WO2020061991A1 - Rim framework design - Google Patents

Rim framework design Download PDF

Info

Publication number
WO2020061991A1
WO2020061991A1 PCT/CN2018/108213 CN2018108213W WO2020061991A1 WO 2020061991 A1 WO2020061991 A1 WO 2020061991A1 CN 2018108213 W CN2018108213 W CN 2018108213W WO 2020061991 A1 WO2020061991 A1 WO 2020061991A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
base stations
aggressor
aggressor base
computer
Prior art date
Application number
PCT/CN2018/108213
Other languages
French (fr)
Inventor
Yi Huang
Huilin Xu
Yiqing Cao
Tingfang Ji
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2018/108213 priority Critical patent/WO2020061991A1/en
Publication of WO2020061991A1 publication Critical patent/WO2020061991A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning

Definitions

  • aspects of the present disclosure relate generally to wireless communication systems, and to design of a remote interference management (RIM) framework.
  • RIM remote interference management
  • Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources.
  • UTRAN Universal Terrestrial Radio Access Network
  • the UTRAN is the radio access network (RAN) defined as a part of the Universal Mobile Telecommunications System (UMTS) , a third generation (3G) mobile phone technology supported by the 3rd Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • 3GPP 3rd Generation Partnership Project
  • multiple-access network formats include Code Division Multiple Access (CDMA) networks, Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, and Single-Carrier FDMA (SC-FDMA) networks.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal FDMA
  • SC-FDMA Single-Carrier FDMA
  • a wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs) .
  • a UE may communicate with a base station via downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the base station to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the base station.
  • a base station may transmit data and control information on the downlink to a UE and/or may receive data and control information on the uplink from the UE.
  • a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters.
  • RF radio frequency
  • a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
  • a method of wireless communication includes detecting, by a base station, remote interference on one or more communication channels serviced by the base station, accessing, by the base station, a first list of aggressor base stations, and signaling, by the base station, each aggressor base station on the first list of aggressor base stations to initiate remote interference mitigation.
  • a method of wireless communication includes retrieving, by a base station, a first set of aggressor base stations from a first database of aggressor base stations, signaling, by the base station, each base station in the first set of aggressor base stations to transmit remote interference reference signals, identifying one or more interfering base stations corresponding to one or more detected remote interference reference signals exceeding a predetermined threshold interference, and updating, by the base station, one or more base stations in a second database of current aggressor base stations.
  • an apparatus configured for wireless communication includes means for detecting, by a base station, remote interference on one or more communication channels serviced by the base station, means for accessing, by the base station, a first list of aggressor base stations, and means for signaling, by the base station, each aggressor base station on the first list of aggressor base stations to initiate remote interference mitigation.
  • an apparatus configured for wireless communication includes means for retrieving, by a base station, a first set of aggressor base stations from a first database of aggressor base stations, means for signaling, by the base station, each base station in the first set of aggressor base stations to transmit remote interference reference signals, means for identifying one or more interfering base stations corresponding to one or more detected remote interference reference signals exceeding a predetermined threshold interference, and means for updating, by the base station, one or more base stations in a second database of current aggressor base stations.
  • a non-transitory computer-readable medium having program code recorded thereon.
  • the program code further includes code to detect, by a base station, remote interference on one or more communication channels serviced by the base station, code to access, by the base station, a first list of aggressor base stations, and code to signal, by the base station, each aggressor base station on the first list of aggressor base stations to initiate remote interference mitigation.
  • a non-transitory computer-readable medium having program code recorded thereon.
  • the program code further includes code to retrieve, by a base station, a first set of aggressor base stations from a first database of aggressor base stations, code to signal, by the base station, each base station in the first set of aggressor base stations to transmit remote interference reference signals, code to identify one or more interfering base stations corresponding to one or more detected remote interference reference signals exceeding a predetermined threshold interference, and code to update, by the base station, one or more base stations in a second database of current aggressor base stations.
  • an apparatus configured for wireless communication.
  • the apparatus includes at least one processor, and a memory coupled to the processor.
  • the processor is configured to detect, by a base station, remote interference on one or more communication channels serviced by the base station, to access, by the base station, a first list of aggressor base stations, and to signal, by the base station, each aggressor base station on the first list of aggressor base stations to initiate remote interference mitigation.
  • an apparatus configured for wireless communication.
  • the apparatus includes at least one processor, and a memory coupled to the processor.
  • the processor is configured to retrieve, by a base station, a first set of aggressor base stations from a first database of aggressor base stations, to signal, by the base station, each base station in the first set of aggressor base stations to transmit remote interference reference signals, to identify one or more interfering base stations corresponding to one or more detected remote interference reference signals exceeding a predetermined threshold interference, and to update, by the base station, one or more base stations in a second database of current aggressor base stations.
  • FIG. 1 is a block diagram illustrating details of a wireless communication system.
  • FIG. 2 is a block diagram illustrating a design of a base station and a UE configured according to one aspect of the present disclosure.
  • FIG. 3 is a block diagram illustrating a wireless communication system including base stations that use directional wireless beams.
  • FIG. 4A and 4B are block diagrams illustrating example blocks executed to implement aspects of the present disclosure.
  • FIG. 5 is a block diagram illustrating a RIM operation with a base station configured according to one aspect of the present disclosure.
  • wireless communications networks This disclosure relates generally to providing or participating in authorized shared access between two or more wireless communications systems, also referred to as wireless communications networks.
  • the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC- FDMA) networks, LTE networks, GSM networks, 5 th Generation (5G) or new radio (NR) networks, as well as other communications networks.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC- FDMA single-carrier FDMA
  • LTE long-term evolution
  • GSM Global System for Mobile communications
  • 5G 5 th Generation
  • NR new radio
  • An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like.
  • E-UTRA evolved UTRA
  • GSM Global System for Mobile Communications
  • LTE long term evolution
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP)
  • cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP 3rd Generation Partnership Project
  • 3GPP long term evolution LTE
  • UMTS universal mobile telecommunications system
  • the 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
  • the present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
  • 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface.
  • further enhancements to LTE and LTE-A are considered in addition to development of the new radio technology for 5G NR networks.
  • the 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (e.g., ⁇ 1M nodes/km 2 ) , ultra-low complexity (e.g., ⁇ 10s of bits/sec) , ultra-low energy (e.g., ⁇ 10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ⁇ 99.9999%reliability) , ultra-low latency (e.g., ⁇ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ⁇ 10 Tbps/km 2 ) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
  • IoTs Internet of things
  • the 5G NR may be implemented to use optimized OFDM-based waveforms with scalable numerology and transmission time interval (TTI) ; having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • TTI transmission time interval
  • MIMO massive multiple input, multiple output
  • mmWave millimeter wave
  • Scalability of the numerology in 5G NR with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments.
  • subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth.
  • subcarrier spacing may occur with 30 kHz over 80/100 MHz bandwidth.
  • the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth.
  • subcarrier spacing may occur with 120 kHz over a 500MHz bandwidth.
  • the scalable numerology of the 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency.
  • QoS quality of service
  • 5G NR also contemplates a self-contained integrated subframe design with uplink/downlink scheduling information, data, and acknowledgement in the same subframe.
  • the self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink/downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
  • an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways.
  • an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein.
  • such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein.
  • a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer.
  • an aspect may comprise at least one element of a claim.
  • FIG. 1 is a block diagram illustrating 5G network 100 including various base stations and UEs configured according to aspects of the present disclosure.
  • the 5G network 100 includes a number of base stations 105 and other network entities.
  • a base station may be a station that communicates with the UEs and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like.
  • eNB evolved node B
  • gNB next generation eNB
  • Each base station 105 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to this particular geographic coverage area of a base station and/or a base station subsystem serving the coverage area, depending on the context in which the term is used.
  • a base station may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • a base station for a macro cell may be referred to as a macro base station.
  • a base station for a small cell may be referred to as a small cell base station, a pico base station, a femto base station or a home base station. In the example shown in FIG.
  • the base stations 105d and 105e are regular macro base stations, while base stations 105a-105c are macro base stations enabled with one of 3 dimension (3D) , full dimension (FD) , or massive MIMO.
  • Base stations 105a-105c take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity.
  • Base station 105f is a small cell base station which may be a home node or portable access point.
  • a base station may support one or multiple (e.g., two, three, four, and the like) cells.
  • the 5G network 100 may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • the UEs 115 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like.
  • a UE may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like.
  • PDA personal digital assistant
  • WLL wireless local loop
  • a UE may be a device that includes a Universal Integrated Circuit Card (UICC) .
  • a UE may be a device that does not include a UICC.
  • UICC Universal Integrated Circuit Card
  • UEs that do not include UICCs may also be referred to as internet of everything (IoE) or internet of things (IoT) devices.
  • UEs 115a-115d are examples of mobile smart phone-type devices accessing 5G network 100
  • a UE may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like.
  • UEs 115e-115k are examples of various machines configured for communication that access 5G network 100.
  • a UE may be able to communicate with any type of the base stations, whether macro base station, small cell, or the like. In FIG.
  • a lightning bolt (e.g., communication links) indicates wireless transmissions between a UE and a serving base station, which is a base station designated to serve the UE on the downlink and/or uplink, or desired transmission between base stations, and backhaul transmissions between base stations.
  • base stations 105a-105c serve UEs 115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity.
  • Macro base station 105d performs backhaul communications with base stations 105a-105c, as well as small cell, base station 105f.
  • Macro base station 105d also transmits multicast services which are subscribed to and received by UEs 115c and 115d.
  • Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
  • 5G network 100 also support mission critical communications with ultra-reliable and redundant links for mission critical devices, such UE 115e, which is a drone. Redundant communication links with UE 115e include from macro base stations 105d and 105e, as well as small cell base station 105f.
  • UE 115f thermometer
  • UE 115g smart meter
  • UE 115h wearable device
  • 5G network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as in a vehicle-to-vehicle (V2V) mesh network between UEs 115i-115k communicating with macro base station 105e.
  • V2V vehicle-to-vehicle
  • FIG. 2 shows a block diagram of a design of a base station 105 and a UE 115, which may be one of the base station and one of the UEs in FIG. 1.
  • a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240.
  • the control information may be for the PBCH, PCFICH, PHICH, PDCCH, EPDCCH, MPDCCH etc.
  • the data may be for the PDSCH, etc.
  • the transmit processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the transmit processor 220 may also generate reference symbols, e.g., for the PSS, SSS, and cell-specific reference signal.
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 232a through 232t.
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 232a through 232t may be transmitted via the antennas 234a through 234t, respectively.
  • the antennas 252a through 252r may receive the downlink signals from the base station 105 and may provide received signals to the demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all the demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 115 to a data sink 260, and provide decoded control information to a controller/processor 280.
  • a transmit processor 264 may receive and process data (e.g., for the PUSCH) from a data source 262 and control information (e.g., for the PUCCH) from the controller/processor 280.
  • the transmit processor 264 may also generate reference symbols for a reference signal.
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 105.
  • the uplink signals from the UE 115 may be received by the antennas 234, processed by the demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 115.
  • the processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.
  • the controllers/processors 240 and 280 may direct the operation at the base station 105 and the UE 115, respectively.
  • the controller/processor 240 and/or other processors and modules at the base station 105 may perform or direct the execution of various processes for the techniques described herein.
  • the controllers/processor 280 and/or other processors and modules at the UE 115 may also perform or direct the execution of the functional blocks illustrated in FIGs. 4A and 4B, and/or other processes for the techniques described herein.
  • the memories 242 and 282 may store data and program codes for the base station 105 and the UE 115, respectively.
  • a scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
  • Wireless communications systems operated by different network operating entities may share spectrum.
  • a network operating entity may be configured to use an entirety of a designated shared spectrum for at least a period of time before another network operating entity uses the entirety of the designated shared spectrum for a different period of time.
  • certain resources e.g., time
  • a network operating entity may be allocated certain time resources reserved for exclusive communication by the network operating entity using the entirety of the shared spectrum.
  • the network operating entity may also be allocated other time resources where the entity is given priority over other network operating entities to communicate using the shared spectrum.
  • These time resources, prioritized for use by the network operating entity may be utilized by other network operating entities on an opportunistic basis if the prioritized network operating entity does not utilize the resources. Additional time resources may be allocated for any network operator to use on an opportunistic basis.
  • Access to the shared spectrum and the arbitration of time resources among different network operating entities may be centrally controlled by a separate entity, autonomously determined by a predefined arbitration scheme, or dynamically determined based on interactions between wireless nodes of the network operators.
  • UE 115 and base station 105 may operate in a shared radio frequency spectrum band, which may include licensed or unlicensed (e.g., contention-based) frequency spectrum.
  • UEs 115 or base stations 105 may traditionally perform a medium-sensing procedure to contend for access to the frequency spectrum.
  • UE 115 or base station 105 may perform a listen before talk (LBT) procedure such as a clear channel assessment (CCA) prior to communicating in order to determine whether the shared channel is available.
  • LBT listen before talk
  • CCA clear channel assessment
  • a CCA may include an energy detection procedure to determine whether there are any other active transmissions.
  • a device may infer that a change in a received signal strength indicator (RSSI) of a power meter indicates that a channel is occupied.
  • RSSI received signal strength indicator
  • a CCA also may include detection of specific sequences that indicate use of the channel.
  • another device may transmit a specific preamble prior to transmitting a data sequence.
  • an LBT procedure may include a wireless node adjusting its own backoff window based on the amount of energy detected on a channel and/or the acknowledge/negative-acknowledge (ACK/NACK) feedback for its own transmitted packets as a proxy for collisions.
  • ACK/NACK acknowledge/negative-acknowledge
  • base stations 105 and UEs 115 may be operated by the same or different network operating entities.
  • an individual base station 105 or UE 115 may be operated by more than one network operating entity.
  • each base station 105 and UE 115 may be operated by a single network operating entity. Requiring each base station 105 and UE 115 of different network operating entities to contend for shared resources may result in increased signaling overhead and communication latency.
  • FIG. 3 illustrates an example of a timing diagram 300 for coordinated resource partitioning.
  • the timing diagram 300 includes a superframe 305, which may represent a fixed duration of time (e.g., 20 ms) .
  • Superframe 305 may be repeated for a given communication session and may be used by a wireless system such as 5G network 100 described with reference to FIG. 1.
  • the superframe 305 may be divided into intervals such as an acquisition interval (A-INT) 310 and an arbitration interval 315.
  • A-INT acquisition interval
  • arbitration interval 315 As described in more detail below, the A-INT 310 and arbitration interval 315 may be subdivided into sub-intervals, designated for certain resource types, and allocated to different network operating entities to facilitate coordinated communications between the different network operating entities.
  • the arbitration interval 315 may be divided into a plurality of sub-intervals 320.
  • the superframe 305 may be further divided into a plurality of subframes 325 with a fixed duration (e.g., 1 ms) .
  • timing diagram 300 illustrates three different network operating entities (e.g., Operator A, Operator B, Operator C)
  • the number of network operating entities using the superframe 305 for coordinated communications may be greater than or fewer than the number illustrated in timing diagram 300.
  • the A-INT 310 may be a dedicated interval of the superframe 305 that is reserved for exclusive communications by the network operating entities.
  • each network operating entity may be allocated certain resources within the A-INT 310 for exclusive communications.
  • resources 330-a may be reserved for exclusive communications by Operator A, such as through base station 105a
  • resources 330-b may be reserved for exclusive communications by Operator B, such as through base station 105b
  • resources 330-c may be reserved for exclusive communications by Operator C, such as through base station 105c. Since the resources 330-a are reserved for exclusive communications by Operator A, neither Operator B nor Operator C can communicate during resources 330-a, even if Operator A chooses not to communicate during those resources. That is, access to exclusive resources is limited to the designated network operator.
  • the wireless nodes of Operator A may communicate any information desired during their exclusive resources 330-a, such as control information or data.
  • a network operating entity When communicating over an exclusive resource, a network operating entity does not need to perform any medium sensing procedures (e.g., listen-before-talk (LBT) or clear channel assessment (CCA) ) because the network operating entity knows that the resources are reserved. Because only the designated network operating entity may communicate over exclusive resources, there may be a reduced likelihood of interfering communications as compared to relying on medium sensing techniques alone (e.g., no hidden node problem) .
  • medium sensing procedures e.g., listen-before-talk (LBT) or clear channel assessment (CCA)
  • the A-INT 310 is used to transmit control information, such as synchronization signals (e.g., SYNC signals) , system information (e.g., system information blocks (SIBs) ) , paging information (e.g., physical broadcast channel (PBCH) messages) , or random access information (e.g., random access channel (RACH) signals) .
  • control information such as synchronization signals (e.g., SYNC signals) , system information (e.g., system information blocks (SIBs) ) , paging information (e.g., physical broadcast channel (PBCH) messages) , or random access information (RACH) signals) .
  • SIBs system information blocks
  • PBCH physical broadcast channel
  • RACH random access channel
  • resources may be classified as prioritized for certain network operating entities.
  • Resources that are assigned with priority for a certain network operating entity may be referred to as a guaranteed interval (G-INT) for that network operating entity.
  • G-INT guaranteed interval
  • the interval of resources used by the network operating entity during the G-INT may be referred to as a prioritized sub-interval.
  • resources 335-a may be prioritized for use by Operator A and may therefore be referred to as a G-INT for Operator A (e.g., G-INT-OpA) .
  • resources 335-b may be prioritized for Operator B
  • resources 335-c may be prioritized for Operator C
  • resources 335-d may be prioritized for Operator A
  • resources 335-e may be prioritized for Operator B
  • resources 335-f may be prioritized for operator C.
  • the various G-INT resources illustrated in FIG. 3 appear to be staggered to illustrate their association with their respective network operating entities, but these resources may all be on the same frequency bandwidth. Thus, if viewed along a time-frequency grid, the G-INT resources may appear as a contiguous line within the superframe 305. This partitioning of data may be an example of time division multiplexing (TDM) . Also, when resources appear in the same sub-interval (e.g., resources 340-a and resources 335-b) , these resources represent the same time resources with respect to the superframe 305 (e.g., the resources occupy the same sub-interval 320) , but the resources are separately designated to illustrate that the same time resources can be classified differently for different operators.
  • TDM time division multiplexing
  • a network operating entity When resources are assigned with priority for a certain network operating entity (e.g., a G-INT) , that network operating entity may communicate using those resources without having to wait or perform any medium sensing procedures (e.g., LBT or CCA) .
  • the wireless nodes of Operator A are free to communicate any data or control information during resources 335-a without interference from the wireless nodes of Operator B or Operator C.
  • a network operating entity may additionally signal to another operator that it intends to use a particular G-INT. For example, referring to resources 335-a, Operator A may signal to Operator B and Operator C that it intends to use resources 335-a. Such signaling may be referred to as an activity indication. Moreover, since Operator A has priority over resources 335-a, Operator A may be considered as a higher priority operator than both Operator B and Operator C. However, as discussed above, Operator A does not have to send signaling to the other network operating entities to ensure interference-free transmission during resources 335-a because the resources 335-a are assigned with priority to Operator A.
  • a network operating entity may signal to another network operating entity that it intends not to use a particular G-INT. This signaling may also be referred to as an activity indication.
  • Operator B may signal to Operator A and Operator C that it intends not to use the resources 335-b for communication, even though the resources are assigned with priority to Operator B.
  • Operator B may be considered a higher priority network operating entity than Operator A and Operator C. In such cases, Operators A and C may attempt to use resources of sub-interval 320 on an opportunistic basis.
  • the sub-interval 320 that contains resources 335-b may be considered an opportunistic interval (O-INT) for Operator A (e.g., O-INT-OpA) .
  • resources 340-a may represent the O-INT for Operator A.
  • the same sub-interval 320 may represent an O-INT for Operator C with corresponding resources 340-b.
  • Resources 340-a, 335-b, and 340-b all represent the same time resources (e.g., a particular sub-interval 320) , but are identified separately to signify that the same resources may be considered as a G-INT for some network operating entities and yet as an O-INT for others.
  • Operator A and Operator C may perform medium-sensing procedures to check for communications on a particular channel before transmitting data. For example, if Operator B decides not to use resources 335-b (e.g., G-INT-OpB) , then Operator A may use those same resources (e.g., represented by resources 340-a) by first checking the channel for interference (e.g., LBT) and then transmitting data if the channel was determined to be clear.
  • resources 335-b e.g., G-INT-OpB
  • Operator C may perform a medium sensing procedure and access the resources if available.
  • two operators e.g., Operator A and Operator C
  • the operators may also have sub-priorities assigned to them designed to determine which operator may gain access to resources if more than operator is attempting access simultaneously.
  • a network operating entity may intend not to use a particular G-INT assigned to it, but may not send out an activity indication that conveys the intent not to use the resources.
  • lower priority operating entities may be configured to monitor the channel to determine whether a higher priority operating entity is using the resources. If a lower priority operating entity determines through LBT or similar method that a higher priority operating entity is not going to use its G-INT resources, then the lower priority operating entities may attempt to access the resources on an opportunistic basis as described above.
  • access to a G-INT or O-INT may be preceded by a reservation signal (e.g., request-to-send (RTS) /clear-to-send (CTS) ) , and the contention window (CW) may be randomly chosen between one and the total number of operating entities.
  • a reservation signal e.g., request-to-send (RTS) /clear-to-send (CTS)
  • CW contention window
  • an operating entity may employ or be compatible with coordinated multipoint (CoMP) communications.
  • CoMP coordinated multipoint
  • an operating entity may employ CoMP and dynamic time division duplex (TDD) in a G-INT and opportunistic CoMP in an O-INT as needed.
  • TDD dynamic time division duplex
  • each sub-interval 320 includes a G-INT for one of Operator A, B, or C.
  • one or more sub-intervals 320 may include resources that are neither reserved for exclusive use nor reserved for prioritized use (e.g., unassigned resources) .
  • unassigned resources may be considered an O-INT for any network operating entity, and may be accessed on an opportunistic basis as described above.
  • each subframe 325 may contain 14 symbols (e.g., 250- ⁇ s for 60 kHz tone spacing) .
  • These subframes 325 may be standalone, self-contained Interval-Cs (ITCs) or the subframes 325 may be a part of a long ITC.
  • An ITC may be a self-contained transmission starting with a downlink transmission and ending with a uplink transmission.
  • an ITC may contain one or more subframes 325 operating contiguously upon medium occupation. In some cases, there may be a maximum of eight network operators in an A-INT 310 (e.g., with duration of 2 ms) assuming a 250- ⁇ s transmission opportunity.
  • each sub-interval 320 may be occupied by a G-INT for that single network operating entity, or the sub-intervals 320 may alternate between G-INTs for that network operating entity and O-INTs to allow other network operating entities to enter.
  • the sub-intervals 320 may alternate between G-INTs for the first network operating entity and G-INTs for the second network operating entity. If there are three network operating entities, the G-INT and O-INTs for each network operating entity may be designed as illustrated in FIG. 3. If there are four network operating entities, the first four sub-intervals 320 may include consecutive G- INTs for the four network operating entities and the remaining two sub-intervals 320 may contain O-INTs. Similarly, if there are five network operating entities, the first five sub-intervals 320 may contain consecutive G-INTs for the five network operating entities and the remaining sub-interval 320 may contain an O-INT. If there are six network operating entities, all six sub-intervals 320 may include consecutive G-INTs for each network operating entity. It should be understood that these examples are for illustrative purposes only and that other autonomously determined interval allocations may be used.
  • the coordination framework described with reference to FIG. 3 is for illustration purposes only.
  • the duration of superframe 305 may be more or less than 20 ms.
  • the number, duration, and location of sub-intervals 320 and subframes 325 may differ from the configuration illustrated.
  • the types of resource designations e.g., exclusive, prioritized, unassigned
  • the downlink signal of a cell can only be observed by UEs within and around the edge of the coverage area of the cell.
  • a cell may be defined by one base station or a set of base stations operating to provide the coverage area of the cell.
  • downlink signals from a base station of a cell can reach another remote cell at a distance that is much larger than coverage range of the cell (e.g., 100 to 300 km) .
  • This remote interference may be due to various anomalies, such as reflection of the signal by mountains, the ocean’s surface, clouds or even due to atmospheric ducting, and the like.
  • TDD time division duplex
  • the downlink transmissions that may come from the base station of a remote cell referred to as an aggressor
  • the victim would fall into the uplink portion of another cell, referred to as the victim, due to the delay in transmission over the remote distance.
  • Such remote interference signals would become interference to the uplink reception of the victim base station of the victim cell.
  • the base stations of a victim cell can be impacted by interference from multiple aggressor cells.
  • the wireless channel is reciprocal between the transmitter and the receiver.
  • both cells may receive interference from each other (symmetric interference) .
  • one cell may receive stronger interference than the other cell does, whether from one or more remote cells (asymmetric interference) .
  • Remote interference management provides a mechanism for exchanging messages between remote base stations in order to coordinate mitigation of remote interference.
  • RIM Remote interference management
  • Several different frameworks have been suggested for handling the messaging and mitigation procedures.
  • the existing and suggested RIM frameworks may not work in asymmetric RIM scenarios and may not be able to distinguish between strong and weak aggressors.
  • Various aspects of the present disclosure are directed to victim base stations maintaining a list of aggressor base stations. The victim base station may signal the aggressor base station to perform interference mitigation.
  • FIG. 4A is a block diagram illustrating example blocks executed to implement one aspect of the present disclosure. The example blocks will also be described with respect to base station 105v as illustrated in FIG. 5.
  • FIG. 5 is a block diagram illustrating RIM operation 50 with a base station 105v configured according to one aspect of the present disclosure.
  • Base station 105v includes the structure, hardware, and components as illustrated for base station 105 of FIG. 2.
  • base station 105v includes controller/processor 240, which operates to execute logic or computer instructions stored in memory 242, as well as controlling the components of base station 105v that provide the features and functionality of base station 105v.
  • Base station 105v under control of controller/processor 240, transmits and receives signals via wireless radios 500a-t and antennas 234a-t.
  • Wireless radios 500a-t includes various components and hardware, as illustrated in FIG. 2 for base station 105, including modulator/demodulators 232a-t, MIMO detector 236, receive processor 238, transmit processor 220, and TX MIMO processor 230.
  • a victim base station detects remote interference on one or more communication channels serviced by the base station.
  • base station 105v detects via antennas 234a-t and wireless radios 500a-t remote interference signals interfering with ongoing communications.
  • Base station 105v under control of controller/processor 240, would likely detect a sloping increase in interference over thermal (IoT) , identifying a rise in the combination of thermal noise and out-of-sector power influencing the received signals at base station 105v.
  • IoT interference over thermal
  • base station 105v includes both current aggressors database 502 and potential aggressors database 504, in memory 242.
  • Alternative aspects may include current aggressors database 502 and potential aggressors database 504 in a different base station operating in a cluster with base station 105v to serve the same communication channels in a particular cell or in a centralized server in communication with each base station in a cluster serving the cell, including base station 105v.
  • base station 105v would access the list of base stations identified in current aggressors database 502.
  • Current aggressors database 502 includes each remote base station that has been identified as causing remote interference within a given time period or detection window. For purposes of described aspect, current aggressors database 502 identifies base stations 105y and 105z of cell 506 and 105x of cell 507.
  • the victim base station signals each aggressor base station on the list of current aggressor base stations to initiate remote interference mitigation.
  • base station 105v via backhaul interface 505, signals each of base stations 105y, 105z, and 105x to initiate remote interference mitigation.
  • Such remote interference mitigation may include temporarily dropping use of certain channels, using different antenna configurations, changing transmissions timing, modifying transmission power, modifying antenna tilting, and the like.
  • FIG. 4B is a block diagram illustrating example blocks executed by a base station to implement one aspect of the present disclosure. The example blocks will also be described with respect to base station 105v as illustrated in FIG. 5.
  • a victim base station such as base station 105v, may trigger an update process for the aggressor base station list.
  • base station 105v may execute aggressor list update process 503, stored in memory 242.
  • the execution environment of aggressor list update process 503 provides the functionality for base station 105v to update the list of actual aggressor base stations in current aggressor database 502. Updates to current aggressor database 502 may be triggered periodically, though, the duty cycle of the update procedure, in a typical scenario, may be very low.
  • the duty cycle can be configurable by an operator to address various conditions, such as known construction of wireless resources, seasons of the year, atmospheric conditions, and the like, or be based purely on a periodic schedule (e.g., weekly, monthly, quarterly, etc. ) .
  • a base station retrieves a first set of aggressor base stations from a first database of aggressor base stations.
  • base station 105 accesses and identifies a set of potential aggressor base stations from potential aggressors database 504, in memory 242.
  • potential aggressors database 504 includes any base stations that may be known or suspected to provide remote interference to the communications of base station 105v.
  • a network operator may initially program or input the identification of all such base stations into potential aggressors database 504.
  • Such base stations may be identified as potential aggressors based on geographic location, historical detection of remote interference, the antenna pattern at base station 105v, and the like.
  • the set of potential aggressor base stations identified from potential aggressors database 504 are base station 105w of cell 508, base station 105x of cell 507, and base stations 105y and 105z of cell 506.
  • the base station signals each base station in the first set of aggressor base stations to transmit remote interference reference signals.
  • Base station 105v signals, via backhaul interface 505, each of base stations 105w-105z of the to transmit RIM reference signals. It should be noted that, because each such potential aggressor base station will be transmitting over the air RIM reference signals, base station 105v may not select all of the base stations identified in potential aggressors database 504. If there are a large number of base stations identified in potential aggressors database 504, it may be detrimental to trigger transmission of RIM reference signals from each such base station. In order to reduce the potential interference impact, base station 105v may select a subset of base stations or all of the base stations in potential aggressors database 504.
  • the number of base stations selected for the update procedure may depend on various different criteria, such as how many are in potential aggressors database 504, the time of year, the atmospheric conditions, antenna pattern, and the like.
  • base stations 105w-105z are only a subset of all potential aggressors in potential aggressors database 504. This particular set of potential aggressors have been selected based on the season of the year (e.g., Summer, Autumn, Winter, or Spring) .
  • the base station identifies one or more interfering base stations corresponding to one or more detected remote interference reference signals exceeding a predetermined threshold interference.
  • the victim base station, base station 105v measures any detected RIM reference signals to determine whether the base station, in fact, causes remote interference to the victim base station.
  • the resources for such RIM reference signals can be preconfigured for an aggressor base station or indicated by base station 105v during the signaling via backhaul interface 505.
  • the signaled potential aggressor base stations, base stations 105w-105z transmit RIM reference signals via the dedicated RIM reference signal resources.
  • base station 105v detects and identifies RIM reference signals from base stations 105w, 105x, and 105z. While base station 105y would have received the signaling to transmit RIM reference signals potentially along with allocation of the resources for transmission, base station 105v does not detect any RIM reference signals from base station 105y.
  • the base station updates one or more base stations in a second database of current aggressor base stations.
  • the victim base station, base station 105v determines whether or not to add or remove base stations from current aggressor database 502.
  • base station 105v may compare the base stations from which it detected and measured RIM reference signals (base stations 105w, 105x, and 105z) against the original list of current aggressor base stations (base stations 105x-105z) of current aggressors database 502. Using these two sets of identified base stations, base station 105v may determine which base stations to add to current aggressors database 502 and which base stations can be removed from current aggressors database 502.
  • the set of base stations from which RIM reference signals were detected and measures may be represented by the set A, wherein base stations 105w, 105x, and 105z ⁇ A, and the original base stations of current aggressors database 502 may be represented by the set B, where base stations 105x, 105y, and 105z ⁇ B.
  • base station 105v determines the base stations to add to and subtract from current aggressors database 502, it will signal, via backhaul 505, to the added aggressor base stations, base station 105w, to initiate remote interference mitigation operations. Base station 105v will also signal, via backhaul 505, each subtracted non-aggressor base station, base station 105y, to cease any further remote interference mitigation operations. Base station 105v will then add base station 105w to confirmed aggressors database 502 and subtract base station 105y from current aggressors database 502.
  • removing base stations from current aggressors database 502 may be controlled according to a dampening procedure that prevents the same base stations from being removed and added at a high rate due to false alarm or misdetection errors.
  • base station 105v upon detecting of the “disappearance” of remote interference from base station 105y at the victim base station, base station 105v, base station 105v determines whether the failure to detect the RIM reference signals has occurred during a detection window (e.g., 1 day, 1 week, X weeks, etc. ) .
  • base station 105v if base station 105v fails to detect the RIM reference signals from base station 105y a certain number of times during the length of the detection window, base station 105v will determine that base station 105y is no longer causing remote interference and identify it for removal. In another example operation, after failing to detect the RIM reference signal from base station 105y, base station 105x will trigger the detection window, such that any further failure to detect the RIM reference signals from base station 105y during that window would cause base station 105v to identify base station 105y for removal from confirmed aggressors database 502. When all base stations have been removed from confirmed aggressors database 502, base station 105v will end its RIM operations.
  • the functional blocks and modules in FIGs. 4A and 4B may comprise processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal.
  • the processor and the storage medium may reside as discrete components in a user terminal.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Computer-readable storage media may be any available media that can be accessed by a general purpose or special purpose computer.
  • such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • a connection may be properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, or digital subscriber line (DSL) , then the coaxial cable, fiber optic cable, twisted pair, or DSL, are included in the definition of medium.
  • DSL digital subscriber line
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • the term “and/or, ” when used in a list of two or more items means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed.
  • the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Design of a remote interference management (RIM) framework is disclosed. Each victim base station may maintain an aggressor list of remote base stations providing interference to the victim. The victim base station signals the aggressor base stations to apply RIM mitigation mechanisms for reducing the remote interference. The victim may then maintain and update the aggressor list based on estimation and measurements of RIM reference signals detected from the aggressor cells.

Description

RIM FRAMEWORK DESIGN BACKGROUND Field
Aspects of the present disclosure relate generally to wireless communication systems, and to design of a remote interference management (RIM) framework.
Background
Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources. One example of such a network is the Universal Terrestrial Radio Access Network (UTRAN) . The UTRAN is the radio access network (RAN) defined as a part of the Universal Mobile Telecommunications System (UMTS) , a third generation (3G) mobile phone technology supported by the 3rd Generation Partnership Project (3GPP) . Examples of multiple-access network formats include Code Division Multiple Access (CDMA) networks, Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, and Single-Carrier FDMA (SC-FDMA) networks.
A wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs) . A UE may communicate with a base station via downlink and uplink. The downlink (or forward link) refers to the communication link from the base station to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the base station.
A base station may transmit data and control information on the downlink to a UE and/or may receive data and control information on the uplink from the UE. On the downlink, a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters. On the uplink, a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
As the demand for mobile broadband access continues to increase, the possibilities of interference and congested networks grows with more UEs accessing the long-range wireless communication networks and more short-range wireless systems being deployed in  communities. Research and development continue to advance wireless technologies not only to meet the growing demand for mobile broadband access, but to advance and enhance the user experience with mobile communications.
SUMMARY
In one aspect of the disclosure, a method of wireless communication includes detecting, by a base station, remote interference on one or more communication channels serviced by the base station, accessing, by the base station, a first list of aggressor base stations, and signaling, by the base station, each aggressor base station on the first list of aggressor base stations to initiate remote interference mitigation.
In an additional aspect of the disclosure, a method of wireless communication includes retrieving, by a base station, a first set of aggressor base stations from a first database of aggressor base stations, signaling, by the base station, each base station in the first set of aggressor base stations to transmit remote interference reference signals, identifying one or more interfering base stations corresponding to one or more detected remote interference reference signals exceeding a predetermined threshold interference, and updating, by the base station, one or more base stations in a second database of current aggressor base stations.
In an additional aspect of the disclosure, an apparatus configured for wireless communication includes means for detecting, by a base station, remote interference on one or more communication channels serviced by the base station, means for accessing, by the base station, a first list of aggressor base stations, and means for signaling, by the base station, each aggressor base station on the first list of aggressor base stations to initiate remote interference mitigation.
In an additional aspect of the disclosure, an apparatus configured for wireless communication includes means for retrieving, by a base station, a first set of aggressor base stations from a first database of aggressor base stations, means for signaling, by the base station, each base station in the first set of aggressor base stations to transmit remote interference reference signals, means for identifying one or more interfering base stations corresponding to one or more detected remote interference reference signals exceeding a predetermined threshold interference, and means for updating, by the base station, one or more base stations in a second database of current aggressor base stations.
In an additional aspect of the disclosure, a non-transitory computer-readable medium having program code recorded thereon. The program code further includes code to detect, by a base station, remote interference on one or more communication channels serviced by the base  station, code to access, by the base station, a first list of aggressor base stations, and code to signal, by the base station, each aggressor base station on the first list of aggressor base stations to initiate remote interference mitigation.
In an additional aspect of the disclosure, a non-transitory computer-readable medium having program code recorded thereon. The program code further includes code to retrieve, by a base station, a first set of aggressor base stations from a first database of aggressor base stations, code to signal, by the base station, each base station in the first set of aggressor base stations to transmit remote interference reference signals, code to identify one or more interfering base stations corresponding to one or more detected remote interference reference signals exceeding a predetermined threshold interference, and code to update, by the base station, one or more base stations in a second database of current aggressor base stations.
In an additional aspect of the disclosure, an apparatus configured for wireless communication is disclosed. The apparatus includes at least one processor, and a memory coupled to the processor. The processor is configured to detect, by a base station, remote interference on one or more communication channels serviced by the base station, to access, by the base station, a first list of aggressor base stations, and to signal, by the base station, each aggressor base station on the first list of aggressor base stations to initiate remote interference mitigation.
In an additional aspect of the disclosure, an apparatus configured for wireless communication is disclosed. The apparatus includes at least one processor, and a memory coupled to the processor. The processor is configured to retrieve, by a base station, a first set of aggressor base stations from a first database of aggressor base stations, to signal, by the base station, each base station in the first set of aggressor base stations to transmit remote interference reference signals, to identify one or more interfering base stations corresponding to one or more detected remote interference reference signals exceeding a predetermined threshold interference, and to update, by the base station, one or more base stations in a second database of current aggressor base stations.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when  considered in connection with the accompanying figures. Each of the figures is provided for the purpose of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
A further understanding of the nature and advantages of the present disclosure may be realized by reference to the following drawings. In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
FIG. 1 is a block diagram illustrating details of a wireless communication system.
FIG. 2 is a block diagram illustrating a design of a base station and a UE configured according to one aspect of the present disclosure.
FIG. 3 is a block diagram illustrating a wireless communication system including base stations that use directional wireless beams.
 FIG. 4A and 4B are block diagrams illustrating example blocks executed to implement aspects of the present disclosure.
FIG. 5 is a block diagram illustrating a RIM operation with a base station configured according to one aspect of the present disclosure.
DETAILED DESCRIPTION
The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to limit the scope of the disclosure. Rather, the detailed description includes specific details for the purpose of providing a thorough understanding of the inventive subject matter. It will be apparent to those skilled in the art that these specific details are not required in every case and that, in some instances, well-known structures and components are shown in block diagram form for clarity of presentation.
This disclosure relates generally to providing or participating in authorized shared access between two or more wireless communications systems, also referred to as wireless communications networks. In various embodiments, the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC- FDMA) networks, LTE networks, GSM networks, 5 th Generation (5G) or new radio (NR) networks, as well as other communications networks. As described herein, the terms “networks” and “systems” may be used interchangeably.
An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like. UTRA, E-UTRA, and Global System for Mobile Communications (GSM) are part of universal mobile telecommunication system (UMTS) . In particular, long term evolution (LTE) is a release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP) , and cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . These various radio technologies and standards are known or are being developed. For example, the 3rd Generation Partnership Project (3GPP) is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification. 3GPP long term evolution (LTE) is a 3GPP project which was aimed at improving the universal mobile telecommunications system (UMTS) mobile phone standard. The 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices. The present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
In particular, 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. In order to achieve these goals, further enhancements to LTE and LTE-A are considered in addition to development of the new radio technology for 5G NR networks. The 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (e.g., ~1M nodes/km 2) , ultra-low complexity (e.g., ~10s of bits/sec) , ultra-low energy (e.g., ~10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ~99.9999%reliability) , ultra-low latency (e.g., ~ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ~ 10 Tbps/km 2) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
The 5G NR may be implemented to use optimized OFDM-based waveforms with scalable numerology and transmission time interval (TTI) ; having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility. Scalability of the numerology in 5G NR, with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments. For example, in various outdoor and macro coverage deployments of less than 3GHz FDD/TDD implementations, subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth. For other various outdoor and small cell coverage deployments of TDD greater than 3 GHz, subcarrier spacing may occur with 30 kHz over 80/100 MHz bandwidth. For other various indoor wideband implementations, using a TDD over the unlicensed portion of the 5 GHz band, the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth. Finally, for various deployments transmitting with mmWave components at a TDD of 28 GHz, subcarrier spacing may occur with 120 kHz over a 500MHz bandwidth.
The scalable numerology of the 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency. The efficient multiplexing of long and short TTIs to allow transmissions to start on symbol boundaries. 5G NR also contemplates a self-contained integrated subframe design with uplink/downlink scheduling information, data, and acknowledgement in the same subframe. The self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink/downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
Various other aspects and features of the disclosure are further described below. It should be apparent that the teachings herein may be embodied in a wide variety of forms and that any specific structure, function, or both being disclosed herein is merely representative and not limiting. Based on the teachings herein one of an ordinary level of skill in the art should appreciate that an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition  to or other than one or more of the aspects set forth herein. For example, a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer. Furthermore, an aspect may comprise at least one element of a claim.
FIG. 1 is a block diagram illustrating 5G network 100 including various base stations and UEs configured according to aspects of the present disclosure. The 5G network 100 includes a number of base stations 105 and other network entities. A base station may be a station that communicates with the UEs and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like. Each base station 105 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to this particular geographic coverage area of a base station and/or a base station subsystem serving the coverage area, depending on the context in which the term is used.
A base station may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell. A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . A base station for a macro cell may be referred to as a macro base station. A base station for a small cell may be referred to as a small cell base station, a pico base station, a femto base station or a home base station. In the example shown in FIG. 1, the  base stations  105d and 105e are regular macro base stations, while base stations 105a-105c are macro base stations enabled with one of 3 dimension (3D) , full dimension (FD) , or massive MIMO. Base stations 105a-105c take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity. Base station 105f is a small cell base station which may be a home node or portable access point. A base station may support one or multiple (e.g., two, three, four, and the like) cells.
The 5G network 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base  stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
The UEs 115 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like. A UE may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like. In one aspect, a UE may be a device that includes a Universal Integrated Circuit Card (UICC) . In another aspect, a UE may be a device that does not include a UICC. In some aspects, UEs that do not include UICCs may also be referred to as internet of everything (IoE) or internet of things (IoT) devices. UEs 115a-115d are examples of mobile smart phone-type devices accessing 5G network 100 A UE may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like. UEs 115e-115k are examples of various machines configured for communication that access 5G network 100. A UE may be able to communicate with any type of the base stations, whether macro base station, small cell, or the like. In FIG. 1, a lightning bolt (e.g., communication links) indicates wireless transmissions between a UE and a serving base station, which is a base station designated to serve the UE on the downlink and/or uplink, or desired transmission between base stations, and backhaul transmissions between base stations.
In operation at 5G network 100, base stations 105a-105c serve  UEs  115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity. Macro base station 105d performs backhaul communications with base stations 105a-105c, as well as small cell, base station 105f. Macro base station 105d also transmits multicast services which are subscribed to and received by  UEs  115c and 115d. Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
5G network 100 also support mission critical communications with ultra-reliable and redundant links for mission critical devices, such UE 115e, which is a drone. Redundant communication links with UE 115e include from  macro base stations  105d and 105e, as well as small cell base station 105f. Other machine type devices, such as UE 115f (thermometer) , UE 115g (smart meter) , and UE 115h (wearable device) may communicate through 5G network 100 either directly with base stations, such as small cell base station 105f, and macro base station 105e,  or in multi-hop configurations by communicating with another user device which relays its information to the network, such as UE 115f communicating temperature measurement information to the smart meter, UE 115g, which is then reported to the network through small cell base station 105f. 5G network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as in a vehicle-to-vehicle (V2V) mesh network between UEs 115i-115k communicating with macro base station 105e.
FIG. 2 shows a block diagram of a design of a base station 105 and a UE 115, which may be one of the base station and one of the UEs in FIG. 1. At the base station 105, a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240. The control information may be for the PBCH, PCFICH, PHICH, PDCCH, EPDCCH, MPDCCH etc. The data may be for the PDSCH, etc. The transmit processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The transmit processor 220 may also generate reference symbols, e.g., for the PSS, SSS, and cell-specific reference signal. A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 232a through 232t may be transmitted via the antennas 234a through 234t, respectively.
At the UE 115, the antennas 252a through 252r may receive the downlink signals from the base station 105 and may provide received signals to the demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all the demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 115 to a data sink 260, and provide decoded control information to a controller/processor 280.
On the uplink, at the UE 115, a transmit processor 264 may receive and process data (e.g., for the PUSCH) from a data source 262 and control information (e.g., for the PUCCH) from the  controller/processor 280. The transmit processor 264 may also generate reference symbols for a reference signal. The symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 105. At the base station 105, the uplink signals from the UE 115 may be received by the antennas 234, processed by the demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 115. The processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.
The controllers/ processors  240 and 280 may direct the operation at the base station 105 and the UE 115, respectively. The controller/processor 240 and/or other processors and modules at the base station 105 may perform or direct the execution of various processes for the techniques described herein. The controllers/processor 280 and/or other processors and modules at the UE 115 may also perform or direct the execution of the functional blocks illustrated in FIGs. 4A and 4B, and/or other processes for the techniques described herein. The  memories  242 and 282 may store data and program codes for the base station 105 and the UE 115, respectively. A scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
Wireless communications systems operated by different network operating entities (e.g., network operators) may share spectrum. In some instances, a network operating entity may be configured to use an entirety of a designated shared spectrum for at least a period of time before another network operating entity uses the entirety of the designated shared spectrum for a different period of time. Thus, in order to allow network operating entities use of the full designated shared spectrum, and in order to mitigate interfering communications between the different network operating entities, certain resources (e.g., time) may be partitioned and allocated to the different network operating entities for certain types of communication.
For example, a network operating entity may be allocated certain time resources reserved for exclusive communication by the network operating entity using the entirety of the shared spectrum. The network operating entity may also be allocated other time resources where the entity is given priority over other network operating entities to communicate using the shared spectrum. These time resources, prioritized for use by the network operating entity, may be utilized by other network operating entities on an opportunistic basis if the prioritized network operating entity does not utilize the resources. Additional time resources may be allocated for any network operator to use on an opportunistic basis.
Access to the shared spectrum and the arbitration of time resources among different network operating entities may be centrally controlled by a separate entity, autonomously determined by a predefined arbitration scheme, or dynamically determined based on interactions between wireless nodes of the network operators.
In some cases, UE 115 and base station 105 may operate in a shared radio frequency spectrum band, which may include licensed or unlicensed (e.g., contention-based) frequency spectrum. In an unlicensed frequency portion of the shared radio frequency spectrum band, UEs 115 or base stations 105 may traditionally perform a medium-sensing procedure to contend for access to the frequency spectrum. For example, UE 115 or base station 105 may perform a listen before talk (LBT) procedure such as a clear channel assessment (CCA) prior to communicating in order to determine whether the shared channel is available. A CCA may include an energy detection procedure to determine whether there are any other active transmissions. For example, a device may infer that a change in a received signal strength indicator (RSSI) of a power meter indicates that a channel is occupied. Specifically, signal power that is concentrated in a certain bandwidth and exceeds a predetermined noise floor may indicate another wireless transmitter. A CCA also may include detection of specific sequences that indicate use of the channel. For example, another device may transmit a specific preamble prior to transmitting a data sequence. In some cases, an LBT procedure may include a wireless node adjusting its own backoff window based on the amount of energy detected on a channel and/or the acknowledge/negative-acknowledge (ACK/NACK) feedback for its own transmitted packets as a proxy for collisions.
Use of a medium-sensing procedure to contend for access to an unlicensed shared spectrum may result in communication inefficiencies. This may be particularly evident when multiple network operating entities (e.g., network operators) are attempting to access a shared resource. In 5G network 100, base stations 105 and UEs 115 may be operated by the same or different network operating entities. In some examples, an individual base station 105 or UE 115 may be operated by more than one network operating entity. In other examples, each base station 105 and UE 115 may be operated by a single network operating entity. Requiring each base station 105 and UE 115 of different network operating entities to contend for shared resources may result in increased signaling overhead and communication latency.
FIG. 3 illustrates an example of a timing diagram 300 for coordinated resource partitioning. The timing diagram 300 includes a superframe 305, which may represent a fixed duration of time (e.g., 20 ms) . Superframe 305 may be repeated for a given communication session and may be used by a wireless system such as 5G network 100 described with reference to FIG. 1.  The superframe 305 may be divided into intervals such as an acquisition interval (A-INT) 310 and an arbitration interval 315. As described in more detail below, the A-INT 310 and arbitration interval 315 may be subdivided into sub-intervals, designated for certain resource types, and allocated to different network operating entities to facilitate coordinated communications between the different network operating entities. For example, the arbitration interval 315 may be divided into a plurality of sub-intervals 320. Also, the superframe 305 may be further divided into a plurality of subframes 325 with a fixed duration (e.g., 1 ms) . While timing diagram 300 illustrates three different network operating entities (e.g., Operator A, Operator B, Operator C) , the number of network operating entities using the superframe 305 for coordinated communications may be greater than or fewer than the number illustrated in timing diagram 300.
The A-INT 310 may be a dedicated interval of the superframe 305 that is reserved for exclusive communications by the network operating entities. In some examples, each network operating entity may be allocated certain resources within the A-INT 310 for exclusive communications. For example, resources 330-a may be reserved for exclusive communications by Operator A, such as through base station 105a, resources 330-b may be reserved for exclusive communications by Operator B, such as through base station 105b, and resources 330-c may be reserved for exclusive communications by Operator C, such as through base station 105c. Since the resources 330-a are reserved for exclusive communications by Operator A, neither Operator B nor Operator C can communicate during resources 330-a, even if Operator A chooses not to communicate during those resources. That is, access to exclusive resources is limited to the designated network operator. Similar restrictions apply to resources 330-b for Operator B and resources 330-c for Operator C. The wireless nodes of Operator A (e.g, UEs 115 or base stations 105) may communicate any information desired during their exclusive resources 330-a, such as control information or data.
When communicating over an exclusive resource, a network operating entity does not need to perform any medium sensing procedures (e.g., listen-before-talk (LBT) or clear channel assessment (CCA) ) because the network operating entity knows that the resources are reserved. Because only the designated network operating entity may communicate over exclusive resources, there may be a reduced likelihood of interfering communications as compared to relying on medium sensing techniques alone (e.g., no hidden node problem) . In some examples, the A-INT 310 is used to transmit control information, such as synchronization signals (e.g., SYNC signals) , system information (e.g., system information blocks (SIBs) ) , paging information (e.g., physical broadcast channel (PBCH) messages) , or random access  information (e.g., random access channel (RACH) signals) . In some examples, all of the wireless nodes associated with a network operating entity may transmit at the same time during their exclusive resources.
In some examples, resources may be classified as prioritized for certain network operating entities. Resources that are assigned with priority for a certain network operating entity may be referred to as a guaranteed interval (G-INT) for that network operating entity. The interval of resources used by the network operating entity during the G-INT may be referred to as a prioritized sub-interval. For example, resources 335-a may be prioritized for use by Operator A and may therefore be referred to as a G-INT for Operator A (e.g., G-INT-OpA) . Similarly, resources 335-b may be prioritized for Operator B, resources 335-c may be prioritized for Operator C, resources 335-d may be prioritized for Operator A, resources 335-e may be prioritized for Operator B, and resources 335-f may be prioritized for operator C.
The various G-INT resources illustrated in FIG. 3 appear to be staggered to illustrate their association with their respective network operating entities, but these resources may all be on the same frequency bandwidth. Thus, if viewed along a time-frequency grid, the G-INT resources may appear as a contiguous line within the superframe 305. This partitioning of data may be an example of time division multiplexing (TDM) . Also, when resources appear in the same sub-interval (e.g., resources 340-a and resources 335-b) , these resources represent the same time resources with respect to the superframe 305 (e.g., the resources occupy the same sub-interval 320) , but the resources are separately designated to illustrate that the same time resources can be classified differently for different operators.
When resources are assigned with priority for a certain network operating entity (e.g., a G-INT) , that network operating entity may communicate using those resources without having to wait or perform any medium sensing procedures (e.g., LBT or CCA) . For example, the wireless nodes of Operator A are free to communicate any data or control information during resources 335-a without interference from the wireless nodes of Operator B or Operator C.
A network operating entity may additionally signal to another operator that it intends to use a particular G-INT. For example, referring to resources 335-a, Operator A may signal to Operator B and Operator C that it intends to use resources 335-a. Such signaling may be referred to as an activity indication. Moreover, since Operator A has priority over resources 335-a, Operator A may be considered as a higher priority operator than both Operator B and Operator C. However, as discussed above, Operator A does not have to send signaling to the other network operating entities to ensure interference-free transmission during resources 335-a because the resources 335-a are assigned with priority to Operator A.
Similarly, a network operating entity may signal to another network operating entity that it intends not to use a particular G-INT. This signaling may also be referred to as an activity indication. For example, referring to resources 335-b, Operator B may signal to Operator A and Operator C that it intends not to use the resources 335-b for communication, even though the resources are assigned with priority to Operator B. With reference to resources 335-b, Operator B may be considered a higher priority network operating entity than Operator A and Operator C. In such cases, Operators A and C may attempt to use resources of sub-interval 320 on an opportunistic basis. Thus, from the perspective of Operator A, the sub-interval 320 that contains resources 335-b may be considered an opportunistic interval (O-INT) for Operator A (e.g., O-INT-OpA) . For illustrative purposes, resources 340-a may represent the O-INT for Operator A. Also, from the perspective of Operator C, the same sub-interval 320 may represent an O-INT for Operator C with corresponding resources 340-b. Resources 340-a, 335-b, and 340-b all represent the same time resources (e.g., a particular sub-interval 320) , but are identified separately to signify that the same resources may be considered as a G-INT for some network operating entities and yet as an O-INT for others.
To utilize resources on an opportunistic basis, Operator A and Operator C may perform medium-sensing procedures to check for communications on a particular channel before transmitting data. For example, if Operator B decides not to use resources 335-b (e.g., G-INT-OpB) , then Operator A may use those same resources (e.g., represented by resources 340-a) by first checking the channel for interference (e.g., LBT) and then transmitting data if the channel was determined to be clear. Similarly, if Operator C wanted to access resources on an opportunistic basis during sub-interval 320 (e.g., use an O-INT represented by resources 340-b) in response to an indication that Operator B was not going to use its G-INT, Operator C may perform a medium sensing procedure and access the resources if available. In some cases, two operators (e.g., Operator A and Operator C) may attempt to access the same resources, in which case the operators may employ contention-based procedures to avoid interfering communications. The operators may also have sub-priorities assigned to them designed to determine which operator may gain access to resources if more than operator is attempting access simultaneously.
In some examples, a network operating entity may intend not to use a particular G-INT assigned to it, but may not send out an activity indication that conveys the intent not to use the resources. In such cases, for a particular sub-interval 320, lower priority operating entities may be configured to monitor the channel to determine whether a higher priority operating entity is using the resources. If a lower priority operating entity determines through LBT or similar  method that a higher priority operating entity is not going to use its G-INT resources, then the lower priority operating entities may attempt to access the resources on an opportunistic basis as described above.
In some examples, access to a G-INT or O-INT may be preceded by a reservation signal (e.g., request-to-send (RTS) /clear-to-send (CTS) ) , and the contention window (CW) may be randomly chosen between one and the total number of operating entities.
In some examples, an operating entity may employ or be compatible with coordinated multipoint (CoMP) communications. For example an operating entity may employ CoMP and dynamic time division duplex (TDD) in a G-INT and opportunistic CoMP in an O-INT as needed.
In the example illustrated in FIG. 3, each sub-interval 320 includes a G-INT for one of Operator A, B, or C. However, in some cases, one or more sub-intervals 320 may include resources that are neither reserved for exclusive use nor reserved for prioritized use (e.g., unassigned resources) . Such unassigned resources may be considered an O-INT for any network operating entity, and may be accessed on an opportunistic basis as described above.
In some examples, each subframe 325 may contain 14 symbols (e.g., 250-μs for 60 kHz tone spacing) . These subframes 325 may be standalone, self-contained Interval-Cs (ITCs) or the subframes 325 may be a part of a long ITC. An ITC may be a self-contained transmission starting with a downlink transmission and ending with a uplink transmission. In some embodiments, an ITC may contain one or more subframes 325 operating contiguously upon medium occupation. In some cases, there may be a maximum of eight network operators in an A-INT 310 (e.g., with duration of 2 ms) assuming a 250-μs transmission opportunity.
Although three operators are illustrated in FIG. 3, it should be understood that fewer or more network operating entities may be configured to operate in a coordinated manner as described above. In some cases, the location of the G-INT, O-INT, or A-INT within superframe 305 for each operator is determined autonomously based on the number of network operating entities active in a system. For example, if there is only one network operating entity, each sub-interval 320 may be occupied by a G-INT for that single network operating entity, or the sub-intervals 320 may alternate between G-INTs for that network operating entity and O-INTs to allow other network operating entities to enter. If there are two network operating entities, the sub-intervals 320 may alternate between G-INTs for the first network operating entity and G-INTs for the second network operating entity. If there are three network operating entities, the G-INT and O-INTs for each network operating entity may be designed as illustrated in FIG. 3. If there are four network operating entities, the first four sub-intervals 320 may include consecutive G- INTs for the four network operating entities and the remaining two sub-intervals 320 may contain O-INTs. Similarly, if there are five network operating entities, the first five sub-intervals 320 may contain consecutive G-INTs for the five network operating entities and the remaining sub-interval 320 may contain an O-INT. If there are six network operating entities, all six sub-intervals 320 may include consecutive G-INTs for each network operating entity. It should be understood that these examples are for illustrative purposes only and that other autonomously determined interval allocations may be used.
It should be understood that the coordination framework described with reference to FIG. 3 is for illustration purposes only. For example, the duration of superframe 305 may be more or less than 20 ms. Also, the number, duration, and location of sub-intervals 320 and subframes 325 may differ from the configuration illustrated. Also, the types of resource designations (e.g., exclusive, prioritized, unassigned) may differ or include more or less sub-designations.
In normal circumstances, the downlink signal of a cell can only be observed by UEs within and around the edge of the coverage area of the cell. A cell may be defined by one base station or a set of base stations operating to provide the coverage area of the cell. In a remote interference scenario, downlink signals from a base station of a cell can reach another remote cell at a distance that is much larger than coverage range of the cell (e.g., 100 to 300 km) . This remote interference may be due to various anomalies, such as reflection of the signal by mountains, the ocean’s surface, clouds or even due to atmospheric ducting, and the like.
In a time division duplex (TDD) system, the downlink transmissions that may come from the base station of a remote cell, referred to as an aggressor, would fall into the uplink portion of another cell, referred to as the victim, due to the delay in transmission over the remote distance. Such remote interference signals would become interference to the uplink reception of the victim base station of the victim cell. In some scenarios, the base stations of a victim cell can be impacted by interference from multiple aggressor cells. In TDD systems, the wireless channel is reciprocal between the transmitter and the receiver. Thus, both cells may receive interference from each other (symmetric interference) . In other scenarios, one cell may receive stronger interference than the other cell does, whether from one or more remote cells (asymmetric interference) .
Remote interference management (RIM) provides a mechanism for exchanging messages between remote base stations in order to coordinate mitigation of remote interference. Several different frameworks have been suggested for handling the messaging and mitigation procedures. However, the existing and suggested RIM frameworks may not work in asymmetric RIM scenarios and may not be able to distinguish between strong and weak  aggressors. Various aspects of the present disclosure are directed to victim base stations maintaining a list of aggressor base stations. The victim base station may signal the aggressor base station to perform interference mitigation.
FIG. 4A is a block diagram illustrating example blocks executed to implement one aspect of the present disclosure. The example blocks will also be described with respect to base station 105v as illustrated in FIG. 5. FIG. 5 is a block diagram illustrating RIM operation 50 with a base station 105v configured according to one aspect of the present disclosure. Base station 105v includes the structure, hardware, and components as illustrated for base station 105 of FIG. 2. For example, base station 105v includes controller/processor 240, which operates to execute logic or computer instructions stored in memory 242, as well as controlling the components of base station 105v that provide the features and functionality of base station 105v. Base station 105v, under control of controller/processor 240, transmits and receives signals via wireless radios 500a-t and antennas 234a-t. Wireless radios 500a-t includes various components and hardware, as illustrated in FIG. 2 for base station 105, including modulator/demodulators 232a-t, MIMO detector 236, receive processor 238, transmit processor 220, and TX MIMO processor 230.
At block 400, a victim base station detects remote interference on one or more communication channels serviced by the base station. For example, base station 105v detects via antennas 234a-t and wireless radios 500a-t remote interference signals interfering with ongoing communications. Base station 105v, under control of controller/processor 240, would likely detect a sloping increase in interference over thermal (IoT) , identifying a rise in the combination of thermal noise and out-of-sector power influencing the received signals at base station 105v.
At block 401, the victim base station accesses a list of confirmed aggressor base stations. In the example aspect illustrated in FIG. 5, base station 105v includes both current aggressors database 502 and potential aggressors database 504, in memory 242. Alternative aspects may include current aggressors database 502 and potential aggressors database 504 in a different base station operating in a cluster with base station 105v to serve the same communication channels in a particular cell or in a centralized server in communication with each base station in a cluster serving the cell, including base station 105v. When the remote interference is detected, base station 105v would access the list of base stations identified in current aggressors database 502. Current aggressors database 502 includes each remote base station that has been identified as causing remote interference within a given time period or detection window. For  purposes of described aspect, current aggressors database 502 identifies  base stations  105y and 105z of  cell  506 and 105x of cell 507.
At block 402, the victim base station signals each aggressor base station on the list of current aggressor base stations to initiate remote interference mitigation. For example, base station 105v, via backhaul interface 505, signals each of  base stations  105y, 105z, and 105x to initiate remote interference mitigation. Such remote interference mitigation may include temporarily dropping use of certain channels, using different antenna configurations, changing transmissions timing, modifying transmission power, modifying antenna tilting, and the like.
FIG. 4B is a block diagram illustrating example blocks executed by a base station to implement one aspect of the present disclosure. The example blocks will also be described with respect to base station 105v as illustrated in FIG. 5. A victim base station, such as base station 105v, may trigger an update process for the aggressor base station list. For example, under control of controller/processor 240, base station 105v may execute aggressor list update process 503, stored in memory 242. The execution environment of aggressor list update process 503 provides the functionality for base station 105v to update the list of actual aggressor base stations in current aggressor database 502. Updates to current aggressor database 502 may be triggered periodically, though, the duty cycle of the update procedure, in a typical scenario, may be very low. The duty cycle can be configurable by an operator to address various conditions, such as known construction of wireless resources, seasons of the year, atmospheric conditions, and the like, or be based purely on a periodic schedule (e.g., weekly, monthly, quarterly, etc. ) .
At block 403, a base station retrieves a first set of aggressor base stations from a first database of aggressor base stations. When aggressor list update procedure 503 is triggered, base station 105 accesses and identifies a set of potential aggressor base stations from potential aggressors database 504, in memory 242. As noted above, potential aggressors database 504 includes any base stations that may be known or suspected to provide remote interference to the communications of base station 105v. A network operator may initially program or input the identification of all such base stations into potential aggressors database 504. Such base stations may be identified as potential aggressors based on geographic location, historical detection of remote interference, the antenna pattern at base station 105v, and the like. For purposes of the example scenario of the illustrated aspect of FIG. 5, the set of potential aggressor base stations identified from potential aggressors database 504 are base station 105w of cell 508, base station 105x of cell 507, and  base stations  105y and 105z of cell 506.
At block 404, the base station signals each base station in the first set of aggressor base stations to transmit remote interference reference signals. Base station 105v signals, via backhaul interface 505, each of base stations 105w-105z of the to transmit RIM reference signals. It should be noted that, because each such potential aggressor base station will be transmitting over the air RIM reference signals, base station 105v may not select all of the base stations identified in potential aggressors database 504. If there are a large number of base stations identified in potential aggressors database 504, it may be detrimental to trigger transmission of RIM reference signals from each such base station. In order to reduce the potential interference impact, base station 105v may select a subset of base stations or all of the base stations in potential aggressors database 504. The number of base stations selected for the update procedure may depend on various different criteria, such as how many are in potential aggressors database 504, the time of year, the atmospheric conditions, antenna pattern, and the like. In the described example scenario of the illustrated aspect of FIG. 5, base stations 105w-105z are only a subset of all potential aggressors in potential aggressors database 504. This particular set of potential aggressors have been selected based on the season of the year (e.g., Summer, Autumn, Winter, or Spring) .
At block 405, the base station identifies one or more interfering base stations corresponding to one or more detected remote interference reference signals exceeding a predetermined threshold interference. The victim base station, base station 105v, measures any detected RIM reference signals to determine whether the base station, in fact, causes remote interference to the victim base station. The resources for such RIM reference signals can be preconfigured for an aggressor base station or indicated by base station 105v during the signaling via backhaul interface 505. The signaled potential aggressor base stations, base stations 105w-105z, transmit RIM reference signals via the dedicated RIM reference signal resources. For purposes of the example scenario of the illustrated aspect of FIG. 5, base station 105v detects and identifies RIM reference signals from  base stations  105w, 105x, and 105z. While base station 105y would have received the signaling to transmit RIM reference signals potentially along with allocation of the resources for transmission, base station 105v does not detect any RIM reference signals from base station 105y.
At block 406, the base station updates one or more base stations in a second database of current aggressor base stations. The victim base station, base station 105v, determines whether or not to add or remove base stations from current aggressor database 502. In order to make this determination, base station 105v may compare the base stations from which it detected and measured RIM reference signals ( base stations  105w, 105x, and 105z) against the original list  of current aggressor base stations (base stations 105x-105z) of current aggressors database 502. Using these two sets of identified base stations, base station 105v may determine which base stations to add to current aggressors database 502 and which base stations can be removed from current aggressors database 502. The set of base stations from which RIM reference signals were detected and measures may be represented by the set A, wherein  base stations  105w, 105x, and 105z ∈ A, and the original base stations of current aggressors database 502 may be represented by the set B, where  base stations  105x, 105y, and 105z ∈ B. Base station 105v may determine any base stations to add to current aggressors database 502 as the set difference of A and B (added aggressor base stations = A/B) , and may determine any base stations to subtract from current aggressors database 502 as the set difference of B and A (subtracted non-aggressor base stations = B/A) .
Once base station 105v determines the base stations to add to and subtract from current aggressors database 502, it will signal, via backhaul 505, to the added aggressor base stations, base station 105w, to initiate remote interference mitigation operations. Base station 105v will also signal, via backhaul 505, each subtracted non-aggressor base station, base station 105y, to cease any further remote interference mitigation operations. Base station 105v will then add base station 105w to confirmed aggressors database 502 and subtract base station 105y from current aggressors database 502.
It should be noted removing base stations from current aggressors database 502 may be controlled according to a dampening procedure that prevents the same base stations from being removed and added at a high rate due to false alarm or misdetection errors. In one example implementation of such a dampening procedure, upon detecting of the “disappearance” of remote interference from base station 105y at the victim base station, base station 105v, base station 105v determines whether the failure to detect the RIM reference signals has occurred during a detection window (e.g., 1 day, 1 week, X weeks, etc. ) . In one example operation, if base station 105v fails to detect the RIM reference signals from base station 105y a certain number of times during the length of the detection window, base station 105v will determine that base station 105y is no longer causing remote interference and identify it for removal. In another example operation, after failing to detect the RIM reference signal from base station 105y, base station 105x will trigger the detection window, such that any further failure to detect the RIM reference signals from base station 105y during that window would cause base station 105v to identify base station 105y for removal from confirmed aggressors database 502. When all base stations have been removed from confirmed aggressors database 502, base station 105v will end its RIM operations.
Those of skill in the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The functional blocks and modules in FIGs. 4A and 4B may comprise processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof.
Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the disclosure herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure. Skilled artisans will also readily recognize that the order or combination of components, methods, or interactions that are described herein are merely examples and that the components, methods, or interactions of the various aspects of the present disclosure may be combined or performed in ways other than those illustrated and described herein.
The various illustrative logical blocks, modules, and circuits described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The steps of a method or algorithm described in connection with the disclosure herein may be embodied directly in hardware, in a software module executed by a processor, or in a  combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
In one or more exemplary designs, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Computer-readable storage media may be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, a connection may be properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, or digital subscriber line (DSL) , then the coaxial cable, fiber optic cable, twisted pair, or DSL, are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
As used herein, including in the claims, the term “and/or, ” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination. Also, as used herein, including in the claims, “or” as used in a list of items  prefaced by “at least one of” indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C” means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) or any of these in any combination thereof.
The previous description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Thus, the disclosure is not intended to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
WHAT IS CLAIMED IS:

Claims (48)

  1. A method of wireless communication, comprising:
    detecting, by a base station, remote interference on one or more communication channels serviced by the base station;
    accessing, by the base station, a first list of aggressor base stations; and
    signaling, by the base station, each aggressor base station on the first list of aggressor base stations to initiate remote interference mitigation.
  2. The method of claim 1, wherein the first list of aggressor base stations resides on one of:
    memory local to the base station;
    a neighboring base station serving the one or more communication channels of a same cell as the base station; or
    a centralized server in communication with each base station serving the one or more communication channels of the same cell.
  3. The method of claim 1, wherein the signaling occurs over a backhaul interface between the base station and the each aggressor base station.
  4. The method of claim 1, further including:
    updating, by the base station, the first list of aggressor base stations to an updated first list of aggressor base stations;
    signaling, by the base station, each updated aggressor base station added to the updated first list of aggressor base stations to initiate the remote interference mitigation; and
    signaling, by the base station, each non-aggressor base station removed from the updated first list of aggressor base stations to cease the remote interference mitigation.
  5. The method of any combination of claims 1-4.
  6. A method of wireless communication, comprising:
    retrieving, by a base station, a first set of aggressor base stations from a first database of aggressor base stations;
    signaling, by the base station, each base station in the first set of aggressor base stations to transmit remote interference reference signals;
    identifying one or more interfering base stations corresponding to one or more detected remote interference reference signals exceeding a predetermined threshold interference; and
    updating, by the base station, one or more base stations in a second database of current aggressor base stations.
  7. The method of claim 6, wherein the updating includes:
    defining each updated aggressor base station to add to the second database of current aggressor base stations as a first set difference of the one or more interfering base stations and the second database of current aggressor base stations; and
    defining each non-aggressor base station to subtract from the second database of current aggressor base stations according to a second set difference of the second database of current aggressor base stations and the one or more interfering base stations.
  8. The method of claim 7, wherein the defining the each non-aggressor base station includes:
    determining the each non-aggressor base station is defined within a detection window associated with the each non-aggressor base station.
  9. The method of claim 8, wherein a duration of the detection window is configurable.
  10. The method of claim 6, wherein the first set of aggressor base stations includes one of:
    all potential aggressor base stations of the first database of aggressor base stations; or 
    a subset of potential aggressor base stations of the first database of aggressor base stations.
  11. The method of claim 6, further including:
    monitoring a set of resources for remote interference reference signals, wherein the set of resources are allocated according to one of:
    by the base station, wherein identification of the set of resources is transmitted to the each base station in the first set of aggressor base stations during the signaling to transmit the remote interference reference signals; or
    a predefined set of resources associated with the each base station in the first set of aggressor base stations.
  12. The method of any combination of claims 6-11.
  13. An apparatus configured for wireless communication, comprising:
    means for detecting, by a base station, remote interference on one or more communication channels serviced by the base station;
    means for accessing, by the base station, a first list of aggressor base stations; and
    means for signaling, by the base station, each aggressor base station on the first list of aggressor base stations to initiate remote interference mitigation.
  14. The apparatus of claim 13, wherein the first list of aggressor base stations resides on one of:
    memory local to the base station;
    a neighboring base station serving the one or more communication channels of a same cell as the base station; or
    a centralized server in communication with each base station serving the one or more communication channels of the same cell.
  15. The apparatus of claim 13, wherein the means for signaling occurs over a backhaul interface between the base station and the each aggressor base station.
  16. The apparatus of claim 13, further including:
    means for updating, by the base station, the first list of aggressor base stations to an updated first list of aggressor base stations;
    means for signaling, by the base station, each updated aggressor base station added to the updated first list of aggressor base stations to initiate the remote interference mitigation; and
    means for signaling, by the base station, each non-aggressor base station removed from the updated first list of aggressor base stations to cease the remote interference mitigation.
  17. The apparatus of any combination of claims 13-16.
  18. A method of wireless communication, comprising:
    means for retrieving, by a base station, a first set of aggressor base stations from a first database of aggressor base stations;
    means for signaling, by the base station, each base station in the first set of aggressor base stations to transmit remote interference reference signals;
    means for identifying one or more interfering base stations corresponding to one or more detected remote interference reference signals exceeding a predetermined threshold interference; and
    means for updating, by the base station, one or more base stations in a second database of current aggressor base stations.
  19. The apparatus of claim 18, wherein the means for updating includes:
    means for defining each updated aggressor base station to add to the second database of current aggressor base stations as a first set difference of the one or more interfering base stations and the second database of current aggressor base stations; and
    means for defining each non-aggressor base station to subtract from the second database of current aggressor base stations according to a second set difference of the second database of current aggressor base stations and the one or more interfering base stations.
  20. The method of claim 19, wherein the means for defining the each non-aggressor base station includes:
    means for determining the each non-aggressor base station is defined within a detection window associated with the each non-aggressor base station.
  21. The apparatus of claim 20, wherein a duration of the detection window is configurable.
  22. The apparatus of claim 18, wherein the first set of aggressor base stations includes one of:
    all potential aggressor base stations of the first database of aggressor base stations; or
    a subset of potential aggressor base stations of the first database of aggressor base stations.
  23. The apparatus of claim 18, further including:
    means for monitoring a set of resources for remote interference reference signals, wherein the set of resources are allocated according to one of:
    by the base station, wherein identification of the set of resources is transmitted to the each base station in the first set of aggressor base stations during execution of the means for signaling to transmit the remote interference reference signals; or
    a predefined set of resources associated with the each base station in the first set of aggressor base stations.
  24. The apparatus of any combination of claims 18-23.
  25. A non-transitory computer-readable medium having program code recorded thereon, the program code comprising:
    program code executable by a computer for causing the computer to detect, by a base station, remote interference on one or more communication channels serviced by the base station;
    program code executable by the computer for causing the computer to access, by the base station, a first list of aggressor base stations; and
    program code executable by the computer for causing the computer to signal, by the base station, each aggressor base station on the first list of aggressor base stations to initiate remote interference mitigation.
  26. The non-transitory computer-readable medium of claim 25, wherein the first list of aggressor base stations resides on one of:
    memory local to the base station;
    a neighboring base station serving the one or more communication channels of a same cell as the base station; or
    a centralized server in communication with each base station serving the one or more communication channels of the same cell.
  27. The non-transitory computer-readable medium of claim 25, wherein the program code executable by the computer for causing the computer to signal occurs over a backhaul interface between the base station and the each aggressor base station.
  28. The non-transitory computer-readable medium of claim 25, further including:
    program code executable by the computer for causing the computer to update, by the base station, the first list of aggressor base stations to an updated first list of aggressor base stations;
    program code executable by the computer for causing the computer to signal, by the base station, each updated aggressor base station added to the updated first list of aggressor base stations to initiate the remote interference mitigation; and
    program code executable by the computer for causing the computer to signal, by the base station, each non-aggressor base station removed from the updated first list of aggressor base stations to cease the remote interference mitigation.
  29. The non-transitory computer-readable medium of any combination of claims 25-28.
  30. A non-transitory computer-readable medium having program code recorded thereon, the program code comprising:
    program code executable by a computer for causing the computer to retrieve, by a base station, a first set of aggressor base stations from a first database of aggressor base stations;
    program code executable by the computer for causing the computer to signal, by the base station, each base station in the first set of aggressor base stations to transmit remote interference reference signals;
    program code executable by the computer for causing the computer to identify one or more interfering base stations corresponding to one or more detected remote interference reference signals exceeding a predetermined threshold interference; and
    program code executable by the computer for causing the computer to update, by the base station, one or more base stations in a second database of current aggressor base stations.
  31. The non-transitory computer-readable medium of claim 30, wherein the program code executable by the computer for causing the computer to update includes:
    program code executable by the computer for causing the computer to define each updated aggressor base station to add to the second database of current aggressor base stations as a first set difference of the one or more interfering base stations and the second database of current aggressor base stations; and
    program code executable by the computer for causing the computer to define each non-aggressor base station to subtract from the second database of current aggressor base stations according to a second set difference of the second database of current aggressor base stations and the one or more interfering base stations.
  32. The non-transitory computer-readable medium of claim 31, wherein the program code executable by the computer for causing the computer to define the each non-aggressor base station includes:
    program code executable by the computer for causing the computer to determine the each non-aggressor base station is defined within a detection window associated with the each non-aggressor base station.
  33. The non-transitory computer-readable medium of claim 32, wherein a duration of the detection window is configurable.
  34. The non-transitory computer-readable medium of claim 30, wherein the first set of aggressor base stations includes one of:
    all potential aggressor base stations of the first database of aggressor base stations; or 
    a subset of potential aggressor base stations of the first database of aggressor base stations.
  35. The non-transitory computer-readable medium of claim 30, further including:
    program code executable by the computer for causing the computer to monitor a set of resources for remote interference reference signals, wherein the set of resources are allocated according to one of:
    by the base station, wherein identification of the set of resources is transmitted to the each base station in the first set of aggressor base stations during execution of the program code executable by the computer for causing the computer to signal to transmit the remote interference reference signals; or
    a predefined set of resources associated with the each base station in the first set of aggressor base stations.
  36. The non-transitory computer-readable medium of any combination of claims 30-35.
  37. An apparatus configured for wireless communication, the apparatus comprising:
    at least one processor; and
    a memory coupled to the at least one processor,
    wherein the at least one processor is configured:
    to detect, by a base station, remote interference on one or more communication channels serviced by the base station;
    to access, by the base station, a first list of aggressor base stations; and
    to signal, by the base station, each aggressor base station on the first list of aggressor base stations to initiate remote interference mitigation.
  38. The apparatus of claim 37, wherein the first list of aggressor base stations resides on one of:
    memory local to the base station;
    a neighboring base station serving the one or more communication channels of a same cell as the base station; or
    a centralized server in communication with each base station serving the one or more communication channels of the same cell.
  39. The apparatus of claim 37, wherein the configuration of the at least one processor to signal occurs over a backhaul interface between the base station and the each aggressor base station.
  40. The apparatus of claim 37, further including configuration of the at least one processor:
    to update, by the base station, the first list of aggressor base stations to an updated first list of aggressor base stations;
    to signal, by the base station, each updated aggressor base station added to the updated first list of aggressor base stations to initiate the remote interference mitigation; and
    to signal, by the base station, each non-aggressor base station removed from the updated first list of aggressor base stations to cease the remote interference mitigation.
  41. The apparatus of any combination of claims 37-40.
  42. An apparatus configured for wireless communication, the apparatus comprising:
    at least one processor; and
    a memory coupled to the at least one processor,
    wherein the at least one processor is configured:
    to retrieve, by a base station, a first set of aggressor base stations from a first database of aggressor base stations;
    to signal, by the base station, each base station in the first set of aggressor base stations to transmit remote interference reference signals;
    to identify one or more interfering base stations corresponding to one or more detected remote interference reference signals exceeding a predetermined threshold interference; and
    to update, by the base station, one or more base stations in a second database of current aggressor base stations.
  43. The apparatus of claim 42, wherein the configuration of the at least one processor to update includes configuration of the at least one processor:
    to define each updated aggressor base station to add to the second database of current aggressor base stations as a first set difference of the one or more interfering base stations and the second database of current aggressor base stations; and
    to define each non-aggressor base station to subtract from the second database of current aggressor base stations according to a second set difference of the second database of current aggressor base stations and the one or more interfering base stations.
  44. The apparatus of claim 43, wherein the configuration of the at least one processor to define the each non-aggressor base station includes configuration of the at least one processor to determine the each non-aggressor base station is defined within a detection window associated with the each non-aggressor base station.
  45. The non-transitory computer-readable medium of claim 44, wherein a duration of the detection window is configurable.
  46. The apparatus of claim 42, wherein the first set of aggressor base stations includes one of:
    all potential aggressor base stations of the first database of aggressor base stations; or
    a subset of potential aggressor base stations of the first database of aggressor base stations.
  47. The apparatus of claim 42, further including configuration of the at least one processor to monitor a set of resources for remote interference reference signals, wherein the set of resources are allocated according to one of:
    by the base station, wherein identification of the set of resources is transmitted to the each base station in the first set of aggressor base stations during execution of the configuration of the at least one processor to signal to transmit the remote interference reference signals; or
    a predefined set of resources associated with the each base station in the first set of aggressor base stations.
  48. The apparatus of any combination of claims 42-47.
PCT/CN2018/108213 2018-09-28 2018-09-28 Rim framework design WO2020061991A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108213 WO2020061991A1 (en) 2018-09-28 2018-09-28 Rim framework design

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108213 WO2020061991A1 (en) 2018-09-28 2018-09-28 Rim framework design

Publications (1)

Publication Number Publication Date
WO2020061991A1 true WO2020061991A1 (en) 2020-04-02

Family

ID=69950917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108213 WO2020061991A1 (en) 2018-09-28 2018-09-28 Rim framework design

Country Status (1)

Country Link
WO (1) WO2020061991A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379638A (en) * 2012-04-28 2013-10-30 上海交通大学 Method for distributing resources
WO2014023358A1 (en) * 2012-08-10 2014-02-13 Telecom Italia S.P.A. Uplink interference mitigation in heterogeneous mobile networks
US20180054270A1 (en) * 2016-08-19 2018-02-22 Samsung Electronics Co., Ltd. Apparatus and method for suppressing inter-cell interference in wireless communication system
US20180212693A1 (en) * 2017-01-24 2018-07-26 Corning Optical Communications Wireless Ltd Suppressing an uplink radio frequency (rf) interference signal(s) in a remote unit in a wireless distribution system (wds) using a correction signal(s) relative to the uplink rf interference signal(s)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379638A (en) * 2012-04-28 2013-10-30 上海交通大学 Method for distributing resources
WO2014023358A1 (en) * 2012-08-10 2014-02-13 Telecom Italia S.P.A. Uplink interference mitigation in heterogeneous mobile networks
US20180054270A1 (en) * 2016-08-19 2018-02-22 Samsung Electronics Co., Ltd. Apparatus and method for suppressing inter-cell interference in wireless communication system
US20180212693A1 (en) * 2017-01-24 2018-07-26 Corning Optical Communications Wireless Ltd Suppressing an uplink radio frequency (rf) interference signal(s) in a remote unit in a wireless distribution system (wds) using a correction signal(s) relative to the uplink rf interference signal(s)

Similar Documents

Publication Publication Date Title
US11963219B2 (en) DMTC window reservation signal in NR shared spectrum
EP3718273B1 (en) Subband based uplink access for nr-ss
EP3659380B1 (en) Rach configurations for nr shared spectrum
EP3586535B1 (en) Co-existence mechanisms for shared spectrum and unlicensed spectrum
AU2019217874B2 (en) PRACH configuration on NR-U
EP3682703B1 (en) Quasi-colocated antennas for lbt
CN112314042A (en) 5G new radio shared between priority access grants and general authorized access communications
EP3755111B1 (en) Spatial lbt with broadcast/multicast reception
KR102411070B1 (en) Timing Considerations for AUL-DFI
EP3539331B1 (en) Network discovery and synchronization for nr-ss
EP3861655A1 (en) Time varying code block group granularity for hybrid automatic receipt request processes in new radio-unlicensed operations
US10588159B2 (en) Contention window with spatial LBT
WO2020242756A1 (en) Synchronous communications mode detection for unlicensed spectrum
WO2018227558A1 (en) Signaling design for multiple aperiodic csi feedback
CN111903086B (en) Base station contention window update with AUL in TXOP
EP3925382A1 (en) Frequency division multiplex random access channel resource configuration and selection for new radio-unlicensed
WO2020061991A1 (en) Rim framework design

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935167

Country of ref document: EP

Kind code of ref document: A1