WO2020045445A1 - Distance measuring device, distance measuring device group, and distance measuring device system - Google Patents

Distance measuring device, distance measuring device group, and distance measuring device system Download PDF

Info

Publication number
WO2020045445A1
WO2020045445A1 PCT/JP2019/033542 JP2019033542W WO2020045445A1 WO 2020045445 A1 WO2020045445 A1 WO 2020045445A1 JP 2019033542 W JP2019033542 W JP 2019033542W WO 2020045445 A1 WO2020045445 A1 WO 2020045445A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
distance measuring
measuring device
distance
unit
Prior art date
Application number
PCT/JP2019/033542
Other languages
French (fr)
Japanese (ja)
Inventor
岡本 修治
佐伯 哲夫
石丸 裕
和穂 江川
智浩 江川
裕多 堀
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2020045445A1 publication Critical patent/WO2020045445A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to a distance measuring device, a distance measuring device group, and a distance measuring device system.
  • Patent Literature 1 discloses an autonomous mobile device including a laser range finder.
  • a laser range finder scans a laser in a horizontal direction around an autonomous mobile device in a fan shape within a predetermined range. That is, the laser range finder emits the laser at every predetermined angle. Then, the laser range finder detects the laser reflected from the object and returns, and determines the angle between the laser and the object based on the emission angle of the laser and the time from when the laser is emitted to when the laser reflects and returns from the object. And distance.
  • the autonomous mobile device has a local map creating unit and a self-position estimating unit.
  • the local map creator creates a local map around the own device with the laser range finder as the origin, based on information detected by the laser range finder.
  • the self-position estimating unit compares the local map, which has been transformed into the coordinate system (absolute coordinate system) of the environment map, with the environment map, and estimates the self-position based on the result of the comparison.
  • the autonomous mobile device has a sign detection unit.
  • the sign detection unit detects a sign based on the output pattern of the detection information and the non-detection information output from the laser range finder. More specifically, the sign detection unit is configured such that a plurality of detection information groups and a plurality of non-detection information groups alternately appear a predetermined number of times, and the number of non-detection information included in each of the plurality of non-detection information groups Is within the first predetermined range and the number of pieces of detection information included in each of the plurality of detection information groups is within the second predetermined range, it is determined that the detection target is a marker.
  • the self-position estimating unit corrects the estimated self-position based on the sign detected by the sign detecting unit.
  • Patent Document 1 According to the autonomous mobile device of Patent Document 1 described above, it is possible to reliably determine and detect a sign, regardless of the environment in which the sign is placed, and to perform accurate autonomous movement. ing. Patent Document 1 also discloses that the sign detection unit determines that the detected object is a sign when the same detected object is determined to be a sign a plurality of times. It is stated that this makes it possible to more reliably prevent erroneous detection of a sign.
  • Patent Document 1 does not solve this problem.
  • an object of the present invention is to provide a distance measuring device capable of suppressing erroneous distance measurement due to interference from another distance measuring device.
  • An exemplary distance measuring device includes a light emitting unit that includes a light emitting unit and performs rotational scanning of emitted light, a light receiving unit that outputs a light receiving signal based on light reception, an emission of the emitted light, and the light receiving unit. And a distance measuring unit that measures a distance to a measurement target based on light reception by the light emitting unit. It is determined that the light receiving signal is based on the light reflected by the object to be measured, based on the shift of the light receiving timing of the light receiving signal obtained when the light is emitted.
  • the exemplary distance measuring device of the present invention it is possible to suppress erroneous distance measurement due to interference from another distance measuring device.
  • FIG. 1 is a schematic overall perspective view of an automatic guided vehicle according to one embodiment of the present invention.
  • FIG. 2 is a schematic side view of the automatic guided vehicle according to one embodiment of the present invention.
  • FIG. 3 is a plan view of the automatic guided vehicle according to one embodiment of the present invention as viewed from above.
  • FIG. 4 is a schematic side sectional view of the distance measuring device according to one embodiment of the present invention.
  • FIG. 5 is a block diagram showing an electrical configuration of the distance measuring device according to one embodiment of the present invention.
  • FIG. 6 is a block diagram showing an electrical configuration of the automatic guided vehicle according to one embodiment of the present invention.
  • FIG. 7 is a block diagram illustrating a first configuration example of the distance measurement unit.
  • FIG. 8 is a diagram for explaining pulse width correction.
  • FIG. 9 is a diagram illustrating a situation where a plurality of automatic guided vehicles equipped with a distance measuring device operate in a warehouse or the like.
  • FIG. 10 is a diagram illustrating an example of a waveform of a light reception signal obtained when the emission light is emitted at the first scanning position.
  • FIG. 11 is a diagram illustrating an example of a waveform of a received light signal obtained when the emitted light is emitted at the second scanning position.
  • FIG. 12 is a diagram in which the waveforms shown in FIGS. 10 and 11 are overlapped.
  • FIG. 13 is a diagram illustrating a situation where a plurality of automatic guided vehicles operate in a warehouse or the like and a situation where a worker works.
  • FIG. 10 is a diagram illustrating an example of a waveform of a light reception signal obtained when the emission light is emitted at the first scanning position.
  • FIG. 11 is a diagram illustrating an example of a waveform of a received light signal obtained when the emitted
  • FIG. 14 is a block diagram illustrating a second configuration example of the distance measurement unit.
  • FIG. 15 is a flowchart of a process performed by the distance measurement unit of the second configuration example.
  • FIG. 16 is a waveform diagram showing an example of the light receiving signal.
  • FIG. 17 is a schematic diagram illustrating a configuration example of a distance measurement device system.
  • FIG. 18 is a waveform diagram showing an example of each light receiving signal obtained at the first scanning position and the second scanning position in an overlapping manner.
  • the distance measuring device is configured as a laser range finder
  • an automatic guided vehicle that is used to carry a load
  • the automatic guided vehicle is also generally called an AGV (Automatic Guided Vehicle).
  • FIG. 1 is a schematic overall perspective view of an automatic guided vehicle 15 according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view of the automatic guided vehicle 15 according to one embodiment of the present invention.
  • FIG. 3 is a plan view seen from above of the automatic guided vehicle 15 according to one embodiment of the present invention.
  • the automatic guided vehicle 15 travels autonomously by two-wheel drive and transports luggage.
  • the automatic guided vehicle 15 includes the vehicle body 1, the carrier 2, the support portions 3L and 3R, the drive motors 4L and 4R, the drive wheels 5L and 5R, the driven wheels 6F and 6R, and the distance measuring device 7. .
  • the vehicle body 1 includes a base 1A and a base 1B.
  • the plate-like base 1B is fixed to the rear upper surface of the base 1A.
  • the base 1B has a triangular portion Tr protruding forward.
  • the plate-shaped carrier 2 is fixed to the upper surface of the platform 1B. Luggage can be placed on the upper surface of the bed 2.
  • the carrier 2 extends further forward than the platform 1B. Thereby, a gap S is formed between the front of the base 1A and the front of the carrier 2.
  • the distance measuring device 7 is disposed in the gap S at a position in front of the vertex of the triangular portion Tr of the base 1B.
  • the distance measuring device 7 is configured as a laser range finder, and measures a distance to a measurement target while scanning a laser beam.
  • the distance measurement device 7 is used for obstacle detection, map information creation, and self-position identification described later. The detailed configuration of the distance measuring device 7 itself will be described later.
  • the support 3L is fixed to the left side of the base 1A, and supports the drive motor 4L.
  • the drive motor 4L is configured by, for example, an AC servomotor.
  • the drive motor 4L incorporates a speed reducer (not shown).
  • the drive wheel 5L is fixed to a rotating shaft of the drive motor 4L.
  • the support 3R is fixed to the right side of the base 1A and supports the drive motor 4R.
  • the drive motor 4R is configured by, for example, an AC servomotor.
  • the drive motor 4R incorporates a speed reducer (not shown).
  • the drive wheel 5R is fixed to a rotating shaft of the drive motor 4R.
  • the driven wheel 6F is fixed to the front side of the base 1A.
  • the driven wheel 6R is fixed to the rear side of the base 1A.
  • the driven wheels 6F, 6R rotate passively according to the rotation of the drive wheels 5L, 5R.
  • the automatic guided vehicle 15 By driving the drive wheels 5L, 5R by the drive motors 4L, 4R, the automatic guided vehicle 15 can be moved forward and backward. In addition, by controlling the rotational speeds of the drive wheels 5L and 5R to provide a difference, the automatic guided vehicle 15 can be turned clockwise or counterclockwise to change the direction.
  • the base 1A houses therein a control unit U, a battery B, and a communication unit T.
  • the control unit U is connected to the distance measuring device 7, the drive motors 4L and 4R, the communication unit T, and the like.
  • the control unit U communicates various signals with the distance measuring device 7 as described later.
  • the control unit U also controls the drive of the drive motors 4L and 4R.
  • the communication unit T communicates with an external tablet terminal (not shown) and conforms to, for example, Bluetooth (registered trademark). Thereby, the automatic guided vehicle 15 can be remotely controlled by the tablet terminal.
  • the battery B is composed of, for example, a lithium ion battery, and supplies power to each unit such as the distance measuring device 7, the control unit U, and the communication unit T.
  • FIG. 4 is a schematic side sectional view of the distance measuring device 7.
  • the distance measuring device 7 configured as a laser range finder includes a laser light source 71, a collimating lens 72, a light projecting mirror 73, a light receiving lens 74, a light receiving mirror 75, a wavelength filter 76, a light receiving element 77, A housing 78, a motor 79, a housing 80, a substrate 81, and a wiring 82 are provided.
  • the housing 80 has a substantially columnar shape extending in the vertical direction when viewed from the outside, and accommodates various components including the laser light source 71 in the internal space.
  • the laser light source 71 is mounted on the lower surface of a substrate 81 fixed to the lower surface of the upper end of the housing 80.
  • the laser light source 71 emits, for example, laser light in the infrared region downward.
  • the collimating lens 72 is disposed below the laser light source 71.
  • the collimating lens 72 emits the laser light emitted from the laser light source 71 downward as parallel light.
  • a light projecting mirror 73 is arranged below the collimating lens 72.
  • the light projecting mirror 73 is fixed to the rotating housing 78.
  • the rotating housing 78 is fixed to a shaft 79 ⁇ / b> A of the motor 79, and is driven to rotate around the rotation axis J by the motor 79. With the rotation of the rotating housing 78, the light projecting mirror 73 is also driven to rotate about the rotation axis J.
  • the light projecting mirror 73 reflects the laser light emitted from the collimating lens 72, and emits the reflected laser light as emission light L1. Since the light projecting mirror 73 is driven to rotate as described above, the emission light L1 is emitted while changing the emission direction within a range of 360 degrees around the rotation axis J.
  • the housing 80 has a transmission part 801 in the middle in the vertical direction.
  • the transmissive portion 801 is made of a translucent resin or the like.
  • the predetermined rotation scanning angle range ⁇ is set to 270 degrees around the rotation axis J as an example, as shown in FIG. More specifically, the range of 270 degrees includes 180 degrees in the front and 45 degrees in the left and right directions.
  • the emitted light L1 is transmitted through the transmission part 801 at least within a range of 270 degrees around the rotation axis J. In a range where the rear transmission part 801 is not disposed, the emitted light L1 is blocked by the inner wall of the housing 80, the wiring 82, or the like.
  • the light receiving mirror 75 is fixed to the rotating housing 78 at a position below the light projecting mirror 73.
  • the light receiving lens 74 is fixed to a circumferential side surface of the rotating housing 78.
  • the wavelength filter 76 is located below the light receiving mirror 75 and is fixed to the rotating housing 78.
  • the light receiving element 77 is located below the wavelength filter 76 and is fixed to the rotating housing 78.
  • the outgoing light L1 emitted from the distance measuring device 7 is reflected by the object to be measured and becomes diffused light. Part of the diffused light is transmitted through the gap S and the transmission portion 801 as incident light L2 and is incident on the light receiving lens 74.
  • the incident light L2 transmitted through the light receiving lens 74 is incident on the light receiving mirror 75, and is reflected downward by the light receiving mirror 75.
  • the reflected incident light L2 passes through the wavelength filter 76 and is received by the light receiving element 77.
  • the wavelength filter 76 transmits light in the infrared region.
  • the light receiving element 77 converts the received light into an electric signal by photoelectric conversion.
  • the rotating housing 78 When the rotating housing 78 is driven to rotate by the motor 79, the light receiving lens 74, the light receiving mirror 75, the wavelength filter 76, and the light receiving element 77 are driven to rotate together with the light projecting mirror 73.
  • the outgoing light L1 is emitted in the rotational scanning angle range ⁇ and the outgoing light L1 is reflected by the measurement object located within the measurement range Rs, the reflected light is transmitted through the transmission unit 801 as incident light L2 and is received by the light receiving lens 74. Is incident on.
  • the motor 79 is connected to the substrate 81 by a wiring 82 and is driven to rotate by being energized from the substrate 81.
  • the motor 79 rotates the rotating housing 78 at a predetermined rotation speed.
  • the rotating housing 78 is driven to rotate at about 3000 rpm.
  • the wiring 82 is routed vertically along the rear inner wall of the housing 80.
  • FIG. 5 is a block diagram illustrating an electrical configuration of the distance measuring device 7.
  • the distance measuring device 7 includes a laser light emitting unit 701, a laser light receiving unit 702, a distance measuring unit 703, a data communication interface 704, a second arithmetic processing unit 705, a driving unit 706, And a motor 79.
  • the laser light emitting unit 701 includes a laser light source 71 (FIG. 4), an LD driver (not shown) for driving the laser light source 71, and the like.
  • the LD driver is mounted on the substrate 81.
  • the laser emitting unit 701, the light projecting mirror 73, the rotating housing 78, and the motor 79 constitute a light emitting unit 83 (FIG. 4). That is, the distance measuring device 7 includes the light projecting unit 83 that includes the light emitting unit (laser light emitting unit 701) and performs rotational scanning of the emitted light L1.
  • Laser light receiving section 702 includes light receiving element 77 (FIG. 4) and the like, and outputs a light receiving signal based on the received light. That is, the distance measuring device 7 includes a light receiving unit (laser light receiving unit 702) that outputs a light receiving signal based on light reception. The more specific configuration of the laser light receiving unit 702 will be described later.
  • the distance measuring unit 703 receives a light receiving signal output from the laser light receiving unit 702.
  • the distance measuring unit 703 has a first arithmetic processing unit 703A.
  • the laser emission unit 701 emits a pulsed laser beam using the laser emission pulse LP output from the first arithmetic processing unit 703A as a trigger. At this time, the outgoing light L1 is emitted.
  • the incident light L2 is received by the laser light receiving unit 702.
  • Laser light receiving section 702 outputs a light receiving signal to distance measuring section 703 based on the reception of incident light L2.
  • the first arithmetic processing unit 703A outputs a reference pulse (not shown in FIG. 5) output together with the laser emission pulse LP.
  • the distance measurement unit 703 can acquire the distance to the measurement target OJ by measuring the elapsed time from the rising timing of the reference pulse to the rising timing of the light receiving signal. That is, the distance measuring unit 703 measures the distance by a so-called TOF (Time @ Of @ Flight) method.
  • the distance measuring device 7 includes the distance measuring unit 703 that measures the distance to the measurement target OJ based on the emission of the emitted light and the light reception by the light receiving unit 702. The more specific configuration of the distance measuring device 7 will be described later.
  • the drive unit 706 controls the rotation of the motor 79.
  • the motor 79 is driven to rotate at a predetermined rotation speed by the drive unit 706.
  • the first arithmetic processing unit 703A outputs a laser emission pulse LP each time the motor 79 rotates by a predetermined unit angle.
  • the laser light emitting unit 701 emits light, and the emitted light L1 is emitted.
  • FIG. 3 shows that the emitted light L1 is emitted at every predetermined rotation angle ⁇ .
  • the first arithmetic processing unit 703A uses the distance measurement device 7 as a reference based on the rotation angle position of the motor 79 at the timing when the laser emission pulse LP is output and the distance measurement data obtained corresponding to the laser emission pulse LP. To generate position information on the orthogonal coordinate system. That is, the position of the measurement object OJ is acquired based on the rotation angle position of the light projecting mirror 73 and the measured distance. The acquired position information is output from the first arithmetic processing unit 703A as measured distance data DT. In this manner, a distance image of the measurement object OJ can be obtained by rotational scanning of the emitted light L1 in the rotational scanning angle range ⁇ .
  • the measured distance data DT output from the first arithmetic processing unit 703A is transmitted via the data communication interface 704 to the automatic guided vehicle 15 shown in FIG.
  • the second arithmetic processing unit 705 determines whether or not the measurement target is located within a predetermined area based on the measurement distance data DT. Specifically, if the position of a certain measurement target indicated by the measurement distance data DT is located within the predetermined area, it is determined that the measurement target is located within the predetermined area. When determining that the measurement target is located within the predetermined area, the second arithmetic processing unit 705 outputs the detection signal Ds, which is a flag, as a High level. On the other hand, when the measurement object is not located within the predetermined area, the detection signal Ds having a low level is output. The detection signal Ds is transmitted to the automatic guided vehicle 15 shown in FIG.
  • FIG. 6 is a block diagram illustrating an electrical configuration of the automatic guided vehicle 15.
  • the automatic guided vehicle 15 includes a distance measuring device 7, a control unit 8, a driving unit 9, and a communication unit T.
  • the control unit 8 is provided in the control unit U (FIG. 1).
  • the control unit 8 is configured by a processor such as a CPU (Central Processing Unit).
  • the drive unit 9 includes a motor driver (not shown) and drive motors 4L and 4R.
  • the motor driver is provided in the control unit U.
  • the control unit 8 issues a command to the drive unit 9 and controls the drive unit 9.
  • the driving unit 9 controls the driving speed and the rotating direction of the driving wheels 5L and 5R.
  • the control unit 8 communicates with a tablet terminal (not shown) via the communication unit T.
  • the control unit 8 can receive, via the communication unit T, an operation signal corresponding to the content operated on the tablet terminal.
  • the measured distance data DT output from the distance measuring device 7 is input to the control unit 8.
  • the control unit 8 can create map information based on the measured distance data DT.
  • the map information is information generated for performing self-position identification for specifying the position of the automatic guided vehicle 15 and is generated as position information of a stationary object at a place where the automatic guided vehicle 15 runs. For example, when the location where the automatic guided vehicle 15 travels is a warehouse, the stationary object is a wall of the warehouse, shelves arranged in the warehouse, or the like.
  • the map information is generated, for example, when a manual operation of the automatic guided vehicle 15 is performed by the tablet terminal.
  • an operation signal corresponding to the operation of, for example, the joystick of the tablet terminal is transmitted to the control unit 8 via the communication unit T, and the control unit 8 instructs the driving unit 9 in accordance with the operation signal, The traveling control of the transport vehicle 15 is performed.
  • the control unit 8 specifies the position of the measurement target at the place where the automatic guided vehicle 15 travels as map information. I do.
  • the position of the automatic guided vehicle 15 is specified based on the drive information of the drive unit 9.
  • the map information generated as described above is stored in the storage unit 85 of the control unit 8.
  • the control unit 8 compares the measured distance data DT input from the distance measuring device 7 with the map information stored in advance in the storage unit 85, thereby identifying the position of the automatic guided vehicle 15 itself. I do. That is, the control unit 8 functions as a position identification unit. By performing the self-position identification, the control unit 8 can perform autonomous traveling control of the automatic guided vehicle 15 along a predetermined route.
  • the control unit 8 can also control the driving unit 9 based on the detection signal Ds output from the distance measuring device 7.
  • FIG. 7 is a block diagram illustrating a first configuration example of the distance measurement unit 703.
  • FIG. 7 also shows a specific configuration example of the laser light receiving unit 702.
  • the laser light receiving section 702 has an APD (avalanche photodiode) 702A and an amplifier circuit (transimpedance amplifier) 702B.
  • the APD 702A corresponds to the light receiving element 77, and converts the received laser light into a current signal.
  • the amplifier circuit 702B converts the current signal output from the APD 702A into a light receiving signal Ps by current / voltage conversion and outputs the light receiving signal Ps.
  • the distance measuring unit 703 includes a first TDC (time to digital converter) 703B and a second TDC 703C in addition to the above-described first arithmetic processing unit 703A.
  • the first TDC 703B measures an elapsed time T1 from the rising timing of the reference pulse SP output from the first arithmetic processing unit 703A to the rising timing of the light receiving signal Ps output from the amplifier circuit 702B.
  • the second TDC 703C measures an elapsed time T2 from the rising timing of the reference pulse SP output from the first arithmetic processing unit 703A to the falling timing of the light receiving signal Ps output from the amplifier circuit 702B.
  • the first arithmetic processing unit 703A performs the following distance measurement by pulse width correction based on the measurement results by the first TDC 703B and the second TDC 703C.
  • the light receiving signal Ps is not actually a pulse waveform but a waveform having a gradient with respect to time, as shown in FIG. Accordingly, even if the elapsed time T1 from the rising timing t0 of the reference pulse SP to the timing of crossing the first light receiving threshold Th1 when the light receiving signal Ps rises is measured by the first TDC 703B, it is necessary to measure the elapsed time for accurate distance measurement. It is necessary to perform the correction by subtracting the correction amount ⁇ t from the time T1.
  • the correction amount ⁇ t is a time from when the light receiving signal Ps rises to the first light receiving threshold Th1 from the zero level.
  • the pulse width correction the elapsed time T2 from the rising timing t0 of the reference pulse SP to the timing of crossing the second light receiving threshold Th2 when the light receiving signal Ps falls is also measured by the second TDC 703C, and the elapsed times T2 and T1 are measured. Is calculated as the pulse width W. As the peak level of the light receiving signal Ps increases, the rising and falling of the light receiving signal become steeper, the pulse width W increases, and the correction amount ⁇ t decreases. Therefore, the correction amount ⁇ t is determined based on the actually calculated pulse width W and the relationship between the preset pulse width W and the correction amount ⁇ t. Then, distance measurement is performed by subtracting the determined correction amount ⁇ t from the measured elapsed time T1.
  • the distance measuring device 7 measures the distance based on the reception of the direct light DL or the reflected light RL, there is a possibility that the distance measuring device 7 erroneously measures a distance different from the distance to the measurement target to be measured. In addition to the situation shown in FIG. 9, for example, when another fixed type distance measuring device (for preventing intrusion, etc.) is present, the effect of the laser beam emitted from the distance measuring device is the same. .
  • the distance measuring device 7 of the present embodiment has a function of suppressing the influence of such interference from other distance measuring devices.
  • a function of suppressing the influence of such interference from other distance measuring devices will be described with reference to FIGS. 10 to 12 as an example.
  • FIG. 10 shows an example of the waveform of the light receiving signal Ps1 obtained when the emission light L1 is emitted at a certain first scanning position in the measurement range Rs (FIG. 3) for scanning the emission light L1.
  • the scanning position is an angular position around the rotation axis J with reference to a predetermined radial direction about the rotation axis J with reference to FIG.
  • the light receiving signal Ps1 shown in FIG. 10 is shown as a waveform with respect to the timing at which the emission light L1 is emitted, that is, the elapsed time from the rising timing of the reference pulse SP. This is the same in FIGS. 11 and 12. As shown in FIG.
  • the received light signal Ps1 includes a received light signal Ps11 based on the reception of the reflected light of the outgoing light L1 reflected by the measurement target, and a received light signal Ps1 based on the reception of the direct light emitted from another distance measuring device. Ps12.
  • FIG. 11 shows an example of the waveform of the light receiving signal Ps2 obtained when the emitted light L1 is emitted at the second scanning position shifted from the first scanning position by the predetermined rotation angle ⁇ (FIG. 3) in the same revolution.
  • the received light signal Ps2 is composed of a received light signal Ps21 based on the reception of the reflected light reflected from the object to be emitted and the received light signal Ps2 based on the reception of the direct light emitted from another distance measuring device. Ps22.
  • the distance measuring unit 703 uses the first TDC 703B to start from the rising timing of the reference pulse PS to the timing of crossing the first light receiving threshold Th1 at the rising of each of the light receiving signals Ps11 and Ps12. The elapsed times T10 and T11 are measured. Further, when the emission light L1 is emitted at the first scanning position, the distance measurement unit 703 uses the second TDC 703C to determine the second light reception threshold Th2 at the fall of each of the light reception signals Ps11 and Ps12 from the rise timing of the reference pulse PS. The elapsed times T20 and T21 until the crossing timing are measured.
  • the distance measurement unit 703 uses the first TDC 703B to cross the first light reception threshold Th1 at the rise of each of the light reception signals Ps21 and PS22 from the rise timing of the reference pulse PS. The elapsed times T12 and T13 until the timing are measured. Further, when the emission light L1 is emitted at the second scanning position, the distance measurement unit 703 uses the second TDC 703C to determine the second light reception threshold value Th2 at the fall of each of the light reception signals Ps21 and PS22 from the rise timing of the reference pulse PS. The elapsed times T22 and T23 until the crossing timing are measured.
  • the first arithmetic processing unit 703A included in the distance measuring unit 703 calculates the difference between the elapsed times until the light reception signals obtained at the first and second scanning positions cross the first light reception threshold Th1 by a predetermined time difference. It is determined whether it is within. That is, in the example of FIGS. 10 and 11, the first arithmetic processing unit 703A compares the difference between the elapsed times T10 and T12 and the difference between the elapsed times T11 and T13 with the predetermined time differences.
  • FIG. 12 is a diagram in which the waveforms shown in FIGS. 10 and 11 are overlapped.
  • the light receiving signals Ps11 and PS21 are light receiving signals based on the reception of the reflected light of the outgoing light L1 by the measurement object, there is almost no difference between the elapsed times T10 and T12, and the difference is within a predetermined time difference. Becomes
  • the difference ⁇ T between the elapsed times T11 and T13 increases, and the difference ⁇ T is within a predetermined time difference. No longer.
  • Other distance measuring devices often have different rotational speeds for the rotation scanning of the emitted light from their own distance measuring device 7, in which case the deviation of the light receiving timing of the direct light in the distance measuring device 7 becomes large, and the difference ⁇ T Becomes larger. Even if the rotation speed is the same in setting, the rotation speed is often shifted due to an error in many cases. In this case, the shift of the light receiving timing of the direct light also becomes large. The same applies to the case where the light emitted from another distance measuring device receives the reflected light (reflected light RL in FIG. 9) reflected by the object.
  • the first arithmetic processing unit 703A determines that the received light signal is based on the light reflected by the measurement object when the difference between the elapsed times is within the predetermined time difference, and otherwise, the received light signal is another signal. It is determined that it is based on the light emitted from the distance measuring device.
  • the first arithmetic processing unit 703A determines whether the elapsed time until the light reception signal crosses the first light reception threshold Th1 and the time until the second light reception threshold Th2 crosses. Based on the elapsed time, distance measurement is performed using the pulse width correction described above. For example, in the case of FIGS. 10 and 11, the pulse width correction is performed based on the elapsed times T10 and T20 or the elapsed times T12 and T22.
  • the first arithmetic processing unit 703A does not perform the distance measurement. That is, in the examples of FIGS. 10 and 11, distance measurement is not performed on the light receiving signals Ps12 and Ps22. Thereby, it is possible to suppress the distance from being erroneously measured due to interference by the light emitted from another distance measuring device.
  • the distance measuring unit 703 determines the light receiving signal based on the shift of the light receiving timing of the light receiving signal obtained when the light projecting unit 83 emits the emitted light L1 at a plurality of scanning positions shifted by the predetermined rotation angle ⁇ in the same revolution. It is determined that it is based on the light reflected by the measurement object. Thereby, whether the received light signal is based on the light reflected from the object to be measured or the light emitted from another distance measuring device is determined, so that the light receiving signal is determined based on the light emitted from the other distance measuring device. Erroneous measurement of the distance can be suppressed.
  • the distance measurement unit 703 determines that the light reception signal is based on the light reflected by the measurement target when the evaluation value based on the shift in the light reception timing is within a predetermined time difference.
  • the first arithmetic processing unit 703A determines whether the difference between the elapsed times until the light reception signals obtained at the first and second scanning positions cross the second light reception threshold Th2 is within a predetermined time difference. You may.
  • the second scanning position is not limited to a position shifted from the first scanning position by a predetermined rotation angle ⁇ which is an interval for emitting the emission light L1, but is shifted from the first scanning position by twice the predetermined rotation angle ⁇ , for example. Or the like.
  • the predetermined time difference to be compared with the above-described shift of the light receiving timing can be set based on, for example, the following calculation formula.
  • the predetermined time difference is defined based on the following equation (1).
  • ⁇ Tth (((V1 + V2 ) ⁇ ⁇ t ⁇ + L err ⁇ 2) ⁇ 2) / c (1)
  • V1 the distance the moving speed of the moving body measuring device is mounted
  • V2 a predetermined value
  • ⁇ t ⁇ Measurement time interval corresponding to a predetermined rotation angle
  • L err maximum error of distance measurement
  • c speed of light
  • V1 is the moving speed of the moving object (automated guided vehicle 15) on which the distance measuring device 7 is mounted.
  • V2 is, for example, the moving speed of another automatic guided vehicle 150 shown in FIG.
  • the distance measuring device 7 receives the reflected light RL150 (FIG. 13) reflected by the automatic guided vehicle 150 from the output light L1 emitted from the distance measuring device 7, the distance measuring device 150 recognizes the automatic guided vehicle 150 as the measurement target. can do.
  • the distance measuring device 7 reflects the emitted light L1 emitted from the distance measuring device 7 by the worker 200.
  • the worker 200 can be recognized as a measurement target.
  • the shift of the light receiving timing is within 0.4006 ns, it is determined that the light receiving signal is based on the reflected light reflected by the measurement object, the emitted light L1 emitted from the distance measuring device 7.
  • the predetermined time difference can be appropriately defined in consideration of the distance measurement maximum error and the distance measurement maximum error.
  • FIG. 14 is a block diagram showing a second configuration example of the distance measurement unit 703.
  • the distance measuring unit 703 of this configuration example further includes a first comparator 703D and a second comparator 703E as a configuration difference from the first configuration example (FIG. 7).
  • the first comparator 703D compares the light receiving signal Ps input to the non-inverting input terminal (+) with the first threshold value Vth1 input to the inverting input terminal (-), and compares the comparison result with the first operation processing unit. 703A.
  • the second comparator 703E compares the light receiving signal Ps input to the inverting input terminal ( ⁇ ) with the second threshold value Vth2 input to the non-inverting input terminal (+), and compares the comparison result with the first arithmetic processing unit. 703A.
  • the second threshold value Vth2 is smaller than the first threshold value Vth1.
  • the distance measuring unit 703 of the second configuration example performs the processing shown in the flowchart of FIG. First, in step S1, the first arithmetic processing unit 703A determines whether the intensity of the light receiving signal Ps is equal to or greater than the first threshold value Vth1 based on the output level of the first comparator 703D. That is, if the output level of the first comparator 703D is High, the intensity of the light receiving signal Ps is equal to or higher than the first threshold Vth1, and if the output level is Low, the intensity of the light receiving signal Ps is lower than the first threshold Vth1.
  • the light receiving signal may be based on direct light emitted from another distance measuring device, and the process proceeds to step S2.
  • the first arithmetic processing unit 703A determines whether or not the above-described shift in light receiving timing (difference in elapsed time) is within a predetermined time difference. If the difference is within the predetermined time difference (Y in step S2), it is determined that the received light signal is based on the reflected light reflected by the measurement object, and the outgoing light L1 emitted from the distance measuring device 7 is not determined (step S2). N), it is determined that the light receiving signal is based on the direct light emitted from another distance measuring device.
  • step S1 if the intensity of the light receiving signal Ps is lower than the first threshold value Vth1 (N in step S1), the process proceeds to step S3, where the first arithmetic processing unit 703A performs the processing based on the output level of the second comparator 703E. It is determined whether the intensity of the light receiving signal Ps is equal to or greater than the second threshold value Vth1. That is, if the output level of the second comparator 703E is low, the intensity of the light receiving signal Ps is equal to or higher than the second threshold Vth2, and if the output level is high, the intensity of the light receiving signal Ps is lower than the second threshold Vth2.
  • the intensity of the light receiving signal Ps is equal to or greater than the second threshold value Vth2 (Y in step S3), it is determined that the light receiving signal is based on the reflected light reflected by the measurement target object, the emitted light L1 emitted from the distance measuring device 7. . Therefore, in this case, the first arithmetic processing unit 703A performs distance measurement based on the pulse width correction. Otherwise (N in step S3), it is determined that the received light signal is based on the reflected light reflected by the object, the emitted light emitted from another distance measuring device. Therefore, distance measurement is not performed in this case.
  • FIG. 16 is a waveform diagram illustrating an example of the light receiving signal Ps.
  • FIG. 16 shows a waveform with respect to an elapsed time from the timing at which the emission light L1 is emitted.
  • the light receiving signal Ps includes the light receiving signals Psx, Psy, and Psz.
  • the intensity of the light receiving signal Psx is equal to or more than the first threshold value Vth1.
  • the intensity of the light receiving signal Psy is lower than the first threshold value Vth1, but equal to or higher than the second threshold value Vth2.
  • the intensity of the light receiving signal Psz becomes lower than the second threshold value Vth2.
  • the process proceeds to a process of comparing a difference in light reception timing with a predetermined time difference, and if not, the light reception signal is reflected light by light emitted from another distance measuring device. May be determined.
  • the distance measurement unit 703 determines whether the received light signal is based on the light reflected by the measurement target. Accordingly, when the intensity of the received light signal is equal to or greater than the first threshold, the above determination is made because the received light signal may be based on light emitted from another distance measuring device. Otherwise, the above determination is not performed, so that the processing load can be reduced.
  • the distance measurement unit 703 makes a determination based on a comparison between a second threshold value smaller than the first threshold value and the intensity of the received light signal. If the intensity of the received light signal is smaller than the first threshold and equal to or greater than the second threshold, it is determined that the received light signal is based on the light reflected by the measurement target, and if the intensity of the received light signal is smaller than the second threshold, It is determined that the light receiving signal is based on the reflected light by the light emitted from another distance measuring device. Thereby, it is possible to appropriately determine the reflected light from the measurement target object and the reflected light due to the light emitted from another distance measuring device.
  • FIG. 17 is a schematic diagram showing an example of a configuration of a distance measuring device system configured by using a plurality of distance measuring devices according to the present embodiment.
  • the distance measurement device system 300 illustrated in FIG. 17 includes a distance measurement device group GR and a management device 250.
  • the distance measuring device group GR includes a first distance measuring device 7A and a second distance measuring device 7B.
  • the first distance measuring device 7A is mounted on the first automatic guided vehicle 15A.
  • the second distance measuring device 7B is mounted on the second automatic guided vehicle 15B.
  • the first distance measuring device 7A and the first automatic guided vehicle 15A are configured similarly to the distance measuring device 7 and the automatic guided vehicle 15 described above.
  • the second distance measuring device 7B and the second automatic guided vehicle 15B are configured similarly to the distance measuring device 7 and the automatic guided vehicle 15 described above.
  • the first distance measurement device 7A receives the rotation speed command CM1 from the management device 250, and sets the first rotation speed of the rotation scanning.
  • the second distance measurement device 7B receives the rotation speed command CM2 from the management device 250, and sets the second rotation speed of the rotation scanning.
  • the first rotation speed and the second rotation speed are set to different values.
  • the rotation speed command is received by the distance measurement devices 7A and 7B via, for example, the communication unit T (FIG. 6) of the automatic guided vehicles 15A and 15B.
  • the first rotation speed is set to 2400 rpm and the second rotation speed is set to 2401 rpm
  • the predetermined rotation angle ⁇ of the rotation scanning in the distance measuring devices 7A and 7B is set to 0. 125 °.
  • the time interval corresponding to the predetermined rotation angle ⁇ is 8.6806 ⁇ S in the first distance measuring device 7A, and 8.6679 ⁇ S in the second distance measuring device 7B.
  • FIG. 18 shows the light receiving signal Ps1 when the emitted light L1 is emitted at the first scanning position in the first distance measuring device 7A, and the second received light signal Ps1 shifted from the first scanning position by the predetermined rotation angle ⁇ in the same revolution.
  • FIG. 7 is a waveform diagram in which a light receiving signal Ps2 when emitting outgoing light L1 at a scanning position is superimposed. That is, FIG. 18 is a diagram corresponding to FIG. 12 described above.
  • the light receiving signal Ps1 includes the light receiving signal Ps12 by the direct light DL2 from the second distance measuring device 7B.
  • the first arithmetic processing unit 703A in the first distance measuring device 7A determines that ⁇ T is not within the predetermined time difference, and determines that the received light signal is not based on the reflected light from the measurement target. That is, in the distance measuring device group GR, by setting the rotation speed of the rotational scanning to be intentionally different, direct light due to light emitted from the second distance measuring device 7B is continuously emitted in the first distance measuring device 7A. In this way, erroneous distance measurement based on the direct light DL2 from the second distance measuring device 7B can be avoided by preventing light from being received at the same timing.
  • the first arithmetic processing unit 703A in the second distance measurement device 7B determines that ⁇ T is not within the predetermined time difference, and it is possible to avoid an erroneous distance measurement based on the direct light DL1 from the first distance measurement device 7A.
  • the method of setting the rotation speed for each distance measuring device in the distance measuring device group may be set independently for each distance measuring device without using the management device 250.
  • the distance measuring device group GR is a distance measuring device group including the first distance measuring device 7A and the second distance measuring device 7B.
  • the first distance measuring device 7A and the second distance measuring device 7B include a light emitting unit 83 that includes a light emitting unit 701 and performs rotation scanning of the emitted light L1, a light receiving unit 702 that outputs a light receiving signal based on light reception, and a light emitting unit 702.
  • a distance measuring unit 703 that measures a distance to a measurement target based on emission of the emitted light L1 and light reception by the light receiving unit 702.
  • the first distance measurement device 7A is a distance measurement device having the above-described configuration, and includes a first rotation speed of the rotation scan by the first distance measurement device 7A, a second rotation speed of the rotation scan by the second distance measurement device 7B, Is different.
  • the first distance measuring device 7A prevents direct light from light emitted from the second distance measuring device 7B from being continuously received at the same timing, and is based on the direct light from the second distance measuring device 7B. Incorrect distance measurement can be avoided.
  • the distance measuring unit 703 of the second distance measuring device 7B is configured to detect the shift of the light receiving timing of the light receiving signal obtained when the light projecting unit 83 emits the emitted light L1 at a plurality of scanning positions shifted by a predetermined rotation angle in the same rotation. , It is determined that the light receiving signal is based on the light reflected by the measurement object. This can prevent the second distance measuring device 7B from erroneously measuring the distance based on the direct light from the first distance measuring device 7A.
  • the distance measurement device system 300 includes a distance measurement device group GR and a management device 250, and the first rotation speed and the second rotation speed are based on a command from the management device 250. This makes it easy to set the rotation speed for a plurality of distance measuring devices.
  • the determination may be made based on the light receiving signal obtained when emitting L1. More specifically, the average value of the light receiving timing deviation between the first scanning position and the second scanning position and the light receiving timing deviation between the second scanning position and the third scanning position is calculated as an evaluation value. It is determined whether the evaluated value is within a predetermined time difference.
  • an unmanned carrier is described as an example of a moving object equipped with a distance measuring device.
  • the present invention is not limited to this, and the moving object is applicable to a device other than a transportation purpose, such as a cleaning robot or a monitoring robot. May be.
  • This invention can be utilized for the automatic guided vehicle which conveys a load, for example.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

The objective of the present invention is to provide a distance measuring device with which it is possible to suppress erroneous measurements of distance resulting from interference from other distance measuring devices. This distance measuring device is provided with a light projecting unit (83) which includes a light emitting unit (701) and which performs revolving scanning of emitted light, a light receiving unit (702) which outputs a light reception signal on the basis of light reception, and a distance measuring unit (703) which measures the distance to an object being measured (OJ) on the basis of the emission of the emitted light and the light reception by the light receiving unit (702), wherein, on the basis of an offset between the light reception timings of the light reception signals obtained when the light projecting unit (83) emits the emitted light in a plurality of scanning positions offset by a prescribed angle of rotation in the same revolution, the distance measuring unit (703) determines that the light reception signals are based on light reflected by the object being measured (OJ).

Description

距離測定装置、距離測定装置群、および距離測定装置システムDistance measuring device, distance measuring device group, and distance measuring device system
本発明は、距離測定装置、距離測定装置群、および距離測定装置システムに関する。 The present invention relates to a distance measuring device, a distance measuring device group, and a distance measuring device system.
従来、距離測定装置が種々開発されている。例えば、特許文献1には、レーザレンジファインダーを備えた自律移動装置が開示される。  Conventionally, various distance measuring devices have been developed. For example, Patent Literature 1 discloses an autonomous mobile device including a laser range finder.
特許文献1において、レーザレンジファインダーは、自律移動装置の周囲を所定範囲の扇状に水平方向にレーザを走査する。すなわち、レーザレンジファインダーは、レーザを所定角度毎に出射する。そして、レーザレンジファインダーは、物体で反射されて戻ってきたレーザを検出し、レーザの出射角度、およびレーザを出射してから物体で反射されて戻ってくるまでの時間に基づき、物体との角度および距離を検出する。  In Patent Literature 1, a laser range finder scans a laser in a horizontal direction around an autonomous mobile device in a fan shape within a predetermined range. That is, the laser range finder emits the laser at every predetermined angle. Then, the laser range finder detects the laser reflected from the object and returns, and determines the angle between the laser and the object based on the emission angle of the laser and the time from when the laser is emitted to when the laser reflects and returns from the object. And distance.
自律移動装置は、局所地図作成部および自己位置推定部を有する。局所地図作成部は、レーザレンジファインダーによる検出情報に基づき、レーザレンジファインダーを原点とした自機周辺の局所地図を作成する。自己位置推定部は、環境地図の座標系(絶対座標系)に座標変換した局所地図と、環境地図とを照合し、照合結果に基づき自己位置を推定する。  The autonomous mobile device has a local map creating unit and a self-position estimating unit. The local map creator creates a local map around the own device with the laser range finder as the origin, based on information detected by the laser range finder. The self-position estimating unit compares the local map, which has been transformed into the coordinate system (absolute coordinate system) of the environment map, with the environment map, and estimates the self-position based on the result of the comparison.
また、自律移動装置は、標識検知部を有する。標識検知部は、レーザレンジファインダーから出力される検出情報と非検出情報の出力パターンに基づいて標識を検知する。より具体的には、標識検知部は、複数の検出情報群と複数の非検出情報群とが交互に所定回数繰り返して出現し、当該複数の非検出情報群それぞれに含まれる非検出情報の数が第1の所定範囲内であり、且つ、当該複数の検出情報群それぞれに含まれる検出情報の数が第2の所定範囲内である場合に、被検出物が標識であると判定する。自己位置推定部は、標識検知部により検知された標識に基づき、推定した自己位置を修正する。 The autonomous mobile device has a sign detection unit. The sign detection unit detects a sign based on the output pattern of the detection information and the non-detection information output from the laser range finder. More specifically, the sign detection unit is configured such that a plurality of detection information groups and a plurality of non-detection information groups alternately appear a predetermined number of times, and the number of non-detection information included in each of the plurality of non-detection information groups Is within the first predetermined range and the number of pieces of detection information included in each of the plurality of detection information groups is within the second predetermined range, it is determined that the detection target is a marker. The self-position estimating unit corrects the estimated self-position based on the sign detected by the sign detecting unit.
日本国公開公報:特開2014-6833号公報Japanese Unexamined Patent Publication: JP-A-2014-6833
上記特許文献1の自律移動装置によれば、標識がどのような環境の移動経路に設置されたとしても、標識を確実に判別して検知でき、的確に自律移動を行うことが可能となるとされている。また、特許文献1には、標識検知部は、同一の被検知物体について標識であると複数回判定した場合に、当該被検知物体が標識であると確定することも開示されている。これにより、標識の誤検知をより確実に防止することが可能となるとされている。  According to the autonomous mobile device of Patent Document 1 described above, it is possible to reliably determine and detect a sign, regardless of the environment in which the sign is placed, and to perform accurate autonomous movement. ing. Patent Document 1 also discloses that the sign detection unit determines that the detected object is a sign when the same detected object is determined to be a sign a plurality of times. It is stated that this makes it possible to more reliably prevent erroneous detection of a sign.
しかしながら、レーザレンジファインダーを備えた自律移動装置が複数稼働する状況などでは、自己のレーザレンジファインダーに他のレーザレンジファインダーから出射されたレーザが直接的、または間接的に入力した場合に、自己のレーザレンジファインダーが距離を誤って測定する虞があるが、上記特許文献1は、これを解決するものではなかった。  However, in a situation where a plurality of autonomous mobile devices equipped with a laser range finder are operated, for example, when a laser emitted from another laser range finder is directly or indirectly input to its own laser range finder, its own The laser range finder may measure the distance erroneously, but Patent Document 1 does not solve this problem.
上記状況に鑑み、本発明は、他の距離測定装置からの干渉による距離の誤測定を抑制することが可能となる距離測定装置を提供することを目的とする。 In view of the above situation, an object of the present invention is to provide a distance measuring device capable of suppressing erroneous distance measurement due to interference from another distance measuring device.
本発明の例示的な距離測定装置は、発光部を含んで出射光の回転走査を行う投光部と、受光に基づいて受光信号を出力する受光部と、前記出射光の出射と前記受光部による受光とに基づいて計測対象物までの距離を計測する距離計測部と、を備え、前記距離計測部は、前記投光部が同一周回における所定回転角度ずれた複数の走査位置において前記出射光を出射したときに得られる前記受光信号の受光タイミングのずれに基づき、前記受光信号は前記計測対象物で反射した光に基づくと判定する。 An exemplary distance measuring device according to the present invention includes a light emitting unit that includes a light emitting unit and performs rotational scanning of emitted light, a light receiving unit that outputs a light receiving signal based on light reception, an emission of the emitted light, and the light receiving unit. And a distance measuring unit that measures a distance to a measurement target based on light reception by the light emitting unit. It is determined that the light receiving signal is based on the light reflected by the object to be measured, based on the shift of the light receiving timing of the light receiving signal obtained when the light is emitted.
本発明の例示的な距離測定装置によれば、他の距離測定装置からの干渉による距離の誤測定を抑制することが可能となる。 According to the exemplary distance measuring device of the present invention, it is possible to suppress erroneous distance measurement due to interference from another distance measuring device.
図1は、本発明の一実施形態に係る無人搬送車の概略全体斜視図である。FIG. 1 is a schematic overall perspective view of an automatic guided vehicle according to one embodiment of the present invention. 図2は、本発明の一実施形態に係る無人搬送車の概略側面図である。FIG. 2 is a schematic side view of the automatic guided vehicle according to one embodiment of the present invention. 図3は、本発明の一実施形態に係る無人搬送車の上方から視た平面図である。FIG. 3 is a plan view of the automatic guided vehicle according to one embodiment of the present invention as viewed from above. 図4は、本発明の一実施形態に係る距離測定装置の概略側面断面図である。FIG. 4 is a schematic side sectional view of the distance measuring device according to one embodiment of the present invention. 図5は、本発明の一実施形態に係る距離測定装置の電気的構成を示すブロック図である。FIG. 5 is a block diagram showing an electrical configuration of the distance measuring device according to one embodiment of the present invention. 図6は、本発明の一実施形態に係る無人搬送車の電気的構成を示すブロック図である。FIG. 6 is a block diagram showing an electrical configuration of the automatic guided vehicle according to one embodiment of the present invention. 図7は、距離計測部の第1構成例を示すブロック図である。FIG. 7 is a block diagram illustrating a first configuration example of the distance measurement unit. 図8は、パルス幅補正を説明するための図である。FIG. 8 is a diagram for explaining pulse width correction. 図9は、倉庫などにおいて距離測定装置を搭載した無人搬送車が複数稼働する状況を示す図である。FIG. 9 is a diagram illustrating a situation where a plurality of automatic guided vehicles equipped with a distance measuring device operate in a warehouse or the like. 図10は、第1走査位置で出射光を出射したときに得られる受光信号の波形の一例を示す図である。FIG. 10 is a diagram illustrating an example of a waveform of a light reception signal obtained when the emission light is emitted at the first scanning position. 図11は、第2走査位置で出射光を出射したときに得られる受光信号の波形の一例を示す図である。FIG. 11 is a diagram illustrating an example of a waveform of a received light signal obtained when the emitted light is emitted at the second scanning position. 図12は、図10と図11に示す各波形を重ねて示した図である。FIG. 12 is a diagram in which the waveforms shown in FIGS. 10 and 11 are overlapped. 図13は、倉庫などにおいて無人搬送車が複数稼働する状況、および作業員が作業する状況を示す図である。FIG. 13 is a diagram illustrating a situation where a plurality of automatic guided vehicles operate in a warehouse or the like and a situation where a worker works. 図14は、距離計測部の第2構成例を示すブロック図である。FIG. 14 is a block diagram illustrating a second configuration example of the distance measurement unit. 図15は、第2構成例の距離計測部により行われる処理のフローチャートである。FIG. 15 is a flowchart of a process performed by the distance measurement unit of the second configuration example. 図16は、受光信号の一例を示す波形図である。FIG. 16 is a waveform diagram showing an example of the light receiving signal. 図17は、距離測定装置システムの一構成例を示す概略図である。FIG. 17 is a schematic diagram illustrating a configuration example of a distance measurement device system. 図18は、第1走査位置、および第2走査位置で得られた各受光信号の一例を重ねて示す波形図である。FIG. 18 is a waveform diagram showing an example of each light receiving signal obtained at the first scanning position and the second scanning position in an overlapping manner.
以下に本発明の例示的な実施形態について図面を参照して説明する。ここでは、距離測定装置をレーザレンジファインダーとして構成した例について述べる。また、距離測定装置を搭載する移動体としては、荷物を運搬する用途である無人搬送車を例に挙げて説明する。無人搬送車は、一般的にAGV(Automatic  Guided  Vehicle)とも呼称される。  Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings. Here, an example in which the distance measuring device is configured as a laser range finder will be described. In addition, as an example of a moving body on which a distance measuring device is mounted, an automatic guided vehicle that is used to carry a load will be described as an example. The automatic guided vehicle is also generally called an AGV (Automatic Guided Vehicle).
<1.無人搬送車の全体構成> 図1は、本発明の一実施形態に係る無人搬送車15の概略全体斜視図である。図2は、本発明の一実施形態に係る無人搬送車15の概略側面図である。図3は、本発明の一実施形態に係る無人搬送車15の上方から視た平面図である。無人搬送車15は、二輪駆動により自律的に走行し、荷物を運搬する。  <1. FIG. 1 is a schematic overall perspective view of an automatic guided vehicle 15 according to an embodiment of the present invention. FIG. 2 is a schematic side view of the automatic guided vehicle 15 according to one embodiment of the present invention. FIG. 3 is a plan view seen from above of the automatic guided vehicle 15 according to one embodiment of the present invention. The automatic guided vehicle 15 travels autonomously by two-wheel drive and transports luggage.
無人搬送車15は、車体1と、荷台2と、支持部3L、3Rと、駆動モータ4L、4Rと、駆動輪5L、5Rと、従動輪6F、6Rと、距離測定装置7と、を備える。  The automatic guided vehicle 15 includes the vehicle body 1, the carrier 2, the support portions 3L and 3R, the drive motors 4L and 4R, the drive wheels 5L and 5R, the driven wheels 6F and 6R, and the distance measuring device 7. .
車体1は、基部1Aと、台部1Bと、から構成される。板状の台部1Bは、基部1Aの後方上面に固定される。台部1Bは、前方に突出する三角形部Trを有する。板状の荷台2は、台部1Bの上面に固定される。荷台2の上面には、荷物を載置することが可能である。荷台2は、台部1Bよりも更に前方まで延びる。これにより、基部1Aの前方と荷台2の前方との間には隙間Sが構成される。  The vehicle body 1 includes a base 1A and a base 1B. The plate-like base 1B is fixed to the rear upper surface of the base 1A. The base 1B has a triangular portion Tr protruding forward. The plate-shaped carrier 2 is fixed to the upper surface of the platform 1B. Luggage can be placed on the upper surface of the bed 2. The carrier 2 extends further forward than the platform 1B. Thereby, a gap S is formed between the front of the base 1A and the front of the carrier 2.
距離測定装置7は、隙間Sにおいて台部1Bの三角形部Tr頂点の前方位置に配置される。距離測定装置7は、レーザレンジファインダーとして構成され、レーザ光を走査しつつ計測対象物までの距離を計測する装置である。距離測定装置7は、後述する障害物検知、地図情報作成、および自己位置同定に用いられる。距離測定装置7自体の詳細な構成については後述する。  The distance measuring device 7 is disposed in the gap S at a position in front of the vertex of the triangular portion Tr of the base 1B. The distance measuring device 7 is configured as a laser range finder, and measures a distance to a measurement target while scanning a laser beam. The distance measurement device 7 is used for obstacle detection, map information creation, and self-position identification described later. The detailed configuration of the distance measuring device 7 itself will be described later.
支持部3Lは、基部1Aの左方側に固定され、駆動モータ4Lを支持する。駆動モータ4Lは、一例としてACサーボモータにより構成される。駆動モータ4Lは、不図示の減速機を内蔵する。駆動輪5Lは、駆動モータ4Lの回転するシャフトに固定される。  The support 3L is fixed to the left side of the base 1A, and supports the drive motor 4L. The drive motor 4L is configured by, for example, an AC servomotor. The drive motor 4L incorporates a speed reducer (not shown). The drive wheel 5L is fixed to a rotating shaft of the drive motor 4L.
支持部3Rは、基部1Aの右方側に固定され、駆動モータ4Rを支持する。駆動モータ4Rは、一例としてACサーボモータにより構成される。駆動モータ4Rは、不図示の減速機を内蔵する。駆動輪5Rは、駆動モータ4Rの回転するシャフトに固定される。  The support 3R is fixed to the right side of the base 1A and supports the drive motor 4R. The drive motor 4R is configured by, for example, an AC servomotor. The drive motor 4R incorporates a speed reducer (not shown). The drive wheel 5R is fixed to a rotating shaft of the drive motor 4R.
従動輪6Fは、基部1Aの前方側に固定される。従動輪6Rは、基部1Aの後方側に固定される。従動輪6F、6Rは、駆動輪5L、5Rの回転に応じて受動的に回転する。  The driven wheel 6F is fixed to the front side of the base 1A. The driven wheel 6R is fixed to the rear side of the base 1A. The driven wheels 6F, 6R rotate passively according to the rotation of the drive wheels 5L, 5R.
駆動モータ4L、4Rにより駆動輪5L、5Rを回転駆動することで、無人搬送車15を前進および後進させることができる。また、駆動輪5L、5Rの回転速度に差を設けるよう制御することで、無人搬送車15を右回りまたは左回りに旋回させ、方向転換させることができる。  By driving the drive wheels 5L, 5R by the drive motors 4L, 4R, the automatic guided vehicle 15 can be moved forward and backward. In addition, by controlling the rotational speeds of the drive wheels 5L and 5R to provide a difference, the automatic guided vehicle 15 can be turned clockwise or counterclockwise to change the direction.
基部1Aは、内部に制御ユニットU、バッテリーB、および通信部Tを収容する。制御ユニットUは、距離測定装置7、駆動モータ4L、4R、および通信部T等に接続される。  The base 1A houses therein a control unit U, a battery B, and a communication unit T. The control unit U is connected to the distance measuring device 7, the drive motors 4L and 4R, the communication unit T, and the like.
制御ユニットUは、後述するように距離測定装置7との間で種々の信号の通信を行う。制御ユニットUは、駆動モータ4L、4Rの駆動制御も行う。通信部Tは、外部のタブレット端末(不図示)との間で通信を行い、例えばBluetooth(登録商標)に準拠する。これにより、タブレット端末により無人搬送車15を遠隔操作することができる。バッテリーBは、例えばリチウムイオン電池により構成され、距離測定装置7、制御ユニットU、通信部T等の各部に電力を供給する。  The control unit U communicates various signals with the distance measuring device 7 as described later. The control unit U also controls the drive of the drive motors 4L and 4R. The communication unit T communicates with an external tablet terminal (not shown) and conforms to, for example, Bluetooth (registered trademark). Thereby, the automatic guided vehicle 15 can be remotely controlled by the tablet terminal. The battery B is composed of, for example, a lithium ion battery, and supplies power to each unit such as the distance measuring device 7, the control unit U, and the communication unit T.
<2.距離測定装置の構成> 図4は、距離測定装置7の概略側面断面図である。レーザレンジファインダーとして構成される距離測定装置7は、レーザ光源71と、コリメートレンズ72と、投光ミラー73と、受光レンズ74と、受光ミラー75と、波長フィルタ76と、受光素子77と、回転筐体78と、モータ79と、筐体80と、基板81と、配線82と、を有する。 <2. Configuration of Distance Measuring Device> FIG. 4 is a schematic side sectional view of the distance measuring device 7. The distance measuring device 7 configured as a laser range finder includes a laser light source 71, a collimating lens 72, a light projecting mirror 73, a light receiving lens 74, a light receiving mirror 75, a wavelength filter 76, a light receiving element 77, A housing 78, a motor 79, a housing 80, a substrate 81, and a wiring 82 are provided.
筐体80は、外観視で上下方向に延びる略円柱状であり、内部空間にレーザ光源71を初めとする各種構成を収容する。レーザ光源71は、筐体80の上端部の下面に固定される基板81の下面に実装される。レーザ光源71は、例えば赤外領域のレーザ光を下方に出射する。  The housing 80 has a substantially columnar shape extending in the vertical direction when viewed from the outside, and accommodates various components including the laser light source 71 in the internal space. The laser light source 71 is mounted on the lower surface of a substrate 81 fixed to the lower surface of the upper end of the housing 80. The laser light source 71 emits, for example, laser light in the infrared region downward.
コリメートレンズ72は、レーザ光源71の下方に配置される。コリメートレンズ72は、レーザ光源71から出射されるレーザ光を平行光として下方に出射する。コリメートレンズ72の下方には、投光ミラー73が配置される。  The collimating lens 72 is disposed below the laser light source 71. The collimating lens 72 emits the laser light emitted from the laser light source 71 downward as parallel light. A light projecting mirror 73 is arranged below the collimating lens 72.
投光ミラー73は、回転筐体78に固定される。回転筐体78は、モータ79のシャフト79Aに固定され、モータ79によって回転軸J周りに回転駆動される。回転筐体78の回転ととともに、投光ミラー73も回転軸J周りに回転駆動される。投光ミラー73は、コリメートレンズ72から出射されるレーザ光を反射して、反射されたレーザ光を出射光L1として出射する。投光ミラー73は上記のように回転駆動されるので、出射光L1は回転軸J周りの360度の範囲で出射方向を変えながら出射される。  The light projecting mirror 73 is fixed to the rotating housing 78. The rotating housing 78 is fixed to a shaft 79 </ b> A of the motor 79, and is driven to rotate around the rotation axis J by the motor 79. With the rotation of the rotating housing 78, the light projecting mirror 73 is also driven to rotate about the rotation axis J. The light projecting mirror 73 reflects the laser light emitted from the collimating lens 72, and emits the reflected laser light as emission light L1. Since the light projecting mirror 73 is driven to rotate as described above, the emission light L1 is emitted while changing the emission direction within a range of 360 degrees around the rotation axis J.
筐体80は上下方向の途中において、透過部801を有する。透過部801は、透光性の樹脂等から構成される。  The housing 80 has a transmission part 801 in the middle in the vertical direction. The transmissive portion 801 is made of a translucent resin or the like.
投光ミラー73で反射されて出射される出射光L1は、透過部801を透過して、隙間Sを通り、無人搬送車15より外側へ出射される。本実施形態では、所定の回転走査角度範囲θは、図3に示すように、一例として回転軸J周りの270度に設定される。270度の範囲は、より具体的には、前方180度と後方左右それぞれ45度ずつを含む。出射光L1は、少なくとも回転軸J周り270度の範囲で透過部801を透過する。なお、後方の透過部801が配置されない範囲では、出射光L1は筐体80の内壁または配線82等により遮られる。  The outgoing light L1 reflected and emitted by the light projecting mirror 73 is transmitted through the transmitting portion 801 and passes through the gap S and is emitted outward from the automatic guided vehicle 15. In the present embodiment, the predetermined rotation scanning angle range θ is set to 270 degrees around the rotation axis J as an example, as shown in FIG. More specifically, the range of 270 degrees includes 180 degrees in the front and 45 degrees in the left and right directions. The emitted light L1 is transmitted through the transmission part 801 at least within a range of 270 degrees around the rotation axis J. In a range where the rear transmission part 801 is not disposed, the emitted light L1 is blocked by the inner wall of the housing 80, the wiring 82, or the like.
受光ミラー75は、投光ミラー73より下方の位置で回転筐体78に固定される。受光レンズ74は、回転筐体78の周方向側面に固定される。波長フィルタ76は、受光ミラー75より下方に位置し、回転筐体78に固定される。受光素子77は、波長フィルタ76より下方に位置し、回転筐体78に固定される。  The light receiving mirror 75 is fixed to the rotating housing 78 at a position below the light projecting mirror 73. The light receiving lens 74 is fixed to a circumferential side surface of the rotating housing 78. The wavelength filter 76 is located below the light receiving mirror 75 and is fixed to the rotating housing 78. The light receiving element 77 is located below the wavelength filter 76 and is fixed to the rotating housing 78.
距離測定装置7から出射された出射光L1は、計測対象物で反射して拡散光となる。拡散光の一部は、入射光L2として隙間Sおよび透過部801を透過して受光レンズ74に入射される。受光レンズ74を透過した入射光L2は、受光ミラー75へ入射され、受光ミラー75により下方へ反射される。反射された入射光L2は、波長フィルタ76を透過して受光素子77により受光される。波長フィルタ76は、赤外領域の光を透過させる。受光素子77は、受光した光を光電変換により電気信号に変換する。  The outgoing light L1 emitted from the distance measuring device 7 is reflected by the object to be measured and becomes diffused light. Part of the diffused light is transmitted through the gap S and the transmission portion 801 as incident light L2 and is incident on the light receiving lens 74. The incident light L2 transmitted through the light receiving lens 74 is incident on the light receiving mirror 75, and is reflected downward by the light receiving mirror 75. The reflected incident light L2 passes through the wavelength filter 76 and is received by the light receiving element 77. The wavelength filter 76 transmits light in the infrared region. The light receiving element 77 converts the received light into an electric signal by photoelectric conversion.
モータ79により回転筐体78が回転駆動されると、受光レンズ74、受光ミラー75、波長フィルタ76、および受光素子77は、投光ミラー73とともに回転駆動される。  When the rotating housing 78 is driven to rotate by the motor 79, the light receiving lens 74, the light receiving mirror 75, the wavelength filter 76, and the light receiving element 77 are driven to rotate together with the light projecting mirror 73.
図3に示すように、測定範囲Rsは、回転走査角度範囲θ(=270度)で回転軸J周りに所定半径にて回転して形成される範囲として規定される。但し、上記所定半径は、出射光L1の出力レベルに応じて変化する。回転走査角度範囲θで出射光L1が出射され、測定範囲Rs内に位置する計測対象物で出射光L1が反射されると、反射光が入射光L2として透過部801を透過して受光レンズ74に入射される。  As shown in FIG. 3, the measurement range Rs is defined as a range formed by rotating around the rotation axis J with a predetermined radius in the rotation scanning angle range θ (= 270 degrees). However, the predetermined radius changes according to the output level of the emitted light L1. When the outgoing light L1 is emitted in the rotational scanning angle range θ and the outgoing light L1 is reflected by the measurement object located within the measurement range Rs, the reflected light is transmitted through the transmission unit 801 as incident light L2 and is received by the light receiving lens 74. Is incident on.
モータ79は、配線82によって基板81に接続され、基板81から通電されることで回転駆動される。モータ79は、回転筐体78を所定回転速度で回転させる。例えば、回転筐体78は、3000rpm程度で回転駆動される。配線82は、筐体80の後方内壁に上下方向に沿って引き回される。  The motor 79 is connected to the substrate 81 by a wiring 82 and is driven to rotate by being energized from the substrate 81. The motor 79 rotates the rotating housing 78 at a predetermined rotation speed. For example, the rotating housing 78 is driven to rotate at about 3000 rpm. The wiring 82 is routed vertically along the rear inner wall of the housing 80.
<3.距離測定装置の電気的構成> 次に、距離測定装置7の電気的構成について説明する。図5は、距離測定装置7の電気的構成を示すブロック図である。  <3. Electrical Configuration of Distance Measuring Apparatus> Next, the electrical configuration of the distance measuring apparatus 7 will be described. FIG. 5 is a block diagram illustrating an electrical configuration of the distance measuring device 7.
図5に示すように、距離測定装置7は、レーザ発光部701と、レーザ受光部702と、距離計測部703と、データ通信インタフェース704と、第2演算処理部705と、駆動部706と、モータ79と、を有する。  As shown in FIG. 5, the distance measuring device 7 includes a laser light emitting unit 701, a laser light receiving unit 702, a distance measuring unit 703, a data communication interface 704, a second arithmetic processing unit 705, a driving unit 706, And a motor 79.
レーザ発光部701は、レーザ光源71(図4)と、レーザ光源71を駆動する不図示のLDドライバなどを有する。LDドライバは、基板81に実装される。レーザ発光部701と、投光ミラー73と、回転筐体78と、モータ79と、から投光部83(図4)が構成される。すなわち、距離測定装置7は、発光部(レーザ発光部701)を含んで出射光L1の回転走査を行う投光部83を備える。  The laser light emitting unit 701 includes a laser light source 71 (FIG. 4), an LD driver (not shown) for driving the laser light source 71, and the like. The LD driver is mounted on the substrate 81. The laser emitting unit 701, the light projecting mirror 73, the rotating housing 78, and the motor 79 constitute a light emitting unit 83 (FIG. 4). That is, the distance measuring device 7 includes the light projecting unit 83 that includes the light emitting unit (laser light emitting unit 701) and performs rotational scanning of the emitted light L1.
レーザ受光部702は、受光素子77(図4)等を含み、受光に基づいて受光信号を出力する。すなわち、距離測定装置7は、受光に基づいて受光信号を出力する受光部(レーザ受光部702)を備える。なお、レーザ受光部702のより具体的な構成については、後述する。  Laser light receiving section 702 includes light receiving element 77 (FIG. 4) and the like, and outputs a light receiving signal based on the received light. That is, the distance measuring device 7 includes a light receiving unit (laser light receiving unit 702) that outputs a light receiving signal based on light reception. The more specific configuration of the laser light receiving unit 702 will be described later.
距離計測部703は、レーザ受光部702から出力される受光信号を入力される。距離測定部703は、第1演算処理部703Aを有する。レーザ発光部701は、第1演算処理部703Aから出力されるレーザ発光パルスLPをトリガとしてパルス状のレーザ光を発光する。このとき、出射光L1が出射される。出射された出射光L1が計測対象物OJにより反射されると、入射光L2がレーザ受光部702により受光される。レーザ受光部702は、入射光L2の受光に基づいて受光信号を距離計測部703へ出力する。  The distance measuring unit 703 receives a light receiving signal output from the laser light receiving unit 702. The distance measuring unit 703 has a first arithmetic processing unit 703A. The laser emission unit 701 emits a pulsed laser beam using the laser emission pulse LP output from the first arithmetic processing unit 703A as a trigger. At this time, the outgoing light L1 is emitted. When the emitted light L1 is reflected by the measurement object OJ, the incident light L2 is received by the laser light receiving unit 702. Laser light receiving section 702 outputs a light receiving signal to distance measuring section 703 based on the reception of incident light L2.
ここで、第1演算処理部703Aは、レーザ発光パルスLPとともに出力される基準パルス(図5で不図示)を出力する。距離計測部703は、基準パルスの立ち上りタイミングから受光信号の立ち上りタイミングまでの経過時間を計測することで、計測対象物OJまでの距離を取得することができる。すなわち、距離計測部703は、所謂TOF(Time Of Flight)方式によって距離を計測する。このように、距離測定装置7は、出射光の出射と受光部702による受光とに基づいて計測対象物OJまでの距離を計測する距離計測部703を備える。なお、距離測定装置7のより具体的な構成については後述する。  Here, the first arithmetic processing unit 703A outputs a reference pulse (not shown in FIG. 5) output together with the laser emission pulse LP. The distance measurement unit 703 can acquire the distance to the measurement target OJ by measuring the elapsed time from the rising timing of the reference pulse to the rising timing of the light receiving signal. That is, the distance measuring unit 703 measures the distance by a so-called TOF (Time @ Of @ Flight) method. As described above, the distance measuring device 7 includes the distance measuring unit 703 that measures the distance to the measurement target OJ based on the emission of the emitted light and the light reception by the light receiving unit 702. The more specific configuration of the distance measuring device 7 will be described later.
駆動部706は、モータ79を回転駆動制御する。モータ79は、駆動部706によって所定の回転速度で回転駆動される。第1演算処理部703Aは、モータ79が所定単位角度回転するたびにレーザ発光パルスLPを出力する。これにより、回転筐体78および投光ミラー73が所定角度回転するたびにレーザ発光部701が発光し、出射光L1が出射される。図3には、所定回転角度Δθごとに出射光L1が出射されることを示す。  The drive unit 706 controls the rotation of the motor 79. The motor 79 is driven to rotate at a predetermined rotation speed by the drive unit 706. The first arithmetic processing unit 703A outputs a laser emission pulse LP each time the motor 79 rotates by a predetermined unit angle. As a result, each time the rotating housing 78 and the light projecting mirror 73 rotate by a predetermined angle, the laser light emitting unit 701 emits light, and the emitted light L1 is emitted. FIG. 3 shows that the emitted light L1 is emitted at every predetermined rotation angle Δθ.
第1演算処理部703Aは、レーザ発光パルスLPを出力したタイミングでのモータ79の回転角度位置と、レーザ発光パルスLPに対応して得られる距離計測データに基づいて、距離測定装置7を基準とする直交座標系上の位置情報を生成する。すなわち、投光ミラー73の回転角度位置と計測された距離に基づき、計測対象物OJの位置が取得される。上記取得される位置情報は、測定距離データDTとして第1演算処理部703Aより出力される。このようにして、回転走査角度範囲θでの出射光L1の回転走査により、計測対象物OJの距離画像を取得することができる。  The first arithmetic processing unit 703A uses the distance measurement device 7 as a reference based on the rotation angle position of the motor 79 at the timing when the laser emission pulse LP is output and the distance measurement data obtained corresponding to the laser emission pulse LP. To generate position information on the orthogonal coordinate system. That is, the position of the measurement object OJ is acquired based on the rotation angle position of the light projecting mirror 73 and the measured distance. The acquired position information is output from the first arithmetic processing unit 703A as measured distance data DT. In this manner, a distance image of the measurement object OJ can be obtained by rotational scanning of the emitted light L1 in the rotational scanning angle range θ.
第1演算処理部703Aから出力された測定距離データDTは、データ通信インタフェース704を介して後述する図6に示す無人搬送車15側に伝送される。  The measured distance data DT output from the first arithmetic processing unit 703A is transmitted via the data communication interface 704 to the automatic guided vehicle 15 shown in FIG.
第2演算処理部705は、測定距離データDTに基づき、所定エリア内に計測対象物が位置するか否かを判定する。具体的には、測定距離データDTで示される或る計測対象物の位置が所定エリア内に位置すれば、計測対象物が所定エリア内に位置すると判定される。第2演算処理部705は、所定エリア内に計測対象物が位置すると判定した場合、フラグである検出信号DsをHighレベルとして出力する。一方、所定エリア内に計測対象物が位置しない場合は、Lowレベルとした検出信号Dsを出力する。検出信号Dsは、後述する図6に示す無人搬送車15側に伝送される。  The second arithmetic processing unit 705 determines whether or not the measurement target is located within a predetermined area based on the measurement distance data DT. Specifically, if the position of a certain measurement target indicated by the measurement distance data DT is located within the predetermined area, it is determined that the measurement target is located within the predetermined area. When determining that the measurement target is located within the predetermined area, the second arithmetic processing unit 705 outputs the detection signal Ds, which is a flag, as a High level. On the other hand, when the measurement object is not located within the predetermined area, the detection signal Ds having a low level is output. The detection signal Ds is transmitted to the automatic guided vehicle 15 shown in FIG.
<4.無人搬送車の電気的構成> 先述のように距離測定装置7側の電気的構成を説明したが、ここでは、図6を用いて無人搬送車15側の電気的構成について説明する。図6は、無人搬送車15の電気的構成を示すブロック図である。  <4. Electric Configuration of Automated Carrier> As described above, the electric configuration of the distance measurement device 7 has been described. Here, the electrical configuration of the automatic guided vehicle 15 will be described with reference to FIG. FIG. 6 is a block diagram illustrating an electrical configuration of the automatic guided vehicle 15.
図6に示すように、無人搬送車15は、距離測定装置7と、制御部8と、駆動部9と、通信部Tと、を有する。  As shown in FIG. 6, the automatic guided vehicle 15 includes a distance measuring device 7, a control unit 8, a driving unit 9, and a communication unit T.
制御部8は、制御ユニットU(図1)に設けられる。制御部8は、CPU(Central Processing Unit)等のプロセッサにより構成される。駆動部9は、不図示のモータドライバと、駆動モータ4L、4Rなどを有する。モータドライバは、制御ユニットUに設けられる。制御部8は、駆動部9に対して指令を行い制御する。駆動部9は、駆動輪5L、5Rの回転速度および回転方向を駆動制御する。  The control unit 8 is provided in the control unit U (FIG. 1). The control unit 8 is configured by a processor such as a CPU (Central Processing Unit). The drive unit 9 includes a motor driver (not shown) and drive motors 4L and 4R. The motor driver is provided in the control unit U. The control unit 8 issues a command to the drive unit 9 and controls the drive unit 9. The driving unit 9 controls the driving speed and the rotating direction of the driving wheels 5L and 5R.
制御部8は、通信部Tを介して不図示のタブレット端末と通信を行う。例えば、制御部8は、タブレット端末において操作された内容に応じた操作信号を、通信部Tを介して受信することができる。  The control unit 8 communicates with a tablet terminal (not shown) via the communication unit T. For example, the control unit 8 can receive, via the communication unit T, an operation signal corresponding to the content operated on the tablet terminal.
制御部8には、距離測定装置7から出力される測定距離データDTが入力される。制御部8は、測定距離データDTに基づいて地図情報を作成することが可能である。地図情報とは、無人搬送車15の自己の位置を特定する自己位置同定を行うために生成される情報であり、無人搬送車15が走行する場所における静止物の位置情報として生成される。例えば、無人搬送車15が走行する場所が倉庫である場合は、静止物は倉庫の壁、倉庫内に配列された棚などである。  The measured distance data DT output from the distance measuring device 7 is input to the control unit 8. The control unit 8 can create map information based on the measured distance data DT. The map information is information generated for performing self-position identification for specifying the position of the automatic guided vehicle 15 and is generated as position information of a stationary object at a place where the automatic guided vehicle 15 runs. For example, when the location where the automatic guided vehicle 15 travels is a warehouse, the stationary object is a wall of the warehouse, shelves arranged in the warehouse, or the like.
地図情報は、例えばタブレット端末により無人搬送車15の手動操作が行われる際に生成される。この場合、タブレット端末の例えばジョイスティックの操作に応じた操作信号が通信部Tを介して制御部8に送信されることで、制御部8は操作信号に応じて駆動部9に指令を行い、無人搬送車15を走行制御する。このとき、制御部8は、距離測定装置7から入力される測定距離データDTと、無人搬送車15の位置に基づき、無人搬送車15が走行する場所における計測対象物の位置を地図情報として特定する。無人搬送車15の位置は、駆動部9の駆動情報に基づき特定される。  The map information is generated, for example, when a manual operation of the automatic guided vehicle 15 is performed by the tablet terminal. In this case, an operation signal corresponding to the operation of, for example, the joystick of the tablet terminal is transmitted to the control unit 8 via the communication unit T, and the control unit 8 instructs the driving unit 9 in accordance with the operation signal, The traveling control of the transport vehicle 15 is performed. At this time, based on the measured distance data DT input from the distance measuring device 7 and the position of the automatic guided vehicle 15, the control unit 8 specifies the position of the measurement target at the place where the automatic guided vehicle 15 travels as map information. I do. The position of the automatic guided vehicle 15 is specified based on the drive information of the drive unit 9.
上記のように生成された地図情報は、制御部8の記憶部85により記憶される。制御部8は、距離測定装置7から入力される測定距離データDTと、記憶部85に予め記憶された地図情報とを比較することにより、無人搬送車15の自己の位置を特定する自己位置同定を行う。すなわち、制御部8は、位置同定部として機能する。自己位置同定を行うことで、制御部8は、予め定められた経路に沿った無人搬送車15の自律的な走行制御を行うことができる。  The map information generated as described above is stored in the storage unit 85 of the control unit 8. The control unit 8 compares the measured distance data DT input from the distance measuring device 7 with the map information stored in advance in the storage unit 85, thereby identifying the position of the automatic guided vehicle 15 itself. I do. That is, the control unit 8 functions as a position identification unit. By performing the self-position identification, the control unit 8 can perform autonomous traveling control of the automatic guided vehicle 15 along a predetermined route.
また、制御部8は、距離測定装置7から出力される検出信号Dsに基づいて駆動部9の制御を行うこともできる。  The control unit 8 can also control the driving unit 9 based on the detection signal Ds output from the distance measuring device 7.
<5.距離計測部の第1構成例> 図7は、距離計測部703の第1構成例を示すブロック図である。なお、図7は、レーザ受光部702の具体的な構成例を併せて示す。  <5. First Configuration Example of Distance Measurement Unit> FIG. 7 is a block diagram illustrating a first configuration example of the distance measurement unit 703. FIG. 7 also shows a specific configuration example of the laser light receiving unit 702.
レーザ受光部702は、APD(アバランシェフォトダイオード)702Aと、増幅回路(トランスインピーダンスアンプ)702Bと、を有する。APD702Aは、受光素子77に相当し、受光したレーザ光を電流信号に変換する。増幅回路702Bは、APD702Aから出力される電流信号を受光信号Psに電流・電圧変換して出力する。  The laser light receiving section 702 has an APD (avalanche photodiode) 702A and an amplifier circuit (transimpedance amplifier) 702B. The APD 702A corresponds to the light receiving element 77, and converts the received laser light into a current signal. The amplifier circuit 702B converts the current signal output from the APD 702A into a light receiving signal Ps by current / voltage conversion and outputs the light receiving signal Ps.
距離計測部703は、先述した第1演算処理部703Aに加えて、第1TDC(time to digital converter)703Bと、第2TDC703Cと、を有する。第1TDC703Bは、第1演算処理部703Aから出力される基準パルスSPの立ち上りタイミングから増幅回路702Bから出力される受光信号Psの立ち上りタイミングまでの経過時間T1を計測する。第2TDC703Cは、第1演算処理部703Aから出力される基準パルスSPの立ち上りタイミングから増幅回路702Bから出力される受光信号Psの立ち下りタイミングまでの経過時間T2を計測する。  The distance measuring unit 703 includes a first TDC (time to digital converter) 703B and a second TDC 703C in addition to the above-described first arithmetic processing unit 703A. The first TDC 703B measures an elapsed time T1 from the rising timing of the reference pulse SP output from the first arithmetic processing unit 703A to the rising timing of the light receiving signal Ps output from the amplifier circuit 702B. The second TDC 703C measures an elapsed time T2 from the rising timing of the reference pulse SP output from the first arithmetic processing unit 703A to the falling timing of the light receiving signal Ps output from the amplifier circuit 702B.
第1演算処理部703Aは、第1TDC703Bおよび第2TDC703Cによる計測結果に基づいて次のようなパルス幅補正による距離計測を行う。受光信号Psは現実的には図8に示すように、パルス波形ではなく、時間に対する傾きを持った波形となる。これにより、第1TDC703Bにより基準パルスSPの立ち上りタイミングt0から受光信号Psが立ち上がる際に第1受光閾値Th1を横切るタイミングまでの経過時間T1を計測しても、正確な距離計測のためには、経過時間T1から補正量Δtを差し引いて補正する必要がある。補正量Δtは、受光信号Psのゼロレベルから第1受光閾値Th1まで立ち上がるまでの時間である。  The first arithmetic processing unit 703A performs the following distance measurement by pulse width correction based on the measurement results by the first TDC 703B and the second TDC 703C. The light receiving signal Ps is not actually a pulse waveform but a waveform having a gradient with respect to time, as shown in FIG. Accordingly, even if the elapsed time T1 from the rising timing t0 of the reference pulse SP to the timing of crossing the first light receiving threshold Th1 when the light receiving signal Ps rises is measured by the first TDC 703B, it is necessary to measure the elapsed time for accurate distance measurement. It is necessary to perform the correction by subtracting the correction amount Δt from the time T1. The correction amount Δt is a time from when the light receiving signal Ps rises to the first light receiving threshold Th1 from the zero level.
そこで、パルス幅補正では、第2TDC703Cにより基準パルスSPの立ち上りタイミングt0から受光信号Psが立ち下がる際に第2受光閾値Th2を横切るタイミングまでの経過時間T2も併せて計測し、経過時間T2とT1との差分をパルス幅Wとして算出する。受光信号Psのピークレベルが大きくなる程、受光信号の立ち上りおよび立ち下りは急峻となり、パルス幅Wは大きくなり、補正量Δtは小さくなる。従って、実際に算出されたパルス幅Wと、予め設定されたパルス幅Wと補正量Δtとの関係とに基づき、補正量Δtを決定する。そして、決定された補正量Δtを計測した経過時間T1から差し引くことで、距離計測を行う。  Therefore, in the pulse width correction, the elapsed time T2 from the rising timing t0 of the reference pulse SP to the timing of crossing the second light receiving threshold Th2 when the light receiving signal Ps falls is also measured by the second TDC 703C, and the elapsed times T2 and T1 are measured. Is calculated as the pulse width W. As the peak level of the light receiving signal Ps increases, the rising and falling of the light receiving signal become steeper, the pulse width W increases, and the correction amount Δt decreases. Therefore, the correction amount Δt is determined based on the actually calculated pulse width W and the relationship between the preset pulse width W and the correction amount Δt. Then, distance measurement is performed by subtracting the determined correction amount Δt from the measured elapsed time T1.
<6.干渉影響抑制機能について> ここで、図9に示すように、倉庫などにおいて、距離測定装置7を搭載した無人搬送車15の他に、距離測定装置70を搭載した他の無人搬送車150が稼働する状況があるとする。この場合、他の距離測定装置70から出射されたレーザ光が直接光DLとして距離測定装置7に直接的に入力される可能性がある。または、他の距離測定装置70から出射されたレーザ光が倉庫の壁等の物体で反射して反射光RLとして距離測定装置7に間接的に入力される可能性がある。  <6. Interference Influence Suppression Function> Here, as shown in FIG. 9, in a warehouse or the like, in addition to the automatic guided vehicle 15 equipped with the distance measuring device 7, another automatic guided vehicle 150 equipped with the distance measuring device 70 operates. Suppose you have a situation. In this case, there is a possibility that the laser light emitted from another distance measuring device 70 is directly input to the distance measuring device 7 as direct light DL. Alternatively, there is a possibility that the laser light emitted from another distance measuring device 70 is reflected by an object such as a wall of a warehouse and is indirectly input to the distance measuring device 7 as reflected light RL.
距離測定装置7は、仮に直接光DLまたは反射光RLの受光に基づいて距離を計測した場合、本来計測すべき計測対象物までの距離とは異なる距離を誤って測定する虞がある。なお、図9に示す状況の他にも、例えば、他の固定型の距離測定装置(侵入防止用等)が存在する場合に、当該距離測定装置から出射されるレーザ光による影響も同様である。 If the distance measuring device 7 measures the distance based on the reception of the direct light DL or the reflected light RL, there is a possibility that the distance measuring device 7 erroneously measures a distance different from the distance to the measurement target to be measured. In addition to the situation shown in FIG. 9, for example, when another fixed type distance measuring device (for preventing intrusion, etc.) is present, the effect of the laser beam emitted from the distance measuring device is the same. .
そこで、本実施形態の距離測定装置7では、このような他の距離測定装置からの干渉による影響を抑制する機能を有する。以下、このような機能について、図10から図12を一例として参照しつつ説明する。  Thus, the distance measuring device 7 of the present embodiment has a function of suppressing the influence of such interference from other distance measuring devices. Hereinafter, such a function will be described with reference to FIGS. 10 to 12 as an example.
図10は、出射光L1を走査する測定範囲Rs(図3)における或る第1走査位置で出射光L1を出射したときに得られる受光信号Ps1の波形の一例を示す。なお、走査位置は、図3を参照して、回転軸Jを中心とする所定の半径方向を基準とした回転軸J周りの角度位置である。図10に示す受光信号Ps1は、出射光L1を出射したタイミング、すなわち基準パルスSPの立ち上りタイミングからの経過時間に対する波形として示される。なお、これは図11、および図12も同様である。図10に示すように、受光信号Ps1は、出射光L1が計測対象物で反射した反射光の受光に基づく受光信号Ps11と、他の距離測定装置から出射された直接光の受光に基づく受光信号Ps12と、を含む。  FIG. 10 shows an example of the waveform of the light receiving signal Ps1 obtained when the emission light L1 is emitted at a certain first scanning position in the measurement range Rs (FIG. 3) for scanning the emission light L1. The scanning position is an angular position around the rotation axis J with reference to a predetermined radial direction about the rotation axis J with reference to FIG. The light receiving signal Ps1 shown in FIG. 10 is shown as a waveform with respect to the timing at which the emission light L1 is emitted, that is, the elapsed time from the rising timing of the reference pulse SP. This is the same in FIGS. 11 and 12. As shown in FIG. 10, the received light signal Ps1 includes a received light signal Ps11 based on the reception of the reflected light of the outgoing light L1 reflected by the measurement target, and a received light signal Ps1 based on the reception of the direct light emitted from another distance measuring device. Ps12.
図11は、第1走査位置から同一周回における所定回転角度Δθ(図3)だけずれた第2走査位置で出射光L1を出射したときに得られる受光信号Ps2の波形の一例を示す。図11に示すように、受光信号Ps2は、出射光L1が計測対象物で反射した反射光の受光に基づく受光信号Ps21と、他の距離測定装置から出射された直接光の受光に基づく受光信号Ps22と、を含む。  FIG. 11 shows an example of the waveform of the light receiving signal Ps2 obtained when the emitted light L1 is emitted at the second scanning position shifted from the first scanning position by the predetermined rotation angle Δθ (FIG. 3) in the same revolution. As shown in FIG. 11, the received light signal Ps2 is composed of a received light signal Ps21 based on the reception of the reflected light reflected from the object to be emitted and the received light signal Ps2 based on the reception of the direct light emitted from another distance measuring device. Ps22.
距離計測部703は、第1走査位置で出射光L1を出射したとき、第1TDC703Bを用いて、基準パルスPSの立ち上りタイミングから受光信号Ps11,Ps12それぞれの立ち上りにおいて第1受光閾値Th1を横切るタイミングまでの経過時間T10,T11を計測する。また、距離計測部703は、第1走査位置で出射光L1を出射したとき、第2TDC703Cを用いて、基準パルスPSの立ち上りタイミングから受光信号Ps11,Ps12それぞれの立ち下りにおいて第2受光閾値Th2を横切るタイミングまでの経過時間T20,T21を計測する。  When emitting the emitted light L1 at the first scanning position, the distance measuring unit 703 uses the first TDC 703B to start from the rising timing of the reference pulse PS to the timing of crossing the first light receiving threshold Th1 at the rising of each of the light receiving signals Ps11 and Ps12. The elapsed times T10 and T11 are measured. Further, when the emission light L1 is emitted at the first scanning position, the distance measurement unit 703 uses the second TDC 703C to determine the second light reception threshold Th2 at the fall of each of the light reception signals Ps11 and Ps12 from the rise timing of the reference pulse PS. The elapsed times T20 and T21 until the crossing timing are measured.
また、距離計測部703は、第2走査位置で出射光L1を出射したとき、第1TDC703Bを用いて、基準パルスPSの立ち上りタイミングから受光信号Ps21,PS22それぞれの立ち上りにおいて第1受光閾値Th1を横切るタイミングまでの経過時間T12,T13を計測する。また、距離計測部703は、第2走査位置で出射光L1を出射したとき、第2TDC703Cを用いて、基準パルスPSの立ち上りタイミングから受光信号Ps21,PS22それぞれの立ち下りにおいて第2受光閾値Th2を横切るタイミングまでの経過時間T22,T23を計測する。  Further, when the emission light L1 is emitted at the second scanning position, the distance measurement unit 703 uses the first TDC 703B to cross the first light reception threshold Th1 at the rise of each of the light reception signals Ps21 and PS22 from the rise timing of the reference pulse PS. The elapsed times T12 and T13 until the timing are measured. Further, when the emission light L1 is emitted at the second scanning position, the distance measurement unit 703 uses the second TDC 703C to determine the second light reception threshold value Th2 at the fall of each of the light reception signals Ps21 and PS22 from the rise timing of the reference pulse PS. The elapsed times T22 and T23 until the crossing timing are measured.
そして、距離計測部703に含まれる第1演算処理部703Aは、第1、第2走査位置それぞれで得られた受光信号が第1受光閾値Th1を横切るタイミングまでの経過時間同士の差分が所定時間差以内であるかを判定する。すなわち、図10および図11の例であれば、第1演算処理部703Aは、経過時間T10とT12の差分、および経過時間T11とT13の差分をそれぞれ所定時間差と比較する。  Then, the first arithmetic processing unit 703A included in the distance measuring unit 703 calculates the difference between the elapsed times until the light reception signals obtained at the first and second scanning positions cross the first light reception threshold Th1 by a predetermined time difference. It is determined whether it is within. That is, in the example of FIGS. 10 and 11, the first arithmetic processing unit 703A compares the difference between the elapsed times T10 and T12 and the difference between the elapsed times T11 and T13 with the predetermined time differences.
ここで、図12は、図10と図11に示す各波形を重ねて示した図である。このように、受光信号Ps11,PS21は、出射光L1が計測対象物で反射した反射光の受光に基づく受光信号であるので、経過時間T10とT12の差分はほとんどなく、当該差分は所定時間差以内となる。  Here, FIG. 12 is a diagram in which the waveforms shown in FIGS. 10 and 11 are overlapped. As described above, since the light receiving signals Ps11 and PS21 are light receiving signals based on the reception of the reflected light of the outgoing light L1 by the measurement object, there is almost no difference between the elapsed times T10 and T12, and the difference is within a predetermined time difference. Becomes
一方、受光信号Ps12,Ps22は、他の距離測定装置から出射された直接光の受光に基づく受光信号であるので、経過時間T11とT13との差分ΔTが大きくなり、当該差分ΔTは所定時間差以内でなくなる。他の距離測定装置は、自己の距離測定装置7と出射光の回転走査の回転速度が異なる場合が多く、その場合、距離測定装置7における直接光の受光タイミングのずれが大きくなり、上記差分ΔTは大きくなる。また、上記回転速度が設定上は同じ場合であっても、実際には回転速度は誤差によってずれる場合が多く、その場合、やはり直接光の受光タイミングのずれは大きくなる。なお、これは、他の距離測定装置から出射された出射光が物体で反射した反射光(図9の反射光RL)を受光する場合も同様である。  On the other hand, since the light receiving signals Ps12 and Ps22 are light receiving signals based on the reception of the direct light emitted from the other distance measuring devices, the difference ΔT between the elapsed times T11 and T13 increases, and the difference ΔT is within a predetermined time difference. No longer. Other distance measuring devices often have different rotational speeds for the rotation scanning of the emitted light from their own distance measuring device 7, in which case the deviation of the light receiving timing of the direct light in the distance measuring device 7 becomes large, and the difference ΔT Becomes larger. Even if the rotation speed is the same in setting, the rotation speed is often shifted due to an error in many cases. In this case, the shift of the light receiving timing of the direct light also becomes large. The same applies to the case where the light emitted from another distance measuring device receives the reflected light (reflected light RL in FIG. 9) reflected by the object.
従って、第1演算処理部703Aは、経過時間の差分が所定時間差以内であった場合は、受光信号は計測対象物で反射した光に基づくと判定し、そうでない場合は、受光信号は他の距離測定装置から出射された光に基づくと判定する。  Therefore, the first arithmetic processing unit 703A determines that the received light signal is based on the light reflected by the measurement object when the difference between the elapsed times is within the predetermined time difference, and otherwise, the received light signal is another signal. It is determined that it is based on the light emitted from the distance measuring device.
よって、経過時間の差分が所定時間差以内であった場合に、第1演算処理部703Aは、受光信号が第1受光閾値Th1を横切るタイミングまでの経過時間と第2受光閾値Th2を横切るタイミングまでの経過時間に基づき、先述したパルス幅補正を用いて距離計測を行う。例えば、図10、図11の例であれば、経過時間T10、T20、または経過時間T12、T22に基づきパルス幅補正を行う。  Therefore, when the difference between the elapsed times is within the predetermined time difference, the first arithmetic processing unit 703A determines whether the elapsed time until the light reception signal crosses the first light reception threshold Th1 and the time until the second light reception threshold Th2 crosses. Based on the elapsed time, distance measurement is performed using the pulse width correction described above. For example, in the case of FIGS. 10 and 11, the pulse width correction is performed based on the elapsed times T10 and T20 or the elapsed times T12 and T22.
一方、経過時間の差分が所定時間差以内でなかった場合は、第1演算処理部703Aは、距離計測を行わない。すなわち、図10、図11の例であれば、受光信号Ps12、Ps22について距離計測は行わない。これにより、他の距離測定装置から出射された出射光による干渉によって距離を誤って測定することを抑制できる。  On the other hand, when the difference between the elapsed times is not within the predetermined time difference, the first arithmetic processing unit 703A does not perform the distance measurement. That is, in the examples of FIGS. 10 and 11, distance measurement is not performed on the light receiving signals Ps12 and Ps22. Thereby, it is possible to suppress the distance from being erroneously measured due to interference by the light emitted from another distance measuring device.
すなわち、距離計測部703は、投光部83が同一周回における所定回転角度Δθずれた複数の走査位置において出射光L1を出射したときに得られる受光信号の受光タイミングのずれに基づき、受光信号は計測対象物で反射した光に基づくと判定する。これにより、受光信号が出射光が計測対象物で反射した光に基づくか、他の距離測定装置から出射された光に基づくかを判定するので、他の距離測定装置から出射された光に基づいて距離を誤って測定することを抑制できる。  That is, the distance measuring unit 703 determines the light receiving signal based on the shift of the light receiving timing of the light receiving signal obtained when the light projecting unit 83 emits the emitted light L1 at a plurality of scanning positions shifted by the predetermined rotation angle Δθ in the same revolution. It is determined that it is based on the light reflected by the measurement object. Thereby, whether the received light signal is based on the light reflected from the object to be measured or the light emitted from another distance measuring device is determined, so that the light receiving signal is determined based on the light emitted from the other distance measuring device. Erroneous measurement of the distance can be suppressed.
より、具体的に、距離計測部703は、上記受光タイミングのずれに基づく評価値が所定時間差以内であった場合に、受光信号は計測対象物で反射した光に基づくと判定する。  More specifically, the distance measurement unit 703 determines that the light reception signal is based on the light reflected by the measurement target when the evaluation value based on the shift in the light reception timing is within a predetermined time difference.
なお、第1演算処理部703Aは、第1、第2走査位置それぞれで得られた受光信号が第2受光閾値Th2を横切るタイミングまでの経過時間同士の差分が所定時間差以内であるかを判定してもよい。  The first arithmetic processing unit 703A determines whether the difference between the elapsed times until the light reception signals obtained at the first and second scanning positions cross the second light reception threshold Th2 is within a predetermined time difference. You may.
また、第2走査位置は、出射光L1を出射する間隔である所定回転角度Δθだけ第1走査位置からずれた位置に限らず、例えば、所定回転角度Δθの2倍だけ第1走査位置からずれた位置等としてもよい。  Further, the second scanning position is not limited to a position shifted from the first scanning position by a predetermined rotation angle Δθ which is an interval for emitting the emission light L1, but is shifted from the first scanning position by twice the predetermined rotation angle Δθ, for example. Or the like.
<7.所定時間差の設定> 先述した受光タイミングのずれと比較する所定時間差については、例えば、下記算出式に基づいて設定することが可能である。  <7. Setting of predetermined time difference> 差 The predetermined time difference to be compared with the above-described shift of the light receiving timing can be set based on, for example, the following calculation formula.
すなわち、上記所定時間差は、下記(1)式に基づいて規定される。 ΔTth=(((V1+V2)×Δtθ+Lerr×2)×2)/c  (1) 但し、ΔTth:所定時間差、V1:距離測定装置が搭載される移動体の移動速度、V2:所定値、Δtθ:所定回転角度に相当する測定時間間隔、Lerr:距離測定最大誤差、c:光速  That is, the predetermined time difference is defined based on the following equation (1). ΔTth = (((V1 + V2 ) × Δtθ + L err × 2) × 2) / c (1) where,? Tth: predetermined time difference, V1: the distance the moving speed of the moving body measuring device is mounted, V2: a predetermined value, Δtθ: Measurement time interval corresponding to a predetermined rotation angle, L err : maximum error of distance measurement, c: speed of light
V1は、距離測定装置7が搭載される移動体(無人搬送車15)の移動速度である。V2は、例えば図13に示す他の無人搬送車150の移動速度である。上記(1)式では、自己の無人搬送車15と他の無人搬送車150が互いに近づく、または離れる場合を想定している。これにより、距離測定装置7は、距離測定装置7から出射した出射光L1が無人搬送車150で反射した反射光RL150(図13)を受光した場合に、無人搬送車150を計測対象物として認識することができる。また、図13に示す例えば倉庫内で作業する作業員200がV2以下の移動速度で移動する場合は、距離測定装置7は、距離測定装置7から出射した出射光L1が作業員200で反射した反射光RL200(図13)を受光した場合に、作業員200を計測対象物として認識することができる。  V1 is the moving speed of the moving object (automated guided vehicle 15) on which the distance measuring device 7 is mounted. V2 is, for example, the moving speed of another automatic guided vehicle 150 shown in FIG. In the above formula (1), it is assumed that the automatic guided vehicle 15 and the other automatic guided vehicle 150 approach or separate from each other. Thereby, when the distance measuring device 7 receives the reflected light RL150 (FIG. 13) reflected by the automatic guided vehicle 150 from the output light L1 emitted from the distance measuring device 7, the distance measuring device 150 recognizes the automatic guided vehicle 150 as the measurement target. can do. When the worker 200 working in the warehouse shown in FIG. 13 moves at a moving speed of V2 or less, for example, the distance measuring device 7 reflects the emitted light L1 emitted from the distance measuring device 7 by the worker 200. When the reflected light RL200 (FIG. 13) is received, the worker 200 can be recognized as a measurement target.
具体例を挙げて説明すると、例えば、距離測定装置7における回転走査の回転速度=2400rpm、所定回転角度Δθ=0.125°、距離測定装置7の距離測定最大誤差=±30mm、自己の無人搬送車15の移動速度V1=10km/h、他の無人搬送車150の移動速度V2=10km/hであるとする。このとき、所定回転角度Δθに相当する測定時間間隔Δtθは、8.68μsとなる。  To explain with a specific example, for example, the rotational speed of the rotational scanning in the distance measuring device 7 = 2400 rpm, the predetermined rotation angle Δθ = 0.125 °, the maximum distance measurement error of the distance measuring device 7 = ± 30 mm, the self-unmanned conveyance It is assumed that the moving speed V1 of the vehicle 15 is 10 km / h and the moving speed V2 of the other automatic guided vehicle 150 is 10 km / h. At this time, the measurement time interval Δtθ corresponding to the predetermined rotation angle Δθ is 8.68 μs.
この場合、上記(1)式における(V1+V2)×Δtθ=(10×106/3600)×2×8.68×10-6=0.048mmとなる。  In this case, (V1 + V2) × Δtθ = (10 × 10 6 /3600)×2×8.68×10 −6 = 0.048 mm in the above equation (1).
従って、上記(1)式により、所定時間差ΔTth=((0.048+30×2)×2)/(2.9979×1011)=0.4006nsとなる。  Therefore, from the above equation (1), the predetermined time difference ΔTth = ((0.048 + 30 × 2) × 2) / (2.9997 × 10 11 ) = 0.4006 ns.
よって、受光タイミングのずれが0.4006ns以内であれば、受光信号が距離測定装置7から出射した出射光L1が計測対象物で反射した反射光に基づくと判定される。  Therefore, if the shift of the light receiving timing is within 0.4006 ns, it is determined that the light receiving signal is based on the reflected light reflected by the measurement object, the emitted light L1 emitted from the distance measuring device 7.
このように、上記(1)式によれば、距離測定装置7が搭載される移動体(無人搬送車15)の移動速度、他の移動体(無人搬送車150等)の移動速度(V2)、および距離測定最大誤差を考慮して所定時間差を適切に規定することができる。  As described above, according to the above equation (1), the moving speed of the moving object (the unmanned transport vehicle 15) on which the distance measuring device 7 is mounted and the moving speed (V2) of the other moving objects (the unmanned transport vehicle 150 and the like). The predetermined time difference can be appropriately defined in consideration of the distance measurement maximum error and the distance measurement maximum error.
<8.距離計測部の第2構成例> 図14は、距離計測部703の第2構成例を示すブロック図である。本構成例の距離測定部703は、第1構成例(図7)との構成上の相違として、第1コンパレータ703Dと、第2コンパレータ703Eと、をさらに有する。  <8. Second Configuration Example of Distance Measurement Unit> FIG. 14 is a block diagram showing a second configuration example of the distance measurement unit 703. The distance measuring unit 703 of this configuration example further includes a first comparator 703D and a second comparator 703E as a configuration difference from the first configuration example (FIG. 7).
第1コンパレータ703Dは、非反転入力端(+)に入力される受光信号Psと、反転入力端(-)に入力される第1閾値Vth1と、を比較し、比較結果を第1演算処理部703Aに出力する。第2コンパレータ703Eは、反転入力端(-)に入力される受光信号Psと、非反転入力端(+)に入力される第2閾値Vth2と、を比較し、比較結果を第1演算処理部703Aに出力する。第2閾値Vth2は、第1閾値Vth1よりも小さい。  The first comparator 703D compares the light receiving signal Ps input to the non-inverting input terminal (+) with the first threshold value Vth1 input to the inverting input terminal (-), and compares the comparison result with the first operation processing unit. 703A. The second comparator 703E compares the light receiving signal Ps input to the inverting input terminal (−) with the second threshold value Vth2 input to the non-inverting input terminal (+), and compares the comparison result with the first arithmetic processing unit. 703A. The second threshold value Vth2 is smaller than the first threshold value Vth1.
第2構成例の距離計測部703は、図15のフローチャートに示す処理を行う。まず、ステップS1で、第1演算処理部703Aは、第1コンパレータ703Dの出力レベルに基づき、受光信号Psの強度が第1閾値Vth1以上であるかを判定する。すなわち、第1コンパレータ703Dの出力レベルがHighであれば受光信号Psの強度が第1閾値Vth1以上であり、Lowであれば受光信号Psの強度が第1閾値Vth1より低い。  The distance measuring unit 703 of the second configuration example performs the processing shown in the flowchart of FIG. First, in step S1, the first arithmetic processing unit 703A determines whether the intensity of the light receiving signal Ps is equal to or greater than the first threshold value Vth1 based on the output level of the first comparator 703D. That is, if the output level of the first comparator 703D is High, the intensity of the light receiving signal Ps is equal to or higher than the first threshold Vth1, and if the output level is Low, the intensity of the light receiving signal Ps is lower than the first threshold Vth1.
もし受光信号Psの強度が第1閾値Vth1以上である場合は(ステップS1のY)、受光信号が他の距離測定装置から出射された直接光に基づく可能性があるので、ステップS2に進み、第1演算処理部703Aは、先述した受光タイミングのずれ(経過時間の差分)が所定時間差以内であるかを判定する。もし所定時間差以内であれば(ステップS2のY)、受光信号が距離測定装置7から出射した出射光L1が計測対象物で反射した反射光に基づくと判定し、そうでなければ(ステップS2のN)、受光信号が他の距離測定装置から出射された直接光に基づくと判定する。  If the intensity of the light receiving signal Ps is equal to or greater than the first threshold value Vth1 (Y in step S1), the light receiving signal may be based on direct light emitted from another distance measuring device, and the process proceeds to step S2. The first arithmetic processing unit 703A determines whether or not the above-described shift in light receiving timing (difference in elapsed time) is within a predetermined time difference. If the difference is within the predetermined time difference (Y in step S2), it is determined that the received light signal is based on the reflected light reflected by the measurement object, and the outgoing light L1 emitted from the distance measuring device 7 is not determined (step S2). N), it is determined that the light receiving signal is based on the direct light emitted from another distance measuring device.
また、ステップS1で、もし受光信号Psの強度が第1閾値Vth1より低い場合は(ステップS1のN)、ステップS3に進み、第1演算処理部703Aは、第2コンパレータ703Eの出力レベルに基づき、受光信号Psの強度が第2閾値Vth1以上であるかを判定する。すなわち、第2コンパレータ703Eの出力レベルがLowであれば受光信号Psの強度が第2閾値Vth2以上であり、Highであれば受光信号Psの強度が第2閾値Vth2より低い。  In step S1, if the intensity of the light receiving signal Ps is lower than the first threshold value Vth1 (N in step S1), the process proceeds to step S3, where the first arithmetic processing unit 703A performs the processing based on the output level of the second comparator 703E. It is determined whether the intensity of the light receiving signal Ps is equal to or greater than the second threshold value Vth1. That is, if the output level of the second comparator 703E is low, the intensity of the light receiving signal Ps is equal to or higher than the second threshold Vth2, and if the output level is high, the intensity of the light receiving signal Ps is lower than the second threshold Vth2.
もし受光信号Psの強度が第2閾値Vth2以上である場合は(ステップS3のY)、受光信号が距離測定装置7から出射した出射光L1が計測対象物で反射した反射光に基づくと判定する。従って、この場合に第1演算処理部703Aは、パルス幅補正に基づく距離計測を行う。そうでない場合は(ステップS3のN)、受光信号が他の距離測定装置から出射した出射光が物体で反射した反射光に基づくと判定する。従って、この場合に距離計測は行われない。 If the intensity of the light receiving signal Ps is equal to or greater than the second threshold value Vth2 (Y in step S3), it is determined that the light receiving signal is based on the reflected light reflected by the measurement target object, the emitted light L1 emitted from the distance measuring device 7. . Therefore, in this case, the first arithmetic processing unit 703A performs distance measurement based on the pulse width correction. Otherwise (N in step S3), it is determined that the received light signal is based on the reflected light reflected by the object, the emitted light emitted from another distance measuring device. Therefore, distance measurement is not performed in this case.
図16は、受光信号Psの一例を示す波形図である。なお、図16は、出射光L1が出射されたタイミングからの経過時間に対する波形を示す。受光信号Psは、受光信号Psx、Psy、およびPszを含む。受光信号Psxの強度は、第1閾値Vth1以上となる。受光信号Psyの強度は、第1閾値Vth1より低いが第2閾値Vth2以上となる。受光信号Pszの強度は、第2閾値Vth2より低くなる。  FIG. 16 is a waveform diagram illustrating an example of the light receiving signal Ps. FIG. 16 shows a waveform with respect to an elapsed time from the timing at which the emission light L1 is emitted. The light receiving signal Ps includes the light receiving signals Psx, Psy, and Psz. The intensity of the light receiving signal Psx is equal to or more than the first threshold value Vth1. The intensity of the light receiving signal Psy is lower than the first threshold value Vth1, but equal to or higher than the second threshold value Vth2. The intensity of the light receiving signal Psz becomes lower than the second threshold value Vth2.
なお、第1閾値Vth1と第2閾値Vth2のうち第2閾値Vth2のみを用いて、受光信号Psの強度が第2閾値Vth2以上である場合は、受光信号が他の距離測定装置から出射された光による直接光または反射光に基づく可能性があるとして、受光タイミングのずれと所定時間差を比較する処理に進み、そうでない場合は、受光信号が他の距離測定装置から出射された光による反射光に基づくと判定するようにしてもよい。  When only the second threshold value Vth2 of the first threshold value Vth1 and the second threshold value Vth2 is used and the intensity of the light receiving signal Ps is equal to or larger than the second threshold value Vth2, the light receiving signal is emitted from another distance measuring device. Assuming that the light may be based on direct light or reflected light, the process proceeds to a process of comparing a difference in light reception timing with a predetermined time difference, and if not, the light reception signal is reflected light by light emitted from another distance measuring device. May be determined.
すなわち、距離計測部703は、受光信号の強度が第1閾値以上である場合に、受光信号が計測対象物で反射した光に基づくかを判定する。これにより、受光信号の強度が第1閾値以上である場合は、受光信号が他の距離測定装置から出射された光に基づく可能性があるので上記判定を行う。そうでない場合は、上記判定を行わないので、演算処理負荷を抑えることができる。  That is, when the intensity of the received light signal is equal to or more than the first threshold, the distance measurement unit 703 determines whether the received light signal is based on the light reflected by the measurement target. Accordingly, when the intensity of the received light signal is equal to or greater than the first threshold, the above determination is made because the received light signal may be based on light emitted from another distance measuring device. Otherwise, the above determination is not performed, so that the processing load can be reduced.
さらに、距離測定部703は、第1閾値より小さい第2閾値と、受光信号の強度との比較に基づいた判定を行う。受光信号の強度が第1閾値より小さく、且つ第2閾値以上である場合は、受光信号が計測対象物で反射した光に基づくと判定し、受光信号の強度が第2閾値より小さい場合は、受光信号が他の距離測定装置から出射された光による反射光に基づくと判定する。これにより、計測対象物からの反射光と、他の距離測定装置から出射された光による反射光と、を適切に判別できる。  Further, the distance measurement unit 703 makes a determination based on a comparison between a second threshold value smaller than the first threshold value and the intensity of the received light signal. If the intensity of the received light signal is smaller than the first threshold and equal to or greater than the second threshold, it is determined that the received light signal is based on the light reflected by the measurement target, and if the intensity of the received light signal is smaller than the second threshold, It is determined that the light receiving signal is based on the reflected light by the light emitted from another distance measuring device. Thereby, it is possible to appropriately determine the reflected light from the measurement target object and the reflected light due to the light emitted from another distance measuring device.
<9.距離測定装置システム> 図17は、本実施形態に係る距離測定装置を複数用いて構成した距離測定装置システムの一構成例を示す概略図である。  <9. Distance Measuring Device System> FIG. 17 is a schematic diagram showing an example of a configuration of a distance measuring device system configured by using a plurality of distance measuring devices according to the present embodiment.
図17に示す距離測定装置システム300は、距離測定装置群GRと、管理装置250と、を有する。距離測定装置群GRは、第1距離測定装置7Aと、第2距離測定装置7Bと、を有する。第1距離測定装置7Aは、第1無人搬送車15Aに搭載される。第2距離測定装置7Bは、第2無人搬送車15Bに搭載される。  The distance measurement device system 300 illustrated in FIG. 17 includes a distance measurement device group GR and a management device 250. The distance measuring device group GR includes a first distance measuring device 7A and a second distance measuring device 7B. The first distance measuring device 7A is mounted on the first automatic guided vehicle 15A. The second distance measuring device 7B is mounted on the second automatic guided vehicle 15B.
第1距離測定装置7Aおよび第1無人搬送車15Aは、先述した距離測定装置7および無人搬送車15と同様に構成される。第2距離測定装置7Bおよび第2無人搬送車15Bも、先述した距離測定装置7および無人搬送車15と同様に構成される。  The first distance measuring device 7A and the first automatic guided vehicle 15A are configured similarly to the distance measuring device 7 and the automatic guided vehicle 15 described above. The second distance measuring device 7B and the second automatic guided vehicle 15B are configured similarly to the distance measuring device 7 and the automatic guided vehicle 15 described above.
第1距離測定装置7Aは、管理装置250からの回転数指令CM1を受け、回転走査の第1回転速度を設定される。第2距離測定装置7Bは、管理装置250からの回転数指令CM2を受け、回転走査の第2回転速度を設定される。第1回転速度と第2回転速度とは、異なる値に設定される。なお、回転数指令は、例えば無人搬送車15A,15Bの有する通信部T(図6)を介して距離測定装置7A,7Bにより受信される。  The first distance measurement device 7A receives the rotation speed command CM1 from the management device 250, and sets the first rotation speed of the rotation scanning. The second distance measurement device 7B receives the rotation speed command CM2 from the management device 250, and sets the second rotation speed of the rotation scanning. The first rotation speed and the second rotation speed are set to different values. The rotation speed command is received by the distance measurement devices 7A and 7B via, for example, the communication unit T (FIG. 6) of the automatic guided vehicles 15A and 15B.
具体例を用いて説明すれば、例えば、第1回転速度が2400rpmに設定され、第2回転速度が2401rpmに設定されたとし、距離測定装置7A,7Bにおける回転走査の所定回転角度Δθを0.125°とする。この場合、所定回転角度Δθに相当する時間間隔は、第1距離測定装置7Aで8.6806μSとなり、第2距離測定装置7Bで8.6769μSとなる。  To describe this using a specific example, for example, assume that the first rotation speed is set to 2400 rpm and the second rotation speed is set to 2401 rpm, and the predetermined rotation angle Δθ of the rotation scanning in the distance measuring devices 7A and 7B is set to 0. 125 °. In this case, the time interval corresponding to the predetermined rotation angle Δθ is 8.6806 μS in the first distance measuring device 7A, and 8.6679 μS in the second distance measuring device 7B.
ここで、図18は、第1距離測定装置7Aにおいて、第1走査位置で出射光L1を出射したときの受光信号Ps1と、同一周回において第1走査位置から所定回転角度Δθだけずれた第2走査位置で出射光L1を出射したときの受光信号Ps2とを重ねた波形図である。すなわち、図18は、先述した図12に対応する図である。  Here, FIG. 18 shows the light receiving signal Ps1 when the emitted light L1 is emitted at the first scanning position in the first distance measuring device 7A, and the second received light signal Ps1 shifted from the first scanning position by the predetermined rotation angle Δθ in the same revolution. FIG. 7 is a waveform diagram in which a light receiving signal Ps2 when emitting outgoing light L1 at a scanning position is superimposed. That is, FIG. 18 is a diagram corresponding to FIG. 12 described above.
受光信号Ps1は、第2距離測定装置7Bからの直接光DL2により受光信号Ps12を含む。受光信号Ps2は、第2距離測定装置7Bからの直接光DL2により受光信号Ps22を含む。先述した第1回転速度と第2回転速度の設定値が異なることにより所定回転角度Δθに相当する時間間隔に差が生じるため、図18に示すように、受光信号Ps22は受光信号Ps12よりも8.6806μs-8.6769μs=3.6nsだけ早く立ち上がる。すなわち、受光信号Ps12とPs22の受光タイミングのずれΔTは、3.6nsとなる。  The light receiving signal Ps1 includes the light receiving signal Ps12 by the direct light DL2 from the second distance measuring device 7B. The light receiving signal Ps2 includes the light receiving signal Ps22 by the direct light DL2 from the second distance measuring device 7B. Since a difference occurs in the time interval corresponding to the predetermined rotation angle Δθ due to the difference between the set values of the first rotation speed and the second rotation speed described above, the light receiving signal Ps22 is eight times smaller than the light receiving signal Ps12 as shown in FIG. 0.6806 μs−8.669 μs = 3.6 ns earlier. That is, the shift ΔT between the light receiving timings of the light receiving signals Ps12 and Ps22 is 3.6 ns.
従って、第1距離測定装置7Aにおける第1演算処理部703AでΔTは所定時間差以内でないと判定され、受光信号は計測対象物での反射光に基づかないと判定される。すなわち、距離測定装置群GRにおいて、回転走査の回転速度を意図的に異ならせて設定することにより、第1距離測定装置7Aにおいて、第2距離測定装置7Bから出射された光による直接光が連続して同じタイミングで受光されないようにして、第2距離測定装置7Bからの直接光DL2に基づく誤った距離測定を回避させることができる。  Therefore, the first arithmetic processing unit 703A in the first distance measuring device 7A determines that ΔT is not within the predetermined time difference, and determines that the received light signal is not based on the reflected light from the measurement target. That is, in the distance measuring device group GR, by setting the rotation speed of the rotational scanning to be intentionally different, direct light due to light emitted from the second distance measuring device 7B is continuously emitted in the first distance measuring device 7A. In this way, erroneous distance measurement based on the direct light DL2 from the second distance measuring device 7B can be avoided by preventing light from being received at the same timing.
また、第2距離測定装置7Bは、第1距離測定装置7Aからの直接光DL1を受光した場合、先述した具体例であれば、受光信号Ps22は受光信号Ps12よりも3.6nsだけ遅れて立ち上がる。従って、第2距離測定装置7Bにおける第1演算処理部703AでΔTは所定時間差以内でないと判定され、第1距離測定装置7Aからの直接光DL1に基づく誤った距離測定を回避させることができる。  When the second distance measuring device 7B receives the direct light DL1 from the first distance measuring device 7A, the light receiving signal Ps22 rises 3.6 ns later than the light receiving signal Ps12 in the specific example described above. . Therefore, the first arithmetic processing unit 703A in the second distance measurement device 7B determines that ΔT is not within the predetermined time difference, and it is possible to avoid an erroneous distance measurement based on the direct light DL1 from the first distance measurement device 7A.
なお、距離測定装置群の各距離測定装置に回転速度を設定する方法は、管理装置250によらずに、距離測定装置ごとに独自に設定してもよい。  The method of setting the rotation speed for each distance measuring device in the distance measuring device group may be set independently for each distance measuring device without using the management device 250.
すなわち、距離測定装置群GRは、第1距離測定装置7Aと、第2距離測定装置7Bと、を有する距離測定装置群である。第1距離測定装置7Aおよび第2距離測定装置7Bは、発光部701を含んで出射光L1の回転走査を行う投光部83と、受光に基づいて受光信号を出力する受光部702と、出射光L1の出射と受光部702による受光とに基づいて計測対象物までの距離を計測する距離計測部703と、を備える。第1距離測定装置7Aは、先述した構成の距離測定装置であり、第1距離測定装置7Aによる回転走査の第1回転速度と、第2距離測定装置7Bによる回転走査の第2回転速度と、は異なる。  That is, the distance measuring device group GR is a distance measuring device group including the first distance measuring device 7A and the second distance measuring device 7B. The first distance measuring device 7A and the second distance measuring device 7B include a light emitting unit 83 that includes a light emitting unit 701 and performs rotation scanning of the emitted light L1, a light receiving unit 702 that outputs a light receiving signal based on light reception, and a light emitting unit 702. A distance measuring unit 703 that measures a distance to a measurement target based on emission of the emitted light L1 and light reception by the light receiving unit 702. The first distance measurement device 7A is a distance measurement device having the above-described configuration, and includes a first rotation speed of the rotation scan by the first distance measurement device 7A, a second rotation speed of the rotation scan by the second distance measurement device 7B, Is different.
これにより、第1距離測定装置7Aにおいて、第2距離測定装置7Bから出射された光による直接光が連続して同じタイミングで受光されないようにして、第2距離測定装置7Bからの直接光に基づく誤った距離測定を回避させることができる。  Accordingly, the first distance measuring device 7A prevents direct light from light emitted from the second distance measuring device 7B from being continuously received at the same timing, and is based on the direct light from the second distance measuring device 7B. Incorrect distance measurement can be avoided.
また、第2距離測定装置7Bの距離計測部703は、投光部83が同一周回における所定回転角度ずれた複数の走査位置において出射光L1を出射したときに得られる受光信号の受光タイミングのずれに基づき、受光信号は計測対象物で反射した光に基づくと判定する。これにより、第2距離測定装置7Bが第1距離測定装置7Aからの直接光に基づいて誤って距離測定を行うことを回避できる。  Further, the distance measuring unit 703 of the second distance measuring device 7B is configured to detect the shift of the light receiving timing of the light receiving signal obtained when the light projecting unit 83 emits the emitted light L1 at a plurality of scanning positions shifted by a predetermined rotation angle in the same rotation. , It is determined that the light receiving signal is based on the light reflected by the measurement object. This can prevent the second distance measuring device 7B from erroneously measuring the distance based on the direct light from the first distance measuring device 7A.
また、距離測定装置システム300は、距離測定装置群GRと、管理装置250と、を有し、第1回転速度および第2回転速度は、管理装置250からの指令に基づく。これにより、複数の距離測定装置に回転速度を設定することが容易となる。  The distance measurement device system 300 includes a distance measurement device group GR and a management device 250, and the first rotation speed and the second rotation speed are based on a command from the management device 250. This makes it easy to set the rotation speed for a plurality of distance measuring devices.
<10.その他> 以上、本発明の実施形態について説明したが、本発明の趣旨の範囲内であれば、実施形態は種々の変更が可能である。  <10. Others> The embodiments of the present invention have been described above. However, various modifications can be made to the embodiments within the scope of the gist of the present invention.
例えば、同一周回における、第1走査位置、第1走査位置から所定回転角度Δθだけずれた第2走査位置、および第2走査位置から所定回転角度Δθだけずれた第3走査位置のそれぞれで出射光L1を出射したときに得られる受光信号に基づき判定を行ってもよい。より具体的には、第1走査位置と第2走査位置での受光タイミングずれと、第2走査位置と第3走査位置での受光タイミングずれと、の平均値を評価値として算出し、算出された評価値が所定時間差以内であるかを判定する。  For example, outgoing light at each of a first scanning position, a second scanning position deviated from the first scanning position by a predetermined rotation angle Δθ, and a third scanning position deviated from the second scanning position by a predetermined rotation angle Δθ in the same revolution. The determination may be made based on the light receiving signal obtained when emitting L1. More specifically, the average value of the light receiving timing deviation between the first scanning position and the second scanning position and the light receiving timing deviation between the second scanning position and the third scanning position is calculated as an evaluation value. It is determined whether the evaluated value is within a predetermined time difference.
また、上記実施形態では、距離測定装置を搭載する移動体として無人搬送車を例に挙げて説明したが、これに限らず、移動体は掃除ロボット、監視ロボットなど、運搬用途以外の装置に適用してもよい。  Further, in the above-described embodiment, an unmanned carrier is described as an example of a moving object equipped with a distance measuring device. However, the present invention is not limited to this, and the moving object is applicable to a device other than a transportation purpose, such as a cleaning robot or a monitoring robot. May be.
本発明は、例えば、荷物を運搬する無人搬送車に利用することができる。 INDUSTRIAL APPLICATION This invention can be utilized for the automatic guided vehicle which conveys a load, for example.
1・・・車体、1A・・・基部、1B・・・台部、2・・・荷台、3L、3R・・・支持部、4L、4R・・・駆動モータ、5L、5R・・・駆動輪、6F、6R・・・従動輪、7、70・・・距離測定装置、71・・・レーザ光源、72・・・コリメートレンズ、73・・・投光ミラー、74・・・受光レンズ、75・・・受光ミラー、76・・・波長フィルタ、77・・・受光素子、78・・・回転筐体、79・・・モータ、701・・・レーザ発光部、702・・・レーザ受光部、702A・・・APD、702B・・・増幅回路、703・・・距離計測部、703A・・・第1演算処理部、703B・・・第1TDC、703C・・・第2TDC、703D・・・第1コンパレータ、703E・・・第2コンパレータ、704・・・データ通信インタフェース、705・・・第2演算処理部、706・・・駆動部、80・・・筐体、801・・・透過部、81・・・基板、82・・・配線、8・・・制御部、85・・・記憶部、9・・・駆動部、15、150・・・無人搬送車、7A・・・第1距離測定装置、7B・・・第2距離測定装置、15A・・・第1無人搬送車、15B・・・第2無人搬送車、GR・・・距離測定装置群、250・・・管理装置、300・・・距離測定装置システム、U・・・制御ユニット、B・・・バッテリー、T・・・通信部、Rs・・・測定範囲、θ・・・回転走査角度範囲、Δθ・・・所定回転角度、J・・・回転軸、L1・・・出射光、L2・・・入射光、OJ・・・計測対象物 DESCRIPTION OF SYMBOLS 1 ... Body, 1A ... Base, 1B ... Base part, 2 ... Cargo bed, 3L, 3R ... Support part, 4L, 4R ... Drive motor, 5L, 5R ... Drive Wheel, 6F, 6R: driven wheel, 7, 70: distance measuring device, 71: laser light source, 72: collimating lens, 73: light emitting mirror, 74: light receiving lens, 75: light receiving mirror, 76: wavelength filter, 77: light receiving element, 78: rotating housing, 79: motor, 701: laser emitting unit, 702: laser receiving unit , 702A ... APD, 702B ... amplification circuit, 703 ... distance measurement unit, 703A ... first arithmetic processing unit, 703B ... first TDC, 703C ... second TDC, 703D ... 1st comparator, 703E ... 2nd comparator, 704 ... Data communication interface, 705: second arithmetic processing unit, 706: drive unit, 80: housing, 801: transmission unit, 81: substrate, 82: wiring, 8. ..Control unit, 85 storage unit, 9 drive unit, 15, 150 automatic guided vehicle, 7A first distance measuring device, 7B second distance measuring device, 15A ... 1st automatic guided vehicle, 15B ... 2nd automatic guided vehicle, GR ... distance measuring device group, 250 ... management device, 300 ... distance measuring device system, U ... control unit , B: battery, T: communication unit, Rs: measurement range, θ: rotation scanning angle range, Δθ: predetermined rotation angle, J: rotation axis, L1 ... output Incident light, L2 ... incident light, OJ ... object to be measured

Claims (8)

  1. 発光部を含んで出射光の回転走査を行う投光部と、 受光に基づいて受光信号を出力する受光部と、 前記出射光の出射と前記受光部による受光とに基づいて計測対象物までの距離を計測する距離計測部と、 を備え、 前記距離計測部は、前記投光部が同一周回における所定回転角度ずれた複数の走査位置において前記出射光を出射したときに得られる前記受光信号の受光タイミングのずれに基づき、前記受光信号は前記計測対象物で反射した光に基づくと判定する、 距離測定装置。 A light-emitting unit that includes a light-emitting unit and performs rotary scanning of the emitted light; a light-receiving unit that outputs a light-receiving signal based on the received light; and 部 a light-receiving unit that outputs a light-receiving signal based on the emitted light and the light-receiving unit. A distance measuring unit that measures a distance, and the distance measuring unit is a light receiving signal that is obtained when the light emitting unit emits the emitted light at a plurality of scanning positions shifted by a predetermined rotation angle in the same revolution. The distance measuring device, wherein it is determined that the light receiving signal is based on the light reflected by the object to be measured, based on a shift in light receiving timing.
  2. 前記距離計測部は、前記受光タイミングのずれに基づく評価値が所定時間差以内であった場合に、前記受光信号は前記計測対象物で反射した光に基づくと判定する、請求項1に記載の距離測定装置。 The distance according to claim 1, wherein the distance measurement unit determines that the light reception signal is based on light reflected by the measurement target object when an evaluation value based on the shift of the light reception timing is within a predetermined time difference. measuring device.
  3. 前記距離計測部は、前記受光信号の強度が第1閾値以上である場合に、前記受光信号が前記計測対象物で反射した光に基づくかを判定する、請求項1または請求項2に記載の距離測定装置。 3. The distance measurement unit according to claim 1, wherein when the intensity of the light reception signal is equal to or greater than a first threshold, the distance measurement unit determines whether the light reception signal is based on light reflected by the measurement target. 4. Distance measuring device.
  4. 前記距離測定部は、前記第1閾値より小さい第2閾値と、前記受光信号の強度との比較に基づいた判定を行う、請求項3に記載の距離測定装置。 The distance measurement device according to claim 3, wherein the distance measurement unit performs the determination based on a comparison between a second threshold smaller than the first threshold and the intensity of the light reception signal.
  5. 前記所定時間差は、下記式に基づいて規定される、請求項2に記載の距離測定装置。 ΔTth=(((V1+V2)×Δtθ+Lerr×2)×2)/c 但し、ΔTth:所定時間差、V1:距離測定装置が搭載される移動体の移動速度、V2:所定値、Δtθ:前記所定回転角度に相当する測定時間間隔、Lerr:距離測定最大誤差、c:光速 The distance measuring device according to claim 2, wherein the predetermined time difference is defined based on the following equation. ΔTth = (((V1 + V2 ) × Δtθ + L err × 2) × 2) / c where,? Tth: predetermined time difference, V1: the distance the moving speed of the moving body measuring device is mounted, V2: a predetermined value, Δtθ: the predetermined rotation Measurement time interval corresponding to angle, L err : maximum error of distance measurement, c: speed of light
  6. 第1距離測定装置と、第2距離測定装置と、を有する距離測定装置群であって、 前記第1距離測定装置および前記第2距離測定装置は、 発光部を含んで出射光の回転走査を行う投光部と、 受光に基づいて受光信号を出力する受光部と、 前記出射光の出射と前記受光部による受光とに基づいて計測対象物までの距離を計測する距離計測部と、 を備え、 前記第1距離測定装置は、請求項1から請求項5のいずれか1項に記載の距離測定装置であり、 
    前記第1距離測定装置による前記回転走査の第1回転速度と、前記第2距離測定装置による前記回転走査の第2回転速度と、は異なる、 距離測定装置群。
    A distance measurement device group including a first distance measurement device and a second distance measurement device, wherein the first distance measurement device and the second distance measurement device include a light emitting unit and perform rotation scanning of emitted light. A light emitting unit that outputs a light receiving signal based on light reception, and a distance measuring unit that measures a distance to a measurement target based on emission of the outgoing light and light reception by the light receiving unit. The first distance measuring device is the distance measuring device according to any one of claims 1 to 5,
    A distance measurement device group, wherein a first rotation speed of the rotation scan by the first distance measurement device is different from a second rotation speed of the rotation scan by the second distance measurement device.
  7. 前記第2距離測定装置の前記距離計測部は、前記投光部が同一周回における所定回転角度ずれた複数の走査位置において前記出射光を出射したときに得られる前記受光信号の受光タイミングのずれに基づき、前記受光信号は前記計測対象物で反射した光に基づくと判定する、請求項6に記載の距離測定装置群。 The distance measuring unit of the second distance measuring device is configured to detect a shift in the light receiving timing of the light receiving signal obtained when the light emitting unit emits the emitted light at a plurality of scanning positions shifted by a predetermined rotation angle in the same rotation. The distance measuring device group according to claim 6, wherein the light receiving signal is determined to be based on the light reflected by the measurement target.
  8. 請求項6または請求項7に記載の距離測定装置群と、管理装置と、を有し、 前記第1回転速度および前記第2回転速度は、前記管理装置からの指令に基づく、距離測定装置システム。 A distance measurement device system, comprising: the distance measurement device group according to claim 6 or 7; and a management device, wherein the first rotation speed and the second rotation speed are based on a command from the management device. .
PCT/JP2019/033542 2018-08-29 2019-08-27 Distance measuring device, distance measuring device group, and distance measuring device system WO2020045445A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-160011 2018-08-29
JP2018160011 2018-08-29

Publications (1)

Publication Number Publication Date
WO2020045445A1 true WO2020045445A1 (en) 2020-03-05

Family

ID=69644354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033542 WO2020045445A1 (en) 2018-08-29 2019-08-27 Distance measuring device, distance measuring device group, and distance measuring device system

Country Status (1)

Country Link
WO (1) WO2020045445A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210270600A1 (en) * 2020-02-27 2021-09-02 Kabushiki Kaisha Toshiba System and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225342A (en) * 2006-02-21 2007-09-06 Toyota Motor Corp Three-dimensional measuring device and autonomously moving device provided with three-dimensional measuring device
JP2008070270A (en) * 2006-09-14 2008-03-27 Hokuyo Automatic Co Range finder
JP2014181993A (en) * 2013-03-19 2014-09-29 Denso Wave Inc Security device
JP2015055488A (en) * 2013-09-10 2015-03-23 株式会社デンソーウェーブ Security device
US9810775B1 (en) * 2017-03-16 2017-11-07 Luminar Technologies, Inc. Q-switched laser for LIDAR system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225342A (en) * 2006-02-21 2007-09-06 Toyota Motor Corp Three-dimensional measuring device and autonomously moving device provided with three-dimensional measuring device
JP2008070270A (en) * 2006-09-14 2008-03-27 Hokuyo Automatic Co Range finder
JP2014181993A (en) * 2013-03-19 2014-09-29 Denso Wave Inc Security device
JP2015055488A (en) * 2013-09-10 2015-03-23 株式会社デンソーウェーブ Security device
US9810775B1 (en) * 2017-03-16 2017-11-07 Luminar Technologies, Inc. Q-switched laser for LIDAR system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210270600A1 (en) * 2020-02-27 2021-09-02 Kabushiki Kaisha Toshiba System and method

Similar Documents

Publication Publication Date Title
US5717484A (en) Position detecting system
US20160170412A1 (en) Autonomous mobile device and method for controlling same
TWI684084B (en) Mobile device
JP2017219502A (en) Object detector, sensing device, and mobile body device
JPWO2019064750A1 (en) Distance measuring device and moving object
JP6464410B2 (en) Obstacle determination device and obstacle determination method
WO2020071465A1 (en) Distance measurement device
JP5765694B2 (en) Ranging method and in-vehicle ranging device
JP2006338580A (en) System and method for controlling position of mobile robot
WO2018173595A1 (en) Movement device
WO2020045445A1 (en) Distance measuring device, distance measuring device group, and distance measuring device system
JP2017026535A (en) Obstacle determination device and obstacle determination method
KR102595870B1 (en) Compact Lidar Sensor
WO2020195333A1 (en) Distance measurement circuit, ranging device, and moving body
KR20180023608A (en) Driving system of automated guided vehicle
JP2017204062A (en) Autonomous conveyance system
JP2017032329A (en) Obstacle determination device, mobile body, and obstacle determination method
WO2018173594A1 (en) Distance measurement device and transport vehicle
US20230135740A1 (en) Distance measurement device, and mounting orientation sensing method and mounting orientation sensing program for same
WO2020045474A1 (en) Sensor unit and mobile body
US20230139369A1 (en) Micro-lidar sensor
WO2019058678A1 (en) Distance measuring device and mobile body provided with same
US20230225580A1 (en) Robot cleaner and robot cleaner control method
WO2019181691A1 (en) Distance measuring device, and moving body
WO2019181692A1 (en) Distance measurement device and moving body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19855621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP