WO2020050233A1 - Ocular refractivity measuring device - Google Patents

Ocular refractivity measuring device Download PDF

Info

Publication number
WO2020050233A1
WO2020050233A1 PCT/JP2019/034495 JP2019034495W WO2020050233A1 WO 2020050233 A1 WO2020050233 A1 WO 2020050233A1 JP 2019034495 W JP2019034495 W JP 2019034495W WO 2020050233 A1 WO2020050233 A1 WO 2020050233A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
optical system
correction
refractive power
measurement
Prior art date
Application number
PCT/JP2019/034495
Other languages
French (fr)
Japanese (ja)
Inventor
通浩 滝井
大森 豊
Original Assignee
株式会社ニデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニデック filed Critical 株式会社ニデック
Priority to JP2020541217A priority Critical patent/JP7352198B2/en
Publication of WO2020050233A1 publication Critical patent/WO2020050233A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes

Definitions

  • the present disclosure relates to an eye-refractive-power measuring device that measures the eye refractive power of an eye to be examined.
  • the present disclosure has a technical problem to provide an eye refractive power measurement device capable of solving at least one problem of the related art when measuring an eye refractive power while wearing a refraction correcting device.
  • the present disclosure is characterized by having the following configuration.
  • An eye-refractive-power measuring device for measuring an eye refractive power of an eye to be inspected, comprising a measurement optical system for measuring the eye refractive power of the eye to be inspected, and a target for the eye to be inspected through a correction optical system provided on a main body side of the device. And a control means for controlling the eye-refractive-power measuring device, wherein the control means sets an overref value, which is an eye refractive power in a wearing state in which a refractive correction instrument is worn. Overref mode to be measured, controlling the correction optical system, a state corrected based on the overref value, and a non-correction state in which no additional correction is performed by the correction optical system on the wearing state. , And a comparison mode in which the subject compares the appearance of the optotype is executed.
  • FIG. 1 is a diagram illustrating an example of an external configuration of an eye refractive power measurement device according to a present embodiment. It is a figure showing an example of an optical system of an eye refractive power measuring device concerning this example.
  • 5 is a flowchart illustrating an example of an operation of the eye-refractive-power measuring device according to the embodiment.
  • FIG. 6 is a diagram illustrating an example of a measurement screen according to the embodiment. It is a figure showing an example of the picture which picturized temporary frame glasses.
  • an eye refractive power measuring apparatus 1 that objectively measures the eye refractive power of the eye E to be inspected will be described as an example.
  • the eye refractive power measuring device includes, for example, an auto-refractometer, an ocular aberrometer, and the like.
  • the eye refractive power measuring device 1 shown in FIG. 1 is a so-called stationary device.
  • the eye-refractive-power measuring device 1 mainly has a measuring unit 8.
  • the measuring unit 8 is provided with at least an optical system used when measuring the eye characteristics.
  • the eye refractive power measuring device 1 may be a hand-held device.
  • the eye-refractive-power measuring apparatus 1 further includes a base 2, a face support unit 4, a moving base 6, a driving unit 7, a joystick 9, and a display unit 70.
  • the moving table 6 is supported by the base 2.
  • the movable table 6 is moved on the base 2 in the vertical direction (Y direction) and the front-rear direction (Z direction) by operating the joystick 9.
  • a face support unit 4 is fixed to the base 2.
  • the face support unit 4 is used to support the face of the subject with the subject's eye E facing the measurement unit 8.
  • the driving unit 7 moves the measuring unit 8 in the left-right direction (X direction), the up-down direction (Y direction), and the front-back direction (Z direction) with respect to the eye E to be examined.
  • the measurement unit 8 is moved in the Y direction by the drive unit 7.
  • a switch 9b is provided on the top of the joystick 9, a switch 9b is provided.
  • the display unit 70 displays various information such as an observation image of the eye E captured by the measurement unit 8 and a measurement result of the eye E by the measurement unit 8.
  • the measuring unit 8 includes, for example, a measuring optical system 10, an observation optical system (imaging optical system) 50, a target presenting optical system 30, a ring target projecting optical system 45, a working distance target projecting optical system 46, and illumination.
  • a light source 48 is included in the measuring unit 8 of the eye refractive power measuring device 1 .
  • the measurement optical system 10 shown in FIG. 2 is used for measuring the eye refractive power of the eye to be examined.
  • the measurement axis of the measurement optical system 10 is the optical axis L1.
  • the measuring optical system 10 has a light projecting optical system 10a and a light receiving optical system 10b.
  • the light projecting optical system 10a projects the measurement light beam onto the fundus Er of the eye E through the pupil of the eye E.
  • the light receiving optical system 10b captures the fundus reflection light from the measurement light beam as a ring-shaped fundus reflection image with the two-dimensional imaging element 22 (an example of a detector).
  • the ring image may be a continuous ring image or an intermittent ring image (for example, an intermittent ring image with a plurality of points).
  • the light projecting optical system 10a includes a measurement light source 11, a relay lens 12, a hole mirror 13, and an objective lens 14.
  • the light receiving optical system 10b shares the hole mirror 13 and the objective lens 14 with the light projecting optical system 10a.
  • the light receiving optical system 10b includes a relay lens 16, a total reflection mirror 17, a light receiving aperture 18, a collimator lens 19, a ring lens 20, and a two-dimensional image sensor 22 (hereinafter, referred to as an "image sensor 22").
  • image sensor 22 two-dimensional image sensor 22
  • the ring lens 20 of the light receiving optical system 10b is an optical element for shaping the fundus reflection light into a ring shape.
  • the ring lens 20 has a lens portion formed in a ring shape, and a light shielding portion in which a region other than the lens portion has a light shielding coating.
  • the ring lens 20 has an optically conjugated positional relationship with the pupil of the eye E to be examined.
  • the ring-shaped fundus reflection light (that is, a two-dimensional pattern image) via the ring lens 20 is received by the image sensor 22.
  • the imaging element 22 outputs the received image information of the two-dimensional pattern image to the control unit 80. Accordingly, it is possible to display the two-dimensional pattern image on the display unit 70 or to calculate the refractive power of the eye E based on the two-dimensional pattern image.
  • a light receiving element such as an area CCD can be used as the imaging element 22.
  • the measurement optical system 10 is not limited to the above-described one, and various known configurations may be used as a configuration for objectively measuring the eye refractive power.
  • the measurement optical system 10 that objectively measures the eye refractive power may be an eye aberration measurement optical system that can measure the higher order aberrations of the subject's eye, including, for example, a Shack-Hartmann sensor. It may be a configuration.
  • other measurement type devices may be used (for example, a phase difference type device that projects a slit).
  • a beam splitter 29 is disposed between the objective lens 14 and the hall mirror 13.
  • the beam splitter 29 guides a light beam from a target presenting optical system 30 to be described later to the eye E, and guides reflected light from the anterior segment of the eye E to the observation optical system 50. Further, the beam splitter 29 reflects a part of the fundus reflection light emitted from the light source 11 and reflected by the fundus Er and guides it to the observation optical system 50, transmits other fundus reflection light, and transmits the other fundus reflection light to the light receiving optical system 10b. Lead to.
  • the optotype presenting optical system 30 is an optical system for presenting an optotype to the eye E to be inspected.
  • the optotype presenting optical system 30 shares the objective lens 14 of the observation optical system 50, and includes a light source 31 such as an LED and an optotype plate 32 disposed on an optical axis L ⁇ b> 5 coaxial with the optical axis L ⁇ b> 1 by a beam splitter 29. , A relay lens 33 and a reflection mirror 36. Further, the optotype presenting optical system 30 is shared with a correction optical system 60 for correcting the refractive power of the eye to be examined.
  • the optotype plate 32 includes a plurality of optotypes (fixation targets) 32a for performing fogging on the eye E at the time of measuring objective refractive power and a plurality of visual acuity test targets used at the time of measuring subjective refractive power. Marks 32b are arranged on concentric circles.
  • optotypes (acuity values of 0.1, 0.3,..., 1.5) for each visual acuity value are prepared.
  • the optotype plate 32 is rotated by a motor 37, and the optotypes 32a and 32b are switched and arranged on the optical axis L5 of the optotype presenting optical system 30.
  • Optotype luminous fluxes of the optotypes 32a and 32b illuminated by the light source 31 travel toward the eye E via optical members from the relay lens 33 to the beam splitter 29.
  • the light source 31 and the optotype plate 32 (the optotypes 32a and 32b) of the eye E to be examined are integrally moved by the driving section 62 in the direction of the optical axis L5.
  • the presenting position (presentation distance) of the optotype is optically changed from a long distance to a short distance.
  • the fog is applied to the eye E during objective refractive power measurement, and the spherical refractive power of the eye E is corrected during subjective refractive power measurement.
  • the objective lens 14, the relay lens 33, the light source 31, and the optotype plate 32 move to form the spherical power correcting optical system 61.
  • the optical system 61 for correcting the spherical power may be configured such that a relay lens movable in the optical axis direction is added to the optotype presenting optical system.
  • the optical system 63 for correcting astigmatism is disposed between the reflection mirror 36 and the relay lens 33.
  • the astigmatism correction optical system 63 includes two positive cylindrical lenses 64 (64a, 64b) having the same focal length.
  • the cylindrical lenses 64a and 64b are independently rotated about the optical axis L5 by driving the rotation mechanisms 65a and 65b, respectively. By rotating the two cylindrical lenses 64a and 64b, the astigmatism of the subject can be corrected.
  • the correction optical system 60 may have a configuration in which the correction lens is moved in and out of the optical path of the optotype presenting optical system.
  • a ring index projection optical system 45 and a working distance index projection optical system 46 which are examples of the alignment index projection optical system, are arranged in front of the anterior segment of the eye E.
  • the ring target projection optical system 45 is used to project the ring target on the central region of the cornea of the eye to be examined.
  • the ring target projection optical system 45 may be, for example, a projection optical system that projects the Meyer ring on the eye to be inspected.
  • the ring target projection optical system 45 projects infrared light (for example, near infrared light) onto the cornea Ec in a ring shape.
  • infrared light for example, near infrared light
  • a ring target image is formed on the cornea Ec.
  • the corneal vertex substantially corneal vertex
  • the ring index projected on the cornea may be used as an alignment index for performing alignment with the subject's eye. Further, the ring index may be used as an index for measuring a corneal shape.
  • the ring target projection optical system 45 may be used as an anterior segment illumination for illuminating the anterior segment of the eye E.
  • the working distance index projection optical system 46 is used, for example, to project an index for performing alignment in the working distance direction.
  • the alignment index projected on the cornea is used for alignment with the eye to be inspected (for example, automatic alignment, alignment detection, manual alignment, and the like).
  • the projection optical system 46a is an optical system for projecting a finite distance index on the cornea Ec of the eye E
  • the projection optical system 46b is an optical system for projecting an infinity index on the cornea Ec of the eye E. is there.
  • the working distance index projection optical system 46 uses, for example, infrared light (for example, near infrared light).
  • the working distance index projection optical system 46 is formed at a position deviating from the ring index, but is not limited to this.
  • an infinity index is projected on a cut portion of the ring index projection optical system 45.
  • a projection optical system may be provided, and alignment in the working distance direction may be performed using the ring index and the infinity index.
  • the illumination light source 48 may be used, for example, as a light source for illuminating an anterior ocular segment of a subject's eye in a state where a refraction correction instrument is worn.
  • the illumination light source 48 is disposed at a position set so as to avoid that the reflected light from the spectacle lens due to the illumination light is included in the anterior ocular segment image. Alignment with the eye to be examined can be performed smoothly.
  • the illumination light source 48 may be an infrared light source or a visible light source.
  • the illumination light source 48 may be arranged at a position inclined by 30 ° or more with respect to the measurement optical axis L1 of the measurement optical system 10.
  • the reflected image from the spectacle lens by the illumination light source 48 is formed at a position distant from the measurement optical axis L1, so that the reflected image is not included in the anterior ocular segment image or is included in the anterior ocular segment image. Even if it is included, it is formed around the anterior ocular segment image.
  • artifacts when performing alignment on the eye to be examined are reduced.
  • the central portion of the anterior ocular segment image does not include an artifact, and alignment with the cornea center, the pupil center, or the like becomes easy.
  • the observation optical system (imaging optical system) 50 has an imaging element 52 that captures a front image of the anterior segment of the eye E to be inspected.
  • the observation optical system 50 shares the objective lens 14 and the beam splitter 29 with the optotype presenting optical system 30.
  • the observation optical system 50 includes a half mirror 53, an imaging lens 51, and a two-dimensional imaging device 52 (hereinafter, referred to as “imaging device 52”).
  • the imaging element 52 is a light receiving element having an imaging surface arranged at a position substantially conjugate to the anterior segment of the eye E. With this imaging element 52, a front image of the anterior segment of the subject's eye E is captured.
  • the output from the image sensor 52 is input to the control unit 80.
  • the observation optical system 50 detects an alignment index image (in the present embodiment, a ring index and an infinity index) formed on the cornea Ec of the eye E by the index projection optical systems 45 and 46. Also serves as an optical system. The position of the alignment index image is detected based on the result of imaging of the alignment index image by the imaging element 52. Note that the observation optical system 50 can capture a front image of the anterior segment of the subject's eye in the wearing state illuminated by the illumination light source 48.
  • an alignment index image in the present embodiment, a ring index and an infinity index
  • the eye refractive power measuring device 1 is controlled by the control unit 80.
  • the control unit 80 is a processing device (processor) having an electronic circuit that performs control processing of each unit and arithmetic processing.
  • the control unit 80 is realized by a CPU (Central Processing Unit), a memory, and the like.
  • the control unit 80 is electrically connected to each of the light sources 11 and 31, the imaging devices 22 and 52, the movable base 6 and the drive unit 7, the joystick 9, the display unit 70, the operation unit 90, and the memory 105.
  • the memory 105 may be a rewritable nonvolatile storage device.
  • the memory 105 may store at least a program for causing the control unit 80 to execute the measurement operation.
  • the control unit 80 controls each member of the eye-refractive-power measuring device 1 based on an operation signal output from the operation unit 90.
  • the operation unit 90 may be a pointing device such as a touch panel or a mouse, or may be a keyboard or the like.
  • control unit 80 automatically or automatically sets a naked-eye reflex mode for measuring the eye refractive power in the naked eye state and an over-reflective mode for measuring the eye refractive power in a state in which the refraction correction device is worn. It may be possible to switch manually. For example, the control unit 80 may switch the measurement mode based on an operation signal from the operation unit 90.
  • the control unit 80 may perform the automatic alignment of the measurement unit 8 with respect to the subject's eye by controlling the driving unit 7 based on the detection result of the alignment state detected as described above. Further, the control unit 80 may notify a detection result of the alignment state detected as described above to the examiner (for example, the detection result may be electronically displayed on the display unit 70).
  • FIG. 3 is a flowchart illustrating the operation of the device according to the present embodiment.
  • the wearing state is, for example, a state in which a spectacle lens is disposed in front of the eye via a spectacle frame, a state in which a contact lens is disposed in front of the eye, or the like.
  • the control unit 80 measures the subject's eye in the state of the naked eye without wearing the refractive component instrument.
  • the examiner operates the operation unit 90 to set the mode to the naked eye mode (normal mode).
  • the naked eye mode for example, a ring index by the ring index projection optical system 45 and an index by the working distance index projection optical system 46 are projected on the eye to be examined.
  • the ring index is used for anterior segment illumination and alignment detection.
  • the examiner fixes the face of the subject to the face support unit 4 and instructs the subject to fixate on the fixation target 32a of the target plate 32.
  • alignment of the measurement unit 8 in the X, Y, and Z directions with respect to the subject's eye is performed.
  • the examiner operates the joystick 9 and the rotary knob 9a while observing the display unit 70 to perform rough alignment.
  • automatic alignment may be performed using a camera or the like that can photograph the face of the subject in a wide range.
  • the control unit 80 causes the display unit 70 to display an observation image of the anterior eye taken through the observation optical system 50 as needed (see FIG. 4). That is, the display unit 70 displays a front image (live image) of the anterior segment photographed substantially in real time.
  • the reticle mark LT indicates the position of the measurement axis in the measurement section 8 (in this embodiment, the measurement optical axis L1 of the measurement optical system 10).
  • the control unit 8090 By controlling the driving of the drive unit 7 based on the imaging signal from the imaging element 52, the measuring unit 8 is moved in the XY direction or the Z direction, and the detailed alignment of the measuring unit 8 with respect to the eye to be inspected is performed.
  • the control unit 80 calculates the coordinates of the center position of the ring index image detected by the imaging element 52 to obtain the alignment state in the up, down, left, and right directions with respect to the subject's eye.
  • the corneal center position can be obtained by detecting the center position of the ring index image.
  • the control unit 80 changes the image interval of the finite distance index while the image interval of the infinity index hardly changes. Using this characteristic, an alignment state in the working distance direction with respect to the eye to be examined is determined (for details, see Japanese Patent Application Laid-Open No. 6-46999).
  • the configuration and the detection method for the alignment detection in the Z direction are not limited to the above, and for example, the degree of blurring of the ring index image or the like may be used.
  • reflex measurement is performed.
  • the measurement light from the measurement light source 11 is projected on the fundus via the measurement optical system 10, and the fundus reflection light by the measurement light is received by the imaging device 22 via the measurement optical system 10.
  • a preliminary measurement of the eye refractive power is performed.
  • the light source 31 and the optotype plate 32 are moved in the direction of the optical axis L5, so that the subject's eye is fogged.
  • the eye refractive power is measured for the fogged eye.
  • the control unit 80 obtains the eye refractive power by processing the output signal from the image sensor 22.
  • An output signal from the image sensor 22 is stored in the memory 105 as image data (measurement image).
  • the control unit 80 specifies the position of the ring image for each meridian of the ring based on the image data stored in the memory 105.
  • the control unit 80 approximates the ellipse using the least squares method or the like based on the image position of the specified ring image.
  • the control unit 80 obtains the refraction error in each meridian direction from the approximated elliptical shape, and based on this, the eye refraction value (S (spherical power), C (column power), and A (astigmatism) of the eye E to be examined. Axis angle)). Then, the measurement result is displayed on the display unit 70. Further, the control unit 80 may store the measurement result of the eye refraction value or the like in the memory 105. In this case, the control unit 80 may display a determination display 71 indicating that the subject's eye in the naked eye state has been measured, together with the measurement result.
  • control unit 80 When measuring the eye refractive power of the eye to be examined in the naked eye state, the control unit 80 further measures the corneal shape of the eye to be examined based on the ring index and displays the measurement result of the corneal shape on the display unit 70. You may do so.
  • the examiner When measuring the eye to be examined while wearing the refraction correcting device, the examiner operates the operation unit 90 to set the overref mode.
  • the over-reflection mode for example, the projection of the ring index by the ring index projection optical system 45 and the index by the working distance index projection optical system 46 is limited, and the illumination light from the illumination light source 48 is projected onto the eye to be examined. In this case, only the projection of the ring index may be limited. Illumination light from the illumination light source 48 is used, for example, for observing an anterior eye image, and alignment is performed on the subject's eye using the anterior eye image. In the following description, the same parts as those in the naked eye mode will not be specifically described.
  • control unit 8090 controls the drive of the drive unit 7 based on the image signal from the image sensor 52 to perform measurement.
  • the unit 8 is moved in the XY direction or the Z direction to perform detailed alignment of the measuring unit 8 with respect to the eye to be inspected.
  • the control unit 80 analyzes the pupil imaged by the image sensor 52 by image processing, calculates the position of the pupil, and obtains the alignment state in the vertical and horizontal directions with respect to the eye to be examined.
  • the control unit 80 uses the characteristic that the anterior eye image (for example, the pupil) is blurred when the measurement unit 8 is displaced from the eye in the Z (working distance) direction, and The alignment state of the measuring unit 8 in the working distance direction may be obtained. For example, the control unit 80 moves the measuring unit 8 in the Z direction, acquires an evaluation value of the edge (blur condition) of the anterior eye image at each Z position, and measures a position having a high evaluation value as an appropriate position. The unit 8 may be moved.
  • the anterior eye image for example, the pupil
  • the alignment state of the measuring unit 8 in the working distance direction may be obtained. For example, the control unit 80 moves the measuring unit 8 in the Z direction, acquires an evaluation value of the edge (blur condition) of the anterior eye image at each Z position, and measures a position having a high evaluation value as an appropriate position.
  • the unit 8 may be moved.
  • reflex measurement is performed.
  • the measurement light from the measurement light source 11 is projected onto the fundus through the measurement optical system 10 and the refraction correction device ML, and the fundus reflection light of the measurement light is imaged through the refraction correction device ML and the measurement optical system 10.
  • the light is received by the element 22.
  • a preliminary measurement of the eye refractive power is performed, and thereafter, the measurement of the eye refractive power is performed on the eye to which the fogging is applied.
  • the control unit 80 calculates the eye refraction value of the eye to be inspected based on the imaging result of the imaging element 22, and displays the measurement result on the display unit 70.
  • the control unit 80 may store the measurement result of the eye refraction value in the memory 105.
  • the control unit 80 may display a discrimination display 72 indicating that the eye to be inspected in a state where the refraction correction instrument is worn is measured, together with the measurement result.
  • the measurement mode is switched based on the operation signal from the operation unit 90.
  • the present invention is not limited to this, and the measurement mode may be automatically switched.
  • the control unit 80 may switch the measurement mode based on an imaging signal output from the observation optical system 50.
  • the control unit 80 may determine whether or not the refraction correction instrument is worn based on the imaging signal output from the observation optical system 50, and switch the measurement mode based on the determination result.
  • the control unit 80 determines that there is a spectacle lens, sets an overref mode, and sets a predetermined value in the anterior ocular segment image.
  • the area of the pixel exceeding the threshold value falls below the allowable range, it may be determined that there is no spectacle lens and the naked eye mode may be set.
  • the edge of the contact lens may be detected from the anterior segment image captured by the image sensor 52, and the presence or absence of the contact lens may be determined based on the presence or absence of the edge.
  • the method of determining whether or not the refraction correction device is worn is not limited to this.
  • the control unit 80 determines whether or not there is a spectacle frame imaged by the imaging device 52 during alignment by performing image processing. The measurement mode may be switched based on the result. Further, the control unit 80 may determine whether or not there is a lens reflection in the central region of the image captured by the image sensor 52.
  • a spectacle frame may be detected by a face photographing unit capable of photographing a face including both eyes of the subject, and the wearing state of the subject's eye may be determined.
  • the control unit 80 may display the naked-eye reflex value (the reflex value measured in the naked-eye mode) and the over-reflection value (the reflex value measured in the over-reflective mode) on the display unit 70 for comparison.
  • the control unit 80 may display the spherical power (S), the astigmatic power (C), and the astigmatic axis (A) measured in each measurement mode.
  • the control unit 80 can indicate a guideline as to whether or not the wearing state of the refractive correction instrument is appropriate. For example, if the correct refraction instrument is worn, the overref value should be 0D (diopter).
  • the control unit 80 may notify the examiner that the power of the refraction correction instrument is not correct. For example, the control unit 80 may display a warning on the display unit 70 or the like. In this case, the examiner proposes to the subject to change the power of the refractive correction instrument.
  • the threshold value of the overref value when notifying the examiner may be set in advance by the examiner.
  • the control unit 80 sets the naked eye reflex value 73, the overref value 74, the correction instrument frequency 75, May be displayed side by side on the screen of the display unit 70.
  • the control unit 80 may acquire the correction instrument frequency 75 based on the input to the operation unit 90 by the examiner, or may acquire the correction instrument frequency 75 by being transferred from an external device such as a lens meter.
  • the control unit 80 may acquire the refraction power written on the temporary frame glasses VM by recognizing the refractive power with a camera.
  • control unit 80 uses the image sensor 52 of the observation optical system 50 or the face photographing unit 5 that photographs the face image 500 including both eyes of the subject, and the like. 510 may be recognized (see FIG. 5).
  • control unit 80 may function as a frequency acquisition unit that acquires the correction appliance frequency 75.
  • the control unit 80 compares the naked-eye reflex value 73, the over-reflex value 74, and the corrective instrument frequency 75 to determine whether the currently worn refractive corrective instrument is appropriate. It may be determined. For example, the control unit 80 may detect the abnormality of the refraction correction device based on the difference K between the naked-eye reflex value 73 and the correction device frequency 75 and the difference Q between the difference K and the overref value 74.
  • the difference K between the powers of the eye to be inspected and the refractive instrument (the naked eye reflex value 73 and the power of the corrective instrument 75), and the frequency of the simultaneous measurement of the eye to be inspected and the refraction instrument in the overreflection mode (overref) Values) are the same, so the difference Q should be 0D. Therefore, when the difference Q is not 0D or when the difference Q is larger than a certain threshold value, the control unit 80 may notify the examiner that fitting of glasses or the like may be bad. For example, the control unit 80 may display a warning on the display unit 70. In this case, for example, the examiner adjusts the nose pad or the temple of the glasses.
  • the threshold value of the overref value when notifying the examiner may be set in advance by the examiner.
  • the control unit 80 may display the difference between the naked-eye reflex value 73 and the overref value 74 as the corrective instrument frequency 75. Thereby, the examiner can know the standard of the refraction power of the refraction correction instrument currently worn.
  • the control unit 80 executes the comparison mode in the overref mode.
  • the comparison mode is a mode in which the subject is compared between the appearance of the currently used refraction correction instrument and the appearance of the appropriate refraction correction instrument.
  • the control unit 80 controls the correction optical system 60 such that the correction state is based on the overref value.
  • the control unit 80 moves the fixation target 32a to a position where the fixation is performed at the spherical power of the overref value (-0.25D in the example of FIG. 4), and the astigmatic power of the overref value (FIG.
  • the cylindrical lens 64 is rotated so as to be in a state corrected by -0.25D) and the astigmatic axis (180 degrees in the example of FIG. 4).
  • the subject can experience how the optotype looks while wearing the appropriate corrective refraction instrument.
  • the cylindrical lens 64 is driven such that the astigmatism degree of the astigmatism correction optical system 63 becomes 0D.
  • the control unit 80 sets a state in which the correction is performed by the correction optical system 60 based on the overref value and a non-correction state in which the correction by the correction optical system 60 is released (that is, the refraction state). (A state in which additional correction is not performed by the correction optical system 60 with respect to the correction state by the correction tool). This allows the subject to compare the appearance with the appropriate refraction correction instrument with the appearance with the currently used refraction correction instrument.
  • the eye-refractive-power measuring apparatus can effectively utilize the overref value measured in the overref mode, which is measured in a state where the refraction correction instrument is worn.
  • the control unit 80 may perform various measurements in a state where the subject wears the refraction correction device.
  • the control unit 80 may perform subjective measurement while wearing a refraction correction device.
  • the control unit 80 presents the optotype of the optotype presenting optical system to the subject's eye in the wearing state.
  • the control unit 80 presents a visual acuity test target 32b such as a Landolt's ring to the subject's eye.
  • the examiner operates the operation unit 90 to switch the visual acuity value of the visual target while checking the appearance of the subject, and obtains the maximum visual acuity of the subject.
  • the control unit 80 may display a determination display indicating that the eye to be examined in the wearing state has been measured, together with the measurement result.
  • the control unit 80 may measure the accommodation power of the subject's eye while wearing the refraction correcting device. In this case, the control unit 80 objectively or subjectively measures the accommodation power. When measuring objectively, for example, the control unit 80 measures the refractive power by the measuring optical system 10 while gradually approaching the target presentation position by the correction optical system 60. By analyzing the accommodation power of the current refraction corrector based on this measurement result, a guideline such as eye fatigue can be shown. In the case of subjective measurement, the control unit 80 can present a near target and change the power to experience the power that does not cause fatigue.
  • the control unit 80 may execute the addition comparison mode while wearing the refraction correcting device.
  • the addition comparison mode is, for example, a measurement mode that allows the subject to confirm the difference in appearance due to the presence or absence of the addition by switching between a state where the addition is added and a non-subscription state where the addition is not added.
  • the control unit 80 presents the target 32a at a nearby presentation position (for example, a presentation position of 35 cm) to the subject wearing the refraction correction instrument, and a correction state based on the overref value, and
  • the presentation position of the optotype 32a is switched by moving the optotype presenting optical system to a state where a predetermined addition power is added thereto.
  • the addition frequency may be changed based on an input to the operation unit 90.
  • the comparison button 90a When the comparison button 90a is pressed after the addition is set, a state where the addition is added and a state where the addition is not added are switched.
  • the subject can confirm the usefulness of the multifocal lens or the progressive lens with added power.
  • the addition may be set based on an objective measurement result such as accommodation power measurement.
  • the control unit 80 may measure the adjustment tension parameter while wearing the refraction correcting device. Thereby, the control unit 80 may quantify the degree of comfort of the refraction corrector currently worn. For example, the control unit 80 changes the presenting position of the optotype stepwise from far to near, measures the refracting power at each of the presenting positions of the optotype in a short cycle (for example, 12 Hz), and measures the refraction at that time. Measure power fluctuations. Fluctuation is small in a normal (comfortable) state, but in a state with eye strain, fluctuation of the refractive power occurs. Therefore, the control unit 80 can indicate the degree of comfort of the refraction correction instrument currently worn by digitizing the fluctuation.
  • the control unit 80 changes the correction state under the control of the correction optical system 60, creates a state corrected with a refractive power different from the refractive correction instrument worn by the subject, and measures the adjustment tension parameter. You may.
  • the control unit 80 may compare the appearance with the naked eye in the comparison mode. For example, the control unit 80 corrects the appearance so as to be able to compare the three appearances, that is, the appearance with the currently worn refraction correction instrument, the appearance with the appropriate refraction correction instrument, and the appearance with the naked eye.
  • the optical system 60 may be controlled. In this case, the control unit 80 switches the correction state between a non-correction state, a state corrected based on the overref value, and a state in which the correction tool frequency 75 is subtracted (cancelled). This allows the subject to correct the difference between the appearance of the naked eye with the current refraction instrument and the appearance of the naked eye with the appropriate refraction instrument. You can experience it virtually without removing the equipment.
  • the control unit 80 may determine whether the refraction correction device worn by the subject has a light blocking function. In this case, the control unit 80 may determine the presence or absence of the light blocking function by analyzing images acquired by the face photographing unit 5, the observation optical system 50, the measurement optical system 10, and the like. For example, when a face image captured by the face capturing unit 5 is used, the presence or absence of the light blocking function may be determined based on the brightness, contrast, edge, or the like of the peripheral area of the subject's eye on the face image.
  • the peripheral region of the subject's eye is, for example, a portion that has passed through a lens of an eye refraction corrector having a light blocking function.
  • control unit 80 may determine the presence or absence of the light blocking function based on whether the brightness, contrast, or edge of the peripheral area of the subject's eye satisfies a predetermined condition. For example, when the brightness, contrast, or edge of the peripheral area of the subject's eye in the face image is smaller than a predetermined value, the control unit 80 determines that the refraction correction device has a light blocking function, and the contrast or edge is larger than the predetermined value. In such a case, it may be determined that the refraction correcting device does not have the light shielding performance.
  • the control unit 80 determines whether or not the brightness, contrast, or edge of the anterior ocular segment image is sunglasses based on whether or not a predetermined condition is satisfied. May be determined.
  • the control unit 80 determines whether or not the brightness, contrast, or edge of the ring image satisfies a predetermined condition. It may be determined whether the device has a light blocking function. For example, when the subject wears sunglasses, the brightness, contrast, or edge of the ring image is reduced. Therefore, when the brightness, contrast, or edge of the ring image is smaller than the predetermined value, the control unit 80 may determine that the corrective refraction instrument has a light blocking function.
  • the control unit 80 may determine whether or not the user is wearing a refraction correction device using an infrared cut lens or a blue light cut lens.
  • the infrared cut lens or blue light cut lens has a light blocking function such as infrared cut or blue light cut. Even when light of a specific wavelength is cut by an infrared cut lens, a blue light cut lens, or the like, the luminance of a face image, an anterior segment image, a measurement image, or the like decreases. Therefore, similarly to the above-described determination of the light-shielding function, the control unit 80 determines whether the refraction correction instrument has an infrared cut lens or a blue light cut based on luminance information such as a subject's face image, anterior eye image, and measured image. It may be determined whether or not a lens is used.
  • the control unit 80 may increase the amount of measurement light or alignment light when determining that the refraction correction device worn by the subject has a light blocking function. For example, when the subject wears sunglasses, the alignment light or the measurement light is blocked by the sunglasses, and the brightness of the anterior eye image or the measurement image decreases. For this reason, the controller 80 may increase the light amount of the alignment light or the measurement light in consideration of the fact that the alignment light or the measurement light is blocked by the sunglasses. Thus, even if the alignment light or the measurement light is blocked by sunglasses or the like, it may be possible to prevent the analysis of the anterior eye image or the measurement image from being hindered.
  • control unit 80 may correct the measurement result in consideration of the wavelength of the measurement light. For example, the control unit 80 may perform correction so that the refractive power becomes larger when the measurement is performed using the measurement light having a longer wavelength than when the measurement is performed using the measurement light having a shorter wavelength.
  • comparison button 90a may be arranged on the subject side so that the subject himself can operate the button, or the comparison button 90a may be automatically switched at regular intervals instead of the button operation. Further, LEDs or the like of different colors may be turned on at a position visible from the subject's eye so as to recognize that the switching has been performed, or an explanation may be given to the subject using a voice guide.
  • the eye refractive power measuring device an eye refractive power measuring device that objectively measures the eye refractive power of the eye to be inspected is exemplified, but the present invention is not limited to this.
  • the present embodiment is also applicable to an eye refractive power measuring device that performs subjective measurement.
  • the present embodiment is also applicable to a binocular open type optometry apparatus as disclosed in Japanese Patent Application Laid-Open No. 2018-38788.

Abstract

Provided is an ocular refractivity measuring device capable of solving at least one problem in the conventional art with regard to measuring ocular refractivity while a refraction correcting mechanism is worn. An ocular refractivity measuring device according to the present disclosure is provided with: a measurement optical system for measuring the ocular refractivity of an eye to be inspected; a visual target presentation optical system for presenting a visual target to the eye to be inspected via a correction optical system provided on the device main body side; and a control means for controlling the ocular refractivity measuring device, wherein the control means implements: an over-refraction mode for measuring an over-refraction value which is a refractivity value in a worn state of a refractivity correction instrument; and a comparison mode for comparing how the visual target appears to a person to be inspected when in a corrected state, in which the correction optical system is controlled, and the visual target is corrected on the basis of the over-reaction value, and when in a non-corrected state, in which additional correction is not performed on the worn state by the correction optical system, by switching between the states.

Description

眼屈折力測定装置Eye refractive power measuring device
 本開示は、被検眼の眼屈折力を測定する眼屈折力測定装置に関する。 The present disclosure relates to an eye-refractive-power measuring device that measures the eye refractive power of an eye to be examined.
 被検眼の眼屈折力を測定する眼屈折力測定装置としては、眼鏡装用状態で眼屈折力を測定することを想定した装置が提案されている(例えば、特許文献1参照)。 As an eye-refractive-power measuring device for measuring the eye-refractive power of the eye to be examined, an apparatus has been proposed which assumes that the eye-refractive power is measured while wearing eyeglasses (for example, see Patent Document 1).
特開2001-161644号公報JP 2001-161644 A
 ところで、従来の屈折力測定装置は、屈折矯正器具を装用した状態での測定データをどのように用いるかという点が確立されていなかった。例えば、新しい屈折矯正器具の必要性を被検者に感じさせることができていなかった。 However, in the conventional refractive power measuring device, it has not been established how to use the measurement data in a state in which the refractive correction instrument is worn. For example, subjects have not been able to feel the need for new refractive instruments.
 本開示は、屈折矯正器具を装用した状態での眼屈折力の測定に際し、従来技術の少なくとも1つの問題点を解決可能な眼屈折力測定装置を提供することを技術課題とする。 開 示 The present disclosure has a technical problem to provide an eye refractive power measurement device capable of solving at least one problem of the related art when measuring an eye refractive power while wearing a refraction correcting device.
 上記課題を解決するために、本開示は以下のような構成を備えることを特徴とする。 た め In order to solve the above problems, the present disclosure is characterized by having the following configuration.
 被検眼の眼屈折力を測定する眼屈折力測定装置であって、被検眼の眼屈折力を測定する測定光学系と、装置本体側に設けられた矯正光学系を介して被検眼に視標を呈示する視標呈示光学系と、前記眼屈折力測定装置を制御する制御手段と、を備え、前記制御手段は、屈折矯正器具を装用した装用状態での眼屈折力であるオーバーレフ値を測定するオーバーレフモードと、前記矯正光学系を制御し、前記オーバーレフ値に基づいて矯正された状態と、前記装用状態に対して前記矯正光学系による追加的な矯正を行わない非矯正状態と、を切り換えることによって、被検者に前記視標の見え方を比較させる比較モードと、を実行することを特徴とする。 An eye-refractive-power measuring device for measuring an eye refractive power of an eye to be inspected, comprising a measurement optical system for measuring the eye refractive power of the eye to be inspected, and a target for the eye to be inspected through a correction optical system provided on a main body side of the device. And a control means for controlling the eye-refractive-power measuring device, wherein the control means sets an overref value, which is an eye refractive power in a wearing state in which a refractive correction instrument is worn. Overref mode to be measured, controlling the correction optical system, a state corrected based on the overref value, and a non-correction state in which no additional correction is performed by the correction optical system on the wearing state. , And a comparison mode in which the subject compares the appearance of the optotype is executed.
 本開示によれば、屈折矯正器具を装用した状態での眼屈折力の測定データを有効に利用できる。 According to the present disclosure, it is possible to effectively use the measurement data of the eye refractive power in a state where the refractive correction device is worn.
本実施例に係る眼屈折力測定装置の外観構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of an external configuration of an eye refractive power measurement device according to a present embodiment. 本実施例に係る眼屈折力測定装置の光学系の一例を示す図である。It is a figure showing an example of an optical system of an eye refractive power measuring device concerning this example. 本実施例に係る眼屈折力測定装置の動作の一例を示すフローチャートである。5 is a flowchart illustrating an example of an operation of the eye-refractive-power measuring device according to the embodiment. 本実施例に係る測定画面の一例を示す図である。FIG. 6 is a diagram illustrating an example of a measurement screen according to the embodiment. 仮枠眼鏡を撮影した画像の一例を示す図である。It is a figure showing an example of the picture which picturized temporary frame glasses.
 <実施例>
 以下、図面を参照しつつ、本開示に係る実施例を説明する。以下の実施例では、一例として、被検眼Eの眼屈折力を他覚的に測定する眼屈折力測定装置1を例示する。なお、眼屈折力測定装置としては、例えば、オートレフラクトメータ、眼収差計などが含まれる。
<Example>
Hereinafter, embodiments according to the present disclosure will be described with reference to the drawings. In the following embodiments, an eye refractive power measuring apparatus 1 that objectively measures the eye refractive power of the eye E to be inspected will be described as an example. The eye refractive power measuring device includes, for example, an auto-refractometer, an ocular aberrometer, and the like.
 まず、図1を参照して、眼屈折力測定装置1の外観構成の一例を示す。図1に示す眼屈折力測定装置1は、いわゆる据え置き型の装置である。眼屈折力測定装置1は、主に、測定部8を有する。詳細は後述するが、測定部8には、眼特性を測定する際に利用される光学系が少なくとも設けられている。なお、眼屈折力測定装置1は、手持ち型の装置であってもよい。 First, an example of an external configuration of the eye-refractive-power measuring device 1 will be described with reference to FIG. The eye refractive power measuring device 1 shown in FIG. 1 is a so-called stationary device. The eye-refractive-power measuring device 1 mainly has a measuring unit 8. As will be described in detail later, the measuring unit 8 is provided with at least an optical system used when measuring the eye characteristics. Note that the eye refractive power measuring device 1 may be a hand-held device.
 また、図1の例において、眼屈折力測定装置1は、基台2と、顔支持ユニット4と、移動台6と、駆動部7と、ジョイスティック9と、表示部70と、を更に有する。 In addition, in the example of FIG. 1, the eye-refractive-power measuring apparatus 1 further includes a base 2, a face support unit 4, a moving base 6, a driving unit 7, a joystick 9, and a display unit 70.
 移動台6は、基台2によって支持されている。移動台6は、ジョイスティック9の操作により、基台2上を上下方向(Y方向)及び前後方向(Z方向)に移動される。また、基台2には、顔支持ユニット4が固定されている。顔支持ユニット4は、図1に示すように、被検眼Eを測定部8に対向させた状態で被検者の顔を支持するために利用される。駆動部7は、測定部8を、被検眼Eに対して左右方向(X方向)、上下方向(Y方向)及び前後方向(Z方向)に移動させる。ジョイスティック9に設けられた回転ノブ9aを、検者が回転することによって、測定部8は駆動部7によってY方向に移動される。また、ジョイスティック9の頂部には、スイッチ9bが設けられている。表示部70は、測定部8において撮影された被検眼Eの観察像および測定部8による被検眼Eの測定結果等、の各種情報が表示される。 The moving table 6 is supported by the base 2. The movable table 6 is moved on the base 2 in the vertical direction (Y direction) and the front-rear direction (Z direction) by operating the joystick 9. A face support unit 4 is fixed to the base 2. As shown in FIG. 1, the face support unit 4 is used to support the face of the subject with the subject's eye E facing the measurement unit 8. The driving unit 7 moves the measuring unit 8 in the left-right direction (X direction), the up-down direction (Y direction), and the front-back direction (Z direction) with respect to the eye E to be examined. When the examiner rotates the rotation knob 9 a provided on the joystick 9, the measurement unit 8 is moved in the Y direction by the drive unit 7. On the top of the joystick 9, a switch 9b is provided. The display unit 70 displays various information such as an observation image of the eye E captured by the measurement unit 8 and a measurement result of the eye E by the measurement unit 8.
 次に、図2を参照して、眼屈折力測定装置1の測定部8が有する光学系を説明する。測定部8は、例えば、測定光学系10と、観察光学系(撮像光学系)50と、視標呈示光学系30と、リング指標投影光学系45と、作動距離指標投影光学系46と、照明光源48と、を備える。 Next, an optical system included in the measuring unit 8 of the eye refractive power measuring device 1 will be described with reference to FIG. The measuring unit 8 includes, for example, a measuring optical system 10, an observation optical system (imaging optical system) 50, a target presenting optical system 30, a ring target projecting optical system 45, a working distance target projecting optical system 46, and illumination. A light source 48.
 図2に示す測定光学系10は、被検眼の眼屈折力を測定するために用いられる。測定光学系10の測定軸は、光軸L1である。測定光学系10は、投光光学系10aと、受光光学系10bと、を有する。投光光学系10aは、被検眼Eの瞳孔を介して被検眼Eの眼底Erに測定光束を投影する。また、受光光学系10bは、測定光束による眼底反射光をリング状の眼底反射像として二次元撮像素子22(検出器の一例)で撮像する。リング像は、連続的なリング像であってもよいし、間欠的なリング像(例えば、複数の点による間欠的なリング像)であってもよい。 測定 The measurement optical system 10 shown in FIG. 2 is used for measuring the eye refractive power of the eye to be examined. The measurement axis of the measurement optical system 10 is the optical axis L1. The measuring optical system 10 has a light projecting optical system 10a and a light receiving optical system 10b. The light projecting optical system 10a projects the measurement light beam onto the fundus Er of the eye E through the pupil of the eye E. Further, the light receiving optical system 10b captures the fundus reflection light from the measurement light beam as a ring-shaped fundus reflection image with the two-dimensional imaging element 22 (an example of a detector). The ring image may be a continuous ring image or an intermittent ring image (for example, an intermittent ring image with a plurality of points).
 例えば、投光光学系10aは、測定光源11と、リレーレンズ12と、ホールミラー13と、対物レンズ14と、を含む。受光光学系10bは、ホールミラー13と、対物レンズ14と、を投光光学系10aと共用している。また、受光光学系10bは、リレーレンズ16と、全反射ミラー17と、受光絞り18と、コリメータレンズ19と、リングレンズ20と、二次元撮像素子22(以下、「撮像素子22」と称す)と、を含む。これらの測定光学系10は、図2の例では、ビームスプリッタ29の透過方向に設けられている。 For example, the light projecting optical system 10a includes a measurement light source 11, a relay lens 12, a hole mirror 13, and an objective lens 14. The light receiving optical system 10b shares the hole mirror 13 and the objective lens 14 with the light projecting optical system 10a. The light receiving optical system 10b includes a relay lens 16, a total reflection mirror 17, a light receiving aperture 18, a collimator lens 19, a ring lens 20, and a two-dimensional image sensor 22 (hereinafter, referred to as an "image sensor 22"). And These measuring optical systems 10 are provided in the transmission direction of the beam splitter 29 in the example of FIG.
 受光光学系10bのリングレンズ20は、眼底反射光をリング状に整形するための光学素子である。リングレンズ20は、リング状に形成されたレンズ部と、レンズ部以外の領域に遮光用のコーティングを施した遮光部と、を有している。また、リングレンズ20は、被検眼Eの瞳孔と光学的に共役な位置関係となっている。リングレンズ20を介したリング状の眼底反射光(即ち、二次元パターン像)は、撮像素子22で受光される。撮像素子22は、受光した二次元パターン像の画像情報を、制御部80に出力する。これによって、二次元パターン像を表示部70に表示させたり、二次元パターン像に基づいて被検眼Eの屈折力を算出させたりすることが可能となる。なお、撮像素子22としては、エリアCCD等の受光素子を用いることができる。 The ring lens 20 of the light receiving optical system 10b is an optical element for shaping the fundus reflection light into a ring shape. The ring lens 20 has a lens portion formed in a ring shape, and a light shielding portion in which a region other than the lens portion has a light shielding coating. The ring lens 20 has an optically conjugated positional relationship with the pupil of the eye E to be examined. The ring-shaped fundus reflection light (that is, a two-dimensional pattern image) via the ring lens 20 is received by the image sensor 22. The imaging element 22 outputs the received image information of the two-dimensional pattern image to the control unit 80. Accordingly, it is possible to display the two-dimensional pattern image on the display unit 70 or to calculate the refractive power of the eye E based on the two-dimensional pattern image. Note that a light receiving element such as an area CCD can be used as the imaging element 22.
 なお、測定光学系10は、上記のものに限られるものではなく、眼屈折力を他覚的に測定するための構成として、種々の周知の構成が用いられてもよい。また、眼屈折力を他覚的に測定する測定光学系10としては、被検眼の高次収差を含めて測定可能な眼収差測定光学系であってもよく、例えば、シャックハルトマンセンサーを備えた構成であってもよい。もちろん、他の測定方式の装置が利用されてもよい(例えば、スリットを投影する位相差方式の装置)。 The measurement optical system 10 is not limited to the above-described one, and various known configurations may be used as a configuration for objectively measuring the eye refractive power. Further, the measurement optical system 10 that objectively measures the eye refractive power may be an eye aberration measurement optical system that can measure the higher order aberrations of the subject's eye, including, for example, a Shack-Hartmann sensor. It may be a configuration. Of course, other measurement type devices may be used (for example, a phase difference type device that projects a slit).
 対物レンズ14とホールミラー13との間には、ビームスプリッタ29が配置されている。ビームスプリッタ29は、後述の視標呈示光学系30からの光束を被検眼Eに導き、被検眼Eの前眼部からの反射光を観察光学系50に導く。また、ビームスプリッタ29は、光源11から出射され、眼底Erで反射された眼底反射光の一部を反射し、観察光学系50へ導くと共に、他の眼底反射光を透過し、受光光学系10bへと導く。 ビ ー ム A beam splitter 29 is disposed between the objective lens 14 and the hall mirror 13. The beam splitter 29 guides a light beam from a target presenting optical system 30 to be described later to the eye E, and guides reflected light from the anterior segment of the eye E to the observation optical system 50. Further, the beam splitter 29 reflects a part of the fundus reflection light emitted from the light source 11 and reflected by the fundus Er and guides it to the observation optical system 50, transmits other fundus reflection light, and transmits the other fundus reflection light to the light receiving optical system 10b. Lead to.
 視標呈示光学系30は、被検眼Eに視標を呈示するための光学系である。視標呈示光学系30は、観察光学系50の対物レンズ14が共用され、ビームスプリッタ29により光軸L1と同軸にされた光軸L5上に配置されたLED等の光源31,視標板32,リレーレンズ33、反射ミラー36を含む。また、視標呈示光学系30は被検眼の屈折力を矯正するための矯正光学系60と共用される。 The optotype presenting optical system 30 is an optical system for presenting an optotype to the eye E to be inspected. The optotype presenting optical system 30 shares the objective lens 14 of the observation optical system 50, and includes a light source 31 such as an LED and an optotype plate 32 disposed on an optical axis L <b> 5 coaxial with the optical axis L <b> 1 by a beam splitter 29. , A relay lens 33 and a reflection mirror 36. Further, the optotype presenting optical system 30 is shared with a correction optical system 60 for correcting the refractive power of the eye to be examined.
 視標板32には、他覚屈折力測定時に被検眼Eに雲霧を行うための視標(固視標)32aと、自覚屈折力測定時に使用される視力検査用視標を含む複数の視標32bが同心円上に配置されている。視力検査視標は、視力値毎の視標(視力値0.1、0.3、・・・、1.5)が用意されている。視標板32はモータ37によって回転され、視標32a,32bが視標呈示光学系30の光軸L5上に切換え配置される。光源31によって照明された視標32a,32bの視標光束は、リレーレンズ33からビームスプリッタ29までの光学部材を介して被検眼Eに向かう。 The optotype plate 32 includes a plurality of optotypes (fixation targets) 32a for performing fogging on the eye E at the time of measuring objective refractive power and a plurality of visual acuity test targets used at the time of measuring subjective refractive power. Marks 32b are arranged on concentric circles. As the visual acuity test optotype, optotypes (acuity values of 0.1, 0.3,..., 1.5) for each visual acuity value are prepared. The optotype plate 32 is rotated by a motor 37, and the optotypes 32a and 32b are switched and arranged on the optical axis L5 of the optotype presenting optical system 30. Optotype luminous fluxes of the optotypes 32a and 32b illuminated by the light source 31 travel toward the eye E via optical members from the relay lens 33 to the beam splitter 29.
 被検眼Eの光源31及び視標板32(視標32a,32b)は、駆動部62により光軸L5の方向に一体的に移動される。光源31及び視標32a,32bが移動されることにより、視標の呈示位置(呈示距離)が遠用距離から近用距離まで光学的に変えられる。これにより、他覚屈折力測定時には被検眼Eに雲霧が掛けられ、また、自覚屈折力測定時には被検眼の球面屈折力が矯正される。すなわち、対物レンズ14、リレーレンズ33、光源31及び視標板32の移動により、球面度数の矯正光学系61が構成される。球面度数の矯正光学系61は、光軸方向に移動可能なリレーレンズを視標呈示光学系に追加する構成でも可能である。 (4) The light source 31 and the optotype plate 32 (the optotypes 32a and 32b) of the eye E to be examined are integrally moved by the driving section 62 in the direction of the optical axis L5. By moving the light source 31 and the optotypes 32a and 32b, the presenting position (presentation distance) of the optotype is optically changed from a long distance to a short distance. Thus, the fog is applied to the eye E during objective refractive power measurement, and the spherical refractive power of the eye E is corrected during subjective refractive power measurement. In other words, the objective lens 14, the relay lens 33, the light source 31, and the optotype plate 32 move to form the spherical power correcting optical system 61. The optical system 61 for correcting the spherical power may be configured such that a relay lens movable in the optical axis direction is added to the optotype presenting optical system.
 乱視矯正光学系63は、反射ミラー36とリレーレンズ33との間に配置されている。乱視矯正光学系63は、焦点距離の等しい、2枚の正の円柱レンズ64(64a,64b)から構成される。円柱レンズ64a,64bは、それぞれ回転機構65a、65bの駆動により、光軸L5を中心に各々独立して回転される。2枚の円柱レンズ64a,64bが回転されることによって、被検者の乱視を矯正した状態にすることができる。なお、矯正光学系60は、矯正レンズを視標呈示光学系の光路に出し入れする構成でもよい。 The optical system 63 for correcting astigmatism is disposed between the reflection mirror 36 and the relay lens 33. The astigmatism correction optical system 63 includes two positive cylindrical lenses 64 (64a, 64b) having the same focal length. The cylindrical lenses 64a and 64b are independently rotated about the optical axis L5 by driving the rotation mechanisms 65a and 65b, respectively. By rotating the two cylindrical lenses 64a and 64b, the astigmatism of the subject can be corrected. The correction optical system 60 may have a configuration in which the correction lens is moved in and out of the optical path of the optotype presenting optical system.
 被検眼Eの前眼部の前方には、アライメント指標投影光学系の一例である、リング指標投影光学系45および作動距離指標投影光学系46が配置されている。リング指標投影光学系45は、被検眼角膜の中心領域にリング指標を投影するために利用される。リング指標投影光学系45は、例えば、被検眼にマイヤーリングを投影する投影光学系であってもよい。 リ ン グ A ring index projection optical system 45 and a working distance index projection optical system 46, which are examples of the alignment index projection optical system, are arranged in front of the anterior segment of the eye E. The ring target projection optical system 45 is used to project the ring target on the central region of the cornea of the eye to be examined. The ring target projection optical system 45 may be, for example, a projection optical system that projects the Meyer ring on the eye to be inspected.
 本実施例において、リング指標投影光学系45は、角膜Ecに対して赤外光(例えば、近赤外光)をリング状に投影する。その結果として、リング指標像が角膜Ec上に形成される。角膜頂点(略角膜頂点)がリング像の中心位置として検出される。 In the present embodiment, the ring target projection optical system 45 projects infrared light (for example, near infrared light) onto the cornea Ec in a ring shape. As a result, a ring target image is formed on the cornea Ec. The corneal vertex (substantially corneal vertex) is detected as the center position of the ring image.
 角膜に投影されるリング指標は、被検眼に対してアライメントを行うためのアライメント指標として用いられてもよい。また、リング指標は、角膜形状測定用の指標として用いられてもよい。なお、リング指標投影光学系45は、被検眼Eの前眼部を照明する前眼部照明として用いられてもよい。 リ ン グ The ring index projected on the cornea may be used as an alignment index for performing alignment with the subject's eye. Further, the ring index may be used as an index for measuring a corneal shape. The ring target projection optical system 45 may be used as an anterior segment illumination for illuminating the anterior segment of the eye E.
 作動距離指標投影光学系46は、例えば、作動距離方向のアライメントを行うための指標を投影するために用いられる。角膜に投影されたアライメント指標は、被検眼に対する位置合わせ(例えば、自動アライメント、アライメント検出、手動アライメント、等)に用いられる。投影光学系46aは、被検眼Eの角膜Ecに有限遠指標を投影するための光学系であり、投影光学系46bは、被検眼Eの角膜Ecに無限遠指標を投影するための光学系である。作動距離指標投影光学系46は、例えば、赤外光(例えば、近赤外光)が用いられる。本実施例では、作動距離指標投影光学系46は、リング指標から外れた位置に形成されているが、これに限定されず、例えば、リング指標投影光学系45の切れ目部分に無限遠指標を投影する投影光学系を設け、リング指標と無限遠指標とを用いて作動距離方向のアライメントが行われてもよい。 The working distance index projection optical system 46 is used, for example, to project an index for performing alignment in the working distance direction. The alignment index projected on the cornea is used for alignment with the eye to be inspected (for example, automatic alignment, alignment detection, manual alignment, and the like). The projection optical system 46a is an optical system for projecting a finite distance index on the cornea Ec of the eye E, and the projection optical system 46b is an optical system for projecting an infinity index on the cornea Ec of the eye E. is there. The working distance index projection optical system 46 uses, for example, infrared light (for example, near infrared light). In the present embodiment, the working distance index projection optical system 46 is formed at a position deviating from the ring index, but is not limited to this. For example, an infinity index is projected on a cut portion of the ring index projection optical system 45. A projection optical system may be provided, and alignment in the working distance direction may be performed using the ring index and the infinity index.
 照明光源48は、例えば、屈折矯正器具を装用した状態の被検眼前眼部を照明するための光源として用いられてもよい。照明光源48は、照明光による眼鏡レンズからの反射光が前眼部像に含まれることを回避できるように設定された位置に配置されることで、眼鏡等を装用した状態であっても、被検眼に対するアライメントをスムーズに行うことができる。照明光源48は、赤外光源であってもよいし、可視光源であってもよい。 The illumination light source 48 may be used, for example, as a light source for illuminating an anterior ocular segment of a subject's eye in a state where a refraction correction instrument is worn. The illumination light source 48 is disposed at a position set so as to avoid that the reflected light from the spectacle lens due to the illumination light is included in the anterior ocular segment image. Alignment with the eye to be examined can be performed smoothly. The illumination light source 48 may be an infrared light source or a visible light source.
 この場合、例えば、照明光源48は、測定光学系10の測定光軸L1に対して30°以上傾斜した位置に配置されてもよい。これによって、照明光源48による眼鏡レンズからの反射像は、測定光軸L1から離れた位置に形成されるので、当該反射像は、前眼部画像に含まれない、あるいは、前眼部像に含まれたとしても前眼部画像の周辺部に形成される。この結果として、被検眼に対してアライメントを行う際のアーチファクトが軽減される。なお、前眼部画像の周辺部にアーチファクトが形成される場合、前眼部画像の中心部にはアーチファクトが含まれず、角膜中心、瞳孔中心等へのアライメントが容易となる。 In this case, for example, the illumination light source 48 may be arranged at a position inclined by 30 ° or more with respect to the measurement optical axis L1 of the measurement optical system 10. As a result, the reflected image from the spectacle lens by the illumination light source 48 is formed at a position distant from the measurement optical axis L1, so that the reflected image is not included in the anterior ocular segment image or is included in the anterior ocular segment image. Even if it is included, it is formed around the anterior ocular segment image. As a result, artifacts when performing alignment on the eye to be examined are reduced. When an artifact is formed in the peripheral portion of the anterior ocular segment image, the central portion of the anterior ocular segment image does not include an artifact, and alignment with the cornea center, the pupil center, or the like becomes easy.
 観察光学系(撮像光学系)50は、被検眼Eの前眼部の正面画像を撮像する撮像素子52を有する。本実施形態において観察光学系50は、対物レンズ14と、ビームスプリッタ29と、を視標呈示光学系30と共用している。また、観察光学系50は、ハーフミラー53と、撮像レンズ51と、二次元撮像素子52(以下、「撮像素子52」と称す)と、を含む。撮像素子52は、被検眼Eの前眼部と略共役な位置に配置された撮像面を持つ受光素子である。この撮像素子52によって、被検眼Eの前眼部の正面画像が撮像される。撮像素子52からの出力は、制御部80に入力される。その結果、撮像素子52によって撮像される正面画像のライブ画像が、観察画像として表示部70上に表示される。なお、本実施形態では、観察光学系50が、指標投影光学系45,46によって被検眼Eの角膜Ecに形成されるアライメント指標像(本実施形態では、リング指標および無限遠指標)を検出する光学系を兼ねている。撮像素子52によるアライメント指標像の撮像結果に基づいてアライメント指標像の位置が検出される。なお、観察光学系50は、照明光源48によって照明された装用状態の被検眼前眼部の正面像を撮像可能である。 The observation optical system (imaging optical system) 50 has an imaging element 52 that captures a front image of the anterior segment of the eye E to be inspected. In the present embodiment, the observation optical system 50 shares the objective lens 14 and the beam splitter 29 with the optotype presenting optical system 30. The observation optical system 50 includes a half mirror 53, an imaging lens 51, and a two-dimensional imaging device 52 (hereinafter, referred to as “imaging device 52”). The imaging element 52 is a light receiving element having an imaging surface arranged at a position substantially conjugate to the anterior segment of the eye E. With this imaging element 52, a front image of the anterior segment of the subject's eye E is captured. The output from the image sensor 52 is input to the control unit 80. As a result, a live image of the front image captured by the image sensor 52 is displayed on the display unit 70 as an observation image. In the present embodiment, the observation optical system 50 detects an alignment index image (in the present embodiment, a ring index and an infinity index) formed on the cornea Ec of the eye E by the index projection optical systems 45 and 46. Also serves as an optical system. The position of the alignment index image is detected based on the result of imaging of the alignment index image by the imaging element 52. Note that the observation optical system 50 can capture a front image of the anterior segment of the subject's eye in the wearing state illuminated by the illumination light source 48.
 次に、図2を参照して、眼屈折力測定装置1の制御系について説明する。眼屈折力測定装置1は、制御部80によっての各部の制御が行われる。制御部80は、各部の制御処理と、演算処理とを行う電子回路を有する処理装置(プロセッサ)である。制御部80は、CPU(Central Processing Unit)およびメモリ等で実現される。制御部80は、光源11,31、撮像素子22,52、移動台6および駆動部7、ジョイスティック9、表示部70、操作部90、メモリ105のそれぞれに電気的に接続されている。 Next, a control system of the eye-refractive-power measuring device 1 will be described with reference to FIG. The eye refractive power measuring device 1 is controlled by the control unit 80. The control unit 80 is a processing device (processor) having an electronic circuit that performs control processing of each unit and arithmetic processing. The control unit 80 is realized by a CPU (Central Processing Unit), a memory, and the like. The control unit 80 is electrically connected to each of the light sources 11 and 31, the imaging devices 22 and 52, the movable base 6 and the drive unit 7, the joystick 9, the display unit 70, the operation unit 90, and the memory 105.
 メモリ105は、書き換え可能な不揮発性の記憶装置であってもよい。メモリ105には、制御部80に測定動作を実行させるためのプログラムが少なくとも格納されてもよい。 The memory 105 may be a rewritable nonvolatile storage device. The memory 105 may store at least a program for causing the control unit 80 to execute the measurement operation.
 制御部80は、操作部90から出力される操作信号に基づいて、眼屈折力測定装置1の各部材を制御する。操作部90は、タッチパネルやマウスなどのポインティングデバイスであってもよいし、キーボード等であってもよい。 The control unit 80 controls each member of the eye-refractive-power measuring device 1 based on an operation signal output from the operation unit 90. The operation unit 90 may be a pointing device such as a touch panel or a mouse, or may be a keyboard or the like.
 本実施例において、制御部80は、裸眼状態の眼屈折力を測定するための裸眼レフモードと、屈折矯正器具を装用した状態での眼屈折力を測定するためのオーバーレフモードと、を自動又手動にて切換可能であってもよい。例えば、制御部80は、操作部90からの操作信号に基づいて測定モードを切り換えてもよい。 In the present embodiment, the control unit 80 automatically or automatically sets a naked-eye reflex mode for measuring the eye refractive power in the naked eye state and an over-reflective mode for measuring the eye refractive power in a state in which the refraction correction device is worn. It may be possible to switch manually. For example, the control unit 80 may switch the measurement mode based on an operation signal from the operation unit 90.
 なお、制御部80は、上記のように検出されたアライメント状態の検出結果に基づいて駆動部7を制御することによって、被検眼に対する測定部8の自動アライメントを行ってもよい。また、制御部80は、上記のように検出されたアライメント状態の検出結果を検者に報知するようにしてもよい(例えば、検出結果が表示部70に電子的に表示されてもよい)。 The control unit 80 may perform the automatic alignment of the measurement unit 8 with respect to the subject's eye by controlling the driving unit 7 based on the detection result of the alignment state detected as described above. Further, the control unit 80 may notify a detection result of the alignment state detected as described above to the examiner (for example, the detection result may be electronically displayed on the display unit 70).
 <装置の動作>
 以上のような構成を備える装置の動作の一例について説明する。図3は本実施例に係る装置の動作について説明するフローチャートである。以下の説明では、屈折矯正器具が装用されていない裸眼状態における被検眼の屈折力を測定する場合と、屈折矯正器具が装用された装用状態における被検眼の屈折力を測定する場合と、について説明する。ここで、装用状態とは、例えば、眼鏡フレームを介して眼前に眼鏡レンズが配置された状態、またはコンタクトレンズが眼前に配置された状態などである。
<Operation of the device>
An example of the operation of the device having the above configuration will be described. FIG. 3 is a flowchart illustrating the operation of the device according to the present embodiment. In the following description, a description will be given of a case where the refractive power of the eye to be examined is measured in the naked eye state where the refractive correction device is not worn, and a case where the refractive power of the eye to be inspected is measured in the wearing state where the refractive correction device is worn. I do. Here, the wearing state is, for example, a state in which a spectacle lens is disposed in front of the eye via a spectacle frame, a state in which a contact lens is disposed in front of the eye, or the like.
(S1:裸眼モード)
 まず、制御部80は、屈折構成器具を装用していない裸眼状態の被検眼を測定する。この場合、検者は、操作部90を操作し、裸眼モード(通常モード)に設定する。裸眼モードでは、例えば、リング指標投影光学系45によるリング指標と作動距離指標投影光学系46による指標とが被検眼に投影される。リング指標は、前眼部照明、アライメント検出に用いられる。
(S1: naked eye mode)
First, the control unit 80 measures the subject's eye in the state of the naked eye without wearing the refractive component instrument. In this case, the examiner operates the operation unit 90 to set the mode to the naked eye mode (normal mode). In the naked eye mode, for example, a ring index by the ring index projection optical system 45 and an index by the working distance index projection optical system 46 are projected on the eye to be examined. The ring index is used for anterior segment illumination and alignment detection.
 検者は、被検者の顔を顔支持ユニット4に固定させると共に、被検者に対して視標板32の固視標32aを固視するよう指示する。次に、被検眼に対する測定部8のX,Y及びZ方向のアライメントが行われる。検者は、表示部70を観察しながらジョイスティック9及び回転ノブ9aを操作し、ラフなアライメントを行う。なお、ラフなアライメントについて、被検者の顔を広範囲に撮影可能なカメラ等を用いて自動アライメントが行われてもよい。 The examiner fixes the face of the subject to the face support unit 4 and instructs the subject to fixate on the fixation target 32a of the target plate 32. Next, alignment of the measurement unit 8 in the X, Y, and Z directions with respect to the subject's eye is performed. The examiner operates the joystick 9 and the rotary knob 9a while observing the display unit 70 to perform rough alignment. For rough alignment, automatic alignment may be performed using a camera or the like that can photograph the face of the subject in a wide range.
 制御部80は、観察光学系50を介して撮像される前眼部の観察画像を、随時表示部70に表示させる(図4参照)。つまり、表示部70には、略リアルタイムに撮影される前眼部の正面画像(ライブ画像)が表示される。なお、レチクルマークLTは、測定部8における測定軸の位置(本実施例では、測定光学系10の測定光軸L1)を示す。 The control unit 80 causes the display unit 70 to display an observation image of the anterior eye taken through the observation optical system 50 as needed (see FIG. 4). That is, the display unit 70 displays a front image (live image) of the anterior segment photographed substantially in real time. The reticle mark LT indicates the position of the measurement axis in the measurement section 8 (in this embodiment, the measurement optical axis L1 of the measurement optical system 10).
 ラフなアライメントが行われ、リング指標投影光学系45によるリング指標像、作動距離指標投影光学系46による無限遠指標、有限遠指標が撮像素子52により撮像される状態になると、制御部8090は、撮像素子52からの撮像信号に基づいて駆動部7の駆動を制御することによって、測定部8をXY方向又はZ方向に移動させ、被検眼に対する測定部8の詳細なアライメントを行う。 When rough alignment is performed and the ring index image by the ring index projection optical system 45, the infinity index, and the finite distance index by the working distance index projection optical system 46 are captured by the image sensor 52, the control unit 8090 By controlling the driving of the drive unit 7 based on the imaging signal from the imaging element 52, the measuring unit 8 is moved in the XY direction or the Z direction, and the detailed alignment of the measuring unit 8 with respect to the eye to be inspected is performed.
 制御部80は、撮像素子52によって検出されたリング指標像の中心位置の座標を算出することにより被検眼に対する上下左右方向のアライメント状態を求める。なお、リング指標像の中心位置を検出することによって、角膜中心位置を求めることができる。 The control unit 80 calculates the coordinates of the center position of the ring index image detected by the imaging element 52 to obtain the alignment state in the up, down, left, and right directions with respect to the subject's eye. The corneal center position can be obtained by detecting the center position of the ring index image.
 制御部80は、測定部8が被検眼に対してZ(作動距離)方向にずれた場合に、無限遠指標の像間隔がほとんど変化しないのに対して、有限遠指標の像間隔が変化するという特性を利用して、被検眼に対する作動距離方向のアライメント状態を求める(詳しくは、特開平6-46999号参照)。なお、Z方向のアライメント検出のための構成及び検出手法は、上記に限定されず、例えば、リング指標像のボケ具合等が利用されてもよい。 When the measurement unit 8 is displaced in the Z (working distance) direction with respect to the eye to be inspected, the control unit 80 changes the image interval of the finite distance index while the image interval of the infinity index hardly changes. Using this characteristic, an alignment state in the working distance direction with respect to the eye to be examined is determined (for details, see Japanese Patent Application Laid-Open No. 6-46999). The configuration and the detection method for the alignment detection in the Z direction are not limited to the above, and for example, the degree of blurring of the ring index image or the like may be used.
 その後、アライメントが完了したら、レフ測定が行われる。この場合、測定光源11からの測定光は、測定光学系10を介して眼底に投影され、測定光による眼底反射光は、測定光学系10を介して撮像素子22によって受光される。この場合、まず、眼屈折力の予備測定が行われる。そして、予備測定の結果に基づいて、光源31及び視標板32が光軸L5方向に移動されることにより、被検眼に対して雲霧がかけられる。その後、雲霧がかけられた被検眼に対して眼屈折力の測定が行われる。 After that, when alignment is completed, reflex measurement is performed. In this case, the measurement light from the measurement light source 11 is projected on the fundus via the measurement optical system 10, and the fundus reflection light by the measurement light is received by the imaging device 22 via the measurement optical system 10. In this case, first, a preliminary measurement of the eye refractive power is performed. Then, based on the result of the preliminary measurement, the light source 31 and the optotype plate 32 are moved in the direction of the optical axis L5, so that the subject's eye is fogged. After that, the eye refractive power is measured for the fogged eye.
 眼屈折力の測定(および予備測定)において、制御部80は、撮像素子22からの出力信号を処理することで、眼屈折力を得る。撮像素子22からの出力信号は、画像データ(測定画像)としてメモリ105に記憶される。その後、制御部80は、メモリ105に記憶された画像データに基づいてリングの経線毎にリング像の位置を特定する。次に、制御部80は、特定されたリング像の像位置に基づいて、最小二乗法等を用いて楕円を近似する。そして、制御部80は、近似した楕円の形状から各経線方向の屈折誤差が求め、これに基づいて被検眼Eの眼屈折値(S(球面度数)、C(柱面度数)およびA(乱視軸角度))を演算する。そして、測定結果を表示部70に表示する。また、制御部80は、眼屈折値等の測定結果を、メモリ105に記憶してもよい。この場合、制御部80は、裸眼状態の被検眼を測定したことを示す判別表示71を、測定結果と共に表示するようにしてもよい。 In the measurement of the eye refractive power (and the preliminary measurement), the control unit 80 obtains the eye refractive power by processing the output signal from the image sensor 22. An output signal from the image sensor 22 is stored in the memory 105 as image data (measurement image). After that, the control unit 80 specifies the position of the ring image for each meridian of the ring based on the image data stored in the memory 105. Next, the control unit 80 approximates the ellipse using the least squares method or the like based on the image position of the specified ring image. Then, the control unit 80 obtains the refraction error in each meridian direction from the approximated elliptical shape, and based on this, the eye refraction value (S (spherical power), C (column power), and A (astigmatism) of the eye E to be examined. Axis angle)). Then, the measurement result is displayed on the display unit 70. Further, the control unit 80 may store the measurement result of the eye refraction value or the like in the memory 105. In this case, the control unit 80 may display a determination display 71 indicating that the subject's eye in the naked eye state has been measured, together with the measurement result.
 なお、制御部80は、裸眼状態の被検眼の眼屈折力を測定する際、さらに、リング指標に基づいて被検眼の角膜形状を測定すると共に、角膜形状の測定結果を表示部70に表示するようにしてもよい。 When measuring the eye refractive power of the eye to be examined in the naked eye state, the control unit 80 further measures the corneal shape of the eye to be examined based on the ring index and displays the measurement result of the corneal shape on the display unit 70. You may do so.
(S2:オーバーレフモード)
 屈折矯正器具を装用した状態の被検眼を測定する場合、検者は、操作部90を操作し、オーバーレフモードに設定する。オーバーレフモードでは、例えば、リング指標投影光学系45によるリング指標と作動距離指標投影光学系46による指標の投影が制限され、照明光源48による照明光が被検眼に投光される。この場合、リング指標の投影のみが制限されてもよい。照明光源48による照明光は、例えば、前眼部像の観察に用いられ、前眼部像を用いた被検眼に対するアライメントが行われる。なお、以下の説明において、裸眼モードと同一の部分については、特段の説明を省略する。
(S2: over-reflection mode)
When measuring the eye to be examined while wearing the refraction correcting device, the examiner operates the operation unit 90 to set the overref mode. In the over-reflection mode, for example, the projection of the ring index by the ring index projection optical system 45 and the index by the working distance index projection optical system 46 is limited, and the illumination light from the illumination light source 48 is projected onto the eye to be examined. In this case, only the projection of the ring index may be limited. Illumination light from the illumination light source 48 is used, for example, for observing an anterior eye image, and alignment is performed on the subject's eye using the anterior eye image. In the following description, the same parts as those in the naked eye mode will not be specifically described.
 ラフなアライメントが行われ、被検眼の瞳孔が撮像素子52により撮像される状態になると、制御部8090は、撮像素子52からの撮像信号に基づいて駆動部7の駆動を制御することによって、測定部8をXY方向又はZ方向に移動させ、被検眼に対する測定部8の詳細なアライメントを行う。 When rough alignment is performed and the pupil of the subject's eye is imaged by the image sensor 52, the control unit 8090 controls the drive of the drive unit 7 based on the image signal from the image sensor 52 to perform measurement. The unit 8 is moved in the XY direction or the Z direction to perform detailed alignment of the measuring unit 8 with respect to the eye to be inspected.
 制御部80は、撮像素子52によって撮像された瞳孔を画像処理にて解析し、瞳孔の位置を算出することにより被検眼に対する上下左右方向のアライメント状態を求める。 The control unit 80 analyzes the pupil imaged by the image sensor 52 by image processing, calculates the position of the pupil, and obtains the alignment state in the vertical and horizontal directions with respect to the eye to be examined.
 制御部80は、測定部8が被検眼に対してZ(作動距離)方向にずれた場合に、前眼部画像(例えば、瞳孔部)がぼけてしまうという特性を利用して、被検眼に対する測定部8の作動距離方向のアライメント状態を求めてもよい。例えば、制御部80は、測定部8をZ方向に移動させると共に、各Z位置にて前眼部画像のエッジ(ボケ具合)の評価値を取得し、評価値が高い位置を適正位置として測定部8を移動させてもよい。 The control unit 80 uses the characteristic that the anterior eye image (for example, the pupil) is blurred when the measurement unit 8 is displaced from the eye in the Z (working distance) direction, and The alignment state of the measuring unit 8 in the working distance direction may be obtained. For example, the control unit 80 moves the measuring unit 8 in the Z direction, acquires an evaluation value of the edge (blur condition) of the anterior eye image at each Z position, and measures a position having a high evaluation value as an appropriate position. The unit 8 may be moved.
 その後、アライメントが完了したら、レフ測定が行われる。この場合、測定光源11からの測定光は、測定光学系10及び屈折矯正器具MLを介して眼底に投影され、測定光による眼底反射光は、屈折矯正器具ML及び測定光学系10を介して撮像素子22によって受光される。この場合、眼屈折力の予備測定が行われ、その後、雲霧がかけられた被検眼に対して眼屈折力の測定が行われる。 After that, when alignment is completed, reflex measurement is performed. In this case, the measurement light from the measurement light source 11 is projected onto the fundus through the measurement optical system 10 and the refraction correction device ML, and the fundus reflection light of the measurement light is imaged through the refraction correction device ML and the measurement optical system 10. The light is received by the element 22. In this case, a preliminary measurement of the eye refractive power is performed, and thereafter, the measurement of the eye refractive power is performed on the eye to which the fogging is applied.
 制御部80は、撮像素子22の撮像結果に基づいて被検眼の眼屈折値を演算し、測定結果を表示部70に表示する。また、制御部80は、眼屈折値の測定結果を、メモリ105に記憶してもよい。この場合、制御部80は、屈折矯正器具を装用した状態の被検眼を測定したことを示す判別表示72を、測定結果と共に表示するようにしてもよい。これによって、オーバーレフモードと裸眼モードとで測定値を取り違えることを防止できる。 The control unit 80 calculates the eye refraction value of the eye to be inspected based on the imaging result of the imaging element 22, and displays the measurement result on the display unit 70. The control unit 80 may store the measurement result of the eye refraction value in the memory 105. In this case, the control unit 80 may display a discrimination display 72 indicating that the eye to be inspected in a state where the refraction correction instrument is worn is measured, together with the measurement result. Thus, it is possible to prevent the measurement values from being mistaken between the over-reflection mode and the naked eye mode.
<装用状態の自動判定>
 なお、上記説明においては、操作部90からの操作信号に基づいて測定モードを切り換えたが、これに限定されず、自動的に測定モードが切り換えられてもよい。例えば、制御部80は、観察光学系50から出力される撮像信号に基づいて、測定モードを切り換えてもよい。ここで、制御部80は、観察光学系50から出力される撮像信号に基づいて屈折矯正器具の装用の有無を判別し、判別結果に基づいて測定モードを切り換えてもよい。
<Automatic determination of wearing state>
In the above description, the measurement mode is switched based on the operation signal from the operation unit 90. However, the present invention is not limited to this, and the measurement mode may be automatically switched. For example, the control unit 80 may switch the measurement mode based on an imaging signal output from the observation optical system 50. Here, the control unit 80 may determine whether or not the refraction correction instrument is worn based on the imaging signal output from the observation optical system 50, and switch the measurement mode based on the determination result.
 この場合、例えば、リング指標投影光学系45からのリング指標を眼鏡装用状態の被検眼に対して投影するとき、観察光学系50の撮像素子52に眼鏡レンズからの反射光が多く入射され、裸眼状態よりも前眼部画像全体の輝度値が高くなることを利用してもよい。ここで、制御部80は、前眼部画像において所定の閾値を超える画素の面積が許容範囲を上回った場合、眼鏡レンズありと判別し、オーバーレフモードに設定し、前眼部画像において所定の閾値を超える画素の面積が許容範囲を下回った場合、眼鏡レンズなしと判別し、裸眼モードに設定してもよい。また、撮像素子52によって撮影された前眼部画像からコンタクトレンズのエッジを検出し、エッジの有無に基づいてコンタクトレンズの有無を判定してもよい。もちろん、屈折矯正器具の装用の有無の判別手法は、これに限定されず、例えば、制御部80は、アライメントの際、撮像素子52によって撮像される眼鏡フレームの有無を画像処理によって判別し、判別結果に基づいて測定モードを切り換えてもよい。また、制御部80は、撮像素子52によって撮像される撮像画像の中心領域においてレンズ反射の有無を判別するようにしてもよい。また、例えば、被検者の両眼を含む顔を撮影可能な顔撮影部によって眼鏡フレームを検出し、被検眼の装用状態を判定してもよい。 In this case, for example, when projecting the ring index from the ring index projection optical system 45 to the eye to be inspected while wearing spectacles, a large amount of reflected light from the spectacle lens is incident on the imaging device 52 of the observation optical system 50, and the naked eye The fact that the luminance value of the entire anterior segment image is higher than the state may be used. Here, when the area of the pixel exceeding the predetermined threshold in the anterior ocular segment image exceeds the allowable range, the control unit 80 determines that there is a spectacle lens, sets an overref mode, and sets a predetermined value in the anterior ocular segment image. When the area of the pixel exceeding the threshold value falls below the allowable range, it may be determined that there is no spectacle lens and the naked eye mode may be set. Further, the edge of the contact lens may be detected from the anterior segment image captured by the image sensor 52, and the presence or absence of the contact lens may be determined based on the presence or absence of the edge. Needless to say, the method of determining whether or not the refraction correction device is worn is not limited to this. For example, the control unit 80 determines whether or not there is a spectacle frame imaged by the imaging device 52 during alignment by performing image processing. The measurement mode may be switched based on the result. Further, the control unit 80 may determine whether or not there is a lens reflection in the central region of the image captured by the image sensor 52. Further, for example, a spectacle frame may be detected by a face photographing unit capable of photographing a face including both eyes of the subject, and the wearing state of the subject's eye may be determined.
 制御部80は、裸眼レフ値(裸眼モードで測定されたレフ値)と、オーバーレフ値(オーバーレフモードで測定されたレフ値)とを表示部70に比較表示してもよい。例えば、制御部80は、図4に示すように、各測定モードによって測定された球面度数(S)、乱視度数(C)、乱視軸(A)をそれぞれ表示してもよい。これによって、制御部80は、屈折矯正器具の装用状態が適正か否かの指針を示すことができる。例えば、適正な屈折矯正器具を装着していればオーバーレフ値は0D(ディオプター)になるはずである。したがって、制御部80は、オーバーレフ値が0Dでない場合、またはオーバーレフ値がある閾値より大きい場合、屈折矯正器具の度数が合っていないことを検者に報知するようにしてもよい。例えば、制御部80は、表示部70等に警告表示してもよい。この場合、検者は、屈折矯正器具の度数を変更するように被検者に提案する。検者に報知するときのオーバーレフ値の閾値は、検者があらかじめ設定できるようにしてもよい。 The control unit 80 may display the naked-eye reflex value (the reflex value measured in the naked-eye mode) and the over-reflection value (the reflex value measured in the over-reflective mode) on the display unit 70 for comparison. For example, as shown in FIG. 4, the control unit 80 may display the spherical power (S), the astigmatic power (C), and the astigmatic axis (A) measured in each measurement mode. Thereby, the control unit 80 can indicate a guideline as to whether or not the wearing state of the refractive correction instrument is appropriate. For example, if the correct refraction instrument is worn, the overref value should be 0D (diopter). Therefore, when the overref value is not 0D or when the overref value is larger than a certain threshold, the control unit 80 may notify the examiner that the power of the refraction correction instrument is not correct. For example, the control unit 80 may display a warning on the display unit 70 or the like. In this case, the examiner proposes to the subject to change the power of the refractive correction instrument. The threshold value of the overref value when notifying the examiner may be set in advance by the examiner.
 なお、検眼が装用している屈折矯正器具の屈折度数である矯正器具度数75が取得されている場合、制御部80は、裸眼レフ値73と、オーバーレフ値74と、矯正器具度数75と、を表示部70の画面に並べて表示してもよい。制御部80は、検者の操作部90への入力に基づいて矯正器具度数75を取得してもよいし、レンズメータなどの外部装置から転送されることによって取得してもよい。また、仮枠眼鏡VMを装用して測定する場合は、制御部80は、仮枠眼鏡VMに書いてある屈折度数をカメラで認識することによって取得してもよい。この場合、制御部80は、観察光学系50の撮像素子52、または被検者の両眼を含む顔画像500を撮影する顔撮影部5等を用いて仮枠眼鏡VMに書かれた屈折度数510を認識してもよい(図5参照)。このように、制御部80は、矯正器具度数75を取得する度数取得手段として機能してもよい。 In addition, when the correction instrument frequency 75 which is the refractive power of the refractive correction instrument worn by the optometry is acquired, the control unit 80 sets the naked eye reflex value 73, the overref value 74, the correction instrument frequency 75, May be displayed side by side on the screen of the display unit 70. The control unit 80 may acquire the correction instrument frequency 75 based on the input to the operation unit 90 by the examiner, or may acquire the correction instrument frequency 75 by being transferred from an external device such as a lens meter. When the measurement is performed while wearing the temporary frame glasses VM, the control unit 80 may acquire the refraction power written on the temporary frame glasses VM by recognizing the refractive power with a camera. In this case, the control unit 80 uses the image sensor 52 of the observation optical system 50 or the face photographing unit 5 that photographs the face image 500 including both eyes of the subject, and the like. 510 may be recognized (see FIG. 5). As described above, the control unit 80 may function as a frequency acquisition unit that acquires the correction appliance frequency 75.
 矯正器具度数75が取得されている場合、制御部80は、裸眼レフ値73、オーバーレフ値74、矯正器具度数75を比較することによって、現在装用している屈折矯正器具が適正か否かを判定してもよい。例えば、制御部80は、裸眼レフ値73と矯正器具度数75との差分Kと、差分Kとオーバーレフ値74との差分Qに基づいて、屈折矯正器具の異常を検知してもよい。通常であれば、被検眼と屈折矯正器具をそれぞれ測定した度数(裸眼レフ値73および矯正器具度数75)の差分Kと、オーバーレフモードにおいて被検眼と屈折矯正器具を同時に測定した度数(オーバーレフ値)は同じになるため、差分Qは0Dになるはずである。したがって、制御部80は、差分Qが0Dでない場合、または差分Qがある閾値より大きい場合、眼鏡等のフィッティングが悪い可能性があることを検者に報知してもよい。例えば、制御部80は、表示部70に警告表示してもよい。この場合、例えば、検者は、眼鏡の鼻あてまたはテンプルを調整する。検者に報知するときのオーバーレフ値の閾値は、検者があらかじめ設定できるようにしてもよい。 When the corrective instrument frequency 75 has been acquired, the control unit 80 compares the naked-eye reflex value 73, the over-reflex value 74, and the corrective instrument frequency 75 to determine whether the currently worn refractive corrective instrument is appropriate. It may be determined. For example, the control unit 80 may detect the abnormality of the refraction correction device based on the difference K between the naked-eye reflex value 73 and the correction device frequency 75 and the difference Q between the difference K and the overref value 74. Normally, the difference K between the powers of the eye to be inspected and the refractive instrument (the naked eye reflex value 73 and the power of the corrective instrument 75), and the frequency of the simultaneous measurement of the eye to be inspected and the refraction instrument in the overreflection mode (overref) Values) are the same, so the difference Q should be 0D. Therefore, when the difference Q is not 0D or when the difference Q is larger than a certain threshold value, the control unit 80 may notify the examiner that fitting of glasses or the like may be bad. For example, the control unit 80 may display a warning on the display unit 70. In this case, for example, the examiner adjusts the nose pad or the temple of the glasses. The threshold value of the overref value when notifying the examiner may be set in advance by the examiner.
 なお、矯正器具度数75が取得されていない場合であっても、制御部80は、裸眼レフ値73とオーバーレフ値74との差分を矯正器具度数75として表示してもよい。これによって、検者は、現在装用している屈折矯正器具の屈折度数の目安を知ることができる。 Even if the corrective instrument frequency 75 is not acquired, the control unit 80 may display the difference between the naked-eye reflex value 73 and the overref value 74 as the corrective instrument frequency 75. Thereby, the examiner can know the standard of the refraction power of the refraction correction instrument currently worn.
(S3:比較モード)
 制御部80は、オーバーレフモードにおいて、比較モードを実行する。比較モードは、現在装用している屈折矯正器具での見え方と、適正な屈折矯正器具を装用したときの見え方とを被検者に比較させるモードである。例えば、制御部80は、オーバーレフ値に基づいた矯正状態となるように、矯正光学系60を制御する。例えば、制御部80は、オーバーレフ値の球面度数(図4の例では-0.25D)で矯正された状態となる位置に固視標32aを移動させ、オーバーレフ値の乱視度数(図4の例では-0.25D)および乱視軸(図4の例では180度)で補正された状態となるように円柱レンズ64を回転させる。これによって、被検者は適正な矯正屈折器具を装用した状態での視標の見え方を体感することができる。検者が操作部90の比較ボタン90aを押すと、固視標32aが比較モードの基準位置(矯正状態が0D=無限遠又は遠用距離5m)、すなわち非矯正状態となるように駆動部62が制御される。また、乱視矯正光学系63の乱視度数が0Dとなるように、円柱レンズ64が駆動される。これによって、被検者は現在の屈折矯正器具を装用している状態での視標の見え方を体感できる。制御部80は、検者によって比較ボタン90aが押されるたびに、オーバーレフ値に基づいて矯正光学系60によって矯正された状態と、矯正光学系60による矯正を解除した非矯正状態(つまり、屈折矯正器具による矯正状態に対して矯正光学系60による追加的な矯正を行っていない状態)と、を交互に切り換える。これによって、被検者は、適正な屈折矯正器具での見え方と、現在装用している屈折矯正器具での見え方と、を比較できる。
(S3: comparison mode)
The control unit 80 executes the comparison mode in the overref mode. The comparison mode is a mode in which the subject is compared between the appearance of the currently used refraction correction instrument and the appearance of the appropriate refraction correction instrument. For example, the control unit 80 controls the correction optical system 60 such that the correction state is based on the overref value. For example, the control unit 80 moves the fixation target 32a to a position where the fixation is performed at the spherical power of the overref value (-0.25D in the example of FIG. 4), and the astigmatic power of the overref value (FIG. In this example, the cylindrical lens 64 is rotated so as to be in a state corrected by -0.25D) and the astigmatic axis (180 degrees in the example of FIG. 4). As a result, the subject can experience how the optotype looks while wearing the appropriate corrective refraction instrument. When the examiner presses the comparison button 90a of the operation unit 90, the driving unit 62 moves the fixation target 32a to the reference position in the comparison mode (correction state is 0D = infinity or long distance 5m), that is, the non-correction state. Is controlled. Further, the cylindrical lens 64 is driven such that the astigmatism degree of the astigmatism correction optical system 63 becomes 0D. As a result, the subject can experience how the visual target looks while wearing the current refraction correction device. Each time the examiner presses the comparison button 90a, the control unit 80 sets a state in which the correction is performed by the correction optical system 60 based on the overref value and a non-correction state in which the correction by the correction optical system 60 is released (that is, the refraction state). (A state in which additional correction is not performed by the correction optical system 60 with respect to the correction state by the correction tool). This allows the subject to compare the appearance with the appropriate refraction correction instrument with the appearance with the currently used refraction correction instrument.
 以上のように、オーバーレフモードによって測定された装用状態での眼屈折力に基づいて、現在装用している屈折矯正器具での見え方と、適正な屈折矯正器具での見え方を比較することによって、被検者に適正な屈折矯正器具の必要性を確認させることができる。つまり、本実施例の眼屈折力測定装置は、オーバーレフモードによって測定された、屈折矯正器具を装用した状態で測定されたオーバーレフ値を有効に活用することができる。 As described above, based on the eye refractive power in the wearing state measured in the over-reflection mode, to compare the appearance with the currently worn refractive correction device and the appearance with the appropriate refractive correction device. This allows the subject to confirm the necessity of an appropriate refraction corrector. That is, the eye-refractive-power measuring apparatus according to the present embodiment can effectively utilize the overref value measured in the overref mode, which is measured in a state where the refraction correction instrument is worn.
 なお、制御部80は、被検者が屈折矯正器具を装用した状態において、種々の測定を行ってもよい。例えば、制御部80は、屈折矯正器具を装用した状態で自覚測定を行ってもよい。この場合、制御部80は、装用状態の被検眼に対して視標呈示光学系の視標を呈示する。例えば、制御部80は、被検眼に対してランドルト環等の視力検査視標32bを呈示する。検者は操作部90を操作し、被検者の見え具合を確認しながら視標の視力値を切り換え、被検者の最高視力を求める。なお、他覚測定と同様に、制御部80は、装用状態における被検眼を測定したことを示す判別表示を、測定結果と共に表示してもよい。 The control unit 80 may perform various measurements in a state where the subject wears the refraction correction device. For example, the control unit 80 may perform subjective measurement while wearing a refraction correction device. In this case, the control unit 80 presents the optotype of the optotype presenting optical system to the subject's eye in the wearing state. For example, the control unit 80 presents a visual acuity test target 32b such as a Landolt's ring to the subject's eye. The examiner operates the operation unit 90 to switch the visual acuity value of the visual target while checking the appearance of the subject, and obtains the maximum visual acuity of the subject. Note that, similarly to the objective measurement, the control unit 80 may display a determination display indicating that the eye to be examined in the wearing state has been measured, together with the measurement result.
 また、制御部80は、屈折矯正器具を装用した状態で被検眼の調節力を測定してもよい。この場合、制御部80は、他覚的、または自覚的に調節力を測定する。他覚的に測定する場合、例えば制御部80は、矯正光学系60によって視標の呈示位置を徐々に近づけながら測定光学系10によって屈折力を測定する。この測定結果に基づいて現在の屈折矯正器具での調節力を解析することで、目の疲れなどの指針を示すことができる。また、自覚的に測定する場合、制御部80は、近方の視標を提示し、また度数を変更することで疲れない度数を体感することができる。 The control unit 80 may measure the accommodation power of the subject's eye while wearing the refraction correcting device. In this case, the control unit 80 objectively or subjectively measures the accommodation power. When measuring objectively, for example, the control unit 80 measures the refractive power by the measuring optical system 10 while gradually approaching the target presentation position by the correction optical system 60. By analyzing the accommodation power of the current refraction corrector based on this measurement result, a guideline such as eye fatigue can be shown. In the case of subjective measurement, the control unit 80 can present a near target and change the power to experience the power that does not cause fatigue.
 また、制御部80は、屈折矯正器具を装用した状態で加入度比較モードを実行してもよい。加入度比較モードは、例えば、加入度を付加した状態と、付加していない非加入状態と、を切り換えることによって、被検者に加入度の有無による見え方の違いを確認させる測定モードである。例えば、制御部80は、屈折矯正器具を装用した被検者に対して近方の呈示位置(例えば、35cmの呈示位置)で視標32aを呈示し、オーバーレフ値に基づく矯正状態と、さらにそれに所定の加入度数が加えられた状態とに、視標呈示光学系の移動によって視標32aの呈示位置が切換えられる。加入度数は、操作部90への入力に基づいて変更されてもよい。加入度を設定した後、比較ボタン90aを押すと、加入度を加えた状態と、加入度を加えていない状態とが切換えられる。これによって、被検者は加入度の入った多焦点レンズや累進レンズの有用性を確認できる。なお、加入度は、調節力測定などの他覚測定結果に基づいて設定されてもよい。 The control unit 80 may execute the addition comparison mode while wearing the refraction correcting device. The addition comparison mode is, for example, a measurement mode that allows the subject to confirm the difference in appearance due to the presence or absence of the addition by switching between a state where the addition is added and a non-subscription state where the addition is not added. . For example, the control unit 80 presents the target 32a at a nearby presentation position (for example, a presentation position of 35 cm) to the subject wearing the refraction correction instrument, and a correction state based on the overref value, and The presentation position of the optotype 32a is switched by moving the optotype presenting optical system to a state where a predetermined addition power is added thereto. The addition frequency may be changed based on an input to the operation unit 90. When the comparison button 90a is pressed after the addition is set, a state where the addition is added and a state where the addition is not added are switched. Thus, the subject can confirm the usefulness of the multifocal lens or the progressive lens with added power. Note that the addition may be set based on an objective measurement result such as accommodation power measurement.
 また、制御部80は、屈折矯正器具を装用した状態で調節緊張パラメータを測定してもよい。これによって、制御部80は、現在装用している屈折矯正器具の快適度を数値化してもよい。例えば、制御部80は、視標の呈示位置を遠方から近方まで段階的に変化させ、視標の各呈示位置での屈折力を短い周期(例えば、12Hz)で測定し、そのときの屈折力の揺らぎを測定する。正常(快適)であれば揺らぎは少ないが、眼精疲労のある状態では屈折度数の揺らぎが発生する。したがって、制御部80は、この揺らぎを数値化することによって、現在装用している屈折矯正器具の快適具合を示すことができる。具体的な方法は、例えば、特開2005-177354号公報を参照されたい。なお、制御部80は、矯正光学系60の制御によって矯正状態を変更し、被検者の装用している屈折矯正器具とは異なる屈折度数で矯正された状態を作り、調節緊張パラメータを測定してもよい。 The control unit 80 may measure the adjustment tension parameter while wearing the refraction correcting device. Thereby, the control unit 80 may quantify the degree of comfort of the refraction corrector currently worn. For example, the control unit 80 changes the presenting position of the optotype stepwise from far to near, measures the refracting power at each of the presenting positions of the optotype in a short cycle (for example, 12 Hz), and measures the refraction at that time. Measure power fluctuations. Fluctuation is small in a normal (comfortable) state, but in a state with eye strain, fluctuation of the refractive power occurs. Therefore, the control unit 80 can indicate the degree of comfort of the refraction correction instrument currently worn by digitizing the fluctuation. For a specific method, see, for example, JP-A-2005-177354. The control unit 80 changes the correction state under the control of the correction optical system 60, creates a state corrected with a refractive power different from the refractive correction instrument worn by the subject, and measures the adjustment tension parameter. You may.
 なお、矯正器具度数75が取得されている場合、制御部80は、比較モードにおいて裸眼での見え方を比較させてもよい。例えば、制御部80は、現在装用している屈折矯正器具での見え方と、適正な屈折矯正器具での見え方と、裸眼での見え方と、の3つの見え方を比較できるように矯正光学系60を制御してもよい。この場合、制御部80は、非矯正状態と、オーバーレフ値に基づいて矯正した状態と、矯正器具度数75を差し引いた(相殺した)状態と、に矯正状態を切り換える。これによって、被検者は、裸眼での見え方に対する現在の屈折矯正器具での見え方との差と、裸眼での見え方に対する適正な屈折矯正器具での見え方との差を、屈折矯正器具を外すことなく仮想的に体感することができる。 When the correction instrument frequency 75 is acquired, the control unit 80 may compare the appearance with the naked eye in the comparison mode. For example, the control unit 80 corrects the appearance so as to be able to compare the three appearances, that is, the appearance with the currently worn refraction correction instrument, the appearance with the appropriate refraction correction instrument, and the appearance with the naked eye. The optical system 60 may be controlled. In this case, the control unit 80 switches the correction state between a non-correction state, a state corrected based on the overref value, and a state in which the correction tool frequency 75 is subtracted (cancelled). This allows the subject to correct the difference between the appearance of the naked eye with the current refraction instrument and the appearance of the naked eye with the appropriate refraction instrument. You can experience it virtually without removing the equipment.
 なお、制御部80は、被検者の装用している屈折矯正器具に遮光機能があるか否かを判定してもよい。この場合、制御部80は、顔撮影部5、観察光学系50、測定光学系10などによって取得された画像を解析することによって、遮光機能の有無を判定してもよい。例えば、顔撮影部5によって撮影された顔画像を用いる場合、顔画像上の被検眼の周辺領域の輝度、コントラストまたはエッジなどに基づいて遮光機能の有無を判定してもよい。被検眼の周辺領域とは、例えば、遮光機能を有する眼屈折矯正器具のレンズを通過した部分である。例えば、制御部80は、被検眼の周辺領域の輝度、コントラストまたはエッジが所定条件を満たすか否かに基づいて、遮光機能の有無を判定してもよい。例えば、制御部80は、顔画像における被検眼の周辺領域の輝度、コントラストまたはエッジが所定値よりも小さい場合、屈折矯正器具に遮光機能があると判定し、コントラストまたはエッジが所定値よりも大きい場合、屈折矯正器具に遮光性能がないと判定してもよい。また、観察光学系50によって撮影された前眼部画像を用いる場合も同様に、制御部80は、前眼部画像の輝度、コントラストまたはエッジが所定条件を満たすか否かに基づいてサングラスか否かを判定してもよい。 The control unit 80 may determine whether the refraction correction device worn by the subject has a light blocking function. In this case, the control unit 80 may determine the presence or absence of the light blocking function by analyzing images acquired by the face photographing unit 5, the observation optical system 50, the measurement optical system 10, and the like. For example, when a face image captured by the face capturing unit 5 is used, the presence or absence of the light blocking function may be determined based on the brightness, contrast, edge, or the like of the peripheral area of the subject's eye on the face image. The peripheral region of the subject's eye is, for example, a portion that has passed through a lens of an eye refraction corrector having a light blocking function. For example, the control unit 80 may determine the presence or absence of the light blocking function based on whether the brightness, contrast, or edge of the peripheral area of the subject's eye satisfies a predetermined condition. For example, when the brightness, contrast, or edge of the peripheral area of the subject's eye in the face image is smaller than a predetermined value, the control unit 80 determines that the refraction correction device has a light blocking function, and the contrast or edge is larger than the predetermined value. In such a case, it may be determined that the refraction correcting device does not have the light shielding performance. Similarly, when using the anterior ocular segment image captured by the observation optical system 50, the control unit 80 determines whether or not the brightness, contrast, or edge of the anterior ocular segment image is sunglasses based on whether or not a predetermined condition is satisfied. May be determined.
 また、測定光学系10によって撮影された測定画像(リング像)を用いる場合も同様に、制御部80は、リング像の輝度、コントラストまたはエッジが所定条件を満たすか否かに基づいて、屈折矯正器具に遮光機能があるか否かを判定してもよい。例えば、被検者がサングラスを掛けている場合、リング像の輝度、コントラストまたはエッジなどが小さくなる。したがって、制御部80は、リング像の輝度、コントラストまたはエッジが所定値よりも小さい場合、矯正屈折器具に遮光機能があると判定してもよい。 Similarly, when using a measurement image (ring image) captured by the measurement optical system 10, the control unit 80 determines whether or not the brightness, contrast, or edge of the ring image satisfies a predetermined condition. It may be determined whether the device has a light blocking function. For example, when the subject wears sunglasses, the brightness, contrast, or edge of the ring image is reduced. Therefore, when the brightness, contrast, or edge of the ring image is smaller than the predetermined value, the control unit 80 may determine that the corrective refraction instrument has a light blocking function.
 なお、制御部80は、赤外線カットレンズまたはブルーライトカットレンズなどが用いられた屈折矯正器具を装用しているか否かを判定してもよい。赤外線カットレンズまたはブルーライトカットレンズは、赤外線カットまたはブルーライトカット等の遮光機能を有する。赤外線カットレンズまたはブルーライトカットレンズなどによって特定の波長の光がカットされる場合も、顔画像、前眼部画像、測定画像などの輝度が低下する。したがって、制御部80は、前述の遮光機能の判定と同様に、被検者の顔画像、前眼部画像、測定画像などの輝度情報に基づいて、屈折矯正器具に赤外線カットレンズまたはブルーライトカットレンズが用いられているか否かを判定してもよい。 The control unit 80 may determine whether or not the user is wearing a refraction correction device using an infrared cut lens or a blue light cut lens. The infrared cut lens or blue light cut lens has a light blocking function such as infrared cut or blue light cut. Even when light of a specific wavelength is cut by an infrared cut lens, a blue light cut lens, or the like, the luminance of a face image, an anterior segment image, a measurement image, or the like decreases. Therefore, similarly to the above-described determination of the light-shielding function, the control unit 80 determines whether the refraction correction instrument has an infrared cut lens or a blue light cut based on luminance information such as a subject's face image, anterior eye image, and measured image. It may be determined whether or not a lens is used.
 なお、制御部80は、被検者の装用する屈折矯正器具に遮光機能があると判定した場合、測定光またはアライメント光などの光量を増加させてもよい。例えば、被検者がサングラスを装用している場合、アライメント光または測定光がサングラスによって遮られ、前眼部画像または測定画像の輝度が小さくなる。このため、制御部80は、アライメント光または測定光がサングラスによって遮られることを考慮し、アライメント光または測定光の光量を大きくしてもよい。これによって、アライメント光または測定光がサングラスなどによって遮られても、前眼部画像または測定画像の解析に支障が出ないようにしてもよい。 The control unit 80 may increase the amount of measurement light or alignment light when determining that the refraction correction device worn by the subject has a light blocking function. For example, when the subject wears sunglasses, the alignment light or the measurement light is blocked by the sunglasses, and the brightness of the anterior eye image or the measurement image decreases. For this reason, the controller 80 may increase the light amount of the alignment light or the measurement light in consideration of the fact that the alignment light or the measurement light is blocked by the sunglasses. Thus, even if the alignment light or the measurement light is blocked by sunglasses or the like, it may be possible to prevent the analysis of the anterior eye image or the measurement image from being hindered.
 なお、測定光の波長によって、屈折矯正器具を通過するときの屈折度合いが異なる。したがって、制御部80は、測定光の波長を考慮して測定結果を修正してもよい。例えば、制御部80は、波長の長い測定光によって測定する場合、波長の短い測定光によって測定する場合に比べて、屈折度数が大きくなるように補正してもよい。 The degree of refraction when passing through a refraction correction instrument varies depending on the wavelength of the measurement light. Therefore, the control unit 80 may correct the measurement result in consideration of the wavelength of the measurement light. For example, the control unit 80 may perform correction so that the refractive power becomes larger when the measurement is performed using the measurement light having a longer wavelength than when the measurement is performed using the measurement light having a shorter wavelength.
 なお、比較ボタン90aを被検者側にも配置し、被検者自身が操作できるようにしてもよいし、ボタン操作でなく一定時間ごとに自動的に切り換わるようにしてもよい。さらに、切り換わったことが分かるように被検眼から見える位置に色違いのLED等を点灯させてもよいし、音声ガイドにて被検者に説明するようにしてもよい。 Note that the comparison button 90a may be arranged on the subject side so that the subject himself can operate the button, or the comparison button 90a may be automatically switched at regular intervals instead of the button operation. Further, LEDs or the like of different colors may be turned on at a position visible from the subject's eye so as to recognize that the switching has been performed, or an explanation may be given to the subject using a voice guide.
 <他の装置への適用>
 また、上記説明においては、眼屈折力測定装置として、被検眼の眼屈折力を他覚的に測定する眼屈折力測定装置を例示したが、これに限定されず、被検眼の眼屈折力を自覚的に測定する眼屈折力測定装置においても、本実施形態の適用は可能である。また、特開2018-38788号公報に開示されるような両眼開放型の検眼装置においても本実施例の適用は可能である。
<Application to other devices>
Further, in the above description, as the eye refractive power measuring device, an eye refractive power measuring device that objectively measures the eye refractive power of the eye to be inspected is exemplified, but the present invention is not limited to this. The present embodiment is also applicable to an eye refractive power measuring device that performs subjective measurement. The present embodiment is also applicable to a binocular open type optometry apparatus as disclosed in Japanese Patent Application Laid-Open No. 2018-38788.
 1 眼屈折力測定装置
 45 リング指標投影光学系
 48 照明光源
 50 観察光学系
 80 制御部
Reference Signs List 1 eye refractive power measuring device 45 ring index projection optical system 48 illumination light source 50 observation optical system 80 control unit

Claims (8)

  1.  被検眼の眼屈折力を測定する眼屈折力測定装置であって、
     被検眼の眼屈折力を測定する測定光学系と、
     装置本体側に設けられた矯正光学系を介して被検眼に視標を呈示する視標呈示光学系と、
     前記眼屈折力測定装置を制御する制御手段と、を備え、
     前記制御手段は、
    屈折矯正器具を装用した装用状態での眼屈折力であるオーバーレフ値を測定するオーバーレフモードと、
    前記矯正光学系を制御し、前記オーバーレフ値に基づいて矯正された状態と、前記装用状態に対して前記矯正光学系による追加的な矯正を行わない非矯正状態と、を切り換えることによって、被検者に前記視標の見え方を比較させる比較モードと、
    を実行することを特徴とする眼屈折力測定装置。
    An eye-refractive-power measuring device that measures the eye refractive power of the eye to be examined,
    A measurement optical system for measuring the eye refractive power of the eye to be inspected,
    An optotype presenting optical system that presents an optotype to the subject's eye via a correction optical system provided on the apparatus body side,
    Control means for controlling the eye refractive power measurement device,
    The control means includes:
    An overref mode for measuring an overref value that is an eye refractive power in a wearing state using a refraction corrector,
    By controlling the correction optical system and switching between a state corrected based on the over-reflection value and a non-correction state in which the correction optical system does not perform additional correction on the wearing state, A comparison mode for allowing an examiner to compare the appearance of the target,
    Eye refractive power measuring device, characterized by performing the following.
  2.  前記制御手段は、前記矯正光学系を制御し、前記装用状態において加入度を加えた状態と、非加入状態と、を切り換えることによって、被検者に前記視標の見え方を比較させる加入度比較モードを実行することを特徴とする請求項1の眼屈折力測定装置。 The control means controls the correction optical system, and switches between a state in which the addition is added and a non-addition state in the wearing state, thereby allowing the subject to compare the appearance of the target. The eye refractive power measuring device according to claim 1, wherein the eye refractive power measuring device executes a comparison mode.
  3.  前記屈折矯正器具の屈折度数である矯正器具度数を取得する度数取得手段をさらに備えることを特徴とする請求項1または2の眼屈折力測定装置。 The eye refractive power measuring device according to claim 1 or 2, further comprising a power acquisition unit that acquires a correction instrument power that is a refractive power of the refraction correction instrument.
  4.  前記制御手段は、前記比較モードにおいてさらに、前記矯正光学系を制御することによって前記矯正器具度数を相殺した状態である仮想的な裸眼状態に切り換えることを特徴とする請求項3の眼屈折力測定装置。 4. The eye refractive power measurement according to claim 3, wherein the control unit further switches to a virtual naked eye state in which the correction device power is offset by controlling the correction optical system in the comparison mode. apparatus.
  5.  前記制御手段は、前記屈折矯正器具を外した裸眼状態で測定した眼屈折力である裸眼レフ値と、前記矯正器具度数と、前記オーバーレフ値と、に基づいて、前記屈折矯正器具の異常を検知することを特徴とする請求項3または4の眼屈折力測定装置。 The control means, based on the naked eye reflex value which is the eye refractive power measured in the naked eye state with the refractive correction device removed, the correction device frequency, and the overref value, based on the abnormality of the refractive correction device. The eye refractive power measuring device according to claim 3, wherein the eye refractive power is detected.
  6.  前記制御手段は、前記裸眼レフ値と前記矯正器具度数との差分と、前記オーバーレフ値と、の比較結果に基づいて、前記屈折矯正器具の異常を検知することを特徴とする請求項5の眼屈折力測定装置。 The method according to claim 5, wherein the control unit detects an abnormality of the refraction correction device based on a comparison result between the difference between the naked eye reflex value and the correction device frequency and the overreflex value. 7. Eye refractive power measuring device.
  7.  前記制御手段は、前記屈折矯正器具に遮光機能があるか否かを判定することを特徴とする請求項1~6のいずれかの眼屈折力測定装置。 (7) The eye refractive power measuring device according to any one of (1) to (6), wherein the control unit determines whether the refraction correcting device has a light blocking function.
  8.  前記制御手段は、前記屈折矯正器具に遮光機能があると判定した場合、前記測定光学系または前記視標呈示光学系の光量を増加させることを特徴とする請求項7の眼屈折力測定装置。
     
    The eye refractive power measuring device according to claim 7, wherein the control means increases the light amount of the measurement optical system or the optotype presenting optical system when it is determined that the refraction correcting device has a light blocking function.
PCT/JP2019/034495 2018-09-05 2019-09-02 Ocular refractivity measuring device WO2020050233A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020541217A JP7352198B2 (en) 2018-09-05 2019-09-02 Eye refractive power measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-166448 2018-09-05
JP2018166448 2018-09-05

Publications (1)

Publication Number Publication Date
WO2020050233A1 true WO2020050233A1 (en) 2020-03-12

Family

ID=69721656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034495 WO2020050233A1 (en) 2018-09-05 2019-09-02 Ocular refractivity measuring device

Country Status (2)

Country Link
JP (1) JP7352198B2 (en)
WO (1) WO2020050233A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210186320A1 (en) * 2019-12-20 2021-06-24 Amo Development, Llc Optical measurement systems and processes with non-telecentric projection of fixation target to eye
WO2023276200A1 (en) * 2021-06-30 2023-01-05 日本電気株式会社 Information processing device, information processing method, and computer-readable medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015223518A (en) * 2014-05-29 2015-12-14 株式会社トプコン Ophthalmologic apparatus
JP2018038498A (en) * 2016-09-05 2018-03-15 株式会社ニデック Lens prescription assisting apparatus and lens prescription assisting program
WO2019111788A1 (en) * 2017-12-04 2019-06-13 株式会社ニデック Ocular refractive power measurement device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015223518A (en) * 2014-05-29 2015-12-14 株式会社トプコン Ophthalmologic apparatus
JP2018038498A (en) * 2016-09-05 2018-03-15 株式会社ニデック Lens prescription assisting apparatus and lens prescription assisting program
WO2019111788A1 (en) * 2017-12-04 2019-06-13 株式会社ニデック Ocular refractive power measurement device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210186320A1 (en) * 2019-12-20 2021-06-24 Amo Development, Llc Optical measurement systems and processes with non-telecentric projection of fixation target to eye
US11896306B2 (en) * 2019-12-20 2024-02-13 Amo Development, Llc Optical measurement systems and processes with non-telecentric projection of fixation target to eye
WO2023276200A1 (en) * 2021-06-30 2023-01-05 日本電気株式会社 Information processing device, information processing method, and computer-readable medium

Also Published As

Publication number Publication date
JPWO2020050233A1 (en) 2021-08-30
JP7352198B2 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
US11330978B2 (en) Subjective optometry apparatus, subjective optometry method, and recording medium storing subjective optometry program
US10188282B2 (en) Subjective optometry apparatus
US10470658B2 (en) Optometry apparatus and optometry program
JP2017086652A (en) Subjective optometry apparatus
JP2018047049A (en) Subjective optometer and subjective optometric program
JP6853496B2 (en) Optometry device and optometry program
JP6736356B2 (en) Ophthalmic equipment
JP7352198B2 (en) Eye refractive power measuring device
JP7283391B2 (en) eye refractive power measuring device
JP7266375B2 (en) Ophthalmic device and method of operation thereof
JP2018038481A (en) Subjective optometer and subjective optometry program
CN107788946B (en) Subjective optometry device and subjective optometry program
JP7098880B2 (en) Subjective optometry device and subjective optometry program
JP6898712B2 (en) Ophthalmic equipment
JP7293726B2 (en) Subjective optometric device and subjective optometric program
JP6825338B2 (en) Subjective optometry device and subjective optometry program
WO2020226023A1 (en) Optometric device
JP7078187B2 (en) Subjective optometry device and subjective optometry program
JP2019058441A (en) Ophthalmologic apparatus and control method
JP2018171140A (en) Subjective optometric apparatus and subjective optometric program
JP7021540B2 (en) Awareness-based optometry device
JP7298134B2 (en) Optometry system
JP2004166903A (en) Optometric device
JP2017086654A (en) Subjective optometry apparatus and subjective optometry program
JP2017086653A (en) Subjective optometry apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857963

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020541217

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857963

Country of ref document: EP

Kind code of ref document: A1