WO2020065715A1 - Radar device - Google Patents

Radar device Download PDF

Info

Publication number
WO2020065715A1
WO2020065715A1 PCT/JP2018/035392 JP2018035392W WO2020065715A1 WO 2020065715 A1 WO2020065715 A1 WO 2020065715A1 JP 2018035392 W JP2018035392 W JP 2018035392W WO 2020065715 A1 WO2020065715 A1 WO 2020065715A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
reinforced plastic
fibers
radome
radar device
Prior art date
Application number
PCT/JP2018/035392
Other languages
French (fr)
Japanese (ja)
Inventor
亮太 関口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/035392 priority Critical patent/WO2020065715A1/en
Priority to JP2019511791A priority patent/JPWO2020065715A1/en
Publication of WO2020065715A1 publication Critical patent/WO2020065715A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome

Definitions

  • the present invention relates to a radar device.
  • Patent Document 1 discloses a radome having a so-called “sandwich structure”. More specifically, the radome (10) described in Patent Literature 1 has a structure in which one core layer (C) is provided between two skin layers (S1, S2) (Patent Literature). 1 etc.).
  • on-vehicle millimeter wave radar an on-vehicle radar device using so-called “millimeter wave” has been developed (hereinafter referred to as “on-vehicle millimeter wave radar”).
  • on-vehicle millimeter wave radar In a vehicle-mounted millimeter-wave radar radome, there is a demand for both improved transmission of millimeter waves and reduced weight and improved rigidity.
  • the thickness of each skin layer is set based on a predetermined mathematical formula (see Equation (1) and the like in Patent Document 1), and the thickness of the core layer is determined.
  • a predetermined mathematical formula see Equation (1) and the like in Patent Document 1
  • the thickness of the core layer is determined.
  • the transmission of radio waves such as millimeter waves is improved. That is, the invention described in Patent Document 1 is not for reducing the weight and improving the rigidity. For this reason, the invention described in Patent Literature 1 has a problem to be solved from the viewpoint of improving the transparency to radio waves such as millimeter waves and reducing the weight and improving the rigidity.
  • the radome described in Patent Document 1 is used for an in-vehicle millimeter-wave radar, the frequency of the millimeter wave is 30 GHz or more (hereinafter referred to as “GHz”), and the equation (2) in Patent Document 1 is used. ),
  • the thickness of the core layer may be set to 2.5 mm or less (hereinafter referred to as “mm”) or less. Since the core layer is thin as described above, when each skin layer is thinned (that is, when the value of n in Expression (1) of Patent Document 1 is reduced), the weight of the radome can be easily reduced, It is difficult to improve the rigidity of the radome.
  • the present invention has been made in order to solve the above-described problems, and in a radome of an in-vehicle radar device, it has been proposed to improve the transmission of millimeter waves and other radio waves, reduce weight, and improve rigidity. The purpose is to achieve both.
  • the radar device of the present invention includes an antenna that radiates radio waves, and a radome for the antenna, wherein the radome includes a plurality of first fiber bundles including a plurality of first fibers and a plurality of first fiber bundles including a plurality of second fibers. And a second fiber bundle of the present invention, wherein the fiber-reinforced plastic layer is provided such that the longitudinal direction of each of the first fiber bundles is along the direction orthogonal to the polarization direction of the antenna. And, the longitudinal direction of each of the second fiber bundles is provided so as to be parallel to the polarization direction, and the electric conductivity of each of the first fibers is higher than the electric conductivity of each of the second fibers. Things.
  • a radome of a radar device for use in a vehicle or the like since it is configured as described above, in a radome of a radar device for use in a vehicle or the like, it is possible to achieve both improvement in transparency to radio waves such as millimeter waves, reduction in weight, and improvement in rigidity. .
  • FIG. 2 is a front view illustrating a main part of the antenna for the radar device according to the first embodiment.
  • FIG. 2 is a front view showing a main part of a fiber-reinforced plastic layer included in the radome for the radar device according to the first embodiment.
  • FIG. 2B is a sectional view taken along line A-A ′ shown in FIG. 2A.
  • FIG. 2 is a front view showing a main part of the radar device according to the first embodiment.
  • FIG. 3B is a sectional view taken along line A-A ′ shown in FIG. 3A.
  • FIG. 4 is a characteristic diagram showing millimeter wave transmittance by a radome for a radar device according to the first embodiment;
  • FIG. 4 is a characteristic diagram showing millimeter wave transmittance by a radome for a radar device according to the first embodiment;
  • FIG. 4 is a front view showing a main part of another radar device according to the first embodiment.
  • FIG. 10 is a front view showing a main part of one of the two fiber-reinforced plastic layers of the radome for a radar device according to the second embodiment.
  • FIG. 6B is a sectional view taken along line A-A ′ shown in FIG. 6A.
  • FIG. 14 is a front view showing a main part of the other fiber-reinforced plastic layer of the two fiber-reinforced plastic layers included in the radome for the radar device according to the second embodiment.
  • FIG. 7B is a sectional view taken along the line A-A ′ shown in FIG. 7A.
  • FIG. 9 is a front view showing a main part of the radar device according to the second embodiment.
  • FIG. 8B is a sectional view taken along the line A-A ′ shown in FIG. 8A.
  • FIG. 9 is a characteristic diagram illustrating millimeter wave transmittance by a radome for
  • FIG. 1 is a front view showing a main part of an antenna for a radar device according to the first embodiment.
  • FIG. 2A is a front view showing a main part of a fiber-reinforced plastic layer included in the radome for the radar device according to the first embodiment.
  • FIG. 2B is a sectional view taken along line AA ′ shown in FIG. 2A.
  • FIG. 3A is a front view showing a main part of the radar device according to Embodiment 1.
  • FIG. 3B is a sectional view taken along line AA ′ shown in FIG. 3A.
  • the radar apparatus 100 according to the first embodiment will be described with reference to FIGS. That is, the radar device 100 is mounted on a vehicle (not shown).
  • 1 is an antenna.
  • the antenna 1 emits a radio wave having a predetermined frequency f (for example, 77 GHz), that is, a millimeter wave.
  • the antenna 1 receives the reflected radio wave when the radiated radio wave is reflected by an obstacle (not shown) outside the vehicle.
  • the control unit (not shown) measures the distance between the vehicle and the obstacle based on the difference value ⁇ f between the frequency f of the radio wave radiated by the antenna 1 and the frequency f ′ of the radio wave received by the antenna 1. is there.
  • the control unit is configured by, for example, an ECU (Electronic Control Unit).
  • the radio waves radiated by the antenna 1 and the radio waves radiated by the antenna 1 are collectively referred to as “radiated waves”.
  • the frequency f of the radio wave radiated by the antenna 1, that is, the frequency f of the radiation wave may be referred to as a “carrier frequency”.
  • the antenna 1 is constituted by, for example, a so-called “planar array antenna”.
  • a plurality of antenna elements 12 are arranged in a plane, that is, a two-dimensional array on the surface of a substrate 11.
  • the radiation direction (so-called “main beam direction”) of a main radio wave (so-called “main beam direction”) of the radiated waves is, for example, a direction orthogonal or substantially orthogonal to the plate surface of the substrate 11, that is, the Z axis in the drawing. It is set in the direction along.
  • MB indicates a region corresponding to the main beam, that is, a region through which the main beam passes.
  • the antenna 1 is a so-called “linearly polarized antenna”.
  • the polarization direction of the antenna 1 is set in a direction parallel or substantially parallel to the plate surface of the substrate 11, more specifically, in a direction along the Y axis in the drawing.
  • the radar device 100 has a radome 2 for the antenna 1.
  • the radome 2 is arranged to face the surface of the substrate 11. That is, the radome 2 is arranged to face the plurality of antenna elements 12.
  • the radome 2 will be described.
  • the radome 2 has a fiber-reinforced plastic layer 3.
  • the fiber reinforced plastic layer 3 is provided, for example, parallel or substantially parallel to the plate surface of the substrate 11.
  • the fiber-reinforced plastic layer 3 includes a plurality of fiber bundles (hereinafter, sometimes referred to as “first fiber bundles”) 4.
  • the fiber-reinforced plastic layer 3 includes another plurality of fiber bundles (hereinafter, also referred to as “second fiber bundles”) 5.
  • Each of the plurality of first fiber bundles 4 is formed by bundling a plurality of fibers (hereinafter sometimes referred to as “first fibers”) 6 in a thread shape.
  • first fibers hereinafter sometimes referred to as “first fibers”
  • Each of the plurality of second fiber bundles 5 is formed by bundling other plurality of fibers (hereinafter, sometimes referred to as “second fibers”) 7 in a thread shape.
  • the fiber-reinforced plastic layer 3 is manufactured by, for example, applying a liquid plastic to the woven fabric of the fiber bundles 4 and 5 and then curing the plastic. That is, the plurality of first fiber bundles 4 correspond to either the warp or the weft in the woven fabric, and the plurality of second fiber bundles 5 correspond to the warp or the weft in the woven fabric. It corresponds to one of the other.
  • the longitudinal direction of each of the plurality of first fiber bundles 4 hereinafter, referred to as “first longitudinal direction”
  • second longitudinal direction of each of the plurality of second fiber bundles 5 hereinafter, referred to as “second longitudinal direction”. are orthogonal or substantially orthogonal to each other.
  • a direction orthogonal or substantially orthogonal to the polarization direction of the antenna 1 is referred to as an "orthogonal direction".
  • a direction parallel or substantially parallel to the polarization direction of the antenna 1 is referred to as a "parallel direction”.
  • Each of the plurality of first fibers 6 is made of, for example, a carbon fiber, a metal fiber, a boron fiber, or a thin metal wire having a thickness of 100 micrometers (hereinafter, referred to as “ ⁇ m”) or less.
  • the thickness of each of the plurality of first fibers 6 is set to a value that is 1/10 or less of the wavelength of the radiation wave in vacuum.
  • each of the plurality of second fibers 7 is made of, for example, glass fiber or quartz fiber.
  • the electric conductivity of each of the plurality of first fibers 6 is higher than the electric conductivity of each of the plurality of second fibers 7, and the electric conductivity of each of the plurality of first fibers 6 is different.
  • the dielectric loss is larger than the dielectric loss due to each of the plurality of second fibers 7.
  • the relative permittivity ⁇ of the portion of the fiber reinforced plastic layer 3 excluding the first fiber 6 is about 2.0 to 6.0.
  • the thickness t of the fiber-reinforced plastic layer 3 is set to a value corresponding to an integral multiple of half the wavelength of the radiated wave in the portion of the fiber-reinforced plastic layer 3 excluding the first fibers 6, for example. More specifically, the thickness t is set to a value based on the following equation (2).
  • ⁇ 0 is the wavelength of the radiation wave in vacuum.
  • n is one or more arbitrary integers.
  • the main part of the radar device 100 is thus configured.
  • the transmittance T when a structure having a finite impedance transmits a radio wave is expressed as a vertical component T ⁇ with respect to the polarization direction of the radio wave and a parallel component T ⁇ with respect to the polarization direction of the radio wave.
  • T ⁇ structures having dimensions of predetermined wavelength order transmittance T ⁇ when transmitting a radio wave having the wavelength, T ⁇ is represented respectively by the following equations (3) and (4).
  • Z ⁇ is the equivalent impedance of the structure in a direction perpendicular to the polarization direction of the radio wave.
  • Z ⁇ is the equivalent impedance of the structure in a direction parallel to the polarization direction of the radio wave.
  • Expressions (3) and (4) are based on the description of Reference 1 below.
  • the thickness of each of the plurality of first fibers 6 is set to a value that is 1/10 or less of the wavelength of the radiation wave in vacuum.
  • the equivalent impedance Z ⁇ the first fiber 6 becomes Z ⁇ >> 1 . Therefore, the transmittance T ⁇ ⁇ ⁇ ⁇ of the first fiber 6 is T ⁇ ⁇ 1.
  • the equivalent impedance Z ⁇ of the second fiber 7 becomes a value of 1 / ⁇ times to the impedance of the vacuum. For this reason, the transmittance T ⁇ in the second fiber 7 is a value equivalent to a value calculated using the so-called “Fresnel equation”.
  • the fiber reinforced plastic layer 3 reduces the Fresnel loss. Growth can be avoided. That is, even though these materials are contained in the fiber-reinforced plastic layer 3, it is possible to avoid a decrease in the permeability to radio waves such as millimeter waves (in other words, the permeability to radio waves such as millimeter waves). Can be improved.).
  • the first fibers 6 using these materials can improve the rigidity and reduce the weight of the fiber-reinforced plastic layer 3 as compared with the conventional fiber-reinforced plastic layer.
  • the rigidity of the radome 2 can be improved and the weight can be reduced as compared with the conventional radome having the conventional fiber reinforced plastic layer.
  • the conventional fiber reinforced plastic layer is made of glass fiber reinforced plastic or quartz fiber reinforced plastic. That is, the conventional fiber reinforced plastic layer does not include the material (carbon fiber, metal fiber, boron fiber, metal fine wire, or the like) used for the first fiber 6 in the fiber reinforced plastic layer 3.
  • the transmittance T ⁇ in the first fiber 6 is T ⁇ ⁇ 1
  • a predetermined comprising a carrier frequency f e.g., 77 GHz
  • Millimeter wave transmittance in the frequency range can be improved.
  • ⁇ Characteristic line I in FIG. 4 indicates the millimeter wave transmittance of the radome 2. This millimeter-wave transmittance is calculated using Fresnel's equation. In the calculation of the millimeter wave transmittance, the dielectric loss is ignored, and the Fresnel loss is to be calculated. This is because the dielectric loss is smaller than the Fresnel loss.
  • the first fibers 6 are made of carbon fibers, and the second fibers 7 are made of glass fibers.
  • 0 °.
  • a configuration example of the radome 2 according to the characteristic line I is referred to as a “first configuration example”.
  • the use of the radome 2 of the first configuration example can reduce the Fresnel loss in the frequency range of 74 to 80 GHz to 5% or less.
  • the angle ⁇ is not limited to 0 °. As long as it is within the range that satisfies the condition shown in Expression (1), ⁇ ⁇ 0 ° may be satisfied as shown in FIG.
  • Such Z ⁇ ', Z ⁇ ' loss of radio waves based on becomes one represented by a function of sin 2 theta. Therefore, from the viewpoint of reducing the loss to 5% or less, it is preferable that the angle ⁇ be set to a value within a range of ⁇ 13 °, that is, a value within a range that satisfies the condition shown in Expression (1).
  • each of the plurality of first fibers 6 may be coated.
  • the radiation wave is not limited to the millimeter wave, and the carrier frequency f is not limited to 77 GHz.
  • the antenna 1 may emit a radio wave having any frequency f as long as the frequency f is used for the radar device 100.
  • the antenna 1 may emit a so-called “microwave” or “submillimeter wave”.
  • the radar device 100 is not limited to a vehicle-mounted device, and the application of the radar device 100 is not limited to measuring the distance between a vehicle and an obstacle.
  • the radar device 100 may be used for radar for any purpose.
  • the radar device 100 includes the antenna 1 that radiates radio waves and the radome 2 for the antenna 1, and the radome 2 includes a plurality of first fibers 6 formed by a plurality of first fibers 6.
  • the fiber reinforced plastic layer 3 includes one fiber bundle 4 and a plurality of second fiber bundles 5 formed by a plurality of second fibers 7.
  • the longitudinal direction (that is, the first longitudinal direction) is provided so as to be along the direction orthogonal to the polarization direction of the antenna 1, and the longitudinal direction (that is, the second longitudinal direction) of each of the second fiber bundles 5 is polarized. It is provided so as to be parallel to the direction, and the electric conductivity of each first fiber 6 is higher than the electric conductivity of each second fiber 7.
  • the thickness t of the fiber-reinforced plastic layer 3 is set to a value corresponding to an integral multiple of a half wavelength of a radio wave. Since the thickness t is set to a value based on the equation (2), Fresnel loss in a predetermined frequency range including the carrier frequency f can be reduced.
  • the individual first fibers 6 are made of carbon fibers, metal fibers, boron fibers, or fine metal wires, and the individual second fibers 7 are made of glass fibers or quartz fibers.
  • the material of the first fiber 6 is not limited to carbon fiber or metal fiber, but may be boron fiber or metal fine wire.
  • each first fiber 6 is set to a value of 1/10 or less of the wavelength of the radio wave. As described above, by setting the thickness of each of the first fibers 6 to a sufficiently small value, generation of a current flowing through the first fibers 6 can be more reliably prevented.
  • FIG. 6A is a front view showing a main part of one fiber reinforced plastic layer of two fiber reinforced plastic layers included in a radome for a radar device according to Embodiment 2.
  • FIG. 6B is a sectional view taken along line AA ′ shown in FIG. 6A.
  • FIG. 7A is a front view illustrating a main part of the other fiber reinforced plastic layer of the two fiber reinforced plastic layers included in the radome for the radar device according to Embodiment 2.
  • FIG. 7B is a sectional view taken along line AA ′ shown in FIG. 7A.
  • FIG. 8A is a front view showing a main part of the radar device according to Embodiment 2.
  • FIG. 8B is a sectional view taken along line AA ′ shown in FIG.
  • Embodiment 2 A radar apparatus 100a according to Embodiment 2 will be described with reference to FIGS. 6 to 8, the same reference numerals are given to the same constituent members and the like as those shown in FIGS. 2 and 3, and the description will be omitted.
  • the radar device 100a has a radome 2a for the antenna 1.
  • the radome 2a has two fiber-reinforced plastic layers 3 arranged facing each other.
  • the radome 2a has a gap layer 8 formed between the two fiber-reinforced plastic layers 3.
  • Each of the two fiber-reinforced plastic layers 3 is provided, for example, in parallel or substantially parallel to the plate surface of the substrate 11.
  • Each of the two fiber-reinforced plastic layers 3 has the same structure as that described in the first embodiment.
  • fiber-reinforced plastic layer 3 1 One of the two fiber-reinforced plastic layer 3 are those containing a second fiber bundle 5 1 of a plurality of first fiber bundles 4 1 and a plurality of. First each of the fiber bundles 4 1 a plurality of is made by bundling a first fiber 6 1 a plurality of filamentous. Second, each of the fiber bundle 5 1 a plurality of is made by bundling a second fiber 7 1 a plurality of filamentous.
  • the first fiber bundle 4 1 of each of the longitudinal direction of the plurality of is provided along the perpendicular direction
  • a second fiber bundle of a plurality of 5 1 of each of the longitudinal is provided along the parallel direction.
  • angle ⁇ 1 between the first longitudinal direction and the direction orthogonal to the polarization direction of the antenna that is, the angle ⁇ 1 parallel to the second longitudinal direction and the polarization direction of the antenna 1.
  • angle theta 1 between the direction is set to satisfy the condition value as shown in formula (7). In the examples shown in FIGS. 6 and 8, ⁇ 1 is set to 0 °.
  • each of the fibers 61 a plurality of, for example, carbon fibers, metal fibers, is constituted by boron fibers or thin metal wires having the following thickness 100 [mu] m.
  • First fiber 6 1 of each of the thickness of the plurality of is set to less than one-tenth with respect to the wavelength in vacuum of the radiation wave.
  • the second respective fibers 71 a plurality of, for example, is constituted by glass fibers or quartz fibers.
  • first fibers 61 of each of the electrical conductivity of the plurality of higher than the second fiber 7 1 of each of the electrical conductivity of the plurality of, and the first fiber 6 a plurality of 1 each dielectric loss due to the is larger than the dielectric loss of the second fiber 7 1 of each of the plurality of lines.
  • the dielectric constant epsilon 1 site i.e. site being constituted by the second fiber 71 and plastic, except the first fiber 6 1 of the fiber-reinforced plastic layer 3 1, at about 2.0-6.0 is there.
  • Thickness t 1 of the fiber-reinforced plastic layer 3 1 is, for example, is set to a value corresponding to a half wavelength of the radiation waves at a site other than the first fiber 6 1 of the fiber-reinforced plastic layer 3 1 . More specifically, the thickness t 1 is set to a value based on the following equation (8).
  • the other fiber-reinforced plastic layer 3 2 of the two fiber-reinforced plastic layer 3, is intended to include a plurality of first fiber bundles 4 2 and a plurality second fiber bundle of the 5 2.
  • First each of the fiber bundles 4 2 a plurality of is made by bundling a first fiber 6 2 a plurality of filamentous.
  • Second, each fiber bundle 5 second plurality of is made by bundling a second fiber 7 2 a plurality of filamentous.
  • the first fiber bundles 4 2 of each of the longitudinal direction of the plurality of (that is, the first longitudinal direction) is provided along the perpendicular direction, and a second fiber bundle of a plurality of 5 2 of each of the longitudinal direction (i.e. second longitudinal direction) is provided along the parallel direction.
  • the angle ⁇ 2 between the first longitudinal direction and the direction orthogonal to the polarization direction of the antenna that is, the angle ⁇ 2 parallel to the second longitudinal direction and the polarization direction of the antenna 1.
  • First respective fibers 6 2 a plurality of, for example, carbon fibers, metal fibers, is constituted by boron fibers or thin metal wires having the following thickness 100 [mu] m.
  • the first fiber 6 2 each thickness of the plurality of is set to less than one-tenth with respect to the wavelength in vacuum of the radiation wave.
  • the second respective fiber 7 2 a plurality of, for example is constituted by glass fibers or quartz fibers.
  • first fibers 6 2 of each of the electrical conductivity of the plurality of higher than the second fiber 7 2 of each of the electrical conductivity of the plurality of, and the first fiber 6 a plurality of 2 each dielectric loss due to the is larger than the dielectric loss of the second fiber 7 2 of each of the plurality of lines.
  • the dielectric constant epsilon 2 of the site i.e., site configured by the second fiber 7 2 and plastic
  • the first fiber 6 2 of the fiber-reinforced plastic layer 3 2 of about 2.0-6.0 is there.
  • Thickness t 2 of the fiber-reinforced plastic layer 3 2 is, for example, is set to a value corresponding to a half wavelength of the radiation waves at a site other than the first fiber 6 2 of the fiber-reinforced plastic layer 3 2 . More specifically, the thickness t 2 is set to a value based on the following equation (10).
  • the gap layer 8 contains air.
  • the relative permittivity of air is about 1.0. That is, the dielectric constant of the gap layer 8 (about 1.0) is fiber-reinforced plastic layer 3 1, 3 first fiber 6 1 of 2, the dielectric constant of the portion except the 6 2 (2.0 to 6. 0).
  • the value is set to a value corresponding to an integral multiple of a half wavelength of the radiation wave in the gap layer 8. More specifically, the interval d is set to a value based on the following equation (11).
  • M is an integer of 1 or more.
  • is a coefficient that satisfies the condition shown in the following equation (12).
  • the main part of the radar device 100a is configured.
  • the first fibers 61 of each of the thickness of the plurality of is set to less than one-tenth with respect to the wavelength in vacuum of the radiation wave.
  • the second fibers 71 of the equivalent impedance Z ⁇ 1 has a value of 1 / ⁇ Ipushiron 1 times to the impedance of the vacuum. For this reason, the transmittance T
  • the first fiber 6 2 each thickness of the plurality of is set to less than one-tenth with respect to the wavelength in vacuum of the radiation wave.
  • the equivalent impedance Z ⁇ 2 the first fiber 6 2 Z ⁇ the 2 >> 1. Therefore, the transmittance T ⁇ 2 in the first fiber 6 2 becomes T ⁇ 2 ⁇ 1.
  • the second fiber 7 2 equivalent impedance Z ⁇ 2 becomes 1 / ⁇ 2 times the values for the impedance of the vacuum. For this reason, the transmittance T
  • electrical conductivity is high dielectric loss material having a large, but more particularly used in the material 1 is first fiber 6, 6 2, such as carbon fiber or metal fiber
  • fiber-reinforced plastic layer 3 1, 3 2 increase in Fresnel losses due can be avoided.
  • fiber reinforced plastic layer 3 1, 3 2 it is possible to avoid a decrease in permeability to radio waves such as a millimeter-wave (in other words, such as a millimeter-wave It is possible to improve the transparency to radio waves.).
  • fiber-reinforced plastic layer 3 1, 3 low dielectric constant between 2 layers i.e. the gap layer 8 is provided, it is possible to further improve the permeability to radio waves such as a millimeter wave.
  • the first fiber 6 1, 6 2 using these materials that compared to conventional fiber-reinforced plastic layer, improved and weight reduction of the stiffness of the fiber-reinforced plastic layer 3 1, 3 2 it can.
  • the conventional fiber reinforced plastic layer is made of glass fiber reinforced plastic or quartz fiber reinforced plastic. That is, the conventional fiber-reinforced plastic layer, fiber-reinforced plastic layer 3 1, 3 first fiber 6 in 2 1, 6 2 in using its dependent material (carbon fiber, metal fiber, boron fiber or thin metal wires, etc.) It does not include.
  • the transmittance T ⁇ 1 in the first fiber 61 is T ⁇ 1 ⁇ 1
  • the transmittance T ⁇ 2 in the first fiber 6 2 is T ⁇ 2 ⁇ 1
  • the interval d is the formula ( By setting the value based on 11), it is possible to improve the millimeter wave transmittance in a predetermined frequency range including the carrier frequency f (for example, 77 GHz).
  • Characteristic line II in FIG. 9 shows the millimeter wave transmittance by the radome 2a. This millimeter-wave transmittance is calculated using Fresnel's equation. In the calculation of the millimeter wave transmittance, the dielectric loss is ignored, and the Fresnel loss is to be calculated.
  • the characteristic line I shown in FIG. 9 is the same as the characteristic line I shown in FIG. That is, the characteristic line I indicates the millimeter-wave transmittance of the radome 2.
  • the first fiber 6 1, 6 2 are constituted by a carbon fiber, and a second fiber 7 1, 7 2 is constituted by glass fibers.
  • second configuration example a configuration example of the radome 2a according to the characteristic line II is referred to as a “second configuration example”.
  • the Fresnel loss in the frequency range of 74 to 80 GHz can be reduced to 5% or less.
  • the Fresnel loss in the frequency range of 73 to 81 GHz can be reduced to 5% or less.
  • the angle theta 1 is not limited to 0 °. As long as it is within the range satisfying the condition shown in Expression (7), ⁇ 1 ⁇ 0 ° may be satisfied. Further, as described above, the angle theta 2 is not limited to 0 °. As long as the condition shown in Expression (9) is satisfied, ⁇ 2 ⁇ 0 ° may be satisfied.
  • the first of each of the fibers 61 of the plurality of may be those coated is made.
  • the first of each of the fibers 6 second plurality book may be one coat was made.
  • one or more support members (not shown) is provided between the fiber-reinforced plastic layer 3 1, 3 2, may be one gap layer 8 is formed.
  • the rigidity of the radome 2a can be further improved while reducing the weight of the radome 2a.
  • the radar apparatus 100a can employ various modifications similar to those described in the first embodiment, that is, various modifications similar to the radar apparatus 100.
  • radiation waves are not limited to millimeter waves.
  • the radar device 100a is not limited to a vehicle-mounted device.
  • the radome 2a includes two fiber-reinforced plastic layers 3 that are arranged to face each other and a gap layer 8 that is formed between the two fiber-reinforced plastic layers 3.
  • the distance d between the two fiber-reinforced plastic layers 3 is set to a value corresponding to an integral multiple of a half wavelength of a radio wave.
  • the gap layer 8) is provided, it is possible to further improve the permeability to radio waves such as a millimeter wave. Further, since the interval d is set to a value based on the equation (11), Fresnel loss in a predetermined frequency range including the carrier frequency f can be reduced.
  • the interval d is an interval with respect to the direction of radio wave emission from the antenna 1 (more specifically, the direction of the main beam).
  • the radiation wave (more specifically, the main beam) can pass through the radome 2a with the high transmittance as described above.
  • any combination of the embodiments, a modification of an arbitrary component of each embodiment, or an omission of an arbitrary component in each embodiment is possible within the scope of the invention. .
  • the radar device of the present invention can be used, for example, for an in-vehicle millimeter-wave radar.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Details Of Aerials (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

This radar device (100) is provided with an antenna (1) that radiates radio waves, and a radome (2) for the antenna (1). The radome (2) has a fiber reinforced plastic layer (3) that includes a plurality of first fiber bundles (4) composed of a plurality of first fibers (6) and a plurality of second fiber bundles (5) composed of a plurality of second fibers (7). The fiber reinforced plastic layer (3) is provided so that: the longitudinal direction of each of the first fiber bundles (4) is aligned in a direction orthogonal to the direction of polarization of the antenna (1);the longitudinal direction of each of the second fiber bundles (5) is aligned in a direction parallel to the direction of polarization; and the electrical conductivity of each of the first fibers (6) is greater than the electrical conductivity of each of the second fibers (7).

Description

レーダ装置Radar equipment
 本発明は、レーダ装置に関する。 The present invention relates to a radar device.
 従来、レーダ装置において、アンテナ用のレドームが開発されている。例えば、特許文献1には、いわゆる「サンドイッチ構造」を有するレドームが開示されている。より具体的には、特許文献1記載のレドーム(10)は、2個のスキン層(S1,S2)間に1個のコア層(C)が設けられた構造を有するものである(特許文献1の図1等参照)。 レ Conventionally, radomes for antennas have been developed for radar devices. For example, Patent Document 1 discloses a radome having a so-called “sandwich structure”. More specifically, the radome (10) described in Patent Literature 1 has a structure in which one core layer (C) is provided between two skin layers (S1, S2) (Patent Literature). 1 etc.).
特開2017-79448号公報JP 2017-79448 A
 従来、いわゆる「ミリ波」を用いた車載用のレーダ装置が開発されている(以下「車載用ミリ波レーダ」という。)。車載用ミリ波レーダのレドームにおいては、ミリ波に対する透過性の向上と重量の低減及び剛性の向上との両立が求められている。 Conventionally, an on-vehicle radar device using so-called “millimeter wave” has been developed (hereinafter referred to as “on-vehicle millimeter wave radar”). In a vehicle-mounted millimeter-wave radar radome, there is a demand for both improved transmission of millimeter waves and reduced weight and improved rigidity.
 ここで、特許文献1記載の発明は、サンドイッチ構造を有するレドームにおいて、各スキン層の肉厚を所定の数式に基づき設定するとともに(特許文献1の式(1)等参照)、コア層の肉厚を他の所定の数式に基づき設定することにより(特許文献1の式(2)等参照)、ミリ波等の電波に対する透過性の向上を図るものである。すなわち、特許文献1記載の発明は、重量の低減及び剛性の向上を図るためのものではない。このため、特許文献1記載の発明は、ミリ波等の電波に対する透過性の向上と重量の低減及び剛性の向上との両立という観点において課題が残るものであった。 Here, in the invention described in Patent Document 1, in a radome having a sandwich structure, the thickness of each skin layer is set based on a predetermined mathematical formula (see Equation (1) and the like in Patent Document 1), and the thickness of the core layer is determined. By setting the thickness based on another predetermined mathematical formula (see formula (2) in Patent Document 1 and the like), the transmission of radio waves such as millimeter waves is improved. That is, the invention described in Patent Document 1 is not for reducing the weight and improving the rigidity. For this reason, the invention described in Patent Literature 1 has a problem to be solved from the viewpoint of improving the transparency to radio waves such as millimeter waves and reducing the weight and improving the rigidity.
 例えば、仮に特許文献1記載のレドームを車載用ミリ波レーダに用いた場合、ミリ波の周波数が30ギガヘルツ(以下「GHz」と記載する。)以上であることにより、特許文献1の式(2)に基づき、コア層の肉厚が2.5ミリメートル(以下「mm」と記載する。)以下に設定されることがある。このようにコア層が薄肉であるため、各スキン層を薄肉にした場合(すなわち特許文献1の式(1)におけるnの値を小さくした場合)、レドームの重量の低減が容易となるものの、レドームの剛性の向上が困難となる。他方、各スキン層を厚肉にした場合(すなわち特許文献1の式(1)におけるnの値を大きくした場合)、レドームの剛性の向上が容易となるものの、レドームの重量の低減が困難となる。 For example, if the radome described in Patent Document 1 is used for an in-vehicle millimeter-wave radar, the frequency of the millimeter wave is 30 GHz or more (hereinafter referred to as “GHz”), and the equation (2) in Patent Document 1 is used. ), The thickness of the core layer may be set to 2.5 mm or less (hereinafter referred to as “mm”) or less. Since the core layer is thin as described above, when each skin layer is thinned (that is, when the value of n in Expression (1) of Patent Document 1 is reduced), the weight of the radome can be easily reduced, It is difficult to improve the rigidity of the radome. On the other hand, when the thickness of each skin layer is increased (that is, when the value of n in equation (1) of Patent Document 1 is increased), the rigidity of the radome can be easily improved, but it is difficult to reduce the weight of the radome. Become.
 本発明は、上記のような課題を解決するためになされたものであり、車載用等のレーダ装置のレドームにおいて、ミリ波等の電波に対する透過性の向上と重量の低減及び剛性の向上との両立を図ることを目的とする。 The present invention has been made in order to solve the above-described problems, and in a radome of an in-vehicle radar device, it has been proposed to improve the transmission of millimeter waves and other radio waves, reduce weight, and improve rigidity. The purpose is to achieve both.
 本発明のレーダ装置は、電波を放射するアンテナと、アンテナ用のレドームと、を備え、レドームは、複数本の第1繊維による複数本の第1繊維束と、複数本の第2繊維による複数本の第2繊維束と、を含む繊維強化プラスチック層を有し、繊維強化プラスチック層は、個々の第1繊維束の長手方向がアンテナの偏波方向に対する直交方向に沿うように設けられており、かつ、個々の第2繊維束の長手方向が偏波方向に対する平行方向に沿うように設けられており、個々の第1繊維の電気伝導率が個々の第2繊維の電気伝導率よりも高いものである。 The radar device of the present invention includes an antenna that radiates radio waves, and a radome for the antenna, wherein the radome includes a plurality of first fiber bundles including a plurality of first fibers and a plurality of first fiber bundles including a plurality of second fibers. And a second fiber bundle of the present invention, wherein the fiber-reinforced plastic layer is provided such that the longitudinal direction of each of the first fiber bundles is along the direction orthogonal to the polarization direction of the antenna. And, the longitudinal direction of each of the second fiber bundles is provided so as to be parallel to the polarization direction, and the electric conductivity of each of the first fibers is higher than the electric conductivity of each of the second fibers. Things.
 本発明によれば、上記のように構成したので、車載用等のレーダ装置のレドームにおいて、ミリ波等の電波に対する透過性の向上と重量の低減及び剛性の向上との両立を図ることができる。 According to the present invention, since it is configured as described above, in a radome of a radar device for use in a vehicle or the like, it is possible to achieve both improvement in transparency to radio waves such as millimeter waves, reduction in weight, and improvement in rigidity. .
実施の形態1に係るレーダ装置用のアンテナの要部を示す正面図である。FIG. 2 is a front view illustrating a main part of the antenna for the radar device according to the first embodiment. 実施の形態1に係るレーダ装置用のレドームが有する繊維強化プラスチック層の要部を示す正面図である。FIG. 2 is a front view showing a main part of a fiber-reinforced plastic layer included in the radome for the radar device according to the first embodiment. 図2Aに示すA-A’線に沿う断面図である。FIG. 2B is a sectional view taken along line A-A ′ shown in FIG. 2A. 実施の形態1に係るレーダ装置の要部を示す正面図である。FIG. 2 is a front view showing a main part of the radar device according to the first embodiment. 図3Aに示すA-A’線に沿う断面図である。FIG. 3B is a sectional view taken along line A-A ′ shown in FIG. 3A. 実施の形態1に係るレーダ装置用のレドームによるミリ波透過率を示す特性図である。FIG. 4 is a characteristic diagram showing millimeter wave transmittance by a radome for a radar device according to the first embodiment; 実施の形態1に係る他のレーダ装置の要部を示す正面図である。FIG. 4 is a front view showing a main part of another radar device according to the first embodiment. 実施の形態2に係るレーダ装置用のレドームが有する2個の繊維強化プラスチック層のうちの一方の繊維強化プラスチック層の要部を示す正面図である。FIG. 10 is a front view showing a main part of one of the two fiber-reinforced plastic layers of the radome for a radar device according to the second embodiment. 図6Aに示すA-A’線に沿う断面図である。FIG. 6B is a sectional view taken along line A-A ′ shown in FIG. 6A. 実施の形態2に係るレーダ装置用のレドームが有する2個の繊維強化プラスチック層のうちの他方の繊維強化プラスチック層の要部を示す正面図である。FIG. 14 is a front view showing a main part of the other fiber-reinforced plastic layer of the two fiber-reinforced plastic layers included in the radome for the radar device according to the second embodiment. 図7Aに示すA-A’線に沿う断面図である。FIG. 7B is a sectional view taken along the line A-A ′ shown in FIG. 7A. 実施の形態2に係るレーダ装置の要部を示す正面図である。FIG. 9 is a front view showing a main part of the radar device according to the second embodiment. 図8Aに示すA-A’線に沿う断面図である。FIG. 8B is a sectional view taken along the line A-A ′ shown in FIG. 8A. 実施の形態2に係るレーダ装置用のレドームによるミリ波透過率を示す特性図である。FIG. 9 is a characteristic diagram illustrating millimeter wave transmittance by a radome for a radar device according to Embodiment 2.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereafter, in order to explain this invention in greater detail, the preferred embodiments of the present invention will be described with reference to the accompanying drawings.
実施の形態1.
 図1は、実施の形態1に係るレーダ装置用のアンテナの要部を示す正面図である。図2Aは、実施の形態1に係るレーダ装置用のレドームが有する繊維強化プラスチック層の要部を示す正面図である。図2Bは、図2Aに示すA-A’線に沿う断面図である。図3Aは、実施の形態1に係るレーダ装置の要部を示す正面図である。図3Bは、図3Aに示すA-A’線に沿う断面図である。図1~図3を参照して、実施の形態1のレーダ装置100について、車載用ミリ波レーダに用いた例を中心に説明する。すなわち、レーダ装置100は車両(不図示)に搭載されている。
Embodiment 1 FIG.
FIG. 1 is a front view showing a main part of an antenna for a radar device according to the first embodiment. FIG. 2A is a front view showing a main part of a fiber-reinforced plastic layer included in the radome for the radar device according to the first embodiment. FIG. 2B is a sectional view taken along line AA ′ shown in FIG. 2A. FIG. 3A is a front view showing a main part of the radar device according to Embodiment 1. FIG. 3B is a sectional view taken along line AA ′ shown in FIG. 3A. The radar apparatus 100 according to the first embodiment will be described with reference to FIGS. That is, the radar device 100 is mounted on a vehicle (not shown).
 図中、1はアンテナである。アンテナ1は、所定の周波数f(例えば77GHz)を有する電波、すなわちミリ波を放射するものである。アンテナ1は、当該放射された電波が車両外の障害物(不図示)により反射されたとき、当該反射された電波を受信するものである。制御部(不図示)は、アンテナ1により放射される電波の周波数fとアンテナ1により受信された電波の周波数f’との差分値Δfに基づき、車両と障害物間の距離を測定するものである。制御部は、例えば、ECU(Electronic Control Unit)により構成されている。 中 In the figure, 1 is an antenna. The antenna 1 emits a radio wave having a predetermined frequency f (for example, 77 GHz), that is, a millimeter wave. The antenna 1 receives the reflected radio wave when the radiated radio wave is reflected by an obstacle (not shown) outside the vehicle. The control unit (not shown) measures the distance between the vehicle and the obstacle based on the difference value Δf between the frequency f of the radio wave radiated by the antenna 1 and the frequency f ′ of the radio wave received by the antenna 1. is there. The control unit is configured by, for example, an ECU (Electronic Control Unit).
 以下、アンテナ1により放射される電波及びアンテナ1により放射された電波を「放射波」と総称する。また、アンテナ1により放射される電波の周波数f、すなわち放射波の周波数fを「キャリア周波数」ということがある。 Hereinafter, the radio waves radiated by the antenna 1 and the radio waves radiated by the antenna 1 are collectively referred to as “radiated waves”. Further, the frequency f of the radio wave radiated by the antenna 1, that is, the frequency f of the radiation wave may be referred to as a “carrier frequency”.
 アンテナ1は、例えば、いわゆる「平面アレーアンテナ」により構成されている。図1及び図3に示す例においては、基板11の表面部に複数個のアンテナ素子12が平面状に、すなわち二次元アレー状に配列されている。 The antenna 1 is constituted by, for example, a so-called “planar array antenna”. In the example shown in FIGS. 1 and 3, a plurality of antenna elements 12 are arranged in a plane, that is, a two-dimensional array on the surface of a substrate 11.
 放射波のうちの主要な電波(いわゆる「メインビーム」)の放射方向(いわゆる「メインビーム方向」)は、例えば、基板11の板面に対して直交又は略直交する方向、すなわち図中Z軸に沿う方向に設定されている。図中MBは、メインビームに対応する領域、すなわちメインビームの通過対象となる領域を示している。 The radiation direction (so-called “main beam direction”) of a main radio wave (so-called “main beam direction”) of the radiated waves is, for example, a direction orthogonal or substantially orthogonal to the plate surface of the substrate 11, that is, the Z axis in the drawing. It is set in the direction along. In the figure, MB indicates a region corresponding to the main beam, that is, a region through which the main beam passes.
 また、アンテナ1は、いわゆる「直線偏波アンテナ」である。アンテナ1の偏波方向は、基板11の板面に対して平行又は略平行な方向、より具体的には図中Y軸に沿う方向に設定されている。 {Circle around (1)} The antenna 1 is a so-called “linearly polarized antenna”. The polarization direction of the antenna 1 is set in a direction parallel or substantially parallel to the plate surface of the substrate 11, more specifically, in a direction along the Y axis in the drawing.
 レーダ装置100は、アンテナ1用のレドーム2を有している。レドーム2は、基板11の表面部と対向配置されている。すなわち、レドーム2は、複数個のアンテナ素子12と対向配置されている。以下、レドーム2について説明する。 The radar device 100 has a radome 2 for the antenna 1. The radome 2 is arranged to face the surface of the substrate 11. That is, the radome 2 is arranged to face the plurality of antenna elements 12. Hereinafter, the radome 2 will be described.
 図2及び図3に示す如く、レドーム2は繊維強化プラスチック層3を有している。繊維強化プラスチック層3は、例えば、基板11の板面に対して平行又は略平行に設けられている。 レ As shown in FIGS. 2 and 3, the radome 2 has a fiber-reinforced plastic layer 3. The fiber reinforced plastic layer 3 is provided, for example, parallel or substantially parallel to the plate surface of the substrate 11.
 繊維強化プラスチック層3は、複数本の繊維束(以下「第1繊維束」ということがある。)4を含むものである。また、繊維強化プラスチック層3は、他の複数本の繊維束(以下「第2繊維束」ということがある。)5を含むものである。複数本の第1繊維束4の各々は、複数本の繊維(以下「第1繊維」ということがある。)6を糸状に束ねてなるものである。また、複数本の第2繊維束5の各々は、他の複数本の繊維(以下「第2繊維」ということがある。)7を糸状に束ねてなるものである。 The fiber-reinforced plastic layer 3 includes a plurality of fiber bundles (hereinafter, sometimes referred to as “first fiber bundles”) 4. The fiber-reinforced plastic layer 3 includes another plurality of fiber bundles (hereinafter, also referred to as “second fiber bundles”) 5. Each of the plurality of first fiber bundles 4 is formed by bundling a plurality of fibers (hereinafter sometimes referred to as “first fibers”) 6 in a thread shape. Each of the plurality of second fiber bundles 5 is formed by bundling other plurality of fibers (hereinafter, sometimes referred to as “second fibers”) 7 in a thread shape.
 繊維強化プラスチック層3は、例えば、これらの繊維束4,5による織布に液状のプラスチックを塗布した後、当該プラスチックを硬化させることにより製造されたものである。すなわち、複数本の第1繊維束4は当該織布における経糸又は緯糸のうちのいずれか一方に対応するものであり、複数本の第2繊維束5は当該織布における経糸又は緯糸のうちのいずれか他方に対応するものである。複数本の第1繊維束4の各々の長手方向(以下「第1長手方向」という。)と複数本の第2繊維束5の各々の長手方向(以下「第2長手方向」という。)とは、互いに直交又は略直交している。 The fiber-reinforced plastic layer 3 is manufactured by, for example, applying a liquid plastic to the woven fabric of the fiber bundles 4 and 5 and then curing the plastic. That is, the plurality of first fiber bundles 4 correspond to either the warp or the weft in the woven fabric, and the plurality of second fiber bundles 5 correspond to the warp or the weft in the woven fabric. It corresponds to one of the other. The longitudinal direction of each of the plurality of first fiber bundles 4 (hereinafter, referred to as “first longitudinal direction”) and the longitudinal direction of each of the plurality of second fiber bundles 5 (hereinafter, referred to as “second longitudinal direction”). Are orthogonal or substantially orthogonal to each other.
 以下、繊維強化プラスチック層3において、アンテナ1の偏波方向に対して直交又は略直交する方向を「直交方向」という。また、繊維強化プラスチック層3において、アンテナ1の偏波方向に対して平行又は略平行な方向を「平行方向」という。繊維強化プラスチック層3は、第1長手方向が直交方向に沿うように設けられており、かつ、第2長手方向が平行方向に沿うように設けられている。より具体的には、第1長手方向と当該偏波方向に対して直交する方向との間の角度θ、すなわち第2長手方向と当該偏波方向に対して平行な方向との間の角度θが、以下の式(1)に示す条件を満たす値に設定されている。なお、図2及び図3に示す例においては、θ=0°に設定されている。 Hereinafter, in the fiber reinforced plastic layer 3, a direction orthogonal or substantially orthogonal to the polarization direction of the antenna 1 is referred to as an "orthogonal direction". In the fiber reinforced plastic layer 3, a direction parallel or substantially parallel to the polarization direction of the antenna 1 is referred to as a "parallel direction". The fiber reinforced plastic layer 3 is provided so that the first longitudinal direction is along the orthogonal direction, and is provided such that the second longitudinal direction is along the parallel direction. More specifically, the angle θ between the first longitudinal direction and the direction orthogonal to the polarization direction, that is, the angle θ between the second longitudinal direction and the direction parallel to the polarization direction Is set to a value that satisfies the condition shown in the following equation (1). In the examples shown in FIGS. 2 and 3, θ = 0 ° is set.
 -13°≦θ≦+13° (1) -13 ° ≦ θ ≦ + 13 ° (1)
 複数本の第1繊維6の各々は、例えば、炭素繊維、金属繊維、ボロン繊維、又は100マイクロメートル(以下「μm」と記載する。)以下の太さを有する金属細線により構成されている。複数本の第1繊維6の各々の太さは、放射波の真空中の波長に対する10分の1以下の値に設定されている。これに対して、複数本の第2繊維7の各々は、例えば、ガラス繊維又はクオーツ繊維により構成されている。 Each of the plurality of first fibers 6 is made of, for example, a carbon fiber, a metal fiber, a boron fiber, or a thin metal wire having a thickness of 100 micrometers (hereinafter, referred to as “μm”) or less. The thickness of each of the plurality of first fibers 6 is set to a value that is 1/10 or less of the wavelength of the radiation wave in vacuum. On the other hand, each of the plurality of second fibers 7 is made of, for example, glass fiber or quartz fiber.
 すなわち、複数本の第1繊維6の各々の電気伝導率が複数本の第2繊維7の各々の電気伝導率に比して高いものであり、かつ、複数本の第1繊維6の各々による誘電損失が複数本の第2繊維7の各々による誘電損失に比して大きいものである。繊維強化プラスチック層3のうちの第1繊維6を除く部位(すなわち第2繊維7及びプラスチックにより構成されている部位)の比誘電率εは、2.0~6.0程度である。 That is, the electric conductivity of each of the plurality of first fibers 6 is higher than the electric conductivity of each of the plurality of second fibers 7, and the electric conductivity of each of the plurality of first fibers 6 is different. The dielectric loss is larger than the dielectric loss due to each of the plurality of second fibers 7. The relative permittivity ε of the portion of the fiber reinforced plastic layer 3 excluding the first fiber 6 (that is, the portion composed of the second fiber 7 and the plastic) is about 2.0 to 6.0.
 繊維強化プラスチック層3の肉厚tは、例えば、繊維強化プラスチック層3のうちの第1繊維6を除く部位における放射波の2分の1波長の整数倍に対応する値に設定されている。より具体的には、肉厚tは、以下の式(2)に基づく値に設定されている。 The thickness t of the fiber-reinforced plastic layer 3 is set to a value corresponding to an integral multiple of half the wavelength of the radiated wave in the portion of the fiber-reinforced plastic layer 3 excluding the first fibers 6, for example. More specifically, the thickness t is set to a value based on the following equation (2).
 t=(n×λ)/(2×√ε) (2) t = (n × λ 0 ) / (2 × √ε) (2)
 λは、真空中における放射波の波長である。nは、1以上の任意の整数である。 λ 0 is the wavelength of the radiation wave in vacuum. n is one or more arbitrary integers.
 このようにして、レーダ装置100の要部が構成されている。 要 The main part of the radar device 100 is thus configured.
 次に、レーダ装置100において、レドーム2を用いたことによる効果について説明する。 Next, the effect of using the radome 2 in the radar device 100 will be described.
 一般に、有限のインピーダンスを有する構造物が電波を透過させるときの透過率Tは、当該電波の偏波方向に対する垂直成分Tと当該電波の偏波方向に対する平行成分Tとに分けて表される。例えば、所定の波長オーダーの寸法を有する構造物が当該波長を有する電波を透過させるときの透過率T,Tは、以下の式(3)及び式(4)によりそれぞれ表される。 Generally, the transmittance T when a structure having a finite impedance transmits a radio wave is expressed as a vertical component T with respect to the polarization direction of the radio wave and a parallel component T with respect to the polarization direction of the radio wave. You. For example, structures having dimensions of predetermined wavelength order transmittance T when transmitting a radio wave having the wavelength, T is represented respectively by the following equations (3) and (4).
 T=(4×Z )/(1+4×Z ) (3)
 T=(4×Z )/(1+4×Z ) (4)
T ⊥ = (4 × Z ⊥ 2) / (1 + 4 × Z ⊥ 2) (3)
T ∥ = (4 × Z ∥ 2) / (1 + 4 × Z ∥ 2) (4)
 Zは、当該電波の偏波方向に対して垂直な方向における当該構造物の等価インピーダンスである。Zは、当該電波の偏波方向に対して平行な方向における当該構造物の等価インピーダンスである。なお、式(3)及び式(4)は、以下の参考文献1の記載に基づくものである。 Z⊥ is the equivalent impedance of the structure in a direction perpendicular to the polarization direction of the radio wave. Z∥ is the equivalent impedance of the structure in a direction parallel to the polarization direction of the radio wave. Expressions (3) and (4) are based on the description of Reference 1 below.
[参考文献1]
J. P. Auton, Appl. Opt., Vol.6, 1023 (1967)
[Reference 1]
J. P. Auton, Appl. Opt., Vol. 6, 1023 (1967)
 ここで、上記のとおり、複数本の第1繊維6の各々の太さは、放射波の真空中の波長に対する10分の1以下の値に設定されている。これにより、第1繊維6に流れる電流(すなわち繊維強化プラスチック層3において第1長手方向に沿うように流れる電流)が発生しないため、第1繊維6の等価インピーダンスZはZ≫1となる。したがって、第1繊維6における透過率TはT≒1となる。これに対して、第2繊維7の等価インピーダンスZは、真空中のインピーダンスに対する1/√ε倍の値となる。このため、第2繊維7における透過率Tは、いわゆる「フレネルの式」を用いて計算される値と同等の値となる。 Here, as described above, the thickness of each of the plurality of first fibers 6 is set to a value that is 1/10 or less of the wavelength of the radiation wave in vacuum. Thus, since the current flowing through the first fiber 6 (i.e. current in the fiber-reinforced plastic layer 3 flows along the first longitudinal direction) is not generated, the equivalent impedance Z the first fiber 6 becomes Z >> 1 . Therefore, the transmittance T け る of the first fiber 6 is T ≒ 1. In contrast, the equivalent impedance Z of the second fiber 7 becomes a value of 1 / √ε times to the impedance of the vacuum. For this reason, the transmittance T in the second fiber 7 is a value equivalent to a value calculated using the so-called “Fresnel equation”.
 以上の原理により、電気伝導率が高く誘電損失が大きい材料、より具体的には炭素繊維又は金属繊維などの材料が第1繊維6に用いられているものの、繊維強化プラスチック層3によるフレネル損失の増大は回避することができる。すなわち、これらの材料が繊維強化プラスチック層3に含まれているにもかかわらず、ミリ波等の電波に対する透過性の低下を回避することができる(換言すれば、ミリ波等の電波に対する透過性の向上を図ることができる。)。 According to the above principle, although a material having a high electric conductivity and a large dielectric loss, more specifically, a material such as a carbon fiber or a metal fiber is used for the first fiber 6, the fiber reinforced plastic layer 3 reduces the Fresnel loss. Growth can be avoided. That is, even though these materials are contained in the fiber-reinforced plastic layer 3, it is possible to avoid a decrease in the permeability to radio waves such as millimeter waves (in other words, the permeability to radio waves such as millimeter waves). Can be improved.).
 また、これらの材料を用いた第1繊維6により、従来の繊維強化プラスチック層に比して、繊維強化プラスチック層3の剛性の向上及び重量の低減を図ることができる。この結果、当該従来の繊維強化プラスチック層を有する従来のレドームに比して、レドーム2の剛性の向上及び重量の低減を図ることができる。ここで、当該従来の繊維強化プラスチック層は、ガラス繊維強化プラスチック又はクオーツ繊維強化プラスチックなどにより構成されているものである。すなわち、当該従来の繊維強化プラスチック層は、繊維強化プラスチック層3における第1繊維6に用いられている材料(炭素繊維、金属繊維、ボロン繊維又は金属細線など)を含まないものである。 The first fibers 6 using these materials can improve the rigidity and reduce the weight of the fiber-reinforced plastic layer 3 as compared with the conventional fiber-reinforced plastic layer. As a result, the rigidity of the radome 2 can be improved and the weight can be reduced as compared with the conventional radome having the conventional fiber reinforced plastic layer. Here, the conventional fiber reinforced plastic layer is made of glass fiber reinforced plastic or quartz fiber reinforced plastic. That is, the conventional fiber reinforced plastic layer does not include the material (carbon fiber, metal fiber, boron fiber, metal fine wire, or the like) used for the first fiber 6 in the fiber reinforced plastic layer 3.
 さらに、第1繊維6における透過率TがT≒1であるため、肉厚tが式(2)に基づく値に設定されていることにより、キャリア周波数f(例えば77GHz)を含む所定の周波数範囲におけるミリ波透過率を向上することができる。 Furthermore, since the transmittance T in the first fiber 6 is T ≒ 1, by the wall thickness t is set to a value according to equation (2), a predetermined comprising a carrier frequency f (e.g., 77 GHz) Millimeter wave transmittance in the frequency range can be improved.
 図4における特性線Iは、レドーム2によるミリ波透過率を示している。このミリ波透過率は、フレネルの式を用いて計算されたものである。なお、このミリ波透過率の計算において、誘電損失は無視しており、フレネル損失を計算の対象としている。これは、フレネル損失に比して誘電損失が小さいためである。 特性 Characteristic line I in FIG. 4 indicates the millimeter wave transmittance of the radome 2. This millimeter-wave transmittance is calculated using Fresnel's equation. In the calculation of the millimeter wave transmittance, the dielectric loss is ignored, and the Fresnel loss is to be calculated. This is because the dielectric loss is smaller than the Fresnel loss.
 特性線Iに係るレドーム2においては、第1繊維6が炭素繊維により構成されており、かつ、第2繊維7がガラス繊維により構成されている。特性線Iに係るレドーム2においては、θ=0°である。特性線Iに係るレドーム2においては、繊維強化プラスチック層3のうちの第1繊維6を除く部位におけるアンテナ1の偏波方向に対する比誘電率が4.0である(すなわち、ε=4.0である。)。特性線Iに係るレドーム2においては、肉厚tが1.95mmに設定されている(すなわち、f=77GHzかつε=4.0であるところ、n=2である。)。以下、特性線Iに係るレドーム2の構成例を「第1構成例」という。 レ In the radome 2 according to the characteristic line I, the first fibers 6 are made of carbon fibers, and the second fibers 7 are made of glass fibers. In the radome 2 according to the characteristic line I, θ = 0 °. In the radome 2 according to the characteristic line I, the relative permittivity with respect to the polarization direction of the antenna 1 in the portion of the fiber-reinforced plastic layer 3 excluding the first fiber 6 is 4.0 (that is, ε = 4.0). Is.). In the radome 2 according to the characteristic line I, the thickness t is set to 1.95 mm (that is, n = 2 where f = 77 GHz and ε = 4.0). Hereinafter, a configuration example of the radome 2 according to the characteristic line I is referred to as a “first configuration example”.
 図4に示す如く、第1構成例のレドーム2を用いることにより、74~80GHzの周波数範囲におけるフレネル損失を5%以下にすることができる。 (4) As shown in FIG. 4, the use of the radome 2 of the first configuration example can reduce the Fresnel loss in the frequency range of 74 to 80 GHz to 5% or less.
 なお、上記のとおり、角度θは0°に限定されるものではない。式(1)に示す条件を満たす範囲内であれば、図5に示す如くθ≠0°であっても良い。 As described above, the angle θ is not limited to 0 °. As long as it is within the range that satisfies the condition shown in Expression (1), θ ≠ 0 ° may be satisfied as shown in FIG.
 ただし、θ≠0°の場合における第1繊維6の等価インピーダンスZ’は、θ=0°の場合における第1繊維6の等価インピーダンスZに対して、以下の式(5)により表される。また、θ≠0°の場合における第2繊維7の等価インピーダンスZ’は、θ=0°の場合における第2繊維7の等価インピーダンスZに対して、以下の式(6)により表される。 However, the equivalent impedance Z⊥ ′ of the first fiber 6 when θ ≠ 0 ° is expressed by the following equation (5) with respect to the equivalent impedance Z⊥ of the first fiber 6 when θ = 0 °. You. The equivalent impedance Z∥ ′ of the second fiber 7 when θ ≠ 0 ° is expressed by the following equation (6) with respect to the equivalent impedance Z∥ of the second fiber 7 when θ = 0 °. You.
 Z’=Z×cosθ (5)
 Z’=Z×sinθ (6)
Z⊥ '= Z⊥ × cosθ (5)
Z∥ '= Z∥ × sinθ (6)
 このようなZ’,Z’に基づく電波の損失は、sinθの関数により表されるものとなる。したがって、当該損失を5%以下にする観点から、角度θは±13°の範囲内の値、すなわち式(1)に示す条件を満たす範囲内の値に設定するのが好適である。 Such Z ', Z ∥' loss of radio waves based on becomes one represented by a function of sin 2 theta. Therefore, from the viewpoint of reducing the loss to 5% or less, it is preferable that the angle θ be set to a value within a range of ± 13 °, that is, a value within a range that satisfies the condition shown in Expression (1).
 また、複数本の第1繊維6の各々は、被覆がなされたものであっても良い。 Further, each of the plurality of first fibers 6 may be coated.
 また、放射波はミリ波に限定されるものではなく、キャリア周波数fは77GHzに限定されるものではない。アンテナ1は、レーダ装置100に用いられる周波数fであれば、如何なる周波数fを有する電波を放射するものであっても良い。例えば、アンテナ1は、いわゆる「マイクロ波」又は「サブミリ波」を放射するものであっても良い。 放射 Further, the radiation wave is not limited to the millimeter wave, and the carrier frequency f is not limited to 77 GHz. The antenna 1 may emit a radio wave having any frequency f as long as the frequency f is used for the radar device 100. For example, the antenna 1 may emit a so-called “microwave” or “submillimeter wave”.
 また、レーダ装置100は車載用に限定されるものではなく、レーダ装置100の用途は車両と障害物間の距離の測定に限定されるものではない。レーダ装置100は、如何なる用途のレーダに用いられるものであっても良い。 The radar device 100 is not limited to a vehicle-mounted device, and the application of the radar device 100 is not limited to measuring the distance between a vehicle and an obstacle. The radar device 100 may be used for radar for any purpose.
 以上のように、実施の形態1のレーダ装置100は、電波を放射するアンテナ1と、アンテナ1用のレドーム2と、を備え、レドーム2は、複数本の第1繊維6による複数本の第1繊維束4と、複数本の第2繊維7による複数本の第2繊維束5と、を含む繊維強化プラスチック層3を有し、繊維強化プラスチック層3は、個々の第1繊維束4の長手方向(すなわち第1長手方向)がアンテナ1の偏波方向に対する直交方向に沿うように設けられており、かつ、個々の第2繊維束5の長手方向(すなわち第2長手方向)が偏波方向に対する平行方向に沿うように設けられており、個々の第1繊維6の電気伝導率が個々の第2繊維7の電気伝導率よりも高い。これにより、炭素繊維又は金属繊維などの材料を第1繊維6に用いつつ、繊維強化プラスチック層3によるフレネル損失の増大を回避することができる。この結果、ミリ波等の電波に対する透過性の向上と重量の低減及び剛性の向上との両立を図ることができる。 As described above, the radar device 100 according to the first embodiment includes the antenna 1 that radiates radio waves and the radome 2 for the antenna 1, and the radome 2 includes a plurality of first fibers 6 formed by a plurality of first fibers 6. The fiber reinforced plastic layer 3 includes one fiber bundle 4 and a plurality of second fiber bundles 5 formed by a plurality of second fibers 7. The longitudinal direction (that is, the first longitudinal direction) is provided so as to be along the direction orthogonal to the polarization direction of the antenna 1, and the longitudinal direction (that is, the second longitudinal direction) of each of the second fiber bundles 5 is polarized. It is provided so as to be parallel to the direction, and the electric conductivity of each first fiber 6 is higher than the electric conductivity of each second fiber 7. This makes it possible to avoid an increase in Fresnel loss due to the fiber-reinforced plastic layer 3 while using a material such as carbon fiber or metal fiber for the first fiber 6. As a result, it is possible to achieve both improvement in the permeability to radio waves such as millimeter waves, reduction in weight, and improvement in rigidity.
 また、繊維強化プラスチック層3の肉厚tは、電波の2分の1波長の整数倍に対応する値に設定されている。肉厚tが式(2)に基づく値に設定されていることにより、キャリア周波数fを含む所定の周波数範囲におけるフレネル損失を低減することができる。 (4) The thickness t of the fiber-reinforced plastic layer 3 is set to a value corresponding to an integral multiple of a half wavelength of a radio wave. Since the thickness t is set to a value based on the equation (2), Fresnel loss in a predetermined frequency range including the carrier frequency f can be reduced.
 また、個々の第1繊維6は、炭素繊維、金属繊維、ボロン繊維又は金属細線により構成されており、個々の第2繊維7は、ガラス繊維又はクオーツ繊維により構成されている。このように、第1繊維6の材料は炭素繊維又は金属繊維に限定されるものではなく、ボロン繊維又は金属細線などを用いることもできる。 The individual first fibers 6 are made of carbon fibers, metal fibers, boron fibers, or fine metal wires, and the individual second fibers 7 are made of glass fibers or quartz fibers. As described above, the material of the first fiber 6 is not limited to carbon fiber or metal fiber, but may be boron fiber or metal fine wire.
 また、個々の第1繊維6の太さが電波の波長に対する10分の1以下の値に設定されている。このように、個々の第1繊維6の太さを十分に小さい値に設定することにより、第1繊維6に流れる電流の発生をより確実に防ぐことができる。 (4) The thickness of each first fiber 6 is set to a value of 1/10 or less of the wavelength of the radio wave. As described above, by setting the thickness of each of the first fibers 6 to a sufficiently small value, generation of a current flowing through the first fibers 6 can be more reliably prevented.
実施の形態2.
 図6Aは、実施の形態2に係るレーダ装置用のレドームが有する2個の繊維強化プラスチック層のうちの一方の繊維強化プラスチック層の要部を示す正面図である。図6Bは、図6Aに示すA-A’線に沿う断面図である。図7Aは、実施の形態2に係るレーダ装置用のレドームが有する2個の繊維強化プラスチック層のうちの他方の繊維強化プラスチック層の要部を示す正面図である。図7Bは、図7Aに示すA-A’線に沿う断面図である。図8Aは、実施の形態2に係るレーダ装置の要部を示す正面図である。図8Bは、図8Aに示すA-A’線に沿う断面図である。図6~図8を参照して、実施の形態2のレーダ装置100aについて説明する。なお、図6~図8において、図2~図3に示す構成部材等と同様の構成部材等には同一符号を付して説明を省略する。
Embodiment 2 FIG.
FIG. 6A is a front view showing a main part of one fiber reinforced plastic layer of two fiber reinforced plastic layers included in a radome for a radar device according to Embodiment 2. FIG. 6B is a sectional view taken along line AA ′ shown in FIG. 6A. FIG. 7A is a front view illustrating a main part of the other fiber reinforced plastic layer of the two fiber reinforced plastic layers included in the radome for the radar device according to Embodiment 2. FIG. 7B is a sectional view taken along line AA ′ shown in FIG. 7A. FIG. 8A is a front view showing a main part of the radar device according to Embodiment 2. FIG. 8B is a sectional view taken along line AA ′ shown in FIG. 8A. Embodiment 2 A radar apparatus 100a according to Embodiment 2 will be described with reference to FIGS. 6 to 8, the same reference numerals are given to the same constituent members and the like as those shown in FIGS. 2 and 3, and the description will be omitted.
 レーダ装置100aは、アンテナ1用のレドーム2aを有している。レドーム2aは、互いに対向配置された2個の繊維強化プラスチック層3を有している。また、レドーム2aは、2個の繊維強化プラスチック層3間に形成された間隙層8を有している。2個の繊維強化プラスチック層3の各々は、例えば、基板11の板面に対して平行又は略平行に設けられている。2個の繊維強化プラスチック層3の各々は、実施の形態1にて説明したものと同様の構造を有している。 The radar device 100a has a radome 2a for the antenna 1. The radome 2a has two fiber-reinforced plastic layers 3 arranged facing each other. The radome 2a has a gap layer 8 formed between the two fiber-reinforced plastic layers 3. Each of the two fiber-reinforced plastic layers 3 is provided, for example, in parallel or substantially parallel to the plate surface of the substrate 11. Each of the two fiber-reinforced plastic layers 3 has the same structure as that described in the first embodiment.
 すなわち、2個の繊維強化プラスチック層3のうちの一方の繊維強化プラスチック層3は、複数本の第1繊維束4及び複数本の第2繊維束5を含むものである。複数本の第1繊維束4の各々は、複数本の第1繊維6を糸状に束ねてなるものである。複数本の第2繊維束5の各々は、複数本の第2繊維7を糸状に束ねてなるものである。 That is, fiber-reinforced plastic layer 3 1 One of the two fiber-reinforced plastic layer 3 are those containing a second fiber bundle 5 1 of a plurality of first fiber bundles 4 1 and a plurality of. First each of the fiber bundles 4 1 a plurality of is made by bundling a first fiber 6 1 a plurality of filamentous. Second, each of the fiber bundle 5 1 a plurality of is made by bundling a second fiber 7 1 a plurality of filamentous.
 繊維強化プラスチック層3は、複数本の第1繊維束4の各々の長手方向(すなわち第1長手方向)が直交方向に沿うように設けられており、かつ、複数本の第2繊維束5の各々の長手方向(すなわち第2長手方向)が平行方向に沿うように設けられている。より具体的には、当該第1長手方向とアンテナ1の偏波方向に対して直交する方向との間の角度θ、すなわち当該第2長手方向とアンテナ1の偏波方向に対して平行な方向との間の角度θが、以下の式(7)に示す条件を満たす値に設定されている。なお、図6及び図8に示す例においては、θ=0°に設定されている。 Fiber-reinforced plastic layer 3 1, the first fiber bundle 4 1 of each of the longitudinal direction of the plurality of (that is, the first longitudinal direction) is provided along the perpendicular direction, and a second fiber bundle of a plurality of 5 1 of each of the longitudinal (i.e. second longitudinal direction) is provided along the parallel direction. More specifically, the angle θ 1 between the first longitudinal direction and the direction orthogonal to the polarization direction of the antenna 1, that is, the angle θ 1 parallel to the second longitudinal direction and the polarization direction of the antenna 1. angle theta 1 between the direction is set to satisfy the condition value as shown in formula (7). In the examples shown in FIGS. 6 and 8, θ 1 is set to 0 °.
 -13°≦θ≦+13° (7) −13 ° ≦ θ 1 ≦ + 13 ° (7)
 複数本の第1繊維6の各々は、例えば、炭素繊維、金属繊維、ボロン繊維、又は100μm以下の太さを有する金属細線により構成されている。複数本の第1繊維6の各々の太さは、放射波の真空中の波長に対する10分の1以下の値に設定されている。これに対して、複数本の第2繊維7の各々は、例えば、ガラス繊維又はクオーツ繊維により構成されている。 First each of the fibers 61 a plurality of, for example, carbon fibers, metal fibers, is constituted by boron fibers or thin metal wires having the following thickness 100 [mu] m. First fiber 6 1 of each of the thickness of the plurality of is set to less than one-tenth with respect to the wavelength in vacuum of the radiation wave. In contrast, the second respective fibers 71 a plurality of, for example, is constituted by glass fibers or quartz fibers.
 すなわち、複数本の第1繊維6の各々の電気伝導率が複数本の第2繊維7の各々の電気伝導率に比して高いものであり、かつ、複数本の第1繊維6の各々による誘電損失が複数本の第2繊維7の各々による誘電損失に比して大きいものである。繊維強化プラスチック層3のうちの第1繊維6を除く部位(すなわち第2繊維7及びプラスチックにより構成されている部位)の比誘電率εは、2.0~6.0程度である。 That is, those first fibers 61 of each of the electrical conductivity of the plurality of higher than the second fiber 7 1 of each of the electrical conductivity of the plurality of, and the first fiber 6 a plurality of 1 each dielectric loss due to the is larger than the dielectric loss of the second fiber 7 1 of each of the plurality of lines. The dielectric constant epsilon 1 site (i.e. site being constituted by the second fiber 71 and plastic), except the first fiber 6 1 of the fiber-reinforced plastic layer 3 1, at about 2.0-6.0 is there.
 繊維強化プラスチック層3の肉厚tは、例えば、繊維強化プラスチック層3のうちの第1繊維6を除く部位における放射波の2分の1波長に対応する値に設定されている。より具体的には、肉厚tは、以下の式(8)に基づく値に設定されている。 Thickness t 1 of the fiber-reinforced plastic layer 3 1 is, for example, is set to a value corresponding to a half wavelength of the radiation waves at a site other than the first fiber 6 1 of the fiber-reinforced plastic layer 3 1 . More specifically, the thickness t 1 is set to a value based on the following equation (8).
 t=λ/(2×√ε) (8) t 1 = λ 0 / (2 × √ε 1 ) (8)
 また、2個の繊維強化プラスチック層3のうちの他方の繊維強化プラスチック層3は、複数本の第1繊維束4及び複数本の第2繊維束5を含むものである。複数本の第1繊維束4の各々は、複数本の第1繊維6を糸状に束ねてなるものである。複数本の第2繊維束5の各々は、複数本の第2繊維7を糸状に束ねてなるものである。 The other fiber-reinforced plastic layer 3 2 of the two fiber-reinforced plastic layer 3, is intended to include a plurality of first fiber bundles 4 2 and a plurality second fiber bundle of the 5 2. First each of the fiber bundles 4 2 a plurality of is made by bundling a first fiber 6 2 a plurality of filamentous. Second, each fiber bundle 5 second plurality of is made by bundling a second fiber 7 2 a plurality of filamentous.
 繊維強化プラスチック層3は、複数本の第1繊維束4の各々の長手方向(すなわち第1長手方向)が直交方向に沿うように設けられており、かつ、複数本の第2繊維束5の各々の長手方向(すなわち第2長手方向)が平行方向に沿うように設けられている。より具体的には、当該第1長手方向とアンテナ1の偏波方向に対して直交する方向との間の角度θ、すなわち当該第2長手方向とアンテナ1の偏波方向に対して平行な方向との間の角度θが、以下の式(9)に示す条件を満たす値に設定されている。なお、図7及び図8に示す例においては、θ=0°に設定されている。 Fiber-reinforced plastic layer 3 2, the first fiber bundles 4 2 of each of the longitudinal direction of the plurality of (that is, the first longitudinal direction) is provided along the perpendicular direction, and a second fiber bundle of a plurality of 5 2 of each of the longitudinal direction (i.e. second longitudinal direction) is provided along the parallel direction. More specifically, the angle θ 2 between the first longitudinal direction and the direction orthogonal to the polarization direction of the antenna 1, that is, the angle θ 2 parallel to the second longitudinal direction and the polarization direction of the antenna 1. angle theta 2 between the direction is set to satisfy the condition value as shown in formula (9). Note that, in the examples shown in FIGS. 7 and 8, θ 2 = 0 ° is set.
 -13°≦θ≦+13° (9) −13 ° ≦ θ 2 ≦ + 13 ° (9)
 複数本の第1繊維6の各々は、例えば、炭素繊維、金属繊維、ボロン繊維、又は100μm以下の太さを有する金属細線により構成されている。複数本の第1繊維6の各々の太さは、放射波の真空中の波長に対する10分の1以下の値に設定されている。これに対して、複数本の第2繊維7の各々は、例えば、ガラス繊維又はクオーツ繊維により構成されている。 First respective fibers 6 2 a plurality of, for example, carbon fibers, metal fibers, is constituted by boron fibers or thin metal wires having the following thickness 100 [mu] m. The first fiber 6 2 each thickness of the plurality of is set to less than one-tenth with respect to the wavelength in vacuum of the radiation wave. In contrast, the second respective fiber 7 2 a plurality of, for example, is constituted by glass fibers or quartz fibers.
 すなわち、複数本の第1繊維6の各々の電気伝導率が複数本の第2繊維7の各々の電気伝導率に比して高いものであり、かつ、複数本の第1繊維6の各々による誘電損失が複数本の第2繊維7の各々による誘電損失に比して大きいものである。繊維強化プラスチック層3のうちの第1繊維6を除く部位(すなわち第2繊維7及びプラスチックにより構成されている部位)の比誘電率εは、2.0~6.0程度である。 That is, those first fibers 6 2 of each of the electrical conductivity of the plurality of higher than the second fiber 7 2 of each of the electrical conductivity of the plurality of, and the first fiber 6 a plurality of 2 each dielectric loss due to the is larger than the dielectric loss of the second fiber 7 2 of each of the plurality of lines. The dielectric constant epsilon 2 of the site (i.e., site configured by the second fiber 7 2 and plastic), except the first fiber 6 2 of the fiber-reinforced plastic layer 3 2 of about 2.0-6.0 is there.
 繊維強化プラスチック層3の肉厚tは、例えば、繊維強化プラスチック層3のうちの第1繊維6を除く部位における放射波の2分の1波長に対応する値に設定されている。より具体的には、肉厚tは、以下の式(10)に基づく値に設定されている。 Thickness t 2 of the fiber-reinforced plastic layer 3 2 is, for example, is set to a value corresponding to a half wavelength of the radiation waves at a site other than the first fiber 6 2 of the fiber-reinforced plastic layer 3 2 . More specifically, the thickness t 2 is set to a value based on the following equation (10).
 t=λ/(2×√ε) (10) t 2 = λ 0 / (2 × √ε 2 ) (10)
 間隙層8には空気が入っている。通常、空気の比誘電率は1.0程度である。すなわち、間隙層8の比誘電率(1.0程度)は繊維強化プラスチック層3,3のうちの第1繊維6,6を除く部位の比誘電率(2.0~6.0程度)よりも小さいものである。 The gap layer 8 contains air. Usually, the relative permittivity of air is about 1.0. That is, the dielectric constant of the gap layer 8 (about 1.0) is fiber-reinforced plastic layer 3 1, 3 first fiber 6 1 of 2, the dielectric constant of the portion except the 6 2 (2.0 to 6. 0).
 ここで、繊維強化プラスチック層3,3間の間隔d、より具体的には繊維強化プラスチック層3,3の厚さ方向(すなわち図中Z軸に沿う方向)に対する間隔dは、間隙層8における放射波の2分の1波長の整数倍に対応する値に設定されている。より具体的には、間隔dは、以下の式(11)に基づく値に設定されている。 Here, fiber-reinforced plastic layer 3 1, 3 distance between 2 d, the distance d with respect to more specific fiber-reinforced plastic layer 3 1 to 3, 2 in the thickness direction (i.e. the direction along the Z axis in the figure), The value is set to a value corresponding to an integral multiple of a half wavelength of the radiation wave in the gap layer 8. More specifically, the interval d is set to a value based on the following equation (11).
 d=α×(m×λ/2) (11) d = α × (m × λ 0/2) (11)
 mは、1以上の任意の整数である。αは、以下の式(12)に示す条件を満たす係数である。 M is an integer of 1 or more. α is a coefficient that satisfies the condition shown in the following equation (12).
 0.8≦α≦1.2 (12) {0.8 ≦ α ≦ 1.2} (12)
 このようにして、レーダ装置100aの要部が構成されている。 要 Thus, the main part of the radar device 100a is configured.
 次に、レーダ装置100aにおいて、レドーム2aを用いたことによる効果について説明する。 Next, the effect of using the radome 2a in the radar device 100a will be described.
 上記のとおり、複数本の第1繊維6の各々の太さは、放射波の真空中の波長に対する10分の1以下の値に設定されている。これにより、第1繊維6に流れる電流(すなわち繊維強化プラスチック層3において第1長手方向に沿うように流れる電流)が発生しないため、第1繊維6の等価インピーダンスZ⊥1はZ⊥1≫1となる。したがって、第1繊維6における透過率T⊥1はT⊥1≒1となる。これに対して、第2繊維7の等価インピーダンスZ∥1は、真空中のインピーダンスに対する1/√ε倍の値となる。このため、第2繊維7における透過率T∥1は、フレネルの式を用いて計算される値と同等の値となる。 As described above, the first fibers 61 of each of the thickness of the plurality of is set to less than one-tenth with respect to the wavelength in vacuum of the radiation wave. Thus, since the current flowing through the first fiber 6 1 (that is, the current flowing along the first longitudinal direction in the fiber-reinforced plastic layer 3 1) is not generated, the first fiber 6 1 equivalent impedance Z ⊥1 the Z It becomes 1 >> 1. Therefore, the transmittance T ⊥1 in the first fiber 61 becomes T ⊥1 ≒ 1. In contrast, the second fibers 71 of the equivalent impedance Z ∥1 has a value of 1 / √Ipushiron 1 times to the impedance of the vacuum. For this reason, the transmittance T || 1 in the second fiber 71 becomes a value equivalent to a value calculated using the Fresnel equation.
 また、複数本の第1繊維6の各々の太さは、放射波の真空中の波長に対する10分の1以下の値に設定されている。これにより、第1繊維6に流れる電流(すなわち繊維強化プラスチック層3において第1長手方向に沿うように流れる電流)が発生しないため、第1繊維6の等価インピーダンスZ⊥2はZ⊥2≫1となる。したがって、第1繊維6における透過率T⊥2はT⊥2≒1となる。これに対して、第2繊維7の等価インピーダンスZ∥2は、真空中のインピーダンスに対する1/√ε倍の値となる。このため、第2繊維7における透過率T∥2は、フレネルの式を用いて計算される値と同等の値となる。 The first fiber 6 2 each thickness of the plurality of is set to less than one-tenth with respect to the wavelength in vacuum of the radiation wave. Thus, since the current flowing through the first fiber 6 2 (that is, the current flowing as in the fiber-reinforced plastic layer 3 2 along the first longitudinal direction) is not generated, the equivalent impedance Z ⊥2 the first fiber 6 2 Z the 2 >> 1. Therefore, the transmittance T ⊥2 in the first fiber 6 2 becomes T ⊥2 ≒ 1. In contrast, the second fiber 7 2 equivalent impedance Z ∥2 becomes 1 / √ε 2 times the values for the impedance of the vacuum. For this reason, the transmittance T || 2 of the second fiber 72 becomes a value equivalent to the value calculated using the Fresnel equation.
 以上の原理により、電気伝導率が高く誘電損失が大きい材料、より具体的には炭素繊維又は金属繊維などの材料が第1繊維6,6に用いられているものの、繊維強化プラスチック層3,3によるフレネル損失の増大は回避することができる。すなわち、これらの材料が繊維強化プラスチック層3,3に含まれているにもかかわらず、ミリ波等の電波に対する透過性の低下を回避することができる(換言すれば、ミリ波等の電波に対する透過性の向上を図ることができる。)。また、繊維強化プラスチック層3,3間に誘電率の低い層(すなわち間隙層8)が設けられていることにより、ミリ波等の電波に対する透過性を更に向上することができる。 By the above principle, electrical conductivity is high dielectric loss material having a large, but more particularly used in the material 1 is first fiber 6, 6 2, such as carbon fiber or metal fiber, fiber-reinforced plastic layer 3 1, 3 2 increase in Fresnel losses due can be avoided. In other words, despite these materials are contained in the fiber reinforced plastic layer 3 1, 3 2, it is possible to avoid a decrease in permeability to radio waves such as a millimeter-wave (in other words, such as a millimeter-wave It is possible to improve the transparency to radio waves.). Further, by fiber-reinforced plastic layer 3 1, 3 low dielectric constant between 2 layers (i.e. the gap layer 8) is provided, it is possible to further improve the permeability to radio waves such as a millimeter wave.
 また、これらの材料を用いた第1繊維6,6により、従来の繊維強化プラスチック層に比して、繊維強化プラスチック層3,3の剛性の向上及び重量の低減を図ることができる。この結果、当該従来の繊維強化プラスチック層を有する従来のレドームに比して、レドーム2aの剛性の向上及び重量の低減を図ることができる。ここで、当該従来の繊維強化プラスチック層は、ガラス繊維強化プラスチック又はクオーツ繊維強化プラスチックなどにより構成されているものである。すなわち、当該従来の繊維強化プラスチック層は、繊維強化プラスチック層3,3における第1繊維6,6に用いられている材料(炭素繊維、金属繊維、ボロン繊維又は金属細線など)を含まないものである。 Further, the first fiber 6 1, 6 2 using these materials, that compared to conventional fiber-reinforced plastic layer, improved and weight reduction of the stiffness of the fiber-reinforced plastic layer 3 1, 3 2 it can. As a result, it is possible to improve the rigidity and reduce the weight of the radome 2a as compared with the conventional radome having the conventional fiber reinforced plastic layer. Here, the conventional fiber reinforced plastic layer is made of glass fiber reinforced plastic or quartz fiber reinforced plastic. That is, the conventional fiber-reinforced plastic layer, fiber-reinforced plastic layer 3 1, 3 first fiber 6 in 2 1, 6 2 in using its dependent material (carbon fiber, metal fiber, boron fiber or thin metal wires, etc.) It does not include.
 さらに、第1繊維6における透過率T⊥1がT⊥1≒1であり、かつ、第1繊維6における透過率T⊥2がT⊥2≒1であるため、間隔dが式(11)に基づく値に設定されていることにより、キャリア周波数f(例えば77GHz)を含む所定の周波数範囲におけるミリ波透過率を向上することができる。 Further, the transmittance T ⊥1 in the first fiber 61 is T ⊥1 ≒ 1, and, since the transmittance T ⊥2 in the first fiber 6 2 is T ⊥2 ≒ 1, the interval d is the formula ( By setting the value based on 11), it is possible to improve the millimeter wave transmittance in a predetermined frequency range including the carrier frequency f (for example, 77 GHz).
 図9における特性線IIは、レドーム2aによるミリ波透過率を示している。このミリ波透過率は、フレネルの式を用いて計算されたものである。なお、このミリ波透過率の計算において、誘電損失は無視しており、フレネル損失を計算の対象としている。また、図9に示す特性線Iは、図4に示す特性線Iと同一のものである。すなわち、特性線Iはレドーム2によるミリ波透過率を示している。 特性 Characteristic line II in FIG. 9 shows the millimeter wave transmittance by the radome 2a. This millimeter-wave transmittance is calculated using Fresnel's equation. In the calculation of the millimeter wave transmittance, the dielectric loss is ignored, and the Fresnel loss is to be calculated. The characteristic line I shown in FIG. 9 is the same as the characteristic line I shown in FIG. That is, the characteristic line I indicates the millimeter-wave transmittance of the radome 2.
 特性線IIに係るレドーム2aにおいては、第1繊維6,6が炭素繊維により構成されており、かつ、第2繊維7,7がガラス繊維により構成されている。特性線IIに係るレドーム2aにおいては、θ=θ=0°である。特性線IIに係るレドーム2aにおいては、繊維強化プラスチック層3,3のうちの第1繊維6,6を除く部位におけるアンテナ1の偏波方向に対する比誘電率が4.0である(すなわち、ε=ε=4.0である。)。特性線IIに係るレドーム2aにおいては、t=t=0.97mmに設定されている。特性線IIに係るレドーム2aにおいては、d=1.95mmに設定されている(すなわち、f=77GHzであるところ、m=1かつα=1.0である。)。以下、特性線IIに係るレドーム2aの構成例を「第2構成例」という。 In the radome 2a of the characteristic line II, the first fiber 6 1, 6 2 are constituted by a carbon fiber, and a second fiber 7 1, 7 2 is constituted by glass fibers. In the radome 2a according to the characteristic line II, θ 1 = θ 2 = 0 °. In the radome 2a of the characteristic line II, the dielectric constant with respect to the polarization direction of the antenna 1 at a site other than the first fiber 6 1, 6 2 of the fiber-reinforced plastic layer 3 1, 3 2 is a 4.0 (That is, ε 1 = ε 2 = 4.0.) In the radome 2a according to the characteristic line II, t 1 = t 2 = 0.97 mm is set. In the radome 2a according to the characteristic line II, d is set to 1.95 mm (that is, when f = 77 GHz, m = 1 and α = 1.0). Hereinafter, a configuration example of the radome 2a according to the characteristic line II is referred to as a “second configuration example”.
 図9に示す如く、第1構成例のレドーム2を用いることにより、74~80GHzの周波数範囲におけるフレネル損失を5%以下にすることができる。これに対して、第2構成例のレドーム2aを用いることにより、73~81GHzの周波数範囲におけるフレネル損失を5%以下にすることができる。 As shown in FIG. 9, by using the radome 2 of the first configuration example, the Fresnel loss in the frequency range of 74 to 80 GHz can be reduced to 5% or less. On the other hand, by using the radome 2a of the second configuration example, the Fresnel loss in the frequency range of 73 to 81 GHz can be reduced to 5% or less.
 なお、α=1.0である場合はもちろんのこと、式(12)に示す条件を満たす範囲内であれば、α≠1.0であっても、キャリア周波数fを含む所定の周波数範囲におけるミリ波透過率の向上効果が得られるものである。これは、アンテナ1のメインビーム方向が繊維強化プラスチック層3,3の厚さ方向に沿う方向(すなわちZ軸に沿う方向)に設定されている場合はもちろんのこと、当該メインビーム方向が当該厚さ方向に対して多少傾いた方向に設定されている場合であっても、当該周波数範囲におけるミリ波透過率の向上効果が得られることを示している。 It is to be noted that not only when α = 1.0, but also within a range satisfying the condition shown in the equation (12), even if α ≠ 1.0, in a predetermined frequency range including the carrier frequency f. The effect of improving the millimeter wave transmittance is obtained. This is true not only when the main beam direction of the antenna 1 is set in a direction along the thickness direction of the fiber-reinforced plastic layers 3 1 and 3 2 (that is, along the Z axis), but also when the main beam direction is set. This shows that the effect of improving the millimeter wave transmittance in the frequency range can be obtained even when the direction is set to be slightly inclined with respect to the thickness direction.
 また、上記のとおり、角度θは0°に限定されるものではない。式(7)に示す条件を満たす範囲内であれば、θ≠0°であっても良い。また、上記のとおり、角度θは0°に限定されるものではない。式(9)に示す条件を満たす範囲内であれば、θ≠0°であっても良い。 Further, as described above, the angle theta 1 is not limited to 0 °. As long as it is within the range satisfying the condition shown in Expression (7), θ 1 ≠ 0 ° may be satisfied. Further, as described above, the angle theta 2 is not limited to 0 °. As long as the condition shown in Expression (9) is satisfied, θ 2 ≠ 0 ° may be satisfied.
 また、複数本の第1繊維6の各々は、被覆がなされたものであっても良い。また、複数本の第1繊維6の各々は、被覆がなされたものであっても良い。 The first of each of the fibers 61 of the plurality of may be those coated is made. The first of each of the fibers 6 second plurality book may be one coat was made.
 また、繊維強化プラスチック層3,3間に1個以上の支持部材(不図示)が設けられていることにより、間隙層8が形成されているものであっても良い。これらの支持部材に適切な材料を用いることにより、レドーム2aの重量の低減を図りつつ、レドーム2aの剛性を更に向上することができる。 In addition, by one or more support members (not shown) is provided between the fiber-reinforced plastic layer 3 1, 3 2, may be one gap layer 8 is formed. By using an appropriate material for these support members, the rigidity of the radome 2a can be further improved while reducing the weight of the radome 2a.
 そのほか、レーダ装置100aは、実施の形態1にて説明したものと同様の種々の変形例、すなわちレーダ装置100と同様の種々の変形例を採用することができる。例えば、放射波はミリ波に限定されるものではない。また、レーダ装置100aは車載用に限定されるものではない。 In addition, the radar apparatus 100a can employ various modifications similar to those described in the first embodiment, that is, various modifications similar to the radar apparatus 100. For example, radiation waves are not limited to millimeter waves. Further, the radar device 100a is not limited to a vehicle-mounted device.
 以上のように、実施の形態2のレーダ装置100aにおいて、レドーム2aは、互いに対向配置された2個の繊維強化プラスチック層3と、2個の繊維強化プラスチック層3間に形成された間隙層8と、を有し、2個の繊維強化プラスチック層3間の間隔dは、電波の2分の1波長の整数倍に対応する値に設定されている。レドーム2aを用いることにより、レドーム2を用いた場合と同様に、ミリ波等の電波に対する透過性の向上と重量の低減及び剛性の向上との両立を図ることができる。また、繊維強化プラスチック層3,3間に誘電率の低い層(すなわち間隙層8)が設けられていることにより、ミリ波等の電波に対する透過性を更に向上することができる。さらに、間隔dが式(11)に基づく値に設定されていることにより、キャリア周波数fを含む所定の周波数範囲におけるフレネル損失を低減することができる。 As described above, in the radar apparatus 100a according to the second embodiment, the radome 2a includes two fiber-reinforced plastic layers 3 that are arranged to face each other and a gap layer 8 that is formed between the two fiber-reinforced plastic layers 3. The distance d between the two fiber-reinforced plastic layers 3 is set to a value corresponding to an integral multiple of a half wavelength of a radio wave. By using the radome 2a, as in the case of using the radome 2, it is possible to achieve both improvement in the permeability to radio waves such as millimeter waves, reduction in weight, and improvement in rigidity. Further, by fiber-reinforced plastic layer 3 1, 3 low dielectric constant between 2 layers (i.e. the gap layer 8) is provided, it is possible to further improve the permeability to radio waves such as a millimeter wave. Further, since the interval d is set to a value based on the equation (11), Fresnel loss in a predetermined frequency range including the carrier frequency f can be reduced.
 また、間隔dは、アンテナ1による電波の放射方向(より具体的にはメインビーム方向)に対する間隔である。これにより、放射波(より具体的にはメインビーム)が上記のような高い透過率にてレドーム2aを通過することができる。 間隔 The interval d is an interval with respect to the direction of radio wave emission from the antenna 1 (more specifically, the direction of the main beam). Thereby, the radiation wave (more specifically, the main beam) can pass through the radome 2a with the high transmittance as described above.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, any combination of the embodiments, a modification of an arbitrary component of each embodiment, or an omission of an arbitrary component in each embodiment is possible within the scope of the invention. .
 本発明のレーダ装置は、例えば、車載用ミリ波レーダに用いることができる。 レ ー The radar device of the present invention can be used, for example, for an in-vehicle millimeter-wave radar.
 1 アンテナ、2,2a レドーム、3 繊維強化プラスチック層、4 繊維束(第1繊維束)、5 繊維束(第2繊維束)、6 繊維(第1繊維)、7 繊維(第2繊維)、8 間隙層、11 基板、12 アンテナ素子、100,100a レーダ装置。 1 antenna, 2, 2a radome, 3 fiber reinforced plastic layer, 4 fiber bundle (first fiber bundle), 5 fiber bundle (second fiber bundle), 6 fiber (first fiber), 7 fiber (second fiber), 8 gap layer, 11 substrate, 12 antenna element, 100, 100 radar device.

Claims (8)

  1.  電波を放射するアンテナと、前記アンテナ用のレドームと、を備え、
     前記レドームは、複数本の第1繊維による複数本の第1繊維束と、複数本の第2繊維による複数本の第2繊維束と、を含む繊維強化プラスチック層を有し、
     前記繊維強化プラスチック層は、個々の前記第1繊維束の長手方向が前記アンテナの偏波方向に対する直交方向に沿うように設けられており、かつ、個々の前記第2繊維束の長手方向が前記偏波方向に対する平行方向に沿うように設けられており、
     個々の前記第1繊維の電気伝導率が個々の前記第2繊維の電気伝導率よりも高い
     ことを特徴とするレーダ装置。
    An antenna that emits radio waves, and a radome for the antenna,
    The radome has a fiber-reinforced plastic layer including a plurality of first fiber bundles of a plurality of first fibers and a plurality of second fiber bundles of a plurality of second fibers.
    The fiber-reinforced plastic layer is provided such that the longitudinal direction of each of the first fiber bundles is along a direction orthogonal to the polarization direction of the antenna, and the longitudinal direction of each of the second fiber bundles is It is provided along the direction parallel to the polarization direction,
    The electrical conductivity of each said 1st fiber is higher than the electrical conductivity of each said 2nd fiber, The radar apparatus characterized by the above-mentioned.
  2.  前記電波がミリ波であることを特徴とする請求項1記載のレーダ装置。 The radar device according to claim 1, wherein the radio wave is a millimeter wave.
  3.  車載用であることを特徴とする請求項1記載のレーダ装置。 4. The radar device according to claim 1, wherein the radar device is used for a vehicle.
  4.  前記レドームは、互いに対向配置された2個の前記繊維強化プラスチック層と、2個の前記繊維強化プラスチック層間に形成された間隙層と、を有し、
     2個の前記繊維強化プラスチック層間の間隔は、前記電波の2分の1波長の整数倍に対応する値に設定されている
     ことを特徴とする請求項1から請求項3のうちのいずれか1項記載のレーダ装置。
    The radome has two fiber-reinforced plastic layers disposed to face each other, and a gap layer formed between the two fiber-reinforced plastic layers,
    The distance between two of the fiber-reinforced plastic layers is set to a value corresponding to an integral multiple of a half wavelength of the radio wave. The radar device according to the item.
  5.  前記間隔は、前記アンテナによる前記電波の放射方向に対する前記間隔であることを特徴とする請求項4記載のレーダ装置。 5. The radar device according to claim 4, wherein the interval is the interval with respect to a radiation direction of the radio wave from the antenna.
  6.  前記繊維強化プラスチック層の肉厚は、前記電波の2分の1波長の整数倍に対応する値に設定されていることを特徴する請求項1から請求項3のうちのいずれか1項記載のレーダ装置。 The thickness of the fiber reinforced plastic layer is set to a value corresponding to an integral multiple of a half wavelength of the radio wave, The thickness according to any one of claims 1 to 3, wherein Radar equipment.
  7.  個々の前記第1繊維は、炭素繊維、金属繊維、ボロン繊維又は金属細線により構成されており、
     個々の前記第2繊維は、ガラス繊維又はクオーツ繊維により構成されている
     ことを特徴とする請求項1から請求項3のうちのいずれか1項記載のレーダ装置。
    Each of the first fibers is made of carbon fiber, metal fiber, boron fiber or metal fine wire,
    4. The radar device according to claim 1, wherein each of the second fibers is made of glass fiber or quartz fiber. 5.
  8.  個々の前記第1繊維の太さが前記電波の波長に対する10分の1以下の値に設定されていることを特徴とする請求項1から請求項3のうちのいずれか1項記載のレーダ装置。 4. The radar device according to claim 1, wherein the thickness of each of the first fibers is set to a value equal to or less than one-tenth of a wavelength of the radio wave. 5. .
PCT/JP2018/035392 2018-09-25 2018-09-25 Radar device WO2020065715A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/035392 WO2020065715A1 (en) 2018-09-25 2018-09-25 Radar device
JP2019511791A JPWO2020065715A1 (en) 2018-09-25 2018-09-25 Radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035392 WO2020065715A1 (en) 2018-09-25 2018-09-25 Radar device

Publications (1)

Publication Number Publication Date
WO2020065715A1 true WO2020065715A1 (en) 2020-04-02

Family

ID=69950383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035392 WO2020065715A1 (en) 2018-09-25 2018-09-25 Radar device

Country Status (2)

Country Link
JP (1) JPWO2020065715A1 (en)
WO (1) WO2020065715A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849498U (en) * 1981-09-28 1983-04-04 ティーディーケイ株式会社 radio wave reflector
JPS61149413U (en) * 1985-02-27 1986-09-16
US20040227687A1 (en) * 2003-05-15 2004-11-18 Delgado Heriberto Jose Passive magnetic radome
JP2006140956A (en) * 2004-11-15 2006-06-01 Anritsu Corp In-vehicle antenna
JP2008058130A (en) * 2006-08-31 2008-03-13 Hitachi Ltd In-vehicle radar
JP2012231286A (en) * 2011-04-26 2012-11-22 Electronic Navigation Research Institute Control method of linear polarization and apparatus therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849498U (en) * 1981-09-28 1983-04-04 ティーディーケイ株式会社 radio wave reflector
JPS61149413U (en) * 1985-02-27 1986-09-16
US20040227687A1 (en) * 2003-05-15 2004-11-18 Delgado Heriberto Jose Passive magnetic radome
JP2006140956A (en) * 2004-11-15 2006-06-01 Anritsu Corp In-vehicle antenna
JP2008058130A (en) * 2006-08-31 2008-03-13 Hitachi Ltd In-vehicle radar
JP2012231286A (en) * 2011-04-26 2012-11-22 Electronic Navigation Research Institute Control method of linear polarization and apparatus therefor

Also Published As

Publication number Publication date
JPWO2020065715A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
US8149177B1 (en) Slotted waveguide antenna stiffened structure
USRE36506E (en) Antenna design using a high index, low loss material
CN109478726B (en) Antenna and radar system including polarization rotation layer
US10014581B2 (en) Radio frequency anisotropic patch antenna and polarization selective surface
US9698479B2 (en) Two-dimensionally electronically-steerable artificial impedance surface antenna
CN110546815B (en) Antenna device
US8581783B2 (en) Metamaterial-based direction-finding antenna systems
US10720691B2 (en) Film antenna and antenna device
US8605002B2 (en) Antenna device including helical antenna
US7075494B2 (en) Leaky-wave dual polarized slot type antenna
US10978787B2 (en) Low-loss and flexible transmission line-integrated multi-port antenna for mmWave band
US20040233117A1 (en) Variable inclination continuous transverse stub array
US20210210846A1 (en) Radar device
US20240145929A1 (en) Frequency selective reflector and reflecting structure
WO2019208453A1 (en) Vehicle antenna, window glass having vehicle antenna, and antenna system
CN110199436A (en) Multiband circular polarize antenna
WO2020065715A1 (en) Radar device
JPH04213202A (en) Antenna composed of slotted waveguide for space radar in particular
Kamoda et al. Millimeter‐wave beam former using liquid crystal
US10950951B2 (en) Radar device
KR102273378B1 (en) Electromagnetic bandgap structure
JP7244361B2 (en) antenna device
Futatsumori et al. Fundamental applicability evaluation of carbon fiber reinforced plastic materials utilized in millimeter-wave antennas
KR20120121721A (en) Antenna structure
JP2011228852A (en) Radome

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019511791

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934814

Country of ref document: EP

Kind code of ref document: A1