WO2020066960A1 - Motor structure - Google Patents

Motor structure Download PDF

Info

Publication number
WO2020066960A1
WO2020066960A1 PCT/JP2019/037164 JP2019037164W WO2020066960A1 WO 2020066960 A1 WO2020066960 A1 WO 2020066960A1 JP 2019037164 W JP2019037164 W JP 2019037164W WO 2020066960 A1 WO2020066960 A1 WO 2020066960A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
case
wheel
stator
board
Prior art date
Application number
PCT/JP2019/037164
Other languages
French (fr)
Japanese (ja)
Inventor
由幸 小林
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201980060842.7A priority Critical patent/CN112771768A/en
Publication of WO2020066960A1 publication Critical patent/WO2020066960A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M7/00Motorcycles characterised by position of motor or engine
    • B62M7/12Motorcycles characterised by position of motor or engine with the engine beside or within the driven wheel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a vehicle driven by, for example, an electric motor, and particularly to a motor structure.
  • the motor is integrated with a power control unit (PCU).
  • PCU power control unit
  • the in-wheel motor has a structure that can be housed inside the wheel. Therefore, it is desirable to provide the PCU inside the motor from the viewpoint of circuit protection. In such a configuration, it is necessary to radiate not only the heat from the PCU but also the motor. Therefore, in the above-described conventional technology, the heat pipe must be made thicker accordingly.
  • the heat pipe is provided through the shaft of the wheel, and the thickness is limited.
  • the present invention has been made in view of the above conventional example, and has as its object to provide a motor structure that can efficiently cool a motor having a built-in power control unit.
  • the present invention has the following configuration. That is, according to one aspect of the present invention, the structure of the motor (11) includes: A stator (24); A rotor (23) rotated by a magnetic force from the stator (24); A case (21, 29) of the motor connected to the rotor (23); A power control unit (10) disposed inside the case (21, 29) for driving the stator (24); A structure of a motor is provided, wherein cooling fins (111) are provided in the cases (21, 29).
  • a motor incorporating a power control unit can be efficiently cooled.
  • FIG. 1A shows an example of an appearance of a powered motorcycle 1 which is a saddle type vehicle according to the present embodiment.
  • the motorcycle 1 has an in-wheel motor (hereinafter, may be simply referred to as a motor) 11 as a drive source, and tires 12 are mounted around the in-wheel motor 11 as a hub.
  • the in-wheel motor 11 is rotatably supported by the swing arm 13 with its rotating shaft 112, and can directly rotate the drive wheels without the intervention of a speed reduction mechanism or a transmission mechanism.
  • Cooling fins 111 are provided on both side surfaces of the in-wheel motor 11, and an air flow is generated on the surface by the rotation to efficiently radiate heat propagated from the inside.
  • Power is supplied to the in-wheel motor 11 from a power control unit (or power control circuit, PCU) 10 (see FIG. 1B), and the number of rotations is controlled by the driver operating an accelerator provided on the grip of the steering wheel. Is controlled by
  • FIG. 1B is a block diagram of a control circuit for controlling the drive of the in-wheel motor 11.
  • the in-wheel motor 11 of this embodiment is an outer rotor type surface magnet synchronous motor (SPMSM) structurally, and may be referred to as a brushless DC motor including the PCU 10.
  • SPMSM surface magnet synchronous motor
  • the in-wheel motor 11 is driven by a three-phase AC power supplied from the PCU 10. Each phase of the AC power supply may be a sine wave or a rectangular wave.
  • the PCU 10 is driven by a low-voltage power supply (for example, a 12-V power supply) 104 and includes a controller 101 and an inverter 102.
  • the output signal (Hall sensor signal) of the Hall sensor for detecting the rotation position of the rotor from the motor 103 is input to the controller 101.
  • the motor 103 indicates a portion where the PCU is excluded from the in-wheel motor 11.
  • the controller 101 inputs a control signal for performing control such as switching of a current from a high-voltage power supply (HV battery) 105 to the inverter 102 based on the input Hall sensor signal.
  • the controller 101 further adjusts the timing of a control signal to the inverter 102 to control the output frequency of the inverter 102 according to the signal indicating the accelerator opening.
  • the configuration may be such that not only the frequency but also the current can be controlled.
  • the inverter 102 converts the high-voltage power supply 105 into three-phase AC U, V, W according to a control signal from the controller 101 and inputs the three-phase AC to the motor 103.
  • the motor 103 is driven in synchronization with the frequency of the input power supply.
  • the motor 103 includes a temperature sensor and a Hall sensor.
  • a temperature signal indicating a temperature detected by the temperature sensor and a Hall sensor signal indicating a magnetic field detected by the Hall sensor are input to the controller 101.
  • the Hall sensor signal detects the electric rotational position of the rotor by detecting the magnetic field of a permanent magnet attached to the rotor surface so that S poles and N poles are alternately arranged.
  • the PCU 10 is incorporated inside the in-wheel motor 11 as described later.
  • the in-wheel motor 11 configured as described above, the drive wheels of the motorcycle 1 are rotated, and the motorcycle 1 can travel as intended by the driver.
  • FIG. 2A is an exploded perspective view of the in-wheel motor 11.
  • the main components of the in-wheel motor 11 are housed in a housing composed of a wheel case 21 and a wheel case 29 formed of metal or the like.
  • the wheel case 21 is provided with a hole through which the shaft 112 is provided in a rotation shaft portion thereof, and has a disk shape with a peripheral portion protruding.
  • fins 111 for heat radiation are provided on the outer and inner surfaces.
  • the fins 111 are a plurality of elongated protrusions parallel to each other, and are formed integrally with the wheel case 21. The height and the number may be determined according to the amount of heat generated in order to release the heat generated inside the in-wheel motor 11.
  • the wheel case 29 has the same configuration as the wheel case 21, but in this example, there is no overhang of the peripheral portion provided on the outer peripheral portion. However, a configuration similar to that of the wheel case 21 may be adopted.
  • the wheel case 21 and the wheel case 29 are fixed to each other with, for example, bolts or the like to form a case of the in-wheel motor 11, and are attached to the shaft 112 via bearings 22 and 28. For this reason, the wheel cases 21 and 29 can rotate with respect to the shaft 112 which is fixed to the swing arm 13 and does not rotate, and the tire 12 is attached to the outer periphery thereof, and also serves as a hub for driving wheels.
  • the rotor 23 is connected or fixed along the inside of the overhang of the peripheral portion of the wheel case 21.
  • the rotor 23 is configured by arranging a plurality of permanent magnets, for example, 16 or 32, while alternately reversing the polarity. This is similar to a general outer rotor type motor.
  • the circuit case 26 is fixed to the shaft 112.
  • the circuit case 26 is, for example, a metal disk-shaped member centered on the shaft 112.
  • a part of the surface of the circuit case 26 facing the wheel case 29 is provided with a radiating fin preferably formed integrally with the circuit case 26.
  • a Hall element substrate 27 provided with a Hall sensor is attached to a part of the same surface.
  • a PCU board 25 provided with the PCU 10 is attached to the surface of the circuit case 26 opposite to the Hall element board 27.
  • the PCU board 25 and the Hall element board 27 are connected by necessary signal lines and power lines through through holes formed in the circuit case 26.
  • the fin is not provided on the surface of the circuit case 26 on the PCU board 25 side in this example, it may be provided.
  • the stator 24 is attached to the circuit case 26 so as to surround the periphery thereof. That is, the stator 24 is fixed to the shaft 112 via the circuit case 26. Stator 24 includes windings respectively connected to three-phase AC power supply UVW from inverter 102. The stator 24 is fixed to the shaft 112, and the rotor 23 outside the stator 24 rotates.
  • FIG. 2B is a sectional view showing a section parallel to the rotation axis of the in-wheel motor 11.
  • the rotor 23, the stator 24, the substrate case 26, and the like are housed in a housing formed by the wheel cases 21 and 29 around the shaft 112 as an axis.
  • the board case 26 is a heat conductive member having high heat conductivity such as a metal, and is a member for attaching boards and the like, and also functions as a heat radiating plate. Therefore, the PCU board 25 may be attached to the board case 26 such that the heat-generating components attached thereto come into contact with the board case 26 directly or via a heat conductive material having a high thermal conductivity. Further, the stator 24 also contacts the board case 26, and the heat is transmitted to the board case 26.
  • FIG. 4 shows the situation.
  • FIG. 4 shows the substrate case 26 and the wheel case 29 in the cross section of FIG.
  • the rotation of the wheel case 29 generates an airflow toward the outer peripheral side along the wheel case 29, and the airflow hits the outer edge of the wheel case 21 and goes to the space on the substrate case 26 side.
  • the air flow is directed toward the shaft 112 by the substrate case 26, and collides with the air flow generated on the opposite side across the shaft 112, thereby causing vortex convection as shown by an arrow in FIG.
  • Due to the flow of air heat generated in the PCU board 25, the Hall element board 27, the stator 24, and the like and transmitted to the board case 26 is further transmitted to the wheel case 29. Then, heat is effectively dissipated from the fins provided on the outer surface of the wheel case 29.
  • the wheel case 21 also has such an effect, and the heat generated inside can be effectively dissipated to the outside of the in-wheel motor 11.
  • FIGS. 3A to 3C show details of the attachment of the PCU board 25 and the Hall element board 27 to the board case 26.
  • FIG. 3A shows the PCU board 25 side of the board case 26
  • FIG. 3B shows the opposite Hall element board 27 side
  • FIG. 3C shows a cross section.
  • the PCU board 25 and the Hall element board 27 are respectively mounted on opposing surfaces of the board case 26 at positions that do not overlap with each other.
  • the PCU board 25 is mounted such that a power element 251 such as an FET of the inverter 102 provided thereon is in direct contact with the board case 26. Thereby, heat from the power element 251 is efficiently transmitted to the substrate case 26.
  • the Hall element 271 on the Hall element substrate 27 is provided at an end on the rotor side to detect the rotational position of the rotor 23.
  • the board case 26 is configured so that its outer periphery is surrounded by the stator 243, and is coupled to the shaft 112 at the center.
  • the shaft 112 is formed in a hollow shape with both ends open, and provided with holes 41 and 42 communicating with the surface of the wheel case on which the PCU board 25 is mounted.
  • Cables (or harnesses) 40 such as a power supply cable and other control signals guided from a power supply mounted on the main body of the motorcycle 1 and inserted into the hollow shaft from the end of the shaft 112 have holes 41 and 42. It is guided to the PCU board 25 via the PCU and is connected to a predetermined terminal.
  • the cable connecting the PCU board 25 and the hall element board 27 is routed through the opening 43 of the board case 26.
  • the PCU board 25 and the Hall element board 27 are mounted on the opposite sides of the board case 26.
  • the wiring between the PCU board 25 and the Hall element board 27 can be simplified, and the configuration of the in-wheel motor 11 can be made compact. Furthermore, the fact that the wiring to the inside of the in-wheel motor 11 is realized through the hollow shaft 112 also contributes to downsizing of the in-wheel motor 11. Further, since the PCU board 25 and the Hall element board 27 are provided at positions that do not overlap each other, it is possible to reduce the influence of the heat generated by the inverter 102 on the PCU board 25, particularly on the Hall element circuit 27.
  • the fins provided on the case are arranged in parallel in a certain direction, but the invention is not limited to this.
  • they may be arranged radially around the shaft.
  • the shape may be not only a linear shape but also a curved shape. Further, the shape may be determined in consideration of not only the heat radiation efficiency but also the wind noise and the like.
  • the vehicle using the in-wheel motor 11 as power is a two-wheeled vehicle, but may be a three-wheeled vehicle or a four-wheeled vehicle.
  • the drive wheels are not limited to the rear wheels, but may be the front wheels, or may be all the wheels of the vehicle.
  • the motorcycle is not limited to a vehicle having wheels in front and rear, but may be a vehicle having wheels parallel to the traveling direction such as a wheelchair. In that case, both wheels become drive wheels and are driven by the in-wheel motor 11.
  • the in-wheel motor 11 may be configured to be able to reversely rotate (that is, retreat) under the control of the controller 101.
  • the in-wheel motor 11 may be used as a power source for rotating an object without being limited to the driving wheels of the vehicle.
  • a member that efficiently guides the traveling wind to the hub of the driving wheel may be attached to the vehicle.
  • the structure of the motor (11) is A stator (24); A rotor (23) rotated by a magnetic force from the stator (24); A case (21, 29) of the motor connected to the rotor (23); A power control unit (10) disposed inside the case (21, 29) for driving the stator (24); A structure of a motor is provided, wherein cooling fins (111) are provided in the cases (21, 29).
  • the motor (11) has the structure of (1),
  • the power control unit (10) is attached to a heat conducting member (26) fixed to the stator (24),
  • the fin (111) is provided on a side surface through which a shaft rotating together with the rotor (23) passes, and an inner surface facing the heat conducting member (26).
  • a featured motor structure is provided.
  • cooling fins are provided inside the case, and the cooling effect can be further improved.
  • the structure of the motor (11) of (2) is A motor structure is provided in which the heat conducting member (26) is provided with cooling fins (111) on a surface facing the inner surface of the case (21, 29). Thereby, the cooling effect can be further improved by providing the heat conduction member with the cooling fins.
  • the motor (10) according to any one of (1) to (3), A hollow shaft (112) rotatable with respect to the case (21, 29), which is fixed to the stator (24) and serves as an axis of the case (21, 29) rotating with the rotor (23).
  • a motor structure is provided in which a harness connected to the power control unit (10) is inserted into the shaft (112) and wired to the inside of the cases (21, 29). .
  • the tire (12) is mounted on the outer periphery of the case (21, 29) of the motor (11) having any one of the structures (1) to (4).
  • a vehicle is provided having driving wheels mounted thereon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

Provided is an outer rotor motor in which a power control unit (PCU) 10 is attached to a heat sink plate 26 fixed to a stator that does not rotate. The heat sink plate 26 is provided with fins, and an oppossing motor case 29 is also provided with fins on an inner surface and a side surface thereof. The case 29 rotates together with the rotor and generates an air flow inside the motor, causing the heat of the heat sink plate to be transmitted to the case and diffused to the outside.

Description

モータの構造Motor structure
 本発明は、例えば電気モータを駆動源とする車両に関し、特にモータの構造に関する。 The present invention relates to a vehicle driven by, for example, an electric motor, and particularly to a motor structure.
 電動車両のコンパクト化のために、駆動源である電気モータをインホイールモータとする構成が有効である。インホイールモータの発熱を、ヒートパイプを介して外部に放熱する構成が提案されている(特許文献1等参照)。 構成 In order to make an electric vehicle compact, it is effective to use an electric motor that is a drive source as an in-wheel motor. There has been proposed a configuration in which heat generated by an in-wheel motor is radiated to the outside via a heat pipe (see Patent Document 1 and the like).
特許第5169280号Patent No. 5169280
 インホイールモータの構成をよりコンパクトにするために、モータと電力制御部(Power Control Unit:PCU)とを一体化する構成がある。PCUをモータと一体化する際には、インホイールモータは車輪内部に収められる構造となるため、回路保護の観点からモータの内部にPCUを設けるのが望ましい。このような構成ではモータのみならずPCUからの熱も放熱する必要があるため、上述した従来技術では、その分ヒートパイプを太くしなければならない。しかし従来技術では、ヒートパイプは車輪の軸を通して設けられており、太さにも限度がある。 In order to make the configuration of the in-wheel motor more compact, there is a configuration in which the motor is integrated with a power control unit (PCU). When the PCU is integrated with the motor, the in-wheel motor has a structure that can be housed inside the wheel. Therefore, it is desirable to provide the PCU inside the motor from the viewpoint of circuit protection. In such a configuration, it is necessary to radiate not only the heat from the PCU but also the motor. Therefore, in the above-described conventional technology, the heat pipe must be made thicker accordingly. However, in the prior art, the heat pipe is provided through the shaft of the wheel, and the thickness is limited.
 本発明は上記従来例に鑑みてなされたもので、電力制御部を内蔵したモータを効率よく冷却できるモータの構造を提供することを目的とする。 The present invention has been made in view of the above conventional example, and has as its object to provide a motor structure that can efficiently cool a motor having a built-in power control unit.
 上記目的を達成するために本発明は以下の構成を有する。すなわち、本発明の一側面によれば、モータ(11)の構造であって、
 ステータ(24)と、
 前記ステータ(24)からの磁力によって回転するロータ(23)と、
 前記ロータ(23)に連結された、前記モータのケース(21,29)と、
 前記ケース(21,29)の内側に配置された、前記ステータ(24)を駆動するための電力制御部(10)と、を有し、
 前記ケース(21,29)に冷却用のフィン(111)を設けたことを特徴とするモータの構造が提供される。
In order to achieve the above object, the present invention has the following configuration. That is, according to one aspect of the present invention, the structure of the motor (11) includes:
A stator (24);
A rotor (23) rotated by a magnetic force from the stator (24);
A case (21, 29) of the motor connected to the rotor (23);
A power control unit (10) disposed inside the case (21, 29) for driving the stator (24);
A structure of a motor is provided, wherein cooling fins (111) are provided in the cases (21, 29).
 本発明によれば、電力制御部を内蔵したモータを効率よく冷却できる。 According to the present invention, a motor incorporating a power control unit can be efficiently cooled.
実施形態の二輪車の外観およびを示す図である。It is a figure showing appearance and a motorcycle of an embodiment. モータの駆動制御回路のブロック図である。It is a block diagram of a drive control circuit of a motor. 実施形態のインホイールモータの分解斜視図である。It is an exploded perspective view of the in-wheel motor of an embodiment. 実施形態のインホイールモータの断面図である。It is sectional drawing of the in-wheel motor of embodiment. 実施形態のインホイールモータにおける回路基板の配置を示した図である。It is a figure showing arrangement of a circuit board in an in-wheel motor of an embodiment. 実施形態のインホイールモータにおける回路基板の配置を示した図である。It is a figure showing arrangement of a circuit board in an in-wheel motor of an embodiment. 実施形態のインホイールモータにおける回路基板の配置を示した図である。It is a figure showing arrangement of a circuit board in an in-wheel motor of an embodiment. 実施形態のインホイールモータの駆動時の冷却原理を示す図である。It is a figure showing the cooling principle at the time of driving of the in-wheel motor of an embodiment.
 以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴のうち二つ以上の特徴は任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。
[第一実施形態]
 ●鞍乗型車両の構成
 図1Aに、本実施形態に係る鞍乗型車両である動力付き二輪車1の外観の一例を示す。二輪車1は駆動源としてインホイールモータ(以下、単にモータと呼ぶこともある。)11を有しており、インホイールモータ11をハブとしてその周りにタイヤ12が装着されている。インホイールモータ11は、その回転軸112でスイングアーム13に軸支され、減速機構や伝達機構を介することなく駆動輪を直に回転させることができる。インホイールモータ11の両側の側面には冷却用のフィン111が設けられており、回転によりその表面に空気の流れを生じ、内部から伝播した熱を効率的に放熱する。インホイールモータ11には、電力制御部(または電力制御回路、PCU)10(図1B参照)から電源が供給され、その回転数は、ハンドルのグリップ部に設けたアクセルを運転者が操作することで制御される。
Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. The following embodiments do not limit the invention according to the claims, and not all combinations of the features described in the embodiments are necessarily essential to the invention. Two or more features of the plurality of features described in the embodiments may be arbitrarily combined. In addition, the same or similar components are denoted by the same reference numerals, and redundant description will be omitted.
[First embodiment]
[Structure of Saddle Ride Type Vehicle] FIG. 1A shows an example of an appearance of a powered motorcycle 1 which is a saddle type vehicle according to the present embodiment. The motorcycle 1 has an in-wheel motor (hereinafter, may be simply referred to as a motor) 11 as a drive source, and tires 12 are mounted around the in-wheel motor 11 as a hub. The in-wheel motor 11 is rotatably supported by the swing arm 13 with its rotating shaft 112, and can directly rotate the drive wheels without the intervention of a speed reduction mechanism or a transmission mechanism. Cooling fins 111 are provided on both side surfaces of the in-wheel motor 11, and an air flow is generated on the surface by the rotation to efficiently radiate heat propagated from the inside. Power is supplied to the in-wheel motor 11 from a power control unit (or power control circuit, PCU) 10 (see FIG. 1B), and the number of rotations is controlled by the driver operating an accelerator provided on the grip of the steering wheel. Is controlled by
 図1Bに、インホイールモータ11の駆動制御のための制御回路のブロック図を示す。本実施形態のインホイールモータ11は、構造的にはアウターロータ型の表面磁石同期モータ(SPMSM)であり、PCU10を含めてブラシレス直流モータと呼ぶこともある。インホイールモータ11は、PCU10から供給される三相の交流電源により駆動される。この交流電源の各相は正弦波であってもよいし矩形波であってもよい。PCU10は低圧電源(例えば12V電源)104により駆動され、コントローラ101とインバータ102とを含む。コントローラ101には、モータ103からの、ロータの回転位置を検出するためのホールセンサの出力信号(ホールセンサ信号)が入力される。なおモータ103は、インホイールモータ11からPCUを除外した部分を指す。コントローラ101は、入力されたホールセンサ信号に基づいて、インバータ102に対して高圧電源(HVバッテリ)105からの電流に対するスイッチング等の制御を行うための制御信号を入力する。コントローラ101はさらに、アクセル開度を示す信号に応じてインバータ102の出力周波数を制御するために、インバータ102への制御信号のタイミングを調整する。さらに、周波数のみならず電流を制御できるように構成してもよい。 FIG. 1B is a block diagram of a control circuit for controlling the drive of the in-wheel motor 11. The in-wheel motor 11 of this embodiment is an outer rotor type surface magnet synchronous motor (SPMSM) structurally, and may be referred to as a brushless DC motor including the PCU 10. The in-wheel motor 11 is driven by a three-phase AC power supplied from the PCU 10. Each phase of the AC power supply may be a sine wave or a rectangular wave. The PCU 10 is driven by a low-voltage power supply (for example, a 12-V power supply) 104 and includes a controller 101 and an inverter 102. The output signal (Hall sensor signal) of the Hall sensor for detecting the rotation position of the rotor from the motor 103 is input to the controller 101. Note that the motor 103 indicates a portion where the PCU is excluded from the in-wheel motor 11. The controller 101 inputs a control signal for performing control such as switching of a current from a high-voltage power supply (HV battery) 105 to the inverter 102 based on the input Hall sensor signal. The controller 101 further adjusts the timing of a control signal to the inverter 102 to control the output frequency of the inverter 102 according to the signal indicating the accelerator opening. Further, the configuration may be such that not only the frequency but also the current can be controlled.
 インバータ102は、コントローラ101からの制御信号に応じて、高圧電源105を三相交流U,V,Wに変換してモータ103へと入力する。モータ103は、入力された電源の周波数に同期して駆動される。またモータ103には温度センサとホールセンサとを備えており、温度センサで検知した温度を示す温度信号と、ホールセンサで検知した磁界を示すホールセンサ信号がコントローラ101へと入力される。ホールセンサ信号は、ロータ表面に、S極とN極とが交互になるよう張り付けられた永久磁石の磁界を検知することで、ロータの電気的な回転位置を検知する。 (4) The inverter 102 converts the high-voltage power supply 105 into three-phase AC U, V, W according to a control signal from the controller 101 and inputs the three-phase AC to the motor 103. The motor 103 is driven in synchronization with the frequency of the input power supply. The motor 103 includes a temperature sensor and a Hall sensor. A temperature signal indicating a temperature detected by the temperature sensor and a Hall sensor signal indicating a magnetic field detected by the Hall sensor are input to the controller 101. The Hall sensor signal detects the electric rotational position of the rotor by detecting the magnetic field of a permanent magnet attached to the rotor surface so that S poles and N poles are alternately arranged.
 ここで、本実施形態においては、PCU10は、後述するようにインホイールモータ11の内部に組み込まれている。このように構成されるインホイールモータ11を用いて、二輪車1の駆動輪を回転させ、二輪車1を運転者の意図通りに走行させることができる。 Here, in the present embodiment, the PCU 10 is incorporated inside the in-wheel motor 11 as described later. By using the in-wheel motor 11 configured as described above, the drive wheels of the motorcycle 1 are rotated, and the motorcycle 1 can travel as intended by the driver.
 ●インホイールモータの構成
 図2Aはインホイールモータ11の分解斜視図である。インホイールモータ11の主要構成部品は、金属等で形成されたホイールケース21とホイールケース29とにより構成される筐体の内部に収められる。ホイールケース21は、その回転軸部分にシャフト112を通す穴が設けられており、周縁部が張り出した円盤形状を持つ。またその外側および内側の表面には、放熱用のフィン111が設けられている。フィン111は、本例では、互いに並列な複数の細長い張り出しであり、ホイールケース21と一体に成形されている。その高さや本数は、インホイールモータ11の内部で生じる熱を放出するために、その発熱量に応じて決定してよい。ホイールケース29は、ホイールケース21と同様の構成であるが、本例では外周部に設けた周縁部の張り出しがない。しかしホイールケース21と同様の構成としてもよい。ホイールケース21とホイールケース29とは、例えばボルトなどで互いに固定されてインホイールモータ11のケースを構成し、ベアリング22,28を介してシャフト112に取り付けられる。このため、ホイールケース21,29は、スイングアーム13に固定されて回転しないシャフト112に対して回転でき、その外周にタイヤ12が取り付けられて、駆動輪のハブともなる。
FIG. 2A is an exploded perspective view of the in-wheel motor 11. The main components of the in-wheel motor 11 are housed in a housing composed of a wheel case 21 and a wheel case 29 formed of metal or the like. The wheel case 21 is provided with a hole through which the shaft 112 is provided in a rotation shaft portion thereof, and has a disk shape with a peripheral portion protruding. Further, fins 111 for heat radiation are provided on the outer and inner surfaces. In this example, the fins 111 are a plurality of elongated protrusions parallel to each other, and are formed integrally with the wheel case 21. The height and the number may be determined according to the amount of heat generated in order to release the heat generated inside the in-wheel motor 11. The wheel case 29 has the same configuration as the wheel case 21, but in this example, there is no overhang of the peripheral portion provided on the outer peripheral portion. However, a configuration similar to that of the wheel case 21 may be adopted. The wheel case 21 and the wheel case 29 are fixed to each other with, for example, bolts or the like to form a case of the in-wheel motor 11, and are attached to the shaft 112 via bearings 22 and 28. For this reason, the wheel cases 21 and 29 can rotate with respect to the shaft 112 which is fixed to the swing arm 13 and does not rotate, and the tire 12 is attached to the outer periphery thereof, and also serves as a hub for driving wheels.
 ホイールケース21の周縁部の張り出しの内側に沿って、ロータ23が連結或いは固定される。ロータ23は、例えば16個あるいは32個といった複数の永久磁石を、極性を交互に反転させつつ配置して構成されている。これは一般的なアウターロータ型のモータと同様である。一方シャフト112には、回路ケース26が固定される。回路ケース26は、シャフト112を中心とする、例えば金属製の円盤形状の部材である。回路ケース26のホイールケース29に対向する面の一部には、好ましくは回路ケース26と一体的に形成された放熱用のフィンが設けられている。また同じ面の一部には、ホールセンサを設けたホール素子基板27が取り付けられる。また回路ケース26のホール素子基板27と反対側の面には、PCU10を設けたPCU基板25が取り付けられる。PCU基板25とホール素子基板27とは、回路ケース26に穿った通し穴を通して必要な信号線及び電力線で繋げられている。回路ケース26のPCU基板25側の面には、本例ではフィンが設けられていないが、設けてもよい。 ロ ー タ The rotor 23 is connected or fixed along the inside of the overhang of the peripheral portion of the wheel case 21. The rotor 23 is configured by arranging a plurality of permanent magnets, for example, 16 or 32, while alternately reversing the polarity. This is similar to a general outer rotor type motor. On the other hand, the circuit case 26 is fixed to the shaft 112. The circuit case 26 is, for example, a metal disk-shaped member centered on the shaft 112. A part of the surface of the circuit case 26 facing the wheel case 29 is provided with a radiating fin preferably formed integrally with the circuit case 26. A Hall element substrate 27 provided with a Hall sensor is attached to a part of the same surface. A PCU board 25 provided with the PCU 10 is attached to the surface of the circuit case 26 opposite to the Hall element board 27. The PCU board 25 and the Hall element board 27 are connected by necessary signal lines and power lines through through holes formed in the circuit case 26. Although the fin is not provided on the surface of the circuit case 26 on the PCU board 25 side in this example, it may be provided.
 回路ケース26には、その周囲を取り巻くようにステータ24が取り付けられる。すなわち、ステータ24は、回路ケース26を介してシャフト112に対して固定されている。ステータ24にはインバータ102からからの三相交流電源UVWにそれぞれ接続された巻き線が含まれる。ステータ24はシャフト112に固定されており、その外側のロータ23が回転する。 The stator 24 is attached to the circuit case 26 so as to surround the periphery thereof. That is, the stator 24 is fixed to the shaft 112 via the circuit case 26. Stator 24 includes windings respectively connected to three-phase AC power supply UVW from inverter 102. The stator 24 is fixed to the shaft 112, and the rotor 23 outside the stator 24 rotates.
 図2Bは、インホイールモータ11の回転軸に平行な断面を示す断面図である。シャフト112を軸として、ホイールケース21,29により構成された筐体内に、ロータ23、ステータ24、基板ケース26等が収容されている。ここで、基板ケース26は金属等の熱伝導性の高い熱伝導部材であり、基板類を取り付ける部材であるとともに、放熱板としても機能する。そのためPCU基板25は、そこに取り付けた発熱する部品が、直接、あるいは高い熱伝導率を持つ熱伝導素材を介して基板ケース26に接するように、基板ケース26に取り付けられてよい。さらにステータ24も基板ケース26に接触し、その熱が基板ケース26に伝播する。このような構成の結果、ステータ24やPCU基板25の熱は基板ケース26に伝達しやすい。また基板ケース26のフィンが設けられた側の面がホイールケース29に対向しており、ホイールケース29の回転によって、基板ケース26とホイールケース29との間の空間内に空気の流れを生じる。この空気流が、基板ケース26のフィンに接してそれを効果的に冷却する。逆にホール素子基板27は、基板ケース26に取り付けられるものの、基板ケース26からの熱がホール素子に伝播しにくいように取り付けられることが望ましい。 FIG. 2B is a sectional view showing a section parallel to the rotation axis of the in-wheel motor 11. The rotor 23, the stator 24, the substrate case 26, and the like are housed in a housing formed by the wheel cases 21 and 29 around the shaft 112 as an axis. Here, the board case 26 is a heat conductive member having high heat conductivity such as a metal, and is a member for attaching boards and the like, and also functions as a heat radiating plate. Therefore, the PCU board 25 may be attached to the board case 26 such that the heat-generating components attached thereto come into contact with the board case 26 directly or via a heat conductive material having a high thermal conductivity. Further, the stator 24 also contacts the board case 26, and the heat is transmitted to the board case 26. As a result of such a configuration, heat of the stator 24 and the PCU board 25 is easily transmitted to the board case 26. The surface of the board case 26 on which the fins are provided is opposed to the wheel case 29, and the rotation of the wheel case 29 generates an air flow in the space between the board case 26 and the wheel case 29. This air flow contacts and effectively cools the fins of the substrate case 26. Conversely, although the Hall element substrate 27 is attached to the substrate case 26, it is desirable that the Hall element substrate 27 be attached so that heat from the substrate case 26 is not easily transmitted to the Hall element.
 図4にその様子を示す。図4は、図2Bの断面のうち、基板ケース26とホイールケース29とについて、シャフト112から上部を示す。ホイールケース29が回転することで、ホイールケース29に沿って外周側へと向かう空気流が生じ、その空気流はホイールケース21の外縁に当たって基板ケース26側の空間へと向かう。その空気流は基板ケース26によりシャフト112側へと向けられ、シャフト112を挟んだ反対側でも生じている空気流と衝突して、図4に示す矢印のような渦上の対流を引き起こす。この空気の流れにより、PCU基板25やホール素子基板27、ステータ24等で生じて基板ケース26に伝達された熱は、さらにホイールケース29へと伝播される。そして、ホイールケース29の外側表面に設けたフィンから効果的に放熱される。ホイールケース21についても同様にこのような効果が生じ、内部で生じた熱をインホイールモータ11の外部へと効果的に放散できる。 Fig. 4 shows the situation. FIG. 4 shows the substrate case 26 and the wheel case 29 in the cross section of FIG. The rotation of the wheel case 29 generates an airflow toward the outer peripheral side along the wheel case 29, and the airflow hits the outer edge of the wheel case 21 and goes to the space on the substrate case 26 side. The air flow is directed toward the shaft 112 by the substrate case 26, and collides with the air flow generated on the opposite side across the shaft 112, thereby causing vortex convection as shown by an arrow in FIG. Due to the flow of air, heat generated in the PCU board 25, the Hall element board 27, the stator 24, and the like and transmitted to the board case 26 is further transmitted to the wheel case 29. Then, heat is effectively dissipated from the fins provided on the outer surface of the wheel case 29. The wheel case 21 also has such an effect, and the heat generated inside can be effectively dissipated to the outside of the in-wheel motor 11.
 図3A-図3Cに、基板ケース26に対するPCU基板25およびホール素子基板27の取り付けの詳細を示す。図3Aは基板ケース26のPCU基板25側を、図3Bはその反対のホール素子基板27側を、図3Cは断面を示す。PCU基板25とホール素子基板27はそれぞれ、基板ケース26の対向する面の、互いに重ならない位置に取り付けられる。PCU基板25は、その上に設けたインバータ102のFET等のパワー素子251が、基板ケース26に直に接するように取り付けられる。これにより、パワー素子251からの熱が効率的に基板ケース26に伝播される。またホール素子基板27上のホール素子271は、ロータ23の回転位置を検知するために、ロータ側の端部に設けられている。基板ケース26はその外周部をステータ243により囲まれるように構成され、その中心部でシャフト112と結合されている。シャフト112は両端が開いた中空に形成されており、ホイールケース内部の、PCU基板25が取り付けられた面の側に通じる穴41,42が設けられている。二輪車1の本体に搭載された電源から導かれてシャフト112の端部から中空のシャフト内へと挿通された電源ケーブルやその他の制御信号などのケーブル(あるいはハーネス)40は、穴41,42を介してPCU基板25へと導かれ、所定の端子に接続される。PCU基板25とホール素子基板27とを接続するケーブルは、基板ケース26の開口43を通して配線される。このように、PCU基板25とホール素子基板27は、基板ケース26の互いに反対の面に取り付けられる。 FIGS. 3A to 3C show details of the attachment of the PCU board 25 and the Hall element board 27 to the board case 26. FIG. 3A shows the PCU board 25 side of the board case 26, FIG. 3B shows the opposite Hall element board 27 side, and FIG. 3C shows a cross section. The PCU board 25 and the Hall element board 27 are respectively mounted on opposing surfaces of the board case 26 at positions that do not overlap with each other. The PCU board 25 is mounted such that a power element 251 such as an FET of the inverter 102 provided thereon is in direct contact with the board case 26. Thereby, heat from the power element 251 is efficiently transmitted to the substrate case 26. The Hall element 271 on the Hall element substrate 27 is provided at an end on the rotor side to detect the rotational position of the rotor 23. The board case 26 is configured so that its outer periphery is surrounded by the stator 243, and is coupled to the shaft 112 at the center. The shaft 112 is formed in a hollow shape with both ends open, and provided with holes 41 and 42 communicating with the surface of the wheel case on which the PCU board 25 is mounted. Cables (or harnesses) 40 such as a power supply cable and other control signals guided from a power supply mounted on the main body of the motorcycle 1 and inserted into the hollow shaft from the end of the shaft 112 have holes 41 and 42. It is guided to the PCU board 25 via the PCU and is connected to a predetermined terminal. The cable connecting the PCU board 25 and the hall element board 27 is routed through the opening 43 of the board case 26. As described above, the PCU board 25 and the Hall element board 27 are mounted on the opposite sides of the board case 26.
 このような構成によってPCU基板25とホール素子基板27との間の配線を簡単化でき、インホイールモータ11の構成をコンパクト化できる。さらに、インホイールモータ11内部への配線を中空のシャフト112を通して実現したことも、インホイールモータ11のコンパクト化に寄与する。またPCU基板25とホール素子基板27とは互いに重複しない位置に設けられているため、PCU基板25の、特にインバータ102により生じる熱によるホール素子回路27への影響を低減できる。 に よ っ て With such a configuration, the wiring between the PCU board 25 and the Hall element board 27 can be simplified, and the configuration of the in-wheel motor 11 can be made compact. Furthermore, the fact that the wiring to the inside of the in-wheel motor 11 is realized through the hollow shaft 112 also contributes to downsizing of the in-wheel motor 11. Further, since the PCU board 25 and the Hall element board 27 are provided at positions that do not overlap each other, it is possible to reduce the influence of the heat generated by the inverter 102 on the PCU board 25, particularly on the Hall element circuit 27.
 なお本実施形態では、ケースに設けたフィンは一定の方向に並列に配置されているが、これに限らない。たとえば、シャフトを中心とした放射状等に配列されてもよい。また直線的な形状のみならず、曲線的な形状であってもよい。また放熱の効率のみならず、風切り音等を考慮して形状を決定してもよい。 In the present embodiment, the fins provided on the case are arranged in parallel in a certain direction, but the invention is not limited to this. For example, they may be arranged radially around the shaft. Further, the shape may be not only a linear shape but also a curved shape. Further, the shape may be determined in consideration of not only the heat radiation efficiency but also the wind noise and the like.
 なお本実施形態ではインホイールモータ11を動力として用いる車両を二輪車としたが、三輪車や四輪車であってもよい。また駆動輪は後輪に限らず前輪としてもよいし、車両が備える全ての車輪としてもよい。また二輪車であっても前後に車輪を備えているものに限らず、車椅子など進行方向に対して左右に並列な車輪を備えた車両であってもよい。その場合には両輪が駆動輪となり、インホイールモータ11により駆動される。またこのような二輪車や四輪車の場合には、インホイールモータ11はコントローラ101による制御で逆回転(すなわち後退)できるよう構成されていてもよい。さらに車両の駆動輪に限らず、対象を回転させるための動力源として本実施形態に係るインホイールモータ11を用いてもよい。さらに車両の駆動輪としてインホイールモータ11を用いる場合には、走行風を効率的に駆動輪のハブ部分に導くような部材を車両に取り付けてもよい。 In the present embodiment, the vehicle using the in-wheel motor 11 as power is a two-wheeled vehicle, but may be a three-wheeled vehicle or a four-wheeled vehicle. The drive wheels are not limited to the rear wheels, but may be the front wheels, or may be all the wheels of the vehicle. Further, the motorcycle is not limited to a vehicle having wheels in front and rear, but may be a vehicle having wheels parallel to the traveling direction such as a wheelchair. In that case, both wheels become drive wheels and are driven by the in-wheel motor 11. In the case of such a two-wheeled vehicle or a four-wheeled vehicle, the in-wheel motor 11 may be configured to be able to reversely rotate (that is, retreat) under the control of the controller 101. Further, the in-wheel motor 11 according to the present embodiment may be used as a power source for rotating an object without being limited to the driving wheels of the vehicle. When the in-wheel motor 11 is used as a driving wheel of the vehicle, a member that efficiently guides the traveling wind to the hub of the driving wheel may be attached to the vehicle.
 ●実施形態のまとめ
 以上説明した本実施形態をまとめると以下のとおりである。
(1)本実施形態に係る第一の発明によれば、モータ(11)の構造であって、
 ステータ(24)と、
 前記ステータ(24)からの磁力によって回転するロータ(23)と、
 前記ロータ(23)に連結された、前記モータのケース(21,29)と、
 前記ケース(21,29)の内側に配置された、前記ステータ(24)を駆動するための電力制御部(10)と、を有し、
 前記ケース(21,29)に冷却用のフィン(111)を設けたことを特徴とするモータの構造が提供される。
 それにより、ケースはロータの回転とともに回転し、空気の流れを起こしやすくなるため、モータの冷却効率をより一層向上させることができる。
● Summary of Embodiment The following is a summary of the embodiment described above.
(1) According to the first invention according to the present embodiment, the structure of the motor (11) is
A stator (24);
A rotor (23) rotated by a magnetic force from the stator (24);
A case (21, 29) of the motor connected to the rotor (23);
A power control unit (10) disposed inside the case (21, 29) for driving the stator (24);
A structure of a motor is provided, wherein cooling fins (111) are provided in the cases (21, 29).
Thereby, the case rotates together with the rotation of the rotor, and the air flow easily occurs, so that the cooling efficiency of the motor can be further improved.
(2)本実施形態に係る第二の発明によれば、(1)のモータ(11)の構造であって、
 前記電力制御部(10)は前記ステータ(24)に対して固定された熱伝導部材(26)に取り付けられ、
 前記ケース(21,29)には、前記ロータ(23)とともに回転する軸が通る側面と、前記熱伝導部材(26)に対向する内側の面とに前記フィン(111)が設けられたことを特徴とするモータの構造が提供される。
 それにより、ケースの内部にも冷却用のフィンを設け、さらに冷却効果を向上させることができる。
(2) According to the second aspect of the present embodiment, the motor (11) has the structure of (1),
The power control unit (10) is attached to a heat conducting member (26) fixed to the stator (24),
In the case (21, 29), the fin (111) is provided on a side surface through which a shaft rotating together with the rotor (23) passes, and an inner surface facing the heat conducting member (26). A featured motor structure is provided.
Thus, cooling fins are provided inside the case, and the cooling effect can be further improved.
(3)本実施形態に係る第三の発明によれば、(2)のモータ(11)の構造であって、
 前記熱伝導部材(26)には、前記ケース(21,29)の内側の面と対向する面に冷却用のフィン(111)を設けたこと特徴とするモータの構造が提供される。
 それにより、熱伝導部材にも冷却用のフィンを設けることによって、さらに冷却効果を向上させることができる。
(3) According to the third invention of the present embodiment, the structure of the motor (11) of (2) is
A motor structure is provided in which the heat conducting member (26) is provided with cooling fins (111) on a surface facing the inner surface of the case (21, 29).
Thereby, the cooling effect can be further improved by providing the heat conduction member with the cooling fins.
(4)本実施形態に係る第三の発明によれば、(1)乃至(3)のいずれかのモータ(10)の構造であって、
 前記ステータ(24)に対して固定され、前記ロータ(23)と共に回転する前記ケース(21,29)の軸となる、前記ケース(21,29)に対して回動可能な中空のシャフト(112)を更に有し、
 前記電力制御部(10)に接続されるハーネスが、前記シャフト(112)内を挿通して前記ケース(21,29)の内部へと配線されることを特徴とするモータの構造が提供される。
 それにより、モータ内部における配線効率を向上させることができ、モータを小型化することが可能になる。
(4) According to a third aspect of the present invention, there is provided the motor (10) according to any one of (1) to (3),
A hollow shaft (112) rotatable with respect to the case (21, 29), which is fixed to the stator (24) and serves as an axis of the case (21, 29) rotating with the rotor (23). )
A motor structure is provided in which a harness connected to the power control unit (10) is inserted into the shaft (112) and wired to the inside of the cases (21, 29). .
As a result, the wiring efficiency inside the motor can be improved, and the size of the motor can be reduced.
(5)本実施形態に係る第三の発明によれば、(1)乃至(4)のいずれかの構造を持つモータ(11)の前記ケース(21,29)の外周にタイヤ(12)を取り付けた駆動輪を有することを特徴とする車両が提供される。
 それにより、ケースが車両の走行とともに回転し、空気の流れを起こしやすくなるため、冷却効率をより一層向上させることができる。
(5) According to the third aspect of the present embodiment, the tire (12) is mounted on the outer periphery of the case (21, 29) of the motor (11) having any one of the structures (1) to (4). A vehicle is provided having driving wheels mounted thereon.
As a result, the case rotates with the traveling of the vehicle, and the air flow is likely to occur, so that the cooling efficiency can be further improved.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention.
 本願は、2018年9月28日提出の日本国特許出願特願2018-184939を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims the priority of Japanese Patent Application No. 2018-184939 filed on Sep. 28, 2018, the entire contents of which are incorporated herein by reference.

Claims (5)

  1.  モータ(11)の構造であって、
     ステータ(24)と、
     前記ステータ(24)からの磁力によって回転するロータ(23)と、
     前記ロータ(23)に連結された、前記モータのケース(21,29)と、
     前記ケース(21,29)の内側に配置された、前記ステータ(24)を駆動するための電力制御部(10)と、を有し、
     前記ケース(21,29)に冷却用のフィン(111)を設けたことを特徴とするモータの構造。
    The structure of the motor (11),
    A stator (24);
    A rotor (23) rotated by a magnetic force from the stator (24);
    A case (21, 29) of the motor connected to the rotor (23);
    A power control unit (10) disposed inside the case (21, 29) for driving the stator (24);
    A motor structure, wherein cooling fins (111) are provided on the cases (21, 29).
  2.  請求項1に記載のモータ(11)の構造であって、
     前記電力制御部(10)は前記ステータ(24)に対して固定された熱伝導部材(26)に取り付けられ、
     前記ケース(21,29)には、前記ロータ(23)とともに回転する軸が通る側面と、前記熱伝導部材(26)に対向する内側の面とに前記フィン(111)が設けられたことを特徴とするモータの構造。
    The structure of the motor (11) according to claim 1,
    The power control unit (10) is attached to a heat conducting member (26) fixed to the stator (24),
    In the case (21, 29), the fin (111) is provided on a side surface through which a shaft rotating together with the rotor (23) passes, and an inner surface facing the heat conducting member (26). Characteristic motor structure.
  3.  請求項2に記載のモータ(11)の構造であって、
     前記熱伝導部材(26)には、前記ケース(21,29)の内側の面と対向する面に冷却用のフィン(111)を設けたこと特徴とするモータの構造。
    The structure of the motor (11) according to claim 2,
    The motor structure, wherein the heat conducting member (26) is provided with cooling fins (111) on a surface facing an inner surface of the case (21, 29).
  4.  請求項1乃至3のいずれか一項に記載のモータ(11)の構造であって、
     前記ステータ(24)に対して固定され、前記ロータ(23)と共に回転する前記ケース(21,29)の軸となる、前記ケース(21,29)に対して回動可能な中空のシャフト(112)を更に有し、
     前記電力制御部(10)に接続されるハーネスが、前記シャフト(112)内を挿通して前記ケース(21,29)の内部へと配線されることを特徴とするモータの構造。
    It is a structure of the motor (11) according to any one of claims 1 to 3,
    A hollow shaft (112) rotatable with respect to the case (21, 29), which is fixed to the stator (24) and serves as an axis of the case (21, 29) rotating with the rotor (23). )
    A motor structure, wherein a harness connected to the power control unit (10) is inserted into the shaft (112) and wired to the inside of the cases (21, 29).
  5.  請求項1乃至4のいずれか一項に記載の構造を持つモータ(11)の前記ケース(21,29)の外周にタイヤ(12)を取り付けた駆動輪を有することを特徴とする車両。 A vehicle comprising a motor (11) having a structure according to any one of claims 1 to 4, having a drive wheel with a tire (12) mounted on an outer periphery of the case (21, 29).
PCT/JP2019/037164 2018-09-28 2019-09-24 Motor structure WO2020066960A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980060842.7A CN112771768A (en) 2018-09-28 2019-09-24 Motor structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-184939 2018-09-28
JP2018184939A JP7156892B2 (en) 2018-09-28 2018-09-28 Motor structure

Publications (1)

Publication Number Publication Date
WO2020066960A1 true WO2020066960A1 (en) 2020-04-02

Family

ID=69952128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037164 WO2020066960A1 (en) 2018-09-28 2019-09-24 Motor structure

Country Status (3)

Country Link
JP (1) JP7156892B2 (en)
CN (1) CN112771768A (en)
WO (1) WO2020066960A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023002079A (en) * 2021-06-22 2023-01-10 株式会社日立製作所 in-wheel motor
EP4204290A2 (en) * 2021-07-21 2023-07-05 Intelligent Motion Limited Personal mobility vehicle
KR102576429B1 (en) * 2021-09-10 2023-09-08 주식회사 현대케피코 Inverter Integrated type In-wheel Motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205894A (en) * 2011-07-14 2011-10-13 Toshiba Corp Fully enclosed motor
US20130278094A1 (en) * 2012-04-20 2013-10-24 Nidec Motor Corporation Integrated direct drive motor and control
JP2016082669A (en) * 2014-10-15 2016-05-16 日本電産株式会社 Motor for ceiling fan, and ceiling fan
JP2016140147A (en) * 2015-01-26 2016-08-04 株式会社デンソー Rotary electric machine
JP2017092100A (en) * 2015-11-04 2017-05-25 株式会社デンソー Electronic device
WO2017175609A1 (en) * 2016-04-08 2017-10-12 ミネベアミツミ株式会社 Motor, in-wheel motor, and wheel device
CN207753570U (en) * 2017-11-15 2018-08-21 江苏一东航空机械有限公司 A kind of wheel hub motor radiator structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4486443B2 (en) * 2004-08-20 2010-06-23 本田技研工業株式会社 Wheel drive device for vehicle
JP2006282158A (en) * 2005-03-08 2006-10-19 Honda Motor Co Ltd Vehicle wheel driving device
JP5862645B2 (en) * 2013-11-29 2016-02-16 株式会社デンソー Drive device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205894A (en) * 2011-07-14 2011-10-13 Toshiba Corp Fully enclosed motor
US20130278094A1 (en) * 2012-04-20 2013-10-24 Nidec Motor Corporation Integrated direct drive motor and control
JP2016082669A (en) * 2014-10-15 2016-05-16 日本電産株式会社 Motor for ceiling fan, and ceiling fan
JP2016140147A (en) * 2015-01-26 2016-08-04 株式会社デンソー Rotary electric machine
JP2017092100A (en) * 2015-11-04 2017-05-25 株式会社デンソー Electronic device
WO2017175609A1 (en) * 2016-04-08 2017-10-12 ミネベアミツミ株式会社 Motor, in-wheel motor, and wheel device
CN207753570U (en) * 2017-11-15 2018-08-21 江苏一东航空机械有限公司 A kind of wheel hub motor radiator structure

Also Published As

Publication number Publication date
CN112771768A (en) 2021-05-07
JP2020058087A (en) 2020-04-09
JP7156892B2 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
WO2020066960A1 (en) Motor structure
US8820448B2 (en) In-wheel motor and electrically driven vehicle
JP5039171B2 (en) Electric drive device and electric power steering device equipped with the electric drive device
JP6829222B2 (en) Wireless in-wheel electrical assembly with integrated in-wheel cooling, and vehicles with it
US9352645B2 (en) In-wheel motor and electrically driven vehicle
TWI643433B (en) Rotary electric machine
CN104139827B (en) Cooling element and hub drive device for hub drive device
JP2010268541A (en) Rotating electrical machine
JP2006187116A (en) Electric wheel
US9595859B2 (en) Multi-phase multi-pole electric machine
JP2006333587A (en) Motor system
JP2017186006A (en) Motor and electric vehicle
JP2008172861A (en) Electric fan for vehicle
JP5796301B2 (en) Motor and electric power steering device
JP7083298B2 (en) Motor structure and vehicle
JP5562741B2 (en) Wheel-in motor and electric vehicle
US20210111609A1 (en) Motor device
KR101719631B1 (en) Fan and Shroud Assemble
US9774290B2 (en) Multi-phase multi-pole electric machine
JP6154452B2 (en) Wheel-in motor and electric vehicle
WO2013054522A1 (en) Vehicle drive device
JP5848400B2 (en) Wheel-in motor and electric vehicle
US20220399781A1 (en) Motor module and electric powered tool using the same
JP2010158099A (en) Molded motor and electric vehicle
TWI780582B (en) Motor structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865476

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865476

Country of ref document: EP

Kind code of ref document: A1