WO2020065915A1 - Wheel loader - Google Patents

Wheel loader Download PDF

Info

Publication number
WO2020065915A1
WO2020065915A1 PCT/JP2018/036237 JP2018036237W WO2020065915A1 WO 2020065915 A1 WO2020065915 A1 WO 2020065915A1 JP 2018036237 W JP2018036237 W JP 2018036237W WO 2020065915 A1 WO2020065915 A1 WO 2020065915A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle body
lift arm
wheel loader
detector
angle
Prior art date
Application number
PCT/JP2018/036237
Other languages
French (fr)
Japanese (ja)
Inventor
幸次 兵藤
正規 吉川
山下 将司
田中 哲二
祐樹 抜井
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to PCT/JP2018/036237 priority Critical patent/WO2020065915A1/en
Priority to JP2020547792A priority patent/JP7169361B2/en
Publication of WO2020065915A1 publication Critical patent/WO2020065915A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4008Control of circuit pressure

Definitions

  • the present invention relates to a wheel loader that performs a cargo handling operation.
  • the balance between the traction force (running driving force) and the excavating force of the front working machine becomes important. . If the traction force is too large for the digging force of the front work machine, the wheels slip when the bucket is pushed into the digging object and the lift arm is operated to lift the bucket upward. On the contrary, the traction force becomes small, and it becomes difficult for a load such as earth and sand to enter the bucket. Further, in this case, when the bucket is pushed into the object to be excavated, the reaction force acting on the lift arm increases, and the reaction force acts as a resistance, so that the bucket or the lift arm may not be lifted upward.
  • Patent Literature 1 discloses, as a traveling hydraulic circuit, a variable displacement traveling hydraulic pump driven by an engine and a variable displacement traveling hydraulic motor driven by pressure oil from the hydraulic pump.
  • a wheel loader using an HST circuit in which a traveling hydraulic pump and a traveling hydraulic motor are connected in a closed circuit by a pair of main pipelines is disclosed.
  • the maximum traction force of the HST motor is set to the upper limit value so that the maximum traction force reaches the upper limit. This makes it possible to take in sufficient load into the bucket.
  • the maximum tilting of the HST motor is limited to about 50 to 70% of the upper limit value, so that the traction force becomes too large. In this way, the balance between the lifting operation force of the lift arm (the digging force of the front working machine) and the traction force is favorably maintained, and the lifting operation of the loaded bucket is facilitated.
  • the operator switches the manual switch to limit the maximum tilt of the HST motor during the excavation operation in the L mode, the N mode, and the P mode according to the type of the ground and the road surface condition. Adjustment can be made in three stages.
  • ⁇ ⁇ Excavation work by a wheel loader may be performed while climbing up the ground in addition to the case where the vehicle body is installed on a flat ground. Specifically, the wheel loader moves forward on a steep slope while operating the lift arm in the upward direction, excavates the slope, and discharges the load to the top of the ground. While the wheel loader is climbing a hill, a force corresponding to (weight of vehicle body ⁇ sin ⁇ ) acts on the vehicle body toward the rear of the slope. Therefore, when the excavation operation is performed on a slope, the tractive force is reduced by (the weight of the vehicle body ⁇ sin ⁇ ) as compared with the case where the excavation operation is performed while the vehicle body is installed on a flat ground.
  • the wheel loader described in Patent Literature 1 is based on the premise that an excavation operation is performed in a state where a vehicle body is installed on a flat ground. Therefore, when the wheel loader performs an excavation operation while climbing the ground, a tractive force is applied. Is insufficient, and it is not possible to climb the hill while operating the lift arm upward. It is conceivable that the traction force is increased by switching to the P mode in which the maximum tilt limit value of the HST motor at the time of the excavation operation is the largest by a manual switch. It is necessary to switch the manual switch to the P mode.
  • an object of the present invention is to provide a wheel loader capable of improving work efficiency even when performing an excavation operation while climbing a hill.
  • the present invention provides an engine, a variable displacement traveling hydraulic pump driven by the engine, and a driving force of the engine connected to the traveling hydraulic pump in a closed circuit.
  • a front working machine having a lift arm provided at the front of the vehicle body and rotatable in a vertical direction, and driven by the engine to the front working machine.
  • the vehicle loader further includes an inclination state detector for detecting an inclination state of the vehicle body, wherein the controller is configured to control a traveling state detected by the traveling state detector, and to raise the lift arm detected by the operation amount detector. Based on the operation amount and the tilt state detected by the tilt state detector, it is determined whether or not a specific condition for specifying that the vehicle body is in an excavation state while climbing a slope is satisfied, and the specific condition is satisfied. , Wherein the maximum traction force of the vehicle body is set to be higher than the maximum traction force when the vehicle body is installed on a flat ground and is in an excavation state.
  • the work efficiency can be improved even when the digging operation is performed while climbing a hill.
  • FIG. 2 is a diagram illustrating a hydraulic circuit and an electric circuit related to a traveling drive of the wheel loader according to the first embodiment of the present invention.
  • 5 is a graph showing a relationship between an accelerator pedal depression amount and a target engine rotation speed.
  • FIG. 3 is a functional block diagram illustrating functions of a controller according to the first embodiment.
  • 6 is a flowchart illustrating a flow of a process executed by the controller according to the first embodiment.
  • FIG. 9 is a diagram illustrating a hydraulic circuit and an electric circuit related to traveling drive of the wheel loader according to the second embodiment. It is a flow chart which shows a flow of processing performed by a controller concerning a 2nd embodiment. It is a graph which shows the relation between the discharge pressure of the hydraulic pump for work equipment and the maximum displacement of the HST motor in the second embodiment. It is a flow chart which shows a flow of processing performed by a controller concerning a 3rd embodiment. It is a graph which shows the relation between the discharge pressure of the hydraulic pump for work equipment and the maximum displacement of the HST motor in the third embodiment.
  • FIG. 1 is a side view showing the appearance of the wheel loader 1 according to each embodiment of the present invention.
  • the wheel loader 1 includes a vehicle body including a front frame 1A and a rear frame 1B, and a front work machine 2 provided at a front portion of the vehicle body.
  • the wheel loader 1 is an articulated work vehicle that is steered by turning a vehicle body near the center.
  • the front frame 1A and the rear frame 1B are rotatably connected in the left and right direction by a center joint 10, and the front frame 1A is bent in the left and right direction with respect to the rear frame 1B.
  • FIG. 1 shows only the left front wheel 11A and the rear wheel 11B of the pair of left and right front wheels 11A and the rear wheels 11B.
  • the “front wheel 11A and the rear wheel 11B” may be simply referred to as “wheels 11A and 11B”.
  • a counter weight 14 are provided.
  • the operator cab 12 is disposed at the front
  • the counterweight 14 is disposed at the rear
  • the machine room 13 is disposed between the operator cab 12 and the counterweight 14.
  • the front working machine 2 includes a lift arm 21 attached to the front frame 1A, a pair of lift arm cylinders 22 that expand and contract to rotate the lift arm 21 in the vertical direction with respect to the front frame 1A, A bucket 23 attached to the tip end, a bucket cylinder 24 that expands and contracts to rotate the bucket 23 in the vertical direction with respect to the lift arm 21, and a bucket 23 and the bucket cylinder that are rotatably connected to the lift arm 21. 24, and a plurality of pipes (not shown) for guiding pressure oil to a pair of lift arm cylinders 22 and bucket cylinders 24.
  • FIG. 1 only the lift arm cylinder 22 arranged on the left side of the pair of lift arm cylinders 22 is shown by a broken line.
  • the lift arm 21 rotates upward when the rod 220 of each lift arm cylinder 22 extends, and rotates downward when each rod 220 contracts.
  • the bucket 23 tilts (rotates upward with respect to the lift arm 21) when the rod 240 of the bucket cylinder 24 extends, and dumps (rotates downward with respect to the lift arm 21) when the rod 240 contracts. I do.
  • the wheel loader 1 is a loading / unloading vehicle for performing a loading / unloading operation, for example, in an open pit mine or the like, for excavating earth and sand, minerals, and the like, and loading the dumped truck and the like.
  • the wheel loader 1 In the excavation work, in addition to the case where the bucket 23 rushes into the object to be excavated to excavate earth and sand, minerals, and the like in a state where the vehicle body is installed on a flat ground, the wheel loader 1 travels forward on the slope of the object to be excavated. In some cases, the bucket 23 excavates the slope.
  • the case where the wheel loader 1 performs the excavation operation while climbing a hill is referred to as “scraping work”.
  • the "pick-up work" will be specifically described with reference to FIGS.
  • FIG. 2A is an explanatory view for explaining the lifting operation of the wheel loader 1
  • FIG. 2B is an explanatory diagram for explaining the operation of the lift arm 21 during the lifting operation.
  • FIG. 3A is a graph showing a relationship between the detected body tilt angle and the converted value of the vehicle body tilt angle
  • FIG. 3B is a graph showing a relationship between the detected angle of the lift arm and the converted value of the vehicle body tilt angle. .
  • the wheel loader 1 travels on a flat ground toward the ground 100 to be excavated, and operates the front work machine 2 while climbing the ground 100 as it is to cut the slope. Excavate. Then, the earth and sand, minerals, and the like that have been excavated and piled in the bucket 23 are discharged on the top of the ground 100, and then the wheel loader 1 returns to the original place on the slope while moving backward.
  • the operator operates to lift the lift arm 21 upward as it goes up the slope.
  • the lift arm 21 When the wheel loader 1 is traveling on level ground (state (X) shown in FIG. 2A), the lift arm 21 is at the lowest position in the movable range in the vertical direction (the position shown in FIG. 2B). (X)), when the wheel loader 1 starts climbing the ground 100 (state (Y) shown in FIG. 2A), the lift arm 21 is in the horizontal posture (the position shown in FIG. 2B). (Y), just before the wheel loader 1 discharges the load in the bucket 23 to the top of the ground 100 (state (Z) shown in FIG. 2A), the lift arm 21 is lifted upward. It is at the cut position, that is, the highest position (the position (Z) shown in FIG. 2B) in the vertical movable range.
  • the position of the lift arm 21 does not need to be exactly the horizontal position, but may be a position slightly lower than the accurate horizontal position as shown in the position (Y) in FIG. That is, the “horizontal posture” of the lift arm 21 includes an error in the vertical direction from the accurate horizontal position.
  • Whether or not the wheel loader 1 is climbing a slope can be determined by using a traveling state detector that detects the traveling state of the vehicle body and an inclination state detector that detects the inclination of the vehicle body.
  • a traveling state detector that detects the traveling state of the vehicle body
  • an inclination state detector that detects the inclination of the vehicle body.
  • a vehicle body tilt angle sensor 130 as a vehicle body tilt angle detector that detects a vehicle body tilt angle ⁇
  • a lift as a lift arm angle detector that detects the angle ⁇ of the lift arm 21
  • An arm angle sensor 211 is used.
  • the body tilt angle sensor 130 is attached to the rear frame 1B as shown in FIG. 2A, and the lift arm angle sensor 211 is attached to the base of the lift arm 21 as shown in FIG. I have.
  • the lift arm When excavating in a state where the vehicle body is installed on a flat ground, only the bucket 23 is tilted. However, when performing a lifting operation, as described above, in addition to the tilt operation of the bucket 23, the lift arm is used. In order to move the vehicle body 21 upward, the inclination state of the vehicle body can also be detected by detecting the angle ⁇ of the lift arm 21. In a work vehicle such as the wheel loader 1, it is necessary to use a strong vehicle body inclination angle sensor 130 having a strong seismic resistance, which is relatively expensive. Is installed as a standard, it is possible to use the lift arm angle sensor 211 without increasing the cost.
  • the vehicle body inclination angle sensor 130 When the vehicle body inclination angle sensor 130 is used, as shown in FIG. 3A, when the vehicle body inclination detection angle ⁇ detected by the vehicle body inclination angle sensor 130 is 0 or more and less than a predetermined angle threshold ⁇ s, (0 ⁇ ⁇ ⁇ s) The converted vehicle body tilt angle value is set to 0, and when the detected vehicle body tilt angle ⁇ becomes equal to or larger than a predetermined angle threshold ⁇ s ( ⁇ ⁇ ⁇ s), the converted vehicle body tilt angle value increases from 0 in a positive direction.
  • the lift arm angle sensor 211 When the lift arm angle sensor 211 is used, as shown in FIG. 3B, if the lift arm detection angle ⁇ detected by the lift arm angle sensor 211 is equal to or greater than 0 and less than a predetermined angle threshold ⁇ s, (0 ⁇ ⁇ ⁇ s) The vehicle body inclination angle conversion value is set to 0, and when the lift arm detection angle ⁇ becomes equal to or larger than a predetermined angle threshold ⁇ s ( ⁇ ⁇ ⁇ s), the vehicle body inclination angle conversion value increases from 0 in a positive direction.
  • the “predetermined angle thresholds ⁇ s, ⁇ s” are angles corresponding to when the front wheel 11A approaches the slope of the ground 100, respectively. Therefore, when the vehicle body inclination detection angle ⁇ is equal to or greater than 0 and less than a predetermined angle threshold ⁇ s (0 ⁇ ⁇ ⁇ s), and when the lift arm detection angle ⁇ is equal to or greater than 0 and less than a predetermined angle threshold ⁇ s ( 0 ⁇ ⁇ ⁇ s) is the state (X) shown in FIGS. 2A and 2B, respectively.
  • the “first angle thresholds ⁇ 1, ⁇ 1” are angles corresponding to when the wheel loader 1 starts climbing the ground 100, that is, when the lift arm 21 takes a horizontal posture.
  • the vehicle body inclination angle sensor 130 When the vehicle body inclination angle sensor 130 is used, as shown in FIG. 3A, it is also possible to detect the vehicle body inclination angle when the wheel loader 1 is moving down the slope while moving backward. is there.
  • the inclination angle ⁇ of the ground 100 is, for example, 15 ° to 25 °, and the slope of the ground 100 is relatively steep.
  • a traction force (driving driving force) required when performing an excavation operation in a state where the vehicle body is installed on a flat ground is F
  • the traction force when performing an excavation operation on a slope such as a lifting work is (F ⁇ W sin ⁇ )
  • the traction force is reduced by W sin ⁇ as compared with the case where the excavation operation is performed in a state where the vehicle body is installed on a flat ground.
  • FIG. 4 is a diagram showing a hydraulic circuit and an electric circuit of the wheel loader 1 according to the first embodiment.
  • FIG. 5 is a graph showing the relationship between the accelerator pedal depression amount and the target engine speed.
  • 6A is a graph showing the relationship between the engine rotation speed and the displacement of the HST pump 41
  • FIG. 6B is a graph showing the relationship between the engine rotation speed and the input torque of the HST pump 41
  • FIG. 4 is a graph showing the relationship between the engine rotation speed and the discharge flow rate of the HST pump 41.
  • the wheel loader 1 includes an HST-type traveling drive device having a closed-circuit hydraulic circuit.
  • the HST-type traveling drive device stores the engine 3 and hydraulic oil.
  • a hydraulic oil tank 40 an HST pump 41 as a traveling hydraulic pump driven by the engine 3, an HST charge pump 41A for replenishing pressure oil for controlling the HST pump 41, and a pair of HST pumps 41
  • An HST motor 42 as a traveling hydraulic motor connected to the HST pump 41 in a closed circuit via 400L and 400R, a forward / reverse switching valve 43 for switching the forward / backward movement of the vehicle body, and an HST pump 41, an HST motor 42, and the like. It has a controller 5 for controlling each device.
  • the HST pump 41 is a swash plate type or oblique axis type variable displacement hydraulic pump whose displacement is controlled according to the tilt angle.
  • the tilt angle is adjusted by a tilt cylinder 44 driven by the action of pressure oil discharged from the HST charge pump 41A.
  • the HST motor 42 is a swash plate type or oblique axis type variable displacement hydraulic motor whose displacement is controlled according to the tilt angle, and transmits the driving force of the engine 3 to the wheels 11A and 11B.
  • the tilt angle is adjusted by the regulator 420 according to the command signal output from the controller 5.
  • the HST type traveling drive device first, when an operator depresses an accelerator pedal 61 provided in the cab 12, the engine 3 rotates, and the HST pump 41 is driven by the driving force of the engine 3.
  • the HST charge pump 41A is also driven by the driving force of the engine 3, and the pressure oil discharged from the HST charge pump 41A is guided to the tilt cylinder 44 via the forward / reverse switching valve 43.
  • the forward / reverse switching valve 43 is provided between the HST charge pump 41A and the tilt cylinder 44.
  • the forward / reverse switching valve 43 is connected to a discharge line 800 connected to the discharge side of the HST charge pump 41A by a pair of main lines 800A and 800B. Further, the forward / reverse switching valve 43 is connected to left and right oil chambers 44L, 44R of the tilt cylinder 44 by a pair of pilot lines 800L, 800R.
  • the forward / reverse switching valve 43 has a forward position 43A for moving the vehicle forward, a reverse position 43B for moving the vehicle backward, and a neutral position 43N for stopping the vehicle, and a forward / backward switching lever provided in the cab 12. 62 is operated.
  • the forward / reverse switching valve 43 switches to the forward position 43A
  • the upstream pressure of the throttle 401 acts on the oil chamber 44L on the left side of the tilt cylinder 44, and the downstream side of the throttle 401 on the right oil chamber 44R. Pressure acts.
  • the rod of the tilting cylinder 44 operates rightward in FIG. 4 due to the pressure difference generated between the left and right oil chambers 44L and 44R.
  • the tilt angle of the HST pump 41 increases, and the hydraulic oil from the HST pump 41 is guided to the HST motor 42 through the pipeline 400L, and the HST motor 42 rotates forward to move the vehicle forward.
  • the forward / reverse switching valve 43 when the forward / reverse switching valve 43 is switched to the reverse position 43B, the downstream pressure of the throttle 401 acts on the oil chamber 44L on the left side of the tilt cylinder 44, and the upstream side of the throttle 401 on the oil chamber 44R on the right side. Pressure acts. Then, the rod of the tilt cylinder 44 operates to the left in FIG. 4 due to the pressure difference generated between the left and right oil chambers 44L and 44R. As a result, the tilt angle of the HST pump 41 increases, and the hydraulic oil from the HST pump 41 is guided to the HST motor 42 through the pipeline 400R, and the HST motor 42 reverses and the vehicle moves backward.
  • the output torque from the HST motor 42 is transmitted to the front wheel 11A and the rear wheel 11B via the axle 15, and the wheel loader 1 To run. Therefore, the output torque of the HST motor 42 becomes a driving force for driving the wheel loader 1, that is, a traction force of the vehicle body.
  • the rotation speed of the engine 3 is adjusted by the amount of depression of the accelerator pedal 61, and the discharge amount of the HST charge pump 41A connected to the engine 3 is proportional to the rotation speed of the engine 3. Therefore, the differential pressure across the throttle 401 is proportional to the rotation speed of the engine 3, and the tilt angle of the HST pump 41 is also proportional to the rotation speed of the engine 3.
  • the depression amount of the accelerator pedal 61 is detected by a depression amount sensor 610 attached to the accelerator pedal 61.
  • the number of revolutions of the engine 3 is controlled in accordance with the target engine speed in accordance with the stepping amount detected by the stepping amount sensor 610.
  • the depression amount of the accelerator pedal 61 is proportional to the target engine rotation speed, and the target engine rotation speed increases as the depression amount of the accelerator pedal 61 increases. Then, when the depression amount of the accelerator pedal 61 becomes S2, the target engine rotation speed becomes the maximum rotation speed Nmax1.
  • the range of the depression amount of the accelerator pedal 61 in the range of 0 to S1 is the target engine rotation speed at the predetermined minimum rotation speed Nmin regardless of the depression amount of the accelerator pedal 61. It is set as a fixed dead zone.
  • the target engine rotation speed is maintained at the maximum target engine rotation speed Nmax regardless of the depression amount of the accelerator pedal 61. Is set to These ranges can be arbitrarily set and changed.
  • the rotation speed N of the engine 3 is proportional to the displacement q of the HST pump 41, and the rotation speed of the engine 3 is N1.
  • the displacement increases from 0 to a predetermined value qc.
  • the displacement of the HST pump 41 is constant at a predetermined value qc regardless of the engine speed.
  • input torque displacement volume ⁇ discharge pressure
  • the rotation speed N of the engine 3 is proportional to the input torque T of the HST pump 41, and the rotation speed of the engine 3 is N1.
  • the input torque increases from 0 to a predetermined value Tc as the speed increases from 0 to N2.
  • the input torque of the HST pump 41 is constant at a predetermined value Tc regardless of the engine speed.
  • the rotation speed N of the engine 3 increases, the discharge flow rate Q of the HST pump 41 increases, and the flow rate of the pressure oil flowing from the HST pump 41 into the HST motor 42 increases, so that the rotation speed of the HST motor 42 increases and the vehicle speed increases. Is faster.
  • the vehicle speed is detected by the motor rotation speed sensor 72 as the rotation speed of the HST motor 42 (see FIG. 4).
  • the wheel loader 1 can smoothly start and stop with less impact. Become.
  • the pressure oil discharged from the HST charge pump 41A is also guided to the pipelines 400L and 400R through the throttle 401 and the check valves 402A and 402B.
  • the downstream pressure of the throttle 401 is limited by a charge relief valve 403 provided on a pipe connecting the forward / reverse switching valve 43 and the hydraulic oil tank 40, and the maximum pressure of the pipes 400 ⁇ / b> L and 400 ⁇ / b> R is limited by a relief valve 404. Is done.
  • the HST traveling drive device is provided with a high-pressure selection valve 405 that selects the higher one of the pipeline pressures of the pipelines 400L and 400R that guide the hydraulic oil from the HST pump 41 to the HST motor 42.
  • the pressure selected by the high-pressure selection valve 405 is input to the controller 5.
  • the vehicle body tilt angle sensor 130 is used as a tilt state detector that detects the vehicle body tilt state, and the vehicle body tilt detection angle ⁇ detected by the vehicle body tilt angle sensor 130 is input to the controller 5. .
  • FIG. 7 is a diagram illustrating a hydraulic circuit related to driving of the front work machine 2.
  • FIG. 8 is a graph showing the relationship between the discharge pressure of the working machine hydraulic pump 45 and the opening area of the spool.
  • the wheel loader 1 includes a working machine hydraulic pump 45 driven by the engine 3 to supply hydraulic oil to the front working machine 2, and each of the lift arm cylinder 22 and the bucket cylinder 24. Operate the lift arm 21 and a control valve 46 provided between the work machine hydraulic pump 45 and controlling the flow of pressurized oil supplied from the work machine hydraulic pump 45 to the lift arm cylinder 22 and the bucket cylinder 24, respectively. And a bucket operation lever 230 for operating the bucket 23.
  • a fixed hydraulic pump is used as the working machine hydraulic pump 45, and is connected to the control valve 46 via a first conduit 801 as shown in FIG.
  • the discharge pressure from the working machine hydraulic pump 45 is detected by a discharge pressure sensor 75 provided on the first conduit 801, and a signal related to the detected discharge pressure is input to the controller 5.
  • the discharge pressure sensor 75 is an example of a discharge pressure detector that detects the discharge pressure of the working machine hydraulic pump 45.
  • the lift arm operating lever 210 and the bucket operating lever 230 are both modes of an operating device for operating the front work machine 2, and are provided in the cab 12 (see FIG. 1). For example, when the operator operates the lift arm operation lever 210, a pilot pressure proportional to the operation amount is generated as an operation signal.
  • the generated pilot pressure is guided to a pair of pilot lines 64L and 64R connected to a pair of pressure receiving chambers of the control valve 46, and acts on the control valve 46.
  • the spool in the control valve 46 strokes according to the pilot pressure, and the direction and the flow rate of the hydraulic oil are determined.
  • the control valve 46 is connected to a bottom chamber of the lift arm cylinder 22 by a second pipe 802, and connected to a rod chamber of the lift arm cylinder 22 by a third pipe 803.
  • Hydraulic oil discharged from the working machine hydraulic pump 45 is guided to the first pipeline 801 and is guided to the second pipeline 802 or the third pipeline 803 via the control valve 46.
  • the hydraulic oil is led to the second conduit 802
  • it flows into the bottom chamber of the lift arm cylinder 22, whereby the rod 220 of the lift arm cylinder 22 is extended and the lift arm 21 is raised.
  • the hydraulic oil is guided to the third conduit 803, it flows into the rod chamber of the lift arm cylinder 22, the rod 220 of the lift arm cylinder 22 contracts, and the lift arm 21 descends.
  • each of the lift arm operation lever 210 and the bucket operation lever 230 is a hydraulic lever, but an electric lever may be used.
  • a current value corresponding to the operation amount is used as an operation signal. Is generated as
  • the pilot pressure is detected by a pilot pressure sensor 76 as an operation signal sensor for detecting an operation signal according to the lift operation amount of the lift arm 21.
  • the pilot pressure sensor 76 is provided on a pilot line (the pilot line 64R in FIG. 7) corresponding to the lifting operation of the lift arm 21.
  • the pilot pressure sensor 76 is an embodiment of an operation signal detector that detects an operation signal from a lift arm operation lever 210 as an operation device.
  • the lifting operation amount of the lift arm operation lever 210 and the opening area of the spool of the control valve 46 are in a proportional relationship, and the opening area of the spool increases as the lifting operation amount of the lift arm operation lever 210 increases.
  • the lift arm operation lever 210 is largely operated in the direction in which the lift arm 21 is raised, the amount of hydraulic oil flowing into the lift arm cylinder 22 increases, and the rod 220 elongates quickly. That is, as the operation amount of the lift arm operation lever 210 increases, the operation speed of the lift arm 21 increases.
  • the range of 0 to 10% of the lifting operation amount of the lift arm operation lever 210 is set as a dead zone where the spool does not open even when the lift arm operation lever 210 is operated and the opening area is 0%.
  • the opening area of the spool is constant at 100%, and the full lever operation state is maintained. Note that these setting ranges can be arbitrarily changed.
  • both the discharge pressure sensor 75 and the pilot pressure sensor 76 This is an embodiment of an operation amount detector that detects the amount of operation of raising the lift arm 21 by the arm operation lever 210.
  • the controller 5 determines the lifting operation of the lift arm 21 using the discharge pressure Pa detected by the discharge pressure sensor 75.
  • the pilot opening generated according to the operation amount of the bucket operation lever 230 acts on the control valve 46, so that the opening area of the spool of the control valve 46 is controlled. Then, the amount of hydraulic oil flowing into and out of the bucket cylinder 24 is adjusted.
  • sensors and the like for detecting the operation of the bucket 23 are also provided on each pipeline of the hydraulic circuit.
  • FIG. 9 is a functional block diagram illustrating functions of the controller 5 according to the first embodiment.
  • the controller 5 includes a CPU, a RAM, a ROM, a HDD, an input I / F, and an output I / F connected to each other via a bus.
  • Various operating devices such as a forward / reverse switching lever 62 and various sensors such as a discharge pressure sensor 75, a stepping amount sensor 610, and a vehicle body tilt angle sensor 130 are connected to an input I / F, and a regulator 420 of the HST motor 42 is connected. Are connected to the output I / F.
  • the CPU reads an arithmetic program (software) stored in a recording medium such as a ROM, an HDD, or an optical disk, expands the arithmetic program on a RAM, and executes the expanded arithmetic program to execute arithmetic processing.
  • arithmetic program software stored in a recording medium such as a ROM, an HDD, or an optical disk
  • expands the arithmetic program on a RAM and executes the expanded arithmetic program to execute arithmetic processing.
  • the program and the hardware cooperate to realize the function of the controller 5.
  • the configuration of the controller 5 is described by a combination of software and hardware.
  • the present invention is not limited to this, and an integrated circuit that realizes the function of an arithmetic program executed on the wheel loader 1 side may be used. You may comprise using it.
  • the controller 5 includes a data acquisition unit 51, a specific condition determination unit 52, a motor control unit 53, and a storage unit 54.
  • the data acquisition unit 51 outputs a forward / reverse forward / backward switching signal output from the forward / backward switching lever 62, a depression amount of the accelerator pedal 61 detected by the depression amount sensor 610, and a working machine detected by the discharge pressure sensor 75.
  • Data on the discharge pressure Pa of the hydraulic pump 45 and data on the vehicle body inclination detection angle ⁇ (the amount of inclination) detected by the vehicle body inclination angle sensor 130 are acquired.
  • the specific condition determination unit 52 determines whether or not a specific condition for specifying that the wheel loader 1 is in an excavation state while climbing a slope is based on the signal and each data acquired by the data acquisition unit 51.
  • the specific condition determination unit 52 determines the forward traveling of the wheel loader 1 based on the forward / reverse switching signal and the amount of depression of the accelerator pedal 61, and determines the front based on the discharge pressure Pa of the hydraulic pump 45 for work equipment. A determination on the excavation operation of the work implement 2 and a determination on the tilt state of the vehicle body based on the vehicle body tilt detection angle ⁇ are performed. The specific condition determination unit 52 determines whether or not the specific condition is satisfied by performing the determination on these three conditions.
  • each of the forward / reverse switching lever 62 and the depression amount sensor 610 is one mode of a traveling state detector that detects the traveling state of the vehicle body of the wheel loader 1.
  • the forward traveling of the vehicle body is determined based on the forward / backward switching signal indicating forward traveling output from the forward / backward switching lever 62 and the depression amount of the accelerator pedal 61 detected by the depression amount sensor 610.
  • the traveling state detected by another traveling state detector mounted on the vehicle body such as, for example, detecting whether the traveling direction of the vehicle body is forward or backward based on the rotation direction of the propeller shaft. Based on this, the forward running of the vehicle body may be determined comprehensively.
  • the motor control unit 53 performs a maximum displacement volume qs (hereinafter, referred to as a “displacement volume”) when the excavation operation is performed by the front work machine 2 in a state where the vehicle body is installed on a flat ground.
  • a command signal based on a maximum displacement larger than “maximum displacement qs at the time of flat ground excavation operation” is output to the regulator 420 of the HST motor 42, and the maximum displacement qmax of the HST motor 42 is set at the maximum during the flat land excavation operation. The displacement is increased above the displacement volume qs.
  • the motor control unit 53 outputs a command signal based on the maximum displacement qs during the flat ground excavation operation to the HST. Output to the regulator 420 of the motor 42 to limit the maximum displacement qmax of the HST motor 42 to the maximum displacement qs at the time of level ground excavation operation.
  • the storage unit 54 stores a discharge pressure Ps (a discharge pressure of a hydraulic pressure source for extending the lift arm cylinder 22) of the work machine hydraulic pump 45 necessary for the excavation operation, a first angle threshold ⁇ 1 that is a threshold related to a vehicle body inclination angle, and a second angle threshold.
  • the angle threshold value ⁇ 2 and the maximum displacement qs at the time of the flat ground excavation operation are stored.
  • FIG. 10 is a flowchart showing a flow of processing executed by the controller 5 according to the first embodiment.
  • FIG. 11 is a graph showing the relationship between the discharge pressure Pa of the working machine hydraulic pump 45 and the maximum displacement qmax of the HST motor 42 in the first embodiment.
  • the data acquisition unit 51 acquires the depression amount of the accelerator pedal 61 output from the depression amount sensor 610 and the forward / reverse switching signal output from the forward / reverse switching lever 62 (step S501).
  • the specific condition determination unit 52 determines whether or not the wheel loader 1 is traveling forward based on the stepping amount and the forward / reverse switching signal acquired in step S501 (step S502).
  • step S502 When it is determined in step S502 that the wheel loader 1 is traveling forward (step S502 / YES), the data acquiring unit 51 determines the discharge pressure Pa of the working machine hydraulic pump 45 output from the discharge pressure sensor 75. It is acquired (step S503).
  • the specific condition determination unit 52 determines whether or not the discharge pressure Pa is equal to or higher than the discharge pressure Ps of the working machine hydraulic pump 45 necessary for the excavation operation, based on the discharge pressure Pa acquired in step S503. (Step S504).
  • step S504 determines whether the discharge pressure Pa is equal to or higher than the discharge pressure Ps of the work equipment hydraulic pump 45 required for the excavation operation (Pa ⁇ Ps) (step S504 / YES). If it is determined in step S504 that the discharge pressure Pa is equal to or higher than the discharge pressure Ps of the work equipment hydraulic pump 45 required for the excavation operation (Pa ⁇ Ps) (step S504 / YES), the data acquisition unit 51 determines whether the vehicle body tilt The vehicle body inclination detection angle ⁇ output from the angle sensor 130 is obtained (step S505).
  • the specific condition determination unit 52 determines whether or not the vehicle body inclination detection angle ⁇ is equal to or greater than 0 and less than the first angle threshold ⁇ 1 based on the vehicle body inclination detection angle ⁇ acquired in step S505. (Step S506).
  • step S506 If it is determined in step S506 that the vehicle body inclination detection angle ⁇ is equal to or greater than 0 and less than the first angle threshold ⁇ 1 (0 ⁇ ⁇ ⁇ 1) (step S506 / YES), the vehicle body is not climbing a hill.
  • the motor control unit 53 limits the maximum displacement qmax of the HST motor 42 to the maximum displacement qs at the time of the flatland excavation operation (step S507).
  • step S506 If it is determined in step S506 that the vehicle body inclination detection angle ⁇ is equal to or greater than 0 and is not less than the first angle threshold ⁇ 1 (step S506 / NO), the specific condition determination unit 52 then proceeds to step S506. It is determined whether the angle is equal to or more than the first angle threshold ⁇ 1 and less than the second angle threshold ⁇ 2 (step S508).
  • step S508 If it is determined in step S508 that the vehicle body inclination detection angle ⁇ is equal to or larger than the first angle threshold ⁇ 1 and smaller than the second angle threshold ⁇ 2 ( ⁇ 1 ⁇ ⁇ ⁇ 2) (step S508 / YES), the specific condition is satisfied. Therefore, the motor control unit 53 limits the maximum displacement qmax of the HST motor 42 to a first maximum displacement q1 (> qs) that is larger than the maximum displacement qs at the time of level digging operation (step S509). That is, in step S509, the motor control unit 53 raises the maximum displacement qmax of the HST motor 42 to be larger than the maximum displacement qs during the level ground excavation operation.
  • step S508 When it is determined in step S508 that the vehicle body inclination detection angle ⁇ is equal to or greater than the first angle threshold ⁇ 1 and not less than the second angle threshold ⁇ 2 (step S508 / NO), the specific condition determination unit 52 subsequently performs the vehicle body inclination detection It is determined whether or not the angle ⁇ is the second angle threshold ⁇ 2 (step S510).
  • step S503 the discharge pressure Pa is less than the discharge pressure Ps of the work machine hydraulic pump 45 required for the excavation operation (Pa ⁇ Ps) in step S504.
  • Step S504 / NO the discharge pressure Ps of the work machine hydraulic pump 45 required for the excavation operation
  • step S510 / NO the processing in the controller 5 ends.
  • the maximum displacement qmax of the HST motor 42 is automatically increased as shown in FIG. Since the maximum traction force of the vehicle body is higher than the maximum traction force at the time of level ground excavation operation by raising the vehicle body, the traction force of Wsin ⁇ , which has been reduced as compared with the level at the time of level ground excavation, can be compensated. This improves the work efficiency not only in the case of performing the excavation operation in a state where the vehicle body is installed on a flat ground, but also in the case of the lifting operation in which the vehicle body performs the excavation operation while traveling forward (uphill) on a steep slope. I can do it.
  • the controller 5 sets the maximum of the HST motor 42 to the maximum. While the displacement qmax is increased from the maximum displacement qs during the flat terrain excavation operation to the first maximum displacement q1 (from the two-dot chain line shown in FIG. 11 to the one-dot chain line shown in FIG. 11), the vehicle body inclination detection angle ⁇ becomes the second displacement.
  • the maximum displacement qmax of the HST motor 42 is increased from the maximum displacement qs during the flat terrain operation to the second maximum displacement q2 (> q1) (see FIG. 11). From the two-dot chain line to the solid line shown). That is, the larger the vehicle body inclination detection angle ⁇ is, the larger the rate of increase of the maximum displacement of the HST motor 42 is. For this reason, the maximum traction force of the vehicle body can be more accurately controlled according to the angle of the slope of the ground 100.
  • FIG. 12 is a diagram illustrating a hydraulic circuit and an electric circuit related to traveling drive of the wheel loader 1 according to the second embodiment.
  • FIG. 13 is a flowchart illustrating a flow of a process executed by the controller 5A according to the second embodiment.
  • FIG. 14 is a graph showing the relationship between the discharge pressure Pa of the working machine hydraulic pump 45 and the maximum displacement qmax of the HST motor 42 in the second embodiment.
  • the wheel loader 1 has a vehicle body during an excavation operation according to the hardness and specific gravity of earth and sand, minerals, and the like forming the ground 100, the state of the road surface at the work site, and the like.
  • the mode switch 60 is a manual switch, and is provided in the cab 12 (see FIG. 1).
  • the mode switching signal output from the mode switch 60 is input to the controller 5A.
  • the P mode is a mode in which the maximum traction force is minimized
  • the N mode is a case in which the maximum traction force is larger than that in the P mode
  • the L mode is a case in which the maximum traction force is larger than that in the N mode. This is the case.
  • the operator can perform the excavation work efficiently according to the environment of the site by switching the mode changeover switch 60 and selecting the optimum mode.
  • a lift arm angle sensor 211 (lift arm angle detector) for detecting the angle of the lift arm 21 is used for the tilt state detector for detecting the tilt state of the vehicle body. Therefore, in the controller 5A, the specific condition determination unit 52 determines the tilt state of the vehicle body based on the lift arm detection angle ⁇ output from the lift arm angle sensor 211.
  • the controller 5A is different from the controller 5 according to the first embodiment in how to increase the maximum traction force when specific conditions are satisfied. Specifically, as the lift arm detection angle ⁇ detected by the lift arm angle sensor 211 increases, the controller 5A determines that the discharge pressure Pa () of the working machine hydraulic pump 45 at the time of starting to limit the maximum traction force of the vehicle body. The value of the lift operation amount of the lift arm 21) is increased.
  • step S504 when it is determined in step S504 that the discharge pressure Pa is equal to or higher than the discharge pressure Ps of the work machine hydraulic pump 45 required for the excavation operation (Pa ⁇ Ps) (step S504 / YES), The acquisition unit 51 acquires the lift arm detection angle ⁇ (Step S505A).
  • the specific condition determination unit 52 determines whether or not the lift arm detection angle ⁇ is equal to or larger than 0 and smaller than the first angle threshold ⁇ 1 based on the lift arm detection angle ⁇ acquired in step S505A ( Step S506A).
  • step S506A If it is determined in step S506A that the lift arm detection angle ⁇ is equal to or greater than 0 and less than the first angle threshold ⁇ 1 (0 ⁇ ⁇ ⁇ 1) (step S506A / YES), the motor control unit 53 determines in step S503.
  • the maximum displacement qmax is limited to any of qP, qN, and qL (step S507A).
  • step S506A When it is determined in step S506A that the lift arm detection angle ⁇ is equal to or greater than 0 and is not less than the first angle threshold ⁇ 1 (step S506A / NO), subsequently, the specific condition determination unit 52 determines that the lift arm detection angle ⁇ It is determined whether or not the angle is equal to or larger than the first angle threshold ⁇ 1 and smaller than the second angle threshold ⁇ 2 (step S508A).
  • the limit value qP is set when the P mode is selected by the mode changeover switch 60
  • the limit value qN is set when the N mode is selected by the mode changeover switch 60
  • the limit value qL is set by the mode changeover switch 60. This is a limit value relating to the maximum displacement volume qmax of the HST motor 42 when the L mode is selected.
  • step S508A When it is determined in step S508A that the lift arm detection angle ⁇ is equal to or greater than the first angle threshold ⁇ 1 and is not less than the second angle threshold ⁇ 2 (step S508A / NO), the specific condition determination unit 52 subsequently performs lift arm detection. It is determined whether the angle ⁇ is the second angle threshold ⁇ 2 (step S510A).
  • the maximum displacement qmax is limited to any of qP, qN, and qL (step). S511A).
  • the maximum displacement qmax of the HST motor 42 is reduced.
  • the discharge pressure Pa when the limitation of the maximum traction force of the vehicle body is started be equal to or higher than the discharge pressure when the lift arm 21 takes a horizontal posture.
  • this corresponds to the first pressure threshold value P1, which is the discharge pressure at the time when the limitation of the maximum traction force of the vehicle body is started when the lift arm detection angle ⁇ reaches the first angle threshold value ⁇ 1.
  • the maximum towing force of the vehicle body can be controlled more accurately according to the angle of the slope of the ground 100 in the same manner as in the first embodiment. Improvement can be achieved.
  • FIGS. 15 and 16 the same components as those described for the wheel loader 1 according to the first embodiment and the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 15 is a flowchart showing the flow of processing executed by the controller 5B according to the third embodiment.
  • FIG. 16 is a graph showing the relationship between the discharge pressure Pa of the working machine hydraulic pump 45 and the maximum displacement qmax of the HST motor 42 in the third embodiment.
  • the controller 5B according to the present embodiment is different from the controller 5 according to the first embodiment and the controller 5A according to the second embodiment in how to increase the maximum traction force when specific conditions are satisfied. Specifically, as the lift arm detection angle ⁇ detected by the lift arm angle sensor 211 increases, the controller 5B increases the rate of increase of the discharge pressure Pa of the working machine hydraulic pump 45 with respect to the maximum amount of traction of the vehicle body. I'm making it big.
  • step S506A when it is determined in step S506A that the lift arm detection angle ⁇ is equal to or larger than 0 and smaller than the first angle threshold ⁇ 1 (0 ⁇ ⁇ ⁇ 1) (step S506A / YES), the motor control is performed.
  • the unit 53 increases the discharge pressure Pa of the working machine hydraulic pump 45 from a discharge pressure Ps necessary for excavation operation to a fourth pressure threshold P4 (> Ps) larger than the discharge pressure Ps.
  • the maximum displacement qmax of the HST motor 42 is gradually limited from 100% to any one of qP, qN, qL (step S507B).
  • step S508A when it is determined in step S508A that the lift arm detection angle ⁇ is equal to or larger than the first angle threshold ⁇ 1 and smaller than the second angle threshold ⁇ 2 ( ⁇ 1 ⁇ ⁇ ⁇ 2) (step S508A). / YES), as shown in FIG. 16, the motor control unit 53 determines that the discharge pressure Pa of the working machine hydraulic pump 45 is greater than the fourth pressure threshold P4 from the discharge pressure Ps required for the excavation operation. As it increases to P5 (> P4), the maximum displacement qmax of the HST motor 42 is gradually limited from 100% to any of qP, qN, and qL (step S509B).
  • the discharge pressure Pa of the working machine hydraulic pump 45 increases from the discharge pressure Ps required for excavation operation to a sixth pressure threshold P6 (> P5) larger than the fifth pressure threshold P5, as shown in FIG.
  • the maximum displacement qmax of 42 is gradually limited from 100% to any of qP, qN, qL (step S511B).
  • the maximum traction force of the vehicle body can be controlled more accurately in accordance with the angle of the slope of the ground 100 as in the first embodiment and the second embodiment.
  • the work efficiency during the scraping operation can be improved.
  • the working machine hydraulic pump 45 is a fixed displacement hydraulic pump, but is not limited thereto, and a variable displacement hydraulic pump may be used.
  • the maximum displacement of the wheel loader 1 is controlled by adjusting the maximum displacement qmax of the HST motor 42.
  • the present invention is not limited to this.
  • the displacement of the HST pump 41 is adjusted.
  • the maximum traction force of the wheel loader 1 may be controlled.
  • Wheel loader 2 Front work machine 3: Engine 5, 5A, 5B: Controller 11A: Front wheel (wheel) 11B: rear wheel (wheel) 21: Lift arm 41: HST pump (hydraulic pump for traveling) 42: HST motor (hydraulic motor for traveling) 45: Hydraulic pump for work equipment 62: Forward / backward switching lever (running state detector) 75: Discharge pressure sensor (operating amount detector) 76: Pilot pressure sensor (operation signal detector, operation amount detector) 130: Body tilt angle sensor (body tilt angle detector, body tilt state detector) 211: Lift arm angle sensor (lift arm angle detector, body tilt state detector) 610: Depressed amount sensor (running state detector)

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

A wheel loader is provided which can improve work efficiency even when performing digging operations while climbing a slope. This HST-type travel drive wheel loader 1 is provided with a controller 5, 5A, 5B which, during digging operations by a front work machine 2, performs control to adjust the HST motor 42 and limit the maximum traction of the vehicle body. The controller 5, 5A, 5B determines whether or not a specific condition is satisfied that specifies a digging operation of the front work machine 2 performed while the vehicle climbs a slope, and if the specific condition is satisfied, then the maximum traction of the vehicle is increased to greater than the maximum traction in the case of performing a digging operation with the front work machine 2 in a state in which the vehicle is placed on flat ground.

Description

ホイールローダWheel loader
 本発明は、荷役作業を行うホイールローダに関する。 The present invention relates to a wheel loader that performs a cargo handling operation.
 走行用の油圧回路と、掘削等を行うフロント作業機用の油圧回路と、を備えたホイールローダでは、けん引力(走行駆動力)とフロント作業機の掘り起し力とのバランスが重要になる。フロント作業機の掘り起し力に対してけん引力が大き過ぎる場合、バケットを掘削対象物に突っ込んだ後、リフトアームを動作させてバケットを上方向に持ち上げる際に、車輪がスリップしてしまい、かえってけん引力が小さくなって土砂等の荷がバケットに入りづらくなってしまう。また、この場合、掘削対象物にバケットを突っ込んだ際に、リフトアームに作用する反力が大きくなり、当該反力が抵抗となってバケットやリフトアームが上方向に持ち上がらないことがある。 In a wheel loader having a hydraulic circuit for traveling and a hydraulic circuit for a front working machine for excavation, etc., the balance between the traction force (running driving force) and the excavating force of the front working machine becomes important. . If the traction force is too large for the digging force of the front work machine, the wheels slip when the bucket is pushed into the digging object and the lift arm is operated to lift the bucket upward. On the contrary, the traction force becomes small, and it becomes difficult for a load such as earth and sand to enter the bucket. Further, in this case, when the bucket is pushed into the object to be excavated, the reaction force acting on the lift arm increases, and the reaction force acts as a resistance, so that the bucket or the lift arm may not be lifted upward.
 例えば特許文献1には、走行用の油圧回路として、エンジンによって駆動される可変容量形の走行用油圧ポンプと、油圧ポンプからの圧油により駆動する可変容量形の走行用油圧モータと、を有し、走行用油圧ポンプと走行用油圧モータとを一対の主管路によって閉回路接続したHST回路を用いたホイールローダが開示されている。このホイールローダでは、掘削対象物である地山に向けて突進してバケット内に荷を取り込む際には、HSTモータの最大傾転を上限値に設定することにより、最大けん引力をその上限まで発揮させてバケット内に十分な荷を取り込むことを可能としている。 For example, Patent Literature 1 discloses, as a traveling hydraulic circuit, a variable displacement traveling hydraulic pump driven by an engine and a variable displacement traveling hydraulic motor driven by pressure oil from the hydraulic pump. A wheel loader using an HST circuit in which a traveling hydraulic pump and a traveling hydraulic motor are connected in a closed circuit by a pair of main pipelines is disclosed. In this wheel loader, when the vehicle rushes toward the ground to be excavated and takes in the load into the bucket, the maximum traction force of the HST motor is set to the upper limit value so that the maximum traction force reaches the upper limit. This makes it possible to take in sufficient load into the bucket.
 そして、リフトアームを上げ操作してバケットを上方向に持ち上げる掘削動作を行う際には、HSTモータの最大傾転を上限値の50~70%程度に制限することにより、けん引力が大きくなり過ぎることを抑制してリフトアームの上げ操作力(フロント作業機の掘り起し力)とけん引力とのバランスを良好に維持し、荷が入ったバケットの持ち上げ動作を容易にしている。また、このホイールローダでは、オペレータが手動スイッチを切り替えることにより、地山の種類や路面状況等に応じて、掘削動作時のHSTモータの最大傾転の制限をLモード、Nモード、Pモードの3段階に調整することが可能である。 Then, when performing the excavating operation of lifting the bucket upward by operating the lift arm, the maximum tilting of the HST motor is limited to about 50 to 70% of the upper limit value, so that the traction force becomes too large. In this way, the balance between the lifting operation force of the lift arm (the digging force of the front working machine) and the traction force is favorably maintained, and the lifting operation of the loaded bucket is facilitated. In this wheel loader, the operator switches the manual switch to limit the maximum tilt of the HST motor during the excavation operation in the L mode, the N mode, and the P mode according to the type of the ground and the road surface condition. Adjustment can be made in three stages.
特許第5129493号公報Japanese Patent No. 5129493
 ホイールローダによる掘削作業は、車体が平地に設置された状態で行われる場合の他に、地山を登坂しながら行われる場合がある。具体的には、ホイールローダは、リフトアームを上方向に動作させながら急斜面を前進走行し、その斜面を掘削して荷を地山の頂上に放土する。ホイールローダが登坂中は、(車体の重量×sinθ)分の力が車体に対して斜面の後方に向かって作用する。そのため、斜面上で掘削動作を行う場合は、車体が平地に設置された状態で掘削動作を行う場合と比べて、けん引力が(車体の重量×sinθ)分だけ低下してしまう。 掘 削 Excavation work by a wheel loader may be performed while climbing up the ground in addition to the case where the vehicle body is installed on a flat ground. Specifically, the wheel loader moves forward on a steep slope while operating the lift arm in the upward direction, excavates the slope, and discharges the load to the top of the ground. While the wheel loader is climbing a hill, a force corresponding to (weight of vehicle body × sin θ) acts on the vehicle body toward the rear of the slope. Therefore, when the excavation operation is performed on a slope, the tractive force is reduced by (the weight of the vehicle body × sin θ) as compared with the case where the excavation operation is performed while the vehicle body is installed on a flat ground.
 特許文献1に記載のホイールローダは、車体が平地に設置された状態で掘削動作が行われる場合を前提としているため、このホイールローダが地山を登坂しながら掘削動作を行う場合にはけん引力が不足してしまい、リフトアームを上方向に動作させながら登坂することができない。なお、手動スイッチにより掘削動作時のHSTモータの最大傾転の制限値が最も大きいPモードに切り替えることでけん引力を上昇させることも考えられるが、オペレータは、登坂しながら掘削動作を行う度に手動スイッチをPモードに切り替える必要がある。さらに、登坂しながらの掘削動作が終了した後に平地で掘削動作を行う時には、オペレータは、掘削動作時のHSTモータの最大傾転の制限値が最も小さいLモードに手動スイッチを戻さなければならず、オペレータにとってはその操作が煩わしい。 The wheel loader described in Patent Literature 1 is based on the premise that an excavation operation is performed in a state where a vehicle body is installed on a flat ground. Therefore, when the wheel loader performs an excavation operation while climbing the ground, a tractive force is applied. Is insufficient, and it is not possible to climb the hill while operating the lift arm upward. It is conceivable that the traction force is increased by switching to the P mode in which the maximum tilt limit value of the HST motor at the time of the excavation operation is the largest by a manual switch. It is necessary to switch the manual switch to the P mode. Further, when performing an excavation operation on a flat ground after the excavation operation while climbing a slope, the operator must return the manual switch to the L mode in which the limit value of the maximum tilt of the HST motor during the excavation operation is the smallest. However, the operation is troublesome for the operator.
 そこで、本発明の目的は、登坂しながら掘削動作を行う場合であっても作業効率を向上させることが可能なホイールローダを提供することにある。 Therefore, an object of the present invention is to provide a wheel loader capable of improving work efficiency even when performing an excavation operation while climbing a hill.
 上記の目的を達成するために、本発明は、エンジンと、前記エンジンにより駆動される可変容量型の走行用油圧ポンプと、前記走行用油圧ポンプと閉回路状に接続されて前記エンジンの駆動力を車輪に伝達する可変容量型の走行用油圧モータと、車体の前部に設けられて上下方向に回動可能なリフトアームを有するフロント作業機と、前記エンジンにより駆動されて前記フロント作業機に作動油を供給する作業機用油圧ポンプと、前記車体の走行状態を検出する走行状態検出器と、前記リフトアームの上げ操作量を検出する操作量検出器と、前記フロント作業機が操作され掘削状態にあることが判定された場合、前記走行用油圧ポンプ又は前記走行用油圧モータを調整して前記車体の最大けん引力を制限する制御を行うコントローラと、を備えたホイールローダにおいて、前記車体の傾斜状態を検出する傾斜状態検出器を備え、前記コントローラは、前記走行状態検出器で検出された走行状態、前記操作量検出器で検出された前記リフトアームの上げ操作量、及び前記傾斜状態検出器で検出された傾斜状態に基づいて、前記車体が登坂しながら掘削状態にあることを特定する特定条件を満たすか否かを判定し、前記特定条件を満たす場合において、前記車体の最大けん引力を、前記車体が平地に設置され掘削状態にある場合の最大けん引力よりも上昇させることを特徴とする。 In order to achieve the above object, the present invention provides an engine, a variable displacement traveling hydraulic pump driven by the engine, and a driving force of the engine connected to the traveling hydraulic pump in a closed circuit. To the wheels, a front working machine having a lift arm provided at the front of the vehicle body and rotatable in a vertical direction, and driven by the engine to the front working machine. A hydraulic pump for a working machine for supplying hydraulic oil, a running state detector for detecting a running state of the vehicle body, an operation amount detector for detecting a lifting operation amount of the lift arm, and excavation when the front working machine is operated. When it is determined that the vehicle is in the state, a controller that controls the traveling hydraulic pump or the traveling hydraulic motor to limit the maximum traction force of the vehicle body, The vehicle loader further includes an inclination state detector for detecting an inclination state of the vehicle body, wherein the controller is configured to control a traveling state detected by the traveling state detector, and to raise the lift arm detected by the operation amount detector. Based on the operation amount and the tilt state detected by the tilt state detector, it is determined whether or not a specific condition for specifying that the vehicle body is in an excavation state while climbing a slope is satisfied, and the specific condition is satisfied. , Wherein the maximum traction force of the vehicle body is set to be higher than the maximum traction force when the vehicle body is installed on a flat ground and is in an excavation state.
 本発明によれば、登坂しながら掘削動作を行う場合であっても作業効率を向上させることができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, the work efficiency can be improved even when the digging operation is performed while climbing a hill. Problems, configurations, and effects other than those described above will be apparent from the following description of the embodiments.
本発明の各実施形態に係るホイールローダの外観を示す側面図である。It is a side view showing the appearance of the wheel loader concerning each embodiment of the present invention. (a)はホイールローダのかき上げ作業について説明する説明図であり、(b)はかき上げ作業時のリフトアームの動作を説明する説明図である。(A) is an explanatory view explaining the lifting operation of the wheel loader, and (b) is an explanatory diagram illustrating the operation of the lift arm during the lifting operation. (a)は車体傾斜検出角度と車体傾斜角度換算値との関係を示すグラフであり、(b)はリフトアーム検出角度と車体傾斜角度換算値との関係を示すグラフである。(A) is a graph showing the relationship between the detected body tilt angle and the converted vehicle body tilt angle value, and (b) is a graph showing the relationship between the detected lift arm angle and the converted vehicle body tilt angle value. 本発明の第1実施形態に係るホイールローダの走行駆動に係る油圧回路及び電気回路を示す図である。FIG. 2 is a diagram illustrating a hydraulic circuit and an electric circuit related to a traveling drive of the wheel loader according to the first embodiment of the present invention. アクセルペダル踏込量と目標エンジン回転速度との関係を示すグラフである。5 is a graph showing a relationship between an accelerator pedal depression amount and a target engine rotation speed. (a)はエンジン回転速度とHSTポンプの押しのけ容積との関係を示すグラフ、(b)はエンジン回転速度とHSTポンプの入力トルクとの関係を示すグラフ、(c)はエンジン回転速度とHSTポンプの吐出流量との関係を示すグラフである。(A) is a graph showing the relationship between the engine speed and the displacement of the HST pump, (b) is a graph showing the relationship between the engine speed and the input torque of the HST pump, and (c) is the engine speed and the HST pump. 6 is a graph showing a relationship between the discharge flow rate and the flow rate. フロント作業機の駆動に係る油圧回路を示す図である。It is a figure showing a hydraulic circuit concerning driving of a front work machine. 作業機用油圧ポンプの吐出圧とスプールの開口面積との関係を示すグラフである。4 is a graph showing a relationship between a discharge pressure of a hydraulic pump for a working machine and an opening area of a spool. 第1実施形態に係るコントローラが有する機能を示す機能ブロック図である。FIG. 3 is a functional block diagram illustrating functions of a controller according to the first embodiment. 第1実施形態に係るコントローラで実行される処理の流れを示すフローチャートである。6 is a flowchart illustrating a flow of a process executed by the controller according to the first embodiment. 第1実施形態における作業機用油圧ポンプの吐出圧とHSTモータの最大押しのけ容積との関係を示すグラフである。It is a graph which shows the relation between the discharge pressure of the hydraulic pump for work equipment and the maximum displacement of the HST motor in the first embodiment. 第2実施形態に係るホイールローダの走行駆動に係る油圧回路及び電気回路を示す図である。FIG. 9 is a diagram illustrating a hydraulic circuit and an electric circuit related to traveling drive of the wheel loader according to the second embodiment. 第2実施形態に係るコントローラで実行される処理の流れを示すフローチャートである。It is a flow chart which shows a flow of processing performed by a controller concerning a 2nd embodiment. 第2実施形態における作業機用油圧ポンプの吐出圧とHSTモータの最大押しのけ容積との関係を示すグラフである。It is a graph which shows the relation between the discharge pressure of the hydraulic pump for work equipment and the maximum displacement of the HST motor in the second embodiment. 第3実施形態に係るコントローラで実行される処理の流れを示すフローチャートである。It is a flow chart which shows a flow of processing performed by a controller concerning a 3rd embodiment. 第3実施形態における作業機用油圧ポンプの吐出圧とHSTモータの最大押しのけ容積との関係を示すグラフである。It is a graph which shows the relation between the discharge pressure of the hydraulic pump for work equipment and the maximum displacement of the HST motor in the third embodiment.
 まず、本発明の各実施形態に係るホイールローダの全体構成及び動作について、図1~3を参照して説明する。 First, the overall configuration and operation of the wheel loader according to each embodiment of the present invention will be described with reference to FIGS.
 図1は、本発明の各実施形態に係るホイールローダ1の外観を示す側面図である。 FIG. 1 is a side view showing the appearance of the wheel loader 1 according to each embodiment of the present invention.
 ホイールローダ1は、前フレーム1A及び後フレーム1Bで構成される車体と、車体の前部に設けられたフロント作業機2と、を備えている。ホイールローダ1は、車体が中心付近で中折れすることにより操舵するアーティキュレート式の作業車両である。前フレーム1Aと後フレーム1Bとは、センタジョイント10によって左右方向に回動自在に連結されており、前フレーム1Aが後フレーム1Bに対して左右方向に屈曲する。 The wheel loader 1 includes a vehicle body including a front frame 1A and a rear frame 1B, and a front work machine 2 provided at a front portion of the vehicle body. The wheel loader 1 is an articulated work vehicle that is steered by turning a vehicle body near the center. The front frame 1A and the rear frame 1B are rotatably connected in the left and right direction by a center joint 10, and the front frame 1A is bent in the left and right direction with respect to the rear frame 1B.
 前フレーム1Aには左右一対の前輪11Aが、後フレーム1Bには左右一対の後輪11Bが、それぞれ設けられている。なお、図1では、左右一対の前輪11A及び後輪11Bのうち、左側の前輪11A及び後輪11Bのみを示している。また、以下の説明において、「前輪11A及び後輪11B」を単に「車輪11A,11B」とする場合がある。 A pair of left and right front wheels 11A is provided on the front frame 1A, and a pair of right and left rear wheels 11B are provided on the rear frame 1B. FIG. 1 shows only the left front wheel 11A and the rear wheel 11B of the pair of left and right front wheels 11A and the rear wheels 11B. In the following description, the “front wheel 11A and the rear wheel 11B” may be simply referred to as “ wheels 11A and 11B”.
 後フレーム1Bには、オペレータが搭乗する運転室12と、エンジンやコントローラ、油圧ポンプ等の各機器を内部に収容する機械室13と、車体が傾倒しないようにフロント作業機2とのバランスを保つためのカウンタウェイト14と、が設けられている。後フレーム1Bにおいて、運転室12は前部に、カウンタウェイト14は後部に、機械室13は運転室12とカウンタウェイト14との間に、それぞれ配置されている。 In the rear frame 1B, the operator's cab 12, the engine room, the controller 13, and the machine room 13 in which various devices such as a hydraulic pump are housed, and the front work machine 2 are kept in balance so that the vehicle body does not tilt. And a counter weight 14 are provided. In the rear frame 1B, the operator cab 12 is disposed at the front, the counterweight 14 is disposed at the rear, and the machine room 13 is disposed between the operator cab 12 and the counterweight 14.
 フロント作業機2は、前フレーム1Aに取り付けられたリフトアーム21と、伸縮することによりリフトアーム21を前フレーム1Aに対して上下方向に回動させる一対のリフトアームシリンダ22と、リフトアーム21の先端部に取り付けられたバケット23と、伸縮することによりバケット23をリフトアーム21に対して上下方向に回動させるバケットシリンダ24と、リフトアーム21に回動可能に連結されてバケット23とバケットシリンダ24とのリンク機構を構成するベルクランク25と、一対のリフトアームシリンダ22やバケットシリンダ24へ圧油を導く複数の配管(不図示)と、を有している。なお、図1では、一対のリフトアームシリンダ22のうち、左側に配置されたリフトアームシリンダ22のみを破線で示している。 The front working machine 2 includes a lift arm 21 attached to the front frame 1A, a pair of lift arm cylinders 22 that expand and contract to rotate the lift arm 21 in the vertical direction with respect to the front frame 1A, A bucket 23 attached to the tip end, a bucket cylinder 24 that expands and contracts to rotate the bucket 23 in the vertical direction with respect to the lift arm 21, and a bucket 23 and the bucket cylinder that are rotatably connected to the lift arm 21. 24, and a plurality of pipes (not shown) for guiding pressure oil to a pair of lift arm cylinders 22 and bucket cylinders 24. In FIG. 1, only the lift arm cylinder 22 arranged on the left side of the pair of lift arm cylinders 22 is shown by a broken line.
 リフトアーム21は、各リフトアームシリンダ22のロッド220が伸びることにより上方向に回動し、各ロッド220が縮むことにより下方向に回動する。バケット23は、バケットシリンダ24のロッド240が伸びることによりチルト(リフトアーム21に対して上方向に回動)し、ロッド240が縮むことによりダンプ(リフトアーム21に対して下方向に回動)する。 The lift arm 21 rotates upward when the rod 220 of each lift arm cylinder 22 extends, and rotates downward when each rod 220 contracts. The bucket 23 tilts (rotates upward with respect to the lift arm 21) when the rod 240 of the bucket cylinder 24 extends, and dumps (rotates downward with respect to the lift arm 21) when the rod 240 contracts. I do.
 ホイールローダ1は、例えば露天掘り鉱山等において、土砂や鉱物等を掘削してダンプトラック等へ積み込む荷役作業を行うための荷役作業車両である。掘削作業には、車体が平地に設置された状態でバケット23を掘削対象物に突入させて土砂や鉱物等を掘削する場合の他に、ホイールローダ1が掘削対象物の斜面上を前進走行しながらバケット23で当該斜面を掘削する場合がある。以下、ホイールローダ1が登坂しながら掘削動作を行う場合を「かき上げ作業」という。次に、この「かき上げ作業」について、図2及び図3を参照して具体的に説明する。 The wheel loader 1 is a loading / unloading vehicle for performing a loading / unloading operation, for example, in an open pit mine or the like, for excavating earth and sand, minerals, and the like, and loading the dumped truck and the like. In the excavation work, in addition to the case where the bucket 23 rushes into the object to be excavated to excavate earth and sand, minerals, and the like in a state where the vehicle body is installed on a flat ground, the wheel loader 1 travels forward on the slope of the object to be excavated. In some cases, the bucket 23 excavates the slope. Hereinafter, the case where the wheel loader 1 performs the excavation operation while climbing a hill is referred to as “scraping work”. Next, the "pick-up work" will be specifically described with reference to FIGS.
 図2(a)は、ホイールローダ1のかき上げ作業について説明する説明図であり、図2(b)は、かき上げ作業時のリフトアーム21の動作を説明する説明図である。図3(a)は、車体傾斜検出角度と車体傾斜角度換算値との関係を示すグラフであり、図3(b)はリフトアーム検出角度と車体傾斜角度換算値との関係を示すグラフである。 FIG. 2A is an explanatory view for explaining the lifting operation of the wheel loader 1, and FIG. 2B is an explanatory diagram for explaining the operation of the lift arm 21 during the lifting operation. FIG. 3A is a graph showing a relationship between the detected body tilt angle and the converted value of the vehicle body tilt angle, and FIG. 3B is a graph showing a relationship between the detected angle of the lift arm and the converted value of the vehicle body tilt angle. .
 図2(a)に示すように、ホイールローダ1は、掘削対象物である地山100に向かって平地を前進走行し、そのまま地山100を登坂しながらフロント作業機2を操作して斜面を掘削する。そして、掘削されてバケット23内に積まれた土砂や鉱物等は地山100の頂上で放土され、その後、ホイールローダ1は後進しながら斜面を下って元の場所に戻る。かき上げ作業時において、オペレータは、図2(b)に示すように、斜面を登って行くにつれてリフトアーム21を上方向に上昇させるように操作する。 As shown in FIG. 2A, the wheel loader 1 travels on a flat ground toward the ground 100 to be excavated, and operates the front work machine 2 while climbing the ground 100 as it is to cut the slope. Excavate. Then, the earth and sand, minerals, and the like that have been excavated and piled in the bucket 23 are discharged on the top of the ground 100, and then the wheel loader 1 returns to the original place on the slope while moving backward. At the time of the lifting operation, as shown in FIG. 2B, the operator operates to lift the lift arm 21 upward as it goes up the slope.
 ホイールローダ1が平地を走行しているとき(図2(a)に示す状態(X))は、リフトアーム21は上下方向の可動範囲のうちの最も低い位置(図2(b)に示す位置(X))にあり、ホイールローダ1が地山100を登坂し始めたとき(図2(a)に示す状態(Y))は、リフトアーム21は水平姿勢(図2(b)に示す位置(Y))をとり、ホイールローダ1がバケット23内の荷を地山100の頂上に放土する直前(図2(a)に示す状態(Z))では、リフトアーム21は上方向に上がりきった位置、すなわち上下方向の可動範囲のうちの最も高い位置(図2(b)に示す位置(Z))にある。 When the wheel loader 1 is traveling on level ground (state (X) shown in FIG. 2A), the lift arm 21 is at the lowest position in the movable range in the vertical direction (the position shown in FIG. 2B). (X)), when the wheel loader 1 starts climbing the ground 100 (state (Y) shown in FIG. 2A), the lift arm 21 is in the horizontal posture (the position shown in FIG. 2B). (Y), just before the wheel loader 1 discharges the load in the bucket 23 to the top of the ground 100 (state (Z) shown in FIG. 2A), the lift arm 21 is lifted upward. It is at the cut position, that is, the highest position (the position (Z) shown in FIG. 2B) in the vertical movable range.
 なお、「ホイールローダ1が地山100を登坂し始めたとき」とは、図2(a)の状態(Y)に示すように、前輪11Aのみならず後輪11Bも地山100の斜面上に位置している状態とする。また、このとき、リフトアーム21の位置は正確に水平位置である必要はなく、図2(b)の位置(Y)に示すように、正確な水平位置からやや低い位置であってもよい。すなわち、リフトアーム21の「水平姿勢」とは、正確な水平位置から上下方向への誤差分をそれぞれ含めたものとする。 Note that "when the wheel loader 1 starts climbing the ground 100" means that not only the front wheel 11A but also the rear wheel 11B is located on the slope of the ground 100 as shown in the state (Y) of FIG. State. At this time, the position of the lift arm 21 does not need to be exactly the horizontal position, but may be a position slightly lower than the accurate horizontal position as shown in the position (Y) in FIG. That is, the “horizontal posture” of the lift arm 21 includes an error in the vertical direction from the accurate horizontal position.
 ホイールローダ1が登坂中であるか否かについては、車体の走行状態を検出する走行状態検出器、及び車体の傾きを検出する傾斜状態検出器を用いることにより判定することが可能である。傾斜状態検出器の一態様として、例えば、車体の傾斜角度θを検出する車体傾斜角度検出器としての車体傾斜角度センサ130や、リフトアーム21の角度βを検出するリフトアーム角度検出器としてのリフトアーム角度センサ211が用いられる。車体傾斜角度センサ130は、図2(a)に示すように、後フレーム1Bに取り付けられ、リフトアーム角度センサ211は、図2(b)に示すように、リフトアーム21の基部に取り付けられている。 Whether or not the wheel loader 1 is climbing a slope can be determined by using a traveling state detector that detects the traveling state of the vehicle body and an inclination state detector that detects the inclination of the vehicle body. As one aspect of the tilt state detector, for example, a vehicle body tilt angle sensor 130 as a vehicle body tilt angle detector that detects a vehicle body tilt angle θ, and a lift as a lift arm angle detector that detects the angle β of the lift arm 21 An arm angle sensor 211 is used. The body tilt angle sensor 130 is attached to the rear frame 1B as shown in FIG. 2A, and the lift arm angle sensor 211 is attached to the base of the lift arm 21 as shown in FIG. I have.
 車体が平地に設置された状態で掘削を行う際には、バケット23をチルトさせるだけであるが、かき上げ作業を行う際には、前述したように、バケット23のチルト操作に加えてリフトアーム21を上方向に上昇させるため、リフトアーム21の角度βを検出することによっても車体の傾斜状態を検出することができる。なお、ホイールローダ1のような作業車両では、車体傾斜角度センサ130には耐震性強度の強いものを用いる必要があり、比較的に高価となってしまうが、リフトアーム角度センサ211はホイールローダ1に標準で搭載されているため、リフトアーム角度センサ211を利用する場合にはコストアップ無しで対応することが可能である。 When excavating in a state where the vehicle body is installed on a flat ground, only the bucket 23 is tilted. However, when performing a lifting operation, as described above, in addition to the tilt operation of the bucket 23, the lift arm is used. In order to move the vehicle body 21 upward, the inclination state of the vehicle body can also be detected by detecting the angle β of the lift arm 21. In a work vehicle such as the wheel loader 1, it is necessary to use a strong vehicle body inclination angle sensor 130 having a strong seismic resistance, which is relatively expensive. Is installed as a standard, it is possible to use the lift arm angle sensor 211 without increasing the cost.
 車体傾斜角度センサ130を用いた場合、図3(a)に示すように、車体傾斜角度センサ130で検出された車体傾斜検出角度θが0以上であって所定の角度閾値θs未満では(0≦θ<θs)車体傾斜角度換算値は0とし、車体傾斜検出角度θが所定の角度閾値θs以上になると(θ≧θs)車体傾斜角度換算値は0から正の方向に増加していく。 When the vehicle body inclination angle sensor 130 is used, as shown in FIG. 3A, when the vehicle body inclination detection angle θ detected by the vehicle body inclination angle sensor 130 is 0 or more and less than a predetermined angle threshold θs, (0 ≦ θ <θs) The converted vehicle body tilt angle value is set to 0, and when the detected vehicle body tilt angle θ becomes equal to or larger than a predetermined angle threshold θs (θ ≧ θs), the converted vehicle body tilt angle value increases from 0 in a positive direction.
 リフトアーム角度センサ211を用いた場合、図3(b)に示すように、リフトアーム角度センサ211で検出されたリフトアーム検出角度βが0以上であって所定の角度閾値βs未満では(0≦β<βs)車体傾斜角度換算値は0とし、リフトアーム検出角度βが所定の角度閾値βs以上になると(β≧βs)車体傾斜角度換算値は0から正の方向に増加していく。 When the lift arm angle sensor 211 is used, as shown in FIG. 3B, if the lift arm detection angle β detected by the lift arm angle sensor 211 is equal to or greater than 0 and less than a predetermined angle threshold βs, (0 ≦ β <βs) The vehicle body inclination angle conversion value is set to 0, and when the lift arm detection angle β becomes equal to or larger than a predetermined angle threshold βs (β ≧ βs), the vehicle body inclination angle conversion value increases from 0 in a positive direction.
 ここで、「所定の角度閾値θs,βs」とはそれぞれ、地山100の斜面に前輪11Aが差し掛かったときに対応する角度である。したがって、車体傾斜検出角度θが0以上であって所定の角度閾値θs未満のとき(0≦θ<θs)、及びリフトアーム検出角度βが0以上であって所定の角度閾値βs未満のとき(0≦β<βs)は、図2(a)及び図2(b)にそれぞれ示した(X)の状態である。 Here, the “predetermined angle thresholds θs, βs” are angles corresponding to when the front wheel 11A approaches the slope of the ground 100, respectively. Therefore, when the vehicle body inclination detection angle θ is equal to or greater than 0 and less than a predetermined angle threshold θs (0 ≦ θ <θs), and when the lift arm detection angle β is equal to or greater than 0 and less than a predetermined angle threshold βs ( 0 ≦ β <βs) is the state (X) shown in FIGS. 2A and 2B, respectively.
 また、車体傾斜検出角度θが第1角度閾値θ1のとき(θ=θ1)、及びリフトアーム検出角度βが第1角度閾値β1のとき(β=β1)は、図2(a)及び図2(b)にそれぞれ示した(Y)の状態である。したがって、「第1角度閾値θ1,β1」とは、ホイールローダ1が地山100を登坂し始めたとき、すなわちリフトアーム21が水平姿勢をとったときに対応する角度である。 2A and 2B when the vehicle body inclination detection angle θ is the first angle threshold θ1 (θ = θ1) and when the lift arm detection angle β is the first angle threshold β1 (β = β1). This is the state of (Y) shown in (b). Therefore, the “first angle thresholds θ1, β1” are angles corresponding to when the wheel loader 1 starts climbing the ground 100, that is, when the lift arm 21 takes a horizontal posture.
 そして、車体傾斜検出角度θが第2角度閾値θ2のとき(θ=θ2)、及びリフトアーム検出角度βが第2角度閾値β2のとき(β=β2)は、図2(a)及び図2(b)にそれぞれ示した(Z)の状態である。したがって、「第2角度閾値θ2,β2」とは、ホイールローダ1がバケット23内の荷を地山100の頂上に放土する直前、すなわちリフトアーム21が上方向に上がりきったときに対応する角度である。 2A and FIG. 2 when the vehicle body inclination detection angle θ is the second angle threshold value θ2 (θ = θ2) and when the lift arm detection angle β is the second angle threshold value β2 (β = β2). This is the state of (Z) shown in (b). Therefore, the “second angle thresholds θ2, β2” correspond to immediately before the wheel loader 1 discharges the load in the bucket 23 to the top of the ground 100, that is, when the lift arm 21 is completely lifted upward. Angle.
 なお、車体傾斜角度センサ130を用いた場合には、図3(a)に示すように、ホイールローダ1が後進しながら斜面を下っているときの車体の傾斜角度についても検出することが可能である。 When the vehicle body inclination angle sensor 130 is used, as shown in FIG. 3A, it is also possible to detect the vehicle body inclination angle when the wheel loader 1 is moving down the slope while moving backward. is there.
 ホイールローダ1がかき上げ作業を行う場合、図2(a)に示すように、地山100において平地に対する斜面の角度をαとすると、車体の重量Wに対しそのsinα成分の力(=Wsinα)が斜面の後方に向かって作用する。なお、地山100の傾斜角度αは例えば15°~25°であり、地山100の斜面は比較的に急である。車体が平地に設置された状態で掘削動作を行う場合に必要となるけん引力(走行駆動力)をFとすると、かき上げ作業のように斜面上で掘削動作を行う場合のけん引力は(F-Wsinα)となり、車体が平地に設置された状態で掘削動作を行う場合と比べてWsinα分だけけん引力が低下する。 When the wheel loader 1 performs the lifting operation, as shown in FIG. 2A, assuming that the angle of the slope with respect to the flat ground at the ground 100 is α, the force of the sin α component with respect to the weight W of the vehicle body (= W sin α) Acts toward the rear of the slope. The inclination angle α of the ground 100 is, for example, 15 ° to 25 °, and the slope of the ground 100 is relatively steep. Assuming that a traction force (driving driving force) required when performing an excavation operation in a state where the vehicle body is installed on a flat ground is F, the traction force when performing an excavation operation on a slope such as a lifting work is (F −W sin α), and the traction force is reduced by W sin α as compared with the case where the excavation operation is performed in a state where the vehicle body is installed on a flat ground.
 次に、ホイールローダ1の駆動システムについて、実施形態ごとに説明する。 Next, a drive system of the wheel loader 1 will be described for each embodiment.
<第1実施形態>
 本発明の第1実施形態に係るホイールローダ1の駆動システムについて、図4~11を参照して説明する。
<First embodiment>
A drive system of the wheel loader 1 according to the first embodiment of the present invention will be described with reference to FIGS.
(走行駆動システムについて)
 まず、第1実施形態に係るホイールローダ1の走行駆動システムについて、図4~6を参照して説明する。
(About the driving system)
First, a traveling drive system of the wheel loader 1 according to the first embodiment will be described with reference to FIGS.
 図4は、第1実施形態に係るホイールローダ1の油圧回路及び電気回路を示す図である。図5は、アクセルペダル踏込量と目標エンジン回転速度との関係を示すグラフである。図6(a)はエンジン回転速度とHSTポンプ41の押しのけ容積との関係を示すグラフ、図6(b)はエンジン回転速度とHSTポンプ41の入力トルクとの関係を示すグラフ、図6(c)はエンジン回転速度とHSTポンプ41の吐出流量との関係を示すグラフである。 FIG. 4 is a diagram showing a hydraulic circuit and an electric circuit of the wheel loader 1 according to the first embodiment. FIG. 5 is a graph showing the relationship between the accelerator pedal depression amount and the target engine speed. 6A is a graph showing the relationship between the engine rotation speed and the displacement of the HST pump 41, FIG. 6B is a graph showing the relationship between the engine rotation speed and the input torque of the HST pump 41, and FIG. 4) is a graph showing the relationship between the engine rotation speed and the discharge flow rate of the HST pump 41.
 本実施形態に係るホイールローダ1は、閉回路の油圧回路を有したHST式走行駆動装置を備え、このHST式走行駆動装置は、図4に示すように、エンジン3と、作動油を貯蔵する作動油タンク40と、エンジン3により駆動される走行用油圧ポンプとしてのHSTポンプ41と、HSTポンプ41を制御するための圧油を補給するHSTチャージポンプ41Aと、HSTポンプ41と一対の管路400L,400Rを介してHSTポンプ41と閉回路状に接続された走行用油圧モータとしてのHSTモータ42と、車体の前後進を切り換える前後進切換弁43と、HSTポンプ41やHSTモータ42等の各機器を制御するコントローラ5と、有して構成されている。 The wheel loader 1 according to the present embodiment includes an HST-type traveling drive device having a closed-circuit hydraulic circuit. As shown in FIG. 4, the HST-type traveling drive device stores the engine 3 and hydraulic oil. A hydraulic oil tank 40, an HST pump 41 as a traveling hydraulic pump driven by the engine 3, an HST charge pump 41A for replenishing pressure oil for controlling the HST pump 41, and a pair of HST pumps 41 An HST motor 42 as a traveling hydraulic motor connected to the HST pump 41 in a closed circuit via 400L and 400R, a forward / reverse switching valve 43 for switching the forward / backward movement of the vehicle body, and an HST pump 41, an HST motor 42, and the like. It has a controller 5 for controlling each device.
 HSTポンプ41は、傾転角に応じて押しのけ容積が制御される斜板式あるいは斜軸式の可変容量型の油圧ポンプである。傾転角は、HSTチャージポンプ41Aから吐出された圧油が作用することで駆動される傾転シリンダ44により調整される。 The HST pump 41 is a swash plate type or oblique axis type variable displacement hydraulic pump whose displacement is controlled according to the tilt angle. The tilt angle is adjusted by a tilt cylinder 44 driven by the action of pressure oil discharged from the HST charge pump 41A.
 HSTモータ42は、傾転角に応じて押しのけ容積が制御される斜板式あるいは斜軸式の可変容量型の油圧モータであり、エンジン3の駆動力を車輪11A,11Bに伝達する。傾転角は、コントローラ5から出力された指令信号にしたがってレギュレータ420により調整される。 The HST motor 42 is a swash plate type or oblique axis type variable displacement hydraulic motor whose displacement is controlled according to the tilt angle, and transmits the driving force of the engine 3 to the wheels 11A and 11B. The tilt angle is adjusted by the regulator 420 according to the command signal output from the controller 5.
 HST式走行駆動装置では、まず、運転室12内に設けられたアクセルペダル61をオペレータが踏み込むとエンジン3が回転し、エンジン3の駆動力によりHSTポンプ41が駆動する。また、エンジン3の駆動力によりHSTチャージポンプ41Aも駆動されて、HSTチャージポンプ41Aから吐出された圧油が前後進切換弁43を介して傾転シリンダ44に導かれる。 In the HST type traveling drive device, first, when an operator depresses an accelerator pedal 61 provided in the cab 12, the engine 3 rotates, and the HST pump 41 is driven by the driving force of the engine 3. The HST charge pump 41A is also driven by the driving force of the engine 3, and the pressure oil discharged from the HST charge pump 41A is guided to the tilt cylinder 44 via the forward / reverse switching valve 43.
 前後進切換弁43は、HSTチャージポンプ41Aと傾転シリンダ44との間に設けられている。前後進切換弁43は、一対の主管路800A,800BによりHSTチャージポンプ41Aの吐出側に接続された吐出管路800と接続されている。さらに、前後進切換弁43は、一対のパイロット管路800L,800Rにより傾転シリンダ44の左右の油室44L,44Rと接続されている。 The forward / reverse switching valve 43 is provided between the HST charge pump 41A and the tilt cylinder 44. The forward / reverse switching valve 43 is connected to a discharge line 800 connected to the discharge side of the HST charge pump 41A by a pair of main lines 800A and 800B. Further, the forward / reverse switching valve 43 is connected to left and right oil chambers 44L, 44R of the tilt cylinder 44 by a pair of pilot lines 800L, 800R.
 前後進切換弁43は、車体を前進させる前進位置43Aと、車体を後進させる後進位置43Bと、車体を停止させる中立位置43Nと、を有し、運転室12内に設けられた前後進切換レバー62により操作される。 The forward / reverse switching valve 43 has a forward position 43A for moving the vehicle forward, a reverse position 43B for moving the vehicle backward, and a neutral position 43N for stopping the vehicle, and a forward / backward switching lever provided in the cab 12. 62 is operated.
 図4に示すように、前後進切換弁43が中立位置43Nのとき、HSTチャージポンプ41Aから吐出された圧油は、一方の主管路800B上に設けられた絞り401を介して傾転シリンダ44の左右の油室44L,44Rにそれぞれ等しく作用する。これにより、傾転シリンダ44のロッドは中立に位置するため、HSTポンプ41の押しのけ容積は0となり、HSTポンプ41の吐出量は0となる。したがって、車体は停止状態となる。 As shown in FIG. 4, when the forward / reverse switching valve 43 is at the neutral position 43N, the pressure oil discharged from the HST charge pump 41A flows through the throttle cylinder 44 via the throttle 401 provided on one main pipeline 800B. And act equally on the left and right oil chambers 44L, 44R. Accordingly, since the rod of the tilting cylinder 44 is located at the neutral position, the displacement of the HST pump 41 becomes zero, and the discharge amount of the HST pump 41 becomes zero. Therefore, the vehicle body is stopped.
 一方、前後進切換弁43が前進位置43Aに切り換わると、傾転シリンダ44の左側の油室44Lには絞り401の上流側圧力が作用し、右側の油室44Rには絞り401の下流側圧力が作用する。そして、左右の油室44L,44Rの間に生じた圧力差により、傾転シリンダ44のロッドが図4における右方向に作動する。これにより、HSTポンプ41の傾転角が大きくなり、HSTポンプ41からの作動油が管路400Lを通ってHSTモータ42に導かれ、HSTモータ42が正転して車体が前進する。 On the other hand, when the forward / reverse switching valve 43 switches to the forward position 43A, the upstream pressure of the throttle 401 acts on the oil chamber 44L on the left side of the tilt cylinder 44, and the downstream side of the throttle 401 on the right oil chamber 44R. Pressure acts. Then, the rod of the tilting cylinder 44 operates rightward in FIG. 4 due to the pressure difference generated between the left and right oil chambers 44L and 44R. As a result, the tilt angle of the HST pump 41 increases, and the hydraulic oil from the HST pump 41 is guided to the HST motor 42 through the pipeline 400L, and the HST motor 42 rotates forward to move the vehicle forward.
 他方、前後進切換弁43が後進位置43Bに切り換わると、傾転シリンダ44の左側の油室44Lには絞り401の下流側圧力が作用し、右側の油室44Rには絞り401の上流側圧力が作用する。そして、左右の油室44L,44Rの間に生じた圧力差により、傾転シリンダ44のロッドが図4における左方向に作動する。これにより、HSTポンプ41の傾転角が大きくなり、HSTポンプ41からの作動油が管路400Rを通ってHSTモータ42に導かれ、HSTモータ42が反転して車体が後進する。 On the other hand, when the forward / reverse switching valve 43 is switched to the reverse position 43B, the downstream pressure of the throttle 401 acts on the oil chamber 44L on the left side of the tilt cylinder 44, and the upstream side of the throttle 401 on the oil chamber 44R on the right side. Pressure acts. Then, the rod of the tilt cylinder 44 operates to the left in FIG. 4 due to the pressure difference generated between the left and right oil chambers 44L and 44R. As a result, the tilt angle of the HST pump 41 increases, and the hydraulic oil from the HST pump 41 is guided to the HST motor 42 through the pipeline 400R, and the HST motor 42 reverses and the vehicle moves backward.
 このように、HSTポンプ41から導かれた作動油でHSTモータ42が回転することにより、HSTモータ42からの出力トルクがアクスル15を介して前輪11A及び後輪11Bに伝達されてホイールローダ1が走行する。したがって、HSTモータ42の出力トルクは、ホイールローダ1の走行駆動力、すなわち車体のけん引力となる。 As described above, when the HST motor 42 rotates with the hydraulic oil guided from the HST pump 41, the output torque from the HST motor 42 is transmitted to the front wheel 11A and the rear wheel 11B via the axle 15, and the wheel loader 1 To run. Therefore, the output torque of the HST motor 42 becomes a driving force for driving the wheel loader 1, that is, a traction force of the vehicle body.
 HSTモータ42の出力トルクは、HSTモータ42の押しのけ容積(傾転角)と走行負荷圧力(=管路400Lの圧力-管路400Rの圧力)との積で表されることから、HSTモータ42の押しのけ容積を制御することで車体のけん引力を制御することができる。 The output torque of the HST motor 42 is represented by the product of the displacement (tilt angle) of the HST motor 42 and the traveling load pressure (= pressure of the line 400L−pressure of the line 400R). By controlling the displacement of the vehicle, the traction force of the vehicle body can be controlled.
 エンジン3の回転数はアクセルペダル61の踏込量により調整され、エンジン3に接続されたHSTチャージポンプ41Aの吐出量はエンジン3の回転数に比例する。したがって、絞り401の前後差圧はエンジン3の回転数に比例し、HSTポンプ41の傾転角もエンジン3の回転数に比例する。 The rotation speed of the engine 3 is adjusted by the amount of depression of the accelerator pedal 61, and the discharge amount of the HST charge pump 41A connected to the engine 3 is proportional to the rotation speed of the engine 3. Therefore, the differential pressure across the throttle 401 is proportional to the rotation speed of the engine 3, and the tilt angle of the HST pump 41 is also proportional to the rotation speed of the engine 3.
 アクセルペダル61の踏込量は、アクセルペダル61に取り付けられた踏込量センサ610で検出される。エンジン3は、踏込量センサ610で検出された踏込量に応じた目標エンジン回転速度にしたがって、回転数が制御される。 The depression amount of the accelerator pedal 61 is detected by a depression amount sensor 610 attached to the accelerator pedal 61. The number of revolutions of the engine 3 is controlled in accordance with the target engine speed in accordance with the stepping amount detected by the stepping amount sensor 610.
 図5に示すように、アクセルペダル61の踏込量と目標エンジン回転速度とは比例関係にあり、アクセルペダル61の踏込量が大きくなると目標エンジン回転速度は速くなる。そして、アクセルペダル61の踏込量がS2になった時に目標エンジン回転速度が最高回転速度Nmax1となる。 As shown in FIG. 5, the depression amount of the accelerator pedal 61 is proportional to the target engine rotation speed, and the target engine rotation speed increases as the depression amount of the accelerator pedal 61 increases. Then, when the depression amount of the accelerator pedal 61 becomes S2, the target engine rotation speed becomes the maximum rotation speed Nmax1.
 図5において、アクセルペダル61の踏込量0~S1の範囲(例えば0%~20あるいは30%の範囲)は、アクセルペダル61の踏込量にかかわらず目標エンジン回転速度が所定の最低回転速度Nminで一定となる不感帯として設定されている。また、アクセルペダル61の踏込量S2~100の範囲(例えば70あるいは80%~100%の範囲)は、目標エンジン回転速度がアクセルペダル61の踏込量にかかわらず最高目標エンジン回転速度Nmaxに維持されるように設定されている。なお、これらの範囲は、任意に設定変更可能である。 In FIG. 5, the range of the depression amount of the accelerator pedal 61 in the range of 0 to S1 (for example, the range of 0% to 20 or 30%) is the target engine rotation speed at the predetermined minimum rotation speed Nmin regardless of the depression amount of the accelerator pedal 61. It is set as a fixed dead zone. In the range of the depression amount S2 to 100 of the accelerator pedal 61 (for example, 70 or 80% to 100%), the target engine rotation speed is maintained at the maximum target engine rotation speed Nmax regardless of the depression amount of the accelerator pedal 61. Is set to These ranges can be arbitrarily set and changed.
 次に、エンジン3とHSTポンプ41との関係は、図6(a)~(c)に示す通りである。 (6) Next, the relationship between the engine 3 and the HST pump 41 is as shown in FIGS.
 図6(a)に示すように、エンジン回転速度がN1からN2までの間では、エンジン3の回転速度NとHSTポンプ41の押し退け容積qとは比例関係にあり、エンジン3の回転速度がN1からN2になるまで速くなるにつれて(N1<N2)、押しのけ容積は0から所定の値qcまで大きくなる。エンジン回転速度がN2以上では、HSTポンプ41の押しのけ容積は、エンジン回転速度にかかわらず所定の値qcで一定となる。 As shown in FIG. 6A, when the engine rotation speed is between N1 and N2, the rotation speed N of the engine 3 is proportional to the displacement q of the HST pump 41, and the rotation speed of the engine 3 is N1. As the speed increases from N to N2 (N1 <N2), the displacement increases from 0 to a predetermined value qc. When the engine speed is equal to or higher than N2, the displacement of the HST pump 41 is constant at a predetermined value qc regardless of the engine speed.
 HSTポンプ41の入力トルクは、押しのけ容積に吐出圧力を積算したもの(入力トルク=押しのけ容積×吐出圧力)である。図6(b)に示すように、エンジン回転速度がN1からN2までの間では、エンジン3の回転速度NとHSTポンプ41の入力トルクTとは比例関係にあり、エンジン3の回転速度がN1からN2になるまで速くなるにつれて、入力トルクは0から所定の値Tcまで大きくなる。エンジン回転速度がN2以上では、HSTポンプ41の入力トルクは、エンジン回転速度にかかわらず所定の値Tcで一定となる。 The input torque of the HST pump 41 is the sum of the displacement and the discharge pressure (input torque = displacement volume × discharge pressure). As shown in FIG. 6B, when the engine rotation speed is between N1 and N2, the rotation speed N of the engine 3 is proportional to the input torque T of the HST pump 41, and the rotation speed of the engine 3 is N1. The input torque increases from 0 to a predetermined value Tc as the speed increases from 0 to N2. When the engine speed is equal to or higher than N2, the input torque of the HST pump 41 is constant at a predetermined value Tc regardless of the engine speed.
 図6(c)に示すように、エンジン回転速度がN1からN2までの間では、HSTポンプ41の吐出流量Qとエンジン3の回転速度Nとは二次の比例関係にあり、エンジン3の回転速度がN1からN2になるまで速くなるにつれて、HSTポンプ41の吐出流量は0からQ1まで増加する。エンジン回転速度がN2以上では、エンジン3の回転速度NとHSTポンプ41の吐出流量Qとは一次の比例関係にある。 As shown in FIG. 6C, when the engine rotation speed is between N1 and N2, the discharge flow rate Q of the HST pump 41 and the rotation speed N of the engine 3 are in a quadratic proportional relationship, and the rotation speed of the engine 3 is As the speed increases from N1 to N2, the discharge flow rate of the HST pump 41 increases from 0 to Q1. When the engine rotation speed is equal to or higher than N2, the rotation speed N of the engine 3 and the discharge flow rate Q of the HST pump 41 have a linear proportional relationship.
 したがって、エンジン3の回転速度Nが速くなるとHSTポンプ41の吐出流量Qが増え、HSTポンプ41からHSTモータ42に流入する圧油の流量が増えるため、HSTモータ42の回転数が増大し、車速が速くなる。なお、車速は、HSTモータ42の回転速度としてモータ回転速度センサ72で検出する(図4参照)。 Therefore, when the rotation speed N of the engine 3 increases, the discharge flow rate Q of the HST pump 41 increases, and the flow rate of the pressure oil flowing from the HST pump 41 into the HST motor 42 increases, so that the rotation speed of the HST motor 42 increases and the vehicle speed increases. Is faster. The vehicle speed is detected by the motor rotation speed sensor 72 as the rotation speed of the HST motor 42 (see FIG. 4).
 このように、HST式走行駆動システムでは、HSTポンプ41の吐出流量を連続的に増減させることにより車速を制御(変速)するため、ホイールローダ1は滑らかな発進、及び衝撃の少ない停止が可能となる。 As described above, in the HST traveling drive system, since the vehicle speed is controlled (shifted) by continuously increasing or decreasing the discharge flow rate of the HST pump 41, the wheel loader 1 can smoothly start and stop with less impact. Become.
 なお、図4に示すように、HSTチャージポンプ41Aから吐出された圧油は、絞り401及びチェック弁402A,402Bを通って管路400L,400Rにも導かれる。絞り401の下流側圧力は、前後進切換弁43と作動油タンク40とを接続する管路上に設けられたチャージリリーフ弁403により制限され、管路400L,400Rの最高圧力はリリーフ弁404により制限される。 As shown in FIG. 4, the pressure oil discharged from the HST charge pump 41A is also guided to the pipelines 400L and 400R through the throttle 401 and the check valves 402A and 402B. The downstream pressure of the throttle 401 is limited by a charge relief valve 403 provided on a pipe connecting the forward / reverse switching valve 43 and the hydraulic oil tank 40, and the maximum pressure of the pipes 400 </ b> L and 400 </ b> R is limited by a relief valve 404. Is done.
 本実施形態におけるHST式走行駆動装置には、HSTポンプ41からの作動油をHSTモータ42に導く管路400L,400Rの管路圧力のうち高い方の圧力を選択する高圧選択弁405が備えられており、高圧選択弁405で選択された圧力がコントローラ5に入力される。また、本実施形態では、車体の傾斜状態を検出する傾斜状態検出器に車体傾斜角度センサ130を用いており、車体傾斜角度センサ130で検出された車体傾斜検出角度θはコントローラ5に入力される。 The HST traveling drive device according to the present embodiment is provided with a high-pressure selection valve 405 that selects the higher one of the pipeline pressures of the pipelines 400L and 400R that guide the hydraulic oil from the HST pump 41 to the HST motor 42. The pressure selected by the high-pressure selection valve 405 is input to the controller 5. Further, in the present embodiment, the vehicle body tilt angle sensor 130 is used as a tilt state detector that detects the vehicle body tilt state, and the vehicle body tilt detection angle θ detected by the vehicle body tilt angle sensor 130 is input to the controller 5. .
(フロント作業機2の駆動システムについて)
 次に、フロント作業機2の駆動システムについて、図4、図7、及び図8を参照して説明する。
(About the drive system of the front work machine 2)
Next, a drive system of the front work machine 2 will be described with reference to FIGS. 4, 7, and 8. FIG.
 図7は、フロント作業機2の駆動に係る油圧回路を示す図である。図8は、作業機用油圧ポンプ45の吐出圧とスプールの開口面積との関係を示すグラフである。 FIG. 7 is a diagram illustrating a hydraulic circuit related to driving of the front work machine 2. FIG. 8 is a graph showing the relationship between the discharge pressure of the working machine hydraulic pump 45 and the opening area of the spool.
 図4及び図7に示すように、ホイールローダ1は、エンジン3により駆動されてフロント作業機2に作動油を供給する作業機用油圧ポンプ45と、リフトアームシリンダ22及びバケットシリンダ24のそれぞれと作業機用油圧ポンプ45との間に設けられて作業機用油圧ポンプ45からリフトアームシリンダ22及びバケットシリンダ24にそれぞれ供給される圧油の流れを制御するコントロールバルブ46と、リフトアーム21を操作するためのリフトアーム操作レバー210と、バケット23を操作するためのバケット操作レバー230と、を備える。 As shown in FIGS. 4 and 7, the wheel loader 1 includes a working machine hydraulic pump 45 driven by the engine 3 to supply hydraulic oil to the front working machine 2, and each of the lift arm cylinder 22 and the bucket cylinder 24. Operate the lift arm 21 and a control valve 46 provided between the work machine hydraulic pump 45 and controlling the flow of pressurized oil supplied from the work machine hydraulic pump 45 to the lift arm cylinder 22 and the bucket cylinder 24, respectively. And a bucket operation lever 230 for operating the bucket 23.
 作業機用油圧ポンプ45は、本実施形態では、固定式の油圧ポンプが用いられ、図7に示すように、第1管路801によりコントロールバルブ46に接続されている。作業機用油圧ポンプ45からの吐出圧は第1管路801上に設けられた吐出圧センサ75で検出され、検出された吐出圧に係る信号がコントローラ5に入力される。吐出圧センサ75は、作業機用油圧ポンプ45の吐出圧を検出する吐出圧検出器の一態様である。 In this embodiment, a fixed hydraulic pump is used as the working machine hydraulic pump 45, and is connected to the control valve 46 via a first conduit 801 as shown in FIG. The discharge pressure from the working machine hydraulic pump 45 is detected by a discharge pressure sensor 75 provided on the first conduit 801, and a signal related to the detected discharge pressure is input to the controller 5. The discharge pressure sensor 75 is an example of a discharge pressure detector that detects the discharge pressure of the working machine hydraulic pump 45.
 リフトアーム操作レバー210及びバケット操作レバー230はいずれも、フロント作業機2を操作するための操作装置の一態様であり、運転室12(図1参照)内に設けられている。例えば、オペレータがリフトアーム操作レバー210を操作すると、その操作量に比例したパイロット圧が操作信号として生成される。 The lift arm operating lever 210 and the bucket operating lever 230 are both modes of an operating device for operating the front work machine 2, and are provided in the cab 12 (see FIG. 1). For example, when the operator operates the lift arm operation lever 210, a pilot pressure proportional to the operation amount is generated as an operation signal.
 図7に示すように、生成されたパイロット圧は、コントロールバルブ46の一対の受圧室に接続された一対のパイロット管路64L,64Rに導かれて、コントロールバルブ46に作用する。これにより、コントロールバルブ46内のスプールが当該パイロット圧に応じてストロークし、作動油が流れる方向及び流量が決まる。コントロールバルブ46は、第2管路802によりリフトアームシリンダ22のボトム室に接続され、第3管路803によりリフトアームシリンダ22のロッド室に接続されている。 As shown in FIG. 7, the generated pilot pressure is guided to a pair of pilot lines 64L and 64R connected to a pair of pressure receiving chambers of the control valve 46, and acts on the control valve 46. Thereby, the spool in the control valve 46 strokes according to the pilot pressure, and the direction and the flow rate of the hydraulic oil are determined. The control valve 46 is connected to a bottom chamber of the lift arm cylinder 22 by a second pipe 802, and connected to a rod chamber of the lift arm cylinder 22 by a third pipe 803.
 作業機用油圧ポンプ45から吐出された作動油は、第1管路801に導かれ、コントロールバルブ46を介して第2管路802又は第3管路803に導かれる。作動油が第2管路802に導かれると、リフトアームシリンダ22のボトム室に流入し、これによりリフトアームシリンダ22のロッド220が伸長してリフトアーム21が上昇する。一方、作動油が第3管路803に導かれると、リフトアームシリンダ22のロッド室に流入し、リフトアームシリンダ22のロッド220が縮んでリフトアーム21が下降する。 作 動 Hydraulic oil discharged from the working machine hydraulic pump 45 is guided to the first pipeline 801 and is guided to the second pipeline 802 or the third pipeline 803 via the control valve 46. When the hydraulic oil is led to the second conduit 802, it flows into the bottom chamber of the lift arm cylinder 22, whereby the rod 220 of the lift arm cylinder 22 is extended and the lift arm 21 is raised. On the other hand, when the hydraulic oil is guided to the third conduit 803, it flows into the rod chamber of the lift arm cylinder 22, the rod 220 of the lift arm cylinder 22 contracts, and the lift arm 21 descends.
 なお、本実施形態では、リフトアーム操作レバー210及びバケット操作レバー230はそれぞれ油圧式レバーであるが、電気式レバーを用いてもよく、この場合には、操作量に応じた電流値が操作信号として生成される。 In this embodiment, each of the lift arm operation lever 210 and the bucket operation lever 230 is a hydraulic lever, but an electric lever may be used. In this case, a current value corresponding to the operation amount is used as an operation signal. Is generated as
 パイロット圧は、リフトアーム21の上げ操作量に応じた操作信号を検出する操作信号センサとしてのパイロット圧センサ76により検出される。パイロット圧センサ76は、リフトアーム21の上げ操作に対応したパイロット管路(図7てではパイロット管路64R)上に設けられている。パイロット圧センサ76は、操作装置であるリフトアーム操作レバー210からの操作信号を検出する操作信号検出器の一態様である。 The pilot pressure is detected by a pilot pressure sensor 76 as an operation signal sensor for detecting an operation signal according to the lift operation amount of the lift arm 21. The pilot pressure sensor 76 is provided on a pilot line (the pilot line 64R in FIG. 7) corresponding to the lifting operation of the lift arm 21. The pilot pressure sensor 76 is an embodiment of an operation signal detector that detects an operation signal from a lift arm operation lever 210 as an operation device.
 図8に示すように、リフトアーム操作レバー210の上げ操作量とコントロールバルブ46のスプールの開口面積とは比例関係にあり、リフトアーム操作レバー210の上げ操作量が増えるとスプールの開口面積も大きくなる。したがって、リフトアーム21を上げる方向にリフトアーム操作レバー210を大きく操作すると、リフトアームシリンダ22へ流入する作動油量が多くなり、ロッド220が速く伸長する。すなわち、リフトアーム操作レバー210の操作量が増大するにつれて、リフトアーム21の動作速度が速くなる。 As shown in FIG. 8, the lifting operation amount of the lift arm operation lever 210 and the opening area of the spool of the control valve 46 are in a proportional relationship, and the opening area of the spool increases as the lifting operation amount of the lift arm operation lever 210 increases. Become. Therefore, when the lift arm operation lever 210 is largely operated in the direction in which the lift arm 21 is raised, the amount of hydraulic oil flowing into the lift arm cylinder 22 increases, and the rod 220 elongates quickly. That is, as the operation amount of the lift arm operation lever 210 increases, the operation speed of the lift arm 21 increases.
 図8において、リフトアーム操作レバー210の上げ操作量0~10%の範囲は、リフトアーム操作レバー210を操作してもスプールは開口せず開口面積が0%となる不感帯として設定されている。また、リフトアーム操作レバー210の上げ操作量85~100%の範囲では、スプールの開口面積は100%で一定となっており、フルレバー操作状態が維持されている。なお、これらの設定範囲は、任意に変更可能である。 In FIG. 8, the range of 0 to 10% of the lifting operation amount of the lift arm operation lever 210 is set as a dead zone where the spool does not open even when the lift arm operation lever 210 is operated and the opening area is 0%. In the range of 85-100% of the lifting operation amount of the lift arm operation lever 210, the opening area of the spool is constant at 100%, and the full lever operation state is maintained. Note that these setting ranges can be arbitrarily changed.
 なお、作業機用油圧ポンプ45の吐出圧、及び操作信号であるパイロット圧はそれぞれリフトアーム21の上げ操作量に対応していることから、吐出圧センサ75及びパイロット圧センサ76はいずれも、リフトアーム操作レバー210によるリフトアーム21の上げ操作量を検出する操作量検出器の一態様である。 Since the discharge pressure of the working machine hydraulic pump 45 and the pilot pressure, which is an operation signal, respectively correspond to the lifting operation amount of the lift arm 21, both the discharge pressure sensor 75 and the pilot pressure sensor 76 This is an embodiment of an operation amount detector that detects the amount of operation of raising the lift arm 21 by the arm operation lever 210.
 リフトアーム21の上げ操作量を精度よく検出するためには、吐出圧センサ75及びパイロット圧センサ76のそれぞれで検出された値の両方を用いることが望ましいが、操作量センサとしては、吐出圧センサ75及びパイロット圧センサ76のうちの少なくともいずれかを用いればよい。本実施形態では、コントローラ5は、吐出圧センサ75で検出された吐出圧Paを用いてリフトアーム21の上げ操作について判定している。 In order to accurately detect the lifting operation amount of the lift arm 21, it is desirable to use both the values detected by the discharge pressure sensor 75 and the pilot pressure sensor 76, respectively. 75 and / or pilot pressure sensor 76 may be used. In the present embodiment, the controller 5 determines the lifting operation of the lift arm 21 using the discharge pressure Pa detected by the discharge pressure sensor 75.
 バケット23の操作についても、リフトアーム21の操作と同様に、バケット操作レバー230の操作量に応じて生成されたパイロット圧がコントロールバルブ46に作用することによってコントロールバルブ46のスプールの開口面積が制御され、バケットシリンダ24へ流出入する作動油量が調整される。なお、図7では図示を省略しているが、バケット23の動作を検出するためのセンサ等についても、油圧回路の各管路上に設けられている。 Regarding the operation of the bucket 23, similarly to the operation of the lift arm 21, the pilot opening generated according to the operation amount of the bucket operation lever 230 acts on the control valve 46, so that the opening area of the spool of the control valve 46 is controlled. Then, the amount of hydraulic oil flowing into and out of the bucket cylinder 24 is adjusted. Although not shown in FIG. 7, sensors and the like for detecting the operation of the bucket 23 are also provided on each pipeline of the hydraulic circuit.
(コントローラ5の構成)
 次に、コントローラ5の構成について、図9を参照して説明する。
(Configuration of controller 5)
Next, the configuration of the controller 5 will be described with reference to FIG.
 図9は、第1実施形態に係るコントローラ5が有する機能を示す機能ブロック図である。 FIG. 9 is a functional block diagram illustrating functions of the controller 5 according to the first embodiment.
 コントローラ5は、CPU、RAM、ROM、HDD、入力I/F、及び出力I/Fがバスを介して互いに接続されて構成される。そして、前後進切換レバー62等の各種の操作装置、及び吐出圧センサ75や踏込量センサ610、車体傾斜角度センサ130等の各種のセンサが入力I/Fに接続され、HSTモータ42のレギュレータ420等が出力I/Fに接続されている。 The controller 5 includes a CPU, a RAM, a ROM, a HDD, an input I / F, and an output I / F connected to each other via a bus. Various operating devices such as a forward / reverse switching lever 62 and various sensors such as a discharge pressure sensor 75, a stepping amount sensor 610, and a vehicle body tilt angle sensor 130 are connected to an input I / F, and a regulator 420 of the HST motor 42 is connected. Are connected to the output I / F.
 このようなハードウェア構成において、ROMやHDD若しくは光学ディスク等の記録媒体に格納された演算プログラム(ソフトウェア)をCPUが読み出してRAM上に展開し、展開された演算プログラムを実行することにより、演算プログラムとハードウェアとが協働して、コントローラ5の機能を実現する。 In such a hardware configuration, the CPU reads an arithmetic program (software) stored in a recording medium such as a ROM, an HDD, or an optical disk, expands the arithmetic program on a RAM, and executes the expanded arithmetic program to execute arithmetic processing. The program and the hardware cooperate to realize the function of the controller 5.
 なお、本実施形態では、コントローラ5の構成をソフトウェアとハードウェアとの組み合わせにより説明しているが、これに限らず、ホイールローダ1の側で実行される演算プログラムの機能を実現する集積回路を用いて構成してもよい。 In the present embodiment, the configuration of the controller 5 is described by a combination of software and hardware. However, the present invention is not limited to this, and an integrated circuit that realizes the function of an arithmetic program executed on the wheel loader 1 side may be used. You may comprise using it.
 図9に示すように、コントローラ5は、データ取得部51と、特定条件判定部52と、モータ制御部53と、記憶部54と、を含む。 As shown in FIG. 9, the controller 5 includes a data acquisition unit 51, a specific condition determination unit 52, a motor control unit 53, and a storage unit 54.
 データ取得部51は、前後進切換レバー62から出力された前進又は後進の前後進切換信号、踏込量センサ610で検出されたアクセルペダル61の踏込量、吐出圧センサ75で検出された作業機用油圧ポンプ45の吐出圧Pa、及び車体傾斜角度センサ130で検出された車体傾斜検出角度θ(傾斜量)に関するデータをそれぞれ取得する。 The data acquisition unit 51 outputs a forward / reverse forward / backward switching signal output from the forward / backward switching lever 62, a depression amount of the accelerator pedal 61 detected by the depression amount sensor 610, and a working machine detected by the discharge pressure sensor 75. Data on the discharge pressure Pa of the hydraulic pump 45 and data on the vehicle body inclination detection angle θ (the amount of inclination) detected by the vehicle body inclination angle sensor 130 are acquired.
 特定条件判定部52は、データ取得部51で取得された信号や各データに基づいて、ホイールローダ1が登坂しながら掘削状態にあることを特定する特定条件を満たすか否かを判定する。 The specific condition determination unit 52 determines whether or not a specific condition for specifying that the wheel loader 1 is in an excavation state while climbing a slope is based on the signal and each data acquired by the data acquisition unit 51.
 具体的には、特定条件判定部52は、前後進切換信号及びアクセルペダル61の踏込量に基づいたホイールローダ1の前進走行についての判定、作業機用油圧ポンプ45の吐出圧Paに基づいたフロント作業機2の掘削動作についての判定、及び車体傾斜検出角度θに基づいた車体の傾斜状態についての判定を行う。特定条件判定部52は、これら3つの条件についての判定を行うことにより、特定条件を満たすか否かを判定する。 Specifically, the specific condition determination unit 52 determines the forward traveling of the wheel loader 1 based on the forward / reverse switching signal and the amount of depression of the accelerator pedal 61, and determines the front based on the discharge pressure Pa of the hydraulic pump 45 for work equipment. A determination on the excavation operation of the work implement 2 and a determination on the tilt state of the vehicle body based on the vehicle body tilt detection angle θ are performed. The specific condition determination unit 52 determines whether or not the specific condition is satisfied by performing the determination on these three conditions.
 ここで、前後進切換レバー62及び踏込量センサ610はそれぞれ、ホイールローダ1の車体の走行状態を検出する走行状態検出器の一態様である。なお、本実施形態では、前後進切換レバー62から出力された前進を示す前後進切換信号、及び踏込量センサ610で検出されたアクセルペダル61の踏込量によって車体の前進走行を判定しているが、これに限らず、例えば、プロペラシャフトの回転方向から車体の進行方向が前進または後進のいずれかであるかを検出する等、車体に搭載された他の走行状態検出器で検出された走行状態を踏まえて総合的に車体の前進走行を判定してもよい。 Here, each of the forward / reverse switching lever 62 and the depression amount sensor 610 is one mode of a traveling state detector that detects the traveling state of the vehicle body of the wheel loader 1. In the present embodiment, the forward traveling of the vehicle body is determined based on the forward / backward switching signal indicating forward traveling output from the forward / backward switching lever 62 and the depression amount of the accelerator pedal 61 detected by the depression amount sensor 610. The traveling state detected by another traveling state detector mounted on the vehicle body, such as, for example, detecting whether the traveling direction of the vehicle body is forward or backward based on the rotation direction of the propeller shaft. Based on this, the forward running of the vehicle body may be determined comprehensively.
 モータ制御部53は、特定条件判定部52にて特定条件を満たすと判定された場合、車体が平地に設置された状態でフロント作業機2により掘削動作を行う場合の最大押し退け容積qs(以下、「平地掘削動作時の最大押しのけ容積qs」とする)よりも大きい最大押しのけ容積に基づく指令信号をHSTモータ42のレギュレータ420に出力し、HSTモータ42の最大押しのけ容積qmaxを平地掘削動作時の最大押しのけ容積qsよりも上昇させる。 When the specific condition determination unit 52 determines that the specific conditions are satisfied, the motor control unit 53 performs a maximum displacement volume qs (hereinafter, referred to as a “displacement volume”) when the excavation operation is performed by the front work machine 2 in a state where the vehicle body is installed on a flat ground. A command signal based on a maximum displacement larger than “maximum displacement qs at the time of flat ground excavation operation” is output to the regulator 420 of the HST motor 42, and the maximum displacement qmax of the HST motor 42 is set at the maximum during the flat land excavation operation. The displacement is increased above the displacement volume qs.
 なお、モータ制御部53は、特定条件判定部52にて特定条件を満たさず、車体が平地に設置され掘削状態にある場合には、平地掘削動作時の最大押しのけ容積qsに基づく指令信号をHSTモータ42のレギュレータ420に出力し、HSTモータ42の最大押しのけ容積qmaxを平地掘削動作時の最大押しのけ容積qsに制限する。 If the specific condition determination unit 52 does not satisfy the specific condition and the vehicle body is installed on a flat ground and is in an excavation state, the motor control unit 53 outputs a command signal based on the maximum displacement qs during the flat ground excavation operation to the HST. Output to the regulator 420 of the motor 42 to limit the maximum displacement qmax of the HST motor 42 to the maximum displacement qs at the time of level ground excavation operation.
 記憶部54は、掘削動作に必要な作業機用油圧ポンプ45の吐出圧Ps(リフトアームシリンダ22を伸長させる油圧源の吐出圧)、車体傾斜角度に関する閾値である第1角度閾値θ1及び第2角度閾値θ2、ならびに平地掘削動作時の最大押しのけ容積qsをそれぞれ記憶している。 The storage unit 54 stores a discharge pressure Ps (a discharge pressure of a hydraulic pressure source for extending the lift arm cylinder 22) of the work machine hydraulic pump 45 necessary for the excavation operation, a first angle threshold θ1 that is a threshold related to a vehicle body inclination angle, and a second angle threshold. The angle threshold value θ2 and the maximum displacement qs at the time of the flat ground excavation operation are stored.
(コントローラ5内での処理及びホイールローダ1の動作)
 次に、コントローラ5内で実行される具体的な処理の流れ、及びコントローラ5の制御に伴うホイールローダ1の動作について、図10及び図11を参照して説明する。
(Processing in Controller 5 and Operation of Wheel Loader 1)
Next, the flow of a specific process executed in the controller 5 and the operation of the wheel loader 1 under the control of the controller 5 will be described with reference to FIGS.
 図10は、第1実施形態に係るコントローラ5で実行される処理の流れを示すフローチャートである。図11は、第1実施形態における作業機用油圧ポンプ45の吐出圧PaとHSTモータ42の最大押しのけ容積qmaxとの関係を示すグラフである。 FIG. 10 is a flowchart showing a flow of processing executed by the controller 5 according to the first embodiment. FIG. 11 is a graph showing the relationship between the discharge pressure Pa of the working machine hydraulic pump 45 and the maximum displacement qmax of the HST motor 42 in the first embodiment.
 まず、データ取得部51は、踏込量センサ610から出力されたアクセルペダル61の踏込量、及び前後進切換レバー62から出力された前後進切換信号を取得する(ステップS501)。次に、特定条件判定部52は、ステップS501で取得された踏込量及び前後進切換信号に基づいて、ホイールローダ1が前進走行をしているか否かを判定する(ステップS502)。 First, the data acquisition unit 51 acquires the depression amount of the accelerator pedal 61 output from the depression amount sensor 610 and the forward / reverse switching signal output from the forward / reverse switching lever 62 (step S501). Next, the specific condition determination unit 52 determines whether or not the wheel loader 1 is traveling forward based on the stepping amount and the forward / reverse switching signal acquired in step S501 (step S502).
 ステップS502においてホイールローダ1が前進走行をしていると判定された場合(ステップS502/YES)、データ取得部51は、吐出圧センサ75から出力された作業機用油圧ポンプ45の吐出圧Paを取得する(ステップS503)。 When it is determined in step S502 that the wheel loader 1 is traveling forward (step S502 / YES), the data acquiring unit 51 determines the discharge pressure Pa of the working machine hydraulic pump 45 output from the discharge pressure sensor 75. It is acquired (step S503).
 次に、特定条件判定部52は、ステップS503で取得された吐出圧Paに基づいて、吐出圧Paが掘削動作に必要な作業機用油圧ポンプ45の吐出圧Ps以上であるか否かを判定する(ステップS504)。 Next, the specific condition determination unit 52 determines whether or not the discharge pressure Pa is equal to or higher than the discharge pressure Ps of the working machine hydraulic pump 45 necessary for the excavation operation, based on the discharge pressure Pa acquired in step S503. (Step S504).
 ステップS504において吐出圧Paが掘削動作に必要な作業機用油圧ポンプ45の吐出圧Ps以上である(Pa≧Ps)と判定された場合(ステップS504/YES)、データ取得部51は、車体傾斜角度センサ130から出力された車体傾斜検出角度θを取得する(ステップS505)。 If it is determined in step S504 that the discharge pressure Pa is equal to or higher than the discharge pressure Ps of the work equipment hydraulic pump 45 required for the excavation operation (Pa ≧ Ps) (step S504 / YES), the data acquisition unit 51 determines whether the vehicle body tilt The vehicle body inclination detection angle θ output from the angle sensor 130 is obtained (step S505).
 続いて、特定条件判定部52は、ステップS505で取得された車体傾斜検出角度θに基づいて、車体傾斜検出角度θが0以上であって第1角度閾値θ1未満であるか否かを判定する(ステップS506)。 Subsequently, the specific condition determination unit 52 determines whether or not the vehicle body inclination detection angle θ is equal to or greater than 0 and less than the first angle threshold θ1 based on the vehicle body inclination detection angle θ acquired in step S505. (Step S506).
 ステップS506において車体傾斜検出角度θが0以上であって第1角度閾値θ1未満である(0≦θ<θ1)と判定された場合(ステップS506/YES)、車体は登坂中ではないことから、モータ制御部53は、HSTモータ42の最大押しのけ容積qmaxを平地掘削動作時の最大押しのけ容積qsに制限する(ステップS507)。 If it is determined in step S506 that the vehicle body inclination detection angle θ is equal to or greater than 0 and less than the first angle threshold θ1 (0 ≦ θ <θ1) (step S506 / YES), the vehicle body is not climbing a hill. The motor control unit 53 limits the maximum displacement qmax of the HST motor 42 to the maximum displacement qs at the time of the flatland excavation operation (step S507).
 ステップS506において車体傾斜検出角度θが0以上であって第1角度閾値θ1未満でないと判定された場合(ステップS506/NO)、続いて、特定条件判定部52は、車体傾斜検出角度θが第1角度閾値θ1以上であって第2角度閾値θ2未満であるか否かを判定する(ステップS508)。 If it is determined in step S506 that the vehicle body inclination detection angle θ is equal to or greater than 0 and is not less than the first angle threshold θ1 (step S506 / NO), the specific condition determination unit 52 then proceeds to step S506. It is determined whether the angle is equal to or more than the first angle threshold θ1 and less than the second angle threshold θ2 (step S508).
 ステップS508において車体傾斜検出角度θが第1角度閾値θ1以上であって第2角度閾値θ2未満である(θ1≦θ<θ2)と判定された場合(ステップS508/YES)、特定条件を満たすことから、モータ制御部53は、HSTモータ42の最大押しのけ容積qmaxを、平地掘削動作時の最大押しのけ容積qsよりも大きい第1最大押しのけ容積q1(>qs)に制限する(ステップS509)。すなわち、ステップS509において、モータ制御部53は、HSTモータ42の最大押しのけ容積qmaxを平地掘削動作時の最大押しのけ容積qsよりも上昇させる。 If it is determined in step S508 that the vehicle body inclination detection angle θ is equal to or larger than the first angle threshold θ1 and smaller than the second angle threshold θ2 (θ1 ≦ θ <θ2) (step S508 / YES), the specific condition is satisfied. Therefore, the motor control unit 53 limits the maximum displacement qmax of the HST motor 42 to a first maximum displacement q1 (> qs) that is larger than the maximum displacement qs at the time of level digging operation (step S509). That is, in step S509, the motor control unit 53 raises the maximum displacement qmax of the HST motor 42 to be larger than the maximum displacement qs during the level ground excavation operation.
 ステップS508において車体傾斜検出角度θが第1角度閾値θ1以上であって第2角度閾値θ2未満でないと判定された場合(ステップS508/NO)、続いて、特定条件判定部52は、車体傾斜検出角度θが第2角度閾値θ2であるか否かを判定する(ステップS510)。 When it is determined in step S508 that the vehicle body inclination detection angle θ is equal to or greater than the first angle threshold θ1 and not less than the second angle threshold θ2 (step S508 / NO), the specific condition determination unit 52 subsequently performs the vehicle body inclination detection It is determined whether or not the angle θ is the second angle threshold θ2 (step S510).
 ステップS510において車体傾斜検出角度θが第2角度閾値θ2である(θ=θ2)と判定された場合(ステップS510/YES)、特定条件を満たすことから、モータ制御部53は、HSTモータ42の最大押しのけ容積qmaxを、第1最大押しのけ容積q1よりもさらに大きい第2最大押しのけ容積q2(>q1)に制限する(ステップS511)。すなわち、ステップS511において、モータ制御部53は、HSTモータ42の最大押しのけ容積qmaxを平地掘削動作時の最大押しのけ容積qs及び第1最大押しのけ容積q1よりもさらに上昇させる。 If it is determined in step S510 that the vehicle body inclination detection angle θ is the second angle threshold θ2 (θ = θ2) (step S510 / YES), the motor control unit 53 determines that the HST motor 42 The maximum displacement qmax is limited to a second maximum displacement q2 (> q1) that is even larger than the first maximum displacement q1 (step S511). That is, in step S511, the motor control unit 53 further increases the maximum displacement qmax of the HST motor 42 beyond the maximum displacement qs and the first maximum displacement q1 during the leveling operation.
 ステップS507、ステップS509、及びステップS511のそれぞれの処理が実行されると、コントローラ5はステップS503に戻る。また、ステップS502において前進走行中でないと判定された場合(ステップS502/NO)、ステップS504において吐出圧Paが掘削動作に必要な作業機用油圧ポンプ45の吐出圧Ps未満である(Pa<Ps)と判定された場合(ステップS504/NO)、及びステップS510において車体傾斜検出角度θが第2角度閾値θ2でない(θ≠θ2)と判定された場合(ステップS510/NO)は、いずれも特定条件を満たさないため、コントローラ5における処理が終了する。 {Circle around (5)} When the respective processes of step S507, step S509, and step S511 are executed, the controller 5 returns to step S503. When it is determined in step S502 that the vehicle is not traveling forward (step S502 / NO), the discharge pressure Pa is less than the discharge pressure Ps of the work machine hydraulic pump 45 required for the excavation operation (Pa <Ps) in step S504. ) (Step S504 / NO) and when it is determined in step S510 that the vehicle body inclination detection angle θ is not the second angle threshold θ2 (θ ≠ θ2) (step S510 / NO), Since the condition is not satisfied, the processing in the controller 5 ends.
 このように、特定条件が満たされた場合、すなわちホイールローダ1のかき上げ作業時において、図11に示すように、HSTモータ42の最大押しのけ容積qmaxを自動で平地掘削動作時の最大押しのけ容積qsよりも上昇させることにより、車体の最大けん引力が平地掘削動作時の最大けん引力よりも上昇するため、平地掘削時と比べて低下していたWsinα分のけん引力を補うことができる。これにより、車体が平地に設置された状態で掘削動作を行う場合に限らず、車体が急斜面を前進走行(登坂)しながら掘削動作を行うかき上げ作業の場合であっても作業効率の向上を図れる。 As described above, when the specific conditions are satisfied, that is, during the lifting operation of the wheel loader 1, the maximum displacement qmax of the HST motor 42 is automatically increased as shown in FIG. Since the maximum traction force of the vehicle body is higher than the maximum traction force at the time of level ground excavation operation by raising the vehicle body, the traction force of Wsinα, which has been reduced as compared with the level at the time of level ground excavation, can be compensated. This improves the work efficiency not only in the case of performing the excavation operation in a state where the vehicle body is installed on a flat ground, but also in the case of the lifting operation in which the vehicle body performs the excavation operation while traveling forward (uphill) on a steep slope. I can do it.
 また、本実施形態では、コントローラ5は、車体傾斜検出角度θが第1角度閾値θ1以上であって第2角度閾値θ2未満である場合(θ1≦θ<θ2)には、HSTモータ42の最大押しのけ容積qmaxを平地掘削動作時の最大押しのけ容積qsから第1最大押しのけ容積q1に上昇させるのに対し(図11に示す二点鎖線から一点鎖線への上昇)、車体傾斜検出角度θが第2角度閾値θ2である場合(θ=θ2)には、HSTモータ42の最大押しのけ容積qmaxを平地掘削動作時の最大押しのけ容積qsから第2最大押しのけ容積q2(>q1)に上昇させる(図11に示す二点鎖線から実線への上昇)。すなわち、車体傾斜検出角度θが大きいほど、HSTモータ42の最大押しのけ容積の上昇率を大きくしている。このため、地山100の斜面の角度に応じて、より精度よく車体の最大けん引力を制御することができる。 In the present embodiment, when the vehicle body inclination detection angle θ is equal to or larger than the first angle threshold θ1 and smaller than the second angle threshold θ2 (θ1 ≦ θ <θ2), the controller 5 sets the maximum of the HST motor 42 to the maximum. While the displacement qmax is increased from the maximum displacement qs during the flat terrain excavation operation to the first maximum displacement q1 (from the two-dot chain line shown in FIG. 11 to the one-dot chain line shown in FIG. 11), the vehicle body inclination detection angle θ becomes the second displacement. When the angle threshold value is θ2 (θ = θ2), the maximum displacement qmax of the HST motor 42 is increased from the maximum displacement qs during the flat terrain operation to the second maximum displacement q2 (> q1) (see FIG. 11). From the two-dot chain line to the solid line shown). That is, the larger the vehicle body inclination detection angle θ is, the larger the rate of increase of the maximum displacement of the HST motor 42 is. For this reason, the maximum traction force of the vehicle body can be more accurately controlled according to the angle of the slope of the ground 100.
<第2実施形態>
 次に、本発明の第2実施形態に係るホイールローダ1について図12~14を参照して説明する。なお、図12~14において、第1実施形態に係るホイールローダ1について説明したものと共通する構成要素については、同一の符号を付してその説明を省略する。
<Second embodiment>
Next, a wheel loader 1 according to a second embodiment of the present invention will be described with reference to FIGS. 12 to 14, the same components as those described for the wheel loader 1 according to the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
 図12は、第2実施形態に係るホイールローダ1の走行駆動に係る油圧回路及び電気回路を示す図である。図13は、第2実施形態に係るコントローラ5Aで実行される処理の流れを示すフローチャートである。図14は、第2実施形態における作業機用油圧ポンプ45の吐出圧PaとHSTモータ42の最大押しのけ容積qmaxとの関係を示すグラフである。 FIG. 12 is a diagram illustrating a hydraulic circuit and an electric circuit related to traveling drive of the wheel loader 1 according to the second embodiment. FIG. 13 is a flowchart illustrating a flow of a process executed by the controller 5A according to the second embodiment. FIG. 14 is a graph showing the relationship between the discharge pressure Pa of the working machine hydraulic pump 45 and the maximum displacement qmax of the HST motor 42 in the second embodiment.
 図12に示すように、本実施形態に係るホイールローダ1は、地山100を形成している土砂や鉱物等の硬さや比重、作業現場の路面の状態等に応じて、掘削動作時における車体の最大けん引力をPモード、Nモード、及びLモードの3段階に切り替えるモード切替スイッチ60を備えている。このモード切替スイッチ60は手動スイッチであり、運転室12(図1参照)に設けられている。モード切替スイッチ60から出力されたモード切替信号はコントローラ5Aに入力される。 As shown in FIG. 12, the wheel loader 1 according to the present embodiment has a vehicle body during an excavation operation according to the hardness and specific gravity of earth and sand, minerals, and the like forming the ground 100, the state of the road surface at the work site, and the like. Is provided with a mode changeover switch 60 for switching the maximum traction force into three stages of a P mode, an N mode and an L mode. The mode switch 60 is a manual switch, and is provided in the cab 12 (see FIG. 1). The mode switching signal output from the mode switch 60 is input to the controller 5A.
 Pモードは最大けん引力を最も小さくした場合のモードであり、Nモードは最大けん引力をPモードの場合よりも大きくした場合であり、Lモードは最大けん引力をNモードの場合よりもさらに大きくした場合である。オペレータは、モード切替スイッチ60を切り替えて最適なモードを選択することにより、現場の環境に合わせて効率的に掘削作業を行うことができる。 The P mode is a mode in which the maximum traction force is minimized, the N mode is a case in which the maximum traction force is larger than that in the P mode, and the L mode is a case in which the maximum traction force is larger than that in the N mode. This is the case. The operator can perform the excavation work efficiently according to the environment of the site by switching the mode changeover switch 60 and selecting the optimum mode.
 また、本実施形態では、第1実施形態と異なり、車体の傾斜状態を検出する傾斜状態検出器にリフトアーム21の角度を検出するリフトアーム角度センサ211(リフトアーム角度検出器)を用いている。したがって、コントローラ5Aでは、特定条件判定部52は、リフトアーム角度センサ211から出力されたリフトアーム検出角度βに基づいて車体の傾斜状態を判定している。 Further, in the present embodiment, unlike the first embodiment, a lift arm angle sensor 211 (lift arm angle detector) for detecting the angle of the lift arm 21 is used for the tilt state detector for detecting the tilt state of the vehicle body. . Therefore, in the controller 5A, the specific condition determination unit 52 determines the tilt state of the vehicle body based on the lift arm detection angle β output from the lift arm angle sensor 211.
 さらに、コントローラ5Aでは、特定条件を満たす場合における最大けん引力の上昇のさせ方が第1実施形態に係るコントローラ5と異なる。具体的には、コントローラ5Aは、リフトアーム角度センサ211で検出されたリフトアーム検出角度βが大きいほど、車体の最大けん引力の制限を開始する時の作業機用油圧ポンプ45の吐出圧Pa(リフトアーム21の上げ操作量)の値を大きくしている。 Furthermore, the controller 5A is different from the controller 5 according to the first embodiment in how to increase the maximum traction force when specific conditions are satisfied. Specifically, as the lift arm detection angle β detected by the lift arm angle sensor 211 increases, the controller 5A determines that the discharge pressure Pa () of the working machine hydraulic pump 45 at the time of starting to limit the maximum traction force of the vehicle body. The value of the lift operation amount of the lift arm 21) is increased.
 図13に示すように、ステップS504において吐出圧Paが掘削動作に必要な作業機用油圧ポンプ45の吐出圧Ps以上である(Pa≧Ps)と判定された場合(ステップS504/YES)、データ取得部51は、リフトアーム検出角度βを取得する(ステップS505A)。 As shown in FIG. 13, when it is determined in step S504 that the discharge pressure Pa is equal to or higher than the discharge pressure Ps of the work machine hydraulic pump 45 required for the excavation operation (Pa ≧ Ps) (step S504 / YES), The acquisition unit 51 acquires the lift arm detection angle β (Step S505A).
 続いて、特定条件判定部52は、ステップS505Aで取得したリフトアーム検出角度βに基づいて、リフトアーム検出角度βが0以上であって第1角度閾値β1未満であるか否かを判定する(ステップS506A)。 Subsequently, the specific condition determination unit 52 determines whether or not the lift arm detection angle β is equal to or larger than 0 and smaller than the first angle threshold β1 based on the lift arm detection angle β acquired in step S505A ( Step S506A).
 ステップS506Aにおいてリフトアーム検出角度βが0以上であって第1角度閾値β1未満である(0≦β<β1)と判定された場合(ステップS506A/YES)、モータ制御部53は、ステップS503で取得した吐出圧Paが掘削動作に必要な吐出圧Psのときに(Pa=Ps)、最大押しのけ容積qmaxをqP,qN,qLのいずれかに制限する(ステップS507A)。 If it is determined in step S506A that the lift arm detection angle β is equal to or greater than 0 and less than the first angle threshold β1 (0 ≦ β <β1) (step S506A / YES), the motor control unit 53 determines in step S503. When the acquired discharge pressure Pa is the discharge pressure Ps necessary for the excavation operation (Pa = Ps), the maximum displacement qmax is limited to any of qP, qN, and qL (step S507A).
 ステップS506Aにおいてリフトアーム検出角度βが0以上であって第1角度閾値β1未満でないと判定された場合(ステップS506A/NO)、続いて、特定条件判定部52は、リフトアーム検出角度βが第1角度閾値β1以上であって第2角度閾値β2未満であるか否かを判定する(ステップS508A)。 When it is determined in step S506A that the lift arm detection angle β is equal to or greater than 0 and is not less than the first angle threshold β1 (step S506A / NO), subsequently, the specific condition determination unit 52 determines that the lift arm detection angle β It is determined whether or not the angle is equal to or larger than the first angle threshold β1 and smaller than the second angle threshold β2 (step S508A).
 ステップS508Aにおいてリフトアーム検出角度βが第1角度閾値β1以上であって第2角度閾値β2未満である(β1≦β<β2)と判定された場合(ステップS508A/YES)、特定条件を満たすことから、モータ制御部53は、ステップS503で取得した吐出圧Paが掘削動作に必要な吐出圧Psよりも大きい第1圧力閾値P1(>Ps)のときに(Pa=P1)、最大押しのけ容積qmaxをqP,qN,qLのいずれかに制限する(ステップS509A)。 If it is determined in step S508A that the lift arm detection angle β is equal to or larger than the first angle threshold β1 and smaller than the second angle threshold β2 (β1 ≦ β <β2) (step S508A / YES), the specific condition is satisfied. Therefore, when the discharge pressure Pa acquired in step S503 is the first pressure threshold P1 (> Ps) larger than the discharge pressure Ps necessary for the excavation operation (Pa = P1), the motor control unit 53 sets the maximum displacement qmax. Is limited to qP, qN, or qL (step S509A).
 なお、制限値qPは、モード切替スイッチ60においてPモードが選択されている場合、制限値qNは、モード切替スイッチ60においてNモードが選択されている場合、制限値qLは、モード切替スイッチ60においてLモードが選択されている場合におけるHSTモータ42の最大押し退け容積qmaxに関する制限値である。 It should be noted that the limit value qP is set when the P mode is selected by the mode changeover switch 60, the limit value qN is set when the N mode is selected by the mode changeover switch 60, and the limit value qL is set by the mode changeover switch 60. This is a limit value relating to the maximum displacement volume qmax of the HST motor 42 when the L mode is selected.
 ステップS508Aにおいてリフトアーム検出角度βが第1角度閾値β1以上であって第2角度閾値β2未満でないと判定された場合(ステップS508A/NO)、続いて、特定条件判定部52は、リフトアーム検出角度βが第2角度閾値β2であるか否かを判定する(ステップS510A)。 When it is determined in step S508A that the lift arm detection angle β is equal to or greater than the first angle threshold β1 and is not less than the second angle threshold β2 (step S508A / NO), the specific condition determination unit 52 subsequently performs lift arm detection. It is determined whether the angle β is the second angle threshold β2 (step S510A).
 ステップS510Aにおいてリフトアーム検出角度βが第2角度閾値β2である(β=β2)と判定された場合(ステップS510A/YES)、特定条件を満たすことから、モータ制御部53は、ステップS503で取得した吐出圧Paが第1圧力閾値P1よりもさらに大きい第2圧力閾値P2(>P1)のときに(Pa=P2)、最大押しのけ容積qmaxをqP,qN,qLのいずれかに制限する(ステップS511A)。 If it is determined in step S510A that the lift arm detection angle β is the second angle threshold β2 (β = β2) (step S510A / YES), the motor control unit 53 acquires the information in step S503 because the specific condition is satisfied. When the discharged discharge pressure Pa is a second pressure threshold P2 (> P1) that is still larger than the first pressure threshold P1 (Pa = P2), the maximum displacement qmax is limited to any of qP, qN, and qL (step). S511A).
 図14に示すように、リフトアーム検出角度βが第1角度閾値β1以上であって第2角度閾値β2未満である場合(β1≦β<β2)には、HSTモータ42の最大押しのけ容積qmaxの制限を開始する時の吐出圧Paを掘削動作に必要な吐出圧Psよりも大きい第1圧力閾値P1(>Ps)とし、リフトアーム検出角度βが第2角度閾値β2である場合(β=β2)には、HSTモータ42の最大押しのけ容積qmaxの制限を開始する時の吐出圧Paを掘削動作に必要な吐出圧Ps及び第1圧力閾値P1よりも大きい第2圧力閾値P2としている。 As shown in FIG. 14, when the lift arm detection angle β is equal to or larger than the first angle threshold β1 and smaller than the second angle threshold β2 (β1 ≦ β <β2), the maximum displacement qmax of the HST motor 42 is reduced. The discharge pressure Pa at the start of the restriction is set to a first pressure threshold P1 (> Ps) larger than the discharge pressure Ps necessary for the excavation operation, and the lift arm detection angle β is the second angle threshold β2 (β = β2 In ()), the discharge pressure Pa at the start of the limitation of the maximum displacement qmax of the HST motor 42 is set to the discharge pressure Ps necessary for the excavation operation and the second pressure threshold P2 larger than the first pressure threshold P1.
 なお、車体の最大けん引力の制限を開始する時の吐出圧Paは、リフトアーム21が水平姿勢をとった時の吐出圧以上であることが望ましい。本実施形態では、リフトアーム検出角度βが第1角度閾値β1に到達した場合における車体の最大けん引力の制限を開始する時の吐出圧である第1圧力閾値P1に相当する。 It is desirable that the discharge pressure Pa when the limitation of the maximum traction force of the vehicle body is started be equal to or higher than the discharge pressure when the lift arm 21 takes a horizontal posture. In the present embodiment, this corresponds to the first pressure threshold value P1, which is the discharge pressure at the time when the limitation of the maximum traction force of the vehicle body is started when the lift arm detection angle β reaches the first angle threshold value β1.
 本実施形態においても、第1実施形態と同様にして、地山100の斜面の角度に応じて、より精度よく車体の最大けん引力を制御することができるため、かき上げ作業時における作業効率の向上が図れる。 Also in the present embodiment, the maximum towing force of the vehicle body can be controlled more accurately according to the angle of the slope of the ground 100 in the same manner as in the first embodiment. Improvement can be achieved.
<第3実施形態>
 次に、本発明の第3実施形態に係るホイールローダ1について図15及び図16を参照して説明する。なお、図15及び図16において、第1実施形態及び第2実施形態のそれぞれに係るホイールローダ1について説明したものと共通する構成要素については、同一の符号を付してその説明を省略する。
<Third embodiment>
Next, a wheel loader 1 according to a third embodiment of the present invention will be described with reference to FIGS. In FIGS. 15 and 16, the same components as those described for the wheel loader 1 according to the first embodiment and the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
 図15は、第3実施形態に係るコントローラ5Bで実行される処理の流れを示すフローチャートである。図16は、第3実施形態における作業機用油圧ポンプ45の吐出圧PaとHSTモータ42の最大押しのけ容積qmaxとの関係を示すグラフである。 FIG. 15 is a flowchart showing the flow of processing executed by the controller 5B according to the third embodiment. FIG. 16 is a graph showing the relationship between the discharge pressure Pa of the working machine hydraulic pump 45 and the maximum displacement qmax of the HST motor 42 in the third embodiment.
 本実施形態に係るコントローラ5Bでは、特定条件を満たす場合における最大けん引力の上昇のさせ方が第1実施形態に係るコントローラ5及び第2実施形態に係るコントローラ5Aと異なる。具体的には、コントローラ5Bは、リフトアーム角度センサ211で検出されたリフトアーム検出角度βが大きいほど、車体の最大けん引力の制限量に対する作業機用油圧ポンプ45の吐出圧Paの増加率を大きくしている。 コ ン ト ロ ー ラ The controller 5B according to the present embodiment is different from the controller 5 according to the first embodiment and the controller 5A according to the second embodiment in how to increase the maximum traction force when specific conditions are satisfied. Specifically, as the lift arm detection angle β detected by the lift arm angle sensor 211 increases, the controller 5B increases the rate of increase of the discharge pressure Pa of the working machine hydraulic pump 45 with respect to the maximum amount of traction of the vehicle body. I'm making it big.
 図15に示すように、ステップS506Aにおいてリフトアーム検出角度βが0以上であって第1角度閾値β1未満である(0≦β<β1)と判定された場合(ステップS506A/YES)、モータ制御部53は、図16に示すように、作業機用油圧ポンプ45の吐出圧Paが、掘削動作に必要な吐出圧Psから当該吐出圧Psよりも大きい第4圧力閾値P4(>Ps)まで増加するにつれて、HSTモータ42の最大押しのけ容積qmaxを100%からqP,qN,qLのいずれかまで徐々に制限する(ステップS507B)。 As shown in FIG. 15, when it is determined in step S506A that the lift arm detection angle β is equal to or larger than 0 and smaller than the first angle threshold β1 (0 ≦ β <β1) (step S506A / YES), the motor control is performed. As shown in FIG. 16, the unit 53 increases the discharge pressure Pa of the working machine hydraulic pump 45 from a discharge pressure Ps necessary for excavation operation to a fourth pressure threshold P4 (> Ps) larger than the discharge pressure Ps. , The maximum displacement qmax of the HST motor 42 is gradually limited from 100% to any one of qP, qN, qL (step S507B).
 また、図15に示すように、ステップS508Aにおいてリフトアーム検出角度βが第1角度閾値β1以上であって第2角度閾値β2未満である(β1≦β<β2)と判定された場合(ステップS508A/YES)、モータ制御部53は、図16に示すように、作業機用油圧ポンプ45の吐出圧Paが、掘削動作に必要な吐出圧Psから第4圧力閾値P4よりも大きい第5圧力閾値P5(>P4)まで増加するにつれて、HSTモータ42の最大押しのけ容積qmaxを100%からqP,qN,qLのいずれかまで徐々に制限する(ステップS509B)。 As shown in FIG. 15, when it is determined in step S508A that the lift arm detection angle β is equal to or larger than the first angle threshold β1 and smaller than the second angle threshold β2 (β1 ≦ β <β2) (step S508A). / YES), as shown in FIG. 16, the motor control unit 53 determines that the discharge pressure Pa of the working machine hydraulic pump 45 is greater than the fourth pressure threshold P4 from the discharge pressure Ps required for the excavation operation. As it increases to P5 (> P4), the maximum displacement qmax of the HST motor 42 is gradually limited from 100% to any of qP, qN, and qL (step S509B).
 そして、図15に示すように、ステップS510Aにおいてリフトアーム検出角度βが第2角度閾値β2である(β=β2)と判定された場合(ステップS510A/YES)、モータ制御部53は、図16に示すように、作業機用油圧ポンプ45の吐出圧Paが、掘削動作に必要な吐出圧Psから第5圧力閾値P5よりも大きい第6圧力閾値P6(>P5)まで増加するにつれて、HSTモータ42の最大押しのけ容積qmaxを100%からqP,qN,qLのいずれかまで徐々に制限する(ステップS511B)。 Then, as shown in FIG. 15, when it is determined in step S510A that the lift arm detection angle β is the second angle threshold β2 (β = β2) (step S510A / YES), the motor control unit 53 performs the processing shown in FIG. As the discharge pressure Pa of the working machine hydraulic pump 45 increases from the discharge pressure Ps required for excavation operation to a sixth pressure threshold P6 (> P5) larger than the fifth pressure threshold P5, as shown in FIG. The maximum displacement qmax of 42 is gradually limited from 100% to any of qP, qN, qL (step S511B).
 このように、本実施形態においても、第1実施形態及び第2実施形態と同様にして、地山100の斜面の角度に応じて、より精度よく車体の最大けん引力を制御することができるため、かき上げ作業時における作業効率の向上が図れる。 As described above, also in the present embodiment, the maximum traction force of the vehicle body can be controlled more accurately in accordance with the angle of the slope of the ground 100 as in the first embodiment and the second embodiment. In addition, the work efficiency during the scraping operation can be improved.
 以上、本発明の各実施形態について説明した。なお、本発明は上記した各実施形態に限定されるものではなく、様々な他の変形例が含まれる。例えば、上記した各実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、各実施形態の構成に他の実施形態の構成を加えることも可能である。またさらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The embodiments of the present invention have been described above. Note that the present invention is not limited to the above embodiments, and includes various other modifications. For example, each of the above embodiments has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. Further, a part of the configuration of each embodiment can be replaced with the configuration of another embodiment, and the configuration of each embodiment can be added to the configuration of each embodiment. Furthermore, for a part of the configuration of each embodiment, it is possible to add, delete, or replace another configuration.
 例えば、上記各実施形態では、作業機用油圧ポンプ45は固定容量型の油圧ポンプを用いたが、これに限らず、可変容量型の油圧ポンプを用いても良い。 For example, in each of the above embodiments, the working machine hydraulic pump 45 is a fixed displacement hydraulic pump, but is not limited thereto, and a variable displacement hydraulic pump may be used.
 また、上記各実施形態では、HSTモータ42の最大押しのけ容積qmaxを調整することによりホイールローダ1の最大けん引力を制御していたが、これに限らず、例えばHSTポンプ41の押しのけ容積を調整することによりホイールローダ1の最大けん引力を制御してもよい。 In the above embodiments, the maximum displacement of the wheel loader 1 is controlled by adjusting the maximum displacement qmax of the HST motor 42. However, the present invention is not limited to this. For example, the displacement of the HST pump 41 is adjusted. Thereby, the maximum traction force of the wheel loader 1 may be controlled.
1:ホイールローダ
2:フロント作業機
3:エンジン
5,5A,5B:コントローラ
11A:前輪(車輪)
11B:後輪(車輪)
21:リフトアーム
41:HSTポンプ(走行用油圧ポンプ)
42:HSTモータ(走行用油圧モータ)
45:作業機用油圧ポンプ
62:前後進切換レバー(走行状態検出器)
75:吐出圧センサ(操作量検出器)
76:パイロット圧センサ(操作信号検出器,操作量検出器)
130:車体傾斜角度センサ(車体傾斜角度検出器、車体傾斜状態検出器)
211:リフトアーム角度センサ(リフトアーム角度検出器、車体傾斜状態検出器)
610:踏込量センサ(走行状態検出器)
1: Wheel loader 2: Front work machine 3: Engine 5, 5A, 5B: Controller 11A: Front wheel (wheel)
11B: rear wheel (wheel)
21: Lift arm 41: HST pump (hydraulic pump for traveling)
42: HST motor (hydraulic motor for traveling)
45: Hydraulic pump for work equipment 62: Forward / backward switching lever (running state detector)
75: Discharge pressure sensor (operating amount detector)
76: Pilot pressure sensor (operation signal detector, operation amount detector)
130: Body tilt angle sensor (body tilt angle detector, body tilt state detector)
211: Lift arm angle sensor (lift arm angle detector, body tilt state detector)
610: Depressed amount sensor (running state detector)

Claims (8)

  1.  エンジンと、前記エンジンにより駆動される可変容量型の走行用油圧ポンプと、前記走行用油圧ポンプと閉回路状に接続されて前記エンジンの駆動力を車輪に伝達する可変容量型の走行用油圧モータと、車体の前部に設けられて上下方向に回動可能なリフトアームを有するフロント作業機と、前記エンジンにより駆動されて前記フロント作業機に作動油を供給する作業機用油圧ポンプと、前記車体の走行状態を検出する走行状態検出器と、前記リフトアームの上げ操作量を検出する操作量検出器と、前記フロント作業機が操作され掘削状態にあることが判定された場合、前記走行用油圧ポンプ又は前記走行用油圧モータを調整して前記車体の最大けん引力を制限する制御を行うコントローラと、を備えたホイールローダにおいて、
     前記車体の傾斜状態を検出する傾斜状態検出器を有し、
     前記コントローラは、
     前記走行状態検出器で検出された走行状態、前記操作量検出器で検出された前記リフトアームの上げ操作量、及び前記傾斜状態検出器で検出された傾斜状態に基づいて、前記車体が登坂しながら掘削状態にあることを特定する特定条件を満たすか否かを判定し、
     前記特定条件を満たす場合において、前記車体の最大けん引力を、前記車体が平地に設置され掘削状態にある場合の最大けん引力よりも上昇させる
    ことを特徴とするホイールローダ。
    An engine, a variable displacement traveling hydraulic pump driven by the engine, and a variable displacement traveling hydraulic motor connected to the traveling hydraulic pump in a closed circuit to transmit the driving force of the engine to wheels A front working machine provided at a front portion of a vehicle body and having a lift arm rotatable in a vertical direction; a working machine hydraulic pump driven by the engine to supply hydraulic oil to the front working machine; A traveling state detector that detects a traveling state of the vehicle body, an operation amount detector that detects an operation amount of raising the lift arm, and an operation amount detector that is operated when the front work machine is operated and is in an excavation state. A controller that controls a hydraulic pump or the traveling hydraulic motor to limit a maximum traction force of the vehicle body, and a wheel loader including:
    Having an inclination state detector for detecting an inclination state of the vehicle body,
    The controller is
    Based on the traveling state detected by the traveling state detector, the lift operation amount of the lift arm detected by the operation amount detector, and the inclination state detected by the inclination state detector, the vehicle body climbs uphill. While determining whether or not a specific condition for specifying that the state is excavation,
    A wheel loader, wherein when the specific condition is satisfied, the maximum traction force of the vehicle body is made higher than the maximum traction force when the vehicle body is installed on a flat ground and is in an excavation state.
  2.  請求項1に記載のホイールローダにおいて、
     前記作業機用油圧ポンプの吐出圧を検出する吐出圧検出器と、
     前記リフトアームの上げ操作量に応じた操作信号を検出する操作信号検出器と、を備え、
     前記操作量検出器は、前記吐出圧検出器及び前記操作信号検出器のうちの少なくともいずれかである
    ことを特徴とするホイールローダ。
    The wheel loader according to claim 1,
    A discharge pressure detector for detecting a discharge pressure of the working machine hydraulic pump,
    An operation signal detector that detects an operation signal according to a lifting operation amount of the lift arm,
    The wheel loader, wherein the operation amount detector is at least one of the discharge pressure detector and the operation signal detector.
  3.  請求項1に記載のホイールローダにおいて、
     前記コントローラは、前記傾斜状態検出器で検出された傾斜量が大きいほど、前記車体の最大けん引力の上昇率を大きくする
    ことを特徴とするホイールローダ。
    The wheel loader according to claim 1,
    The wheel loader according to claim 1, wherein the controller increases the rate of increase of the maximum traction force of the vehicle body as the amount of inclination detected by the inclination state detector increases.
  4.  請求項1に記載のホイールローダにおいて、
     前記コントローラは、前記傾斜状態検出器で検出された傾斜量が大きいほど、前記車体の最大けん引力の制限を開始する時の前記リフトアームの上げ操作量の値を大きくする
    ことを特徴とするホイールローダ。
    The wheel loader according to claim 1,
    The wheel wherein the controller increases the value of the lift operation amount of the lift arm at the time of starting the limitation of the maximum traction force of the vehicle body as the inclination amount detected by the inclination state detector is larger. loader.
  5.  請求項4に記載のホイールローダにおいて、
     前記車体の最大けん引力の制限を開始する時の前記リフトアームの上げ操作量は、前記リフトアームが水平姿勢をとった時の前記リフトアームの上げ操作量以上とする
    ことを特徴とするホイールローダ。
    The wheel loader according to claim 4,
    A wheel loader, wherein a lift operation amount of the lift arm when the limitation of the maximum traction force of the vehicle body is started is equal to or larger than a lift operation amount of the lift arm when the lift arm takes a horizontal posture. .
  6.  請求項1に記載のホイールローダにおいて、
     前記コントローラは、前記傾斜状態検出器で検出された傾斜量が大きいほど、前記車体の最大けん引力の制限量に対する前記リフトアームの上げ操作量の増加率を大きくする
    ことを特徴とするホイールローダ。
    The wheel loader according to claim 1,
    The wheel loader according to claim 1, wherein the controller increases the rate of increase of the lift operation amount of the lift arm with respect to the limit amount of the maximum traction force of the vehicle body as the inclination amount detected by the inclination state detector increases.
  7.  請求項1に記載のホイールローダにおいて、
     前記コントローラは、前記走行用油圧モータの最大押しのけ容積を調整することにより前記車体の最大けん引力を制御する
    ことを特徴とするホイールローダ。
    The wheel loader according to claim 1,
    The wheel loader, wherein the controller controls a maximum traction force of the vehicle body by adjusting a maximum displacement of the traveling hydraulic motor.
  8.  請求項1に記載のホイールローダにおいて、
     前記傾斜状態検出器は、前記車体の傾斜角度を検出する車体傾斜角度検出器、又は前記リフトアームの角度を検出するリフトアーム角度検出器である
    ことを特徴とするホイールローダ。
    The wheel loader according to claim 1,
    The wheel loader, wherein the tilt state detector is a vehicle body tilt angle detector that detects a tilt angle of the vehicle body, or a lift arm angle detector that detects an angle of the lift arm.
PCT/JP2018/036237 2018-09-28 2018-09-28 Wheel loader WO2020065915A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/036237 WO2020065915A1 (en) 2018-09-28 2018-09-28 Wheel loader
JP2020547792A JP7169361B2 (en) 2018-09-28 2018-09-28 wheel loader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/036237 WO2020065915A1 (en) 2018-09-28 2018-09-28 Wheel loader

Publications (1)

Publication Number Publication Date
WO2020065915A1 true WO2020065915A1 (en) 2020-04-02

Family

ID=69950487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036237 WO2020065915A1 (en) 2018-09-28 2018-09-28 Wheel loader

Country Status (2)

Country Link
JP (1) JP7169361B2 (en)
WO (1) WO2020065915A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114371020A (en) * 2021-12-24 2022-04-19 雷沃工程机械集团有限公司 Loader walking dynamic testing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144942A (en) * 2006-12-13 2008-06-26 Komatsu Ltd Traction control system for construction vehicle
JP2011184886A (en) * 2010-03-05 2011-09-22 Komatsu Ltd Working vehicle and method for controlling the same
JP5092070B1 (en) * 2012-03-30 2012-12-05 株式会社小松製作所 Wheel loader and wheel loader control method
JP5092071B1 (en) * 2012-03-30 2012-12-05 株式会社小松製作所 Wheel loader and wheel loader control method
JP2014181804A (en) * 2013-03-21 2014-09-29 Hitachi Constr Mach Co Ltd Automatic transmission of work vehicle
US9242648B1 (en) * 2014-09-05 2016-01-26 Caterpillar Inc. Boosting parking brake drive-through torque
EP3037590A1 (en) * 2014-12-24 2016-06-29 Doosan Infracore Co., Ltd. Method of preventing a rollback of a construction machine and apparatus for performing the same
JP2016130030A (en) * 2013-04-26 2016-07-21 日立建機株式会社 Hybrid work vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144942A (en) * 2006-12-13 2008-06-26 Komatsu Ltd Traction control system for construction vehicle
JP2011184886A (en) * 2010-03-05 2011-09-22 Komatsu Ltd Working vehicle and method for controlling the same
JP5092070B1 (en) * 2012-03-30 2012-12-05 株式会社小松製作所 Wheel loader and wheel loader control method
JP5092071B1 (en) * 2012-03-30 2012-12-05 株式会社小松製作所 Wheel loader and wheel loader control method
JP2014181804A (en) * 2013-03-21 2014-09-29 Hitachi Constr Mach Co Ltd Automatic transmission of work vehicle
JP2016130030A (en) * 2013-04-26 2016-07-21 日立建機株式会社 Hybrid work vehicle
US9242648B1 (en) * 2014-09-05 2016-01-26 Caterpillar Inc. Boosting parking brake drive-through torque
EP3037590A1 (en) * 2014-12-24 2016-06-29 Doosan Infracore Co., Ltd. Method of preventing a rollback of a construction machine and apparatus for performing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114371020A (en) * 2021-12-24 2022-04-19 雷沃工程机械集团有限公司 Loader walking dynamic testing method
CN114371020B (en) * 2021-12-24 2024-05-24 雷沃工程机械集团有限公司 Loader walking dynamic property testing method

Also Published As

Publication number Publication date
JP7169361B2 (en) 2022-11-10
JPWO2020065915A1 (en) 2021-08-30

Similar Documents

Publication Publication Date Title
CN111801490B (en) Working vehicle
CN111247295B (en) Loading and unloading vehicle
JP7152496B2 (en) Cargo handling vehicle
US11391017B2 (en) Wheel loader
WO2019065122A1 (en) Wheel loader
US11891781B2 (en) Loading vehicle
US11286646B2 (en) Loading vehicle
WO2020065915A1 (en) Wheel loader
US11905682B2 (en) Wheel loader

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547792

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935240

Country of ref document: EP

Kind code of ref document: A1