrated.
  • a secondary battery 317 (or a large-capacity capacitor) or a charge control unit 311 may be added to the IC card 300 as needed.
  • the inlet is attached to the capacitance sensor substrate 301, the antenna 310, the IC chip, etc. via a spacer.
  • a spacer a hard polyvinyl chloride sheet base material, a polyvinyl chloride sheet also called an overlay, and PET (polyethylene terephthalate) are used.
  • the IC card 300 has a structure in which a plurality of layers of sheets are stacked.
  • sheet base material, inlet base material, and spacer base material in addition to the above, vinyl chloride-vinyl acetate copolymer, polyamide, polyimide, polyamideimide, cellulose triacetate and other resin sheets can be used. Further, resin-impregnated paper on which a face photograph or the like is printed may be laminated on the IC card 300 as a part of the plurality of layers.
  • the capacitance sensor substrate 301 has, for example, a structure in which the unit cells shown in FIG. 10 are arranged in a matrix at a pitch of 50 ⁇ m on a high-strength glass substrate having an outer diameter of 15 mm ⁇ and a thickness of 200 ⁇ m.
  • An output line driver 303 and a scanning line driver 304 each including a thin film transistor (switching element) using an oxide semiconductor as a channel layer are wired around the capacitance sensor substrate 301. As shown in FIG. 7, the fingerprint-authenticated finger contacts the touch input surface 28T near the dielectric layer 3 in the touch direction TD.
  • the antenna 310 is formed by patterning a copper foil attached to a resin sheet into a loop antenna shape by wet etching.
  • the IC card 300 includes a tuning circuit, a rectification circuit, and the like that use the antenna 310 to communicate with and receive power from an IC card reader / writer at a frequency of 13.56 MHz, for example.
  • the frequency involved in this communication may be higher than 13.56 MHz.
  • a secondary battery may be built in the IC card 300.
  • the resolution (pitch) of the unit cell can be set within the range of 10 ⁇ m to 100 ⁇ m, for example. Since the pitch of the ridgeline of the fingerprint is approximately 300 ⁇ m, it may be set to the lower limit (100 ⁇ m or less) of the resolution of the unit cell for resolving this. Since the sharp pen tip has a size of several tens of ⁇ m, this can be set to the upper limit of resolution of 10 ⁇ m.
  • a coarse resolution of about 1 mm is sufficient. Coarse sensing is possible by performing touch sensing so as to thin out a plurality of cell rows (rows in which a plurality of unit cells are arranged in one direction) formed on the capacitive sensor substrate according to the embodiment of the present invention. .
  • the circuit configuration of the capacitive sensor substrate according to the above-described embodiment is a typical circuit configuration, and for example, output lines (also referred to as signal lines), scanning lines, reset lines, power supply lines, etc. described in the circuit diagram.
  • the number and combination of can be changed according to the purpose.
  • one wiring may have two or more functions (combined use).
  • One sensing element (unit cell) includes at least one capacitor pattern, and forms a plurality of capacitor patterns, a plurality of output lines, a plurality of scanning lines orthogonal to the output lines, and a matrix of sensing elements.
  • the shape of the capacitor pattern and the number of thin film transistors provided in one sensing element can be adjusted according to the purpose.
  • the electronic device to which the capacitive sensor substrate according to the above-described embodiment can be applied includes a display device, a mobile phone, a portable game machine, a personal digital assistant, a personal computer, an electronic book, an electronic watch, a video camera, a digital still camera, and a head. Mounted display, navigation system, sound reproduction device (car audio, digital audio player, etc.), copier, facsimile, printer, printer complex machine, vending machine, automatic teller machine (ATM), personal authentication device, optical communication device , Medical data cards, IC cards and the like.
  • the capacitive sensor substrate according to the above-described embodiment can be incorporated into the electronic devices listed above, and functions as a fingerprint authentication device.
  • the capacitive sensor substrate incorporated as a fingerprint authentication device is easy to use as both a power switch and an enable switch after personal authentication.
  • the enable switch is a switch for ensuring the security of the electronic device after fingerprint authentication, and is a switch for ensuring security.
  • the above embodiments can be freely combined and used.
  • An antenna is mounted on these electronic devices to enable non-contact communication and non-contact power supply / reception.
  • the conductive layer according to the first embodiment can be applied to a conductor forming an antenna and wiring in an electronic device.
  • Gate line 65 ... Source Line 71 ... Thin film transistor 72 ... Scan signal circuit 73 ... Video signal circuit 100A, 100B, 100C, 100D, 201, 301 ... Capacitance sensor substrate 102, 202 ... Substrate 116 ... Channel layer 122 ... Source electrode 123 ... Drain electrode 127 ... Second gate electrode 128 ... Source wire extension 200 ... Liquid crystal display device (electronic device) 203 ... Array substrate 203T ... Substrate surface 204, 303 ... Output line driver 205, 304 ... Scan line driver 300 ... IC card (electronic device) 310 ... Antenna 311 ... Charge control unit 312 ... Control circuit 313 ... Memory 314 ... Antenna power supply unit 316 ... Sensor control circuit 317 ... Secondary battery B ... Blue pixel CF ... Color filter G ... Green pixel R ... Red pixel TD ... Touch direction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Thin Film Transistor (AREA)

Abstract

This capacitance sensor substrate comprises: a substrate having a first surface and a second surface; a dielectric layer which includes carbon and which is disposed above the second surface; a thin-film transistor which is disposed above the second surface and which comprises a gate electrode, a source electrode, a drain electrode, a channel layer formed from an oxide semiconductor layer, and a gate insulation layer; a first conducting layer which comprises a metal layer, is disposed above the second surface, and forms at least a capacitor pattern and the gate electrode; and a second conducting layer which comprises a metal layer and is disposed above the second surface. The gate electrode is electrically joined to the capacitor pattern. In a plan view, the dielectric layer overlaps with the capacitor pattern, and in the thickness direction of the substrate, the dielectric layer is positioned nearer to a touch sensing input surface than the capacitor pattern.

Description

容量センサ基板及び電子デバイスCapacitance sensor substrate and electronic device
 本発明は、静電容量方式のタッチセンシング機能を具備した容量センサ基板、及び、この容量センサ基板を備えた電子デバイスに関する。 The present invention relates to a capacitance sensor substrate having a capacitance type touch sensing function, and an electronic device having the capacitance sensor substrate.
 静電容量方式によるタッチセンシング機能を備えたスマートフォンやタブレット端末等、指やポインタで、直接、表示画面に入力できる表示装置が一般的になりつつある。静電容量方式のタッチセンシング技術は、指紋などの凹凸形状を検知する指紋認証技術としても用いられている。ペン入力、フェザータッチ入力(非接触に近い軽いタッチ入力)、基板に対して大きな押圧力を与えるタッチ入力といった、様々な検出が可能であり、かつ、基板に対する押圧力の検知などに拡張、適用されつつある。 A display device that can directly input to the display screen with a finger or a pointer, such as a smartphone or a tablet terminal having a capacitance-based touch sensing function, is becoming common. Capacitive touch sensing technology is also used as fingerprint authentication technology for detecting uneven shapes such as fingerprints. Various types of detection are possible, such as pen input, feather touch input (light touch input that is close to non-contact), and touch input that applies a large pressing force to the board, and it is expanded and applied to detect the pressing force on the board. Is being done.
 タッチセンシングの方式には、自己容量タイプのタッチセンシング方式と、相互容量タイプのタッチセンシング方式が知られている。自己容量タイプのタッチセンシング方式は、ITO等の透明導電膜で形成された複数の電極等が電気的に独立して形成された個々の電極パターンを用いて、各電極に発生する静電容量を検出する方式である。相互容量タイプのタッチセンシング方式は、X方向及びY方向にタッチセンシング配線(以下、タッチ配線と略称する)を並べ、X方向配線とY方向配線との間で発生する静電容量を検出する方式である。相互容量タイプのタッチセンシング方式は、シンプルな回路構成を実現できる。しかしながら、タッチ信号の精度の観点で、自己容量タイプのタッチセンシング方式よりも劣る場合が多い。 ㆍ Self-capacity type touch sensing method and mutual capacitance type touch sensing method are known as touch sensing methods. The self-capacitance type touch sensing method uses an individual electrode pattern in which a plurality of electrodes formed of a transparent conductive film such as ITO are electrically independently formed to measure the capacitance generated in each electrode. This is a detection method. The mutual capacitance type touch sensing method is a method of arranging touch sensing wirings (hereinafter, abbreviated as touch wirings) in the X direction and the Y direction, and detecting a capacitance generated between the X direction wiring and the Y direction wiring. Is. The mutual capacitance type touch sensing method can realize a simple circuit configuration. However, it is often inferior to the self-capacitance type touch sensing method from the viewpoint of touch signal accuracy.
 静電容量方式のタッチセンシング技術は、指紋認証技術として古くから検討されてきている。特許文献1には、格子状に配置したMOS-FETを用いた指紋入力装置が開示されている。しかしながら、特許文献1が開示する指紋入力装置は、シリコン基板上に形成されている。シリコン基板は、高価であり、かつ、割れ易い。また、基板サイズの観点で、表示装置などを構成する大型基板や樹脂基板を備えた電子デバイスに、シリコン基板を適用し難い。 Capacitive touch sensing technology has long been considered as a fingerprint authentication technology. Patent Document 1 discloses a fingerprint input device using MOS-FETs arranged in a grid. However, the fingerprint input device disclosed in Patent Document 1 is formed on a silicon substrate. Silicon substrates are expensive and easily broken. Further, from the viewpoint of substrate size, it is difficult to apply a silicon substrate to an electronic device including a large substrate or a resin substrate that constitutes a display device or the like.
 特許文献2は、基板にガラスを採用し、ITO等の導電層をX方向及びY方向にマトリクス状に配列するセンサ電極を採用する指紋センサを開示している。段落[0030]に記載されているように、センサ回路に形成される第1半導体層SC1として、例えば、多結晶シリコンで形成されている、酸化物半導体、アモルファスシリコンが用いられる可能性が示唆されている。この技術は、シリコン基板を用いた指紋センサの問題点を解消している。 Patent Document 2 discloses a fingerprint sensor that employs glass for a substrate and employs sensor electrodes in which conductive layers such as ITO are arranged in a matrix in the X and Y directions. As described in paragraph [0030], it is suggested that, as the first semiconductor layer SC1 formed in the sensor circuit, for example, an oxide semiconductor or amorphous silicon formed of polycrystalline silicon may be used. ing. This technique solves the problem of the fingerprint sensor using a silicon substrate.
 特許文献3には、比誘電率が約20から約100の範囲である誘電体構造を備える相互容量方式のタッチパネルが開示されている。このタッチパネル100は、段落[0010]に示されるように、互いに交差(クロスオーバー)するITO駆動トレース/トラックなどの駆動電極102を備えたITOタッチパネルである。段落[0015]に記載されているように、チタン酸バリウムなどの強誘電体、また、五酸化ニオブ、二酸化チタンなどの誘電材料による誘電体構造104を開示している。段落[0014]の記載においては、この誘電体構造104は、センサ電極110上に、約10ナノメートルから約100ナノメートルの範囲に及ぶ膜厚で、センサ電極110上に配置されている。特許文献3では、この誘電材料の形成方法を具体的に開示していないが、段落[0002]の記載からタッチパネル下部にディスプレイが設けられている構成が想定される。また、上記のように、誘電体構造が10ナノメートルから100ナノメートルの薄膜であることから、真空成膜等の薄膜プロセスで、ITO下地を含む可視光透明な積層薄膜であることが想定される。特許文献3は、誘電材料にチタン酸バリウムなどの強誘電体を用いたときの、大きな誘電損失(tanδ)に起因する消費電力の増加や、さらに、指やペン等のポインタによるタッチ入力後(あるいは次のタッチ入力前)に発生する静電容量のリセットを考慮していない。 Patent Document 3 discloses a mutual capacitance type touch panel having a dielectric structure having a relative dielectric constant in the range of about 20 to about 100. The touch panel 100 is an ITO touch panel having drive electrodes 102 such as ITO drive traces / tracks that intersect each other (crossover), as shown in paragraph [0010]. Disclosed in paragraph [0015] is a dielectric structure 104 of a ferroelectric such as barium titanate, or a dielectric material such as niobium pentoxide or titanium dioxide. In the description of paragraph [0014], the dielectric structure 104 is disposed on the sensor electrode 110 with a film thickness ranging from about 10 nanometers to about 100 nanometers. Although Patent Document 3 does not specifically disclose the method for forming the dielectric material, it is assumed from the description in paragraph [0002] that a display is provided below the touch panel. In addition, as described above, since the dielectric structure is a thin film having a thickness of 10 to 100 nanometers, it is assumed to be a visible light transparent laminated thin film including an ITO underlayer in a thin film process such as vacuum film formation. It Patent Document 3 discloses an increase in power consumption due to a large dielectric loss (tan δ) when a ferroelectric material such as barium titanate is used as a dielectric material, and further after touch input by a pointer such as a finger or a pen ( Or before resetting the capacitance that occurs before the next touch input) is not considered.
 特許文献4は、電極37とコモン電極33との間の容量をタッチセンシングに利用するタッチセンシング機能を持つ液晶表示装置を開示している。段落[0054]に記載されているように、電極37と電極33との間には、カラーフィルタや層間絶縁膜が設けられている。段落[0055]及び[0057]に記載されているように、電極37と電極33は、透光性を有する。段落[0040]及び段落[0052]に記載されているように、トランジスタ31は、酸化物半導体を半導体層に用いたトランジスタである。 Patent Document 4 discloses a liquid crystal display device having a touch sensing function that utilizes the capacitance between the electrode 37 and the common electrode 33 for touch sensing. As described in paragraph [0054], a color filter and an interlayer insulating film are provided between the electrode 37 and the electrode 33. As described in paragraphs [0055] and [0057], the electrode 37 and the electrode 33 have translucency. As described in paragraphs [0040] and [0052], the transistor 31 is a transistor including an oxide semiconductor in a semiconductor layer.
 特許文献5は、酸化物半導体膜を備える多層構成を用いること、あるいは、多層の酸化物半導体の組成や結晶性を工夫することにより、電界効果移動度を高めた薄膜トランジスタを提供しようとする技術を開示している。しかしながら、薄膜トランジスタのチャネル層である酸化物半導体の膜厚は、数十nm領域の非常に薄い膜厚領域である。例えば、段落[0170]から[0176]には、1nm以上20nm未満、あるいは、20nm以上100nm以下といった、多層の酸化物半導体における各々の膜厚が開示されている。数十nm領域の多層膜の成膜工程においては、例えば、成膜ロット毎のバラツキが発生し易い。また、多層の酸化物半導体膜の組成を変えて成膜するには、例えば、複数のスパッタリングターゲット(出発材料)を用意し、かつ、異なるチャンバ(成膜室)を備える成膜装置を用意しなければならず、製造コスト面で課題を抱える。 Patent Document 5 discloses a technique for providing a thin film transistor having improved field effect mobility by using a multilayer structure including an oxide semiconductor film or by devising composition and crystallinity of a multilayer oxide semiconductor. Disclosure. However, the film thickness of the oxide semiconductor which is the channel layer of the thin film transistor is a very thin film thickness region of several tens nm. For example, paragraphs [0170] to [0176] disclose respective film thicknesses in a multilayer oxide semiconductor of 1 nm or more and less than 20 nm, or 20 nm or more and 100 nm or less. In the process of forming a multi-layer film in the region of several tens of nm, for example, variations easily occur between film formation lots. In addition, in order to form films by changing the composition of the multilayer oxide semiconductor film, for example, a plurality of sputtering targets (starting materials) are prepared, and a film formation apparatus having different chambers (film formation chambers) is prepared. It must be done, and there is a problem in terms of manufacturing cost.
 特許文献6には、光吸収性樹脂層パターンと金属層パターンの積層構成が開示され、金属層パターンが銅を主材とする合金層及び銅層であることが示されている。特許文献6の請求項4には、光吸収材がカーボンであり、光反射を抑制するための光学濃度などが記載されている。これら積層構成を備える第1の透明基板(対向基板)には、トランジスタは具備されておらず、例えば、誘電体層として、タッチセンシングに必要な電気特性は開示されていない。 Patent Document 6 discloses a laminated structure of a light absorbing resin layer pattern and a metal layer pattern, and it is shown that the metal layer pattern is an alloy layer containing copper as a main material and a copper layer. In claim 4 of Patent Document 6, the light absorbing material is carbon, and the optical density for suppressing light reflection is described. No transistor is provided on the first transparent substrate (counter substrate) having such a laminated structure, and for example, as a dielectric layer, electrical characteristics required for touch sensing are not disclosed.
日本国特許第3418479号公報Japanese Patent No. 3418479 日本国特開2017-187478号公報Japanese Unexamined Patent Publication No. 2017-187478 日本国特開2017-518586号公報Japanese Patent Laid-Open No. 2017-518586 日本国特開2016-1301号公報Japanese Patent Laid-Open No. 2016-1301 日本国特開2018-6731号公報Japanese Patent Laid-Open No. 2018-6731 日本国特許第5924452号公報Japanese Patent No. 5924452
 本発明は、上記の背景技術や課題に鑑みてなされたものであって、高精細で高精度の指紋認証やペン入力に適用可能な容量センサ基板、及び、この容量センサ基板を備えた電子デバイスを提供する。 The present invention has been made in view of the above background art and problems, and is a capacitive sensor substrate applicable to high-definition and highly accurate fingerprint authentication and pen input, and an electronic device including the capacitive sensor substrate. I will provide a.
 本発明の第1態様に係る容量センサ基板は、第1面と第2面とを有する基板と、カーボンを含み、かつ、前記第2面の上方に設けられた誘電体層と、ゲート電極、ソース電極、ドレイン電極、酸化物半導体層で構成されたチャネル層、及びゲート絶縁層を有し、前記第2面の上方に設けられた薄膜トランジスタと、金属層を有し、前記第2面の上方に設けられ、かつ、少なくもキャパシタパターン及び前記ゲート電極を形成する第1導電層と、金属層を有し、かつ、前記第2面の上方に設けられた第2導電層と、を備える。前記ゲート電極は、前記キャパシタパターンと電気的に連携され、平面視において、前記誘電体層は、前記キャパシタパターンと重なり、前記基板の厚み方向において、前記誘電体層は前記キャパシタパターンよりもタッチセンシング入力面に近い位置にある。 A capacitive sensor substrate according to a first aspect of the present invention includes a substrate having a first surface and a second surface, a dielectric layer including carbon, the dielectric layer being provided above the second surface, and a gate electrode. A thin film transistor which has a source electrode, a drain electrode, a channel layer formed of an oxide semiconductor layer, and a gate insulating layer and is provided above the second surface; and a metal layer, which is above the second surface. And a second conductive layer having a metal layer and provided above the second surface, the first conductive layer being provided on the first surface and forming at least the capacitor pattern and the gate electrode. The gate electrode is electrically associated with the capacitor pattern, the dielectric layer overlaps the capacitor pattern in a plan view, and the dielectric layer is more touch-sensitive than the capacitor pattern in the thickness direction of the substrate. It is near the input surface.
 本発明の第1態様に係る容量センサ基板においては、前記誘電体層は、カーボンと、金属酸化物、金属酸化窒化物、及び金属窒化物からなる群より選ばれる、少なくとも1以上の微粒子と、を含む樹脂分散体であってもよい。 In the capacitive sensor substrate according to the first aspect of the present invention, the dielectric layer is carbon, and at least one or more fine particles selected from the group consisting of metal oxides, metal oxynitrides, and metal nitrides, It may be a resin dispersion containing.
 本発明の第1態様に係る容量センサ基板においては、前記誘電体層の電気抵抗率は、1×10Ωcm以上1×1013Ωcm未満であってもよい。 In the capacitive sensor substrate according to the first aspect of the present invention, the dielectric layer may have an electrical resistivity of 1 × 10 8 Ωcm or more and less than 1 × 10 13 Ωcm.
 本発明の第1態様に係る容量センサ基板においては、前記誘電体層の誘電損失は、0.01以上0.2未満であってもよい。 In the capacitive sensor substrate according to the first aspect of the present invention, the dielectric loss of the dielectric layer may be 0.01 or more and less than 0.2.
 本発明の第1態様に係る容量センサ基板においては、前記誘電体層の膜厚は、0.2μm以上10μm以下の範囲内にあってもよい。 In the capacitive sensor substrate according to the first aspect of the present invention, the film thickness of the dielectric layer may be in the range of 0.2 μm or more and 10 μm or less.
 本発明の第1態様に係る容量センサ基板においては、前記第1導電層及び前記第2導電層の各々は、前記金属層が導電性酸化物層で挟持された3層構成を有してもよい。 In the capacitive sensor substrate according to the first aspect of the present invention, each of the first conductive layer and the second conductive layer may have a three-layer structure in which the metal layer is sandwiched by conductive oxide layers. Good.
 本発明の第1態様に係る容量センサ基板においては、前記薄膜トランジスタの厚み方向に沿う断面視において、前記薄膜トランジスタは、前記チャネル層の端部が前記第2導電層で覆われた重畳部を有し、前記重畳部において、前記導電性酸化物層と前記チャネル層とが接触する界面が形成されてもよい。 In the capacitive sensor substrate according to the first aspect of the present invention, in a cross-sectional view along the thickness direction of the thin film transistor, the thin film transistor has an overlapping portion in which an end portion of the channel layer is covered with the second conductive layer. An interface where the conductive oxide layer and the channel layer contact each other may be formed in the overlapping portion.
 本発明の第1態様に係る容量センサ基板においては、前記導電性酸化物層は、酸化インジウムを含んでもよい。 In the capacitive sensor substrate according to the first aspect of the present invention, the conductive oxide layer may include indium oxide.
 本発明の第1態様に係る容量センサ基板においては、前記酸化物半導体層は、酸化インジウムと、酸化アンチモン及び酸化ビスマスのうち少なくともいずれか1つと、を含んでもよい。 In the capacitive sensor substrate according to the first aspect of the present invention, the oxide semiconductor layer may include indium oxide and at least one of antimony oxide and bismuth oxide.
 本発明の第1態様に係る容量センサ基板においては、前記酸化物半導体層は、酸化セリウム及び酸化錫のうち少なくともいずれか1つを含んでもよい。 In the capacitive sensor substrate according to the first aspect of the present invention, the oxide semiconductor layer may include at least one of cerium oxide and tin oxide.
 本発明の第2態様に係る電子デバイスは、上記の第1態様に係る容量センサ基板と、アンテナと、を備える。 The electronic device according to the second aspect of the present invention includes the capacitive sensor substrate according to the first aspect and the antenna.
 本発明の第3態様に係る電子デバイスは、上記の第1態様に係る容量センサ基板と、薄膜トランジスタアレイが配置された基板面を有するアレイ基板と、表示機能層と、を備え、前記容量センサ基板の第2面と、前記アレイ基板の前記基板面とが向かい合うように、前記表示機能層が前記容量センサ基板と前記アレイ基板によって挟持されている。 An electronic device according to a third aspect of the present invention includes the capacitance sensor substrate according to the first aspect, an array substrate having a substrate surface on which a thin film transistor array is arranged, and a display functional layer, and the capacitance sensor substrate The display function layer is sandwiched between the capacitive sensor substrate and the array substrate so that the second surface of the array substrate faces the substrate surface of the array substrate.
 本発明の態様によれば、高精細で高精度の指紋認証やペン入力に適用可能な容量センサ基板、及び、この容量センサ基板を備えた電子デバイスを提供することができる。 According to the aspects of the present invention, it is possible to provide a capacitance sensor substrate applicable to high-definition and high-precision fingerprint authentication and pen input, and an electronic device equipped with this capacitance sensor substrate.
本発明の第1実施形態に係る容量センサ基板の構成を示す部分拡大図であり、キャパシタパターン及び薄膜トランジスタ(第1薄膜トランジスタ)を含む単位セルを示す回路図である。FIG. 3 is a partially enlarged view showing the configuration of the capacitive sensor substrate according to the first embodiment of the present invention, which is a circuit diagram showing a unit cell including a capacitor pattern and a thin film transistor (first thin film transistor). 本発明の第1実施形態に係る容量センサ基板の構成を示す部分断面図であり、図1に示すA-A’線に沿う単位セルを示す断面図である。FIG. 3 is a partial cross-sectional view showing the configuration of the capacitive sensor substrate according to the first embodiment of the present invention, which is a cross-sectional view showing a unit cell taken along the line A-A ′ shown in FIG. 1. 本発明の第1実施形態に係る容量センサ基板の構成を示す部分断面図であり、図1における薄膜トランジスタを示す拡大断面図である。FIG. 3 is a partial cross-sectional view showing the configuration of the capacitive sensor substrate according to the first embodiment of the present invention, which is an enlarged cross-sectional view showing the thin film transistor in FIG. 1. 本発明の第1実施形態に係る第1薄膜トランジスタにおける第1チャネル層の端面と導電層とが重なる部分を説明する拡大断面図である。FIG. 5 is an enlarged cross-sectional view illustrating a portion where the end surface of the first channel layer and the conductive layer in the first thin film transistor according to the first embodiment of the present invention overlap with each other. 導電層の端面とチャネル層とが接触する部分を有する薄膜トランジスタの参考例を説明する拡大断面図である。It is an expanded sectional view explaining a reference example of a thin film transistor which has a portion where an end face of a conductive layer and a channel layer contact. 本発明の第1実施形態の変形例に係る容量センサ基板の構成を示す部分拡大図であり、キャパシタパターン及び薄膜トランジスタ(第2薄膜トランジスタ)を含む単位セルを示す回路図である。FIG. 7 is a partially enlarged view showing the configuration of the capacitance sensor substrate according to the modified example of the first embodiment of the present invention, and a circuit diagram showing a unit cell including a capacitor pattern and a thin film transistor (second thin film transistor). 本発明の第1実施形態の変形例に係る容量センサ基板の構成を示す部分断面図であり、図6に示すB-B’線に沿う単位セルを示す断面図である。FIG. 7 is a partial cross-sectional view showing the configuration of the capacitance sensor substrate according to the modified example of the first embodiment of the present invention, which is a cross-sectional view showing a unit cell taken along line B-B ′ shown in FIG. 6. 本発明の第1実施形態の変形例に係る容量センサ基板の構成を示す部分断面図であり、図6における薄膜トランジスタを示す断面図である。FIG. 7 is a partial cross-sectional view showing the configuration of a capacitance sensor substrate according to a modification of the first embodiment of the present invention, which is a cross-sectional view showing the thin film transistor in FIG. 6. 本発明の第1実施形態の変形例に係る容量センサ基板の単位セルを示す回路図である。It is a circuit diagram which shows the unit cell of the capacitance sensor board | substrate which concerns on the modification of 1st Embodiment of this invention. 本発明の第1実施形態の変形例に係る容量センサ基板の単位セルを示す回路図である。It is a circuit diagram which shows the unit cell of the capacitance sensor board | substrate which concerns on the modification of 1st Embodiment of this invention. 本発明の第2実施形態に係る電子デバイスである表示装置を部分的に示す断面図である。FIG. 6 is a cross-sectional view partially showing a display device which is an electronic device according to a second embodiment of the invention. 本発明の第2実施形態に係る電子デバイスである表示装置を構成する容量センサ基板を示す平面図である。FIG. 6 is a plan view showing a capacitive sensor substrate that constitutes a display device that is an electronic device according to a second embodiment of the invention. 本発明の第2実施形態に係る電子デバイスである表示装置の、アレイ基板の回路構成を説明する回路図である。FIG. 6 is a circuit diagram illustrating a circuit configuration of an array substrate of a display device that is an electronic device according to a second embodiment of the present invention. 本発明の第2実施形態に係る電子デバイスである表示装置の単位セルを示す平面図である。FIG. 6 is a plan view showing a unit cell of a display device which is an electronic device according to a second embodiment of the present invention. 本発明の第2実施形態に係る電子デバイスである表示装置を構成する容量センサ基板が備える薄膜トランジスタを示す断面図である。FIG. 6 is a cross-sectional view showing a thin film transistor included in a capacitive sensor substrate that constitutes a display device that is an electronic device according to a second embodiment of the present invention. 本発明の第3実施形態に係る電子デバイスであるICカードを示す平面図である。It is a top view which shows the IC card which is an electronic device which concerns on 3rd Embodiment of this invention.
 以下、図面を参照しながら本発明の実施形態について説明する。
 以下の説明において、同一又は実質的に同一の機能及び構成要素には、同一の符号を付し、その説明を省略又は簡略化し、或いは、必要な場合のみ説明を行う。各図においては、各構成要素を図面上で認識し得る程度の大きさとするため、各構成要素の寸法及び比率を実際のものとは適宜に異ならせてある。必要に応じて、図示が難しい要素、例えば、半導体のチャネル層を形成する複数層の構成、また、導電層を形成する複数層の構成等の図示や一部の図示が省略されている。
 また、本発明の実施形態を分かり易く説明するため、電気的な回路要素、表示機能層などの図示を簡略化することがある。
 以下に述べる各実施形態においては、特徴的な部分について説明し、例えば、通常の電子機器に用いられている構成要素と本実施形態に係る電子機器との差異がない部分については説明を省略することがある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the following description, the same or substantially the same function and component will be denoted by the same reference numeral, and the description thereof will be omitted or simplified, or will be described only when necessary. In each drawing, in order to make each constituent element recognizable in the drawings, the dimensions and proportions of each constituent element are appropriately different from the actual ones. As necessary, illustrations of some elements that are difficult to illustrate, such as the configuration of a plurality of layers forming a semiconductor channel layer, the configuration of a plurality of layers forming a conductive layer, and the like, are omitted.
Further, in order to explain the embodiments of the present invention in an easy-to-understand manner, illustration of electrical circuit elements, display function layers, and the like may be simplified.
In each of the embodiments described below, a characteristic part will be described, and for example, a description will be omitted for a part that is not different from a component used in a normal electronic device and the electronic device according to the present embodiment. Sometimes.
 なお、明細書中において、文言「平面視」とは、「第1面から見た平面視」と「第2面から見た平面視」を意味する。また、「第1面から見た平面視」は、基板の第2面(裏面)上に積層された誘電体層、絶縁層、及びキャパシタパターンがこの順で積層された構成における「平面視」を意味する。文言「第2面から見た平面視」は、「第1面から見た平面視」とは逆の方向から見た平面視を意味する。「第2面から見た平面視」は、基板の第2面上に、キャパシタパターン、絶縁層、及び誘電体層がこの順で積層された構成における「平面視」を意味する。換言すれば、本発明の実施形態において、タッチセンシングに用いられるポインタ(指など)が基板の近接する方向において、誘電体層がキャパシタパターンよりもポインタに近い位置にある配置されていることを意味する。 In the specification, the wording "planar view" means "planar view from the first surface" and "planar view from the second surface". Further, the “plan view seen from the first surface” is the “plan view” in the configuration in which the dielectric layer, the insulating layer, and the capacitor pattern stacked on the second surface (back surface) of the substrate are stacked in this order. Means The phrase “planar view seen from the second surface” means a planar view seen from a direction opposite to the “planar view seen from the first surface”. The “plan view seen from the second surface” means “plan view” in the configuration in which the capacitor pattern, the insulating layer, and the dielectric layer are laminated in this order on the second surface of the substrate. In other words, in the embodiment of the present invention, it means that the pointer (finger or the like) used for touch sensing is arranged in a position closer to the pointer than the capacitor pattern in the direction in which the substrate approaches. To do.
 また、明細書中において、「第1」や「第2」等の序数詞は、構成要素の混同を避けるために付しており、数量を限定しない。第1導電パターンと第2導電パターンは、単に導電パターン、あるいは導電層と呼称することがある。なお、上記導電層(導電パターン)はいずれも、金属層あるいは合金層が導電性酸化物層で挟持された3層構成を有する。配線、キャパシタ、電極などの形状を有するように導電層を加工することによって得られた構造物やパターンを導電パターンと呼ぶことがある。 Also, in the specification, ordinal numbers such as “first” and “second” are added to avoid confusion among constituent elements, and the quantity is not limited. The first conductive pattern and the second conductive pattern may be simply referred to as a conductive pattern or a conductive layer. Each of the conductive layers (conductive patterns) has a three-layer structure in which a metal layer or an alloy layer is sandwiched by conductive oxide layers. A structure or pattern obtained by processing a conductive layer so as to have a shape of a wiring, a capacitor, an electrode, or the like may be referred to as a conductive pattern.
 本発明の実施形態においては、主要な薄膜トランジスタは、チャネル層として酸化物半導体層を備える。さらに、薄膜トランジスタは、必要に応じて、チャネル層としてポリシリコン半導体層を備えてもよい。また、後述する実施形態のドレイン電極とソース電極は、入れ替えて配置されてもよい。以下の実施形態において、場合によっては、走査線が、電源線を兼ねる場合がある。 In the embodiment of the present invention, the main thin film transistor includes an oxide semiconductor layer as a channel layer. Further, the thin film transistor may include a polysilicon semiconductor layer as a channel layer, if necessary. In addition, the drain electrode and the source electrode in the embodiments described later may be arranged interchangeably. In the following embodiments, the scanning line may also serve as the power supply line in some cases.
 本発明の実施形態において、電子デバイス(表示装置含む)が備える「表示機能層」には、LED(Light Emitting Diode)と呼称される複数の発光ダイオード素子、OLEDとも呼称される複数の有機EL(有機エレクトロルミネセンス)素子、或いは液晶層のいずれかを用いることができる。 In the embodiment of the present invention, the “display function layer” included in the electronic device (including the display device) includes a plurality of light emitting diode elements referred to as LEDs (Light Emitting Diodes) and a plurality of organic EL elements referred to as OLEDs ( Either an organic electroluminescence device or a liquid crystal layer can be used.
(第1実施形態)
(容量センサ基板の回路構成及び平面構造)
 図1は、本発明の第1実施形態に係る容量センサ基板100Aの単位セル(検知素子)の構成を示す部分拡大図であり、キャパシタパターン12及び薄膜トランジスタ(第1薄膜トランジスタ31)を含む単位セルを示す回路図である。図1に示す回路図においては、説明を分かり易くするため、単位セルの構成として、最少の素子構成が示されている。すなわち、図1は、走査線13と出力線21で区画される区画領域内に第1薄膜トランジスタ31が1つのみを含む最小の素子構成を例示している。
 なお、図1は、回路図を示しているが、後の説明を分かり易くするために、矩形状のキャパシタパターン12及び単位セル(検知素子)の概略構成を示している。キャパシタパターン12は、走査線と出力線とで区画される単位セル19内に配設されている。キャパシタパターン12は、矩形状でなく平行四辺形状であってもよく、キャパシタパターン12の内部に開口部が形成されてもよい。
(First embodiment)
(Circuit structure and planar structure of the capacitive sensor substrate)
FIG. 1 is a partially enlarged view showing a configuration of a unit cell (sensing element) of a capacitive sensor substrate 100A according to the first embodiment of the present invention, which shows a unit cell including a capacitor pattern 12 and a thin film transistor (first thin film transistor 31). It is a circuit diagram shown. In the circuit diagram shown in FIG. 1, for the sake of easy understanding of the description, the minimum element configuration is shown as the configuration of the unit cell. That is, FIG. 1 exemplifies the minimum element configuration in which the first thin film transistor 31 includes only one in the partitioned region partitioned by the scanning line 13 and the output line 21.
Note that, although FIG. 1 shows a circuit diagram, a schematic configuration of the rectangular capacitor pattern 12 and the unit cell (detecting element) is shown for the sake of easy understanding of the subsequent description. The capacitor pattern 12 is arranged in a unit cell 19 defined by a scanning line and an output line. The capacitor pattern 12 may have a parallelogram shape instead of a rectangular shape, and an opening may be formed inside the capacitor pattern 12.
(単位セル)
 単位セル19は、指などのポインタの接触を含む動作の静電容量の検知、あるいは指紋など微小凹凸部の静電容量検知による検出を行う。本実施形態において、「指紋センサ」は、生体の皮膚の凹凸を静電容量で検知するセンサを意味し、「指紋」に限定されない。例えば、指紋認証は、指の面積より広い手のひらなど身体(からだ)の一部を用いた代替認証であってもよい。
(Unit cell)
The unit cell 19 detects the electrostatic capacity of an operation including the contact of a pointer such as a finger, or the electrostatic capacity of a minute uneven portion such as a fingerprint. In the present embodiment, the “fingerprint sensor” means a sensor that detects the unevenness of the skin of the living body by capacitance and is not limited to the “fingerprint”. For example, the fingerprint authentication may be alternative authentication using a part of the body (body) such as a palm wider than the area of the finger.
 単位セル19は、第1薄膜トランジスタ31を駆動する走査線13と、第1薄膜トランジスタ31から出力信号が付与される出力線21とによって区切られた領域である。なお、後述するように、表示領域の最外周に限定すれば、見かけ上、走査線13もしくは出力線21の一方が配置されておらず、走査線13及び出力線21によって区画されていない単位セルも存在するが、本発明の実施形態では、このような単位セルも同様に「単位セル」として扱う。また、単位セルは、「タッチセンシングに関わる検知ユニット」と称することもできる。 The unit cell 19 is a region divided by the scanning line 13 that drives the first thin film transistor 31 and the output line 21 to which an output signal is applied from the first thin film transistor 31. As will be described later, if it is limited to the outermost periphery of the display area, apparently one of the scanning line 13 and the output line 21 is not arranged, and the unit cell is not partitioned by the scanning line 13 and the output line 21. However, in the embodiment of the present invention, such a unit cell is also treated as a “unit cell”. In addition, the unit cell can also be referred to as a “sensing unit related to touch sensing”.
 また、後述するように、誘電体層、金属層あるいは合金層が導電性酸化物で挟持された導電層(導電パターン)、第1薄膜トランジスタ、1個のキャパシタパターン、必要に応じて光吸収層等で構成される検知素子を単位セル19と定義している。容量センサ基板100A上には、複数の単位セル19がマトリクス状に配列している。以下の説明では、検知素子あるいは単位セルを説明の技術用語として用いることがある。検知素子あるいは単位セル19は、キャパシタパターン12が形成される領域、すなわち、走査線13と出力線21で区画される領域と同義である。平面視において、走査線13は、第1方向に平行に延線し、出力線21は、第1方向と直交する第2方向に平行に延線している。第1実施形態では、走査線は、電源線を兼ねる。また、走査線と出力線の役割(機能)は、入れ替えることができる。 Further, as described later, a conductive layer (conductive pattern) in which a dielectric layer, a metal layer or an alloy layer is sandwiched by conductive oxides, a first thin film transistor, one capacitor pattern, a light absorbing layer, etc., if necessary. The sensing element constituted by is defined as a unit cell 19. A plurality of unit cells 19 are arranged in a matrix on the capacitive sensor substrate 100A. In the following description, the sensing element or the unit cell may be used as a technical term for the description. The sensing element or unit cell 19 has the same meaning as a region where the capacitor pattern 12 is formed, that is, a region defined by the scanning line 13 and the output line 21. In plan view, the scanning line 13 extends parallel to the first direction, and the output line 21 extends parallel to the second direction orthogonal to the first direction. In the first embodiment, the scanning line also serves as the power supply line. Further, the roles (functions) of the scanning line and the output line can be interchanged.
 なお、指などのポインタが容量センサ基板100Aに接触又は近接したときの静電容量の変化は、第1薄膜トランジスタ31を介して、個々のキャパシタパターン12上の誘電体層3の静電容量変化として検知される。この観点で、一般的な、複数の直交するITO(透明導電膜)など、導電配線間の容量変化を検知する相互容量方式のタッチセンシング技術と、本発明の第1実施形態に係る技術は基本的に異なる。本発明の第1実施形態に係る技術は、自己容量方式に近い技術である。 The change in capacitance when a pointer such as a finger comes into contact with or comes close to the capacitance sensor substrate 100A is a change in capacitance of the dielectric layer 3 on each capacitor pattern 12 via the first thin film transistor 31. Detected. From this point of view, a general mutual capacitance type touch sensing technology for detecting a capacitance change between conductive wirings such as a plurality of orthogonal ITO (transparent conductive films) and the technology according to the first embodiment of the present invention are basically. Differently. The technology according to the first embodiment of the present invention is a technology close to the self-capacitance method.
(検知素子)
 図1に示すように、検知素子(単位セル19)は、第1導電パターン10P、第2導電パターン20P、第1薄膜トランジスタ31、及びキャパシタパターン12を含む。
 第1薄膜トランジスタ31は、第2導電パターン20Pの一部である第1ソース電極22及び第1ドレイン電極23と、第1導電パターン10Pの一部である第1ゲート電極11とを含む。第1薄膜トランジスタ31は、少なくとも第1ソース電極22、第1ドレイン電極23、及び第1ゲート電極11を含む。
(Detection element)
As shown in FIG. 1, the sensing element (unit cell 19) includes a first conductive pattern 10P, a second conductive pattern 20P, a first thin film transistor 31, and a capacitor pattern 12.
The first thin film transistor 31 includes a first source electrode 22 and a first drain electrode 23 that are a part of the second conductive pattern 20P, and a first gate electrode 11 that is a part of the first conductive pattern 10P. The first thin film transistor 31 includes at least a first source electrode 22, a first drain electrode 23, and a first gate electrode 11.
 詳述すれば、第1薄膜トランジスタ31は、第1ゲート電極11、第1ソース電極22、第1ドレイン電極23、第1チャネル層16(後述、酸化物半導体層)、及びゲート絶縁層18を有する。第1ソース電極22は、コンタクトホール29を介して、走査線13に接続されている。第1ドレイン電極23は、出力線21と電気的に連携されている。 In detail, the first thin film transistor 31 has a first gate electrode 11, a first source electrode 22, a first drain electrode 23, a first channel layer 16 (described later, an oxide semiconductor layer), and a gate insulating layer 18. . The first source electrode 22 is connected to the scanning line 13 via the contact hole 29. The first drain electrode 23 is electrically linked to the output line 21.
 出力線21、第1ソース電極22、及び第1ドレイン電極23は、第2導電パターン20Pを構成する。換言すれば、第2導電パターン20Pは、第2導電層20で形成されている。
 キャパシタパターン12、第1ゲート電極11、及び走査線13は、第1導電パターン10Pを構成する。換言すれば、第1導電パターン10Pは、第1導電層10で形成されている。
The output line 21, the first source electrode 22, and the first drain electrode 23 form a second conductive pattern 20P. In other words, the second conductive pattern 20P is formed of the second conductive layer 20.
The capacitor pattern 12, the first gate electrode 11, and the scanning line 13 form a first conductive pattern 10P. In other words, the first conductive pattern 10P is formed of the first conductive layer 10.
 第1導電パターン10P及び第2導電パターン20Pは、単に導電パターンと総称することがある。第1導電層10及び第2導電層20は、単に導電層と呼称することがある。導電層は、後述するように、金属層あるいは合金層が導電性酸化物層で挟持された構成を有することが好ましい。 The first conductive pattern 10P and the second conductive pattern 20P may be simply referred to as a conductive pattern. The first conductive layer 10 and the second conductive layer 20 may be simply referred to as conductive layers. As described later, the conductive layer preferably has a structure in which a metal layer or an alloy layer is sandwiched between conductive oxide layers.
(容量センサ基板の断面構造)
 図2は、本発明の第1実施形態に係る容量センサ基板100Aの構成を示す部分断面図であり、図1に示すA-A’線に沿う単位セルを示す断面図である。図2は、主として、キャパシタパターン12及び第1薄膜トランジスタ31の断面構造を示している。
(Cross-sectional structure of capacitive sensor substrate)
FIG. 2 is a partial cross-sectional view showing the configuration of the capacitive sensor substrate 100A according to the first embodiment of the present invention, which is a cross-sectional view showing a unit cell along the line AA ′ shown in FIG. FIG. 2 mainly shows the cross-sectional structure of the capacitor pattern 12 and the first thin film transistor 31.
 図2に示すように、容量センサ基板100Aは、第1面1と第2面2とを具備する基板102を有する。第1面1は、指などのポインタが近接あるいは接触(タッチ)するタッチ入力面(タッチセンシング入力面)である。図2における符号TDは、指などのポインタが第1面1に近接あるいは接触する方向を示している。
 第2面2の上方には、誘電体層3が形成され、誘電体層3上には、第1導電パターン10P及び第2導電パターン20Pが形成されている。図2に示す構造では、第2面2上に、単位セル19の全面を覆うように誘電体層3が形成されている。基板102の厚み方向において、誘電体層3は、キャパシタパターン12よりも、第1面1(タッチセンシング入力面)に近い位置にある。
As shown in FIG. 2, the capacitive sensor substrate 100A has a substrate 102 having a first surface 1 and a second surface 2. The first surface 1 is a touch input surface (touch sensing input surface) with which a pointer such as a finger approaches or touches (touches). Reference numeral TD in FIG. 2 indicates a direction in which a pointer such as a finger approaches or contacts the first surface 1.
A dielectric layer 3 is formed above the second surface 2, and a first conductive pattern 10P and a second conductive pattern 20P are formed on the dielectric layer 3. In the structure shown in FIG. 2, the dielectric layer 3 is formed on the second surface 2 so as to cover the entire surface of the unit cell 19. In the thickness direction of the substrate 102, the dielectric layer 3 is located closer to the first surface 1 (touch sensing input surface) than the capacitor pattern 12.
 単位セル19のうち第1薄膜トランジスタ31が形成されていない領域においては、誘電体層3上に、第1絶縁層17と、第1導電パターン10Pを構成する走査線13及びキャパシタパターン12とが形成されている。平面視において、誘電体層3は、キャパシタパターン12と重なっている。 In the region of the unit cell 19 where the first thin film transistor 31 is not formed, the first insulating layer 17, the scanning line 13 and the capacitor pattern 12 forming the first conductive pattern 10P are formed on the dielectric layer 3. Has been done. The dielectric layer 3 overlaps with the capacitor pattern 12 in a plan view.
 単位セル19のうち第1薄膜トランジスタ31が形成されている領域においては、誘電体層3上に、第1絶縁層17と、第2導電パターン20Pを構成する第1ソース電極22、第1ドレイン電極23、及び出力線21が形成されている。さらに、第1絶縁層17上には、第1薄膜トランジスタ31の構成要素である第1チャネル層16が形成されており、第1チャネル層16上には、ゲート絶縁層18を介して、第1導電パターン10Pを構成する第1ゲート電極11が形成されている。 In the region of the unit cell 19 where the first thin film transistor 31 is formed, the first insulating layer 17 and the first source electrode 22 and the first drain electrode forming the second conductive pattern 20P are formed on the dielectric layer 3. 23 and an output line 21 are formed. Further, the first channel layer 16 which is a component of the first thin film transistor 31 is formed on the first insulating layer 17, and the first channel layer 16 is formed on the first channel layer 16 with the gate insulating layer 18 interposed therebetween. The first gate electrode 11 forming the conductive pattern 10P is formed.
 換言すれば、第1薄膜トランジスタ31が形成されている領域においては、基板102の第2面2の上に、誘電体層3、第1絶縁層17、及び第2導電層20(第2導電パターン20P)が、この順に積層されている。さらに、第2導電層20上には、ゲート絶縁層18を介して、第1導電層10(第1導電パターン10P)が形成されている。また、第1導電層10上には、第2絶縁層27及び第3絶縁層28がこの順に積層されている。すなわち、第1導電層10及び第2導電層20は、第2面2の上方に設けられている。 In other words, in the region where the first thin film transistor 31 is formed, the dielectric layer 3, the first insulating layer 17, and the second conductive layer 20 (second conductive pattern) are formed on the second surface 2 of the substrate 102. 20P) are laminated in this order. Further, the first conductive layer 10 (first conductive pattern 10P) is formed on the second conductive layer 20 via the gate insulating layer 18. Further, the second insulating layer 27 and the third insulating layer 28 are stacked in this order on the first conductive layer 10. That is, the first conductive layer 10 and the second conductive layer 20 are provided above the second surface 2.
 図2に示すように、基板102の第2面2上には、誘電体層3と第1絶縁層17がこの順で積層されている。換言すると、第2面2上に誘電体層3が設けられており、第2面2の露出面(表面)と誘電体層3の表面とを覆うように、第1絶縁層17が設けられている。さらに、第1絶縁層17上には、第2導電パターン20Pを構成する出力線21、第1ソース電極22、及び第1ドレイン電極23等と、第1チャネル層16とが設けられている。第1チャネル層16、第1ソース電極22、及び第1ドレイン電極23等を覆うようにゲート絶縁層18が設けられている。さらに、ゲート絶縁層18上には、第1導電パターン10Pを構成するキャパシタパターン12と第1ゲート電極11が設けられている。図1に示すように、キャパシタパターン12と第1ゲート電極11とは電気的に連携されている。 As shown in FIG. 2, the dielectric layer 3 and the first insulating layer 17 are laminated in this order on the second surface 2 of the substrate 102. In other words, the dielectric layer 3 is provided on the second surface 2, and the first insulating layer 17 is provided so as to cover the exposed surface (surface) of the second surface 2 and the surface of the dielectric layer 3. ing. Further, on the first insulating layer 17, the output line 21, the first source electrode 22, the first drain electrode 23, and the like that form the second conductive pattern 20P, and the first channel layer 16 are provided. A gate insulating layer 18 is provided so as to cover the first channel layer 16, the first source electrode 22, the first drain electrode 23, and the like. Further, on the gate insulating layer 18, the capacitor pattern 12 and the first gate electrode 11 which form the first conductive pattern 10P are provided. As shown in FIG. 1, the capacitor pattern 12 and the first gate electrode 11 are electrically linked.
 誘電体層3は、キャパシタパターン12よりも、タッチ入力面(第1面1)に近い位置に設けられている。酸化物半導体である第1チャネル層16の位置については、後に詳述する。 The dielectric layer 3 is provided closer to the touch input surface (first surface 1) than the capacitor pattern 12. The position of the first channel layer 16 which is an oxide semiconductor will be described in detail later.
 第2絶縁層27及び第3絶縁層28は、例えば、酸化ケイ素や窒化ケイ素等で構成される無機絶縁膜で形成されてもよいし、あるいは、透明樹脂で構成される平坦化膜が積層された構成を有してもよい。
 第3絶縁層28は、指やポインタが容量センサ基板100Aに接触(タッチ)する際における容量センサ基板100Aを保護する保護基板の役割を有する。第3絶縁層28としては、強化ガラス、サファイア基板等の強度を有する基板を採用することができる。
 また、ICカードのようなプラスチックカードに容量センサ基板100Aを適用する場合には、第3絶縁層28として硬質の樹脂板を採用することができる。第3絶縁層28の厚みは適宜設定されるが、第3絶縁層28の厚みが薄い構成においては容量センサ基板100Aにおけるタッチセンシングに関わる解像度を向上しやすい。
The second insulating layer 27 and the third insulating layer 28 may be formed of, for example, an inorganic insulating film made of silicon oxide or silicon nitride, or a flattening film made of a transparent resin is laminated. It may have a different configuration.
The third insulating layer 28 serves as a protective substrate that protects the capacitive sensor substrate 100A when a finger or a pointer contacts (touches) the capacitive sensor substrate 100A. As the third insulating layer 28, a substrate having strength such as tempered glass and sapphire substrate can be adopted.
When the capacitance sensor substrate 100A is applied to a plastic card such as an IC card, a hard resin plate can be used as the third insulating layer 28. Although the thickness of the third insulating layer 28 is appropriately set, the resolution related to touch sensing in the capacitive sensor substrate 100A can be easily improved when the thickness of the third insulating layer 28 is thin.
 容量センサ基板100Aに適用できる基板102の具体的な基板材料としては、サファイア基板、アルミノ珪酸塩ガラス製等の基板、アクリル基板、ポリエステルフィルム、ポリイミドフィルム、あるいは、偏光板に用いられるTACフィルムや、ICカード(セキュリティカード、データカード、スマートカード含む)などに用いられるポリ塩化ビニルをラミネートした樹脂基板等、種々な基板を用いることができる。基板102は、透明である必要はなく、白色や他の色に着色した基板が基板102に用いられてもよい。しかしながら、容量センサ基板100Aが指紋認証を行う装置に用いられる場合、ガラス基板のようにリジッドで、平面性や平坦度の精度の高い表面を有する基板であることが望ましい。基板102には、イオン交換法や急冷法により、強化したガラス基板を適用できる。 As a specific substrate material of the substrate 102 applicable to the capacitance sensor substrate 100A, a sapphire substrate, a substrate made of aluminosilicate glass, an acrylic substrate, a polyester film, a polyimide film, or a TAC film used for a polarizing plate, Various substrates such as a resin substrate laminated with polyvinyl chloride used for IC cards (including security cards, data cards, smart cards) and the like can be used. The substrate 102 does not need to be transparent, and a substrate colored in white or another color may be used as the substrate 102. However, when the capacitive sensor substrate 100A is used in a device that performs fingerprint authentication, it is desirable that the capacitive sensor substrate 100A be a substrate that is rigid like a glass substrate and has a highly accurate flatness and flatness. A glass substrate reinforced by an ion exchange method or a quenching method can be applied to the substrate 102.
 基板102の厚みは、例えば、0.1mmから1.5mmまでの範囲から選ぶことができる。ただし、基板102の厚みは、この厚みの範囲に限定されない。本実施形態の場合、基板102の厚さを薄くすることで、タッチセンシングの解像度を向上できる。本実施形態に係る容量センサ基板100AをICカードのような樹脂基板の積層体に適用する場合には、インレットと呼称される樹脂シート上に、アンテナ、制御用ICチップ、及び、アンテナと制御用ICチップとを電気的に接続する導体配線を配設し、その後、複数層の樹脂シートを容量センサ基板100Aに貼り合わせしてカード状の積層体とすればよい。 The thickness of the substrate 102 can be selected from the range of 0.1 mm to 1.5 mm, for example. However, the thickness of the substrate 102 is not limited to this thickness range. In the case of the present embodiment, the resolution of touch sensing can be improved by reducing the thickness of the substrate 102. When the capacitive sensor substrate 100A according to the present embodiment is applied to a laminated body of resin substrates such as an IC card, an antenna, a control IC chip, and an antenna and a control IC are provided on a resin sheet called an inlet. Conductor wiring for electrically connecting to the IC chip may be provided, and then a plurality of layers of resin sheets may be attached to the capacitive sensor substrate 100A to form a card-shaped laminated body.
(誘電体層)
 本発明の実施形態に係る誘電体層3は、カーボンを含む。このため、本発明の実施形態に係る誘電体層は、黒色誘電体層と称することもできる。
 具体的に、誘電体層3は、カーボンを樹脂に分散した分散体、或いは、カーボンにさらに金属酸化物や金属窒化物等の微粒子を加えた分散体で構成されている。すなわち、誘電体層3は、カーボンと、金属酸化物、金属酸化窒化物、及び金属窒化物からなる群より選ばれる、少なくとも1以上の微粒子と、を含む樹脂分散体である。
(Dielectric layer)
The dielectric layer 3 according to the embodiment of the present invention contains carbon. Therefore, the dielectric layer according to the embodiment of the present invention can also be referred to as a black dielectric layer.
Specifically, the dielectric layer 3 is composed of a dispersion in which carbon is dispersed in a resin, or a dispersion in which fine particles such as a metal oxide or a metal nitride are further added to carbon. That is, the dielectric layer 3 is a resin dispersion containing carbon and at least one fine particle selected from the group consisting of metal oxides, metal oxynitrides, and metal nitrides.
 以下に示すように、本発明者らは、カーボンの分散体は、タッチセンシング用途の誘電体として、電気特性を種々、調整できることを見出している。カーボンの分散体は、比誘電率、誘電損失、抵抗率などの電気特性を広い範囲で調整することができるため、静電容量方式のタッチセンシングに用いられる誘電体として好適である。 As shown below, the present inventors have found that the carbon dispersion can be adjusted in various electrical characteristics as a dielectric for touch sensing applications. The carbon dispersion is suitable as a dielectric used for capacitance-type touch sensing because it can adjust electrical characteristics such as relative permittivity, dielectric loss, and resistivity in a wide range.
 なお、以下の記載において、微粒子を単に粉体と呼称することがある。誘電体層3は、平面視において少なくともキャパシタパターン12を覆う。平面視における誘電体層3の大きさは、キャパシタパターン12の大きさと等しくてもよい。あるいは、複数の単位セルの全体を覆うように誘電体層3が形成されてもよい。 Note that in the following description, fine particles may be simply referred to as powder. The dielectric layer 3 covers at least the capacitor pattern 12 in plan view. The size of the dielectric layer 3 in plan view may be equal to the size of the capacitor pattern 12. Alternatively, the dielectric layer 3 may be formed so as to cover the whole of the plurality of unit cells.
 誘電体層3におけるカーボン等の分散状態、濃度、組成、膜厚等を調整することにより、例えば、10~700といった高い比誘電率を持つように誘電体層3の電気特性を調整することが可能である。カーボンの分散状態を調整したり、強誘電体の微粒子や常誘電体の微粒子を誘電体層3に添加したりすることによって、誘電体層3の比誘電率を150以上にすることができる。
 なお、誘電体層3の誘電損失(tanδ)によって消費電力の増加が問題となる電子機器に本実施形態に係る容量センサ基板100Aが適用される場合(例えば、モバイル機器)、誘電体層3の比誘電率を、15~100の範囲に抑えてもよい。
By adjusting the dispersion state, concentration, composition, film thickness, etc. of carbon or the like in the dielectric layer 3, it is possible to adjust the electrical characteristics of the dielectric layer 3 so as to have a high relative dielectric constant such as 10 to 700. It is possible. The relative permittivity of the dielectric layer 3 can be set to 150 or more by adjusting the dispersed state of carbon or adding fine particles of ferroelectric substance or fine particles of paraelectric substance to the dielectric layer 3.
When the capacitive sensor substrate 100A according to the present embodiment is applied to an electronic device in which an increase in power consumption is a problem due to the dielectric loss (tan δ) of the dielectric layer 3 (for example, mobile device), the dielectric layer 3 of The relative dielectric constant may be suppressed within the range of 15 to 100.
 本発明の実施形態に係る誘電体層3を構成する材料としては、カーボンを、アクリル、エポキシ、ポリイミド等の樹脂に分散させた分散体を用いることができる。さらには、カーボンナノチューブ、カーボンナノホーン、カーボンナノブラシ等を樹脂に混合分散してもよい。あるいは、誘電体層3の構成の一部を、カーボンと置き換えカーボンナノチューブを樹脂に分散させてもよい。誘電体層3は、以下、単に誘電体と称することがある。 As a material forming the dielectric layer 3 according to the embodiment of the present invention, a dispersion in which carbon is dispersed in a resin such as acryl, epoxy, or polyimide can be used. Furthermore, carbon nanotubes, carbon nanohorns, carbon nanobrushes, etc. may be mixed and dispersed in the resin. Alternatively, part of the structure of the dielectric layer 3 may be replaced with carbon and the carbon nanotubes may be dispersed in the resin. Hereinafter, the dielectric layer 3 may be simply referred to as a dielectric.
 上記の誘電体に関し、誘電体層3中のカーボンの分散状態の改善と、誘電損失を大きくしない目的で、常誘電体の粉体を誘電体に添加することが望ましい。常誘電体は、電場を加えない状態では電気分極を有しておらず、誘電損失が小さい誘電体である。なお、本発明の実施形態において、常誘電体の金属酸化物や金属窒化物は、比誘電率が110以下、誘電損失が0.00001~0.1の範囲内にある金属酸化物や金属窒化物の粉末と定義する。ここで、これら電気特性の測定周波数は、以下の説明するタッチセンシング周波数であり、例えば、20℃の室温において測定される。抵抗率を含む、これら電気特性は、インピーダンス・アナライザ、LCRメータなどの測定器を用いて、平行板コンデンサー法などの手法で測定できる。測定電圧は、例えば、0.5Vから10Vの範囲内であればよい。測定電圧や測定周波数は、実際のタッチセンシングに用いる測定電圧や測定周波数に近い数値を用いることが望ましい。 Regarding the above dielectric, it is desirable to add paraelectric powder to the dielectric for the purpose of improving the dispersed state of carbon in the dielectric layer 3 and not increasing the dielectric loss. A paraelectric material is a dielectric material that does not have electric polarization in a state where an electric field is not applied and has a small dielectric loss. In the embodiment of the present invention, the paraelectric metal oxide or metal nitride has a relative dielectric constant of 110 or less and a dielectric loss of 0.00001 to 0.1. It is defined as the powder of the product. Here, the measurement frequency of these electrical characteristics is a touch sensing frequency described below, and is measured at room temperature of 20 ° C., for example. These electrical characteristics including the resistivity can be measured by a technique such as a parallel plate capacitor method using a measuring instrument such as an impedance analyzer or an LCR meter. The measurement voltage may be in the range of 0.5V to 10V, for example. As the measurement voltage and the measurement frequency, it is desirable to use values close to the measurement voltage and the measurement frequency used for actual touch sensing.
 誘電体層3には、カーボンの他に、カーボンの分散状態を調整する目的と比誘電率の調整等の目的で、酸化カルシウム、炭酸カルシウム、硫酸バリウム、二酸化ケイ素、カオリン、クレーなどの体質顔料を誘電体層3に加えることができる。あるいは、カーボンの他に、酸化チタン、窒化チタン、酸化窒化チタン、チタンブラック、ジルコン酸バリウム、チタン酸マグネシム、硫酸カルシウムなどの高誘電率を有する誘電体の粉末が添加された樹脂の分散体を用いることができる。上記微粒子は、例えば、平均粒径が0.02μm以上2μm以下の範囲にある微粒子である。なお、強誘電体として知られるチタン酸バリウムは、毒性を持ち、かつ、誘電損失が0.4を超えることが多いため、タッチセンシングに用いる誘電体として好ましい材料ではない。 In addition to carbon, the dielectric layer 3 includes extender pigments such as calcium oxide, calcium carbonate, barium sulfate, silicon dioxide, kaolin, and clay for the purpose of adjusting the dispersed state of carbon and adjusting the relative dielectric constant. Can be added to the dielectric layer 3. Alternatively, in addition to carbon, a dispersion of resin in which titanium oxide, titanium nitride, titanium oxynitride, titanium black, barium zirconate, magnesium titanate, calcium sulfate, or another dielectric powder having a high dielectric constant is added. Can be used. The fine particles are, for example, fine particles having an average particle diameter in the range of 0.02 μm or more and 2 μm or less. Note that barium titanate, which is known as a ferroelectric material, is not a preferable material as a dielectric material used for touch sensing because it has toxicity and dielectric loss often exceeds 0.4.
 本発明の実施形態に係る誘電体層3は、カーボンや酸化チタンなどの金属酸化物の微粒子が樹脂に分散され、10~700、あるいは15~100の比誘電率を有する分散体で構成されている。誘電体層3の分散体(固形)の誘電損失(tanδ)は、例えば、200Hz~500KHzの範囲のタッチセンシング周波数において、0.01以上0.2未満の範囲内にあればよい。さらに、誘電損失の値は、0.08以下であることは好ましい。誘電損失の値が0.2を超えると、タッチセンシングに関わる消費電力が大きくなるため、好ましくない。カーボンや酸化チタンなどの樹脂分散体を用いる誘電体層において0.01以下の小さな誘電損失の分散体を用いると、大きな比誘電率を確保することが難しい場合がある。 The dielectric layer 3 according to the embodiment of the present invention is composed of fine particles of metal oxide such as carbon or titanium oxide dispersed in a resin and having a relative dielectric constant of 10 to 700, or 15 to 100. There is. The dielectric loss (tan δ) of the dispersion (solid) of the dielectric layer 3 may be in the range of 0.01 or more and less than 0.2 at the touch sensing frequency in the range of 200 Hz to 500 KHz, for example. Further, the value of the dielectric loss is preferably 0.08 or less. If the value of dielectric loss exceeds 0.2, power consumption related to touch sensing increases, which is not preferable. When a dispersion having a small dielectric loss of 0.01 or less is used in a dielectric layer using a resin dispersion such as carbon or titanium oxide, it may be difficult to secure a large relative dielectric constant.
 後述するキャパシタパターン12の電位をリセットする際に、そのリセット期間内にリセットが終了するように誘電体層3の抵抗率を調整してもよい。換言すれば、キャパシタパターン12の電位をグランドなどのリセット電位に設定するために、例えば、誘電体の抵抗率を1×1013Ωcm未満に設定し、緩和時間(あるいは時定数)を短くすることができる。 When resetting the potential of the capacitor pattern 12 to be described later, the resistivity of the dielectric layer 3 may be adjusted so that the reset is completed within the reset period. In other words, in order to set the potential of the capacitor pattern 12 to the reset potential such as ground, the resistivity of the dielectric is set to less than 1 × 10 13 Ωcm, and the relaxation time (or time constant) is shortened. You can
 また、タッチによる静電容量を保持する目的で、例えば、誘電体層3の抵抗率を1×1013Ωcm以上としてもよい。しかしながら、誘電体の抵抗率を1×1014Ωcm以上とする場合、上記緩和時間に悪影響を及ぼす可能性がある。従って、誘電体の抵抗率を1×1014Ωcm以上とする技術価値は低い。例えば、誘電体層3が1×1014Ωcm以上さらには1×1015Ωcm以上の抵抗率を有する場合、指などのポインタによるタッチセンシング後におけるリセット期間内において、キャパシタパターン12の電位のリセット(例えば、グランド電位に戻す)を完全に行うことが難しい場合がある。誘電体層3の抵抗率を、1×10Ωcm以上1×1013Ωcm未満とすることで、リセット期間を短縮することができる。誘電体層が1×10Ωcmより小さい抵抗率を有する場合、十分な静電容量を確保できず、タッチセンシング精度を低下させる懸念がある。 Further, for the purpose of maintaining the electrostatic capacity by touching, for example, the resistivity of the dielectric layer 3 may be 1 × 10 13 Ωcm or more. However, if the resistivity of the dielectric is set to 1 × 10 14 Ωcm or more, the relaxation time may be adversely affected. Therefore, the technical value of making the resistivity of the dielectric material 1 × 10 14 Ωcm or more is low. For example, when the dielectric layer 3 has a resistivity of 1 × 10 14 Ωcm or more, and further 1 × 10 15 Ωcm or more, the potential of the capacitor pattern 12 is reset (in the reset period after touch sensing by a pointer such as a finger). For example, it may be difficult to completely perform (return to the ground potential). By setting the resistivity of the dielectric layer 3 to 1 × 10 8 Ωcm or more and less than 1 × 10 13 Ωcm, the reset period can be shortened. If the dielectric layer has a resistivity lower than 1 × 10 7 Ωcm, sufficient capacitance cannot be ensured, and there is a concern that touch sensing accuracy may be reduced.
 誘電体層3の構成としては、比誘電率や抵抗率などの電気的特性の異なる複数の層が積層された多層構成を採用することができる。あるいは、指などのポインタが容量センサ基板100Aの第1面1に近接又は接触する方向(第1面1に対する法線方向)、すなわち、誘電体層3の膜厚方向における比誘電率や抵抗率等の電気的特性を変えることができる。この膜厚方向において、キャパシタパターン12の近くに位置する誘電体の比誘電率を高くして、キャパシタパターン12から離れた位置にある誘電体の比誘電率を低くしてもよい。上述した観点から、誘電体層3に含まれるカーボン濃度を誘電体層3の厚み方向に沿って調整してもよい。さらには、カーボンの分散状態を、誘電体層3の厚み方向に沿って変えてもよい。 As the structure of the dielectric layer 3, it is possible to adopt a multilayer structure in which a plurality of layers having different electrical characteristics such as relative permittivity and resistivity are laminated. Alternatively, the relative permittivity or the resistivity in the direction in which the pointer such as a finger approaches or contacts the first surface 1 of the capacitive sensor substrate 100A (normal direction to the first surface 1), that is, in the film thickness direction of the dielectric layer 3. It is possible to change electrical characteristics such as. In this film thickness direction, the relative dielectric constant of the dielectric located near the capacitor pattern 12 may be increased, and the relative dielectric constant of the dielectric located away from the capacitor pattern 12 may be decreased. From the viewpoint described above, the carbon concentration contained in the dielectric layer 3 may be adjusted along the thickness direction of the dielectric layer 3. Furthermore, the dispersion state of carbon may be changed along the thickness direction of the dielectric layer 3.
 誘電体層3は、厚さ方向に沿って、誘電率の勾配を有してもよい。キャパシタパターン12と第1絶縁層17との間の界面の近くにおいて、誘電体層3が部分的に高い比誘電率を有してもよい。 The dielectric layer 3 may have a gradient of dielectric constant along the thickness direction. The dielectric layer 3 may partially have a high relative dielectric constant near the interface between the capacitor pattern 12 and the first insulating layer 17.
 基板102としては、比誘電率が低い基板、比誘電率が8以下の材料を用いることができる。基板102の比誘電率は、例えば、比誘電率5以下であってもよい。また、基板102とキャパシタパターン12との界面に位置する部材の比誘電率が高いことが望ましい。換言すれば、基板102とキャパシタパターン12との界面に位置する誘電体層3の比誘電率が高いことが望ましい。例えば、図2に示す第3絶縁層28としてガラス基板や樹脂基板の保護基板が採用される場合において、保護基板が容量センサ基板100A上に配置される構成では、保護基板(例えば、カバーガラス)の比誘電率の3倍以上の比誘電率を、誘電体層3が持つことが望ましい。 As the substrate 102, a substrate having a low relative permittivity or a material having a relative permittivity of 8 or less can be used. The relative dielectric constant of the substrate 102 may be, for example, 5 or less. Further, it is desirable that the member located at the interface between the substrate 102 and the capacitor pattern 12 has a high relative dielectric constant. In other words, it is desirable that the dielectric layer 3 located at the interface between the substrate 102 and the capacitor pattern 12 has a high relative permittivity. For example, when a protective substrate such as a glass substrate or a resin substrate is used as the third insulating layer 28 shown in FIG. 2, in the configuration in which the protective substrate is arranged on the capacitive sensor substrate 100A, the protective substrate (eg, cover glass) is used. It is desirable that the dielectric layer 3 have a relative dielectric constant that is three times or more the relative dielectric constant of.
 誘電体層3の電気的特性は、上記のようにタッチセンシングの内容に応じて種々、調整できる。なお、上記微粒子は、例えば、平均粒径が0.02以上2μm以下の範囲にある微粒子である。 The electrical characteristics of the dielectric layer 3 can be adjusted variously according to the content of touch sensing as described above. The fine particles are, for example, fine particles having an average particle size in the range of 0.02 to 2 μm.
 指などのポインタと誘電体層までの距離Pzは、実用的には0.1mmから1.5mmまでの範囲であればよい。液晶などの表示装置に容量センサ基板100Aが適用される場合では、この距離Pzは、保護のためのカバーガラス、偏光板、位相差板などの厚みを含む。表示装置に容量センサ基板100Aが適用されない場合、例えば、容量センサ基板100Aが指紋センサに適用される場合では、上記の部材は不要であり、指などのポインタと誘電体層までの距離Pzを小さくできる。 The distance Pz between the pointer such as a finger and the dielectric layer may practically be in the range of 0.1 mm to 1.5 mm. When the capacitive sensor substrate 100A is applied to a display device such as a liquid crystal, the distance Pz includes the thickness of a cover glass for protection, a polarizing plate, a retardation plate and the like. When the capacitive sensor substrate 100A is not applied to the display device, for example, when the capacitive sensor substrate 100A is applied to a fingerprint sensor, the above members are unnecessary and the distance Pz between the pointer such as a finger and the dielectric layer is small. it can.
 距離Pzは、容量センサ基板100Aの分解能に重要である。誘電体層3の厚みは、この観点からはさほど重要でない。本発明の実施形態では、主にカーボンを含有する樹脂分散体を誘電体層3に用いており、誘電体層3の厚みは、0.2μmから10μmの範囲内であればよい。主にカーボンを含有する樹脂分散体の粘度は、有機溶剤の添加などで調整され、カーテンコーターやスピンコーターなどの一般的な塗布技術を用いて樹脂分散体を形成できる。分散体を塗布形成する方法においては、誘電体の膜厚として0.1μm以下の均一な膜を実現することは難しく、逆に、誘電体の膜厚として10μmを超える膜厚を形成する場合には、ムラが発生しやすい。10μmを超える厚さを有する誘電体層の必要性は低い。 The distance Pz is important for the resolution of the capacitive sensor substrate 100A. The thickness of the dielectric layer 3 is not so important from this point of view. In the embodiment of the present invention, the resin dispersion containing mainly carbon is used for the dielectric layer 3, and the thickness of the dielectric layer 3 may be in the range of 0.2 μm to 10 μm. The viscosity of the resin dispersion containing mainly carbon is adjusted by adding an organic solvent and the like, and the resin dispersion can be formed by using a general coating technique such as a curtain coater or a spin coater. In the method of coating and forming a dispersion, it is difficult to realize a uniform film having a thickness of 0.1 μm or less, and conversely, when a film thickness of the dielectric exceeds 10 μm. Is likely to cause unevenness. The need for a dielectric layer having a thickness greater than 10 μm is low.
(第1薄膜トランジスタ)
 図3は、本発明の第1実施形態に係る容量センサ基板100Aの構成を示す部分断面図であり、図2に示した第1薄膜トランジスタ31の部分拡大図を示す。
 基板102上には誘電体層3が形成されており、誘電体層3上には、第1絶縁層17が形成されている。第1薄膜トランジスタを構成する、第1チャネル層16、第1ソース電極22、第1ドレイン電極23、第1ゲート電極11などが、第1絶縁層17上に形成されている。すなわち、第1薄膜トランジスタ31は、第2面2の上方に設けられている。
(First thin film transistor)
FIG. 3 is a partial cross-sectional view showing the configuration of the capacitive sensor substrate 100A according to the first embodiment of the present invention, which is a partially enlarged view of the first thin film transistor 31 shown in FIG.
The dielectric layer 3 is formed on the substrate 102, and the first insulating layer 17 is formed on the dielectric layer 3. The first channel layer 16, the first source electrode 22, the first drain electrode 23, the first gate electrode 11, and the like, which form the first thin film transistor, are formed on the first insulating layer 17. That is, the first thin film transistor 31 is provided above the second surface 2.
 図3に示す第1薄膜トランジスタ31は、トップゲート構造のトランジスタである。すなわち、断面視において、第1ゲート電極11は、第1ソース電極22、第1ドレイン電極23、及び第1チャネル層16より上方に設けられている。
 第1ソース電極22、第1ドレイン電極23、及び第1ゲート電極11の各々は、導電層で形成されており、後述するように金属層あるいは合金層が導電性酸化物層で挟持された構成(3層構成)を有する。
 一方、第1チャネル層16は、酸化物半導体で形成されている。第1チャネル層16の両端部は、第2導電層20を構成する導電性酸化物層(図4における符号41)で覆われている。すなわち、後述する図4に示されるように、第1薄膜トランジスタ31の厚み方向に沿う断面視において、第1薄膜トランジスタ31は、第1チャネル層16の端部が第2導電層20で覆われた重畳部44を有する。この重畳部44は、第1導電性酸化物層41と第1チャネル層16とが接触する界面を形成する。
The first thin film transistor 31 shown in FIG. 3 is a top-gate transistor. That is, the first gate electrode 11 is provided above the first source electrode 22, the first drain electrode 23, and the first channel layer 16 in a cross-sectional view.
Each of the first source electrode 22, the first drain electrode 23, and the first gate electrode 11 is formed of a conductive layer, and a metal layer or an alloy layer is sandwiched between conductive oxide layers as described later. (Three-layer structure).
On the other hand, the first channel layer 16 is made of an oxide semiconductor. Both ends of the first channel layer 16 are covered with a conductive oxide layer (reference numeral 41 in FIG. 4) forming the second conductive layer 20. That is, as shown in FIG. 4 to be described later, in the cross-sectional view along the thickness direction of the first thin film transistor 31, the first thin film transistor 31 has an overlapping portion in which the end portion of the first channel layer 16 is covered with the second conductive layer 20. It has a section 44. The overlapping portion 44 forms an interface where the first conductive oxide layer 41 and the first channel layer 16 are in contact with each other.
(酸化物半導体層)
 第1チャネル層16に適用できる酸化物半導体としては、酸化インジウム、酸化亜鉛、酸化ガリウム、酸化シリコン、酸化アンチモン、酸化ビスマス、酸化セリウム、酸化錫などから2以上選ばれる酸化物半導体が挙げられる。例えば、酸化物半導体層は、酸化インジウムと、酸化アンチモン及び酸化ビスマスのうち少なくともいずれか1つと、を含んでもよい。また、酸化物半導体層は、酸化セリウム及び酸化錫のうち少なくともいずれか1つを含んでもよい。
(Oxide semiconductor layer)
Examples of the oxide semiconductor applicable to the first channel layer 16 include oxide semiconductors selected from two or more of indium oxide, zinc oxide, gallium oxide, silicon oxide, antimony oxide, bismuth oxide, cerium oxide, tin oxide and the like. For example, the oxide semiconductor layer may include indium oxide and at least one of antimony oxide and bismuth oxide. Further, the oxide semiconductor layer may include at least one of cerium oxide and tin oxide.
 酸化物半導体層の膜厚は、例えば、30nm以上90nm以下とすることができる。酸化インジウムに、酸化アンチモン及び酸化ビスマスのうち少なくともいずれか1つを加えた酸化物半導体は、340℃以下の低温アニールで結晶化できるメリットがある。350℃を超える熱処理では、上記導電層(導電パターン)の構成に含まれる銅の拡散が半導体層に生じる問題がある。銅の拡散は、銅配線の抵抗値が増加する問題や薄膜トランジスタの特性を損なう。このため、350℃以下のアニールで結晶化する酸化物半導体の採用は好ましい。 The film thickness of the oxide semiconductor layer can be, for example, 30 nm or more and 90 nm or less. An oxide semiconductor obtained by adding at least one of antimony oxide and bismuth oxide to indium oxide has an advantage that it can be crystallized by low temperature annealing at 340 ° C. or lower. The heat treatment at a temperature higher than 350 ° C. has a problem that copper contained in the conductive layer (conductive pattern) is diffused in the semiconductor layer. The diffusion of copper impairs the problem that the resistance value of the copper wiring increases and the characteristics of the thin film transistor. Therefore, it is preferable to employ an oxide semiconductor that is crystallized by annealing at 350 ° C. or lower.
 上記した酸化物半導体を用いて第1チャネル層16を形成する場合、例えば、室温(20℃)で成膜を行うことができる。このため、耐熱性に劣る樹脂基板を基板102に適用できる。一方、第1チャネル層16がポリシリコン半導体で構成されている場合、半導体形成工程が600℃前後で半導体を加熱するレーザーアニール工程を含むため、樹脂基板を適用することが困難である。 When the first channel layer 16 is formed using the above oxide semiconductor, the film can be formed at room temperature (20 ° C.), for example. Therefore, a resin substrate having poor heat resistance can be applied to the substrate 102. On the other hand, when the first channel layer 16 is composed of a polysilicon semiconductor, it is difficult to apply a resin substrate because the semiconductor forming step includes a laser annealing step of heating the semiconductor at around 600 ° C.
 なお、一般的に、薄膜トランジスタの構成として、チャネル層がアモルファスシリコン半導体で構成された構造、または、ポリシリコン半導体で構成された構造が知られている。アモルファスシリコン半導体を用いる構造の場合、電子移動度が低く、タッチセンサ用途の半導体としては不十分である。ポリシリコン半導体を用いる構造の場合、ポリシリコン半導体は高い電子移動度を有するが、トランジスタの性能として漏れ電流が大きくなり、タッチセンシング時の静電容量を保持し難いという欠点がある。特に、アモルファスシリコン半導体、ポリシリコン半導体、ともに電気的な耐圧が低く、タッチセンシング時の静電容量の変化の程度によっては、トランジスタが破壊されてしまう欠点がある。 Generally, as a structure of a thin film transistor, a structure in which a channel layer is made of an amorphous silicon semiconductor or a structure made of a polysilicon semiconductor is known. The structure using an amorphous silicon semiconductor has a low electron mobility and is insufficient as a semiconductor for a touch sensor application. In the case of a structure using a polysilicon semiconductor, the polysilicon semiconductor has a high electron mobility, but there is a drawback in that the leakage current becomes large as the performance of the transistor and it is difficult to maintain the electrostatic capacity during touch sensing. In particular, both the amorphous silicon semiconductor and the polysilicon semiconductor have a low electrical breakdown voltage, and there is a drawback that the transistor is destroyed depending on the degree of change in capacitance during touch sensing.
 これに対し、本実施形態に係る酸化物半導体は、電気的な耐圧が、シリコン系半導体と比較すると10倍以上高く、電子移動度も高い。酸化物半導体は、タッチセンサを駆動する薄膜トランジスタのチャネル層として好ましい。指紋センサを構成する半導体材料として、酸化物半導体は好適である。 On the other hand, the electrical resistance of the oxide semiconductor according to this embodiment is 10 times or more higher than that of the silicon-based semiconductor, and the electron mobility is also high. An oxide semiconductor is preferable as a channel layer of a thin film transistor which drives a touch sensor. An oxide semiconductor is suitable as a semiconductor material forming a fingerprint sensor.
 さらに、第1チャネル層16を構成する酸化物半導体には、酸化物半導体中に酸化セリウムを含ませることができる。このとき、酸素をカウントしない元素の合計を100at%とすると(金属元素換算)、0.2at%以上10at%以下のセリウムの量とする。より具体的には、酸化物半導体は、酸化インジウムと、酸化アンチモンと、酸化インジウム、及び酸化アンチモンの各々の量より少ない量を有する酸化セリウムとを含む複合酸化物であり、かつ、酸素をカウントしない元素の合計を100at%とすると、インジウム及びアンチモンの各々の量は40at%以上となる。例えば、この酸化物半導体において酸素をカウントしない元素の合計を100at%とすると、インジウム及びアンチモンの各々の量を48at%とし、セリウムの量を4at%としている。なお、酸化アンチモンや酸化セリウムは、酸化ガリウムや酸化インジウムとは異なり、廉価に入手できるので産業価値が高い。上記において、酸化セリウムを酸化錫に置き換えてもよい。この場合も、同様の効果が得られる。さらには、酸化物半導体として、酸化インジウムと、酸化アンチモンと、酸化インジウム、及び酸化アンチモンの各々の量より少ない量で、酸化セリウム及び酸化錫のうち一方もしくは両方を含む複合酸化物を採用してもよい。上記のように、酸化インジウムを基材(酸化物半導体において、基材とは、酸素をカウントしないインジウム換算で、インジウムを40at%含むことと定義する)とする複合酸化物に、酸化セリウムや酸化錫を添加することで、耐酸性を高めた複合酸化物を得ることができる。 Furthermore, the oxide semiconductor forming the first channel layer 16 may include cerium oxide in the oxide semiconductor. At this time, assuming that the total of elements not counting oxygen is 100 at% (metal element conversion), the amount of cerium is 0.2 at% or more and 10 at% or less. More specifically, the oxide semiconductor is a complex oxide containing indium oxide, antimony oxide, indium oxide, and cerium oxide having an amount less than each amount of antimony oxide, and counting oxygen. If the total of the elements not to be added is 100 at%, the amount of each of indium and antimony is 40 at% or more. For example, when the total of elements that do not count oxygen in this oxide semiconductor is 100 at%, the amount of each of indium and antimony is 48 at%, and the amount of cerium is 4 at%. Unlike gallium oxide and indium oxide, antimony oxide and cerium oxide have high industrial value because they can be obtained at a low price. In the above, cerium oxide may be replaced with tin oxide. In this case, the same effect can be obtained. Further, as the oxide semiconductor, a complex oxide containing one or both of cerium oxide and tin oxide in an amount smaller than the amounts of indium oxide, antimony oxide, indium oxide, and antimony oxide is adopted. Good. As described above, a complex oxide containing indium oxide as a base material (in an oxide semiconductor, a base material is defined as containing 40 at% of indium in terms of indium which does not count oxygen) is added to cerium oxide or an oxide. By adding tin, it is possible to obtain a composite oxide having enhanced acid resistance.
 インジウム酸化物を基材とする酸化物半導体層と、同じくインジウム酸化物を基材とする導電性酸化物層のキャリア(電子)のフェルミレベルは近いと想定される。導電性酸化物層(後述する第1導電性酸化物層41)とチャネル層とが重畳する重畳部44(後述する界面)からのチャネル層へのキャリア供給は容易となる。例えば、酸化物半導体層のキャリア濃度は、1×1018/cm以下、1×1012/cm以上とすることができる。導電性酸化物層のキャリア濃度は、1×1021/cm以下、1×1019/cm以上の範囲内に設定できる。 It is assumed that the carrier (electron) Fermi levels of the oxide semiconductor layer including indium oxide as a base material and the conductive oxide layer including indium oxide as a base material are close to each other. It becomes easy to supply carriers to the channel layer from the overlapping portion 44 (interface described later) where the conductive oxide layer (first conductive oxide layer 41 described below) and the channel layer overlap. For example, the carrier concentration of the oxide semiconductor layer can be 1 × 10 18 / cm 3 or lower and 1 × 10 12 / cm 3 or higher. The carrier concentration of the conductive oxide layer can be set within the range of 1 × 10 21 / cm 3 or less and 1 × 10 19 / cm 3 or more.
 酸化物半導体の電気的特性や移動度を調整するために、第1チャネル層16の厚み方向に、例えば、酸化インジウム濃度や酸化セリウム濃度を変えてもよい。さらに、このような酸化物半導体に酸化錫を添加して酸化錫濃度を変えてもよい。あるいは、ソース電極等のウエットエッチング加工性を拡げるため、第1チャネル層16の表面層における組成を酸化セリウムリッチあるいは酸化錫リッチとすることで、第1チャネル層16の耐酸性を高めることができる。第1チャネル層16上にエッチングストッパ層を積層してもよいが、酸化セリウムあるいは酸化錫を含む複合酸化物薄膜は、180℃以上のアニーリングで耐酸性の高い膜となる。このため、エッチングストッパ層の積極的な挿入は不必要であり、エッチングストッパ層の形成工程を省くことができる。この耐酸性は、複合酸化物膜中の酸化セリウムや酸化錫の濃度を上げることでも得られる。 In order to adjust the electrical characteristics and mobility of the oxide semiconductor, for example, the indium oxide concentration or the cerium oxide concentration may be changed in the thickness direction of the first channel layer 16. Further, tin oxide may be added to such an oxide semiconductor to change the tin oxide concentration. Alternatively, the acid resistance of the first channel layer 16 can be increased by making the composition of the surface layer of the first channel layer 16 rich in cerium oxide or tin oxide in order to extend the wet etching processability of the source electrode or the like. . Although an etching stopper layer may be laminated on the first channel layer 16, the complex oxide thin film containing cerium oxide or tin oxide becomes a film with high acid resistance by annealing at 180 ° C. or higher. Therefore, it is not necessary to positively insert the etching stopper layer, and the step of forming the etching stopper layer can be omitted. This acid resistance can also be obtained by increasing the concentrations of cerium oxide and tin oxide in the composite oxide film.
 なお、このアニール温度は、180℃から340℃の範囲でよく、200℃より高い温度がより好ましい。ソース電極等のパターンを形成する前に、例えば、220℃前後のプレアニールを実施することで、酸化物半導体層(複合酸化物膜)のエッチャントへの耐性を向上できる。このプレアニールは、ソース電極やドレイン電極を形成する第2導電層20の成膜前に実施してもよい。 The annealing temperature may be in the range of 180 ° C to 340 ° C, and a temperature higher than 200 ° C is more preferable. By performing pre-annealing at about 220 ° C. before forming the pattern of the source electrode or the like, the resistance of the oxide semiconductor layer (composite oxide film) to the etchant can be improved. This pre-annealing may be performed before forming the second conductive layer 20 that forms the source electrode and the drain electrode.
 なお、上述した酸化物半導体層は、第1薄膜トランジスタ31を構成する第1チャネル層16以外にも、第1薄膜トランジスタ31とは異なる他の薄膜トランジスタにも適用することができる。 Note that the oxide semiconductor layer described above can be applied to other thin film transistors different from the first thin film transistor 31, in addition to the first channel layer 16 forming the first thin film transistor 31.
(第1導電層)
 第1ゲート電極11、キャパシタパターン12(キャパシタ電極)、及び走査線13は、第1導電パターン10Pを構成する。後述する実施形態において、第1導電パターン10Pは、リセット線、あるいは、電源線を含む構成を有してもよい。これら第1導電パターン10Pは、第1導電層10で形成される。平面視におけるキャパシタパターン12の形状は、図1に示す矩形に限らず、平行四辺形や中心線が「くの字」の多角形状(dog-leg pattern、角度の異なる複数の平行四辺形が連続する形状)であってもよい。キャパシタパターン12は、第1ゲート電極11と接続されている。キャパシタパターン12は、指などのポインタが第1面1に接触又は近接したときの静電容量の変化を、信号として第1薄膜トランジスタ31に供給する。この意味で、キャパシタパターン12をキャパシタ電極と言い換えてもよい。
(First conductive layer)
The first gate electrode 11, the capacitor pattern 12 (capacitor electrode), and the scan line 13 form a first conductive pattern 10P. In an embodiment described below, the first conductive pattern 10P may have a configuration including a reset line or a power line. These first conductive patterns 10P are formed of the first conductive layer 10. The shape of the capacitor pattern 12 in plan view is not limited to the rectangular shape shown in FIG. 1, but may be a parallelogram or a polygonal shape (dog-leg pattern) in which the center line is a dogleg, and a plurality of parallelograms with different angles are continuous. Shape). The capacitor pattern 12 is connected to the first gate electrode 11. The capacitor pattern 12 supplies the first thin film transistor 31 with a change in capacitance when a pointer such as a finger comes into contact with or approaches the first surface 1 as a signal. In this sense, the capacitor pattern 12 may be referred to as a capacitor electrode.
 なお、第1導電層10は、少なくとも導電性の高い金属層を含む。同様に、第2導電層20も、少なくとも導電性の高い金属層を含む。第2導電層20は第2導電パターン20Pとして、少なくともソース電極及びドレイン電極を含む。薄膜トランジスタの構造は、ソース電極を形成する前にゲート電極を形成するボトムゲート構造(図8参照)と、ソース電極を形成した後にゲート電極を形成するトップゲート構造(図3参照)に大別される。従って、第1導電層10と第2導電層20を形成する順序によって、薄膜トランジスタの構造が逆になることがある。 The first conductive layer 10 includes at least a metal layer having high conductivity. Similarly, the second conductive layer 20 also includes at least a highly conductive metal layer. The second conductive layer 20 includes at least a source electrode and a drain electrode as the second conductive pattern 20P. The structure of a thin film transistor is roughly classified into a bottom gate structure (see FIG. 8) in which a gate electrode is formed before forming a source electrode and a top gate structure (see FIG. 3) in which a gate electrode is formed after forming a source electrode. It Therefore, the structure of the thin film transistor may be reversed depending on the order of forming the first conductive layer 10 and the second conductive layer 20.
 なお、本発明の実施形態において、薄膜トランジスタの構造は、ひとつのトランジスタに複数のゲート電極が設けられたマルチゲート構造であってもよいし、バックゲート電極がチャネル層を介して反対の面にも備えられるバックゲート構造であってもよい。バックゲート電極の電位は、例えば、0Vあるいは接地することができる。バックゲート電極に加える電圧を制御することで、閾値(Vth)を制御できる。 Note that in the embodiment of the present invention, the structure of the thin film transistor may be a multi-gate structure in which one transistor is provided with a plurality of gate electrodes, or the back gate electrode may be formed on the opposite surface via the channel layer. It may be a back gate structure provided. The potential of the back gate electrode can be 0 V or ground, for example. The threshold value (Vth) can be controlled by controlling the voltage applied to the back gate electrode.
(第2導電層)
 出力線21、第1ソース電極22、及び第1ドレイン電極23は、第2導電パターン20Pを有する第2導電層20を構成する。なお、走査線及び出力線の役割(機能)は、入れ替えることができる。また、ソース電極及びドレイン電極の役割(機能)は、入れ替えることができる。つまり、図1において、符号13が出力線、符号21が走査線、符号22が第1ドレイン電極、符号23が第1ソース電極であってもよい。
(Second conductive layer)
The output line 21, the first source electrode 22, and the first drain electrode 23 form the second conductive layer 20 having the second conductive pattern 20P. The roles (functions) of the scanning line and the output line can be interchanged. Further, the roles (functions) of the source electrode and the drain electrode can be switched. That is, in FIG. 1, reference numeral 13 may be an output line, reference numeral 21 may be a scanning line, reference numeral 22 may be a first drain electrode, and reference numeral 23 may be a first source electrode.
 本発明の実施形態において、誘電体層3上にキャパシタパターン12が積層され、誘電体層3はキャパシタパターン12よりタッチセンシングの入力がされる第1面1に近い位置にある。キャパシタパターン12と第1ゲート電極11は、同じ第1導電層10で形成される。換言すれば、図2、図3に示すトップゲート構造では、第1導電層10は、第2導電層20より、タッチセンシング入力がされる第1面1から遠い位置にある。 In the embodiment of the present invention, the capacitor pattern 12 is laminated on the dielectric layer 3, and the dielectric layer 3 is closer to the first surface 1 where the touch sensing is input than the capacitor pattern 12. The capacitor pattern 12 and the first gate electrode 11 are formed of the same first conductive layer 10. In other words, in the top gate structure shown in FIGS. 2 and 3, the first conductive layer 10 is located farther from the first conductive layer 20 than the second conductive layer 20 from which the touch sensing input is made.
(第1導電層及び第2導電層の構造)
 第1導電層10及び第2導電層20は、金属層あるいは合金層が導電性酸化物層で挟持された構成(3層構成)を有する。
 第1導電層10及び第2導電層20の各々を構成する金属層の膜厚は、例えば、500nm以上3000nm以下とすることができる。第1導電層10及び第2導電層20の各々を構成する導電性酸化物層の膜厚は、例えば、200nm以上2000nm以下とすることができる。金属層が銅を含む金属で構成されている場合、導電性酸化物層の膜厚を200nm以上とすることで銅の厚み方向の拡散を抑制できる。3000nm以上の膜厚を有する金属層の形成、及び、2000nm以上の膜厚を有する導電性酸化物層の形成は、生産面で非効率である。
(Structure of first conductive layer and second conductive layer)
The first conductive layer 10 and the second conductive layer 20 have a structure (three-layer structure) in which a metal layer or an alloy layer is sandwiched between conductive oxide layers.
The film thickness of the metal layer forming each of the first conductive layer 10 and the second conductive layer 20 can be, for example, 500 nm or more and 3000 nm or less. The thickness of the conductive oxide layer forming each of the first conductive layer 10 and the second conductive layer 20 can be, for example, 200 nm or more and 2000 nm or less. When the metal layer is made of a metal containing copper, the thickness of the conductive oxide layer can be 200 nm or more to suppress the diffusion of copper in the thickness direction. The formation of the metal layer having a film thickness of 3000 nm or more and the formation of the conductive oxide layer having a film thickness of 2000 nm or more are inefficient in terms of production.
(金属層、合金層)
 金属層あるいは合金層としては、導電性に優れた銀、銅、アルミニウム、亜鉛等の金属、あるいは、上記金属の合金層を適用できる。以下、銅、銅合金を典型例として説明するが、本発明の実施形態に係る基本的な技術手段は、銀や亜鉛などの金属にも適用できる。
(Metal layer, alloy layer)
As the metal layer or alloy layer, a metal having excellent conductivity such as silver, copper, aluminum or zinc, or an alloy layer of the above metals can be applied. Hereinafter, copper and a copper alloy will be described as typical examples, but the basic technical means according to the embodiment of the present invention can be applied to metals such as silver and zinc.
 銅に添加する合金元素としては、銅合金層の比抵抗上昇率が1μΩcm/at%以下の合金元素を選択することができる。銅合金層の比抵抗(電気抵抗率)を、例えば、1.9μΩcm~6μΩcmの範囲内にすることができる。 As the alloying element to be added to copper, it is possible to select an alloying element whose specific resistance increase rate of the copper alloy layer is 1 μΩcm / at% or less. The specific resistance (electrical resistivity) of the copper alloy layer can be set within the range of 1.9 μΩcm to 6 μΩcm, for example.
 銅合金に添加される元素として、銅合金の電気抵抗率への影響の小さい電気抵抗率の小さい添加元素(銅の合金元素)は、パラジウム(Pd)、マグネシウム(Mg)、ベリリウム(Be)、金(Au)、カルシウム(Ca)、カドミウム(Cd)、亜鉛(Zn)、銀(Ag)が挙げられる。このような元素を純銅に対して1at%添加したときの電気抵抗率の増加は、略1μΩcm以下となる。カルシウム(Ca)、カドミウム(Cd)、亜鉛(Zn)、銀(Ag)を純銅に対して添加したときの電気抵抗率の増加は、0.4μΩcm/at%以下である。このため、カルシウム(Ca)、カドミウム(Cd)、亜鉛(Zn)、銀(Ag)を合金元素として用いることが好ましい。経済性及び環境負荷を考慮すると、亜鉛及びカルシウムを合金元素として用いることが好ましい。亜鉛及びカルシウムは、各々、5at%まで、銅への合金元素として添加することができる。 As an element added to the copper alloy, an additive element (copper alloy element) having a small effect on the electric resistivity of the copper alloy (alloy element of copper) is palladium (Pd), magnesium (Mg), beryllium (Be), Examples include gold (Au), calcium (Ca), cadmium (Cd), zinc (Zn), and silver (Ag). The increase in electrical resistivity when such an element is added to pure copper at 1 at% is approximately 1 μΩcm or less. The increase in electrical resistivity when calcium (Ca), cadmium (Cd), zinc (Zn), and silver (Ag) are added to pure copper is 0.4 μΩcm / at% or less. Therefore, it is preferable to use calcium (Ca), cadmium (Cd), zinc (Zn), and silver (Ag) as alloy elements. Considering economical efficiency and environmental load, it is preferable to use zinc and calcium as alloying elements. Zinc and calcium can each be added as alloying elements to copper up to 5 at%.
 銅層あるいは銅合金層の膜厚を100nm以上或いは150nm以上とすると、導電層は可視光を殆ど透過しなくなる。したがって、本実施形態に係る導電層を構成する銅層あるいは銅合金層は、例えば、100nm~500nmの膜厚を有していれば、十分な遮光性を得ることができる。銅合金層の膜厚は、500nmを超えてもよい。なお、後述するように、上記導電層の材料は、電子デバイスや表示装置の基板に設けられる配線や電極にも適用することができる。また、本実施形態においては、アクティブ素子(薄膜トランジスタ)と電気的に連携する配線の構造として、例えば、ゲート電極やゲート線の構造として、導電性金属酸化物層によって銅合金層が挟持された積層構造を採用することができる。換言すれば、本発明の実施形態に係る導電層(導電パターン)に、導電性金属酸化物層によって銅合金層が挟持された積層構造を採用することができる。 When the thickness of the copper layer or copper alloy layer is 100 nm or more or 150 nm or more, the conductive layer hardly transmits visible light. Therefore, if the copper layer or the copper alloy layer forming the conductive layer according to the present embodiment has a film thickness of 100 nm to 500 nm, for example, sufficient light shielding properties can be obtained. The thickness of the copper alloy layer may exceed 500 nm. As will be described later, the material of the conductive layer can be applied to wirings and electrodes provided on the substrates of electronic devices and display devices. Further, in the present embodiment, as a structure of a wiring electrically associated with an active element (thin film transistor), for example, as a structure of a gate electrode or a gate line, a laminated structure in which a copper alloy layer is sandwiched by conductive metal oxide layers A structure can be adopted. In other words, the conductive layer (conductive pattern) according to the embodiment of the present invention may have a laminated structure in which a copper alloy layer is sandwiched by conductive metal oxide layers.
(導電性酸化物層)
 導電性酸化物層の材料としては、酸化インジウムを40at%以上含む混合酸化物が例示できる。2層の導電性酸化物層によって銅層や銅合金層が挟持された3層構成を形成する方法としては、まず、例えば、ガラス等の基板上に、(混合酸化物層A/銅合金層B/混合酸化物層C)で構成される3層を成膜する。その後、ウエットエッチング工程によって、3層をほぼ等しい線幅を有するように加工する。あるいは、ウエットエッチング工程によって、ガラス基板の表面上に順に形成される混合酸化物層A、銅合金層B、及び混合酸化物層Cの線幅が、条件「混合酸化物層Aの線幅 > 銅合金層Bの線幅 > 混合酸化物層Cの線幅」を満たすように、線幅が順に小さくなるようにテーパ形状で加工することが好ましい。
(Conductive oxide layer)
As a material for the conductive oxide layer, a mixed oxide containing 40 at% or more of indium oxide can be exemplified. As a method of forming a three-layer structure in which a copper layer or a copper alloy layer is sandwiched by two conductive oxide layers, first, for example, a mixed oxide layer A / copper alloy layer is formed on a substrate such as glass. Deposit three layers consisting of B / mixed oxide layer C). After that, the three layers are processed by a wet etching process so as to have almost equal line widths. Alternatively, the line widths of the mixed oxide layer A, the copper alloy layer B, and the mixed oxide layer C, which are sequentially formed on the surface of the glass substrate by the wet etching step, are determined by the condition "line width of mixed oxide layer A> It is preferable that the line width of the copper alloy layer B> the line width of the mixed oxide layer C is satisfied so that the line width becomes smaller in order.
 通常、ITO(酸化インジウム及び酸化錫を含む混合酸化物)は、酸化物が銅や銅合金より貴(noble)である。このため、選択的に銅がエッチングされてしまい、3層の線幅が上記条件を満たさない。そこで、酸化インジウムに、酸化亜鉛、酸化ガリウム、酸化アンチモンなどの易溶性の酸化物を添加することで腐食電位を調整し、銅など金属層と腐食電位が揃った混合酸化物層を得る。 Normally, ITO (mixed oxide containing indium oxide and tin oxide) has a more noble oxide than copper and copper alloys. Therefore, copper is selectively etched, and the line widths of the three layers do not satisfy the above conditions. Therefore, the corrosion potential is adjusted by adding an easily soluble oxide such as zinc oxide, gallium oxide, or antimony oxide to indium oxide to obtain a mixed oxide layer having the same corrosion potential as the metal layer such as copper.
 上述したように、金属層あるいは合金層が導電性酸化物層で挟持された構成(3層構成)によって第1導電層10及び第2導電層20の各々が構成されている。すなわち、第1導電層10を構成する第1ゲート電極11、キャパシタパターン12、走査線13、及び、第2導電層20を構成する出力線21は、導電性に優れた金属あるいは合金で構成されているため、静電容量検知の応答性、S/N比を改善することができる。上述したように高い導電率を有する金属としては、銀、銅、アルミニウム等が挙げられる。信頼性を考慮して、銀合金、銅合金、アルミニウム合金が採用されてもよい。銀や銅は、アルミニウムより高い導電率を持つため、銀や銅、あるいは、銀合金や銅合金を金属層に用いることが好ましい。キャパシタパターン12、走査線13、及び出力線21の構成として、金属層あるいは合金層が導電性酸化物層で挟持された導電層を用いることで、以下に示す複数のメリットが得られる。 As described above, each of the first conductive layer 10 and the second conductive layer 20 is composed of a structure (three-layer structure) in which a metal layer or an alloy layer is sandwiched by conductive oxide layers. That is, the first gate electrode 11, the capacitor pattern 12, the scanning line 13, which forms the first conductive layer 10, and the output line 21, which forms the second conductive layer 20, are made of a metal or alloy having excellent conductivity. Therefore, the responsiveness of capacitance detection and the S / N ratio can be improved. Examples of the metal having a high conductivity as described above include silver, copper, aluminum and the like. In consideration of reliability, silver alloy, copper alloy, aluminum alloy may be adopted. Since silver and copper have higher conductivity than aluminum, it is preferable to use silver or copper, or a silver alloy or a copper alloy for the metal layer. By using a conductive layer in which a metal layer or an alloy layer is sandwiched by conductive oxide layers as the configuration of the capacitor pattern 12, the scanning line 13, and the output line 21, a plurality of advantages described below can be obtained.
第1のメリット:密着性
 例えば、導電層の構造として銅合金の単層を有する配線(銅合金配線)が採用されている場合(導電性酸化物を用いない構成の場合)、指などのポインタが有する静電容量の大きさによっては、静電破壊が発生し、銅合金配線の欠けや剥がれを生じることがある。さらに、銀、銀合金、銅、又は銅合金は、樹脂やガラスに対する密着力が不十分である。また、静電破壊は、製造工程における純水洗浄で発生することが多い。
First merit: Adhesiveness For example, when wiring having a single layer of copper alloy (copper alloy wiring) is used as the structure of the conductive layer (in the case of a structure not using conductive oxide), a pointer such as a finger Depending on the magnitude of the electrostatic capacity of the copper alloy, electrostatic breakdown may occur and the copper alloy wiring may be chipped or peeled off. Furthermore, silver, silver alloys, copper, or copper alloys have insufficient adhesion to resin or glass. Further, electrostatic breakdown often occurs during pure water cleaning in the manufacturing process.
 これに対し、本実施形態においては、金属層あるいは合金層が導電性酸化物層で挟持された導電層が採用されている。導電性酸化物は、銀、銀合金、銅、又は銅合金等に対する密着性が極めて高く、さらに、樹脂やガラスに対する密着性が極めて高い。このため、静電破壊に起因する銅合金配線の欠けや剥がれを生じることは殆どない。 On the other hand, in the present embodiment, a conductive layer in which a metal layer or an alloy layer is sandwiched by conductive oxide layers is adopted. The conductive oxide has extremely high adhesion to silver, a silver alloy, copper, a copper alloy, or the like, and further has extremely high adhesion to resin or glass. Therefore, the copper alloy wiring is hardly chipped or peeled off due to electrostatic breakdown.
第2のメリット:信頼性の向上
 例えば、導電層の構造として銀合金配線あるいは銅合金配線が採用されている場合(導電性酸化物を用いない構成の場合)、銀や銅が樹脂やガラス基材に対して拡散し、信頼性の低下をもたらすことがある。特に、製造工程が250℃を超える処理工程を有する場合は、銅や銅合金が酸化し易い。
Second merit: Improvement of reliability For example, when silver alloy wiring or copper alloy wiring is adopted as the structure of the conductive layer (in the case where the conductive oxide is not used), silver or copper is resin or glass-based. It may diffuse into the material and cause a decrease in reliability. In particular, when the manufacturing process has a treatment process at a temperature higher than 250 ° C., copper or copper alloy is easily oxidized.
 これに対し、本実施形態のように金属層あるいは合金層が導電性酸化物層で挟持された導電層が採用されている場合、導電性酸化物層が銀や銅のガラス基材に対する拡散を抑制し、銅の酸化を抑制する。銀や銅の拡散、酸化を抑制することで、容量センサ基板100Aの信頼性を向上できる。 On the other hand, when the conductive layer in which the metal layer or the alloy layer is sandwiched by the conductive oxide layers is adopted as in the present embodiment, the conductive oxide layer diffuses silver or copper into the glass substrate. Suppress and suppress copper oxidation. By suppressing the diffusion and oxidation of silver and copper, the reliability of the capacitive sensor substrate 100A can be improved.
第3のメリット:実装性の向上
 銀、銀合金、銅、又は銅合金は、比較的柔らかい金属である。このため、銀、銀合金、銅、又は銅合金で構成される配線は、タッチパネル端部における電気的実装の際に、傷がつき易い。
Third advantage: improvement in mountability Silver, silver alloy, copper, or copper alloy is a relatively soft metal. Therefore, the wiring made of silver, a silver alloy, copper, or a copper alloy is easily scratched when electrically mounted at the end of the touch panel.
 これに対し、本実施形態のように金属層あるいは合金層が導電性酸化物層で挟持された導電層が採用されている場合、導電性酸化物はセラミック材料の一つでもあるため、導電性酸化物層が銀、銀合金、銅、又は銅合金を挟持することで、硬く、確実な実装が可能となる。 On the other hand, when the conductive layer in which the metal layer or the alloy layer is sandwiched by the conductive oxide layers is adopted as in the present embodiment, the conductive oxide is also one of the ceramic materials, and thus the conductive oxide By sandwiching the oxide layer with silver, silver alloy, copper, or copper alloy, it is possible to perform a hard and reliable mounting.
第4のメリット:オーミックコンタクト
 本実施形態では、コンタクトホール29を介して、第1ソース電極22が走査線13に電気的に接続されている。導電性酸化物層によって、コンタクトホール29における良好な電気的接続が得られる。上述したように、銅や銅合金の表面においては、銅の酸化物が形成され易い。銅酸化物は、経時的に厚みを増やし、電気的実装を不安定にさせる。同様に、銀の表面においては、酸化物や硫化物が形成され易い。銅や銅合金が導電性酸化物層で挟持された構成においては、導電層(導電パターン)の表面に導電性酸化物層が形成され、オーミックコンタクトが可能となる。同様に、金属層あるいは合金層が導電性酸化物層で挟持された構成を有する導電層を薄膜トランジスタの構成に適用することも有効である。換言すれば、本発明の実施形態に係る導電層は、種々のTFT(薄膜トランジスタ)のソース配線、ソース電極、ドレイン電極、ゲート電極、ゲート配線、さらには、タッチセンシング配線などに適用できる。
Fourth Merit: Ohmic Contact In the present embodiment, the first source electrode 22 is electrically connected to the scanning line 13 via the contact hole 29. The conductive oxide layer provides good electrical connection in the contact hole 29. As described above, copper oxide is easily formed on the surface of copper or copper alloy. Copper oxide increases the thickness over time and destabilizes electrical packaging. Similarly, oxides and sulfides are easily formed on the surface of silver. In a structure in which copper or a copper alloy is sandwiched by conductive oxide layers, a conductive oxide layer is formed on the surface of the conductive layer (conductive pattern), and ohmic contact is possible. Similarly, it is also effective to apply a conductive layer having a structure in which a metal layer or an alloy layer is sandwiched by conductive oxide layers to the structure of a thin film transistor. In other words, the conductive layer according to the embodiment of the present invention can be applied to source wirings, source electrodes, drain electrodes, gate electrodes, gate wirings, and touch sensing wirings of various TFTs (thin film transistors).
第5のメリット:トランジスタ特性の向上と信頼性の向上
 第5のメリットについて、図2~図5を参照して説明する。
 図4は、本発明の第1実施形態に係る第1薄膜トランジスタ31における第1チャネル層16の端面と導電層とが重なる部分を説明する拡大断面図である。
 図4に示すように、第1チャネル層16上には、第2導電層20を構成する第1ソース電極22と第1ドレイン電極23が積層されている。上述したように、第2導電層20は、金属層5(合金層)が導電性酸化物層(第1導電性酸化物層41、第2導電性酸化物層42)で挟持された構成を有する。
Fifth advantage: Improvement of transistor characteristics and improvement of reliability The fifth advantage will be described with reference to FIGS. 2 to 5.
FIG. 4 is an enlarged cross-sectional view illustrating a portion where the end surface of the first channel layer 16 and the conductive layer in the first thin film transistor 31 according to the first embodiment of the present invention overlap with each other.
As shown in FIG. 4, the first source electrode 22 and the first drain electrode 23 that form the second conductive layer 20 are stacked on the first channel layer 16. As described above, the second conductive layer 20 has a structure in which the metal layer 5 (alloy layer) is sandwiched between the conductive oxide layers (the first conductive oxide layer 41 and the second conductive oxide layer 42). Have.
 このような構成を有する第1ソース電極22と第1ドレイン電極23は、高い導電性を有する。導電性酸化物によって得られる高導電性は、電子移動度と高い電子濃度の積で表現される。第1チャネル層16上に積層される第1ソース電極22及び第1ドレイン電極23の一部である第1導電性酸化物層41は、高い導電率を有する導電性酸化物で構成されている。換言すれば、第1チャネル層16の両端部に第1導電性酸化物層41が積層されているので、電子移動度やキャリア濃度の不足を第1導電性酸化物層41が補うことができ、薄膜トランジスタの特性を向上できる。 The first source electrode 22 and the first drain electrode 23 having such a structure have high conductivity. The high conductivity obtained by the conductive oxide is expressed by the product of electron mobility and high electron concentration. The first conductive oxide layer 41, which is a part of the first source electrode 22 and the first drain electrode 23 stacked on the first channel layer 16, is composed of a conductive oxide having high conductivity. . In other words, since the first conductive oxide layer 41 is laminated on both ends of the first channel layer 16, the first conductive oxide layer 41 can compensate for the lack of electron mobility and carrier concentration. The characteristics of the thin film transistor can be improved.
 図4に示されるように、第1チャネル層16は、第1導電性酸化物層41と第1チャネル層16との重畳部44(界面)から、酸化物半導体において不足するキャリア(電子)の供給を受け、かつ、第1導電性酸化物層41の高い導電率を活用できる。なお、導電率は、電子濃度と電子移動度との積で表現できる。第1チャネル層16の特性を、キャリアの少ない単層の真性半導体の特性に近づけることができる。真性半導体に近い特性を有する第1チャネル層16を具備する第1薄膜トランジスタの閾値(Vth)を正(ノーマリーオフ)とすることが容易となり、薄膜トランジスタの信頼性を向上できる。真性半導体に近い特性を有する第1チャネル層16のチャネル長Lを小さくすることで、本発明の第1実施形態に係る薄膜トランジスタのスイッチングをより急峻に動作させることができる。銅など金属層が導電性酸化物層で挟持された3層構成を有する導電層は、例えば、銅/チタンの積層構成とは異なり、ウエットエッチングによるパターニングを容易に行うことができ、チャネル長Lの小さい薄膜トランジスタを形成することも可能である。 As shown in FIG. 4, in the first channel layer 16, carriers (electrons) deficient in the oxide semiconductor from the overlapping portion 44 (interface) of the first conductive oxide layer 41 and the first channel layer 16 are included. In addition to being supplied, the high conductivity of the first conductive oxide layer 41 can be utilized. The conductivity can be expressed by the product of electron concentration and electron mobility. The characteristics of the first channel layer 16 can be made close to the characteristics of a single-layer intrinsic semiconductor with few carriers. The threshold value (Vth) of the first thin film transistor including the first channel layer 16 having characteristics close to that of an intrinsic semiconductor can be easily made positive (normally off), and reliability of the thin film transistor can be improved. By reducing the channel length L of the first channel layer 16 having characteristics close to those of an intrinsic semiconductor, the switching of the thin film transistor according to the first embodiment of the present invention can be operated more steeply. A conductive layer having a three-layer structure in which a metal layer such as copper is sandwiched between conductive oxide layers can be easily patterned by wet etching, unlike the laminated structure of copper / titanium, and has a channel length L. It is also possible to form a thin film transistor having a small size.
 酸化物半導体に関する先行技術として、異なる電気特性を有する酸化物半導体を有する多層構造でチャネル層を形成する技術が知られている。しかしながら、チャネル層の膜厚は、例えば、50nm程度の極めて薄い膜厚である。このような膜厚であるチャネル層(薄膜)を、酸化物半導体を有する3層構造(多層構造)で形成するのは、製造工程においてバラツキが生じやすい。換言すれば、薄膜トランジスタの特性のバラツキの発生を招きやすい。本発明の実施形態が提案するように、単層のチャネル層を薄膜トランジスタに採用することで、特性のバラツキの少ない薄膜トランジスタを提供できる。また、本発明の実施形態では、チャネル長Lに相当する部分において、いわゆる、独立した真性半導体に近い特性を有する(単層の)酸化物半導体層を形成することが可能となる。これによって、チャネル層の端部に積層された導電性酸化物層を活用することで、優れた特性を有する薄膜トランジスタを提供できる。 As a prior art relating to an oxide semiconductor, a technique of forming a channel layer with a multi-layer structure including oxide semiconductors having different electrical characteristics is known. However, the thickness of the channel layer is extremely thin, for example, about 50 nm. Forming a channel layer (thin film) having such a film thickness with a three-layer structure (multilayer structure) including an oxide semiconductor tends to cause variations in the manufacturing process. In other words, variations in the characteristics of thin film transistors are likely to occur. As proposed by the embodiments of the present invention, by adopting a single-layer channel layer for a thin film transistor, it is possible to provide a thin film transistor with less variation in characteristics. Further, in the embodiment of the present invention, it becomes possible to form a (single-layer) oxide semiconductor layer having characteristics close to what is called an intrinsic semiconductor in a portion corresponding to the channel length L. Accordingly, by utilizing the conductive oxide layer laminated on the end of the channel layer, a thin film transistor having excellent characteristics can be provided.
 図5は、導電層の端面とチャネル層とが接触する部分を有する薄膜トランジスタの参考例を説明する断面図である。図5において、符号141、142は、導電性酸化物層を示しており、符号105は、金属層を示している。
 図5に示すドレイン電極123(及びソース電極122)上にチャネル層116を積層する構成では、Dd部(及びDs部)に示すように、チャネル層116は、露出する金属層105の断面と接触する。チャネル層116を構成する酸化物半導体は、金属層105と接触することで還元され、キャリア濃度が変動しやすいという問題がある。金属層105が銅や銀を含む場合、これら銅などが酸化物半導体層(チャネル層116)中に拡散し、半導体特性を劣化させやすいという問題がある。したがって、このような問題を解決するために、図4に示すように、チャネル層116の端部は、第2導電層20(導電性酸化物層)で覆われる必要がある。酸化インジウムを含む導電性酸化物層は、340℃以下の温度領域で金属層からの金属の拡散を抑制し、薄膜トランジスタの特性を安定させやすい。図4などで提案するように、第1チャネル層16は金属層5と接触しない構成が好ましい。
FIG. 5 is a cross-sectional view illustrating a reference example of a thin film transistor having a portion where an end surface of a conductive layer and a channel layer are in contact with each other. In FIG. 5, reference numerals 141 and 142 denote conductive oxide layers, and reference numeral 105 denotes a metal layer.
In the structure in which the channel layer 116 is stacked on the drain electrode 123 (and the source electrode 122) shown in FIG. 5, the channel layer 116 contacts the exposed cross section of the metal layer 105 as shown in the Dd portion (and Ds portion). To do. There is a problem in that the oxide semiconductor included in the channel layer 116 is reduced by coming into contact with the metal layer 105 and the carrier concentration is easily changed. When the metal layer 105 contains copper or silver, there is a problem that copper or the like diffuses into the oxide semiconductor layer (channel layer 116) and the semiconductor characteristics are easily deteriorated. Therefore, in order to solve such a problem, the end of the channel layer 116 needs to be covered with the second conductive layer 20 (conductive oxide layer) as shown in FIG. The conductive oxide layer containing indium oxide suppresses the diffusion of metal from the metal layer in the temperature range of 340 ° C. or lower, and easily stabilizes the characteristics of the thin film transistor. As proposed in FIG. 4 and the like, it is preferable that the first channel layer 16 does not contact the metal layer 5.
 次に、第1実施形態の変形例1~3、第2実施形態、及び第3実施形態について説明する。以下の説明では、第1実施形態と同一部材には同一符号を付して、その説明は省略または簡略化する。 Next, modifications 1 to 3 of the first embodiment, the second embodiment, and the third embodiment will be described. In the following description, the same members as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted or simplified.
(第1実施形態の変形例1)
 図6は、本発明の第1実施形態の変形例1に係る容量センサ基板100Bの構成を示す部分拡大図であり、キャパシタパターン12及び薄膜トランジスタ(第2薄膜トランジスタ32)を含む単位セルを示す回路図である。
 図7は、本発明の第1実施形態の変形例に係る容量センサ基板100Bの構成を示す部分断面図であり、図6に示すB-B’線に沿う単位セルを示す断面図である。
 図8は、本発明の第1実施形態の変形例に係る容量センサ基板100Bの構成を示す部分断面図であり、図6における第2薄膜トランジスタ32を示す断面図である。図7における符号TDは、指などのポインタがタッチ入力面28Tに近接あるいは接触する方向を示している。
(Modification 1 of the first embodiment)
FIG. 6 is a partially enlarged view showing the configuration of the capacitance sensor substrate 100B according to the first modification of the first embodiment of the present invention, and is a circuit diagram showing a unit cell including a capacitor pattern 12 and a thin film transistor (second thin film transistor 32). Is.
FIG. 7 is a partial cross-sectional view showing the configuration of the capacitive sensor substrate 100B according to the modified example of the first embodiment of the present invention, and is a cross-sectional view showing the unit cell along the line BB ′ shown in FIG.
FIG. 8 is a partial cross-sectional view showing the configuration of the capacitance sensor substrate 100B according to the modified example of the first embodiment of the present invention, and is a cross-sectional view showing the second thin film transistor 32 in FIG. Reference numeral TD in FIG. 7 indicates the direction in which a pointer such as a finger approaches or contacts the touch input surface 28T.
 図8に示す第2薄膜トランジスタ32は、ボトムゲート構造のトランジスタである。すなわち、断面視において、第1ゲート電極11は、第1ソース電極22、第1ドレイン電極23、及び第1チャネル層16より下方に設けられている。上述したように、第1チャネル層16の両端部は、導電性酸化物層で覆われている。 The second thin film transistor 32 shown in FIG. 8 is a bottom-gate transistor. That is, in the cross-sectional view, the first gate electrode 11 is provided below the first source electrode 22, the first drain electrode 23, and the first channel layer 16. As described above, both ends of the first channel layer 16 are covered with the conductive oxide layer.
 図6に示すように、容量センサ基板100Bの単位セルは、図1に示す容量センサ基板100Aの単位セルに似た構造を有する。その一方、図7に示すように、容量センサ基板100Bにおいては、第2導電パターン20P(第1ソース電極22、第1ドレイン電極23、及び出力線21)は、第1導電パターン10P(第1ゲート電極11、キャパシタパターン12、及び走査線13)の上に配置されている。すなわち、図7に示す容量センサ基板100Bの構成は、図2に示す容量センサ基板100Aの構成とは、逆の配置となっている。 As shown in FIG. 6, the unit cell of the capacitive sensor substrate 100B has a structure similar to that of the capacitive sensor substrate 100A shown in FIG. On the other hand, as shown in FIG. 7, in the capacitive sensor substrate 100B, the second conductive pattern 20P (first source electrode 22, first drain electrode 23, and output line 21) is connected to the first conductive pattern 10P (first It is arranged on the gate electrode 11, the capacitor pattern 12, and the scanning line 13). That is, the configuration of the capacitance sensor substrate 100B shown in FIG. 7 is the reverse of the configuration of the capacitance sensor substrate 100A shown in FIG.
 具体的に、容量センサ基板100Bを構成する基板202上に、第1絶縁層17が形成され、第1絶縁層17上にキャパシタパターン12が形成されている。さらに、第1絶縁層17上には、第1導電層10を構成する第1ゲート電極11、キャパシタパターン12、及び走査線13が形成される。第1ゲート電極11、キャパシタパターン12、及び走査線13を覆うように、ゲート絶縁層18が形成されている。 Specifically, the first insulating layer 17 is formed on the substrate 202 that constitutes the capacitance sensor substrate 100B, and the capacitor pattern 12 is formed on the first insulating layer 17. Further, the first gate electrode 11, the capacitor pattern 12, and the scan line 13 that form the first conductive layer 10 are formed on the first insulating layer 17. A gate insulating layer 18 is formed so as to cover the first gate electrode 11, the capacitor pattern 12, and the scanning line 13.
 キャパシタパターン12の上方には、ゲート絶縁層18を介して、誘電体層3が形成されている。すなわち、誘電体層3は、第2面2の上方に形成されている。平面視において、誘電体層3は、キャパシタパターン12と重なっている。基板202の厚み方向において、誘電体層3は、キャパシタパターン12よりも、タッチ入力面28T(タッチセンシング入力面)に近い位置にある。
 なお、図2においては、単位セル19の全面において、第2面2上に誘電体層3が形成されているのに対し、図7に示す例では、誘電体層3の平面形状とキャパシタパターン12の平面形状とは一致している。換言すると、単位セル19において、誘電体層3は局所的に形成されている。また、誘電体層3の平面形状は、必ずしもキャパシタパターン12の平面形状に一致している必要はないが、タッチ入力面28Tとキャパシタパターン12との間に、誘電体層3が配置されている必要がある。このため、平面視において、誘電体層3は、キャパシタパターン12を覆うように形成されている必要がある。
The dielectric layer 3 is formed above the capacitor pattern 12 with the gate insulating layer 18 interposed therebetween. That is, the dielectric layer 3 is formed above the second surface 2. The dielectric layer 3 overlaps with the capacitor pattern 12 in a plan view. In the thickness direction of the substrate 202, the dielectric layer 3 is located closer to the touch input surface 28T (touch sensing input surface) than the capacitor pattern 12.
In FIG. 2, the dielectric layer 3 is formed on the second surface 2 on the entire surface of the unit cell 19, whereas in the example shown in FIG. 7, the planar shape of the dielectric layer 3 and the capacitor pattern are formed. 12 corresponds to the planar shape. In other words, in the unit cell 19, the dielectric layer 3 is locally formed. The planar shape of the dielectric layer 3 does not necessarily have to match the planar shape of the capacitor pattern 12, but the dielectric layer 3 is disposed between the touch input surface 28T and the capacitor pattern 12. There is a need. Therefore, the dielectric layer 3 needs to be formed so as to cover the capacitor pattern 12 in a plan view.
 第1ゲート電極11の上方には、ゲート絶縁層18を介して、第1チャネル層16が形成されている。さらに、第1チャネル層16上には、第1チャネル層16の両端部を覆うように、第2導電層20を構成する第1ソース電極22及び第1ドレイン電極23が形成されている。第1ソース電極22及び第1ドレイン電極23を形成する際に、同時に、出力線21(第2導電層20)が形成される。 The first channel layer 16 is formed above the first gate electrode 11 via the gate insulating layer 18. Further, on the first channel layer 16, a first source electrode 22 and a first drain electrode 23 forming the second conductive layer 20 are formed so as to cover both ends of the first channel layer 16. At the same time when the first source electrode 22 and the first drain electrode 23 are formed, the output line 21 (second conductive layer 20) is formed.
(第1実施形態の変形例2)
 図9は、第1実施形態の変形例2に係る容量センサ基板100Cを構成する単位セルを示す回路図である。図9に示すように、本変形例2に係る容量センサ基板100Cは、単位セル119を備える。単位セル119は、図6に示す第2薄膜トランジスタ32を備える単位セル19の構成に加えて、第3薄膜トランジスタ33(リセットトランジスタ)を備えている。
(Modification 2 of the first embodiment)
FIG. 9 is a circuit diagram showing a unit cell that constitutes a capacitive sensor substrate 100C according to Modification 2 of the first embodiment. As shown in FIG. 9, the capacitive sensor substrate 100C according to the second modification includes a unit cell 119. The unit cell 119 includes a third thin film transistor 33 (reset transistor) in addition to the configuration of the unit cell 19 including the second thin film transistor 32 shown in FIG.
 第3薄膜トランジスタ33は、第1ゲート電極11と電気的に繋がる第2ゲート電極127(第1導電層10)、第2ソース電極25(第2導電層20)、コンタクトホール129を介して第2ゲート電極127と電気的に接続(短絡)された第2ドレイン電極26(第2導電層20)、第2チャネル層24、及びゲート絶縁層118を備えたボトムゲート構造のトランジスタである。 The third thin film transistor 33 is second via the second gate electrode 127 (first conductive layer 10), the second source electrode 25 (second conductive layer 20), and the contact hole 129 that are electrically connected to the first gate electrode 11. This is a bottom-gate transistor including the second drain electrode 26 (second conductive layer 20) electrically connected (short-circuited) to the gate electrode 127, the second channel layer 24, and the gate insulating layer 118.
 第1導電パターン10Pの一部は、第2ゲート電極127を構成する。第2導電パターン20Pの一部は、第2ソース電極25及び第2ドレイン電極26を構成する。酸化物半導体層の一部は、第2チャネル層24を構成する。ゲート絶縁層18の一部は、第3薄膜トランジスタ33のゲート絶縁層118を構成する。第2チャネル層24は、上述した第1チャネル層16を形成する際に同時に形成される。同様に、第3薄膜トランジスタ33のゲート絶縁層118は、上述したゲート絶縁層18を形成する際に同時に形成される。 A part of the first conductive pattern 10P constitutes the second gate electrode 127. A part of the second conductive pattern 20P constitutes the second source electrode 25 and the second drain electrode 26. A part of the oxide semiconductor layer forms the second channel layer 24. A part of the gate insulating layer 18 constitutes the gate insulating layer 118 of the third thin film transistor 33. The second channel layer 24 is formed at the same time when the above-mentioned first channel layer 16 is formed. Similarly, the gate insulating layer 118 of the third thin film transistor 33 is formed at the same time when the gate insulating layer 18 is formed.
 本変形例2においては、走査線13は、第2薄膜トランジスタ32の第1ソース電極22に走査信号を供給するだけでなく、第3薄膜トランジスタ33の第2ソース電極25にリセット信号(例えば、グランド電位)を供給する。 In the second modification, the scanning line 13 not only supplies the scanning signal to the first source electrode 22 of the second thin film transistor 32, but also supplies the reset signal (for example, the ground potential) to the second source electrode 25 of the third thin film transistor 33. ) Supply.
(第1実施形態の変形例3)
 図10は、第1実施形態の変形例3に係る容量センサ基板100Dを構成する単位セルを示す回路図である。図10に示すように、本変形例3に係る容量センサ基板100Dは、単位セル219を備える。単位セル219は、図9に示す第3薄膜トランジスタ33と、第3薄膜トランジスタ33の第2ソース電極25を延線したソース延線128(第2導電層20)と、リセット線15(第1導電層10)とを備えている。ソース延線128は、走査線13に接続されておらず、コンタクトホール229を介して、リセット線15に接続されている。リセット線15は、ソース延線128及び第2ソース電極25を介して、第3薄膜トランジスタ33にリセット信号を供給する。
(Modification 3 of the first embodiment)
FIG. 10 is a circuit diagram showing a unit cell that constitutes a capacitive sensor substrate 100D according to Modification 3 of the first embodiment. As shown in FIG. 10, the capacitive sensor substrate 100D according to the third modification includes unit cells 219. The unit cell 219 includes a third thin film transistor 33 shown in FIG. 9, a source extended line 128 (second conductive layer 20) obtained by extending the second source electrode 25 of the third thin film transistor 33, and a reset line 15 (first conductive layer). 10) and are provided. The source extension line 128 is not connected to the scanning line 13 but is connected to the reset line 15 via the contact hole 229. The reset line 15 supplies a reset signal to the third thin film transistor 33 via the source extension line 128 and the second source electrode 25.
 図10に示される回路図においては、単位セル219は、走査線13からの走査信号とは独立して、リセット線15からのリセット信号を受けることができる。単位セル219においては、図9に示すように走査信号及びリセット信号の両信号を走査線13に供給する必要がない。リセット線15は、リセット信号のみを第3薄膜トランジスタ33に供給し、走査線13は、走査信号のみを第2薄膜トランジスタ32に供給すればよい。 In the circuit diagram shown in FIG. 10, the unit cell 219 can receive the reset signal from the reset line 15 independently of the scanning signal from the scanning line 13. In the unit cell 219, it is not necessary to supply both the scanning signal and the reset signal to the scanning line 13 as shown in FIG. The reset line 15 may supply only the reset signal to the third thin film transistor 33, and the scanning line 13 may supply only the scanning signal to the second thin film transistor 32.
 なお、図1は1つの単位セルが1つの薄膜トランジスタを備えた回路図を示しており、図9及び図10は、1つの単位セルが2つの薄膜トランジスタを備えた回路図を示している。1つの単位セルにおける薄膜トランジスタの個数は、必要に応じて増やすことができる。 Note that FIG. 1 shows a circuit diagram in which one unit cell includes one thin film transistor, and FIGS. 9 and 10 show circuit diagrams in which one unit cell includes two thin film transistors. The number of thin film transistors in one unit cell can be increased as necessary.
 上述した構成を有する第1実施形態の変形例1~3においても、上述した第1実施形態に係る容量センサ基板100Aと同様の効果が得られる。 In the modified examples 1 to 3 of the first embodiment having the above-described configuration, the same effect as that of the capacitive sensor substrate 100A according to the above-described first embodiment can be obtained.
(第2実施形態)
(電子デバイス/液晶表示装置)
 図11は、本発明の第2実施形態に係る電子デバイスである液晶表示装置200(表示装置)を部分的に示す断面図である。
 図12は、液晶表示装置200を構成する容量センサ基板201を示す平面図である。なお、図12は、タッチ方向TD(指などのポインタが第1面1に近接あるいは接触する方向)とは逆方向、即ち、第2面2から第1面1に向けた方向から見た容量センサ基板201を示す平面図である。
 図13は、液晶表示装置200のアレイ基板の回路構成を説明する代表的な回路図であり、液晶層60を駆動する薄膜トランジスタを備えた回路図である。
 図14は、液晶表示装置200を構成する容量センサ基板201の単位セル19を示す平面図である。図14に示すD-D’部は、図12に示すD-D’部に対応している。なお、図14は、図11の2点鎖線で示す赤画素Rと緑画素Gを含む2つの単位セルを代表的に示す平面図である。
 図15は、液晶表示装置200を構成する容量センサ基板201が備える薄膜トランジスタを示す図であり、図14のC-C’線に沿う断面図である。
(Second embodiment)
(Electronic device / Liquid crystal display)
FIG. 11 is a sectional view partially showing a liquid crystal display device 200 (display device) which is an electronic device according to the second embodiment of the invention.
FIG. 12 is a plan view showing a capacitance sensor substrate 201 that constitutes the liquid crystal display device 200. It should be noted that FIG. 12 shows the capacitance as viewed in the direction opposite to the touch direction TD (the direction in which a pointer such as a finger approaches or contacts the first surface 1), that is, the direction from the second surface 2 to the first surface 1. 3 is a plan view showing a sensor substrate 201. FIG.
FIG. 13 is a typical circuit diagram illustrating the circuit configuration of the array substrate of the liquid crystal display device 200, and is a circuit diagram including a thin film transistor that drives the liquid crystal layer 60.
FIG. 14 is a plan view showing the unit cell 19 of the capacitance sensor substrate 201 that constitutes the liquid crystal display device 200. The DD ′ section shown in FIG. 14 corresponds to the DD ′ section shown in FIG. Note that FIG. 14 is a plan view representatively showing two unit cells including the red pixel R and the green pixel G indicated by the chain double-dashed line in FIG. 11.
FIG. 15 is a diagram showing a thin film transistor included in the capacitance sensor substrate 201 that constitutes the liquid crystal display device 200, and is a cross-sectional view taken along the line CC ′ of FIG. 14.
 液晶表示装置200は、容量センサ基板201と、アレイ基板203と、容量センサ基板201及びアレイ基板203に挟持された液晶層60(表示機能層)とを備える。
 アレイ基板203は、薄膜トランジスタアレイが配置された基板面203Tを有する。すなわち、液晶表示装置200においては、容量センサ基板201の第2面2と、アレイ基板203の基板面203Tとが向かい合うように、液晶層60を介して、容量センサ基板201とアレイ基板203とが貼り合わされている。
The liquid crystal display device 200 includes a capacitance sensor substrate 201, an array substrate 203, and a liquid crystal layer 60 (display function layer) sandwiched between the capacitance sensor substrate 201 and the array substrate 203.
The array substrate 203 has a substrate surface 203T on which the thin film transistor array is arranged. That is, in the liquid crystal display device 200, the capacitance sensor substrate 201 and the array substrate 203 are separated from each other via the liquid crystal layer 60 so that the second surface 2 of the capacitance sensor substrate 201 and the substrate surface 203T of the array substrate 203 face each other. Pasted together.
 図11において、液晶表示装置200を構成する偏光板を含む光学フィルム、配向膜、バックライトユニットなどの図示は省略している。また、アレイ基板203は、液晶層60を駆動する薄膜トランジスタ等の複数のアクティブ素子(薄膜トランジスタアレイ)を備えるが、このようなアクティブ素子は周知であるため、図11では省略されている。 In FIG. 11, illustration of an optical film including a polarizing plate, an alignment film, a backlight unit, and the like, which compose the liquid crystal display device 200, is omitted. Further, the array substrate 203 includes a plurality of active elements (thin film transistor array) such as thin film transistors that drive the liquid crystal layer 60, but since such active elements are well known, they are omitted in FIG. 11.
 容量センサ基板201は、上述した第1実施形態に係る容量センサ基板100Aと、カラーフィルタCFとを備える。カラーフィルタCFは、赤画素R、緑画素G、青画素B、及びブラックマトリクス8(光吸収層)を備える。 The capacitance sensor substrate 201 includes the capacitance sensor substrate 100A according to the first embodiment described above and the color filter CF. The color filter CF includes a red pixel R, a green pixel G, a blue pixel B, and a black matrix 8 (light absorption layer).
 図12に示すように、誘電体層103上には、キャパシタパターン12、走査線13、電源線14、出力線21などが形成されている。誘電体層103は、上述した第1実施形態に係る誘電体層3と基本的に同じ構成を有するが、誘電体層103が開口部Opを備える点で、本実施形態の誘電体層103は、第1実施形態の誘電体層3とは異なる。 As shown in FIG. 12, a capacitor pattern 12, a scanning line 13, a power supply line 14, an output line 21 and the like are formed on the dielectric layer 103. The dielectric layer 103 has basically the same configuration as the dielectric layer 3 according to the above-described first embodiment, but the dielectric layer 103 of the present embodiment is different in that the dielectric layer 103 includes the opening Op. , And is different from the dielectric layer 3 of the first embodiment.
 誘電体層103の開口部Opは、誘電体層103が削除された部分であり、光を透過する画素(赤画素R、緑画素G、青画素Bに相当)に対応している。複数の走査線13は、走査線ドライバ205(走査信号回路)に接続されている。複数の出力線21は、出力線ドライバ204(出力信号回路)に接続されている。図11及び図12の符号RGBは、それぞれ赤画素R、緑画素G、青画素BのカラーフィルタCFの配置を示す。 The opening Op of the dielectric layer 103 is a portion where the dielectric layer 103 is removed, and corresponds to a pixel that transmits light (corresponding to a red pixel R, a green pixel G, and a blue pixel B). The plurality of scanning lines 13 are connected to the scanning line driver 205 (scanning signal circuit). The plurality of output lines 21 are connected to the output line driver 204 (output signal circuit). Reference symbols RGB in FIGS. 11 and 12 indicate the arrangement of the color filters CF of the red pixel R, the green pixel G, and the blue pixel B, respectively.
 図13に示すように、アレイ基板203上に形成される薄膜トランジスタ(図13における符号71)は、マトリクス状に配置されており、液晶層60を駆動する。
 アレイ基板203上には、走査信号回路72から延線される複数のゲート線64と、映像信号回路73から延線される複数のソース線65とが形成されている。薄膜トランジスタ71は、ゲート線64から出力されるゲート信号と、ソース線65から出力される映像信号とによって駆動される。図13においては、液晶63(液晶層60)は、容量素子として記載されている。
As shown in FIG. 13, the thin film transistors (reference numeral 71 in FIG. 13) formed on the array substrate 203 are arranged in a matrix and drive the liquid crystal layer 60.
A plurality of gate lines 64 extending from the scanning signal circuit 72 and a plurality of source lines 65 extending from the video signal circuit 73 are formed on the array substrate 203. The thin film transistor 71 is driven by the gate signal output from the gate line 64 and the video signal output from the source line 65. In FIG. 13, the liquid crystal 63 (liquid crystal layer 60) is described as a capacitive element.
 液晶表示装置200は、液晶層60を介して、複数の単位セル19が形成されている容量センサ基板201の第2面2と、アレイ基板203とが貼り合わされた構成を有する。 The liquid crystal display device 200 has a configuration in which the second surface 2 of the capacitive sensor substrate 201 in which the plurality of unit cells 19 are formed and the array substrate 203 are bonded together via the liquid crystal layer 60.
 容量センサ基板201は、図11の断面図に示されるように、基板202の第2面2上には、誘電体層103が設けられている。さらに、誘電体層103上には、第1導電パターン10Pを構成するキャパシタパターン12と、走査線13と、電源線14とが積層されている。タッチ方向TDに示すように、指などのポインタが第1面1に近接あるいは接触することによって、容量センサ基板201によるタッチセンシングが行われる。誘電体層103は、キャパシタパターン12よりも、タッチセンシング入力面(第1面1)に近い位置にある。 As shown in the sectional view of FIG. 11, the capacitive sensor substrate 201 has a dielectric layer 103 provided on the second surface 2 of the substrate 202. Further, on the dielectric layer 103, the capacitor pattern 12 forming the first conductive pattern 10P, the scanning line 13, and the power supply line 14 are laminated. As shown in the touch direction TD, when a pointer such as a finger approaches or contacts the first surface 1, touch sensing is performed by the capacitive sensor substrate 201. The dielectric layer 103 is located closer to the touch sensing input surface (first surface 1) than the capacitor pattern 12.
 図15に示す第4薄膜トランジスタ34は、上述した第1実施形態に係る第1薄膜トランジスタ31と同じ構成を有する。ただし、第2実施形態に係る誘電体層103は、液晶表示装置200のブラックマトリクスの役割を有している。第2実施形態の誘電体層103には、液晶表示装置200に不可欠な開口部Opが形成されている。開口部Opは、図11に図示されていないバックライトの光を透過し、映像表示を行う役割を有する。開口部Opは、図11、図12、及び図14などに図示されるように、RGBの各々の画素に対応する開口部である。 The fourth thin film transistor 34 shown in FIG. 15 has the same configuration as the first thin film transistor 31 according to the first embodiment described above. However, the dielectric layer 103 according to the second embodiment has a role of a black matrix of the liquid crystal display device 200. The dielectric layer 103 of the second embodiment has an opening Op that is indispensable for the liquid crystal display device 200. The opening Op has a role of transmitting light of a backlight not shown in FIG. 11 and displaying an image. The opening Op is an opening corresponding to each pixel of RGB, as illustrated in FIGS. 11, 12, and 14, and the like.
 図14は、代表的な例として、2個の単位セルを示している。単位セルの各々には、第4薄膜トランジスタ34と第5薄膜トランジスタ35(選択トランジスタ)の2つのトランジスタが具備されている。キャパシタパターン12の静電容量変化は、走査線13からの選択信号を受けて第4薄膜トランジスタ34からの信号として出力線21に出力される。なお、第4薄膜トランジスタ34はキャパシタパターン12からの信号を増幅する作用がある。 FIG. 14 shows two unit cells as a typical example. Each unit cell includes two transistors, a fourth thin film transistor 34 and a fifth thin film transistor 35 (selection transistor). The change in capacitance of the capacitor pattern 12 is output to the output line 21 as a signal from the fourth thin film transistor 34 in response to the selection signal from the scanning line 13. The fourth thin film transistor 34 has the function of amplifying the signal from the capacitor pattern 12.
(第3実施形態)
(電子デバイス/ICカード)
 図16は、第3実施形態に関わる電子デバイスであるICカード300を示す平面図である。
(Third Embodiment)
(Electronic device / IC card)
FIG. 16 is a plan view showing an IC card 300 which is an electronic device according to the third embodiment.
 ICカード300は、上述した第1実施形態に係る容量センサ基板100Aと同じ構成を有する容量センサ基板301と、アンテナ310と、ICチップとを備える。容量センサ基板301は、ICカード300において指紋認証を行う指紋センサとして機能する。
 容量センサ基板301、アンテナ310、メモリ313、ICチップなどは、予め、インレットと呼ばれる樹脂フィルムに貼り付けされている。ICチップは、制御回路312、アンテナ電源部314、センサ制御回路316を一体化させたICチップであってもよい。必要に応じて、2次電池317(もしくは大容量コンデンサ)や充電制御部311をICカード300に加えてもよい。
The IC card 300 includes a capacitance sensor substrate 301 having the same configuration as the capacitance sensor substrate 100A according to the first embodiment described above, an antenna 310, and an IC chip. The capacitance sensor substrate 301 functions as a fingerprint sensor that performs fingerprint authentication in the IC card 300.
The capacitance sensor substrate 301, the antenna 310, the memory 313, the IC chip, and the like are previously attached to a resin film called an inlet. The IC chip may be an IC chip in which the control circuit 312, the antenna power supply unit 314, and the sensor control circuit 316 are integrated. A secondary battery 317 (or a large-capacity capacitor) or a charge control unit 311 may be added to the IC card 300 as needed.
 インレットは、スペーサを介して、容量センサ基板301、アンテナ310、ICチップなどに貼り合わされている。スペーサとしては、硬質のポリ塩化ビニルのシート基材及びオーバーレイと呼ばれる、同じくポリ塩化ビニルのシート、さらにPET(ポリエチレンテレフタレート)が用いられる。 The inlet is attached to the capacitance sensor substrate 301, the antenna 310, the IC chip, etc. via a spacer. As the spacer, a hard polyvinyl chloride sheet base material, a polyvinyl chloride sheet also called an overlay, and PET (polyethylene terephthalate) are used.
 スペーサには、上記の容量センサ基板301及びICチップの形状に合わせた開口部が形成されており、感熱接着材を用いた貼り合わせ工程によって、平坦な表面を有するICカード300が得られる。ICカード300は、複数層のシートが積層された構成を有する。なお、上記のシート基材、インレット基材、スペーサ基材には、上記のほか、塩化ビニル-酢酸ビニル共重合体、ポリアミド、ポリイミド、ポリアミドイミド、セルローストリアセテートほかの樹脂シートを用いることができる。また、顔写真などの印刷を行った樹脂含浸紙を上記複数層の一部としてICカード300に積層してもよい。 An opening is formed in the spacer in accordance with the shapes of the capacitance sensor substrate 301 and the IC chip, and the IC card 300 having a flat surface can be obtained by a bonding process using a heat-sensitive adhesive. The IC card 300 has a structure in which a plurality of layers of sheets are stacked. As the above-mentioned sheet base material, inlet base material, and spacer base material, in addition to the above, vinyl chloride-vinyl acetate copolymer, polyamide, polyimide, polyamideimide, cellulose triacetate and other resin sheets can be used. Further, resin-impregnated paper on which a face photograph or the like is printed may be laminated on the IC card 300 as a part of the plurality of layers.
 容量センサ基板301は、例えば、外形15mm□、200μm厚みの高強度のガラス基板上に、図10で示した単位セルが50μmピッチでマトリクス状に配置された構成を有する。容量センサ基板301の周辺には、チャネル層として酸化物半導体を用いた薄膜トランジスタ(スイッチング素子)を備えた出力線ドライバ303及び走査線ドライバ304が配線される。指紋認証される指は、図7で示すように、タッチ方向TDに向けて誘電体層3の近くのタッチ入力面28Tに接触する。 The capacitance sensor substrate 301 has, for example, a structure in which the unit cells shown in FIG. 10 are arranged in a matrix at a pitch of 50 μm on a high-strength glass substrate having an outer diameter of 15 mm □ and a thickness of 200 μm. An output line driver 303 and a scanning line driver 304 each including a thin film transistor (switching element) using an oxide semiconductor as a channel layer are wired around the capacitance sensor substrate 301. As shown in FIG. 7, the fingerprint-authenticated finger contacts the touch input surface 28T near the dielectric layer 3 in the touch direction TD.
 アンテナ310は、樹脂シートに貼り合わせした銅箔を、ウエットエッチングでループアンテナ状にパターン形成することで形成されている。 The antenna 310 is formed by patterning a copper foil attached to a resin sheet into a loop antenna shape by wet etching.
 ICカード300は、アンテナ310を用いて、例えば、周波数13.56MHzでICカードリーダ・ライタとの通信及び受電を行う同調回路、整流回路などを含む。この通信に関わる周波数は、13.56MHzより高い周波数であってもよい。ICカード300に、2次電池を内蔵させてもよい。 The IC card 300 includes a tuning circuit, a rectification circuit, and the like that use the antenna 310 to communicate with and receive power from an IC card reader / writer at a frequency of 13.56 MHz, for example. The frequency involved in this communication may be higher than 13.56 MHz. A secondary battery may be built in the IC card 300.
 上述した実施形態に係る容量センサ基板を指紋検知やペンなどの微細なポインタの検知に用いる場合、単位セルの解像度(ピッチ)は、例えば10μmから100μmの範囲内に設定できる。指紋の稜線のピッチは、おおよそ300μmであるため、これを解像する単位セルの解像度の下限(100μm以下)にすればよい。鋭いペン先は、数十μmサイズなので、これを解像度の上限の10μmとすることができる。本発明の実施形態に係る容量センサ基板を通常の指のタッチ認識など用いる場合、1mm程度の粗い解像度でよい。本発明の実施形態に係る容量センサ基板に形成された複数のセル列(複数の単位セルが一方向に並んでいる列)を間引くようにタッチセンシング駆を行うことで、粗いセンシングが可能である。 When the capacitive sensor substrate according to the above-described embodiment is used for fingerprint detection or detection of a fine pointer such as a pen, the resolution (pitch) of the unit cell can be set within the range of 10 μm to 100 μm, for example. Since the pitch of the ridgeline of the fingerprint is approximately 300 μm, it may be set to the lower limit (100 μm or less) of the resolution of the unit cell for resolving this. Since the sharp pen tip has a size of several tens of μm, this can be set to the upper limit of resolution of 10 μm. When the capacitive sensor substrate according to the embodiment of the present invention is used for normal touch recognition of a finger, a coarse resolution of about 1 mm is sufficient. Coarse sensing is possible by performing touch sensing so as to thin out a plurality of cell rows (rows in which a plurality of unit cells are arranged in one direction) formed on the capacitive sensor substrate according to the embodiment of the present invention. .
 本発明の好ましい実施形態を説明し、上記で説明してきたが、これらは本発明の例示的なものであり、限定するものとして考慮されるべきではないことを理解すべきである。追加、省略、置換、およびその他の変更は、本発明の範囲から逸脱することなく行うことができる。従って、本発明は、前述の説明によって限定されていると見なされるべきではなく、請求の範囲によって規定されている。 While the preferred embodiments of the invention have been described and described above, it should be understood that these are exemplary of the invention and should not be considered limiting. Additions, omissions, substitutions, and other changes can be made without departing from the scope of the invention. Therefore, the present invention should not be considered limited by the foregoing description, but is defined by the claims.
 なお、上述した実施形態に係る容量センサ基板の回路構成は、代表的な回路構成であり、例えば、回路図に記載された出力線(信号線とも記載)、走査線、リセット線、電源線などの本数や組み合わせは、目的に応じて変更できる。また、一つの配線が2つ以上の機能を有してもよい(兼用)。
 一つの検知素子(単位セル)は、少なくとも一つのキャパシタパターンを含み、複数のキャパシタパターンと、複数の出力線と、出力線に直交する複数の走査線と、検知素子のマトリクスを形成する。キャパシタパターンの形状や、一つの検知素子内に設けられる薄膜トランジスタの数は、目的に応じて調整できる。
Note that the circuit configuration of the capacitive sensor substrate according to the above-described embodiment is a typical circuit configuration, and for example, output lines (also referred to as signal lines), scanning lines, reset lines, power supply lines, etc. described in the circuit diagram. The number and combination of can be changed according to the purpose. Further, one wiring may have two or more functions (combined use).
One sensing element (unit cell) includes at least one capacitor pattern, and forms a plurality of capacitor patterns, a plurality of output lines, a plurality of scanning lines orthogonal to the output lines, and a matrix of sensing elements. The shape of the capacitor pattern and the number of thin film transistors provided in one sensing element can be adjusted according to the purpose.
 上述した実施形態に係る容量センサ基板の適用可能な電子デバイスとしては、表示装置、携帯電話、携帯型ゲーム機器、携帯情報端末、パーソナルコンピュータ、電子書籍、電子時計、ビデオカメラ、デジタルスチルカメラ、ヘッドマウントディスプレイ、ナビゲーションシステム、音響再生装置(カーオーディオ、デジタルオーディオプレイヤ等)、複写機、ファクシミリ、プリンター、プリンター複合機、自動販売機、現金自動預け入れ払い機(ATM)、個人認証機器、光通信機器、医療用データカード、ICカードなどが挙げられる。特に、上述した実施形態に係る容量センサ基板は、上記のように列記した電子デバイスに、組み込むことができ、指紋認証デバイスとして機能する。 The electronic device to which the capacitive sensor substrate according to the above-described embodiment can be applied includes a display device, a mobile phone, a portable game machine, a personal digital assistant, a personal computer, an electronic book, an electronic watch, a video camera, a digital still camera, and a head. Mounted display, navigation system, sound reproduction device (car audio, digital audio player, etc.), copier, facsimile, printer, printer complex machine, vending machine, automatic teller machine (ATM), personal authentication device, optical communication device , Medical data cards, IC cards and the like. In particular, the capacitive sensor substrate according to the above-described embodiment can be incorporated into the electronic devices listed above, and functions as a fingerprint authentication device.
 指紋認証デバイスとして組み込まれた容量センサ基板は、電源スイッチと、個人認証後のイネーブルスイッチを兼ねて用いことが簡便である。イネーブルスイッチは、指紋認証後にその電子デバイスが使用可能状態とするスイッチであり、セキュリティ確保のためのスイッチである。
 上記の各実施形態は、自由に組み合わせて用いることができる。これら電子デバイスには、アンテナを搭載させて非接触通信、非接触での受給電が可能である。第1実施形態に係る導電層は、アンテナを構成する導体や、電子デバイス内の配線に適用できる。
It is easy to use the capacitive sensor substrate incorporated as a fingerprint authentication device as both a power switch and an enable switch after personal authentication. The enable switch is a switch for ensuring the security of the electronic device after fingerprint authentication, and is a switch for ensuring security.
The above embodiments can be freely combined and used. An antenna is mounted on these electronic devices to enable non-contact communication and non-contact power supply / reception. The conductive layer according to the first embodiment can be applied to a conductor forming an antenna and wiring in an electronic device.
1・・・第1面(タッチセンシング入力面)
2・・・第2面
3、103・・・誘電体層
5・・・金属層
8・・・ブラックマトリクス
10・・・第1導電層
10P・・・第1導電パターン
11・・・第1ゲート電極
12・・・キャパシタパターン
13・・・走査線
14・・・電源線
15・・・リセット線
16・・・第1チャネル層
17・・・第1絶縁層
18、118・・・ゲート絶縁層
19、119、219・・・単位セル
20・・・第2導電層
20P・・・第2導電パターン
21・・・出力線
22・・・第1ソース電極
23・・・第1ドレイン電極
24・・・第2チャネル層
25・・・第2ソース電極
26・・・第2ドレイン電極
27・・・第2絶縁層
28・・・第3絶縁層
28T・・・タッチ入力面(タッチセンシング入力面)
29、129、229・・・コンタクトホール
31・・・第1薄膜トランジスタ(薄膜トランジスタ)
32・・・第2薄膜トランジスタ(薄膜トランジスタ)
33・・・第3薄膜トランジスタ(薄膜トランジスタ)
34・・・第4薄膜トランジスタ(薄膜トランジスタ)
35・・・第5薄膜トランジスタ(薄膜トランジスタ)
41・・・第1導電性酸化物層
42・・・第2導電性酸化物層
44・・・重畳部
60・・・液晶層
63・・・液晶
64・・・ゲート線
65・・・ソース線
71・・・薄膜トランジスタ
72・・・走査信号回路
73・・・映像信号回路
100A、100B、100C、100D、201、301・・・容量センサ基板
102、202・・・基板
116・・・チャネル層
122・・・ソース電極
123・・・ドレイン電極
127・・・第2ゲート電極
128・・・ソース延線
200・・・液晶表示装置(電子デバイス)
203・・・アレイ基板
203T・・・基板面
204、303・・・出力線ドライバ
205、304・・・走査線ドライバ
300・・・ICカード(電子デバイス)
310・・・アンテナ
311・・・充電制御部
312・・・制御回路
313・・・メモリ
314・・・アンテナ電源部
316・・・センサ制御回路
317・・・2次電池
B・・・青画素
CF・・・カラーフィルタ
G・・・緑画素
R・・・赤画素
TD・・・タッチ方向
1st surface (touch sensing input surface)
2 ... Second surface 3, 103 ... Dielectric layer 5 ... Metal layer 8 ... Black matrix 10 ... First conductive layer 10P ... First conductive pattern 11 ... First Gate electrode 12 ... Capacitor pattern 13 ... Scan line 14 ... Power supply line 15 ... Reset line 16 ... First channel layer 17 ... First insulating layer 18, 118 ... Gate insulation Layer 19, 119, 219 ... Unit cell 20 ... Second conductive layer 20P ... Second conductive pattern 21 ... Output line 22 ... First source electrode 23 ... First drain electrode 24・ ・ ・ Second channel layer 25 ・ ・ ・ Second source electrode 26 ・ ・ ・ Second drain electrode 27 ・ ・ ・ Second insulating layer 28 ・ ・ ・ Third insulating layer 28T ・ ・ ・ Touch input surface (touch sensing input) surface)
29, 129, 229 ... Contact hole 31 ... First thin film transistor (thin film transistor)
32 ... Second thin film transistor (thin film transistor)
33 ... Third thin film transistor (thin film transistor)
34 ... Fourth thin film transistor (thin film transistor)
35 ... Fifth thin film transistor (thin film transistor)
41 ... First conductive oxide layer 42 ... Second conductive oxide layer 44 ... Superposed portion 60 ... Liquid crystal layer 63 ... Liquid crystal 64 ... Gate line 65 ... Source Line 71 ... Thin film transistor 72 ... Scan signal circuit 73 ... Video signal circuit 100A, 100B, 100C, 100D, 201, 301 ... Capacitance sensor substrate 102, 202 ... Substrate 116 ... Channel layer 122 ... Source electrode 123 ... Drain electrode 127 ... Second gate electrode 128 ... Source wire extension 200 ... Liquid crystal display device (electronic device)
203 ... Array substrate 203T ... Substrate surface 204, 303 ... Output line driver 205, 304 ... Scan line driver 300 ... IC card (electronic device)
310 ... Antenna 311 ... Charge control unit 312 ... Control circuit 313 ... Memory 314 ... Antenna power supply unit 316 ... Sensor control circuit 317 ... Secondary battery B ... Blue pixel CF ... Color filter G ... Green pixel R ... Red pixel TD ... Touch direction

Claims (12)

  1.  第1面と第2面とを有する基板と、
     カーボンを含み、かつ、前記第2面の上方に設けられた誘電体層と、
     ゲート電極、ソース電極、ドレイン電極、酸化物半導体層で構成されたチャネル層、及びゲート絶縁層を有し、前記第2面の上方に設けられた薄膜トランジスタと、
     金属層を有し、前記第2面の上方に設けられ、かつ、少なくもキャパシタパターン及び前記ゲート電極を形成する第1導電層と、
     金属層を有し、かつ、前記第2面の上方に設けられた第2導電層と、
     を備え、
     前記ゲート電極は、前記キャパシタパターンと電気的に連携され、
     平面視において、前記誘電体層は、前記キャパシタパターンと重なり、
     前記基板の厚み方向において、前記誘電体層は前記キャパシタパターンよりもタッチセンシング入力面に近い位置にある、
     容量センサ基板。
    A substrate having a first surface and a second surface,
    A dielectric layer containing carbon and provided above the second surface;
    A thin film transistor having a gate electrode, a source electrode, a drain electrode, a channel layer formed of an oxide semiconductor layer, and a gate insulating layer, the thin film transistor provided above the second surface;
    A first conductive layer that has a metal layer and is provided above the second surface and that forms at least the capacitor pattern and the gate electrode;
    A second conductive layer having a metal layer and provided above the second surface;
    Equipped with
    The gate electrode is electrically associated with the capacitor pattern,
    In a plan view, the dielectric layer overlaps with the capacitor pattern,
    In the thickness direction of the substrate, the dielectric layer is closer to the touch sensing input surface than the capacitor pattern is,
    Capacitance sensor board.
  2.  前記誘電体層は、
     カーボンと、
     金属酸化物、金属酸化窒化物、及び金属窒化物からなる群より選ばれる、少なくとも1以上の微粒子と、
     を含む樹脂分散体である、
     請求項1に記載の容量センサ基板。
    The dielectric layer is
    Carbon,
    At least one or more fine particles selected from the group consisting of metal oxides, metal oxynitrides, and metal nitrides;
    Is a resin dispersion containing
    The capacitive sensor substrate according to claim 1.
  3.  前記誘電体層の電気抵抗率は、1×10Ωcm以上1×1013Ωcm未満である、
     請求項1に記載の容量センサ基板。
    The electric resistivity of the dielectric layer is 1 × 10 8 Ωcm or more and less than 1 × 10 13 Ωcm.
    The capacitive sensor substrate according to claim 1.
  4.  前記誘電体層の誘電損失は、0.01以上0.2未満である、
     請求項1に記載の容量センサ基板。
    The dielectric loss of the dielectric layer is 0.01 or more and less than 0.2,
    The capacitive sensor substrate according to claim 1.
  5.  前記誘電体層の膜厚は、0.2μm以上10μm以下の範囲内にある、
     請求項1に記載の容量センサ基板。
    The film thickness of the dielectric layer is in the range of 0.2 μm or more and 10 μm or less,
    The capacitive sensor substrate according to claim 1.
  6.  前記第1導電層及び前記第2導電層の各々は、前記金属層が導電性酸化物層で挟持された3層構成を有する、
     請求項1に記載の容量センサ基板。
    Each of the first conductive layer and the second conductive layer has a three-layer structure in which the metal layer is sandwiched by conductive oxide layers,
    The capacitive sensor substrate according to claim 1.
  7.  前記薄膜トランジスタの厚み方向に沿う断面視において、前記薄膜トランジスタは、前記チャネル層の端部が前記第2導電層で覆われた重畳部を有し、
     前記重畳部において、前記導電性酸化物層と前記チャネル層とが接触する界面が形成されている、
     請求項6に記載の容量センサ基板。
    In a cross-sectional view along the thickness direction of the thin film transistor, the thin film transistor has an overlapping portion in which an end portion of the channel layer is covered with the second conductive layer,
    In the overlapping portion, an interface is formed in which the conductive oxide layer and the channel layer are in contact with each other,
    The capacitive sensor substrate according to claim 6.
  8.  前記導電性酸化物層は、酸化インジウムを含む、
     請求項6に記載の容量センサ基板。
    The conductive oxide layer contains indium oxide,
    The capacitive sensor substrate according to claim 6.
  9.  前記酸化物半導体層は、
     酸化インジウムと、
     酸化アンチモン及び酸化ビスマスのうち少なくともいずれか1つと、
     を含む、
     請求項1に記載の容量センサ基板。
    The oxide semiconductor layer is
    Indium oxide,
    At least one of antimony oxide and bismuth oxide,
    including,
    The capacitive sensor substrate according to claim 1.
  10.  前記酸化物半導体層は、
     酸化セリウム及び酸化錫のうち少なくともいずれか1つを含む、
     をさらに含む、
     請求項9に記載の容量センサ基板。
    The oxide semiconductor layer is
    Containing at least one of cerium oxide and tin oxide,
    Further including,
    The capacitive sensor substrate according to claim 9.
  11.  請求項1に記載の容量センサ基板と、
     アンテナと、
     を備える電子デバイス。
    A capacitive sensor substrate according to claim 1;
    An antenna,
    An electronic device comprising.
  12.  請求項1に記載の容量センサ基板と、
     薄膜トランジスタアレイが配置された基板面を有するアレイ基板と、
     表示機能層と、
     を備え、
     前記容量センサ基板の第2面と、前記アレイ基板の前記基板面とが向かい合うように、前記表示機能層が前記容量センサ基板と前記アレイ基板によって挟持されている、
     電子デバイス。
    A capacitive sensor substrate according to claim 1;
    An array substrate having a substrate surface on which a thin film transistor array is arranged;
    Display function layer,
    Equipped with
    The display functional layer is sandwiched between the capacitance sensor substrate and the array substrate such that the second surface of the capacitance sensor substrate and the substrate surface of the array substrate face each other.
    Electronic device.
PCT/JP2018/039045 2018-10-19 2018-10-19 Capacitance sensor substrate and electronic device WO2020079838A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/039045 WO2020079838A1 (en) 2018-10-19 2018-10-19 Capacitance sensor substrate and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/039045 WO2020079838A1 (en) 2018-10-19 2018-10-19 Capacitance sensor substrate and electronic device

Publications (1)

Publication Number Publication Date
WO2020079838A1 true WO2020079838A1 (en) 2020-04-23

Family

ID=70284462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039045 WO2020079838A1 (en) 2018-10-19 2018-10-19 Capacitance sensor substrate and electronic device

Country Status (1)

Country Link
WO (1) WO2020079838A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022053822A1 (en) * 2020-09-10 2022-03-17 Touch Biometrix Limited Method and apparatus
WO2023084245A1 (en) * 2021-11-12 2023-05-19 Touch Biometrix Limited Apparatus and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130043545A1 (en) * 2011-08-19 2013-02-21 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device having high-k gate dielectric layer and manufacturing method thereof
US20170147123A1 (en) * 2015-06-30 2017-05-25 Boe Technology Group Co., Ltd. Touch display panel, manufacturing method for the same, driving method for the same, and display device
WO2018051487A1 (en) * 2016-09-16 2018-03-22 凸版印刷株式会社 Display device and display device substrate
US20180239940A1 (en) * 2017-02-22 2018-08-23 Samsung Display Co., Ltd. Fingerprint sensor and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130043545A1 (en) * 2011-08-19 2013-02-21 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device having high-k gate dielectric layer and manufacturing method thereof
US20170147123A1 (en) * 2015-06-30 2017-05-25 Boe Technology Group Co., Ltd. Touch display panel, manufacturing method for the same, driving method for the same, and display device
WO2018051487A1 (en) * 2016-09-16 2018-03-22 凸版印刷株式会社 Display device and display device substrate
US20180239940A1 (en) * 2017-02-22 2018-08-23 Samsung Display Co., Ltd. Fingerprint sensor and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022053822A1 (en) * 2020-09-10 2022-03-17 Touch Biometrix Limited Method and apparatus
GB2607116A (en) * 2020-09-10 2022-11-30 Touch Biometrix Ltd Method and apparatus
GB2607116B (en) * 2020-09-10 2023-05-17 Touch Biometrix Ltd Method and apparatus
WO2023084245A1 (en) * 2021-11-12 2023-05-19 Touch Biometrix Limited Apparatus and method

Similar Documents

Publication Publication Date Title
US20230376144A1 (en) Display device including touch sensor and driving method thereof
US10048795B2 (en) Display device with fingerprint identification and touch detection
US9959000B2 (en) Touch sensing device
US9891743B2 (en) Driving method of an input device
JP6583569B1 (en) Black matrix substrate and display device
TWI698782B (en) Display device having touch sensors and method of manufacturing the same
JP2014056566A (en) Display device
JP2007510949A (en) Liquid crystal display device having touch screen function and manufacturing method thereof
JP2018147486A (en) Electrode connecting structure, touch sensor and image display device
US20230251747A1 (en) Fingerprint sensor and display device including the same
US10209840B2 (en) Touch window and touch device
US11209946B2 (en) Touch sensor and image display device including the same
KR20180027722A (en) Display device
CN107887410B (en) Display device
WO2020079838A1 (en) Capacitance sensor substrate and electronic device
US20160224165A1 (en) Touch screen panel
WO2018205582A1 (en) Touch display module, display device, and driving method therefor
TW202016718A (en) Capacitive sensor substrate and electronic device including a substrate, a dielectric layer, a thin film transistor, a first conductive layer and a second conductive layer
JP2020065023A (en) Capacitive sensor substrate
TWI751349B (en) Black matrix substrate and display device
TWI646518B (en) Display device and display device substrate
WO2022165827A1 (en) Touch panel structure and touch display device comprising touch panel structure
JP6517910B2 (en) Touch sensor built-in organic EL device
KR20230135500A (en) Touch sensor and image display device including the same
KR20200093280A (en) Touch sensor and image display device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP