WO2020075562A1 - 無人航空機および塗装方法 - Google Patents

無人航空機および塗装方法 Download PDF

Info

Publication number
WO2020075562A1
WO2020075562A1 PCT/JP2019/038599 JP2019038599W WO2020075562A1 WO 2020075562 A1 WO2020075562 A1 WO 2020075562A1 JP 2019038599 W JP2019038599 W JP 2019038599W WO 2020075562 A1 WO2020075562 A1 WO 2020075562A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
unmanned aerial
aerial vehicle
rotor
opening
Prior art date
Application number
PCT/JP2019/038599
Other languages
English (en)
French (fr)
Inventor
明彦 山口
Original Assignee
株式会社プロドローン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロドローン filed Critical 株式会社プロドローン
Publication of WO2020075562A1 publication Critical patent/WO2020075562A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/34Alighting gear characterised by elements which contact the ground or similar surface  wheeled type, e.g. multi-wheeled bogies
    • B64C25/36Arrangements or adaptations of wheels, tyres or axles in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/16Flying platforms with five or more distinct rotor axes, e.g. octocopters

Definitions

  • the present invention relates to unmanned aerial vehicle technology.
  • Patent Document 1 discloses an unmanned aerial vehicle having drive wheels protruding forward and upward from the airframe.
  • the unmanned aerial vehicle disclosed in Patent Literature 1 sucks on a wall surface by using negative pressure generated by rotation of a horizontal rotor and a vertical rotor, and moves on the surface by driving wheels.
  • the wheels may skid or the wheels may come into contact with each other.
  • the aircraft may be caught on a surface and tilt greatly.
  • An unmanned aerial vehicle flying on a horizontal rotor always swings up and down.For example, if the unmanned aerial vehicle flies left and right along a contact surface, for example, by mounting wheels rotatably in the left and right direction, such an event occurs. Tends to occur.
  • many general unmanned aerial vehicles detect the heading direction with an electronic compass, and the detection accuracy decreases when a structure such as a reinforcing bar is nearby.
  • a structure such as a reinforcing bar
  • the vertical surface is painted, if the angle of pressing the coating roller or the wheel with respect to the vertical surface is inclined, the above-described side slippage of the wheel and engagement with the contact surface are likely to occur.
  • the problem to be solved by the present invention is to perform the coating work on the structure surface using an unmanned aerial vehicle with stable quality.
  • an unmanned aerial vehicle of the present invention includes a rotor that is a horizontal rotor, and a coating device that can inject a liquid agent, and the coating device includes a nozzle that injects a liquid agent, and an injection of the nozzle.
  • a nozzle cover which is a cover body that covers the mouth and has an opening on the ejection direction side of the nozzle, is a gist.
  • the coating method of the present invention includes a rotor that is a horizontal rotary blade, a nozzle that ejects a liquid agent, and a nozzle cover that is a cover body that covers the ejection port of the nozzle and has an opening on the ejection direction side of the nozzle.
  • An opening of the nozzle cover using an unmanned aerial vehicle comprising: a wheel arranged so as to project from the airframe toward the injection direction of the nozzle, or a distance measuring sensor whose measurement direction is oriented in the injection direction of the nozzle.
  • the gist of the invention is to apply the coating in units of the opening area of the opening so that the portion is close to the coated surface.
  • spraying the liquid agent from the nozzle to apply the liquid agent in a non-contact manner allows the coating roller to tilt, slide, derail, and engage with the coating surface. It is possible to perform painting with stable quality, avoiding the above. Further, a violent airflow is generated around the unmanned aerial vehicle flying by the rotor due to the intake and exhaust of the rotor. Therefore, when the nozzle for ejecting the liquid agent is located away from the coating surface, the liquid agent ejected from the nozzle is sprayed by the air flow of the rotor, and most of it is lost.
  • the liquid agent when the liquid agent is ejected by moving the nozzle near the painted surface, the liquid agent can be applied only to an extremely narrow range, and the working efficiency is poor. Therefore, by covering the nozzle with the nozzle cover and discharging the liquid agent from the opening, the effect of the airflow of the rotor is reduced, and even when the nozzle cover is brought close to the painted surface, the opening area of the nozzle cover is united. As a result, a liquid agent can be applied.
  • the opening area of the opening is larger than the flow passage cross-sectional area at the position of the injection port.
  • the nozzle cover has a shape in which the flow passage cross-sectional area gradually increases from the position of the injection port toward the opening.
  • the opening of the nozzle cover is preferably arranged in front of the plurality of rotors.
  • the coating device includes a liquid agent tank filled with the liquid agent and a nozzle pipe that is a tubular body extending in the front-rear direction, and the nozzle is attached to the front end of the nozzle pipe.
  • the liquid agent in the tank is preferably supplied to the nozzle through the nozzle pipe.
  • the load may be concentrated on a specific rotor, making it difficult for some rudders to move.
  • the coating device further has a pressure feeding device for feeding the liquid agent under pressure, the rear end of the nozzle pipe is connected to the pressure feeding device, and the pressure feeding device is arranged below the liquid agent tank. Is preferred.
  • the unmanned aerial vehicle of the present invention further includes a plurality of distance measuring sensors, and the plurality of distance measuring sensors have their measuring directions oriented in the ejection direction of the nozzles.
  • the unmanned aerial vehicle is equipped with multiple ranging sensors.
  • the opening of the nozzle cover can be more accurately aligned with the surface to be coated, and the coating quality can be improved.
  • the unmanned aerial vehicle of the present invention includes a rotor that is a horizontal rotor, a coating device that can inject a liquid agent, and a wheel that can roll in all directions due to contact with a peripheral object.
  • the gist is that the coating device has a nozzle for injecting a liquid agent, and the wheel is arranged so as to protrude from the machine body toward the ejection direction of the nozzle.
  • the unmanned aerial vehicle By providing the unmanned aerial vehicle with wheels that protrude toward the painted surface, it is possible to reduce the attitude disturbance that accompanies the aircraft tilting and returning from it when the aircraft comes into contact with the painted surface.
  • the wheels can be rolled in all directions, so that the aircraft can swing freely even when it is in contact with the painted surface as well as when it is not in contact, so that the aircraft can be caught on the painted surface and tilted greatly It is possible to keep the coating quality within a certain range.
  • the unmanned aerial vehicle of the present invention preferably has three or more wheels protruding in the same direction. By providing three or more wheels, it is possible to limit the inclination of the body with respect to the painted surface with higher accuracy.
  • the unmanned aerial vehicle of the present invention includes a plurality of rotors, and one rotor and another rotor adjacent to the one rotor have different positions of their rotational surfaces in the vertical direction, and the rotors are adjacent to each other. It is preferable that the planes of rotation of the rotors partially overlap with each other when the unmanned aerial vehicle is viewed in plan.
  • the plane size of the aircraft can be kept small. As a result, work in a narrow range can be performed more safely, and space efficiency during storage and transportation can be improved.
  • the unmanned aerial vehicle of the present invention it is possible to perform the coating work on the structure surface with stable quality.
  • FIG. 2 is a block diagram illustrating a functional configuration of the multicopter.
  • FIG. 1 is a perspective view showing the appearance of the multi-copter M according to this embodiment.
  • FIG. 2 is a plan view of the multicopter M.
  • the multicopter M of the present embodiment is a device for painting a structure in front of the fuselage with a spray gun 72.
  • the multicopter M has, as its body, a frame made of a flat plate and a pipe made of CFRP (Carbon Fiber Reinforced Plastics).
  • CFRP Carbon Fiber Reinforced Plastics
  • the body of the multicopter M is mainly provided between the center plate 11, the rotor arm 12 that extends horizontally from the center plate 11, the cross tube 81 and the skid 82 that are landing gears, and the two pipe members that form the skid 82. It includes a bridge rod 83, a hanging arm 84 extending so as to project forward from the machine body, and a support arm 85 for reinforcing the hanging arm 84.
  • the center plate 11 is composed of two flat plate members arranged in parallel with the plate surfaces facing up and down and having a substantially oval shape in plan view.
  • a control box 13 which is a case housing a control device such as a flight controller FC described later, is disposed.
  • a paint tank base 17, which is a flat plate having a substantially rectangular shape in a plan view, is fixed with its plate surface facing up and down.
  • a paint tank 71 is mounted on the paint tank base 17, and the paint tank 71 is fixed to the paint tank base 17 by a band 171.
  • a battery box 60 which is a case body for storing a battery, is supported so as to be suspended from the rear of the machine.
  • the rotor arm 12 is composed of six pipe members extending radially from the center plate 11 in a plan view.
  • a rotor R which is a horizontal rotor, is attached to the tip of each rotor arm 12.
  • the rotor R has a motor 41 and a propeller 42 directly connected to its output shaft.
  • Each motor 41 is arranged so that the direction of its output shaft is opposite to that of the motor 41 adjacent to the motor 41. That is, assuming that the output shaft of one motor 41 is directed upward, the output shafts of two adjacent motors 41 are directed downward.
  • the rotation surface RS of each rotor R is arranged at a position vertically displaced from the position of the rotation surface RS of the rotor R adjacent to the rotor R. Then, as shown in FIG. 2, in each rotor R of the present embodiment, when the multicopter M is viewed in a plan view, a part of the range of the rotation surface RS thereof overlaps the range of the rotation surface RS of the adjacent rotor R.
  • the planes of the airframe are suppressed small by arranging the ranges of the rotation surfaces RS of the rotors R adjacent to each other so that the thrust is not impaired. As a result, it is possible to perform work in a narrow range more safely, and space efficiency during storage and transportation is enhanced.
  • a cross tube 81 forming a landing gear is fixed to the bottom surface of the center plate 11.
  • the cross tube 81 is composed of two pipe members arranged in parallel in front and rear, and these pipe members are bent downward in a U-shape.
  • a pair of laser distance measuring sensors 35 are attached to the pipe material arranged on the front side.
  • the laser distance measuring sensor 35 has its measurement direction directed forward, measures the distance between the body of the multicopter M and the painted surface, and detects the inclination of the machine in the yaw direction with respect to the painted surface.
  • a skid 82 is connected to the tip of the cross tube 81.
  • the skid 82 is constituted by a pair of pipe members arranged in parallel on the left and right.
  • a mounting space for the spray gun 72 is provided by expanding the structure of the landing gear.
  • bridge rods 83 which are three pipe members arranged in parallel in the front and rear, are arranged, and both ends of these pipe members are connected to the skids 82.
  • the bridge rod 83 is fixed with a spray gun base 86, which is a flat plate having a substantially rectangular shape in plan view, with its plate surface facing up and down.
  • the spray gun 72 is mounted on the spray gun base 86, and the spray gun 72 is fixed to the spray gun base 86 by a band 861.
  • the hanging arm 84 is composed of a pipe member extending in the front-rear direction and a pipe member extending in the left-right direction and connected to the tip (front end) of the pipe member.
  • the hanging arm 84 supports a nozzle pipe 73 and a nozzle cover 75 described later so as to be suspended.
  • the pipe material extending to the left and right at the front end of the hanging arm 84 is supported by the bridge rod 83 via two support arms 85 which are pipe materials.
  • casters 19 which are two wheels arranged to protrude forward (toward the painted surface), are fixed.
  • the caster 19 of the present embodiment does not include a driving source, and is driven and rotated only by contact with peripheral objects.
  • the multicopter M is provided with the casters 19 protruding to the painted surface side, so that the inclination of the aircraft due to the aircraft contacting the painted surface and the disturbance of the posture due to the returning operation therefrom are reduced.
  • the caster 19 of this embodiment is a wheel that can rotate only in the vertical direction, but it can be a so-called universal caster that can roll in any direction.
  • the number of casters 19 is not limited to two and may be three or more. By providing three or more casters 19, it becomes possible to more reliably limit the tilt of the aircraft.
  • the wheels of the present invention may be, for example, ball casters or omni wheels.
  • the casters 19 of the present embodiment are driven wheels without a drive source, but may have a drive source if necessary. In this case, however, care must be taken so as not to hinder the driven rotation of the casters 19 due to the contact with the painted surface.
  • the caster 19 is not an indispensable component, and may be omitted if it can be controlled by the laser distance measuring sensor 35 so that the machine body does not come into contact with the painted surface, for example.
  • FIG. 3 is a perspective view showing the inside of the nozzle cover 75.
  • the coating device 70 for the multi-copter M of this embodiment mainly includes a paint tank 71, a spray gun 72, a nozzle pipe 73, a nozzle 74, and a nozzle cover 75.
  • the paint tank 71 is a liquid tank that stores the paint to be applied to the painted surface.
  • a hole is provided in the bottom surface of the paint tank 71, and the paint tank 71 is connected to a sub tank 721 of the spray gun 72 by a tube (not shown).
  • the sub-tank 721 is disposed below the paint tank 71, and the paint in the paint tank 71 is constantly supplied to the sub-tank 721 due to a difference in height.
  • the spray gun 72 is a pressure feeding device that pressure feeds the paint to the nozzle pipe 73.
  • a wire connected to a servo 722 (see FIG. 1) is hung on the trigger of the spray gun 72, and when the trigger is pulled by the servo 722, the spray gun 72 sends out the paint in the sub tank 721 to the nozzle pipe 73.
  • the spray gun 72 is merely an example of the pressure feeding device of the present invention, and another pump device or the like may be used as long as the liquid agent can be pressure fed. In addition, if the pressure of a pump device etc. is enough, the liquid sending using the height difference is unnecessary. It is also conceivable that, for example, the paint tank 71, a pump device, or the like is placed on the ground and the paint is sucked up / pressurized by a tube on the machine.
  • the nozzle pipe 73 is a cylindrical pipe extending in the front-rear direction, the rear end thereof is connected to the spray gun 72, and the nozzle 74 is attached to the front end thereof.
  • the paint sent from the spray gun 72 is sent to the nozzle 74 through the nozzle pipe 73 and is jetted forward from the jet port 741 of the nozzle 74.
  • the nozzle 74 of this embodiment is entirely covered by the nozzle cover 75.
  • the nozzle cover 75 is a cover body having an opening 751 on the side of the nozzle 74 in the ejection direction, and is configured by assembling a flat plate made of CFRP into a rectangular tube shape.
  • the passage cross-sectional area (cross-section in the left-right direction) of the nozzle cover 75 is constant at a portion behind the position of the nozzle 74 in the front-rear direction, and the left-right width gradually increases from the position of the nozzle 74 toward the opening 751. It is formed so that it becomes.
  • the shape of the nozzle cover 75 is not limited to the shape of the present embodiment, and any shape may be used as long as it covers at least the ejection port 741 of the nozzle 74 and the ejection direction side of the nozzle 74 is open.
  • it may be a cylindrical body whose flow path cross-sectional area is constant over its entire length.
  • the paint is sprayed from the nozzle 74 to apply the paint in a non-contact manner, instead of applying the paint by contacting the paint roller with the paint surface. It is said that it is possible to perform painting with stable quality by avoiding tilting, skidding, derailment, engagement, etc. of the painting roller.
  • the multicopter M is a rotary wing aircraft, and a violent airflow is generated around the multicopter M by the intake and exhaust of the rotor R. Therefore, if the nozzle 74 that sprays the paint is located at a position away from the paint surface, the paint sprayed from the nozzle 74 is scattered by the airflow of the rotor R, and most of the paint is lost.
  • the nozzle 74 when the nozzle 74 is moved close to the painted surface and the paint is sprayed, the paint can be applied only in an extremely narrow range. Therefore, in the multicopter M of the present embodiment, the nozzle 74 is covered with the nozzle cover 75, and the paint is discharged from the opening 751 adjusted to an arbitrary opening area, thereby reducing the influence of the airflow of the rotor R and reducing the nozzle flow. Even when the cover 75 is brought close to the painting surface, painting can be performed with the opening area of the nozzle cover 75 as a unit.
  • the opening 751 of the nozzle cover 75 is arranged in front of the rotation surface RS of any of the rotors R. As a result, the influence of downwash of the rotor R is reduced, and the spray of paint is more reliably prevented.
  • Multicopter M is equipped with paint tank 71 and sub tank 721, which are heavy items.
  • the liquid tank 17 and the sub-tank 721 are arranged on the center side of the machine body, and the paint is sent forward from there through the nozzle pipe 73, thereby reducing the deviation of the center of gravity of the machine body.
  • the weight balance of the body is more suitably adjusted by moving the battery box 60, which is another heavy object, to the rear side of the body.
  • FIG. 4 is a block diagram showing a functional configuration of the multicopter M.
  • the function of the multicopter M of the present embodiment is to communicate with a flight controller FC as a control unit, an ESC 23 (Electronic Speed Controller) as a drive circuit of a rotor R, a motor 41 constituting the rotor R, and a pilot (operator terminal 51).
  • the communication device 52 includes a communication device 52 and a coating device 70. The description of the battery for supplying power to these components is omitted.
  • the flight controller FC has a control device 20.
  • the control device 20 has a CPU 21 as a central processing unit, and a memory 22 including a storage device such as a RAM, a ROM, and a flash memory.
  • the flight controller FC further has a flight control sensor group S including an IMU 31 (Inertial Measurement Unit), a GPS receiver 32, an atmospheric pressure sensor 33, and an electronic compass 34, which are connected to the control device 20. Has been done. Further, the laser distance sensor 35 is also connected to the control device 20 as a part of the flight controller FC.
  • IMU 31 Inertial Measurement Unit
  • GPS receiver 32 GPS receiver
  • atmospheric pressure sensor 33 atmospheric pressure sensor
  • an electronic compass 34 an electronic compass 34
  • the IMU 31 is a sensor that detects the inclination of the frame 10, and is mainly composed of a triaxial acceleration sensor and a triaxial angular velocity sensor.
  • the atmospheric pressure sensor 33 is an altitude sensor that calculates the altitude (altitude) above the sea level of the multicopter M from the detected atmospheric pressure altitude.
  • a three-axis geomagnetic sensor is used for the electronic compass 34 in this example.
  • the electronic compass 34 detects the azimuth of the nose of the multicopter M.
  • the GPS receiver 32 is a receiver of a navigation satellite system (NSS: Navigation Satellite System).
  • the GPS receiver 32 acquires current latitude and longitude values from a global navigation satellite system (GNSS: Global Navigation Satellite System) or a regional navigation satellite system (RNSS: Regional Navigation Satellite System).
  • the flight controller FC can acquire the position information of the aircraft including the longitude and latitude of the aircraft, the altitude, and the azimuth of the nose, in addition to the tilt and rotation of the aircraft. Has been done.
  • the multi-copter M may fly indoors.
  • beacons for transmitting wireless signals are arranged at predetermined intervals in a facility, and the relative distance between the multicopter M and each beacon is measured from the radio wave intensity of the signal received from these beacons, and the multicopter in the facility is measured. It is conceivable to specify the position of M. Alternatively, it is also possible to separately mount a camera on the multicopter M, detect a characteristic location in the facility by image recognition from a surrounding image captured by the camera, and specify a position in the facility based on this.
  • a distance measuring sensor using laser, infrared rays, ultrasonic waves, or the like is separately mounted, and the distance between the floor or ceiling surface or wall surface in the facility and the multicopter M is measured, and the multicopter M in the facility is measured. May be specified.
  • the control device 20 has a flight control program FS, which is a program for controlling the attitude and basic flight operations of the multicopter M during flight.
  • the flight control program FS adjusts the number of revolutions of each rotor R based on the information acquired from the flight control sensor group S and the laser distance measuring sensor 35, and corrects the disturbance of the attitude and the position of the airframe to the multicopter M. To fly.
  • the control device 20 further has an autonomous flight program AP which is a program for autonomously flying the multicopter M.
  • an autonomous flight program AP which is a program for autonomously flying the multicopter M.
  • a flight plan FP which is a parameter designating the latitude and longitude of the destination and the transit point of the multicopter M, the altitude and speed during flight, and the like.
  • the autonomous flight program AP can cause the multicopter M to fly autonomously in accordance with the flight plan FP with an instruction from the operator terminal 51 or a predetermined time as a start condition.
  • the multicopter M of this embodiment is an unmanned aerial vehicle with advanced flight control functions.
  • the unmanned aerial vehicle of the present invention is not limited to the form of the multi-copter M, and can fly, for example, an aircraft in which some of the sensors are omitted from the flight control sensor group S, or can be fly only by manual operation without an autonomous flight function.
  • An airframe can also be used.
  • the unmanned aerial vehicle of the present invention is not limited to the form of a multicopter, and may be a helicopter.
  • the multicopter M includes the pair of laser distance sensors 35, so that the accurate attitude of the machine body with respect to the painted surface can be specified and automatically corrected. This makes it possible to more accurately face the opening 751 of the nozzle cover 75 with respect to the painted surface, thereby improving the stability and quality of the painting operation.
  • the laser distance measuring sensor 35 of this embodiment is arranged near the left and right ends of the front cross tube 81. This makes it possible to automatically correct not only the distance to the painted surface but also the inclination of the aircraft in the yaw direction with respect to the painted surface.
  • the laser distance measuring sensors 35 of the present embodiment are arranged so that the positions in the vertical direction are aligned. For example, by displacing the positions of the laser distance measuring sensors 35 in the vertical direction, the pitch direction with respect to the painted surface can be reduced. Can also be automatically corrected.
  • the distance measuring sensor of the present invention is not limited to the laser distance measuring sensor 35, and as long as it is a sensor capable of measuring the distance to the painted surface, for example, infrared rays, ultrasonic waves, radar (radio waves), cameras or stereo cameras are used. It may be a distance measuring sensor using image recognition or the like. Further, the number of distance measurement sensors is not limited to two, and can be arbitrarily changed according to the purpose. Further, the laser distance measuring sensor 35 is not an essential component, and can be omitted if the coating operation can be performed with a desired quality without the laser distance measuring sensor 35.
  • the multicopter M of the above embodiment is configured to paint the surface of the structure in front, it may be changed to a configuration that paints the ceiling surface of the structure.
  • the spray gun 72 and the opening 751 of the nozzle cover 75 may be directed upward, and if necessary, the casters 19 may be provided so as to protrude upward, and the measurement direction of the laser distance measuring sensor 35 may be directed toward the ceiling surface.
  • the paint can be discharged by bringing the opening 751 having a required opening area into contact with the ceiling surface in a non-contact manner and sufficiently, and the coating operation can be performed with stable quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Mechanical Engineering (AREA)
  • Special Spraying Apparatus (AREA)
  • Spray Control Apparatus (AREA)

Abstract

無人航空機を用いた構造物表面の塗装作業を安定した品質で行うことを可能とする。 ロータと、塗装装置と、あらゆる方向へ転動可能な車輪と、を備え、塗装装置は液剤を噴射するノズルを有し、車輪が機体からノズルの噴射方向側に突き出している無人航空機、および、ロータと、液剤を噴射するノズルと、ノズルの噴射方向側に開口部を有するノズルカバーと、機体からノズルの噴射方向側に突き出した車輪、または、ノズルの噴射方向に向けられた測距センサと、を備える無人航空機を用い、ノズルカバーを塗装面に近接させ、その開口部の開口面積を単位として塗装を行う塗装方法により解決する。

Description

無人航空機および塗装方法
 本発明は無人航空機技術に関する。
 近年、様々な事業分野において無人航空機の利活用の途が検討されている。
国際公開第2017/183219号
 上記特許文献1には、機体から前方および上方に張り出した駆動輪を備える無人航空機が開示されている。特許文献1の無人航空機は、水平回転翼および垂直回転翼の回転で生じる負圧を利用して壁面に吸い付き、その面上を駆動輪で移動する。
 例えば無人航空機に塗装ローラーを取り付けて塗装作業を行う場合など、構造物の表面に塗装手段を直接接触させて塗装を行うときには、構造物に対する無人航空機の距離や姿勢を一定に保つことが望ましい。これを実現する手段としては、特許文献1の無人航空機のように、無人航空機が備える車輪を構造物の表面に接触させ、同面に沿って車輪を転がしながら無人航空機を移動させるという方法が考えられる。壁面に吸い付く機能のない一般的な無人航空機では、塗装作業中の機体の姿勢や位置が安定せず、作業効率や塗装品質が著しく低下する。
 また、例えば特許文献1の無人航空機のように、接触面に対する車輪の回転方向が固定されている場合、回転方向とは異なる方向に機体が揺動すると、車輪が横滑りを起こしたり、車輪が接触面にひっかかって機体が大きく傾いたりすることがある。水平回転翼で飛行する無人航空機は常に上下に揺動しているため、例えば車輪を左右方向へ回転可能に取り付け、無人航空機を接触面に沿って左右に飛行させるような場合には、かかる事象が生じやすい。
 また、一般的な無人航空機にはそのヘディングの向きを電子コンパスで検出するものが多く、鉄筋の構造物等が近くにある場合にはその検出精度が低下する。特に、垂直面を塗装する際に、垂直面に対して塗装ローラーや車輪を押しつける角度が傾いていると上で述べたような車輪の横滑りや接触面との係合が生じやすくなる。
 上記問題に鑑み、本発明が解決しようとする課題は、無人航空機を用いた構造物表面の塗装作業を安定した品質で行うことにある。
 上記課題を解決するため、本発明の無人航空機は、水平回転翼であるロータと、液剤を噴射可能な塗装装置と、を備え、前記塗装装置は、液剤を噴射するノズルと、前記ノズルの噴射口を覆い、前記ノズルの噴射方向側に開口部を有するカバー体であるノズルカバーと、を有することを要旨とする。また、本発明の塗装方法は、水平回転翼であるロータと、液剤を噴射するノズルと、前記ノズルの噴射口を覆い、前記ノズルの噴射方向側に開口部を有するカバー体であるノズルカバーと、機体から前記ノズルの噴射方向側に突き出すように配置された車輪、または、前記ノズルの噴射方向にその測定方向が向けられた測距センサと、を備える無人航空機を用い、前記ノズルカバーの開口部を塗装面に近接させ、該開口部の開口面積を単位として塗装を行うことを要旨とする。
 塗装ローラーを塗装面に接触させて液剤を塗布するのではなく、ノズルから液剤を噴射して非接触で液剤を塗布することにより、塗装ローラーの傾きや横滑り、脱輪、塗装面との係合等を避け、安定した品質で塗装を行うことが可能となる。また、ロータで飛行する無人航空機の周囲では、ロータの吸排気により激しい気流が生じている。そのため、液剤を噴射するノズルが塗装面から離れた位置にある場合、ノズルから噴射された液剤はロータの気流により霧散し、その大部分がロスとなってしまう。一方、ノズルを塗装面の近くに寄せて液剤を噴射した場合、極めて狭い範囲にしか液剤を塗布することができず作業効率が悪い。そこで、ノズルにノズルカバーを被せ、その開口から液剤を放出することにより、ロータの気流による影響を軽減しつつ、また、ノズルカバーを塗装面の近くに寄せた場合でもノズルカバーの開口面積を単位として液剤を塗布することが可能となる。
 また、前記ノズルカバーは、前記噴射口の位置における流路断面積よりも前記開口部の開口面積の方が大きいことが好ましい。このとき、前記ノズルカバーは、前記噴射口の位置から前記開口部に向かって次第に流路断面積が大きくなる形状であることがより好ましい。
 また、本発明の無人航空機は、前記ノズルが前記噴射口を水平方向に向けて配置され、前記噴射口が向けられた方向を前記無人航空機の前方としたときに、前記ノズルカバーの前記開口部は、前記複数のロータよりも前方に配置されていることが好ましい。
 ノズルカバーの開口部をロータよりも前方に配置することにより、ロータのダウンウォッシュ等の影響を軽減し、液剤の霧散をより確実に防止することができる。
 また、前記塗装装置は、前記液剤が充填された液剤タンクと、前後方向に延びる筒状体であるノズルパイプと、を有し、前記ノズルは前記ノズルパイプの前端に取り付けられており、前記液剤タンクの前記液剤は、前記ノズルパイプを通って前記ノズルに供給されることが好ましい。
 機体の重心が偏っていた場合、特定のロータに負荷が集中し、一部の舵が利きにくくなるおそれがある。重量物である液剤タンクを機体の中心側に配置し、そこからノズルパイプを使ってノズルを前方に突き出させるように配置することで、塗装品質の安定と機体の重量バランスとの両立を図ることができる。
 また、前記塗装装置は前記液剤を圧送する圧送装置をさらに有し、前記圧送装置には前記ノズルパイプの後端が接続されており、前記圧送装置は前記液剤タンクよりも下方に配置されることが好ましい。
 液剤の圧送装置が液剤タンクよりも下に配置されることにより、高低差を利用して圧送装置に液剤を送ることができる。これにより送液に要する圧力の要件が緩和され、圧送装置として採用可能な装置の幅が広げられる。
 また、本発明の無人航空機は、複数の測距センサをさらに備え、前記複数の測距センサは、前記ノズルの噴射方向にその測定方向が向けられていることが好ましい。
 無人航空機が複数の測距センサを備えることで塗装面に対する機体の姿勢を正確に特定することが可能となる。これにより、例えば塗装面に対してノズルカバーの開口部をより正確に正対させることが可能となり、塗装品質が高められる。
 また、上記課題を解決するため、本発明の無人航空機は、水平回転翼であるロータと、液剤を噴射可能な塗装装置と、周辺物との接触によりあらゆる方向へ転動可能な車輪と、を備え、前記塗装装置は液剤を噴射するノズルを有し、前記車輪は、機体から前記ノズルの噴射方向側に突き出すように配置されていることを要旨とする。
 無人航空機が塗装面側に突き出した車輪を備えることにより、機体が塗装面に接触したときの機体の傾倒やそこからの復帰にともなう姿勢の乱れを軽減することができる。また、同車輪をあらゆる方向に転動可能とし、機体が塗装面に接触した状態でも非接触時と同様に自由に揺動できるようにすることで、機体が塗装面にひっかかって大きく傾くことが防止され、塗装の品質を一定の範囲内に収めることが可能となる。
 このとき、本発明の無人航空機は、同方向に突き出した3つ以上の前記車輪を有することが好ましい。車輪を3つ以上備えることにより、塗装面に対する機体の傾きをより高い精度で制限することが可能となる。
 また、本発明の無人航空機は、複数の前記ロータを備え、一の前記ロータとこれに隣接する他の前記ロータとは、上下方向におけるその回転面の位置が異なっており、これら互いに隣接する前記ロータの回転面は、前記無人航空機を平面視したときに、その範囲の一部が互いに重なっていることが好ましい。
 隣接するロータの回転面の範囲を、互いにその推力が損なわれない程度に重ねて配置することにより、機体の平面視寸法を小さく抑えることができる。これにより狭小な範囲での作業をより安全に行うことが可能となり、また保管時・運搬時のスペース効率を高めることができる。
 以上のように、本発明の無人航空機によれば、構造物表面の塗装作業を安定した品質で行うことが可能となる。
実施形態にかかるマルチコプターの外観を示す斜視図である。 マルチコプターの平面図である。 ノズルカバーの内部を示す透視斜視図である。 マルチコプターの機能構成を示すブロック図である。
 以下、本発明の実施形態について図面を用いて説明する。以下に説明する実施形態は、複数のロータRを備える無人航空機であるマルチコプターMについての例である。以下の説明において、「上」および「下」とは、図1に描かれた座標軸表示のZ軸に平行な方向をいい、Z1側を「上」、Z2側を「下」とする。「前」および「後ろ」とは、同座標軸表示のX軸に平行な方向をいい、X1側を「前」、X2側を「後ろ」とする。同様に、「左右」とは同座標軸表示のY軸に平行な方向をいう。また、「水平」とは同座標軸表示のXY平面方向をいう。
 図1は、本形態にかかるマルチコプターMの外観を示す斜視図である。図2はマルチコプターMの平面図である。本形態のマルチコプターMは、スプレーガン72で機体前方の構造物を塗装する装置である。
[ボディフレーム]
 以下、図1および図2を参照してマルチコプターMの機体構造について説明する。マルチコプターMは、そのボディとして、CFRP(Carbon Fiber Reinforced Plastics:炭素繊維強化プラスチック)製の平板材およびパイプ材により構成されたフレーム体を有している。
 マルチコプターMのボディは、主に、センタープレート11、センタープレート11から水平に延びるロータアーム12、ランディングギアであるクロスチューブ81およびスキッド82、スキッド82を構成する2本のパイプ材の間に渡されたブリッジロッド83、並びに、機体から前方に突き出すように延びるハンギングアーム84およびこれを補強するサポ-トアーム85により構成されている。
 センタープレート11は、板面を上下に向けて平行に配置された平面視略長円形状の2枚の平板材により構成されている。センタープレート11内には、後述するフライトコントローラFC等の制御機器が収納されたケース体であるコントロールボックス13が配置されている。センタープレート11の上面には、平面視略矩形の平板材である塗料タンク台17がその板面を上下に向けて固定されている。塗料タンク台17には塗料タンク71が載せられ、塗料タンク71はバンド171で塗料タンク台17に固定されている。また、センタープレート11の底面には、バッテリーが収納されるケース体であるバッテリーボックス60が機体後方に吊されるように支持されている。
 ロータアーム12は、センタープレート11から平面視放射状に延びる6本のパイプ材で構成されている。各ロータアーム12の先端には水平回転翼であるロータRが取り付けられている。ロータRは、モータ41と、その出力軸に直結されたプロペラ42とを有している。
 各モータ41は、そのモータ41に隣接するモータ41とは出力軸の向きが反対となるように配置されている。つまり、一のモータ41の出力軸が上に向けられているとすると、これに隣接する二つのモータ41の出力軸は下に向けられている。これにより各ロータRの回転面RSは、そのロータRに隣接するロータRの回転面RSの位置とは上下方向にずれた位置に配置される。そして、図2に示すように、本形態の各ロータRは、マルチコプターMを平面視したときに、その回転面RSの範囲の一部が、隣接するロータRの回転面RSの範囲に重なるように配置されている。本形態のマルチコプターMでは、互いに隣接するロータRの回転面RSの範囲をその推力が損なわれない程度に重ねて配置することにより、機体の平面視寸法が小さく抑えられてる。これにより狭小な範囲での作業をより安全に行うことが可能とされており、また保管時・運搬時のスペース効率が高められている。
 センタープレート11の底面には、ランディングギアを構成するクロスチューブ81が固定されている。クロスチューブ81は、前後に平行に並べて配置された2本のパイプ材で構成されており、これらパイプ材は下方に向かってU字型に折り曲げられている。また、前側に配置されたパイプ材には一対のレーザ測距センサ35が取り付けられている。レーザ測距センサ35はその測定方向が前方に向けられており、マルチコプターMの機体と塗装面との距離を測定するとともに、塗装面に対する機体のヨー方向の傾きを検出する。クロスチューブ81の先端にはスキッド82が接続されている。スキッド82は、左右に平行に並べて配置された一対のパイプ材により構成されている。以下に説明するように、本形態では、ランディングギアの構造を拡張することでスプレーガン72の搭載スペースが設けられている。
 スキッド82の間には、前後に平行に並べて配置された3本のパイプ材であるブリッジロッド83が配置されており、これらパイプ材は、その両端がスキッド82に接続されている。ブリッジロッド83には平面視略矩形の平板材であるスプレーガン台86がその板面を上下に向けて固定されている。スプレーガン台86にはスプレーガン72が載せられ、スプレーガン72はバンド861でスプレーガン台86に固定されている。
 ロータアーム12はそのうちの一本が前方に延びており、同ロータアーム12には、同ロータアーム12からさらに前方に延びる平面視T字形状のハンギングアーム84が接続されている。ハンギングアーム84は、前後に延びるパイプ材と、その先端(前端)に接続された左右に延びるパイプ材とにより構成されている。ハンギングアーム84は、後述するノズルパイプ73およびノズルカバー75を吊すように支持している。また、ハンギングアーム84前端の左右に延びるパイプ材は、2本のパイプ材であるサポ-トアーム85を介してブリッジロッド83に支えられている。
[キャスター]
 ハンギングアーム84の前端には、前方(塗装面側)に突き出すように配置された2基の車輪であるキャスター19が固定されている。本形態のキャスター19は駆動源を備えておらず、もっぱら周辺物との接触により従動回転する。マルチコプターMは、塗装面側に突き出したキャスター19を備えることにより、機体が塗装面に接触することによる機体の傾倒やそこからの復帰動作にともなう姿勢の乱れが軽減されている。
 なお、本形態のキャスター19は上下方向にのみ回転可能な車輪であるが、これをあらゆる方向に転動可能ないわゆる自在キャスターにすることもできる。キャスター19を自在キャスターにすることで、キャスター19が塗装面に接触した状態でも機体は非接触時と同様に自由に揺動することが可能となり、機体が塗装面にひっかかって大きく傾くことが防止され、塗装品質の乱れを一定の範囲内に収めることが可能となる。
 また、キャスター19の数は2基には限られず3基以上としてもよい、キャスター19を3基以上備えることにより、機体の傾倒をより確実に制限することが可能となる。その他、本発明の車輪は例えばボールキャスターやオムニホイールなどであってもよい。また、本形態のキャスター19は駆動源を備えない従動輪であるが、必要であれば駆動源を備えていてもよい。ただしその場合、塗装面との接触によるキャスター19の従動回転を阻害しないよう対処すべきである。
 なお、キャスター19は必須の構成ではなく、例えばレーザ測距センサ35により機体が塗装面に接触しないように制御可能であれば省略することもできる。
[塗装装置]
 図3はノズルカバー75の内部を示す透視斜視図である。図1-3に示されるように、本形態のマルチコプターMの塗装装置70は、主に、塗料タンク71、スプレーガン72、ノズルパイプ73、ノズル74、およびノズルカバー75により構成されている。
 塗料タンク71は、塗装面に塗布する塗料が蓄えられた液剤タンクである。塗料タンク71の底面には穴が設けられており、塗料タンク71は、スプレーガン72が有するサブタンク721に図示しないチューブで連通されている。サブタンク721は塗料タンク71よりも下に配置されており、塗料タンク71内の塗料は高低差によりサブタンク721に常時供給される。
 スプレーガン72はノズルパイプ73に塗料を圧送する圧送装置である。スプレーガン72のトリガーにはサーボ722(図1参照)につながれたワイヤーが掛けられており、サーボ722でトリガーを引くことによりスプレーガン72はサブタンク721内の塗料をノズルパイプ73に送り出す。なお、スプレーガン72は本発明の圧送装置の一例にすぎず、液剤を圧送可能であれば他のポンプ装置等を用いることもできる。なお、ポンプ装置等の圧力が十分であれば高低差を利用した送液は不要である。また、例えば塗料タンク71やポンプ装置等を地上に置いて塗料をチューブで機上に吸い上げる/圧送する構成にすることも考えられる。
 ノズルパイプ73は前後方向に延びる円筒形状の管であり、その後端がスプレーガン72に接続され、その前端にはノズル74が取り付けられている。スプレーガン72から送り出された塗料はノズルパイプ73を通ってノズル74に送られ、ノズル74の噴射口741から前方に噴射される。
 本形態のノズル74はその全体がノズルカバー75に覆われている。ノズルカバー75は、ノズル74の噴射方向側に開口部751を有するカバー体であり、CFRP製の平板材を角筒形状に組み立てることで構成されている。ノズルカバー75の流路断面積(左右方向断面)は、前後方向におけるノズル74の位置よりも後ろ側の部分は一定であり、ノズル74の位置から開口部751に向かって次第に左右の幅が大きくなるように形成されている。なお、ノズルカバー75の形状は本形態のものには限られず、ノズル74の少なくとも噴射口741を覆い、ノズル74の噴射方向側が開口したカバー体であればよい。例えば流路断面積がその全長において一定の筒状体であってもよい。
 このように本形態のマルチコプターMでは、塗装ローラーを塗装面に接触させて塗装するのではなく、ノズル74から塗料を噴射して非接触で塗料を塗布することにより、塗装面に押し付けられた塗装ローラーの傾きや横滑り、脱輪、係合等を避け、安定した品質で塗装を行うことが可能とされている。ここで、マルチコプターMは回転翼航空機であり、マルチコプターMの周囲ではロータRの吸排気により激しい気流が生じている。そのため、塗料を噴射するノズル74が塗装面から離れた位置にあると、ノズル74から噴射された塗料がロータRの気流により霧散し、その大部分がロスとなってしまう。一方、ノズル74を塗装面の近くに寄せて塗料を噴射した場合、極めて狭い範囲にしか塗料を塗布することができない。そこで、本形態のマルチコプターMでは、ノズル74にノズルカバー75を被せ、任意の開口面積に調節された開口部751から塗料を放出することにより、ロータRの気流による影響を軽減するとともに、ノズルカバー75を塗装面の近くに寄せた場合でもノズルカバー75の開口面積を単位として塗装を行うことが可能とされている。
 さらに、図2に示されるように、ノズルカバー75の開口部751はいずれのロータRの回転面RSよりも前方に配置されている。これによりロータRのダウンウォッシュの影響が軽減されており、塗料の霧散がより確実に防止されている。
 また、マルチコプターMは、重量物である塗料タンク71やサブタンク721を搭載している。これにより機体の重心が偏った場合、特定のロータRのみに負荷が集中することとなり、一部の舵が利きにくくなるおそれがある。そこで、本形態ではこれら液剤タンク17やサブタンク721を機体の中心側に配置し、そこからノズルパイプ73で前方に塗料を送り出す構成とすることにより、機体の重心の偏りを軽減している。さらに、他の重量物であるバッテリーボックス60を機体の後ろ側に寄せることで機体の重量バランスをより好適に調節している。
[機能構成]
 図4はマルチコプターMの機能構成を示すブロック図である。本形態のマルチコプターMの機能は、制御部であるフライトコントローラFC、ロータR、ロータRを構成するモータ41の駆動回路であるESC23(Electronic Speed Controller)、操縦者(オペレータ端末51)と通信を行う通信装置52、および塗装装置70により構成されている。なお、これらに電力を供給するバッテリーの記載は省略している。
 フライトコントローラFCは制御装置20を有している。制御装置20は、中央処理装置であるCPU21と、RAMやROM・フラッシュメモリなどの記憶装置からなるメモリ22とを有している。
 フライトコントローラFCはさらに、IMU31(Inertial Measurement Unit:慣性計測装置)、GPS受信器32、気圧センサ33、および電子コンパス34を含む飛行制御センサ群Sを有しており、これらは制御装置20に接続されている。また、レーザ測距センサ35もフライトコントローラFCの一部として制御装置20に接続されている。
 IMU31はフレーム10の傾きを検出するセンサであり、主に3軸加速度センサおよび3軸角速度センサにより構成されている。気圧センサ33は、検出した気圧高度からマルチコプターMの海抜高度(標高)を算出する高度センサである。本例の電子コンパス34には3軸地磁気センサが用いられている。電子コンパス34はマルチコプターMの機首の方位角を検出する。GPS受信器32は、正確には航法衛星システム(NSS:Navigation Satellite System)の受信器である。GPS受信器32は、全地球航法衛星システム(GNSS:Global Navigation Satellite System)または地域航法衛星システム(RNSS:Regional Navigational Satellite System)から現在の経緯度値を取得する。
 フライトコンローラFCは、これら飛行制御センサ群Sにより、機体の傾きや回転のほか、飛行中の経緯度、高度、および機首の方位角を含む自機の位置情報を取得することが可能とされている。
 なお、本例の飛行制御センサ群Sは屋外用の構成とされているが、マルチコプターMは屋内を飛行するものであってもよい。例えば、無線信号を送出するビーコンを施設内に所定間隔で配置し、これらビーコンから受信した信号の電波強度からマルチコプターMと各ビーコンとの相対的な距離を計測し、その施設内におけるマルチコプターMの位置を特定することが考えられる。または、マルチコプターMに別途カメラを搭載し、カメラで撮影した周囲の映像から画像認識により施設内の特徴箇所を検出し、これに基づいて施設内における位置を特定することも可能である。同様に、レーザや赤外線、超音波などを利用した測距センサを別途搭載し、施設内の床面または天井面や壁面とマルチコプターMとの距離を計測して、その施設内におけるマルチコプターMの位置を特定してもよい。
 制御装置20は、マルチコプターMの飛行時における姿勢や基本的な飛行動作を制御するプログラムである飛行制御プログラムFSを有している。飛行制御プログラムFSは、飛行制御センサ群Sやレーザ測距センサ35から取得した情報を基に個々のロータRの回転数を調節し、機体の姿勢や位置の乱れを補正しながらマルチコプターMを飛行させる。
 制御装置20はさらに、マルチコプターMを自律飛行させるプログラムである自律飛行プログラムAPを有している。そして、制御装置20のメモリ22には、マルチコプターMの目的地や経由地の経緯度、飛行中の高度や速度などが指定されたパラメータである飛行計画FPが登録されている。自律飛行プログラムAPは、オペレータ端末51からの指示や所定の時刻などを開始条件として、飛行計画FPに従ってマルチコプターMを自律的に飛行させることができる。
 このように、本形態のマルチコプターMは高度な飛行制御機能を備えた無人航空機である。ただし、本発明の無人航空機はマルチコプターMの形態には限定されず、例えば飛行制御センサ群Sから一部のセンサが省略された機体や、自律飛行機能を備えず手動操縦のみにより飛行可能な機体を用いることもできる。また、本発明の無人航空機はマルチコプターの形態には限られず、ヘリコプターであってもよい。
[レーザ測距センサ]
 本形態のマルチコプターMは、一対のレーザ測距センサ35を備えることにより、塗装面に対する機体の正確な姿勢を特定および自動補正することが可能とされている。これによりノズルカバー75の開口部751を塗装面に対してより正確に正対させることが可能となり、塗装作業の安定性および品質が高められている。
 本形態のレーザ測距センサ35は、前側のクロスチューブ81の左右の端部近傍に配置されている。これにより塗装面との距離だけでなく、塗装面に対する機体のヨー方向の傾きを自動補正することが可能とされている。なお、本形態のレーザ測距センサ35は、上下方向の位置を揃えて配置されているが、例えばこれらレーザ測距センサ35の上下方向の位置をずらして配置することで、塗装面に対するピッチ方向の傾きも自動補正することができる。
 また、本発明の測距センサはレーザ測距センサ35には限られず、塗装面との距離を測定可能なセンサであれば、例えば赤外線、超音波、レーダー(電波)、カメラやステレオカメラを用いた画像認識などを用いた測距センサであってもよい。また、測距センサの数も2つには限られず、目的に応じて任意に変更可能である。さらに、レーザ測距センサ35は必須の構成ではなく、レーザ測距センサ35がなくても所望の品質で塗装作業が可能な場合には省略することもできる。
[変形例]
 上記実施形態のマルチコプターMは前方にある構造物の面を塗装する構成とされているが、これを構造物の天井面を塗装する構成に変更することも可能である。その場合、スプレーガン72やノズルカバー75の開口部751を上方に向け、必要であればキャスター19を上方に突き出すように設け、レーザ測距センサ35の測定方向も天井面に向ければよい。この場合でも、必要な開口面積を有する開口部751を天井面に対して非接触に、かつ十分に寄せて塗料を放出することができ、塗装作業を安定した品質で行うことできる。
 以上、本発明の実施形態について説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えることができる。
 

Claims (9)

  1.  水平回転翼であるロータと、
     液剤を噴射可能な塗装装置と、
     周辺物との接触によりあらゆる方向へ転動可能な車輪と、を備え、
     前記塗装装置は液剤を噴射するノズルを有し、
     前記車輪は、機体から前記ノズルの噴射方向側に突き出すように配置されていることを特徴とする無人航空機。
  2.  前記塗装装置は、前記ノズルの噴射口を覆い、前記ノズルの噴射方向側に開口部を有するカバー体であるノズルカバーを有し、
     前記ノズルは前記噴射口を水平方向に向けて配置されており、
     前記噴射口が向けられた方向を前記無人航空機の前方としたときに、前記ノズルカバーの前記開口部は、前記ロータの回転面の範囲よりも前方に配置されていることを特徴とする請求項1に記載の無人航空機。
  3.  前記ノズルカバーは、前記噴射口の位置における流路断面積よりも前記開口部の開口面積の方が大きいことを特徴とする請求項2に記載の無人航空機。
  4.  前記ノズルカバーは、前記噴射口の位置から前記開口部に向かって次第に流路断面積が大きくなる形状であることを特徴とする請求項3に記載の無人航空機。
  5.  前記塗装装置は、
      前記液剤が充填された液剤タンクと、
      前後方向に延びる筒状体であるノズルパイプと、を有し、
     前記ノズルは前記ノズルパイプの前端に取り付けられており、
     前記液剤タンクの前記液剤は、前記ノズルパイプを通って前記ノズルに供給されることを特徴とする請求項1に記載の無人航空機。
  6.  前記塗装装置は前記液剤を圧送する圧送装置をさらに有し、
     前記圧送装置には前記ノズルパイプの後端が接続されており、
     前記圧送装置は前記液剤タンクよりも下方に配置されることを特徴とする請求項5に記載の無人航空機。
  7.  複数の測距センサをさらに備え、
     前記複数の測距センサは、前記ノズルの噴射方向にその測定方向が向けられていることを特徴とする請求項1から請求項6のいずれか一項に記載の無人航空機。
  8.  同方向に突き出した3つ以上の前記車輪を有することを特徴とする請求項1に記載の無人航空機。
  9.  水平回転翼であるロータと、
     液剤を噴射するノズルと、
     前記ノズルの噴射口を覆い、前記ノズルの噴射方向側に開口部を有するカバー体であるノズルカバーと、
     機体から前記ノズルの噴射方向側に突き出すように配置された車輪、または、前記ノズルの噴射方向にその測定方向が向けられた測距センサと、を備える無人航空機を用いた塗装方法であって、
     前記ノズルカバーの開口部を塗装面に近接させ、該開口部の開口面積を単位として塗装を行うことを特徴とする塗装方法。

     
PCT/JP2019/038599 2018-10-12 2019-09-30 無人航空機および塗装方法 WO2020075562A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-193017 2018-10-12
JP2018193017A JP6676846B1 (ja) 2018-10-12 2018-10-12 無人航空機

Publications (1)

Publication Number Publication Date
WO2020075562A1 true WO2020075562A1 (ja) 2020-04-16

Family

ID=70058012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038599 WO2020075562A1 (ja) 2018-10-12 2019-09-30 無人航空機および塗装方法

Country Status (2)

Country Link
JP (1) JP6676846B1 (ja)
WO (1) WO2020075562A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210387721A1 (en) * 2019-12-18 2021-12-16 Shanghai Autoflight Co., Ltd. Multi-rotor aircraft with multi-shaft dislocation layout
WO2024057825A1 (ja) * 2022-09-15 2024-03-21 ナノフロンティアテクノロジー株式会社 塗布用ドローン装置および塗布方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124392A1 (ja) * 2020-12-11 2022-06-16 株式会社A.L.I. Technologies 飛行体及び飛行体の制御方法
KR102511743B1 (ko) * 2022-03-28 2023-03-21 주식회사 우성디앤씨 건설용 드론 및 이를 이용한 구조물 관리방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144274U (ja) * 1984-08-25 1986-03-24 ヤマホ工業株式会社 除草機のノズルカバ−
JPS643174B2 (ja) * 1982-08-04 1989-01-19 Mitsui Petrochemical Ind
JP3133005U (ja) * 2007-04-11 2007-06-28 北海道糖業株式会社 動力噴霧機に装着する畦間散布バー
JP2010017155A (ja) * 2008-07-12 2010-01-28 Minoru Industrial Co Ltd 歩行型噴霧機
JP2017109603A (ja) * 2015-12-16 2017-06-22 株式会社Soken 飛行装置
WO2017220803A2 (en) * 2016-06-23 2017-12-28 Arto Koivuharju Surface treatment apparatus
WO2018064261A1 (en) * 2016-09-28 2018-04-05 Free Form Fibers, Llc Multi-composition fiber with refractory additive(s) and method of making

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5635333B2 (ja) * 2010-08-20 2014-12-03 公益財団法人鉄道総合技術研究所 反射ターゲット形成用ラジオコントロール航空機
CN103640700A (zh) * 2013-12-13 2014-03-19 江苏大学 一种固定翼飞机喷雾用防漂移喷头装置
CN103661946A (zh) * 2013-12-13 2014-03-26 江苏大学 一种旋翼无人机喷雾用导流防漂移装置
US10099778B2 (en) * 2016-04-19 2018-10-16 Prodrone Co., Ltd. Unmanned aerial vehicle
JP2018000109A (ja) * 2016-07-01 2018-01-11 Tead株式会社 無人飛行体の流体散布用器具
JP6758668B2 (ja) * 2016-09-28 2020-09-23 アトミクス株式会社 塗装システム、及び塗装方法
WO2018083839A1 (ja) * 2016-11-04 2018-05-11 英男 鈴木 垂直離着陸可能飛行体、垂直離着陸可能飛行体のコントローラ、制御方法及び制御プログラム
JP6403174B1 (ja) * 2017-06-01 2018-10-10 西武建設株式会社 噴射ノズルを備えた無人航空機、およびコンクリート構造物の補修方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643174B2 (ja) * 1982-08-04 1989-01-19 Mitsui Petrochemical Ind
JPS6144274U (ja) * 1984-08-25 1986-03-24 ヤマホ工業株式会社 除草機のノズルカバ−
JP3133005U (ja) * 2007-04-11 2007-06-28 北海道糖業株式会社 動力噴霧機に装着する畦間散布バー
JP2010017155A (ja) * 2008-07-12 2010-01-28 Minoru Industrial Co Ltd 歩行型噴霧機
JP2017109603A (ja) * 2015-12-16 2017-06-22 株式会社Soken 飛行装置
WO2017220803A2 (en) * 2016-06-23 2017-12-28 Arto Koivuharju Surface treatment apparatus
WO2018064261A1 (en) * 2016-09-28 2018-04-05 Free Form Fibers, Llc Multi-composition fiber with refractory additive(s) and method of making

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210387721A1 (en) * 2019-12-18 2021-12-16 Shanghai Autoflight Co., Ltd. Multi-rotor aircraft with multi-shaft dislocation layout
WO2024057825A1 (ja) * 2022-09-15 2024-03-21 ナノフロンティアテクノロジー株式会社 塗布用ドローン装置および塗布方法

Also Published As

Publication number Publication date
JP6676846B1 (ja) 2020-04-08
JP2020059001A (ja) 2020-04-16

Similar Documents

Publication Publication Date Title
WO2020075562A1 (ja) 無人航空機および塗装方法
US20230019134A1 (en) Unmanned aerial vehicle for painting structures
US10099778B2 (en) Unmanned aerial vehicle
JP2019194086A (ja) 飛行体及び飛行体の制御方法
WO2020066889A1 (ja) 無人航空機
US20160355258A1 (en) Aerial Fluid Delivery System
JP6178949B1 (ja) 無人航空機
CN108438227A (zh) 基于多旋翼无人机飞行平台的侧向喷涂构造
US20160179097A1 (en) Unmanned Aerial Vehicle and a Method for Landing the Same
AU2017214847A1 (en) Aerial platforms for aerial spraying and methods for controlling the same
CN105278536B (zh) 一种无人机姿态保持系统
CN112262076A (zh) 具有用于无人驾驶飞行器的系绳引导件的装载结构
WO2020137554A1 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
KR102548185B1 (ko) 스러스터 안정화를 갖는 현수식 항공기 시스템
WO2017134658A1 (en) Aerial spraying assembly, and systems and methods for aerial spraying
JP7089735B2 (ja) 無人航空機
JP2008201183A (ja) 姿勢制御装置
US10518892B2 (en) Motor mounting for an unmanned aerial system
KR102651699B1 (ko) 제설용 드론
RU2796698C1 (ru) Подвесная система летательного аппарата со стабилизацией создающего тягу устройства
WO2023007910A1 (ja) 無人航空機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19871494

Country of ref document: EP

Kind code of ref document: A1