WO2020075571A1 - Fluid analysis device, method and program - Google Patents

Fluid analysis device, method and program Download PDF

Info

Publication number
WO2020075571A1
WO2020075571A1 PCT/JP2019/038704 JP2019038704W WO2020075571A1 WO 2020075571 A1 WO2020075571 A1 WO 2020075571A1 JP 2019038704 W JP2019038704 W JP 2019038704W WO 2020075571 A1 WO2020075571 A1 WO 2020075571A1
Authority
WO
WIPO (PCT)
Prior art keywords
result
fluid
coincidence
degree
flow
Prior art date
Application number
PCT/JP2019/038704
Other languages
French (fr)
Japanese (ja)
Inventor
広貴 伊藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020550443A priority Critical patent/JP7059391B2/en
Publication of WO2020075571A1 publication Critical patent/WO2020075571A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present disclosure relates to a fluid analysis device, method, and program for analyzing and displaying a fluid flow.
  • a 4D flow method for measuring an actual blood flow for example, a 4D flow method for measuring an actual blood flow four-dimensionally is used.
  • the 4D flow uses, for example, a three-dimensional MRI (Magnetic Resonance Imaging) image captured by a three-dimensional cine phase contrast magnetic resonance method to derive a flow velocity vector for each voxel, each pixel, or each region, It is a method of displaying dynamically along with the flow.
  • CFD Computational Fluid Dynamics
  • the 4D flow is derived based on the MRI image that represents the actual blood flow, but there are restrictions on the spatial resolution and temporal resolution. Further, since blood flow is underestimated in a portion where turbulence or the like occurs, velocity information may not appear in the MRI image in that portion.
  • the CFD can arbitrarily set the spatial resolution and the temporal resolution, but since it is a simulation to the last, it is necessary to sufficiently judge whether the result is appropriate.
  • the present disclosure has been made in view of the above circumstances, and an object thereof is to make it possible to easily recognize a difference between a result derived by analyzing an image and a result derived by simulation.
  • a fluid analysis device analyzes an image acquired by capturing an object including a structure in which a fluid flows, and derives a first result regarding a fluid flow at each position in the structure.
  • 1 analysis unit A second analysis unit that simulates a fluid flow at each position in the structure and derives a second result regarding the fluid flow;
  • a coincidence degree deriving unit that derives a coincidence degree at a position where the first result and the second result correspond to each other, based on either one of the first result and the second result,
  • a display control unit that displays at least one of the first result and the second result on the display unit according to the degree of coincidence.
  • The“ positions ” include not only the pixel position and voxel position of the image, but also the position of the area consisting of multiple pixels (voxels).
  • WSS Wall shear Stress
  • the display control unit displays either the first result or the second result, and the displayed first result and the second result are displayed according to the degree of coincidence.
  • the display mode of any one of the results may be changed.
  • the display control unit displays one of the first result and the second result, and further displays the other result in a display mode according to the degree of coincidence. May be
  • the display control unit may emphasize the other result as the degree of coincidence is smaller.
  • the display control unit displays either the first result or the second result at a position where the degree of coincidence is equal to or higher than a predetermined threshold value, and the coincidence is displayed. At the position where the degree is less than the threshold value, the other result may be further displayed in a display mode according to the degree of coincidence.
  • the image is a three-dimensional image acquired by photographing a subject by the three-dimensional cine phase contrast magnetic resonance method
  • the first analysis unit may derive a fluid velocity vector acquired by analyzing the three-dimensional image as a first result.
  • the second analysis unit derives, as a second result, a fluid flow velocity vector acquired by simulating a fluid flow by an analysis using computational fluid dynamics. May be
  • the structure may be a blood vessel and the fluid may be blood.
  • the display control unit displays the morphological image of the structure on the display unit, and at least one of the first result and the second result is displayed on the morphological image according to the degree of coincidence. May be displayed.
  • a fluid analysis method analyzes an image acquired by capturing an object including a structure in which a fluid flows, and derives a first result regarding a fluid flow at each position in the structure, Simulating the fluid flow at each location in the structure to derive a second result for the fluid flow, Deriving the degree of coincidence at the corresponding position between the first result and the second result, based on either one of the first result and the second result, At least one of the first result and the second result is displayed on the display unit according to the degree of coincidence.
  • the fluid analysis method according to the present disclosure may be provided as a program for causing a computer to execute the method.
  • Another fluid analysis device is a memory that stores instructions to be executed by a computer, A processor configured to execute the stored instructions, the processor An image obtained by capturing an object including a structure in which a fluid flows inside is analyzed to derive a first result regarding a fluid flow at each position in the structure, Simulating the fluid flow at each location in the structure to derive a second result for the fluid flow, Deriving the degree of coincidence at the corresponding position between the first result and the second result, based on either one of the first result and the second result, A process of displaying at least one of the first result and the second result on the display unit is executed according to the degree of coincidence.
  • a hardware configuration diagram showing an outline of a diagnosis support system to which a fluid analysis device according to an embodiment of the present disclosure is applied The figure which shows the schematic structure of the fluid analysis apparatus by embodiment of this indication.
  • the figure which shows the 1st result which made the 2nd result and spatial resolution correspond by interpolation calculation.
  • FIG. 1 Flow chart showing processing performed in the present embodiment
  • FIG. 1 is a hardware configuration diagram showing an outline of a diagnosis support system to which a fluid analysis device according to an embodiment of the present disclosure is applied.
  • the fluid analysis device 1, the three-dimensional image capturing device 2, and the image storage server 3 according to the present embodiment are connected in a communicable state via a network 4. .
  • the three-dimensional image capturing device 2 is a device that captures a region of a subject to be diagnosed to generate a three-dimensional image representing the region, and specifically, a CT device, an MRI device, and a PET ( Positron Emission Tomography) device.
  • the three-dimensional image generated by the three-dimensional image capturing device 2 is transmitted to and stored in the image storage server 3.
  • the present invention is not limited to this, and other organs such as the lung, liver, and head may be used. Particularly, in this embodiment, it is assumed that a plurality of types of three-dimensional images are acquired.
  • an MRI image obtained by photographing a subject by a three-dimensional cine phase contrast magnetic resonance method in an MRI device is acquired as a first three-dimensional image G1, and a contrast CT image obtained by photographing a subject using a contrast agent in a CT device. Is acquired as the second three-dimensional image G2.
  • the types of the acquired three-dimensional image are not limited to these.
  • the blood vessel of the heart corresponds to the structure of the present disclosure, and the blood corresponds to the fluid of the present disclosure.
  • the image storage server 3 is a computer that stores and manages various data, and includes a large-capacity external storage device and database management software.
  • the image storage server 3 communicates with other devices via a wired or wireless network 4 to transmit and receive image data and the like.
  • various data including the image data of the three-dimensional image generated by the three-dimensional image capturing device 2 is acquired via a network, and stored and managed in a recording medium such as a large-capacity external storage device.
  • the storage format of the image data and the communication between the devices via the network 4 are based on a protocol such as DICOM (Digital Imaging and Communication in Medicine).
  • the fluid analysis device 1 is one in which the fluid analysis program of the present disclosure is installed.
  • the computer may be a workstation or a personal computer directly operated by a doctor who makes a diagnosis, or may be a server computer connected to them through a network.
  • the fluid analysis program is recorded and distributed in a recording medium such as a DVD (Digital Versatile Disc) or a CD-ROM (Compact Disc Read Only Memory), and is installed in the computer from the recording medium.
  • a recording medium such as a DVD (Digital Versatile Disc) or a CD-ROM (Compact Disc Read Only Memory)
  • it is stored in a storage device of a server computer connected to a network or a network storage so as to be accessible from the outside, and is downloaded and installed on a computer used by a doctor upon request.
  • FIG. 2 is a diagram showing a schematic configuration of a fluid analysis device realized by installing a fluid analysis program in a computer.
  • the fluid analysis device 1 includes a CPU (Central Processing Unit) 11, a memory 12 and a storage 13 as a standard workstation configuration.
  • a display unit 14 such as a liquid crystal display and an input unit 15 such as a keyboard and a mouse are connected to the fluid analysis device 1.
  • the storage 13 includes a hard disk drive and the like, and stores various information including three-dimensional images acquired from the image storage server 3 via the network 4 and information necessary for processing.
  • the memory 12 also stores a fluid analysis program.
  • the fluid analysis program is an image acquisition process for acquiring the first and second three-dimensional images G1 and G2 of the subject as a process to be executed by the CPU 11, and analyzes the first three-dimensional image G1 to determine each position in the blood vessel.
  • the second blood flow is simulated by simulating the blood flow at each position in the blood vessel using the second three-dimensional image G2.
  • the computer functions as the image acquisition unit 20, the first analysis unit 21, the second analysis unit 22, the coincidence derivation unit 23, and the display control unit 24 by the CPU 11 executing these processes according to the program.
  • the image acquisition unit 20 acquires the first and second three-dimensional images G1 and G2 from the image storage server 3. When the first and second three-dimensional images G1 and G2 are already stored in the storage 13, the image acquisition unit 20 acquires the first and second three-dimensional images G1 and G2 from the storage 13. You may do it.
  • the first analysis unit 21 analyzes the first three-dimensional image G1 and derives the first result R1 regarding the blood flow at each position in the blood vessel.
  • the first analysis unit 21 first extracts the blood vessel region from the first three-dimensional image G1.
  • the first analysis unit 21 performs the multi-resolution conversion on the first three-dimensional image G1, performs the eigenvalue analysis of the Hessian matrix on the image of each resolution, and the analysis result in the image of each resolution.
  • each node of the tree structure data a cross section orthogonal to the core line is obtained, and at each cross section, the contour of the coronary artery is recognized by using a well-known segmentation method such as the graph cut method, and the information indicating the contour is given as the tree structure.
  • the area of the coronary artery may be extracted as the blood vessel area by associating it with each node of the data.
  • the method of extracting the blood vessel region is not limited to the above method, and other known methods such as the region expansion method may be used.
  • FIG. 3 is a diagram showing a first three-dimensional image G1 captured by the three-dimensional cine phase contrast magnetic resonance method.
  • the image data of the first three-dimensional image G1 captured by the three-dimensional cine phase contrast magnetic resonance method includes magnitude data M, phase data Phx in the X direction, phase data Phy in the Y axis direction, And phase data Phz in the Z-axis direction include three-dimensional data obtained in a predetermined cycle (for example, cardiac cycle) along the time t.
  • the phase data Phx in the X direction, the phase data Phy in the Y axis direction, and the phase data Phz in the Z axis direction encode magnitude data M in the X axis direction, the Y axis direction, and the Z axis direction (VENC: velocity encoding). It is generated by The phase data Phx in the X direction, the phase data Phy in the Y axis direction, and the phase data Phz in the Z axis direction are data representing the flow velocity in each axis direction.
  • the first analysis unit 21 derives a three-dimensional flow velocity vector (hereinafter referred to as a flow velocity vector) at each voxel position of the first three-dimensional image G1 as the first result R1 from the three phase data.
  • the flow velocity vector is derived at each voxel position of the first three-dimensional image G1, the flow velocity vector is not limited to this, and at a predetermined voxel interval (for example, 5 voxels, 10 voxels, etc.). You may derive it. Further, one flow velocity vector may be derived in a region composed of a plurality of voxels.
  • the image acquisition unit 20 acquires a three-dimensional ultrasonic image captured in time series by Doppler measurement, and acquires a flow velocity vector using the velocity information in the blood vessel region acquired based on the ultrasonic image. Then, the first result R1 may be derived.
  • the second analysis unit 22 uses the second three-dimensional image G2 to simulate the blood flow at each position in the blood vessel, and derives the second result R2 regarding the blood flow.
  • the second analysis unit 22 first extracts the blood vessel region from the second three-dimensional image G2.
  • the extraction of the blood vessel region may be performed in the same manner as the above-described first analysis unit 21.
  • the second analysis unit 22 performs a blood flow analysis by CFD (Computational Fluid Dynamics) using the extracted blood vessel region to obtain the second velocity vector at each voxel position of the second three-dimensional image G2.
  • the result R2 is acquired.
  • the second result R2 may also be derived at a predetermined voxel interval in the second three-dimensional image G2, or one flow velocity vector may be derived in a region including a plurality of voxels. .
  • FIG. 4 is a diagram showing a first result and a second result in the same blood vessel region. As shown in FIG. 4, when compared with the flow velocity vector of the second result R2, the flow velocity vector of the first result R1 is spatially wider in the first result R1.
  • the coincidence degree deriving unit 23 derives the coincidence degree C0 at the voxel position corresponding to the first result R1 and the second result R2, based on either one of the first result R1 and the second result R2. To do.
  • the degree of coincidence C0 is derived based on the second result R2, but the present invention is not limited to this.
  • the spatial resolution of the flow velocity vector of the first result R1 is lower than the spatial resolution of the flow velocity vector of the second result R2. Therefore, the coincidence degree deriving unit 23 matches the spatial resolutions of the first result R1 and the second result R2 so that the first result R1 has the same spatial resolution as the second result R2.
  • FIG. 5 is a diagram showing the first result R1 obtained by matching the spatial resolution with the second result R2 by the interpolation calculation.
  • the coincidence degree deriving unit 23 derives the inner product of the flow velocity vectors at the corresponding voxel positions of the first result R1 and the second result R2 as the coincidence degree C0.
  • the degree of coincidence C0 may be derived from the flow velocity vectors at the corresponding voxel positions, but the average value of the flow velocity vectors within a predetermined range based on each voxel position is calculated as the flow velocity vector at each voxel position. Then, the degree of coincidence C0 may be derived using the calculated flow velocity vector. Note that the average value may be a weighted average value in which the weighting is reduced as the distance from the voxel position of interest increases.
  • the display control unit 24 displays at least one of the first result R1 and the second result R2 on the display unit 14 according to the degree of coincidence C0 derived by the degree of coincidence derivation unit 23.
  • the second result R2 is displayed, and the display mode of the displayed second result R2 is changed according to the degree of coincidence C0.
  • the first result R1 may be displayed, and the display mode of the displayed first result R1 may be changed according to the degree of coincidence C0.
  • FIG. 6 is a diagram showing a display screen of the first result and the second result according to the degree of coincidence C0.
  • the second result R2 has a larger density of the flow velocity vector as the degree of coincidence C0 with the first result R1 is larger.
  • the degree of coincidence C0 between the first result R1 and the second result R2 is larger toward the right side, and the degree of coincidence C0 is smaller toward the left side.
  • the flow velocity vector of the second result R2 is displayed according to the degree of coincidence C0. It will be displayed in the form.
  • the interval between the flow velocity vectors is increased for the sake of explanation, but in reality, the first result R1 and the second result R2 are obtained in each voxel position or in an area including a plurality of voxels.
  • the flow velocity vector is displayed every time.
  • the density of the flow velocity vector is changed according to the degree of coincidence C0, the color may be changed, the transparency may be changed, and the type of line of the flow velocity vector (broken line and The solid line, etc.) may be changed. Further, the display mode may be changed by combining these.
  • FIG. 8 is a flowchart showing the processing performed in this embodiment.
  • the image acquisition unit 20 acquires the first and second three-dimensional images G1 and G2 from the image storage server 3 (image acquisition; step ST1).
  • the first analysis unit 21 analyzes the first three-dimensional image G1 and derives the first result R1 regarding the blood flow at each position in the blood vessel (step ST2).
  • the second analysis unit 22 simulates the blood flow at each position in the blood vessel and derives the second result R2 regarding the blood flow (step ST3).
  • the process of step ST3 may be performed first, or the process of step ST2 and the process of step ST3 may be performed in parallel.
  • the coincidence degree deriving unit 23 derives a coincidence degree C0 at a position where the first result R1 and the second result R2 correspond to each other, based on either the first result or the second result. (Step ST4). Then, the display control unit 24 displays at least one of the first result R1 and the second result R2 on the display unit 14 according to the degree of coincidence C0 (result display; step ST5), and ends the process.
  • C0 is derived and at least one of the first result R1 and the second result R2 is displayed according to the degree of coincidence C0. Therefore, the user sees at least one of the first result R1 and the second result R2 that are displayed, and how much the first result R1 and the second result R2 are at each position in the blood vessel. Can recognize if they match. Therefore, according to the present embodiment, the difference between the first result R1 and the second result R2, that is, the result derived by analyzing the first three-dimensional image G1 image and the result derived by the simulation. Can be easily recognized.
  • the display screen 30 of the second result R2 whose display mode is changed according to the degree of coincidence C0 is displayed on the display unit 14 as shown in FIG. 6, but the present invention is not limited to this. Not something.
  • the display control unit 24 causes the display unit 14 to display a display screen 32 including a bar 40 for switching which of the first result R1 and the second result R2 is displayed. May be.
  • the bar 40 is switched so as to display the second result R2 derived by CFD.
  • the bar 40 is switched to display the first result R1 which is the 4D flow
  • the first result R1 is displayed and the degree of coincidence with the second result R2 is displayed as shown in the display screen 33 of FIG.
  • the larger C0 is, the darker the density of the flow velocity vector is.
  • the display control unit 24 may display one of the first result R1 and the second result R2, and further display the other result in a display mode according to the degree of coincidence C0.
  • the second result R2 may be displayed, and the first result R1 may be further displayed in a display mode according to the degree of coincidence C0.
  • the first result R1 may be displayed, and the second result R2 may be displayed in a display mode according to the degree of coincidence C0.
  • the flow velocity vector, which is the second result R2 is displayed in a display mode according to the degree of coincidence C0, as in the case of FIG.
  • the flow velocity vector that is R1 is displayed in a display mode according to the degree of coincidence C0.
  • the flow velocity vector of the first result R1 is highlighted by a thick broken line as the degree of coincidence C0 is smaller. Therefore, on the display screen 34, the first result R1 is displayed together with the second result R2 so that it can be recognized that the coincidence C0 gradually decreases.
  • the thickness of the broken line is changed according to the coincidence C0, but the color may be changed or the transparency may be changed. Good. Further, the display mode may be changed by combining these.
  • a bar 45 for selecting which of the first result R1 and the second result R2 is to be displayed is displayed at a position where the degree of coincidence C0 is small.
  • the threshold value Th1 may be changed to an arbitrary value by inputting from the input unit 15.
  • the flow velocity vector at each position in the blood vessel is derived as the first result R1 and the second result R2, but the present invention is not limited to this.
  • the flow velocity vector for example, fluid pressure, wall shear stress (WSS (Wall Shear Stress)), vorticity, helicity and the like may be used as the first result R1 and the second result R2.
  • the blood vessel is used as the structure through which the fluid flows, but the structure is not limited to this.
  • the structures inside which the cerebrospinal fluid flows are the ventricle in the skull, especially the subarachnoid space, and the spinal canal inside the spinal subarachnoid space. It may be used as a structure through which a fluid flows. Alternatively, a lymph vessel in which lymph flows may be used.
  • the image of the human body is targeted, but the present invention is not limited to this.
  • the present disclosure can be applied when analyzing the flow of a fluid flowing in a pipe.
  • a processing unit that executes various processes such as the image acquisition unit 20, the first analysis unit 21, the second analysis unit 22, the coincidence degree derivation unit 23, and the display control unit 24.
  • the following various processors can be used.
  • the CPU which is a general-purpose processor that executes software (programs) and functions as various processing units
  • the above-mentioned various processors include circuits after manufacturing FPGA (Field Programmable Gate Array) etc.
  • Programmable Logic Device which is a processor whose configuration can be changed, and dedicated electrical equipment, which is a processor that has a circuit configuration specifically designed to execute specific processing such as ASIC (Application Specific Integrated Circuit) Circuits etc. are included.
  • One processing unit may be configured by one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs or a combination of a CPU and an FPGA). ). Further, a plurality of processing units may be configured by one processor.
  • one processor is configured by a combination of one or more CPUs and software, as represented by computers such as clients and servers. There is a form in which this processor functions as a plurality of processing units.
  • SoC system-on-chip
  • a processor that realizes the functions of the entire system including a plurality of processing units by one IC (Integrated Circuit) chip is used. is there.
  • the various processing units are configured using one or more of the above various processors as a hardware structure.
  • circuitry in which circuit elements such as semiconductor elements are combined can be used.

Abstract

According to the present invention, a first analysis unit analyzes a first three-dimensional image and derives a first result regarding a blood flow at each position in a blood vessel. A second analysis unit simulates a blood flow at each position in the blood vessel and derives a second result regarding the blood flow. A coincidence degree derivation unit derives a coincidence degree at a position corresponding to the first result and the second result on the basis of one of the first result and the second result. A display control unit displays at least one of the first result and the second result on a display unit according to the coincidence degree.

Description

流体解析装置、方法およびプログラムFluid analysis device, method and program
 本開示は、流体の流れを解析して表示する流体解析装置、方法およびプログラムに関する。 The present disclosure relates to a fluid analysis device, method, and program for analyzing and displaying a fluid flow.
 近年、心臓および脳等を撮影した医用画像を用いて、血管内の血流を解析することが行われている。このような医用画像を用いた血流解析方法としては、例えば、実際の血流を4次元的に測定する4Dフローの手法が用いられている。4Dフローは、例えば3次元シネ位相コントラスト磁気共鳴法によって撮影された3次元のMRI(Magnetic Resonance Imaging)画像を用いて、ボクセル毎、ピクセル毎または領域毎に流速ベクトルを導出し、これを時間の流れと合わせて動的に表示する手法である。また、数値流体力学を用いた血流解析(CFD:Computational Fluid Dynamics)により、血液の流れをシミュレーションにより把握する手法も用いられている。 Recently, blood flow in blood vessels has been analyzed using medical images of the heart and brain. As a blood flow analysis method using such a medical image, for example, a 4D flow method for measuring an actual blood flow four-dimensionally is used. The 4D flow uses, for example, a three-dimensional MRI (Magnetic Resonance Imaging) image captured by a three-dimensional cine phase contrast magnetic resonance method to derive a flow velocity vector for each voxel, each pixel, or each region, It is a method of displaying dynamically along with the flow. In addition, a method of simulating the flow of blood by blood flow analysis (CFD: Computational Fluid Dynamics) using computational fluid dynamics is also used.
 ところで、4Dフローは実際の血流が表現されたMRI画像に基づいて導出されるが、空間分解能および時間分解能に制約がある。また、乱流等が起こっている部分は血流が過小評価されるため、その部分においてはMRI画像に速度情報が現れてこない場合がある。一方、CFDは空間分解能および時間分解能を任意に設定可能であるが、あくまでもシミュレーションであるため、その結果が妥当であるかを十分に見極める必要がある。 By the way, the 4D flow is derived based on the MRI image that represents the actual blood flow, but there are restrictions on the spatial resolution and temporal resolution. Further, since blood flow is underestimated in a portion where turbulence or the like occurs, velocity information may not appear in the MRI image in that portion. On the other hand, the CFD can arbitrarily set the spatial resolution and the temporal resolution, but since it is a simulation to the last, it is necessary to sufficiently judge whether the result is appropriate.
 このため、4Dフローにより導出された結果である流速ベクトルと、CFDにより導出された結果である流速ベクトルとを組み合わせて、血流を分析する手法が提案されている(特開2016-135265号公報参照)。また、4Dフローにより導出された結果と、CFDにより導出された結果とを表示して、ユーザに確認させるための手法も提案されている(van Ooij P, et al., "3D cine phase-contrast MRI at 3T in intracranial aneurysms compared with patient-specific computational fluid dynamics", AJNR Am J Neuroradiol. 2013 Sep;34(9):1785-91)。特開2016-135265号公報およびOoijPらの文献に記載された手法によれば、4Dフローにより導出された結果と、CFDにより取得された結果との双方を用いて、両者の長所を生かしつつ、診断および治療を行うことが可能となる。 Therefore, there has been proposed a method of analyzing blood flow by combining the flow velocity vector that is the result derived by the 4D flow and the flow velocity vector that is the result derived by the CFD (JP-A-2016-135265). reference). In addition, a method for displaying the result derived by the 4D flow and the result derived by the CFD to let the user confirm is also proposed (van Ooij P, et al., "3D cine phase-contrast MRIat3T intra intracranialaneurysms compared with patient-specific computational fluid dynamics ", AJNR AmJJ Neuroradiol. 2013 Sep; 34 (9): 1785-91). According to the method described in Japanese Patent Laid-Open No. 2016-135265 and OoijP et al., While utilizing the advantages of both by using both the result derived by the 4D flow and the result obtained by CFD, Diagnosis and treatment can be performed.
 しかしながら、OoijPらの文献に記載された手法は、4Dフローのように画像を解析することにより導出された結果と、CFDのようにシミュレーションにより導出された結果とが別々に表示される。このため、画像を解析することにより導出された結果とシミュレーションにより導出された結果とを同時に確認することができず、両者の相違が分かりにくい。 However, in the method described in the document of OoijP et al., The result derived by analyzing the image like 4D flow and the result derived by simulation like CFD are displayed separately. Therefore, the result derived by analyzing the image and the result derived by the simulation cannot be confirmed at the same time, and it is difficult to understand the difference between the two.
 本開示は上記事情に鑑みなされたものであり、画像を解析することにより導出された結果とシミュレーションにより導出された結果との相違を容易に認識できるようにすることを目的とする。 The present disclosure has been made in view of the above circumstances, and an object thereof is to make it possible to easily recognize a difference between a result derived by analyzing an image and a result derived by simulation.
 本開示による流体解析装置は、内部に流体が流れる構造物を含む被写体を撮影することにより取得した画像を解析して、構造物内の各位置における流体の流れに関する第1の結果を導出する第1解析部と、
 構造物内の各位置における流体の流れをシミュレーションして、流体の流れに関する第2の結果を導出する第2解析部と、
A fluid analysis device according to the present disclosure analyzes an image acquired by capturing an object including a structure in which a fluid flows, and derives a first result regarding a fluid flow at each position in the structure. 1 analysis unit,
A second analysis unit that simulates a fluid flow at each position in the structure and derives a second result regarding the fluid flow;
 第1の結果および第2の結果のいずれか一方を基準とした、第1の結果と第2の結果との対応する位置における一致度を導出する一致度導出部と、
 一致度に応じて第1の結果および第2の結果の少なくとも一方を表示部に表示する表示制御部とを備える。
A coincidence degree deriving unit that derives a coincidence degree at a position where the first result and the second result correspond to each other, based on either one of the first result and the second result,
A display control unit that displays at least one of the first result and the second result on the display unit according to the degree of coincidence.
 「各位置」とは画像のピクセル位置およびボクセル位置のみならず、複数ピクセル(ボクセル)からなる領域の位置をも含む。 ”The“ positions ”include not only the pixel position and voxel position of the image, but also the position of the area consisting of multiple pixels (voxels).
 「流体の流れに関する結果」としては、流速ベクトル、流体の圧力、壁面せん断応力(WSS(Wall Shear Stress))、渦度およびヘリシティ等が挙げられる。 ▽ "Results about fluid flow" include flow velocity vector, fluid pressure, wall shear stress (WSS (Wall Shear Stress)), vorticity and helicity.
 なお、本開示による流体解析装置においては、表示制御部は、第1の結果および第2の結果のいずれか一方を表示し、一致度に応じて、表示された第1の結果および第2の結果のいずれか一方の表示態様を変更するものであってもよい。 In the fluid analysis device according to the present disclosure, the display control unit displays either the first result or the second result, and the displayed first result and the second result are displayed according to the degree of coincidence. The display mode of any one of the results may be changed.
 また、本開示による流体解析装置においては、表示制御部は、第1の結果および第2の結果のいずれか一方を表示し、一致度に応じた表示態様により、他方の結果をさらに表示するものであってもよい。 Further, in the fluid analysis device according to the present disclosure, the display control unit displays one of the first result and the second result, and further displays the other result in a display mode according to the degree of coincidence. May be
 また、本開示による流体解析装置においては、表示制御部は、一致度が小さいほど他方の結果を強調表示するものであってもよい。 Further, in the fluid analysis device according to the present disclosure, the display control unit may emphasize the other result as the degree of coincidence is smaller.
 また、本開示による流体解析装置においては、表示制御部は、一致度が予め定められたしきい値以上となる位置において、第1の結果および第2の結果のいずれか一方を表示し、一致度がしきい値未満となる位置において、一致度に応じた表示態様により、他方の結果をさらに表示するものであってもよい。 Further, in the fluid analysis device according to the present disclosure, the display control unit displays either the first result or the second result at a position where the degree of coincidence is equal to or higher than a predetermined threshold value, and the coincidence is displayed. At the position where the degree is less than the threshold value, the other result may be further displayed in a display mode according to the degree of coincidence.
 また、本開示による流体解析装置においては、画像は、3次元シネ位相コントラスト磁気共鳴法によって被写体を撮影することにより取得された3次元画像であり、
 第1解析部は、3次元画像を解析することにより取得される流体の流速ベクトルを、第1の結果として導出するものであってもよい。
Further, in the fluid analysis device according to the present disclosure, the image is a three-dimensional image acquired by photographing a subject by the three-dimensional cine phase contrast magnetic resonance method,
The first analysis unit may derive a fluid velocity vector acquired by analyzing the three-dimensional image as a first result.
 また、本開示による流体解析装置においては、第2解析部は、数値流体力学を用いた解析により流体の流れをシミュレーションすることにより取得される流体の流速ベクトルを、第2の結果として導出するものであってもよい。 Further, in the fluid analysis device according to the present disclosure, the second analysis unit derives, as a second result, a fluid flow velocity vector acquired by simulating a fluid flow by an analysis using computational fluid dynamics. May be
 また、本開示による流体解析装置においては、構造物が血管であり、流体が血液であってもよい。 In the fluid analysis device according to the present disclosure, the structure may be a blood vessel and the fluid may be blood.
 また、本開示による流体解析装置においては、表示制御部は、表示部に構造物の形態画像を表示し、形態画像上において、一致度に応じて第1の結果および第2の結果の少なくとも一方を表示するものであってもよい。 Further, in the fluid analysis device according to the present disclosure, the display control unit displays the morphological image of the structure on the display unit, and at least one of the first result and the second result is displayed on the morphological image according to the degree of coincidence. May be displayed.
 本開示による流体解析方法は、内部に流体が流れる構造物を含む被写体を撮影することにより取得した画像を解析して、構造物内の各位置における流体の流れに関する第1の結果を導出し、
 構造物内の各位置における流体の流れをシミュレーションして、流体の流れに関する第2の結果を導出し、
 第1の結果および第2の結果のいずれか一方を基準とした、第1の結果と第2の結果との対応する位置における一致度を導出し、
 一致度に応じて第1の結果および第2の結果の少なくとも一方を表示部に表示する。
A fluid analysis method according to an embodiment of the present disclosure analyzes an image acquired by capturing an object including a structure in which a fluid flows, and derives a first result regarding a fluid flow at each position in the structure,
Simulating the fluid flow at each location in the structure to derive a second result for the fluid flow,
Deriving the degree of coincidence at the corresponding position between the first result and the second result, based on either one of the first result and the second result,
At least one of the first result and the second result is displayed on the display unit according to the degree of coincidence.
 なお、本開示による流体解析方法をコンピュータに実行させるためのプログラムとして提供してもよい。 Note that the fluid analysis method according to the present disclosure may be provided as a program for causing a computer to execute the method.
 本開示による他の流体解析装置は、コンピュータに実行させるための命令を記憶するメモリと、
 記憶された命令を実行するよう構成されたプロセッサとを備え、プロセッサは、
 内部に流体が流れる構造物を含む被写体を撮影することにより取得した画像を解析して、構造物内の各位置における流体の流れに関する第1の結果を導出し、
 構造物内の各位置における流体の流れをシミュレーションして、流体の流れに関する第2の結果を導出し、
 第1の結果および第2の結果のいずれか一方を基準とした、第1の結果と第2の結果との対応する位置における一致度を導出し、
 一致度に応じて第1の結果および第2の結果の少なくとも一方を表示部に表示する処理を実行する。
Another fluid analysis device according to the present disclosure is a memory that stores instructions to be executed by a computer,
A processor configured to execute the stored instructions, the processor
An image obtained by capturing an object including a structure in which a fluid flows inside is analyzed to derive a first result regarding a fluid flow at each position in the structure,
Simulating the fluid flow at each location in the structure to derive a second result for the fluid flow,
Deriving the degree of coincidence at the corresponding position between the first result and the second result, based on either one of the first result and the second result,
A process of displaying at least one of the first result and the second result on the display unit is executed according to the degree of coincidence.
 本開示によれば、画像を解析することにより導出された結果とシミュレーションにより導出された結果との相違を容易に認識することができる。 According to the present disclosure, it is possible to easily recognize the difference between the result derived by analyzing the image and the result derived by the simulation.
本開示の実施形態による流体解析装置を適用した、診断支援システムの概要を示すハードウェア構成図A hardware configuration diagram showing an outline of a diagnosis support system to which a fluid analysis device according to an embodiment of the present disclosure is applied 本開示の実施形態による流体解析装置の概略構成を示す図The figure which shows the schematic structure of the fluid analysis apparatus by embodiment of this indication. 3次元シネ位相コントラスト磁気共鳴法によって撮影された第1の3次元画像を示す図The figure which shows the 1st 3-dimensional image image | photographed by 3-dimensional cine phase contrast magnetic resonance method. 同一の血管領域における第1の結果および第2の結果を示す図The figure which shows the 1st result and the 2nd result in the same blood-vessel area | region. 補間演算により第2の結果と空間分解能を一致させた第1の結果を示す図The figure which shows the 1st result which made the 2nd result and spatial resolution correspond by interpolation calculation. 一致度に応じた第1の結果および第2の結果の少なくとも一方の表示画面を示す図The figure which shows the display screen of at least one of the 1st result and the 2nd result according to the degree of coincidence. 血管の形態画像において、第1の結果および第2の結果の少なくとも一方が表示された状態を示す図A figure showing a state in which at least one of a first result and a second result is displayed in a morphological image of blood vessels. 本実施形態において行われる処理を示すフローチャートFlow chart showing processing performed in the present embodiment 一致度に応じた第1の結果および第2の結果の少なくとも一方の表示画面の他の例を示す図The figure which shows the other example of the display screen of at least 1 side of a 1st result and a 2nd result according to a matching degree. 一致度に応じた第1の結果および第2の結果の少なくとも一方の表示画面の他の例を示す図The figure which shows the other example of the display screen of at least 1 side of a 1st result and a 2nd result according to a matching degree. 一致度に応じた第1の結果および第2の結果の少なくとも一方の表示画面の他の例を示す図The figure which shows the other example of the display screen of at least 1 side of a 1st result and a 2nd result according to a matching degree. 一致度に応じた第1の結果および第2の結果の少なくとも一方の表示画面の他の例を示す図The figure which shows the other example of the display screen of at least 1 side of a 1st result and a 2nd result according to a matching degree.
 以下、図面を参照して本開示の実施形態について説明する。図1は、本開示の実施形態による流体解析装置を適用した、診断支援システムの概要を示すハードウェア構成図である。図1に示すように、診断支援システムでは、本実施形態による流体解析装置1、3次元画像撮影装置2、および画像保管サーバ3が、ネットワーク4を経由して通信可能な状態で接続されている。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. FIG. 1 is a hardware configuration diagram showing an outline of a diagnosis support system to which a fluid analysis device according to an embodiment of the present disclosure is applied. As shown in FIG. 1, in the diagnosis support system, the fluid analysis device 1, the three-dimensional image capturing device 2, and the image storage server 3 according to the present embodiment are connected in a communicable state via a network 4. .
 3次元画像撮影装置2は、被検体の診断対象となる部位を撮影することにより、その部位を表す3次元画像を生成する装置であり、具体的には、CT装置、MRI装置、およびPET(Positron Emission Tomography)装置等である。3次元画像撮影装置2により生成された3次元画像は画像保管サーバ3に送信され、保存される。なお、本実施形態では、患者の心臓(本開示の被写体に相当する)の3次元画像を取得する場合について説明するが、これに限らず、肺、肝臓および頭部等その他の臓器でもよい。とくに、本実施形態においては、複数種類の3次元画像を取得するものとする。具体的には、MRI装置において3次元シネ位相コントラスト磁気共鳴法によって被写体を撮影したMRI画像を第1の3次元画像G1として取得し、CT装置において造影剤を用いて被写体を撮影した造影CT画像を第2の3次元画像G2として取得するものとする。しかしながら、取得される3次元画像の種類はこれらに限定されるものではない。また、心臓の血管が本開示の構造物に、血液が本開示の流体にそれぞれ対応する。 The three-dimensional image capturing device 2 is a device that captures a region of a subject to be diagnosed to generate a three-dimensional image representing the region, and specifically, a CT device, an MRI device, and a PET ( Positron Emission Tomography) device. The three-dimensional image generated by the three-dimensional image capturing device 2 is transmitted to and stored in the image storage server 3. In the present embodiment, a case of acquiring a three-dimensional image of the heart of a patient (corresponding to the subject of the present disclosure) is described, but the present invention is not limited to this, and other organs such as the lung, liver, and head may be used. Particularly, in this embodiment, it is assumed that a plurality of types of three-dimensional images are acquired. Specifically, an MRI image obtained by photographing a subject by a three-dimensional cine phase contrast magnetic resonance method in an MRI device is acquired as a first three-dimensional image G1, and a contrast CT image obtained by photographing a subject using a contrast agent in a CT device. Is acquired as the second three-dimensional image G2. However, the types of the acquired three-dimensional image are not limited to these. Further, the blood vessel of the heart corresponds to the structure of the present disclosure, and the blood corresponds to the fluid of the present disclosure.
 画像保管サーバ3は、各種データを保存して管理するコンピュータであり、大容量外部記憶装置およびデータベース管理用ソフトウェアを備えている。画像保管サーバ3は、有線あるいは無線のネットワーク4を介して他の装置と通信を行い、画像データ等を送受信する。具体的には3次元画像撮影装置2で生成された3次元画像の画像データを含む各種データをネットワーク経由で取得し、大容量外部記憶装置等の記録媒体に保存して管理する。なお、画像データの格納形式およびネットワーク4経由での各装置間の通信は、DICOM(Digital Imaging and Communication in Medicine)等のプロトコルに基づいている。 The image storage server 3 is a computer that stores and manages various data, and includes a large-capacity external storage device and database management software. The image storage server 3 communicates with other devices via a wired or wireless network 4 to transmit and receive image data and the like. Specifically, various data including the image data of the three-dimensional image generated by the three-dimensional image capturing device 2 is acquired via a network, and stored and managed in a recording medium such as a large-capacity external storage device. The storage format of the image data and the communication between the devices via the network 4 are based on a protocol such as DICOM (Digital Imaging and Communication in Medicine).
 流体解析装置1は、1台のコンピュータに、本開示の流体解析プログラムをインストールしたものである。コンピュータは、診断を行う医師が直接操作するワークステーションまたはパーソナルコンピュータでもよいし、それらとネットワークを介して接続されたサーバコンピュータでもよい。流体解析プログラムは、DVD(Digital Versatile Disc)あるいはCD-ROM(Compact Disc Read Only Memory)等の記録媒体に記録されて配布され、その記録媒体からコンピュータにインストールされる。または、ネットワークに接続されたサーバコンピュータの記憶装置、もしくはネットワークストレージに、外部からアクセス可能な状態で記憶され、要求に応じて医師が使用するコンピュータにダウンロードされ、インストールされる。 The fluid analysis device 1 is one in which the fluid analysis program of the present disclosure is installed. The computer may be a workstation or a personal computer directly operated by a doctor who makes a diagnosis, or may be a server computer connected to them through a network. The fluid analysis program is recorded and distributed in a recording medium such as a DVD (Digital Versatile Disc) or a CD-ROM (Compact Disc Read Only Memory), and is installed in the computer from the recording medium. Alternatively, it is stored in a storage device of a server computer connected to a network or a network storage so as to be accessible from the outside, and is downloaded and installed on a computer used by a doctor upon request.
 図2は、コンピュータに流体解析プログラムをインストールすることにより実現される流体解析装置の概略構成を示す図である。図2に示すように、流体解析装置1は、標準的なワークステーションの構成として、CPU(Central Processing Unit)11、メモリ12およびストレージ13を備えている。また、流体解析装置1には、液晶ディスプレイ等の表示部14、並びにキーボードおよびマウス等の入力部15が接続されている。 FIG. 2 is a diagram showing a schematic configuration of a fluid analysis device realized by installing a fluid analysis program in a computer. As shown in FIG. 2, the fluid analysis device 1 includes a CPU (Central Processing Unit) 11, a memory 12 and a storage 13 as a standard workstation configuration. A display unit 14 such as a liquid crystal display and an input unit 15 such as a keyboard and a mouse are connected to the fluid analysis device 1.
 ストレージ13は、ハードディスクドライブ等からなり、ネットワーク4を経由して画像保管サーバ3から取得した3次元画像、並びに処理に必要な情報を含む各種情報が記憶されている。 The storage 13 includes a hard disk drive and the like, and stores various information including three-dimensional images acquired from the image storage server 3 via the network 4 and information necessary for processing.
 また、メモリ12には、流体解析プログラムが記憶されている。流体解析プログラムは、CPU11に実行させる処理として、被写体の第1および第2の3次元画像G1,G2を取得する画像取得処理、第1の3次元画像G1を解析して、血管内の各位置における血液の流れに関する第1の結果を導出する第1解析処理、第2の3次元画像G2を用いて血管内の各位置における血液の流れをシミュレーションして、血液の流れに関する第2の結果を導出する第2解析処理、第1の結果および第2の結果のいずれか一方を基準とした、第1の結果と第2の結果との対応する位置における一致度を導出する一致度導出処理、並びに一致度に応じて第1の結果および第2の結果の少なくとも一方を表示部14に表示する表示制御処理を規定する。 The memory 12 also stores a fluid analysis program. The fluid analysis program is an image acquisition process for acquiring the first and second three-dimensional images G1 and G2 of the subject as a process to be executed by the CPU 11, and analyzes the first three-dimensional image G1 to determine each position in the blood vessel. In the first analysis process for deriving the first result regarding the blood flow in, the second blood flow is simulated by simulating the blood flow at each position in the blood vessel using the second three-dimensional image G2. A second analysis process for deriving, a matching degree deriving process for deriving a matching degree at a corresponding position between the first result and the second result, based on either one of the first result and the second result, Also, a display control process for displaying at least one of the first result and the second result on the display unit 14 according to the degree of coincidence is defined.
 そして、CPU11がプログラムに従いこれらの処理を実行することで、コンピュータは、画像取得部20、第1解析部21、第2解析部22、一致度導出部23および表示制御部24として機能する。 The computer functions as the image acquisition unit 20, the first analysis unit 21, the second analysis unit 22, the coincidence derivation unit 23, and the display control unit 24 by the CPU 11 executing these processes according to the program.
 画像取得部20は、第1および第2の3次元画像G1,G2を画像保管サーバ3から取得する。なお、第1および第2の3次元画像G1,G2が既にストレージ13に記憶されている場合には、画像取得部20は、ストレージ13から第1および第2の3次元画像G1,G2を取得するようにしてもよい。 The image acquisition unit 20 acquires the first and second three-dimensional images G1 and G2 from the image storage server 3. When the first and second three-dimensional images G1 and G2 are already stored in the storage 13, the image acquisition unit 20 acquires the first and second three-dimensional images G1 and G2 from the storage 13. You may do it.
 第1解析部21は、第1の3次元画像G1を解析して、血管内の各位置における血液の流れに関する第1の結果R1を導出する。本実施形態においては、第1解析部21は、まず、第1の3次元画像G1から血管領域を抽出する。具体的には、第1解析部21は、第1の3次元画像G1に対して多重解像度変換を行い、各解像度の画像に対してヘッセ行列の固有値解析を行い、各解像度の画像における解析結果を統合することによって、第1の3次元画像G1に含まれる心臓領域中の様々なサイズの線構造(血管)の集合体として、冠動脈の領域を血管領域として抽出する(例えばY Sato, et al.、「Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images.」、Medical Image Analysis、1998年6月、Vol.2、No.2、p.p.143-168等参照)。また、さらに最小全域木アルゴリズム等を用いて、抽出された各線構造の中心点を連結することにより、冠動脈を表す木構造のデータを生成し、抽出された冠動脈の中心点を結ぶ芯線上の各点(木構造データの各ノード)において、芯線に直交する断面を求め、各断面において、グラフカット法等の公知のセグメンテーション手法を用いて冠動脈の輪郭を認識し、その輪郭を表す情報を木構造データの各ノードに関連づけることによって、冠動脈の領域を血管領域として抽出するようにしてもよい。 The first analysis unit 21 analyzes the first three-dimensional image G1 and derives the first result R1 regarding the blood flow at each position in the blood vessel. In the present embodiment, the first analysis unit 21 first extracts the blood vessel region from the first three-dimensional image G1. Specifically, the first analysis unit 21 performs the multi-resolution conversion on the first three-dimensional image G1, performs the eigenvalue analysis of the Hessian matrix on the image of each resolution, and the analysis result in the image of each resolution. Are integrated to extract the coronary artery region as a blood vessel region as an aggregate of line structures (blood vessels) of various sizes in the heart region included in the first three-dimensional image G1 (for example, Y Sato, et al ., "Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images.”, Medical Image Analysis, June 1998, Vol.2, No.2, pp143-168, etc.). Further, by using a minimum spanning tree algorithm or the like, by connecting the center points of the extracted line structures, data of a tree structure representing the coronary arteries is generated, and each of the core lines connecting the center points of the extracted coronary arteries is generated. At each point (each node of the tree structure data), a cross section orthogonal to the core line is obtained, and at each cross section, the contour of the coronary artery is recognized by using a well-known segmentation method such as the graph cut method, and the information indicating the contour is given as the tree structure. The area of the coronary artery may be extracted as the blood vessel area by associating it with each node of the data.
 なお、血管領域の抽出方法としては上記の方法に限らず、領域拡張法等のその他の公知の手法を用いるようにしてもよい。 Note that the method of extracting the blood vessel region is not limited to the above method, and other known methods such as the region expansion method may be used.
 そして、第1解析部21は、第1の3次元画像G1から抽出された血管領域内の速度情報を用いて、血管内の各ボクセル位置における流速ベクトルを第1の結果R1として導出する。図3は、3次元シネ位相コントラスト磁気共鳴法によって撮影された第1の3次元画像G1を示す図である。図3に示すように、3次元シネ位相コントラスト磁気共鳴法によって撮影された第1の3次元画像G1の画像データは、マグニチュードデータM、X方向の位相データPhx、Y軸方向の位相データPhy、およびZ軸方向の位相データPhzを、時間tに沿って所定の周期(例えば心周期)で得た3次元データを含む。X方向の位相データPhx、Y軸方向の位相データPhy、およびZ軸方向の位相データPhzは、マグニチュードデータMをX軸方向、Y軸方向、およびZ軸方向にエンコード(VENC:velocity encoding)することにより生成される。X方向の位相データPhx、Y軸方向の位相データPhy、およびZ軸方向の位相データPhzは各軸方向の流速を表すデータである。第1解析部21は、3つの位相データから第1の3次元画像G1の各ボクセル位置の3次元流速ベクトル(以下、流速ベクトルとする)を第1の結果R1として導出する。なお、流速ベクトルは、第1の3次元画像G1の各ボクセル位置において導出しているが、これに限定されるものではなく、予め定められたボクセル間隔(例えば5ボクセル、10ボクセル等)にて導出してもよい。また、複数ボクセルからなる領域において1つの流速ベクトルを導出するようにしてもよい。 Then, the first analysis unit 21 derives the velocity vector at each voxel position in the blood vessel as the first result R1 using the velocity information in the blood vessel region extracted from the first three-dimensional image G1. FIG. 3 is a diagram showing a first three-dimensional image G1 captured by the three-dimensional cine phase contrast magnetic resonance method. As shown in FIG. 3, the image data of the first three-dimensional image G1 captured by the three-dimensional cine phase contrast magnetic resonance method includes magnitude data M, phase data Phx in the X direction, phase data Phy in the Y axis direction, And phase data Phz in the Z-axis direction include three-dimensional data obtained in a predetermined cycle (for example, cardiac cycle) along the time t. The phase data Phx in the X direction, the phase data Phy in the Y axis direction, and the phase data Phz in the Z axis direction encode magnitude data M in the X axis direction, the Y axis direction, and the Z axis direction (VENC: velocity encoding). It is generated by The phase data Phx in the X direction, the phase data Phy in the Y axis direction, and the phase data Phz in the Z axis direction are data representing the flow velocity in each axis direction. The first analysis unit 21 derives a three-dimensional flow velocity vector (hereinafter referred to as a flow velocity vector) at each voxel position of the first three-dimensional image G1 as the first result R1 from the three phase data. Although the flow velocity vector is derived at each voxel position of the first three-dimensional image G1, the flow velocity vector is not limited to this, and at a predetermined voxel interval (for example, 5 voxels, 10 voxels, etc.). You may derive it. Further, one flow velocity vector may be derived in a region composed of a plurality of voxels.
 なお、画像取得部20において、ドップラー計測によって時系列に撮影された3次元の超音波画像を取得し、その超音波画像に基づいて取得された血管領域内の速度情報を用いて流速ベクトルを取得して、第1の結果R1を導出するようにしてもよい。 The image acquisition unit 20 acquires a three-dimensional ultrasonic image captured in time series by Doppler measurement, and acquires a flow velocity vector using the velocity information in the blood vessel region acquired based on the ultrasonic image. Then, the first result R1 may be derived.
 第2解析部22は、第2の3次元画像G2を用いて、血管内の各位置における血液の流れをシミュレーションして、血液の流れに関する第2の結果R2を導出する。このために、第2解析部22は、まず第2の3次元画像G2から血管領域を抽出する。血管領域の抽出は、上述した第1解析部21と同様に行えばよい。そして、第2解析部22は、抽出された血管領域を用いてCFD(Computational Fluid Dynamics)による血流解析を行うことにより、第2の3次元画像G2の各ボクセル位置における流速ベクトルを第2の結果R2として取得する。なお、第2の結果R2についても、第2の3次元画像G2における予め定められたボクセル間隔にて導出してもよく、複数ボクセルからなる領域において1つの流速ベクトルを導出するようにしてもよい。 The second analysis unit 22 uses the second three-dimensional image G2 to simulate the blood flow at each position in the blood vessel, and derives the second result R2 regarding the blood flow. For this purpose, the second analysis unit 22 first extracts the blood vessel region from the second three-dimensional image G2. The extraction of the blood vessel region may be performed in the same manner as the above-described first analysis unit 21. Then, the second analysis unit 22 performs a blood flow analysis by CFD (Computational Fluid Dynamics) using the extracted blood vessel region to obtain the second velocity vector at each voxel position of the second three-dimensional image G2. The result R2 is acquired. The second result R2 may also be derived at a predetermined voxel interval in the second three-dimensional image G2, or one flow velocity vector may be derived in a region including a plurality of voxels. .
 なお、第1の3次元画像G1は、MRI装置における制約により、第2の3次元画像G2よりも空間分解能および時間分解能が低い。このため、空間的に見ると、第1の結果R1は第2の結果R2よりも大きい間隔にて導出される。図4は同一の血管領域における第1の結果および第2の結果を示す図である。図4に示すように、第1の結果R1の流速ベクトルは、第2の結果R2の流速ベクトルと比較すると、その間隔は第1の結果R1の方が空間的に広いものとなる。 Note that the first three-dimensional image G1 has lower spatial resolution and temporal resolution than the second three-dimensional image G2 due to restrictions in the MRI apparatus. Therefore, when viewed spatially, the first result R1 is derived at a larger interval than the second result R2. FIG. 4 is a diagram showing a first result and a second result in the same blood vessel region. As shown in FIG. 4, when compared with the flow velocity vector of the second result R2, the flow velocity vector of the first result R1 is spatially wider in the first result R1.
 一致度導出部23は、第1の結果R1および第2の結果R2のいずれか一方を基準とした、第1の結果R1と第2の結果R2との対応するボクセル位置における一致度C0を導出する。なお、本実施形態においては、第2の結果R2を基準とした一致度C0を導出するものとするが、これに限定されるものではない。ここで、上述したように、第1の結果R1の流速ベクトルの空間分解能は、第2の結果R2の流速ベクトルの空間分解能よりも低い。このため、一致度導出部23は、第1の結果R1について第2の結果R2と同一の空間分解能となるように、第1の結果R1と第2の結果R2との空間分解能を一致させる。具体的には、第2の結果R2において流速ベクトルが導出されたすべてのボクセル位置における第1の結果R1の流速ベクトルを、第1解析部21が導出した第1の結果R1の流速ベクトルを補間することにより導出する。図5は補間演算により第2の結果R2と空間分解能を一致させた第1の結果R1を示す図である。 The coincidence degree deriving unit 23 derives the coincidence degree C0 at the voxel position corresponding to the first result R1 and the second result R2, based on either one of the first result R1 and the second result R2. To do. In the present embodiment, the degree of coincidence C0 is derived based on the second result R2, but the present invention is not limited to this. Here, as described above, the spatial resolution of the flow velocity vector of the first result R1 is lower than the spatial resolution of the flow velocity vector of the second result R2. Therefore, the coincidence degree deriving unit 23 matches the spatial resolutions of the first result R1 and the second result R2 so that the first result R1 has the same spatial resolution as the second result R2. Specifically, the flow velocity vector of the first result R1 at all voxel positions from which the flow velocity vector is derived in the second result R2 is interpolated with the flow velocity vector of the first result R1 derived by the first analysis unit 21. It derives by doing. FIG. 5 is a diagram showing the first result R1 obtained by matching the spatial resolution with the second result R2 by the interpolation calculation.
 そして、一致度導出部23は、第1の結果R1と第2の結果R2との対応するボクセル位置における流速ベクトルの内積を一致度C0として導出する。なお、一致度C0は、対応するボクセル位置における流速ベクトル同士で導出してもよいが、各ボクセル位置を基準として予め定められた範囲内の流速ベクトルの平均値を各ボクセル位置の流速ベクトルとして算出し、算出した流速ベクトルを用いて一致度C0を導出してもよい。なお、平均値は、注目するボクセル位置から離れるほど重み付けを小さくする重み付け平均値としてもよい。 Then, the coincidence degree deriving unit 23 derives the inner product of the flow velocity vectors at the corresponding voxel positions of the first result R1 and the second result R2 as the coincidence degree C0. The degree of coincidence C0 may be derived from the flow velocity vectors at the corresponding voxel positions, but the average value of the flow velocity vectors within a predetermined range based on each voxel position is calculated as the flow velocity vector at each voxel position. Then, the degree of coincidence C0 may be derived using the calculated flow velocity vector. Note that the average value may be a weighted average value in which the weighting is reduced as the distance from the voxel position of interest increases.
 表示制御部24は、一致度導出部23が導出した一致度C0に応じて、第1の結果R1および第2の結果R2の少なくとも一方を表示部14に表示する。本実施形態においては、第2の結果R2を表示するものとし、表示された第2の結果R2の表示態様を一致度C0に応じて変更する。なお、第1の結果R1を表示し、表示された第1の結果R1の表示態様を一致度C0に応じて変更してもよい。図6は一致度C0に応じた第1の結果および第2の結果の表示画面を示す図である。図6に示すように、表示画面30においては、第2の結果R2は、第1の結果R1との一致度C0が大きいほど、流速ベクトルの濃度が大きいものとなっている。表示画面30においては、右側ほど第1の結果R1と第2の結果R2との一致度C0が大きく、左に向かうほど一致度C0が小さいものとなっている。 The display control unit 24 displays at least one of the first result R1 and the second result R2 on the display unit 14 according to the degree of coincidence C0 derived by the degree of coincidence derivation unit 23. In the present embodiment, the second result R2 is displayed, and the display mode of the displayed second result R2 is changed according to the degree of coincidence C0. The first result R1 may be displayed, and the display mode of the displayed first result R1 may be changed according to the degree of coincidence C0. FIG. 6 is a diagram showing a display screen of the first result and the second result according to the degree of coincidence C0. As shown in FIG. 6, in the display screen 30, the second result R2 has a larger density of the flow velocity vector as the degree of coincidence C0 with the first result R1 is larger. In the display screen 30, the degree of coincidence C0 between the first result R1 and the second result R2 is larger toward the right side, and the degree of coincidence C0 is smaller toward the left side.
 なお、実際には、図7に示すように、表示部14に表示された血管の形態画像31を表示した表示画面30Aにおいて、第2の結果R2の流速ベクトルが、一致度C0に応じた表示態様で表示されることとなる。ここで、図7においては、説明のために流速ベクトルの間隔を大きくしているが、実際には第1の結果R1および第2の結果R2を取得したボクセル位置毎または複数のボクセルからなる領域毎に、流速ベクトルが表示されることとなる。 Actually, as shown in FIG. 7, in the display screen 30A displaying the morphological image 31 of the blood vessel displayed on the display unit 14, the flow velocity vector of the second result R2 is displayed according to the degree of coincidence C0. It will be displayed in the form. Here, in FIG. 7, the interval between the flow velocity vectors is increased for the sake of explanation, but in reality, the first result R1 and the second result R2 are obtained in each voxel position or in an area including a plurality of voxels. The flow velocity vector is displayed every time.
 また、図6においては、一致度C0に応じて流速ベクトルの濃度を変えているが、色を変えるようにしてもよく、透明度を変えるようにしてもよく、流速ベクトルの線の種類(破線および実線等)を変えるようにしてもよい。また、これらを組み合わせて表示態様を変更してもよい。 Further, in FIG. 6, although the density of the flow velocity vector is changed according to the degree of coincidence C0, the color may be changed, the transparency may be changed, and the type of line of the flow velocity vector (broken line and The solid line, etc.) may be changed. Further, the display mode may be changed by combining these.
 次いで、本実施形態において行われる処理について説明する。図8は本実施形態において行われる処理を示すフローチャートである。まず、画像取得部20が第1および第2の3次元画像G1,G2を画像保管サーバ3から取得する(画像取得;ステップST1)。そして、第1解析部21が、第1の3次元画像G1を解析して、血管内の各位置における血液の流れに関する第1の結果R1を導出する(ステップST2)。また、第2解析部22が、血管内の各位置における血液の流れをシミュレーションして、血液の流れに関する第2の結果R2を導出する(ステップST3)。なお、ステップST3の処理を先に行ってもよく、ステップST2の処理とステップST3の処理とを並列に行ってもよい。 Next, the processing performed in this embodiment will be described. FIG. 8 is a flowchart showing the processing performed in this embodiment. First, the image acquisition unit 20 acquires the first and second three-dimensional images G1 and G2 from the image storage server 3 (image acquisition; step ST1). Then, the first analysis unit 21 analyzes the first three-dimensional image G1 and derives the first result R1 regarding the blood flow at each position in the blood vessel (step ST2). Further, the second analysis unit 22 simulates the blood flow at each position in the blood vessel and derives the second result R2 regarding the blood flow (step ST3). The process of step ST3 may be performed first, or the process of step ST2 and the process of step ST3 may be performed in parallel.
 次いで、一致度導出部23が、第1の結果および第2の結果のいずれか一方を基準とした、第1の結果R1と第2の結果R2との対応する位置における一致度C0を導出する(ステップST4)。そして、表示制御部24が、一致度C0に応じて第1の結果R1および第2の結果R2の少なくとも一方を表示部14に表示し(結果表示;ステップST5)、処理を終了する。 Next, the coincidence degree deriving unit 23 derives a coincidence degree C0 at a position where the first result R1 and the second result R2 correspond to each other, based on either the first result or the second result. (Step ST4). Then, the display control unit 24 displays at least one of the first result R1 and the second result R2 on the display unit 14 according to the degree of coincidence C0 (result display; step ST5), and ends the process.
 このように、本実施形態によれば、第1の結果R1および第2の結果R2のいずれか一方を基準とした、第1の結果R1と第2の結果R2との対応する位置における一致度C0を導出し、一致度C0に応じて第1の結果R1および第2の結果R2の少なくとも一方を表示するようにした。このため、ユーザは、表示された第1の結果R1および第2の結果R2の少なくとも一方を見ることにより、血管内の各位置において、第1の結果R1と第2の結果R2とがどの程度一致しているかを認識できる。したがって、本実施形態によれば、第1の結果R1と第2の結果R2との相違、すなわち、第1の3次元画像G1画像を解析することにより導出された結果とシミュレーションにより導出された結果との相違を容易に認識することができる。 As described above, according to the present embodiment, the degree of coincidence at the corresponding position between the first result R1 and the second result R2 based on either the first result R1 or the second result R2. C0 is derived and at least one of the first result R1 and the second result R2 is displayed according to the degree of coincidence C0. Therefore, the user sees at least one of the first result R1 and the second result R2 that are displayed, and how much the first result R1 and the second result R2 are at each position in the blood vessel. Can recognize if they match. Therefore, according to the present embodiment, the difference between the first result R1 and the second result R2, that is, the result derived by analyzing the first three-dimensional image G1 image and the result derived by the simulation. Can be easily recognized.
 なお、上記実施形態においては、図6に示すように一致度C0に応じて表示態様が変更された第2の結果R2の表示画面30を表示部14に表示しているが、これに限定されるものではない。例えば、図9に示すように、表示制御部24は、第1の結果R1および第2の結果R2のいずれを表示するかを切り替えるためのバー40を含む表示画面32を表示部14に表示してもよい。図9に示す表示画面32においては、CFDにより導出した第2の結果R2を表示するようにバー40が切り替えられている。バー40を4Dフローである第1の結果R1を表示するように切り替えた場合、図10の表示画面33に示すように、第1の結果R1が表示され、第2の結果R2との一致度C0が大きいほど流速ベクトルの濃度が濃いものとなる。 In the above embodiment, the display screen 30 of the second result R2 whose display mode is changed according to the degree of coincidence C0 is displayed on the display unit 14 as shown in FIG. 6, but the present invention is not limited to this. Not something. For example, as shown in FIG. 9, the display control unit 24 causes the display unit 14 to display a display screen 32 including a bar 40 for switching which of the first result R1 and the second result R2 is displayed. May be. In the display screen 32 shown in FIG. 9, the bar 40 is switched so as to display the second result R2 derived by CFD. When the bar 40 is switched to display the first result R1 which is the 4D flow, the first result R1 is displayed and the degree of coincidence with the second result R2 is displayed as shown in the display screen 33 of FIG. The larger C0 is, the darker the density of the flow velocity vector is.
 また、表示制御部24は、第1の結果R1および第2の結果R2のいずれか一方を表示し、一致度C0に応じた表示態様により、他方の結果をさらに表示するようにしてもよい。例えば、図11の表示画面34に示すように、第2の結果R2を表示し、一致度C0に応じた表示態様により第1の結果R1をさらに表示してもよい。なお、第1の結果R1を表示し、一致度C0に応じた表示態様により第2の結果R2を表示してもよい。図11に示す表示画面34おいては、図6と同様に、第2の結果R2である流速ベクトルが一致度C0に応じた表示態様により表示され、さらに、一致度C0が小さいほど、第1の結果R1である流速ベクトルが一致度C0に応じた表示態様にて表示されている。なお、図11に示す表示画面34において、第1の結果R1の流速ベクトルは、一致度C0が小さいほど太い破線により強調表示されている。したがって、表示画面34には、徐々に一致度C0が小さくなることを認識可能に、第2の結果R2と併せて第1の結果R1が表示されることとなる。 Further, the display control unit 24 may display one of the first result R1 and the second result R2, and further display the other result in a display mode according to the degree of coincidence C0. For example, as shown in the display screen 34 of FIG. 11, the second result R2 may be displayed, and the first result R1 may be further displayed in a display mode according to the degree of coincidence C0. The first result R1 may be displayed, and the second result R2 may be displayed in a display mode according to the degree of coincidence C0. On the display screen 34 shown in FIG. 11, the flow velocity vector, which is the second result R2, is displayed in a display mode according to the degree of coincidence C0, as in the case of FIG. As a result, the flow velocity vector that is R1 is displayed in a display mode according to the degree of coincidence C0. In the display screen 34 shown in FIG. 11, the flow velocity vector of the first result R1 is highlighted by a thick broken line as the degree of coincidence C0 is smaller. Therefore, on the display screen 34, the first result R1 is displayed together with the second result R2 so that it can be recognized that the coincidence C0 gradually decreases.
 なお、第1の結果R1の流速ベクトルの表示態様の変更については、一致度C0に応じて破線の太さを変えているが、色を変えるようにしてもよく、透明度を変えるようにしてもよい。また、これらを組み合わせて表示態様を変更してもよい。 Regarding the change of the display mode of the flow velocity vector of the first result R1, the thickness of the broken line is changed according to the coincidence C0, but the color may be changed or the transparency may be changed. Good. Further, the display mode may be changed by combining these.
 また、図12の表示画面35に示すように、一致度C0が小さい位置については、第1の結果R1および第2の結果R2のいずれを表示するかを選択するためのバー45を表示するようにしてもよい。図12においては、バー45において4Dフロー、すなわち第1の結果R1が選択されているため、例えば一致度C0が予め定められたしきい値Th1以下であるように、一致度C0が小さい位置については、第2の結果R2に代えて第1の結果R1の流速ベクトルが表示される。なお、図12に示す表示画面35おいては、第1の結果R1の流速ベクトルを破線の矢印により示している。なお、図12に示す表示画面35おいて、バー45をCFDの側に切り替えれば、図6と同様に第2の結果R2のみが表示される。なお、しきい値Th1は、入力部15からの入力により、任意の値に変更できるようにしてもよい。 Further, as shown in the display screen 35 of FIG. 12, a bar 45 for selecting which of the first result R1 and the second result R2 is to be displayed is displayed at a position where the degree of coincidence C0 is small. You may In FIG. 12, since the 4D flow, that is, the first result R1 is selected in the bar 45, for the position where the degree of coincidence C0 is small, for example, the degree of coincidence C0 is equal to or less than a predetermined threshold Th1. Displays the flow velocity vector of the first result R1 instead of the second result R2. In the display screen 35 shown in FIG. 12, the flow velocity vector of the first result R1 is indicated by a dashed arrow. In the display screen 35 shown in FIG. 12, if the bar 45 is switched to the CFD side, only the second result R2 is displayed as in FIG. The threshold value Th1 may be changed to an arbitrary value by inputting from the input unit 15.
 また、上記実施形態においては、血管内の各位置における流速ベクトルを第1の結果R1および第2の結果R2として導出しているが、これに限定されるものではない。流速ベクトルの他、例えば流体の圧力、壁面せん断応力(WSS(Wall Shear Stress))、渦度およびヘリシティ等を第1の結果R1および第2の結果R2として用いてもよい。 In the above embodiment, the flow velocity vector at each position in the blood vessel is derived as the first result R1 and the second result R2, but the present invention is not limited to this. In addition to the flow velocity vector, for example, fluid pressure, wall shear stress (WSS (Wall Shear Stress)), vorticity, helicity and the like may be used as the first result R1 and the second result R2.
 また、上記実施形態においては、内部に流体が流れる構造物として血管を用いているがこれに限定されるものではない。例えば、脳脊髄液の流れを可視化することを考えた場合、内部に髄液が流れる構造物として、頭蓋内での脳室、とくにくも膜下腔を、脊柱管内では脊髄くも膜下腔を、内部に流体が流れる構造物として用いてもよい。また、内部にリンパ液が流れるリンパ管を用いてもよい。 Further, in the above embodiment, the blood vessel is used as the structure through which the fluid flows, but the structure is not limited to this. For example, considering visualization of the flow of cerebrospinal fluid, the structures inside which the cerebrospinal fluid flows are the ventricle in the skull, especially the subarachnoid space, and the spinal canal inside the spinal subarachnoid space. It may be used as a structure through which a fluid flows. Alternatively, a lymph vessel in which lymph flows may be used.
 また、上記実施形態においては、人体を対象とした画像を対象としているが、これに限定されるものではない。例えば、配管内を流れる流体の流れを解析する際にも、本開示を適用できることはもちろんである。 In addition, in the above-described embodiment, the image of the human body is targeted, but the present invention is not limited to this. For example, it is needless to say that the present disclosure can be applied when analyzing the flow of a fluid flowing in a pipe.
 また、上記実施形態において、例えば、画像取得部20、第1解析部21、第2解析部22、一致度導出部23および表示制御部24といった各種の処理を実行する処理部(Processing Unit)のハードウェア的な構造としては、次に示す各種のプロセッサ(Processor)を用いることができる。上記各種のプロセッサには、上述したように、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPUに加えて、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device :PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。 Further, in the above-described embodiment, for example, a processing unit (Processing Unit) that executes various processes such as the image acquisition unit 20, the first analysis unit 21, the second analysis unit 22, the coincidence degree derivation unit 23, and the display control unit 24. As a hardware structure, the following various processors can be used. As mentioned above, in addition to the CPU, which is a general-purpose processor that executes software (programs) and functions as various processing units, the above-mentioned various processors include circuits after manufacturing FPGA (Field Programmable Gate Array) etc. Programmable Logic Device (PLD), which is a processor whose configuration can be changed, and dedicated electrical equipment, which is a processor that has a circuit configuration specifically designed to execute specific processing such as ASIC (Application Specific Integrated Circuit) Circuits etc. are included.
 1つの処理部は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせまたはCPUとFPGAとの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。 One processing unit may be configured by one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs or a combination of a CPU and an FPGA). ). Further, a plurality of processing units may be configured by one processor.
 複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントおよびサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアとの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。 As an example of configuring a plurality of processing units by one processor, firstly, one processor is configured by a combination of one or more CPUs and software, as represented by computers such as clients and servers. There is a form in which this processor functions as a plurality of processing units. Secondly, as represented by system-on-chip (SoC), etc., there is a form in which a processor that realizes the functions of the entire system including a plurality of processing units by one IC (Integrated Circuit) chip is used. is there. As described above, the various processing units are configured using one or more of the above various processors as a hardware structure.
 さらに、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子等の回路素子を組み合わせた電気回路(Circuitry)を用いることができる。 Furthermore, as the hardware structure of these various processors, more specifically, an electric circuit (Circuitry) in which circuit elements such as semiconductor elements are combined can be used.
   1  流体解析装置
   2  3次元画像撮影装置
   3  画像保管サーバ
   4  ネットワーク
   11  CPU
   12  メモリ
   13  ストレージ
   14  表示部
   15  入力部
   20  画像取得部
   21  第1解析部
   22  第2解析部
   23  一致度導出部
   24  表示制御部
   30,30A,32~35  表示画面
   31  形態画像
   40,45  バー
   M  マグニチュードデータ
   Phx  位相データ
   Phy  位相データ
   Phz  位相データ
   R1  第1の結果
   R2  第2の結果
1 Fluid Analysis Device 2 3D Image Capture Device 3 Image Storage Server 4 Network 11 CPU
12 memory 13 storage 14 display section 15 input section 20 image acquisition section 21 first analysis section 22 second analysis section 23 coincidence derivation section 24 display control section 30, 30A, 32-35 display screen 31 morphological image 40, 45 bar M Magnitude data Phx Phase data Phy Phase data Phz Phase data R1 1st result R2 2nd result

Claims (11)

  1.  内部に流体が流れる構造物を含む被写体を撮影することにより取得した画像を解析して、前記構造物内の各位置における前記流体の流れに関する第1の結果を導出する第1解析部と、
     前記構造物内の各位置における前記流体の流れをシミュレーションして、前記流体の流れに関する第2の結果を導出する第2解析部と、
     前記第1の結果および前記第2の結果のいずれか一方を基準とした、前記第1の結果と前記第2の結果との対応する位置における一致度を導出する一致度導出部と、
     前記一致度に応じて前記第1の結果および前記第2の結果の少なくとも一方を表示部に表示する表示制御部とを備えた流体解析装置。
    A first analysis unit that analyzes an image obtained by capturing an object including a structure in which a fluid flows, and derives a first result regarding the flow of the fluid at each position in the structure;
    A second analysis unit that simulates the flow of the fluid at each position in the structure and derives a second result regarding the flow of the fluid;
    A coincidence degree deriving unit that derives a coincidence degree at a corresponding position between the first result and the second result, based on either one of the first result and the second result,
    A fluid analysis device comprising: a display control unit that displays at least one of the first result and the second result on a display unit according to the degree of coincidence.
  2.  前記表示制御部は、前記第1の結果および前記第2の結果のいずれか一方を表示し、前記一致度に応じて、表示された前記第1の結果および前記第2の結果のいずれか一方の表示態様を変更する請求項1に記載の流体解析装置。 The display control unit displays one of the first result and the second result, and displays one of the displayed first result and the second result according to the degree of coincidence. The fluid analysis device according to claim 1, wherein the display mode of is changed.
  3.  前記表示制御部は、前記第1の結果および前記第2の結果のいずれか一方を表示し、前記一致度に応じた表示態様により、他方の結果をさらに表示する請求項1または2に記載の流体解析装置。 The display control unit displays one of the first result and the second result, and further displays the other result in a display mode according to the degree of coincidence. Fluid analysis device.
  4.  前記表示制御部は、前記一致度が小さいほど前記他方の結果を強調表示する請求項3に記載の流体解析装置。 The fluid analysis device according to claim 3, wherein the display control unit emphasizes the other result as the degree of matching is smaller.
  5.  前記表示制御部は、前記一致度が予め定められたしきい値以上となる位置において、前記第1の結果および前記第2の結果のいずれか一方を表示し、前記一致度が前記しきい値未満となる位置において、前記一致度に応じた表示態様により、他方の結果をさらに表示する請求項1または2に記載の流体解析装置。 The display control unit displays one of the first result and the second result at a position where the degree of coincidence is a predetermined threshold value or more, and the degree of coincidence is the threshold value. The fluid analysis device according to claim 1 or 2, further displaying the other result in a display mode according to the degree of coincidence at a position where the value is less than 3.
  6.  前記画像は、3次元シネ位相コントラスト磁気共鳴法によって前記被写体を撮影することにより取得された3次元画像であり、
     前記第1解析部は、前記3次元画像を解析することにより取得される前記流体の流速ベクトルを、前記第1の結果として導出する請求項1から5のいずれか1項に記載の流体解析装置。
    The image is a three-dimensional image obtained by photographing the subject by a three-dimensional cine phase contrast magnetic resonance method,
    The fluid analysis device according to claim 1, wherein the first analysis unit derives a flow velocity vector of the fluid acquired by analyzing the three-dimensional image as the first result. .
  7.  前記第2解析部は、数値流体力学を用いた解析により前記流体の流れをシミュレーションすることにより取得される前記流体の流速ベクトルを、前記第2の結果として導出する請求項1から6のいずれか1項に記載の流体解析装置。 7. The second analysis unit derives, as the second result, a flow velocity vector of the fluid acquired by simulating the flow of the fluid by analysis using computational fluid dynamics. The fluid analysis device according to item 1.
  8.  前記構造物が血管であり、前記流体が血液である請求項1から7のいずれか1項に記載の流体解析装置。 The fluid analysis device according to any one of claims 1 to 7, wherein the structure is a blood vessel and the fluid is blood.
  9.  前記表示制御部は、前記表示部に前記構造物の形態画像を表示し、該形態画像上において、前記一致度に応じて前記第1の結果および前記第2の結果の少なくとも一方を表示する請求項1から8のいずれか1項に記載の流体解析装置。 The display control unit displays a morphological image of the structure on the display unit, and displays at least one of the first result and the second result on the morphological image according to the degree of coincidence. Item 9. The fluid analysis device according to any one of items 1 to 8.
  10.  内部に流体が流れる構造物を含む被写体を撮影することにより取得した画像を解析して、前記構造物内の各位置における前記流体の流れに関する第1の結果を導出し、
     前記構造物内の各位置における前記流体の流れをシミュレーションして、前記流体の流れに関する第2の結果を導出し、
     前記第1の結果および前記第2の結果のいずれか一方を基準とした、前記第1の結果と前記第2の結果との対応する位置における一致度を導出し、
     前記一致度に応じて前記第1の結果および前記第2の結果の少なくとも一方を表示部に表示する流体解析方法。
    An image acquired by capturing an object including a structure in which a fluid flows inside is analyzed to derive a first result regarding the flow of the fluid at each position in the structure,
    Simulating the fluid flow at each location within the structure to derive a second result for the fluid flow,
    Deriving a degree of coincidence at the corresponding position between the first result and the second result, based on either one of the first result and the second result,
    A fluid analysis method for displaying at least one of the first result and the second result on a display unit according to the degree of coincidence.
  11.  内部に流体が流れる構造物を含む被写体を撮影することにより取得した画像を解析して、前記構造物内の各位置における前記流体の流れに関する第1の結果を導出する手順と、
     前記構造物内の各位置における前記流体の流れをシミュレーションして、前記流体の流れに関する第2の結果を導出する手順と、
     前記第1の結果および前記第2の結果のいずれか一方を基準とした、前記第1の結果と前記第2の結果との対応する位置における一致度を導出する手順と、
     前記一致度に応じて前記第1の結果および前記第2の結果の少なくとも一方を表示部に表示する手順とをコンピュータに実行させる流体解析プログラム。
    A procedure of analyzing an image acquired by capturing an object including a structure in which a fluid flows, and deriving a first result regarding the flow of the fluid at each position in the structure;
    Simulating the flow of the fluid at each position in the structure to derive a second result for the flow of the fluid;
    A procedure of deriving a degree of coincidence at a corresponding position between the first result and the second result, based on one of the first result and the second result.
    A fluid analysis program for causing a computer to execute a procedure of displaying at least one of the first result and the second result on a display unit according to the degree of coincidence.
PCT/JP2019/038704 2018-10-09 2019-10-01 Fluid analysis device, method and program WO2020075571A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020550443A JP7059391B2 (en) 2018-10-09 2019-10-01 Fluid analyzers, methods and programs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018191129 2018-10-09
JP2018-191129 2018-10-09

Publications (1)

Publication Number Publication Date
WO2020075571A1 true WO2020075571A1 (en) 2020-04-16

Family

ID=70163933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038704 WO2020075571A1 (en) 2018-10-09 2019-10-01 Fluid analysis device, method and program

Country Status (2)

Country Link
JP (1) JP7059391B2 (en)
WO (1) WO2020075571A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121735A (en) * 2002-10-07 2004-04-22 Tohoku Techno Arch Co Ltd Bloodstream visualizing diagnostic apparatus
JP2015097759A (en) * 2013-11-20 2015-05-28 株式会社東芝 Apparatus and method for analyzing blood vessel
JP2016513530A (en) * 2013-03-15 2016-05-16 ハートフロー, インコーポレイテッド Image quality assessment for simulation accuracy and performance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5700719B2 (en) * 2013-06-27 2015-04-15 日立アロカメディカル株式会社 Ultrasonic diagnostic apparatus and data processing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121735A (en) * 2002-10-07 2004-04-22 Tohoku Techno Arch Co Ltd Bloodstream visualizing diagnostic apparatus
JP2016513530A (en) * 2013-03-15 2016-05-16 ハートフロー, インコーポレイテッド Image quality assessment for simulation accuracy and performance
JP2015097759A (en) * 2013-11-20 2015-05-28 株式会社東芝 Apparatus and method for analyzing blood vessel

Also Published As

Publication number Publication date
JPWO2020075571A1 (en) 2021-09-24
JP7059391B2 (en) 2022-04-25

Similar Documents

Publication Publication Date Title
JP7225295B2 (en) MEDICAL IMAGE DISPLAY APPARATUS, METHOD AND PROGRAM
JP7309986B2 (en) Medical image processing method, medical image processing apparatus, medical image processing system, and medical image processing program
CN110717487A (en) Method and system for identifying cerebrovascular abnormalities
WO2018133098A1 (en) Vascular wall stress-strain state acquisition method and system
JP6981940B2 (en) Diagnostic imaging support devices, methods and programs
JP7129869B2 (en) Disease area extraction device, method and program
US11730384B2 (en) Fluid analysis apparatus, method for operating fluid analysis apparatus, and fluid analysis program
JP6690053B2 (en) Blood flow analysis device, method and program
JP7262606B2 (en) Region identification device, method and program
WO2020075571A1 (en) Fluid analysis device, method and program
EP3607527B1 (en) Quantitative evaluation of time-varying data
JP7195458B2 (en) Fluid analysis device, method and program
JP7368500B2 (en) Fluid analysis equipment, methods and programs
JP7170850B2 (en) Pseudo-angio image generator, method and program
JP6811872B2 (en) Fluid analysis device and operation method of fluid analysis device and fluid analysis program
JP2022047359A (en) Medical image processing device, medical image processing system, and medical image processing method
Ogiela et al. Cognitive methods for semantic image analysis in medical imaging applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550443

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19871490

Country of ref document: EP

Kind code of ref document: A1