WO2020040584A1 - Molecule sensor and cancer diagnostic system using same - Google Patents

Molecule sensor and cancer diagnostic system using same Download PDF

Info

Publication number
WO2020040584A1
WO2020040584A1 PCT/KR2019/010737 KR2019010737W WO2020040584A1 WO 2020040584 A1 WO2020040584 A1 WO 2020040584A1 KR 2019010737 W KR2019010737 W KR 2019010737W WO 2020040584 A1 WO2020040584 A1 WO 2020040584A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
energy level
cathode
electrons
valence band
Prior art date
Application number
PCT/KR2019/010737
Other languages
French (fr)
Korean (ko)
Inventor
권민상
권위상
카사마야스히코
이명관
인기욱
박남현
강우신
Original Assignee
권민상
권위상
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180117018A external-priority patent/KR20200037595A/en
Application filed by 권민상, 권위상 filed Critical 권민상
Priority to CN201980060107.6A priority Critical patent/CN112689753A/en
Priority claimed from KR1020190103415A external-priority patent/KR102231421B1/en
Publication of WO2020040584A1 publication Critical patent/WO2020040584A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/097Devices for facilitating collection of breath or for directing breath into or through measuring devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • the present invention relates to a molecular sensor that detects the presence, type, and amount of a substance to be detected in units of molecules, and in particular, is proportional to the number of molecules of the substance to be detected (hereinafter referred to as "detectable substance").
  • detecttable substance By designing the energy levels of the cathode and anode in consideration of the energy level of the redox potential of the target material so that a large number of electrons can move from the cathode to the anode, it is possible to precisely detect the target material on a molecular basis.
  • the method further includes a substance (hereinafter, referred to as a "mobile inducing substance”) that assists and induces electron movement from the cathode to the anode according to the type of the detection target material to be detected, and the electrons in the valence band are conducted as conduction bands.
  • a substance hereinafter, referred to as a "mobile inducing substance”
  • an excitation energy supply unit for supplying excitation energy to excite (excited atoms)
  • fullerene fullerene salt, or fullerene containing ions (hereinafter referred to as “ion-containing fullerene”) as a mobile inducer
  • ion-containing fullerene fullerene containing ions
  • the present invention is to use the molecular sensor described above to detect cancer, early detection of cancer, to prolong life and to pursue a healthy life.
  • ultra-precision sensors capable of detecting trace amounts of materials is continuously used, which is used in the fields of ultra-precision diagnostic medicine, ultra-precision sensing, ultra-precision control, and bio and space science.
  • cantilever type precision sensor for detecting a substance to be detected by detecting mechanical distortion caused by adsorption of the substance to be detected
  • a precision sensor using an asymmetric field ion transport analysis method that detects a substance to be detected by passing a substance to be detected inside a fluctuating electric field so that only molecules having a specific mass area ratio reach the detector;
  • An accurate sensor using a gene sensing method that detects a substance to be detected using a genetically modified mouse receptor is an example of such an ultra precision sensor.
  • An object of the present invention is to solve the conventional problems as described above, in particular, by using the energy level of the redox potential to detect the target material in molecular units of a new concept that can accurately detect the ppt level To provide a "molecular sensor".
  • the detection target material is detected by using a mobile induction material (anode-side movement induction material, cathode-side movement induction material) having energy levels of various redox potentials, thereby widening the detection object and making more accurate detection.
  • a mobile induction material anode-side movement induction material, cathode-side movement induction material
  • the present invention is a molecular sensor capable of precisely detecting a target substance on a molecular basis by using the energy level of the redox potential, in particular, by analyzing the energy level of the redox potential of the substance to be detected,
  • the energy levels of the negative electrode material and the positive electrode material are designed and configured such that electrons are transferred from the negative electrode to the positive electrode through the electrons donated by the detection target material.
  • the energy level is designed using one or more moving inducing materials that induce electron transfer from the cathode to the anode, and the lumo of the conduction band in the Highest Occupied Molecular Orbital (HOMO).
  • HOMO Highest Occupied Molecular Orbital
  • LMO Lowest Unoccupied Molecular Orbital
  • excitation energy light energy, heat energy, etc.
  • the mobile inducer is characterized by extending the detection range and improving the measurement sensitivity by constituting the mobile inducer with at least one of fullerene, fullerene salt, ion-containing fullerene, pigment, or complex of ion-containing fullerene and pigment.
  • the fullerene is any one of C60, C70, C72, C78, C82, C90, C94, C96, and the ions contained in the iontofullerene are lithium, sodium, potassium, cesium, magnesium, calcium, Or strontium, and the pigment is polythiophene such as poly-3-hexyl thiophene (P3HT), poly p-phenylene, poly p-phenylene vinylene, polyaniline, polypyrrole, PEDOT , P3OT, POPT, MDMO-PPV, MEH-PPV and the like, characterized in that at least one of a polymer or a derivative thereof.
  • P3HT poly-3-hexyl thiophene
  • P3HT poly p-phenylene
  • poly p-phenylene vinylene polyaniline
  • polypyrrole PEDOT , P3OT, POPT
  • MDMO-PPV MDMO-PPV
  • MEH-PPV MEH-PPV and the like
  • the "molecular sensor" of the present invention has the effect of accurately detecting the molecular units at the ppt level by detecting the detection target substance using the energy level of the redox potential.
  • the energy level using a mobile induction material, it is effective to widen the detection range, increase selectivity, and increase accuracy.
  • the energy level of the redox potential is very low and the quantum yield is high by using ion-containing fullerenes and pigments to design the energy level, thereby further extending the detection range and accuracy.
  • the present invention provides a ppt level of precision detection technology to solve the detection problems that could not be solved by the existing technologies in the field of ultra-precision diagnostic medicine, ultra-precision sensing, ultra-precision control and bio, aerospace sciences to make a leap forward in the field. It is effective to tow.
  • it can be configured to detect early cancers (substances caused by cancer) present in trace amounts in the breath, urine, blood and saliva, and to diagnose early cancer, Can be configured to detect tuberculosis early, to detect the bad breath (materials caused by bad breath) to determine the cause of bad breath, stress caused substances It is effective in detecting the stress level by detecting (substances caused by stress).
  • it can be configured to detect a small amount of deadly poison gas such as sarin gas, dioxin and the like to pre-alarm, as well as to configure a variety of precision sensors in various fields.
  • 3 is a view showing another energy level design of the "molecular sensor" of the present invention.
  • FIG. 6 is a view showing another energy level design of the "molecular sensor" of the present invention.
  • FIG. 10 is a view showing another energy level design of the "molecular sensor" of the present invention.
  • 13 is a view showing another energy level design of the "molecular sensor" of the present invention.
  • 15 is a block diagram showing a system configuration of the present invention.
  • 16 is a view showing the configuration of the sensor electrode unit of the present invention.
  • 17 is a view showing an energy level design according to an embodiment of the present invention.
  • FIG. 18 is a view showing a configuration of a sensor electrode unit according to an embodiment of the present invention.
  • FIG. 19 is a view showing another configuration of a sensor electrode unit according to an embodiment of the present invention.
  • FIG. 20 is a view showing another configuration of a sensor electrode unit according to an embodiment of the present invention.
  • 21A is a conceptual diagram showing an ion containing fullerene
  • Fig. 21B is a conceptual diagram showing the structure of a polymer in which an iontophorfullerene and a dye are bonded;
  • 21C is a conceptual diagram showing an excited state of electrons by light energy
  • 22 is a conceptual diagram showing the electrophoresis of fullerene-pigment polymer on the positive electrode
  • Fig. 23 shows the energy level of electrons.
  • 24 is a diagram conceptually showing a circuit configuration of a potentiostat
  • 25 is a diagram showing an example of a configuration of a measuring electrode
  • 26 is a graph illustrating interval enlargement of a CV graph
  • 27 is a graph showing an example of quantum yield according to wavelength.
  • 29 and 28 are views for explaining a second embodiment of the present invention.
  • 33 to 38 are views for explaining a fourth embodiment of the present invention.
  • 39 and 40 are views for explaining a fifth embodiment of the present invention.
  • 41 to 45 are views for explaining a sixth embodiment of the present invention.
  • 47 and 48 are views for explaining an eighth embodiment of the present invention.
  • 49 is a view for explaining a ninth embodiment of the present invention.
  • the first embodiment of the present invention relates to a molecular sensor and can detect cancer or other molecules such as explosives using the energy of the molecular sensor.
  • the present invention is based on cancer detection, and the following configurations 1 to 7 and other configurations are utilized for designing the energy level of the sensor electrode of the cancer diagnostic sensor.
  • the negative electrode configured to have a redox potential higher than the energy level of the valence band of the detection target material to be detected;
  • an anode configured to have a redox potential lower than the energy level of the valence band of the detection target material.
  • the energy level of the cathode is designed to be higher than that of the detection target material, and the energy level of the anode is designed to be lower than that of the detection target material.
  • the electrons can be moved to the anode.
  • the relationship between the energy level c of the valence band of the positive electrode, the energy level e of the valence band of the detection target material, and the energy level a of the valence band of the negative electrode is as follows.
  • the selectivity for the substance to be detected increases as the energy level difference between the cathode and the anode becomes smaller.
  • the technique according to the configuration 1 of the present invention is preferably used when detecting a substance having a radical in a natural state such as nitrogen oxides (NOx) or hydrogen peroxide.
  • a substance having a radical in a natural state such as nitrogen oxides (NOx) or hydrogen peroxide.
  • the negative electrode configured to have a redox potential higher than the energy level of the valence band of the detection target material to be detected
  • An anode configured to have a redox potential lower than the energy level of the conduction band of the detection target material
  • an excitation energy supply unit for supplying excitation energy so that electrons in the valence band of the detection target material can be excited with a conduction band, when the detection target material is introduced between the cathode and the anode.
  • the excitation energy supplied from the supply unit excites the electrons in the valence band of the target material into the conduction band, the electrons excited in the conduction band move to the anode, and are holes in the valence band of the material to be detected. It is characterized by the technical configuration that the energy level is set so that the process of moving is accomplished.
  • excitation energy for example, light
  • excitation energy for example, light
  • the electrons in the band are excited by the conduction band, and the electrons excited in the band are transferred to the anode having an energy level lower than the energy level of the band.
  • the electrons are moved from the cathode to the positive holes generated in the valence band of the detection target material, and the current is proportional to the number of molecules of the detection target material by repeating the above process as long as the excitation energy is supplied. Is to flow.
  • the electrons in the valence band of the detection target material cannot move to the anode. It is excited to conduct the excited electrons to the anode by using the energy level of the excited electrons.
  • a band filled with electrons is called a valence band, and its highest trajectory is called a HOMO.
  • the band in which the electron is empty is called a conduction band, the lowest orbit is called LUMO, and the energy between the homo and lumo is called bandgap energy (Eg).
  • Eg bandgap energy
  • the configuration 2 of the present invention supplies energy above the bandgap energy through an excitation energy supply unit to excite electrons in the valence band of the detection target to a conduction band to raise the energy level to the anode. Is to make the electron transfer.
  • the excitation energy supply unit is characterized in that it is composed of any one or more of an optical energy supply unit, an electromagnetic wave energy supply unit, or a thermal energy supply unit for supplying energy above the band gap energy between the valence band and the conduction band.
  • the excitation energy supply unit configures excitation energy using light energy, electromagnetic wave energy, or thermal energy, and in some cases, excitation energy may be configured by using two or more energy sources together. For example, it may be configured to supply a predetermined amount of excitation energy with light energy and to supply a predetermined amount of excitation energy with thermal energy. This configuration is intended to be used when one energy source cannot supply excitation energy of the desired size.
  • electromagnetic wave includes both heat and light, but is used for convenience of description.
  • the light irradiated by the optical energy supply unit is characterized by consisting of one or more lights having different wavelengths and brightness.
  • the light source irradiated by the light energy supply unit is characterized in that the LED light source having a different wavelength, or a laser light source having a different wavelength, a halogen lamp, a mercury lamp, or any one of xenon lamp.
  • Such an optical energy supply unit is for supplying different bandgap energy by designing an amount of excitation energy by wavelength or brightness.
  • the band gap energy can be supplied to all the mobile induction materials by using one light separately. That is, it can be configured to supply excitation energy to a plurality of moving induction materials by using one light source that supplies energy above the largest bandgap energy.
  • the electromagnetic wave supplied from the electromagnetic wave energy supply unit is characterized by consisting of one or more electromagnetic waves having different wavelengths and intensities.
  • the electromagnetic wave energy supply unit is for supplying different bandgap energy by designing the amount of excitation energy by wavelength or intensity.
  • electromagnetic waves such as 1.0 GHz, 1.2 GHz, and 2 GHz may be used.
  • the heat irradiated by the heat energy supply unit is characterized by consisting of one or more heat having different temperatures and intensities.
  • the thermal energy supply unit is designed to supply different bandgap energy by designing an amount of excitation energy by temperature and intensity.
  • it can be comprised so that heat, such as 1,000 degreeC heat and 1,500 degreeC heat, may be supplied.
  • the anode or cathode is preferably made of a transparent electrode.
  • a transparent electrode is intended to allow light emitted from the excitation energy supply to be transmitted through the detection target material.
  • the transparent electrode is transparent conducting oxide (TCO), F-doped [SnO2] fluorine-doped tin oxide, Transparent electrodes such as ITO (Indium tin oxide), AZO (Al-doped ZnO: aluminum doped zinc oxide), GZO (Ga-doped ZnO: galvanized doped zinc oxide) may be used.
  • the negative electrode configured to have a redox potential higher than the energy level of the valence band of the detection target material to be detected
  • An anode configured to have a redox potential higher than the energy level of the valence band of the detection target material
  • the anode side is configured such that the energy level of the redox potential of the valence band is lower than that of the valence band of the substance to be detected, and that the energy level of the redox potential of the conduction band has a higher energy level than that of the redox level of the anode.
  • an excitation energy supply unit for supplying excitation energy to excite electrons in the valence band of the anode-side movement inducing material to a conduction band, when the detection target material is introduced between the cathode and the anode. Electrons in the valence band of the anode-side induction material are excited as conduction bands by the excitation energy supplied from an excitation energy supply unit, electrons excited in the conduction band of the cathode-side transport induction material are moved to the anode, and the anode-side movement is performed.
  • the technical configuration is characterized in that the energy level is set so that the electrons of the detection target material move to the holes generated in the valence band of the inductive material, and the electrons move from the cathode to the holes generated in the valence band of the detection target material. do.
  • Configuration 3 of the present invention configured as described above is characterized in that an electron transfer path is designed by further configuring an anode-side movement inducing material between the detection target material and the anode.
  • an electron transport path is designed through the electron donated from the detection target material by further configuring an anode-side movement induction material having an energy level lower than the energy level of the valence band of the detection target material.
  • the anode-side movement inducing material or the cathode-side movement inducing material is characterized in that it is composed of any one or more of a fullerene, a fullerene salt, ion-containing fullerenes, pigments, or polymers of ion-containing fullerenes and pigments.
  • the fullerene is characterized in that any one of C60, C70, C72, C78, C82, C90, C94, C96.
  • the ion contained in the fullerene is any one of lithium, sodium, potassium, cesium, magnesium, calcium, or strontium.
  • the pigment is polythiophene such as poly-3-hexyl thiophene (P3HT), poly p-phenylene, poly p-phenylene vinylene, polyaniline, polypyrrole, PEDOT, P3OT, POPT, MDMO-PPV, MEH-PPV It is characterized by one or more of a high molecular polymer or derivatives thereof.
  • P3HT poly-3-hexyl thiophene
  • P3HT poly p-phenylene
  • poly p-phenylene vinylene polyaniline
  • polypyrrole PEDOT, P3OT, POPT
  • MDMO-PPV MDMO-PPV
  • MEH-PPV MEH-PPV It is characterized by one or more of a high molecular polymer or derivatives thereof.
  • FIG. 20A shows the inclusion of ions in C60 fullerene
  • FIG. 20B shows the binding of ionic inclusion fullerene and a pigment
  • 20c is a conceptual diagram showing excitation of electrons by light energy.
  • Lithium-included fullerene has an advantage that the energy level of the redox potential of the valence band is very low, thereby broadening the range of a target to be detected.
  • lithium-encapsulated fullerene has a high quantum yield (IPCE: Incident Photon to Current Efficiency) has the advantage of improving the measurement sensitivity.
  • the quantum yield indicates the ratio of the number of molecules and the number of photons absorbed, which actually caused a chemical change in the photochemical reaction.
  • the anode-side movement inducing material, or cathode-side movement inducing material is characterized in that it is included in the positive electrode, or the negative electrode by using electrophoresis (electrophoresis).
  • FIG. 21 is a diagram showing the electrophoresis of the fullerene-pigment polymer 122a on the positive electrode 121a.
  • the anode-side movement inducing material or cathode-side movement inducing material may be a material having energy levels of various redox potentials, such as [TiO2], [SnO2], by using such a mobile induction material more precise and accurate energy level Can be designed.
  • Configuration 4 according to the technical idea of the "molecular sensor" of the present invention, as shown in Figure 4, the negative electrode configured to have a redox potential higher than the energy level of the valence band of the detection target material to be detected; An anode configured to have a redox potential higher than the energy level of the valence band of the detection target material; Anode-side shifting where the energy level of the redox potential of the valence band is lower than the energy level of the conduction band of the material to be detected and the energy level of the redox potential of the conduction band has a higher energy level than that of the redox level of the anode.
  • excitation energy for supplying excitation energy to excite the electrons in the valence band of the anode-side moving induction material to the conduction band excitation energy for supplying excitation energy for electrons in the valence band of the detection target material to the conduction band.
  • the detection target material When the detection target material is introduced between the cathode and the anode, first, the electrons in the valence band of the anode-side moving induction material by the excitation energy supplied from the excitation energy supply unit Electrons excited by the conduction band of the anode-side moving inducing material move to the anode, and second, electrons in the valence band of the detection target material are excited by the excitation energy supplied from the excitation energy supply unit, Electrons excited by the conduction band of the detection target material are holes generated in the valence band of the anode-side transfer inducing material. And, third, an energy level is set so that a process of moving electrons from the cathode to the holes formed in the valence band of the detection target material is made.
  • the molecular sensor in designing the electron migration path according to the inflow of the detection target material, is configured by exciting the electrons in the valence band of the detection target material and the anode-side movement induction material with a conduction band. There is a characteristic.
  • the negative electrode configured to have a redox potential lower than the energy level of the valence band of the detection target material to be detected
  • An anode configured to have a redox potential lower than the energy level of the valence band of the detection target material
  • the cathode side is configured such that the energy level of the redox potential of the valence band is lower than the energy level of the redox potential of the cathode, and that the energy level of the redox potential of the conduction band has a higher energy level than that of the valence band of the detection target material.
  • an excitation energy supply unit for supplying excitation energy to excite the electrons in the valence band of the cathode-side movement inducing material to the conduction band, when the detection target material is introduced between the cathode and the anode.
  • the configuration 5 of the present invention configured as described above is characterized in that when the energy level of the detection target material is higher than that of the cathode, smooth electron transfer can be performed by the cathode-side movement inducing substance.
  • the configuration 6, as shown in Figure 6, the negative electrode configured to have a redox potential lower than the energy level of the valence band of the detection target material to be detected;
  • An anode configured to have a redox potential lower than the energy level of the conduction band of the detection target material;
  • the cathode side is configured such that the energy level of the redox potential of the valence band is lower than the energy level of the redox potential of the cathode, and that the energy level of the redox potential of the conduction band has a higher energy level than that of the valence band of the detection target material.
  • the electrons in the valence band of the detection target material is excited by the excitation energy supplied from the excitation energy supply unit, Electrons excited by the conduction band of the detection target material move to the anode, and second, electrons in the valence band of the cathode-side moving induction material are excited by the excitation energy supplied from the excitation energy supply unit, and the cathode side
  • the electrons excited by the conduction band of the mobile induction material move to the hole formed in the valence band of the detection target material.
  • the process of the electron transfer from the cathode to the electron hole occurs in the valence band of the cathode-side movement inducer done so that the energy level is set, characterized in that on the technical configuration.
  • the molecular sensor in designing an electron migration path according to the inflow of the detection target material, is configured by exciting the electrons in the valence band of the detection target material and the cathode-side moving induction material with a conduction band. There is a characteristic.
  • a configuration 7 includes: a cathode configured to have a redox potential lower than the energy level of the valence band of a detection target material to be detected; An anode configured to have a redox potential higher than the energy level of the valence band of the detection target material; The anode side is configured such that the energy level of the redox potential of the valence band is lower than the energy level of the valence band of the substance to be detected, and the energy level of the redox potential of the conduction band has a higher energy level than the energy level of the redox level of the anode.
  • Mobile derivatives The cathode side is configured such that the energy level of the redox potential of the valence band is lower than the energy level of the redox potential of the cathode, and that the energy level of the redox potential of the conduction band has a higher energy level than that of the valence band of the detection target material.
  • the electrons in the valence band of the positive electrode-side moving induction material by the excitation energy supplied from the excitation energy supply unit
  • Electrons excited by the conduction band and excited by the conduction band of the anode-side transport inducing material move to the anode
  • electrons of the detection target material move to the holes generated in the valence band of the anode-side transport inducing material.
  • the electrons in the valence band of the cathode-side mobile induction material are excited by the excitation energy supplied from the excitation energy supply unit.
  • the technical configuration is characterized by the fact that the energy level is set so that the process of movement takes place.
  • Configuration 7 of the present invention configured as described above is characterized by configuring the molecular sensor by designing the electron transfer path according to the inflow of the detection target material using the anode-side induction material and the cathode-side movement induction material.
  • Configuration 8 according to the technical idea of the "molecular sensor" of the present invention, as shown in Figure 8, the negative electrode configured to have a redox potential lower than the energy level of the valence band of the detection target material to be detected; An anode configured to have a redox potential higher than the energy level of the valence band of the detection target material; Anode-side shifting where the energy level of the redox potential of the valence band is lower than the energy level of the conduction band of the material to be detected and the energy level of the redox potential of the conduction band has a higher energy level than that of the redox level of the anode.
  • the cathode side is configured such that the energy level of the redox potential of the valence band is lower than the energy level of the redox potential of the cathode, and that the energy level of the redox potential of the conduction band has a higher energy level than that of the valence band of the detection target material.
  • Mobile derivatives And supplying excitation energy so that the electrons in the valence band of the anode-side mobile induction material can be excited with a conduction band, and supplying excitation energy so that electrons in the valence band of the cathode-side moving inductive material can be excited with a conduction band.
  • an excitation energy supply unit for supplying excitation energy so that electrons in the valence band of the detection target material can be excited with a conduction band.
  • the electrons in the magnetic field are excited by the conduction band, the electrons excited by the conduction band of the cathode-side transport inducing material move to the hole formed in the valence band of the detection target material, and fourth, the electrons generated in the valence band of the cathode-side transport inducing material It is characterized by the technical configuration that the energy level is set so that the process of electrons move from the cathode to the positive hole.
  • the anode-side movement induction material and the cathode-side movement induction material in designing the electron transfer path according to the inflow of the detection target material using the anode-side induction material and the cathode-side movement induction material, the anode-side movement induction material and the cathode-side movement induction material And constituting a molecular sensor by exciting the detection target material.
  • the anode-side movement inducing material for inducing the movement of the donated electrons to the anode is characterized in that it is composed of one or more.
  • the first anode-side movement induction for receiving electrons from the detection target material is shown.
  • the energy level of the conduction band of the material is set to be higher than the energy level of the valence band of the next anode-side inductive material, and the energy level of the conduction band of the anode-side mobile inductive material that contributes electrons to the anode is the energy level of the anode.
  • the energy level of the anode-side mobile induction material in the intermediate stage is set higher than the energy level of the valence band of the anode-side mobile inductive material in the next stage. It is characterized by setting the level below the energy level of the conduction band of the anode-side mobile induction material in the previous stage.
  • Such a configuration enables the detection of a detection target material by using a plurality of anode-side moving induction materials, and enables a more accurate energy level design for the detection target material.
  • the cathode-side movement inducing material for inducing the movement of the electrons donated from the cathode to the detection target material is characterized in that it is composed of one or more.
  • the energy level of the conduction band of the first cathode-side movement inducing substance that receives electrons from the cathode is The energy level of the conduction band of the cathode-side moving inductive material which is higher than the energy level of the valence band of the cathode-side moving induction material and donates electrons to the holes generated in the valence band of the detection material is determined by The energy level of the cathode-side mobile induction materials in the middle stage is set higher than the energy level of the valence band, and the energy level of the conduction band is set higher than that of the valence band of the cathode-side mobile induction material in the next stage. In other words, the energy level of the valence band is set lower than that of the conduction band of the cathode-side mobile inductive material in the previous stage. It shall be.
  • This configuration allows the detection of the detection target material by using a plurality of cathode-side moving induction materials, which allows for more accurate energy level design for the detection target material.
  • the detection unit 110 for detecting the flow of electrons according to the detection target material characterized in that it further comprises a.
  • the detection unit 110 detects the flow of electrons moving from the cathode to the anode and calculates the amount, as well as whether or not the substance to be detected is present. That is, the current and the voltage between the positive electrode and the negative electrode are detected to detect whether or not the detection target material flows in and its amount.
  • the detection unit detects one or more of Cyclic Voltammetry (CV), Chrono Amperometry (CA), Chrono Potentiommetry (CP), Stripping Voltammetry (SV), or Linear Sweep Voltammetry (LSV) of a target substance. Detecting the presence and amount of the substance.
  • CV Cyclic Voltammetry
  • CA Chrono Amperometry
  • CP Chrono Potentiommetry
  • SV Stripping Voltammetry
  • LSV Linear Sweep Voltammetry
  • the presence or the amount of the detection target material is detected by measuring the CV, or CA, or CP, or SV, or LSV of the detection target material using a potentiostat. do.
  • FIG. 23 is a circuit diagram showing a simplified configuration of a potentiostat.
  • the detection target material is detected through a working electrode (W), a reference electrode (RE), and a counter electrode (CE). can do. That is, after constructing the working electrode (W) using a moving induction material (anode-side moving induction material, cathode side moving induction material), after obtaining the CV, CA, CP, SV, LSV, etc. By analyzing this, it is possible to precisely determine the presence and amount of the detection target material.
  • a moving induction material anode-side moving induction material, cathode side moving induction material
  • the detection unit is characterized by detecting the presence and amount of the detection target material by detecting the quantum yield (IPCE: Incident Photon to Current Efficiency) according to the wavelength of the light source supplied to the excitation energy.
  • IPCE Incident Photon to Current Efficiency
  • FIG. 26 shows the quantum yield (IPCE) according to the wavelength of the light source.
  • IPCE quantum yield
  • the quantum yield according to the wavelength varies depending on the material. Therefore, it is possible to know the presence or absence of the detection target material by using the characteristics of the quantum yield curvature.
  • the quantum yield graph of Fig. 26A has a maximum at about 440 nm, a second peak value at 560 nm, and a third order peak value at 620 nm, and this characteristic (peak value, wavelength, slope, peak interval, etc.). ) Can be determined whether or not the substance to be detected.
  • the display unit 160 for displaying information on the detection target material characterized in that it further comprises a configuration.
  • the display unit 160 preferably includes a visual display unit 161 that visually displays information on the flow of electrons according to the detection of a detection target material, and an auditory display unit 162 that is acoustically displayed.
  • the communication unit 170 for transmitting information on the detection of the detection target material to the outside further comprises.
  • the data storage unit 140 for storing information on the detection of the detection target material further comprises.
  • reference numeral 150 denotes a controller
  • 180 denotes a power supply unit for supplying operating power to each component.
  • an FTO (F-doped [SnO2]) transparent electrode is used as the anode
  • platinum (Pt) is used as the cathode
  • titanium dioxide (TiO2) and lithium are used as the anode-side inductive materials.
  • containing-fullerene hexafluorotitanate phosphate salt - one in toluene ([Li + @ C60] [ PF6]) to the (material arising as a cause of cancer) configure the sensor electrode unit, and the memorization of material through the sensor electrode used ( Toluene) will be described as an example.
  • the present embodiment will be described by further comprising an excitation energy supply unit for supplying excitation energy to the anode-side movement inducing material.
  • the excitation energy supply unit will be described with an example of supplying light energy.
  • the detection unit for detecting the flow of electrons from the cathode to the anode when the detection material (toluene) is introduced into the sensor electrode portion, and the detection information (detection process, detection conditions, detection results, etc.)
  • a display unit for displaying, a data storage unit for storing the same, and a communication unit for exchanging information on the detection with an external device will be described as an example.
  • the detection of toluene contained in air will be described as an example. Therefore, the sensor electrode unit will be described with an example in which a structure in which air flows between the cathode and the anode is configured. Air (exhalation) containing the detection target material is supplied to the sensor electrode unit using a pumping device.
  • platinum (Pt) whose energy level is -5.93 eV and the conduction band is -5.12 eV is used as the cathode.
  • toluene which is a detection target material
  • contacts the cathode made of platinum (Pt) it has an energy level structure in which electrons can move from the cathode as holes generated in the valence band of toluene, which is a detection target, due to the difference in energy levels.
  • toluene which is a detection target material to be detected, has a very low energy level of -6.55 eV in the valence band, and thus an anode-side inductive material having a lower energy level is required.
  • [Li + @ C60] [PF6 ⁇ ] having an energy level of -7.70 eV in the valence band is used as the anode-side first moving inducer.
  • the energy level of the valence band of [Li + @ C60] [PF6 ⁇ ] used as the anode-side first moving inducer is lower than the energy level of the valence band of toluene as the detection target material at ⁇ 6.55 eV. the electrons that [Li + @ C60] [PF6 -] will have the energy level structure that can move electron hole generated in the valence band.
  • Titanium dioxide has -6.21eV energy level in valence band and -3.21eV energy level in conduction band. do. Then, the electron excited in the conduction band of [TiO2] has an energy level structure that can move to the anode.
  • the excitation of the light source need 2.8eV or more power with a wavelength of 457nm
  • the [TiO2] cheukje anode 2 move inducer has a 413nm
  • a power of 3.0 eV or more with a light source having a wavelength is required. Therefore, the light energy supplied from the excitation energy supply unit uses a light source that satisfies the above conditions. For example, a halogen lamp that meets the above conditions can be used.
  • FIG. 17 illustrates the energy level and the corresponding material designed through the above process, and as shown in the drawing, when toluene as the detection target material is introduced, electrons are moved from the cathode to the anode through two excitation processes according to the energy level. It is designed to move.
  • the cathode 121 and the cathode 124 are mounted inside the case 125, and operation power is supplied to the anode 121 and the cathode 124 through the power supply unit 180.
  • the sensor 110 is connected to the detector 110 so as to detect a current flowing between the anode 121 and the cathode 124.
  • the case 125 is formed of a transparent material (eg, glass, quartz, etc.) on the surface on which the anode 121, which is a transparent electrode, is mounted, and light supplied from the light source 131, which is the excitation energy supply unit 130. It is comprised so that it may irradiate to the positive electrode 121 which is this transparent electrode.
  • a transparent material eg, glass, quartz, etc.
  • the case 125 may be configured such that a light source irradiated from the light source 131 is directly irradiated to the anode 121 by cutting a portion where the anode is mounted.
  • reference numeral 122a denotes an anode-side first moving inducer and 122b denotes an anode-side second movement inducing substance, respectively, and reference numeral 1 denotes air (exhalation) containing toluene as a detection target substance. Indicates.
  • the air (exhalation) 1 passes through the inside of the sensor electrode part 120 by a pump (not shown) located at the rear of the sensor electrode part 120, and a detailed description thereof will be omitted.
  • the light source 131 of the excitation energy supply unit 130 is irradiated to the sensor electrode unit 120, and the detection unit 110 is connected to the sensor electrode unit 120. Thereafter, the detection unit 110, the excitation energy supply unit 130, the data storage unit 140, the display unit 160, and the communication unit 170 are connected to the control unit 150 to detect the system according to the present embodiment.
  • Configure The power supply unit 180 supplies operating power to each component.
  • the controller 150 is configured as a microprocessor or a computer system
  • the data storage 140 is configured as an internal memory of the controller 150 or an external memory controlled by the controller 150. desirable.
  • the data storage unit 140 stores a detection result of the detection target material and a data table indicating a correlation between the amount of detection target material and the amount of current.
  • the light energy irradiated from the light source 131 is [Li + @ C60] [where the anode-side first moving inducer 122a is used. PF6 ⁇ ] and [TiO2], the anode-side second moving inducer 122b, supply excitation energy.
  • the electrons in the valence band of [TiO2], which is the anode-side second moving induction material, are excited with a conduction band, and holes are generated in the valence band of [TiO2].
  • the energy level of electrons excited by the conduction band of [TiO2] is -3.21 eV, which is higher than the energy level of -4.85 eV, which is the valence band of the FTO, which is the anode, and the electrons excited by the conduction band move to the FTO, which is the anode.
  • the electrons in the valence band of the anode-side first moving inducer [Li + @ C60] [PF6-] are excited to the conduction band, and the [Li + @ C60] [PF6-] A hole is generated in the valence band of.
  • the energy level of electrons excited by the conduction band of [Li + @ C60] [PF6-] is -4.90 eV, which is higher than the energy level of -6.21 eV, which is the valence band of [TiO2], which is the anode-side second moving inducer.
  • the excited electrons move to the hole formed in the valence band of [TiO2].
  • the detector 110 detects a current (movement of electrons) flowing between the cathode and the anode.
  • the controller 150 detects whether or not current flows through the detection unit 110 to determine whether or not toluene as a detection target material is present, and determines the amount of toluene as a detection target material from the amount of current. . That is, the amount of toluene introduced is calculated by comparing the detected current amount with the data table indicating the relationship between the amount of the target substance stored in the data storage unit and the current amount.
  • the controller 150 stores the information on the detection (detection process, detection condition, detection result, etc.) in the data storage unit 140, is displayed through the display unit 160, and through the communication unit 170. By exchanging with an external device, such a process is repeatedly performed to continuously detect a detection target material.
  • the data indicating the amount of toluene detected may be configured to diagnose the degree of cancer by referring to a data table indicating the amount of toluene and the degree of cancer progression.
  • the precision of the lung cancer sensor is described as follows.
  • the number of molecules in the expiration of about 500cc is about 1.19 ⁇ 10 22 .
  • the number of molecules contained in 1 ppt of aerobic gas of 500 cc is
  • the charge amount is about 19pA.
  • the detection unit 110 for detecting the charge amount in the nano-ampere (nA) or pico-ampere (pA) unit is well known, its detailed description is omitted.
  • fullerene and lithium ion-encapsulated fullerene constituting a mobile induction material is about 1nm in size including an electron cloud, the lithium ion containing fullerene and The supramolecular molecule consists of pigments of about 2 nm in size.
  • the 500cc unit contains 1ppt of memorizing substance, and the mobile inducing substance is composed of ultra-molecules (about 2 nm) composed of lithium ion containing fullerene and pigment, the size of the electrode plate to react simultaneously with the memorizing substance is A size of about (0.22 mm ⁇ 0.22 mm) is sufficient.
  • the positive electrode (or negative electrode) may be made of a smaller electrode plate.
  • a lung cancer sensor having a precision of ppt level or more can be configured by allowing electrons in proportion to the number of molecules of the memorandous substance to move and directly detecting the number of moved electrons.
  • the detection of the detection target material using two anode-side movement inducing materials is not limited to this. That is, as shown in Figs. 1 to 14, the molecular sensor of the present invention is constructed without a moving inducing substance or by using one anode-side inducing substance or one cathode side inducing substance. Or by constructing the molecular sensor of the present invention using a plurality of anode side movement inducing materials or a plurality of cathode side movement inducing materials, or as many anode side movement inducing materials as required and as many cathode side movements as necessary.
  • Fig. 16 is a diagram showing an example of the configuration of the sensor electrode part using both the anode side movement inducing material 122 and the cathode side movement inducing material 123.
  • the light source is supplied with an excitation energy supply unit, and the light source is limited to one, which has been described as an example.
  • the technical spirit of the present invention is not limited thereto. That is, the excitation energy supply unit may be configured using several different light sources, and it may be configured to supply excitation energy using different energy sources.
  • the detection of the detection target material contained in the air has been described as an example, but the technical spirit of the present invention is not limited thereto. In other words, it can be configured to detect the detection target material contained in the liquid.
  • the present invention can be configured to be configured to contain liquids (blood, urine, saliva, other liquids, etc.) or to temporarily stay, rather than to allow air to pass. Reveal.
  • the detection of only one detection target substance has been described as an example, but the technical spirit of the present invention is not limited thereto.
  • it can be configured to detect a plurality of detection target material.
  • it can be configured to detect two or more detection target materials at the same time by using a plurality of anode-side inducing substances, a plurality of cathode-side inducing substances and a plurality of excitation energy supply units.
  • the technical idea of the present invention has been described with the example of detecting toluene, which is a cancerous substance, but the technical idea of the present invention is not limited thereto. That is, it can be configured to detect tuberculosis-related substances to diagnose tuberculosis early, to detect the cause of bad breath by detecting bad breathing substance), and to detect stress levels by detecting stress-causing substances. It can be configured to detect poisonous gas such as sarin gas, dioxin and the like, as well as the molecular sensor according to the present invention can be configured within the scope of the technical idea of the present invention without limiting the detection target material. Put it.
  • potentiostat is used to measure CV, measure CA, measure CP, measure SV, measure LSV, etc., to detect a substance to be detected as well as to measure the amount thereof.
  • [TiO2] and [Li + @ C60] [PF6-] are moved to the FTO transparent electrode to form the working electrode W, and the counter electrode is formed of the platinum electrode Pt.
  • CE a reference electrode (RE) made of silver chloride electrode (AgCl), mounted on a quartz glass test tube, and the target to be detected was placed in an electrolyte solution (eg, acetonitrile) and subjected to CV measurement. The presence and amount of can be measured.
  • 25 is an enlarged graph of a portion of a CV curve, and shows a response according to energy level design of a substance ((curve) curve) and a substance ((curve) curve) to be detected.
  • excitation energy when "a” is periodically switched on and off of light (excitation energy), excitation occurs at the anode-side induction material due to the excitation energy of light, resulting in a large amount of current (light irradiation).
  • the detection target material can be specified by using quantum yield (IPCE) according to the wavelength of the light source supplied with excitation energy as a feature.
  • IPCE quantum yield
  • FIGS. 28 and 29 the present invention is referred to FIGS. 28 and 29 and the drawings of the molecular sensor.
  • the cancer sensor using the energy level according to the present invention further includes a detection unit 110 for detecting the flow of electrons according to the dark matter, as shown in FIG. 15.
  • the detection unit 110 detects the flow of electrons moving from the cathode to the anode and calculates the amount, as well as whether the memorandous material is present. That is, the current and the voltage between the positive electrode and the negative electrode are detected to detect whether the memorandum is introduced and the amount thereof is detected.
  • the display unit 160 for indicating the information on the flow of electrons according to the memorizing material; it characterized in that it further comprises a configuration.
  • the display unit 160 preferably includes a visual display unit 161 that visually displays information on the detection of a memorandum and an auditory display unit 162 that is auditory.
  • the communication unit 170 for transmitting the information on the memorizing substance detection to the outside further comprises.
  • the communication unit 170, the wired communication unit 171 for transmitting the information on the memorizing substance detection to a wire (dedicated line, dedicated network, Internet, etc.), and the information on the memorizing substance detection wireless (wireless communication, mobile communication, Short-range wireless communication, Wi-Fi, Bluetooth, etc.) is preferably composed of a wireless communication unit 172 for transmitting.
  • the data storage unit 140 for storing the information on the memorandum detection, characterized in that it further comprises.
  • reference numeral 150 denotes a controller
  • 180 denotes a power supply unit for supplying operating power to each component.
  • Example 1 the detection of 2,6-diisopropyl phenol (2,6-Diisopropylphenol), which is one of memorizing substances, will be described as an example.
  • Example 1 an FTO (F-doped [SnO 2]) transparent electrode is used as the anode and platinum (Pt) is used as the cathode.
  • FTO F-doped [SnO 2]
  • Pt platinum
  • Example 1 fullerene [C60] is used as an anode side movement inducing substance, and it demonstrates as an example.
  • the sensor electrode part according to the first embodiment uses FTO as the anode, electrophoreses [C60] to the FTO, and uses platinum (Pt) as the cathode.
  • the excitation energy supply unit for supplying excitation energy to the anode-side movement inducing material is further configured, and the excitation energy supply unit will be described as an example of supplying optical energy.
  • the memorizing substance (2,6-diisoprophylphenol) when introduced into the sensor electrode unit, a detector for detecting the flow of electrons moving from the cathode to the anode, and the detection information (detection process, A display unit for displaying detection conditions, detection results, etc.), a data storage unit for storing the detection conditions, and a communication unit for exchanging information on the detection with an external device will be described as an example.
  • the detection of 2, 6- diisoprofil phenol contained in air (exhalation) is demonstrated as an example. Therefore, the sensor electrode unit will be described with an example in which a structure in which air flows between the cathode and the anode is configured.
  • the air (exhalation) containing the memorizing substance is supplied to the sensor electrode unit by using a pumping device.
  • Example 1 for detecting 2,6-diisoprophylphenol is described below with reference to FIG.
  • the energy level based on the vacuum of the valence band of 2,6-diisoprophylphenol, a memorized substance, is -5.93 eV, and the energy level of the conduction band is -0.01 eV. Therefore, the energy level of the negative electrode requires an electrode having an energy level higher than -5.93 eV, which is the energy level of the valence band of the memorized substance 2,6-diisoprophylphenol.
  • platinum (Pt) whose energy level is -5.93 eV and the conduction band is -5.12 eV is used as the cathode.
  • 2,6-diisoprophylphenol the memorizing substance to be detected in Example 1, has a low energy level of -5.93 eV in the valence band, and thus an anode-side inducing substance having a lower energy level is required.
  • [C60] having an energy level of -6.72 eV in the valence band is used as the anode-side inductive material.
  • the energy level of the valence band of [C60] used as the anode-side inducing substance is lower than the energy level of the valence band of the 2,6-diisoprophylphenol, which is the base material, is -5.93 eV.
  • the electrons in the valence band of soprophyllphenol have an energy level structure that can move to the positive holes generated in the valence band of [C60].
  • the energy level of the conduction band of [C60], which is the anode-side inductive substance, is -3.89 eV
  • the energy level of the valence band of the FTO used as the anode is -4.85 eV
  • the electrons excited in the conduction band of [C60] are anodes. It has an energy level structure that can move to.
  • Figure 23 shows the energy level and the corresponding material designed through the process as described above, as shown in the figure, once the excitation process according to the energy level when the 2,6-diisoprophylphenol which is a memorandous material is introduced It is designed to move electrons from cathode to anode via
  • the anode 121 and the cathode 124 are mounted inside the case 125 to form the sensor electrode 120 according to the first embodiment.
  • the operating power is supplied to the positive electrode 121 and the negative electrode 124 through a power supply unit 180, and the detection unit 110 is connected to detect a current flowing between the positive electrode 121 and the negative electrode 124. .
  • the case 125 is formed of a transparent material (eg, glass, quartz, etc.) on the surface on which the anode 121, which is a transparent electrode, is mounted, and light supplied from the light source 131, which is the excitation energy supply unit 130. It is comprised so that it may irradiate to the positive electrode 121 which is this transparent electrode.
  • a transparent material eg, glass, quartz, etc.
  • the case 125 may be configured such that light irradiated from the light source 131 is directly irradiated to the anode 121 by cutting a portion where the anode is mounted.
  • reference numeral 122 denotes an anode-side moving inducer
  • 1 denotes air (exhalation) containing 2,6-diisoprophylphenol, which is a memorandous substance.
  • the air (exhalation) 1 passes through the inside of the sensor electrode part 120 by a pump (not shown) located at the rear of the sensor electrode part 120, and a detailed description thereof will be omitted.
  • the light source 131 of the excitation energy supply unit 130 is irradiated to the sensor electrode unit 120, and the detection unit 110 is connected to the sensor electrode unit 120. Thereafter, the detection unit 110, the excitation energy supply unit 130, the data storage unit 140, the display unit 160, and the communication unit 170 are connected to the control unit 150 to detect the first embodiment. Configure the system.
  • the power supply unit 180 supplies operating power to each component.
  • the controller 150 is configured as a microprocessor or a computer system
  • the data storage 140 is configured as an internal memory of the controller 150 or an external memory controlled by the controller 150. desirable.
  • the data storage unit 140 stores a result of the detection of the memorized substance and a data table indicating a correlation between the amount of the substance to be detected and the amount of current.
  • the excitation energy is supplied to [C60] that the light energy irradiated from the light source 131 is the anode-side movement inducing material 122 Done.
  • the electrons in the valence band of [C60], which is the anode-side movement inducing material, are excited with a conduction band, and a hole is generated in the valence band of [C60].
  • the energy level of the electrons excited by the conduction band of [C60] is -3.89 eV, which is higher than the energy level of -4.85 eV of the valence band of the anode FTO, and the electrons excited by the conduction band move to the anode FTO.
  • the detector 110 detects a current (movement of electrons) flowing between the cathode and the anode.
  • the controller 150 detects whether current flows through the detector 110 to determine whether 2,6-diisoprophylphenol, which is a memorandous substance, is present, and the memorized substance is determined from the amount of current.
  • the amount of 2,6-diisoprophylphenol is determined. That is, the amount of 2,6-diisoprophylphenol introduced is calculated by comparing the detected current amount with the data table indicating the relationship between the amount of the memorizing substance and the current amount stored in the data storage 140.
  • the controller 150 stores the information on the detection (detection process, detection condition, detection result, etc.) in the data storage unit 140, is displayed through the display unit 160, and through the communication unit 170. By exchanging with an external device, this process is repeated to continuously detect the memorandum.
  • the presence or absence of a memorandous substance is detected and the presence or absence of cancer cells is determined, and the extent of cancer is determined by the amount of the memorandum.
  • Two or more types of cancers detected in the same sample are determined by the composition ratio of the cancer-causing substance.
  • the progress of cancer is determined by referring to the data table indicating the amount of cancer and the progress of cancer, and the type of cancer is determined by referring to the data table of the composition and the type of cancer.
  • the precision of the lung cancer sensor is described as follows.
  • the number of molecules in the expiration of about 500cc is about 1.19 ⁇ 10 22 .
  • the number of molecules contained in 1 ppt of aerobic gas of 500 cc is
  • the charge amount is about 19pA.
  • the detection unit 110 for detecting the charge amount in the nano-ampere (nA) or pico-ampere (pA) unit is well known, its detailed description is omitted.
  • fullerene and lithium ion-encapsulated fullerene constituting a mobile induction material is about 1nm in size including an electron cloud, the lithium ion containing fullerene and The supramolecular molecule consists of pigments of about 2 nm in size.
  • the 500cc unit contains 1ppt of memorizing substance, and the mobile inducing substance is composed of ultra-molecules (about 2 nm) composed of lithium ion containing fullerene and pigment, the size of the electrode plate to react simultaneously with the memorizing substance is A size of about (0.22 mm ⁇ 0.22 mm) is sufficient.
  • the positive electrode (or negative electrode) may be made of a smaller electrode plate.
  • a lung cancer sensor having a precision of ppt level or more can be configured by allowing electrons in proportion to the number of molecules of the memorandous substance to move and directly detecting the number of moved electrons.
  • Example 2 the detection of toluene, which is one of memorizing substances, will be described as an example.
  • Example 2 as in Example 1, FTO is used as the positive electrode and platinum (Pt) is used as the negative electrode.
  • Pt platinum
  • Example 2 titanium dioxide (TiO2) and anode-side first lithium-included fullerene hexafluorophosphate salt ([Li + c60] [PF6-]) were used as the anode-side second moving inducer. It demonstrates as an example.
  • the sensor electrode part according to the first embodiment uses FTO as an anode, electrophoreses [TiO2] and [Li + c60] [PF6-] to the FTO, and uses platinum (Pt) as the cathode.
  • the excitation energy supply unit for supplying excitation energy to [TiO2] and [Li + c60] [PF6-] is further configured, and the excitation energy supply unit will be described with an example of supplying optical energy.
  • a detection unit, a display unit, a data storage unit, and a communication unit are described as an example, and the detection of toluene contained in air (exhalation) will be described as an example. .
  • platinum (Pt) whose energy level is -5.93 eV and the conduction band is -5.12 eV is used as the cathode.
  • toluene which is a memorized substance
  • a cathode made of platinum (Pt) has an energy level structure in which electrons can move from the cathode to holes formed in the valence band of toluene, which is a memorized substance, by the energy level difference.
  • Toluene which is a memorized substance to be detected in Example 2, has a very low energy level of -6.55 eV in the valence band, and thus an anode-side inductive substance having a lower energy level is required.
  • [Li + @ C60] [PF6-] having an energy level of -7.70eV in the valence band is used as the anode-side first inducing substance.
  • the energy level of the valence band of [Li + @ C60] [PF6-] which is used as the anode-side first moving inducer, is lower than the energy level of the valence band of the toluene, which is the base material, of -6.55 eV.
  • the electrons have an energy level structure that can move to the positive holes in the valence band of [Li + @ C60] [PF6-].
  • the energy level of the conduction band of [Li + @ C60] [PF6-], the anode-side first induction material, is -4.90 eV
  • the energy level of the valence band of the anode FTO is -4.85 eV.
  • What is needed is a material consisting of a valence band with an energy level lower than eV and a conduction band with an energy level higher than -4.85 eV.
  • Titanium dioxide has the energy level of the valence band of -6.21 eV and the conduction band of energy of -3.21 eV, which satisfies the above conditions. do. Then, the electrons excited in the conduction band of [TiO 2] have an energy level structure that can move to the anode.
  • the positive holes in the magnetic field cause the electrons to move in the platinum (Pt) cathode.
  • [PF6-] which is the anode-side first mobile induction material, requires a power of 2.8 eV or more with a light source having a wavelength of 457 nm, and a wavelength of 413 nm for the [TiO2], which is an anode-side second mobile inductive material. Power of 3.0 eV or more is required. Therefore, the light energy supplied from the excitation energy supply unit uses a light source that satisfies the above conditions.
  • Figure 18 shows the energy level and the corresponding material designed through the process as described above, as shown in the figure, when toluene is a memorandous substance is introduced into the electron from the cathode to the anode through two excitation processes according to the energy level It is designed to move.
  • the cathode 121 and the cathode 124 are mounted inside the case 125, and operation power is supplied to the anode 121 and the cathode 124 through the power supply unit 180.
  • the sensor 110 is connected to the detector 110 so as to detect a current flowing between the anode 121 and the cathode 124.
  • the case 125 has a surface on which the anode 121, which is a transparent electrode, is mounted, or the entire case is made of a transparent material, and the light supplied from the light source 131, which is the excitation energy supply unit 130, is the anode 121, which is a transparent electrode. Configure it to be investigated.
  • reference numeral 122a denotes an anode-side first moving inducer
  • 122b denotes an anode-side second moving inducer
  • (1) represents air (exhalation) containing toluene, which is a memorizing substance.
  • the air (exhalation) 1 is configured to pass through the inside of the sensor electrode part 120 by a pump (not shown) located at the rear of the sensor electrode part 120.
  • the light source 131 of the excitation energy supply unit 130 is irradiated to the sensor electrode unit 120, and the detection unit 110 is connected to the sensor electrode unit 120. Thereafter, the detection unit 110, the excitation energy supply unit 130, the data storage unit 140, the display unit 160, and the communication unit 170 are connected to the control unit 150 to detect the second embodiment. Configure the system.
  • the power supply unit 180 supplies operating power to each component.
  • the light energy irradiated from the light source 131 is [Li + @ C60] [PF6] being the anode-side first moving inducer 122a.
  • Excitation energy is supplied to [TiO 2], which is the negative electrode-side second moving inducer 122b.
  • the electrons in the valence band of [TiO2], which is the anode-side second moving induction material, are excited with a conduction band, and holes are generated in the valence band of [TiO2].
  • the energy level of electrons excited by the conduction band of [TiO2] is -3.21 eV, which is higher than the energy level of -4.85 eV, which is the valence band of the FTO, which is the anode, and the electrons excited by the conduction band move to the FTO, which is the anode.
  • the electrons in the valence band of the anode-side first moving inducer [Li + @ C60] [PF6-] are excited to the conduction band, and the [Li + @ C60] [PF6-] A hole is generated in the valence band of.
  • the energy level of electrons excited by the conduction band of [Li + @ C60] [PF6-] is -4.90 eV, which is higher than the energy level of -6.21 eV, which is the valence band of [TiO2], which is the anode-side second moving inducer.
  • the excited electrons are moved to the holes generated in the valence band of [TiO 2].
  • the detector 110 detects a current (movement of electrons) flowing between the cathode and the anode.
  • the control unit 150 detects whether current flows through the detection unit 110 to determine whether or not toluene, which is a memorandant, is present, and determines the amount of toluene, which is a memorized substance, from the amount of current. . That is, the amount of toluene introduced is calculated by comparing the detected current amount with the data table indicating the relationship between the amount of the memorizing substance and the current amount stored in the data storage 140.
  • the controller 150 stores the information on the detection (detection process, detection condition, detection result, etc.) in the data storage unit 140, is displayed through the display unit 160, and through the communication unit 170. By exchanging with an external device, this process is repeated to continuously detect the memorandum.
  • the presence of cancer cells is detected by the presence or absence of toluene, which is a cancerous substance, and the progress of cancer is determined by the amount of the cancerous substance.
  • the type of cancer is determined by the composition ratio of two or more cancer-causing substances detected in the same sample (for example, the composition ratio of toluene and 2,6-diisoprophylphenol, or toluene, 2,6-diisoprophylphenol, 2- Composition of methyl pyrazine, cyclohexanone, etc.)
  • the progress of cancer is determined by referring to the data table indicating the amount of cancer and the progress of cancer, and the type of cancer is determined by referring to the data table of the composition and the type of cancer.
  • the present invention is not limited to this. That is, as shown in Figs. 1 to 14, the arm sensor of the present invention is configured without a moving induction material, or the cancer sensor of the present invention using a plurality of anode-side movement inducing materials or a plurality of cathode-side movement inducing materials. Or it can be understood that the cancer sensor according to the present invention can be configured by using both the required number of the anode-side induction material and the required number of cathode-side movement inducing material.
  • Fig. 16 is a diagram showing an example of the configuration of the sensor electrode part using both the anode side movement inducing material 122 and the cathode side movement inducing material 123.
  • the light source is supplied with an excitation energy supply unit, and the light source is limited to one, which has been described as an example.
  • the technical spirit of the present invention is not limited thereto. That is, the excitation energy supply unit may be configured using several different light sources, and it may be configured to supply excitation energy using different energy sources.
  • the present invention can be configured to detect the memorizing substance contained in the liquid.
  • the present invention can be configured to be configured to contain liquids (blood, urine, saliva, other liquids, etc.) or to temporarily stay, rather than to allow air to pass. Reveal.
  • the technical idea of the present invention is not limited thereto.
  • it can be configured to detect a plurality of memorandous substances.
  • it can be configured to detect two or more memorizing substances at the same time by using a plurality of anode-side inducing substances or a plurality of cathode-side inducing substances and a plurality of excitation energy supply units.
  • the technical idea of the present invention has been described with an example of detecting toluene and 2,6-diisoprophylphenol in the base material, but the technical idea of the present invention is not limited thereto. That is, it can be configured to detect toluene, 2,6-diisoprophylphenol, 2-methylpyrazine, cyclohexanone, and other memorandants.
  • the third embodiment according to the present invention is to capture the exhalation, and to use it to diagnose cancer, especially lung cancer.
  • the sensor electrode portion 120 is designed for the energy level of the redox potential to move the electrons from the cathode to the anode via a memorandum material contained in the expiration;
  • An excitation energy supply unit 130 for supplying excitation energy of electrons to the sensor electrode portion;
  • a detection unit 110 for detecting electron movement of the sensor electrode unit 120;
  • a display unit 160 showing the detection contents of the detection unit 110;
  • a data storage unit 140 for storing detection contents of the detection unit;
  • Communication unit 170 for transmitting the detection information;
  • a control unit 150 connected to the sensor electrode unit 120, the excitation energy supply unit 130, the detection unit 110, the data storage unit 140, the display unit 160, and the communication unit 170;
  • a power supply unit 180 for supplying operation power to each of the components, and detecting and displaying a memorizing substance in the exhalation flowed into the sensor electrode unit 120.
  • the present invention is such that when the subject breath is introduced between the cathode and the anode of the sensor electrode unit 120, the sensor to move the electron from the cathode to the anode via the electrons donated from the memorandum included in the breath
  • the energy level of the redox potential of each component constituting the electrode part is designed.
  • the energy level is designed so that the number of electrons proportional to the memorandum contained in the exhalation moves from the cathode to the anode, and the presence or absence of the memorandum is detected by detecting whether the electrons move (current flow). It determines whether or not, by detecting the degree of movement of the electrons (current amount) to accurately determine the amount of the memorizing substance introduced, and whether the lung cancer has occurred and whether or not the cancer occurs from the type and amount of the memorizing substance, the data storage unit The data is stored in the display unit 140, displayed on the display unit 160, and transmitted to the external device through the communication unit 170.
  • the memorandum Since the movement of electrons is proportional to the number of molecules of the memorandum, the memorandum can be detected in molecular units, and real-time detection is possible by indicating the amount of the memorandum as an amount of current.
  • the breathing apparatus 190 for collecting the breath of the subject characterized in that it further comprises.
  • the exhalation collecting device 190 is for easily collecting the exhalation of the subject to supply to the sensor electrode unit 120.
  • the memorandum is a cancer metabolite that is caused by cancer, and the discovery of this memorandum means that there are cancer cells in the body.
  • Memorandizers include toluene, 2,6-diisopropylphenol, 2-methylpyrazine, cyclohexanone, and the like.
  • the type of the memorizing substance is determined, the ratio of each memorizing substance is judged to determine the type of cancer, and the amount of the memorizing substance is detected to determine the progress of the cancer.
  • the excitation energy supply unit 130 may include an optical energy supply unit (not shown), an electromagnetic wave energy supply unit (not shown), or a thermal energy supply unit (not shown) for supplying energy above the band gap energy between the valence band and the conduction band as described above. It is characterized by consisting of any one or more of).
  • the display unit 160 preferably includes a visual display unit 161 that visually displays information on the detection of a memorandum and an auditory display unit 162 that is auditory.
  • the communication unit 170, the wired communication unit 171 for transmitting the information on the memorizing substance detection to a wire (dedicated line, dedicated network, Internet, etc.), and the information on the memorizing substance detection wireless (wireless communication, mobile communication, Short-range wireless communication, Wi-Fi, Bluetooth, etc.) is preferably composed of a wireless communication unit 172 for transmitting.
  • the sensor electrode 120 applied to the third embodiment of the present invention is the same as Figs. 21 to 23, the energy level design of the configuration 1 to 7 and the other configuration of the first embodiment is used.
  • the exhalation collecting device 190 fits an exhalation pocket 193 into the inside of the quantitative jacket 194, and an exhalation inlet pipe 191 and one side of the exhalation pocket 193. It is provided with the inflow opening and closing means 192, and is provided with the air outlet pipe 196 and the outflow opening and closing means 197 on the opposite side.
  • Example 1 for detecting 2,6-diisoprofil phenol is described with reference to FIG.
  • the energy level based on the vacuum of the valence band of 2,6-diisoprophylphenol, a memorized substance, is -5.93 eV, and the energy level of the conduction band is -0.01 eV. Therefore, the energy level of the negative electrode requires an electrode having an energy level higher than -5.93 eV, which is the energy level of the valence band of the memorized substance 2,6-diisoprophylphenol.
  • platinum (Pt) whose energy level is -5.93 eV and the conduction band is -5.12 eV is used as the cathode.
  • 2,6-diisoprophylphenol which is a memorized substance to be detected, has a low energy level of -5.93 eV in the valence band, and thus an anode-side inductive substance having a lower energy level is required.
  • [C60] having an energy level of -6.72 eV in the valence band is used as the anode-side inductive material.
  • the energy level of the valence band of [C60] used as the anode-side inducing substance is lower than the energy level of the valence band of the 2,6-diisoprophylphenol, which is the base material, is -5.93 eV.
  • the electrons in the valence band of soprophyllphenol have an energy level structure that can move to the positive holes generated in the valence band of [C60].
  • the energy level of the conduction band of [C60], which is the anode-side inductive substance, is -3.89 eV
  • the energy level of the valence band of the FTO used as the anode is -4.85 eV
  • the electrons excited in the conduction band of [C60] are anodes. It has an energy level structure that can move to.
  • Figure 29 shows the energy level and the corresponding material designed through the process as described above, as shown in the figure, once the excitation process according to the energy level when the 2,6-diisoprophylphenol which is a memorandous material is introduced It is designed to move electrons from cathode to anode via
  • the sensor electrode unit 120 is configured by mounting the anode 121 and the cathode 124 in the case 125.
  • the operating power is supplied to the positive electrode 121 and the negative electrode 124 through a power supply unit 180, and the detection unit 110 is connected to detect a current flowing between the positive electrode 121 and the negative electrode 124. .
  • the case 125 is formed of a transparent material (eg, glass, quartz, etc.) on the surface on which the anode 121, which is a transparent electrode, is mounted, and light supplied from the light source 131, which is the excitation energy supply unit 130. It is comprised so that it may irradiate to the positive electrode 121 which is this transparent electrode.
  • a transparent material eg, glass, quartz, etc.
  • the case 125 may be configured such that the light irradiated from the light source 131 is directly irradiated to the anode 121 by cutting a portion where the anode is mounted.
  • reference numeral 122 denotes an anode-side movement inducing substance
  • (1) denotes an exhalation (exhalation) containing 2,6-diisoprophylphenol which is a memorizing substance.
  • exhalation (exhalation) 1 passes through the inside of the sensor electrode unit 120 by a pump (not shown) located at the rear of the sensor electrode unit 120, and a detailed description thereof will be omitted.
  • the aerobic collecting device 190 is coupled to the sensor electrode unit 120 configured as described above through a coupling structure.
  • the light source 131 of the excitation energy supply unit 130 is irradiated to the sensor electrode unit 120, and the detection unit 110 is connected to the sensor electrode unit 120. Thereafter, the detection unit 110, the excitation energy supply unit 130, the data storage unit 140, the display unit 160, and the communication unit 170 are connected to the control unit 150 to detect the first embodiment. Configure the system.
  • the power supply unit 180 supplies operating power to each component.
  • the controller 150 is configured as a microprocessor or a computer system
  • the data storage 140 is configured as an internal memory of the controller 150 or an external memory controlled by the controller 150. desirable.
  • the data storage unit 140 stores a detection result of 2,6-diisoprophyl phenol, which is a memorizing substance, and a data table showing a correlation between the amount of 2,6-diisoprophyl phenol and the amount of current.
  • exhalation is collected.
  • the inflow opening and closing means 192 is opened by the blowing force as shown in Fig. 32 (b), and the exhalation pocket 193 This swells and exhalation is collected in the collecting space 195.
  • the exhalation collecting device 190 is attached to the sensor electrode unit 120. Then, the exhalation opening means 197 provided in the exhalation outlet pipe 196 by the exhalation induction pipe 127 is opened to supply the exhalation to the sensor electrode unit 120 through the exhalation induction pipe 127.
  • Figure 32 (d) shows that when the exhalation pocket 193 is made of a flexible material such as rubber, the exhalation flows out through the exhalation guide pipe 127 by its elastic force
  • Figure 28 (e) When the exhalation pocket 193 is made of a material having no elasticity, such as vinyl, it shows that exhalation is supplied to the sensor electrode unit 120 through the fan 126.
  • the exhalation preferably uses a fan 126, as shown in Figure 32 (e).
  • a fan 126 As shown in Figure 32 (e).
  • the fan 126 it is possible to control the amount of exhaled air supplied and whether it is supplied.
  • the light source 131 of the excitation energy supply unit 130 is turned on (ON), The light energy irradiated from the light source 131 supplies excitation energy to [C60], which is the anode-side movement inducing material 122.
  • the electrons in the valence band of [C60], which is the anode-side movement inducing material, are excited with a conduction band, and a hole is generated in the valence band of [C60].
  • the energy level of the electrons excited by the conduction band of [C60] is -3.89 eV, which is higher than the energy level of -4.85 eV of the valence band of the anode FTO, and the electrons excited by the conduction band move to the anode FTO.
  • the detector 110 detects a current (movement of electrons) flowing between the cathode and the anode.
  • the controller 150 detects whether current flows through the detector 110 to determine whether 2,6-diisoprophylphenol, which is a memorandous substance, is present, and the memorized substance is determined from the amount of current.
  • the amount of 2,6-diisoprophylphenol is determined. That is, the amount of 2,6-diisoprophylphenol introduced is calculated by comparing the detected current amount with the data table indicating the relationship between the amount of the memorizing substance and the current amount stored in the data storage 140.
  • the controller 150 stores the information on the detection (detection process, detection condition, detection result, etc.) in the data storage unit 140, is displayed through the display unit 160, and through the communication unit 170. By exchanging with an external device, this process is repeated to continuously detect the memorandum.
  • the presence or absence of a memorandum contained in the expiration is detected whether the presence of cancer cells, and the extent of cancer is determined by the amount of the memorandum.
  • Two or more types of cancers detected in the same sample are determined by the composition ratio of the cancer-causing substance.
  • the progress of cancer is determined by referring to the data table indicating the amount of cancer and the progress of cancer, and the type of cancer is determined by referring to the data table of the composition and the type of cancer.
  • the precision of the lung cancer sensor is described as follows.
  • the number of molecules in the expiration of about 500cc is about 1.19 ⁇ 10 22 .
  • the number of molecules contained in 1 ppt of aerobic gas of 500 cc is
  • the charge amount is about 19pA.
  • the detection unit 110 for detecting the charge amount in the nano-ampere (nA) or pico-ampere (pA) unit is well known, its detailed description is omitted.
  • fullerene and lithium ion-encapsulated fullerene constituting a mobile induction material is about 1nm in size including an electron cloud, the lithium ion containing fullerene and The supramolecular molecule consists of pigments of about 2 nm in size.
  • the 500cc unit contains 1ppt of memorizing substance, and the mobile inducing substance is composed of ultra-molecules (about 2 nm) composed of lithium ion containing fullerene and pigment, the size of the electrode plate to react simultaneously with the memorizing substance is A size of about (0.22 mm ⁇ 0.22 mm) is sufficient.
  • the positive electrode (or negative electrode) may be made of a smaller electrode plate.
  • a lung cancer sensor having a precision of ppt level or more can be configured by allowing electrons in proportion to the number of molecules of the memorandous substance to move and directly detecting the number of moved electrons.
  • Example 2 the detection of toluene, which is one of the cancer-causing substances that occur when lung cancer occurs, will be described as an example.
  • Example 2 as in Example 1, FTO is used as the positive electrode and platinum (Pt) is used as the negative electrode.
  • Pt platinum
  • titanium dioxide (TiO 2) and the positive electrode 1 lithium-pothofullerene hexafluorophosphate salt ([Li + c60] [PF6-]) were used as the anode-side second moving inducer.
  • the example used is demonstrated.
  • the sensor electrode part according to the present Example 2 uses FTO as an anode, electrophoreses [TiO2] and [Li + c60] [PF6-] to the FTO, and uses platinum (Pt) as the cathode. do.
  • the excitation energy supply unit for supplying excitation energy to [TiO2] and [Li + c60] [PF6-] is further configured, and the excitation energy supply unit will be described with an example of supplying optical energy.
  • a detection unit, a display unit, a data storage unit, and a communication unit are described as an example, and the detection of toluene contained in the exhalation (exhalation) will be described as an example. .
  • platinum (Pt) whose energy level of the valence band is -5.93 eV and the energy level of the conduction band is -5.12 eV is used as the cathode.
  • toluene which is a memorized substance
  • a cathode made of platinum (Pt) has an energy level structure in which electrons can move from the cathode to holes formed in the valence band of toluene, which is a memorized substance, due to the difference in energy levels.
  • Toluene which is a memorized substance detected in ⁇ Example 2>, has a very low energy level of -6.55 eV in the valence band, and thus an anode-side inductive substance having a lower energy level is required.
  • [Li + @ C60] [PF6-] having the valence band energy level of ⁇ 7.70 eV is used as the anode-side first moving inducing substance.
  • the energy level of the valence band of [Li + @ C60] [PF6-] which is used as the anode-side first moving inducer, is lower than the energy level of the valence band of the toluene, which is the base material, of -6.55 eV.
  • the electrons have an energy level structure that can move to the positive holes in the valence band of [Li + @ C60] [PF6-].
  • the energy level of the conduction band of [Li + @ C60] [PF6-], the anode-side first induction material, is -4.90 eV
  • the energy level of the valence band of the anode FTO is -4.85 eV.
  • What is needed is a material consisting of a valence band with an energy level lower than eV and a conduction band with an energy level higher than -4.85 eV.
  • Titanium dioxide has the energy level of the valence band of -6.21 eV and the conduction band of energy of -3.21 eV, which satisfies the above conditions. do. Then, the electrons excited in the conduction band of [TiO 2] have an energy level structure that can move to the anode.
  • the positive holes in the magnetic field cause the electrons to move in the platinum (Pt) cathode.
  • [PF6-] which is the anode-side first mobile induction material, requires a power of 2.8 eV or more with a light source having a wavelength of 457 nm, and a wavelength of 413 nm for the [TiO2], which is an anode-side second mobile inductive material. Power of 3.0 eV or more is required. Therefore, the light energy supplied from the excitation energy supply unit uses a light source that satisfies the above conditions.
  • Figure 30 shows the energy level and the corresponding material designed through the process as described above, as shown in the figure, when toluene is a memorandous material is introduced into the electron from the cathode to the anode through two excitation processes according to the energy level It is designed to move.
  • the cathode 121 and the cathode 124 are mounted inside the case 125, and operating power is supplied to the anode 121 and the cathode 124 through the power supply unit 180.
  • the sensor electrode unit 120 according to the second embodiment is configured by connecting the detection unit 110 so as to supply and detect a current flowing between the anode 121 and the cathode 124.
  • the case 125 has a surface on which the anode 121, which is a transparent electrode, is mounted, or the entire case is made of a transparent material, and the light supplied from the light source 131, which is the excitation energy supply unit 130, is the anode 121, which is a transparent electrode. Configure it to be investigated.
  • reference numeral 122a denotes an anode-side first moving inducer
  • 122b denotes an anode-side second moving inducer
  • (1) denotes an exhalation (exhalation) containing toluene, which is a cancerous substance.
  • the exhalation (exhalation) 1 is configured to pass through the inside of the sensor electrode 120 by a pump (not shown) located in the rear of the sensor electrode 120.
  • the light source 131 of the excitation energy supply unit 130 is irradiated to the sensor electrode unit 120, and the detection unit 110 is connected to the sensor electrode unit 120. Thereafter, the detection unit 110, the excitation energy supply unit 130, the data storage unit 140, the display unit 160, and the communication unit 170 are connected to the control unit 150 to detect the second embodiment. Configure the system.
  • the power supply unit 180 supplies operating power to each component.
  • the data storage unit 140 stores a result of detection of toluene and a data table indicating a correlation between the amount of toluene and the amount of current.
  • the light source 131 of the excitation energy supply unit 130 When the exhaled air collected in the exhalation trap device 190 flows into the sensor electrode unit 120 through the exhalation induction pipe 127, the light source 131 of the excitation energy supply unit 130 is turned on (ON), The light energy irradiated from the light source 131 supplies excitation energy to [Li + @ C60] [PF6-], which is the anode-side first movement inducing material 122a, and [TiO2], which is the anode-side second movement inducing material 122b. do.
  • the electrons in the valence band of [TiO2], which is the anode-side second moving induction material, are excited with a conduction band, and holes are generated in the valence band of [TiO2].
  • the energy level of electrons excited by the conduction band of [TiO2] is -3.21 eV, which is higher than the energy level of -4.85 eV, which is the valence band of the FTO, which is the anode, and the electrons excited by the conduction band move to the FTO, which is the anode.
  • the electrons in the valence band of the anode-side first moving inducer [Li + @ C60] [PF6-] are excited to the conduction band, and the [Li + @ C60] [PF6-] A hole is generated in the valence band of.
  • the energy level of electrons excited by the conduction band of [Li + @ C60] [PF6-] is -4.90 eV, which is higher than the energy level of -6.21 eV, which is the valence band of [TiO2], which is the anode-side second moving inducer.
  • the excited electrons are moved to the holes generated in the valence band of [TiO 2].
  • the detector 110 detects a current (movement of electrons) flowing between the cathode and the anode.
  • the control unit 150 detects whether current flows through the detection unit 110 to determine whether or not toluene, which is a memorandant, is present, and determines the amount of toluene, which is a memorized substance, from the amount of current. . That is, the amount of toluene introduced is calculated by comparing the detected current amount with the data table indicating the relationship between the amount of the memorizing substance and the current amount stored in the data storage 140.
  • the controller 150 stores the information on the detection (detection process, detection condition, detection result, etc.) in the data storage unit 140, is displayed through the display unit 160, and through the communication unit 170. By exchanging with an external device, this process is repeated to continuously detect the memorandum.
  • the presence of cancer cells is detected by the presence or absence of toluene, which is a cancerous substance, and the progress of cancer is determined by the amount of the cancerous substance.
  • the type of cancer is determined by the composition ratio of two or more cancer-causing substances detected in the same sample (for example, the composition ratio of toluene and 2,6-diisoprophylphenol, or toluene, 2,6-diisoprophylphenol, 2- Composition of methyl pyrazine, cyclohexanone, etc.)
  • the progress of cancer is determined by referring to the data table indicating the amount of cancer and the progress of cancer, and the type of cancer is determined by referring to the data table of the composition and the type of cancer.
  • a fourth embodiment according to the present invention relates to a portable cancer diagnosis system using energy levels.
  • This system uses electrons from the cathode to the anode, especially through donations from memorandum (a substance that is caused by cancer) contained in body fluids (blood, urine, sweat, tears, runny nose, etc.).
  • memorandum a substance that is caused by cancer
  • body fluids blood, urine, sweat, tears, runny nose, etc.
  • the first and second anode energy level designs are constructed in the same manner as the energy level designs of the second and third embodiments, that is, the second and third embodiments based on FIGS.
  • the electrode portion is as follows.
  • the first anode 121a, the cathode 124, and the second anode 121b are zigzag formed on the transparent substrate.
  • One side of the first positive electrode 121a, the negative electrode 124 and the second positive electrode 121b is provided with a connection pattern so as to be inserted into and connected to the connector 120b provided in the portable arm diagnosis apparatus 100 according to the present embodiment.
  • the sensor electrode unit 120 according to the embodiment is configured.
  • the first anode 121a and the second cathode 121b are doped with a moving induction material by electrophoresis.
  • the first anode 121a, the cathode 124, and the second anode 121b are provided with an absorbent cloth 126 of a thin film, and when the body fluid is dropped onto the absorbent cloth 126, the first anode is spread evenly.
  • the medicine may be evenly contacted with the 121a, the cathode 124, and the second anode 121b.
  • the detection units 110a and 110b are connected to detect a current flowing between the second anodes 121b.
  • the portable cancer diagnosis apparatus 100 is provided with a connector 120b to which the sensor electrode part 120a is connected, and each electrode of the sensor electrode part 120a is provided.
  • the light source 131a of the excitation energy supply unit 130 is positioned below the first anode, the cathode, and the second anode, and is configured to supply light energy to the sensor electrode unit 120a through a transparent window.
  • the light source 131a of the excitation energy supply unit 130 is irradiated to the sensor electrode unit 120, and the detection units 110a and 110b are applied to the sensor electrode unit 120a. Connect it. Thereafter, the detectors 110a and 110b, the excitation energy supply unit 130, the data storage unit 140, the display unit 160, the communication unit 170, and the switch unit 190 are connected to the control unit 150. It connects and comprises the detection system which concerns on a present Example.
  • the power supply unit 180 supplies operating power to each component.
  • the controller 150 is configured as a microprocessor or a small computer system.
  • the data storage unit 140 is configured as an internal memory of the controller 150 or an external memory controlled by the controller 150. This is preferred.
  • the visual display unit 161 of the display unit 160 includes a touch screen 161a, and the auditory display unit 162 includes a speaker 162a embedded in the portable cancer diagnosis apparatus 100, and the communication unit 170 Wired communication unit 171 of the) is preferably configured to communicate through the USB connection device (171a).
  • the wireless communication device 172 is composed of Bluetooth and Wi-Fi (not shown).
  • the switch unit 190 is configured on the touch screen that forms the button-type switch 191 and the visual display unit 161a.
  • the data storage unit 140 includes a detection result of the 2,6-diisoprophylphenol phenol, which is a memorizing substance, a data table showing the correlation between the amount of the 2,6-diisoprophyl phenol and the current amount, the detection result of toluene, A data table and the like showing the correlation between the amount of toluene and the amount of current are stored.
  • the sensor electrode portion 120a is mounted on the connector 120b.
  • the body fluid dropped on the absorbent cloth 126 is evenly spread to contact the first positive electrode 121a, the negative electrode 124, and the second positive electrode 121b evenly.
  • This initial detection is for detecting the current value by the body fluid itself in a state where the excitation energy supply unit 130 is not operated, that is, there is no electron movement by the memorandous substance.
  • This initial detection value is for calculating only the value of the electron transfer which causes the memorandable substance compared with the detection value by the memorable substance.
  • the light source 131a of the excitation energy supply unit 130 is turned on to detect electron movement in the state where the excitation energy is supplied to the sensor electrode unit 120a. Then, the electron transfer by the memorandum contained in the body fluid occurs to detect the value including the value by the memorandum in the initial detection value, the initial detection value is removed from the detection value containing the memorandum.
  • the electron transfer value by the memorandum can be known, and the kind and the progress of the cancer can be determined from the presence, the amount, and the composition ratio of each memorandum.
  • the first anode 121a detects 2,6-diisoprophylphenol, which is a memorandous substance contained in the body fluid, and uses [C60] as an anode-side inducing substance, it will be described. .
  • electrons in the valence band of the anode-side movement inducing material [C60] are excited as conduction bands, and holes are generated in the valence band of [C60].
  • the energy level of the electrons excited by the conduction band of [C60] is -3.89 eV, which is higher than the energy level of -4.85 eV of the valence band of the anode FTO, and the electrons excited by the conduction band move to the anode FTO.
  • the first detector 110a detects a current (movement of electrons) flowing between the cathode 124 and the first anode 121a.
  • the controller 150 detects whether a current flows through the first detection unit 110a to determine whether 2,6-diisoprophylphenol, which is a memorandum, is present, and memorizes from the amount of current.
  • the amount of 2,6-diisoprophylphenol which is a substance is determined. That is, the amount of 2,6-diisoprophylphenol introduced is calculated by comparing the detected current amount with the data table indicating the relationship between the amount of the memorizing substance and the current amount stored in the data storage 140.
  • the controller 150 stores the information on the detection (detection process, detection condition, detection result, etc.) in the data storage unit 140, is displayed through the display unit 160, and through the communication unit 170. By exchanging with an external device, this process is repeated to continuously detect the memorandum.
  • toluene which is a memorized substance contained in the body fluid, is detected at the second anode 121b, and [Li + @ C60] [PF6-] is used as the anode-side first movement inducing substance, and the anode-side second movement induction. Since [TiO 2] is used as an example, it will be described.
  • the light energy irradiated from the light source 131a is the anode-side first moving inducing material.
  • Excitation energy is supplied to [Li + @ C60] [PF6-] (122a) and [TiO2], which is the anode-side second moving inducer 122b.
  • the electrons in the valence band of [TiO2], which is the anode-side second moving induction material, are excited with a conduction band, and holes are generated in the valence band of [TiO2].
  • the energy level of electrons excited by the conduction band of [TiO2] is -3.21 eV, which is higher than the energy level of -4.85 eV, which is the valence band of the FTO, which is the anode, and the electrons excited by the conduction band move to the FTO, which is the anode.
  • the holes (energy level: -6.55eV) in the valence band of toluene are generated in the valence band of [Li + @ C60] [PF6-] which is the anode-side first moving inducer (energy level: -7.70eV) It moves to and the hole is generated in the valence band of toluene.
  • the same process is repeated as long as the excitation energy is supplied from the light source 131a of the excitation energy supply unit 130 to be proportional to the toluene which is the memorized substance from the cathode 124 to the second anode 121b.
  • the number of electrons are constantly moving.
  • the second detector 110b detects a current (movement of electrons) flowing between the cathode 124 and the second anode 121b.
  • the controller 150 determines whether current is flowing through the second detector 110b to determine whether or not toluene, which is a cancerous substance, is present, and determines the amount of toluene, which is a cancerous substance, from the amount of current. Done. That is, the amount of toluene introduced is calculated by comparing the detected current amount with the data table indicating the relationship between the amount of the memorizing substance and the current amount stored in the data storage 140.
  • the controller 150 stores the information on the detection (detection process, detection condition, detection result, etc.) in the data storage unit 140, is displayed through the display unit 160, and through the communication unit 170. By exchanging with an external device, this process is repeated to continuously detect the memorandum.
  • the presence of cancer cells is detected by the presence or absence of toluene, which is a cancerous substance, and the progress of cancer is determined by the amount of the cancerous substance.
  • the type of cancer is determined by the composition ratio of two or more cancer-causing substances detected in the same sample (for example, the composition ratio of toluene and 2,6-diisoprophylphenol, or toluene, 2,6-diisoprophylphenol, 2- Composition of methyl pyrazine, cyclohexanone, etc.)
  • the progress of cancer is determined by referring to the data table indicating the amount of cancer and the progress of cancer, and the type of cancer is determined by referring to the data table of the composition and the type of cancer.
  • the precision of the portable cancer diagnostic apparatus according to the present invention will be described as follows. Since the molecular weight of the body fluid varies depending on the type of body fluid, it will be described based on water.
  • the volume of one drop of liquid dropped into the dropper is about 0.05 cc.
  • the detection unit 110 for detecting the charge amount in the nano ampere (nA) or the picoampere (pA) unit is well known, its detailed description is omitted.
  • fullerene and lithium ion-encapsulated fullerene constituting a mobile induction material is about 1nm in size including an electron cloud, the lithium ion containing fullerene and The supramolecular molecule consists of pigments of about 2 nm in size.
  • the mobile inducing substance is composed of ultra-molecules (about 2 nm) composed of lithium ion containing fullerene and a pigment. Should be about (0.22mm ⁇ 0.22mm).
  • a lung cancer diagnosis apparatus having a precision of ppt level or more can be configured by allowing electrons in proportion to the number of molecules of the memorandant to be moved and directly detecting the number of moved electrons.
  • Urine consists of 95% water and 5% other components (urea, uric acid, etc.).
  • the molecular weight of water is about 18, the molecular weight of urea is about 60, and the molecular weight of uric acid is about 168.
  • Embodiment 5 of the present invention is a portable cancer diagnosis system using a smartphone.
  • the cancer diagnosis system is a portable detection device for detecting a cancer-causing substance by setting the energy level of the redox potential so that electrons are moved from the cathode to the anode via the cancer-causing substance contained in the body fluid, and the portable detection Comparing and analyzing the measured value measured by the device is a cancer diagnostic app indicating the presence or absence of cancer memorandum and cancer, and the cancer diagnostic app is installed, and includes a smart phone for communicating with the mobile detection device.
  • the cancer diagnostic app is to determine the presence of cancer in the presence or absence of the memorandum, and to determine the progress of the cancer by the amount of the memorandum.
  • the basic configuration of the cancer diagnosis system using the smart phone enables the light source 131a of the excitation energy supply unit 130 to be irradiated to the sensor electrode unit 120, and the sensor electrode unit (
  • the detectors 110a and 110b are connected to the 120a. Thereafter, the detectors 110a and 110b, the excitation energy supply unit 130, the data storage unit 140, the display unit 160, the communication unit 170, and the switch unit 190 are connected to the control unit 150.
  • the portable detection device 100 is configured.
  • the power supply unit 180 supplies operating power to each component.
  • the controller 150 is configured as a microprocessor or a small computer system.
  • the data storage unit 140 is configured as an internal memory of the controller 150 or an external memory controlled by the controller 150. This is preferred.
  • the visual display unit 161 of the display unit 160 is composed of a touch screen 161a
  • the auditory display unit 162 is composed of a speaker 162a built in the portable detection device 100
  • the communication unit 170 Wired communication unit 171 is preferably configured to communicate through the USB connection device (171a).
  • the wireless communication device 172 is composed of Bluetooth and Wi-Fi (not shown).
  • the switch unit 190 is configured on the touch screen that forms the button-type switch 191 and the visual display unit 161a.
  • the memory (not shown) of the smartphone 200 the data table showing the correlation between the result of the detection of 2,6-diisoprophylphenol phenol, and the amount and current amount of 2,6-diisoprophylphenol, The detection result of toluene, and a data table showing the correlation between the amount of toluene and the amount of current are stored.
  • the sensor electrode portion 120a is mounted on the connector 120b.
  • the body fluid dropped on the absorbent cloth 126 is evenly spread to contact the first positive electrode 121a, the negative electrode 124, and the second positive electrode 121b evenly.
  • This initial detection is for detecting the current value by the body fluid itself in a state where the excitation energy supply unit 130 is not operated, that is, there is no electron movement by the memorandous substance.
  • This initial detection value is for calculating only the value of the electron transfer caused by the memorandum substance compared with the detection value by the memorandum substance in the cancer diagnostic app 300.
  • the light source 131a of the excitation energy supply unit 130 is turned on to detect electron movement in the state where the excitation energy is supplied to the sensor electrode unit 120a. Then, the electron transfer by the memorandum contained in the body fluid occurs to detect the value including the value by the memorandum in the initial detection value, the initial detection value is removed from the detection value containing the memorandum.
  • the electron transfer value by the memorandum can be known, and the kind and the progress of the cancer can be determined from the presence, the amount, and the composition ratio of each memorandum.
  • 40 shows a diagnosis process of the cancer diagnosis system using the smart phone.
  • the sensor electrode part of this system is preferably composed of the sensor electrode part of FIGS. 43 to 45 attached thereto.
  • the first positive electrode 121a, the negative electrode 124, and the second positive electrode 121b are formed inside the transparent rectangular tube base material.
  • the first anode 121a and the second cathode 121b are doped with a moving induction material by electrophoresis.
  • the operating power is supplied to the first positive electrode 121a, the negative electrode 124 and the second positive electrode 121b through the power supply unit 180, and the first positive electrode 121a, the negative electrode 124,
  • the detectors 110a and 110b are connected to detect a current flowing between the two anodes 121b.
  • the left and right exhalation inlets and outlets of the sensor electrode unit 120a are fitted with an exhalation induction pipe 126a for inducing exhalation and an exhalation exhalation pipe 126b for exhalation. .
  • the mouthpiece 127 is inserted into the exhalation induction pipe 126a so as to inhale it and blow the exhalation.
  • the exhalation passes through the exhalation induction pipe 126a, the inside of the sensor electrode part 120a, and the exhalation outlet pipe 126b, and the first anode 121a configured in the sensor electrode part 120a in the process. ), The cathode 124 and the second anode 121b are uniformly contacted.
  • the excitation energy supply unit 130 is installed at a position capable of supplying optical energy to the sensor electrode unit 120a, and the anode-side moving induction material by energy supplied from the light source 131 of the excitation energy supply unit 130. This is configured to be excited.
  • the basic configuration is as shown in Figs. 41 and 45, and the system is referred to Fig. 35 for the configuration.
  • the light source 131 of the excitation energy supply unit 130 is irradiated to the sensor electrode unit 120a, and the detection units 110a and 110b are connected to the sensor electrode unit 120a. Thereafter, the detectors 110a and 110b, the excitation energy supply unit 130, the data storage unit 140, the display unit 160, the communication unit 170, and the switch unit 190 are connected to the control unit 150.
  • the present embodiment is constructed by connecting.
  • the power supply unit 180 supplies operating power to each component.
  • the controller 150 is configured as a microprocessor or a small computer system.
  • the data storage unit 140 is configured as an internal memory of the controller 150 or an external memory controlled by the controller 150. This is preferred.
  • the visual display unit 161 of the display unit 160 includes a touch screen 161a, the auditory display unit 162 includes a speaker 162a embedded in the body 100a, and the wired communication unit of the communication unit 170.
  • 171 is preferably configured to communicate via the USB connection device (171a).
  • the wireless communication device 172 is composed of Bluetooth and Wi-Fi (not shown).
  • the switch unit 190 is configured on the touch screen that forms the button-type switch 191 and the visual display unit 161a.
  • the data storage unit 140 includes a detection result of the 2,6-diisoprophylphenol phenol, which is a memorizing substance, a data table showing the correlation between the amount of the 2,6-diisoprophyl phenol and the current amount, the detection result of toluene, A data table and the like showing the correlation between the amount of toluene and the amount of current are stored.
  • the mouthpiece 127 is inserted into the aerobic induction conduit 126a, the operation button of the switch unit 191 is pressed, and the breath is blown into the mouthpiece 127. Then, the exhalation 1 is in contact with the first positive electrode 121a, the negative electrode 124, and the second positive electrode 121b of the sensor electrode 120a through the air induction pipe 126a.
  • the controller 150 controls the operations of the light source 131, the first detector 110a, and the second detector 110b of the excitation energy supply unit 130.
  • the value when the light source 131 is turned on and the value when the light source 131 is turned off are respectively detected.
  • the reason why the light source 131 detects the value when it is turned on and the value when it is turned off, is to correct an error from the value and to calculate the electron movement by pure memorized substance. That is, by subtracting the value detected when the light source 131 is turned on from the value detected when the light source 131 is turned off, various sources of error can be eliminated, and the error can be corrected to detect the movement of electrons through the memorized substance. From the presence or absence of the memorizing substance, the amount and the composition ratio of each memorizing substance can determine whether the cancer occurs, the type of cancer, and the progress of the cancer.
  • Embodiment 7 of the present invention relates to a portable lung cancer diagnosis system using a smart phone, as shown in FIG. 46.
  • a short range wireless communication network such as Bluetooth or Wi-Fi or GPS may be used for the portable lung cancer diagnosis system and the mobile phone, and the cancer diagnosis app is installed in the smartphone as in the fifth embodiment.
  • the mouthpiece 127 is inserted into the aerobic induction pipe 126a as in the sixth embodiment, the operation button of the switch unit 191 is pressed, and the breath is injected into the mouthpiece 127. Then, the exhalation 1 is in contact with the first positive electrode 121a, the negative electrode 124, and the second positive electrode 121b of the sensor electrode 120a through the air induction pipe 126a.
  • the controller 150 controls the operations of the light source 131, the first detector 110a, and the second detector 110b of the excitation energy supply unit 130.
  • the value when the light source 131 is turned on and the value when the light source 131 is turned off are respectively detected.
  • the detected value is transmitted to the smartphone and can be immediately confirmed by the user.
  • This embodiment relates to a cancer diagnostic system.
  • the sensor electrode unit 120 described in the first to seventh embodiments, the excitation energy supply unit 130 and the exhalation collecting device 210 is configured to be connected to the sensor electrode unit.
  • the collecting device is similar to the collecting device of Example 3, but shows that it can be configured as a tube of a slightly slippery form.
  • the switch unit 190 operated for diagnosing cancer
  • the sensor electrode unit 120 for detecting a cancer-causing substance
  • the sensor electrode unit 120 for detecting a cancer-causing substance
  • An excitation energy supply unit 130 for supplying excitation energy to electrons
  • a detection unit 110 for detecting electron movement of the sensor electrode unit
  • a data storage unit 140 for storing information on the detection of the memorizing substance
  • Consists of a communication unit 170 for communicating with an external device and a control unit 150 for performing cancer diagnosis
  • main body 200 which has a switch part and a detachable part in the upper surface, and a monitor, a display part provided in this main body.
  • the present invention of such a configuration is to diagnose the cancer by connecting the exhalation collected in the collecting device to the sensor electrode.
  • the present invention relates to a cancer diagnosis system using big data, and in particular, to build a database by analyzing and processing a large amount of diagnostic data, and to analyze the cancer detection data requested by the client, cancer occurrence, cancer type, cancer progression degree This is to provide information about.
  • a communication server performing communication
  • a customer management server managing information about subscribers
  • a database server for storing diagnostic data
  • a backup server performing data backup
  • a decision server having a level determining unit capable of determining a value level according to a predetermined decision criterion with respect to information transmitted from one server 12;
  • a filter module for classifying information of an information medium transmitted from the outside; And a main server for controlling the operation of each component.
  • the diagnostic data transmitted from the cancer diagnosis system which is a client system, is analyzed to calculate whether cancer is generated, the type, and the degree of progression.
  • the client cancer diagnosis system which is a client system, is a system that detects a memorandum contained in exhalation or body fluid.
  • the discovery of this memorandum means that there are cancer cells in the body.
  • the memorandum Since the movement of electrons is proportional to the number of molecules of the memorandum, the memorandum can be detected in molecular units, and real-time detection is possible by indicating the amount of the memorandum as an amount of current.
  • Such a system is employed in any one of the system configuration, sensor electrode portion, and energy level design described in the above first to seventh embodiments.
  • the present invention is used in a molecular sensor, a sensor for diagnosing cancer using the molecular sensor, and a system for diagnosing cancer through the cancer diagnostic sensor provided with the cancer diagnostic sensor and collecting the breath.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Food Science & Technology (AREA)
  • Pulmonology (AREA)
  • Physiology (AREA)
  • Urology & Nephrology (AREA)
  • Electrochemistry (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention pertains to a molecule sensor capable of accurately detecting, at a molecular level, a substance to be detected using energy levels of oxidation-reduction potential. Particularly, the energy levels of oxidation-reduction potential of a substance to be detected are analyzed, and, with the electrons provided by the substance to be detected as the medium, energy levels of the negative electrode substance and positive electrode substance are configured so that, when the substance to be detected is introduced, the electrons are transferred from the negative electrode to positive electrode.

Description

분자센서 및 이 분자센서를 이용한 암 진단 시스템Molecular sensor and cancer diagnosis system using this molecular sensor
본 발명은 검출하고자 하는 물질의 존재 유무, 종류 및 양을 분자 단위로 검출하는 분자센서에 관한 것으로, 특히, 검출하고자 하는 물질(이하, "검출대상물질"이라 한다.)의 분자 수에 비례하는 수의 전자가 음극에서 양극으로 이동할 수 있도록 검출대상물질의 산화환원전위의 에너지준위를 고려하여 음극과 양극의 에너지준위를 설계함으로써 검출대상물질을 분자단위로 정밀하게 검출할 수 있도록 한 것이다.The present invention relates to a molecular sensor that detects the presence, type, and amount of a substance to be detected in units of molecules, and in particular, is proportional to the number of molecules of the substance to be detected (hereinafter referred to as "detectable substance"). By designing the energy levels of the cathode and anode in consideration of the energy level of the redox potential of the target material so that a large number of electrons can move from the cathode to the anode, it is possible to precisely detect the target material on a molecular basis.
또한, 검출하고자 하는 검출대상물질의 종류에 따라 음극에서 양극으로의 전자 이동을 도와주고 유도하는 물질(이하, "이동유도물질"이라 한다.)을 더 포함하고, 가전자대에 있는 전자를 전도대로 여기(excited atoms)시키는 여기 에너지를 공급하는 여기에너지공급부를 더 포함하여 구성함으로써 더욱 정밀한 검측이 이루어질 수 있도록 한 것이다.In addition, the method further includes a substance (hereinafter, referred to as a "mobile inducing substance") that assists and induces electron movement from the cathode to the anode according to the type of the detection target material to be detected, and the electrons in the valence band are conducted as conduction bands. By further comprising an excitation energy supply unit for supplying excitation energy to excite (excited atoms), more precise detection can be made.
또한, 이동유도물질로 색소(Dye), 풀러렌(Fullerene), 풀러렌염, 또는 이온이 내포된 풀러렌(이하 "이온내포풀러렌"이라 한다.) 등을 이용하여 산화환원전위를 낮추고 양자수율(quantum yield)을 높임으로써, 검출할 수 있는 물질의 범위를 넓히고 측정 감도를 향상시킨 것이다.In addition, using a dye, fullerene, fullerene salt, or fullerene containing ions (hereinafter referred to as “ion-containing fullerene”) as a mobile inducer, the redox potential is lowered and quantum yield is obtained. Increasing) increases the range of the detectable substance and improves the measurement sensitivity.
또 본 발명은 상기한 분자 센서를 이용하여 암을 검출하고, 조기에 암을 검출함으로써, 생명을 연장하고, 건강한 삶을 추구하도록 하는 것이다. In addition, the present invention is to use the molecular sensor described above to detect cancer, early detection of cancer, to prolong life and to pursue a healthy life.
어떤 특정한 물질이 존재하는지의 여부를 검출하고자 하는 노력은 산업기술의 발전과 더불어 더욱 가속화 되어 다양한 산업군에서 다양한 원리를 이용하는 많은 종류의 센서가 개발되었다. 이러한 각종 센서는 전기, 전자, 기계, 화학, 물리, 바이오, 의학 등 산업계 전 분야에 걸쳐 인간의 오감을 빠르게 대체하였으며, 정보통신기술과 사물인터넷 기술이 융합되면서 사용 범위가 더욱 넓어지고 더욱 정밀해지고 있다.Efforts to detect whether a particular substance is present have accelerated with the development of industrial technology, resulting in the development of many types of sensors that use different principles in different industries. These sensors have quickly replaced the five senses of human beings in all fields of industry such as electricity, electronics, machinery, chemistry, physics, biotechnology, medicine, etc. have.
기술이 더욱 발전함에 따라 물질의 극미량을 검출할 수 있는 초정밀 센서의 개발이 지속적으로 이루어져 초정밀 진단의학분야, 초정밀 센싱분야, 초정밀 제어분야 및, 바이오, 우주과학분야 등에 사용되고 있다.As the technology is further developed, the development of ultra-precision sensors capable of detecting trace amounts of materials is continuously used, which is used in the fields of ultra-precision diagnostic medicine, ultra-precision sensing, ultra-precision control, and bio and space science.
1) 검출하고자 하는 물질의 흡착에 따른 역학적 왜곡을 검출하여 검출하고자 하는 물질을 검출하는 캔틸레버(Cantilever) 방식의 정밀 센서,1) cantilever type precision sensor for detecting a substance to be detected by detecting mechanical distortion caused by adsorption of the substance to be detected;
2) 검출하고자 하는 물질의 흡착에 따른 저항 변화를 검출하여 검출하고자 하는 물질을 검출하는 반도체 센서 방식의 정밀 센서,2) a precision sensor of a semiconductor sensor type for detecting a substance to be detected by detecting a change in resistance according to adsorption of the substance to be detected;
3) 변동하는 전기장 내부에 검출하고자 하는 물질을 통과시켜 특정한 질량단면적 비를 갖는 분자만 검지기에 도달하도록 함으로써 검출하고자 하는 물질을 검출하는 비대칭장 이온 이동 분석 방식을 이용한 정밀 센서,3) A precision sensor using an asymmetric field ion transport analysis method that detects a substance to be detected by passing a substance to be detected inside a fluctuating electric field so that only molecules having a specific mass area ratio reach the detector;
4) 유전자 조작한 마우스의 수용체를 이용하여 검출하고자 하는 물질을 검출하는 유전자 센싱 방식을 이용한 정밀 센서 등은 이러한 초정밀 센서의 일례이다.4) An accurate sensor using a gene sensing method that detects a substance to be detected using a genetically modified mouse receptor is an example of such an ultra precision sensor.
그러나 상기와 같은 종래의 기술들은 그 검출 정확도가 ppm(parts per million, 1/10-6) ~ ppb(parts per billion. 1/10-9) 레벨로, ppt(parts per trillion, 1/10-12) 레벨에 이르는 정밀한 계측 및, 분자 단위의 초정밀 계측이 어렵다는 문제점 등이 있었다.However, in ~ ppb (. Parts per billion 1/10 -9) conventional techniques is that the detection accuracy ppm (parts per million, 1/10 -6 ) level as described above, ppt (parts per trillion, 1/10 - 12 ) There were problems such as accurate measurement reaching the level and ultra-precision measurement in molecular units.
본 발명의 목적은 상기와 같은 종래의 문제점을 해소하기 위한 것으로, 특히, 산화환원전위의 에너지준위를 이용하여 검출대상물질을 분자단위로 검출함으로써 ppt 레벨에 이르는 정밀한 검측을 할 수 있는 새로운 개념의 "분자센서"를 제공하기 위한 것이다.An object of the present invention is to solve the conventional problems as described above, in particular, by using the energy level of the redox potential to detect the target material in molecular units of a new concept that can accurately detect the ppt level To provide a "molecular sensor".
또한, 검출대상물질에서 공여하는 전자를 매개로 한 전류를 검측함으로써 실시간 검측이 가능한 "분자센서"를 제공하기 위한 것이다.In addition, it is to provide a "molecular sensor" capable of real-time detection by detecting a current through the electrons donated from the detection target material.
또한, 다양한 산화환원전위의 에너지준위를 갖는 이동유도물질(양극측이동유도물질, 음극측이동유도물질)을 이용하여 검출대상물질을 검측하도록 함으로써, 검측 대상을 넓히고, 더욱 정밀한 검측이 이루어지도록 한 것이다.In addition, the detection target material is detected by using a mobile induction material (anode-side movement induction material, cathode-side movement induction material) having energy levels of various redox potentials, thereby widening the detection object and making more accurate detection. will be.
본 발명은 산화환원전위의 에너지준위를 이용하여 분자단위로 검출대상물질을 정밀하게 검출할 수 있는 분자센서로, 특히, 검출하고자 하는 물질이 갖는 산화환원전위의 에너지준위를 분석하여, 검출대상물질이 유입되었을 경우에 이 검출대상물질에서 공여하는 전자를 매개로 하여 음극에서 양극으로 전자 이동이 이루어지도록, 상기 음극 물질과 양극 물질의 에너지준위를 설계하여 구성함을 특징으로 한다.The present invention is a molecular sensor capable of precisely detecting a target substance on a molecular basis by using the energy level of the redox potential, in particular, by analyzing the energy level of the redox potential of the substance to be detected, In this case, the energy levels of the negative electrode material and the positive electrode material are designed and configured such that electrons are transferred from the negative electrode to the positive electrode through the electrons donated by the detection target material.
또한, 음극에서 양극으로의 전자 이동을 유도하는 하나 이상의 이동유도물질을 이용하여 에너지준위를 설계하고, 가전자대(Valence Band)의 호모(HOMO: Highest Occupied Molecular Orbital)에서 전도대(Conduction Band)의 루모(LUMO: Lowest Unoccupied Molecular Orbital)로 전자가 여기할 수 있도록 여기 에너지(광에너지, 열에너지 등)를 공급하여 전자의 이동을 제어함으로써, 더욱 정확한 검측이 이루어지도록 구성함을 특징으로 한다.In addition, the energy level is designed using one or more moving inducing materials that induce electron transfer from the cathode to the anode, and the lumo of the conduction band in the Highest Occupied Molecular Orbital (HOMO). (LUMO: Lowest Unoccupied Molecular Orbital) provides excitation energy (light energy, heat energy, etc.) to control the movement of the electrons to excite the electrons, characterized in that it is configured to make more accurate detection.
또한, 풀러렌, 풀러렌염, 이온내포풀러렌, 색소, 또는 이온내포풀러렌과 색소의 복합체 중 어느 하나 이상으로 이동유도물질을 구성함으로써 검출 범위를 넓히고 측정 감도를 향상시킴을 특징으로 한다.In addition, it is characterized by extending the detection range and improving the measurement sensitivity by constituting the mobile inducer with at least one of fullerene, fullerene salt, ion-containing fullerene, pigment, or complex of ion-containing fullerene and pigment.
상기 풀러렌은, C60, C70, C72, C78, C82, C90, C94, C96 중 어느 하나인 것을 특징으로 하고, 상기 이온내포풀러렌에 내포되는 이온은, 리튬, 나트륨, 칼륨, 세슘, 마그네슘, 칼슘, 또는 스트론튬 중 어느 하나인 것을 특징으로 하며, 상기 색소는, 폴리-3-헥실 티 오펜(P3HT) 등의 폴리 티 오펜, 폴리p-페닐 렌, 폴리p-페닐 렌 비닐 렌, 폴리아닐린, 폴리피롤, PEDOT, P3OT, POPT, MDMO-PPV, MEH-PPV 등의 고분자 중합체 또는 그 유도체 중 하나 이상임을 특징으로 한다.The fullerene is any one of C60, C70, C72, C78, C82, C90, C94, C96, and the ions contained in the iontofullerene are lithium, sodium, potassium, cesium, magnesium, calcium, Or strontium, and the pigment is polythiophene such as poly-3-hexyl thiophene (P3HT), poly p-phenylene, poly p-phenylene vinylene, polyaniline, polypyrrole, PEDOT , P3OT, POPT, MDMO-PPV, MEH-PPV and the like, characterized in that at least one of a polymer or a derivative thereof.
본 발명 "분자센서"는, 특히, 산화환원전위의 에너지준위를 이용하여 검출대상물질을 검출함으로써, ppt 레벨의 분자 단위의 정밀한 검측을 할 수 있는 효과가 있다.In particular, the "molecular sensor" of the present invention has the effect of accurately detecting the molecular units at the ppt level by detecting the detection target substance using the energy level of the redox potential.
또한, 이동유도물질을 이용하여 에너지준위를 설계함으로써 검출범위를 넓히고 선택성을 높임은 물론, 정확성을 높이는 효과가 있다.In addition, by designing the energy level using a mobile induction material, it is effective to widen the detection range, increase selectivity, and increase accuracy.
또한, 산화환원전위의 에너지준위가 매우 낮고 양자수율이 높은 이온내포풀러렌과 색소 등을 이용하여 에너지준위를 설계함으로써 검측 범위 및 정확성을 더욱 확장시키는 효과가 있다.In addition, the energy level of the redox potential is very low and the quantum yield is high by using ion-containing fullerenes and pigments to design the energy level, thereby further extending the detection range and accuracy.
이러한 본 발명은 ppt 레벨의 정밀한 검측 기술을 제공하여 초정밀 진단의학분야, 초정밀 센싱분야, 초정밀 제어분야 및 바이오, 우주과학분야에서 기존의 기술로는 해결할 수 없었던 검측 문제를 해결하여 당해 분야의 비약적 발전을 견인하는 효과가 있다.The present invention provides a ppt level of precision detection technology to solve the detection problems that could not be solved by the existing technologies in the field of ultra-precision diagnostic medicine, ultra-precision sensing, ultra-precision control and bio, aerospace sciences to make a leap forward in the field. It is effective to tow.
예를 들어, 호흡, 소변, 혈액 및 타액에 극미량으로 존재하는 암기인물질(암을 원인으로 하여 발생하는 물질)을 검출하여 조기 암 진단을 하도록 구성할 수 있고, 결핵기인물질(결핵을 원인으로 하여 발생하는 물질)을 검출하여 결핵을 조기 진단할 수 있도록 구성할 수 있고, 구취기인물질(구취를 원인으로 하여 발생하는 물질)을 검출하여 구취 원인을 알 수 있도록 구성할 수 있고, 스트레스기인물질(스트레스를 원인으로 하여 발생하는 물질)을 검출하여 스트레스 정도를 검출할 수 있는 효과가 있다. 또한 사린가스, 다이옥신 등과 같은 극미량의 치명적인 독가스를 검출하여 사전경보를 할 수 있도록 구성할 수 있음은 물론, 다양한 분야에서 다양한 정밀 센서를 구성할 수 있는 효과가 있다.For example, it can be configured to detect early cancers (substances caused by cancer) present in trace amounts in the breath, urine, blood and saliva, and to diagnose early cancer, Can be configured to detect tuberculosis early, to detect the bad breath (materials caused by bad breath) to determine the cause of bad breath, stress caused substances It is effective in detecting the stress level by detecting (substances caused by stress). In addition, it can be configured to detect a small amount of deadly poison gas such as sarin gas, dioxin and the like to pre-alarm, as well as to configure a variety of precision sensors in various fields.
도 1은 본 발명 "분자센서"의 에너지준위 설계를 나타낸 도면,1 is a view showing the energy level design of the "molecular sensor" of the present invention,
도 2는 본 발명 "분자센서"의 다른 에너지준위 설계를 나타낸 도면,2 is a view showing another energy level design of the "molecular sensor" of the present invention;
도 3은 본 발명 "분자센서"의 또 다른 에너지준위 설계를 나타낸 도면,3 is a view showing another energy level design of the "molecular sensor" of the present invention;
도 4는 본 발명 "분자센서"의 또 다른 에너지준위 설계를 나타낸 도면,4 is a view showing another energy level design of the "molecular sensor" of the present invention;
도 5는 본 발명 "분자센서"의 또 다른 에너지준위 설계를 나타낸 도면,5 is a view showing another energy level design of the "molecular sensor" of the present invention;
도 6은 본 발명 "분자센서"의 또 다른 에너지준위 설계를 나타낸 도면,6 is a view showing another energy level design of the "molecular sensor" of the present invention;
도 7은 본 발명 "분자센서"의 또 다른 에너지준위 설계를 나타낸 도면,7 is a view showing another energy level design of the "molecular sensor" of the present invention;
도 8은 본 발명 "분자센서"의 또 다른 에너지준위 설계를 나타낸 도면,8 is a view showing another energy level design of the "molecular sensor" of the present invention;
도 9는 본 발명 "분자센서"의 또 다른 에너지준위 설계를 나타낸 도면,9 is a view showing another energy level design of the "molecular sensor" of the present invention;
도 10은 본 발명 "분자센서"의 또 다른 에너지준위 설계를 나타낸 도면,10 is a view showing another energy level design of the "molecular sensor" of the present invention;
도 11은 본 발명 "분자센서"의 또 다른 에너지준위 설계를 나타낸 도면,11 is a view showing another energy level design of the invention "molecular sensor",
도 12는 본 발명 "분자센서"의 또 다른 에너지준위 설계를 나타낸 도면,12 is a view showing another energy level design of the present invention "molecular sensor",
도 13은 본 발명 "분자센서"의 또 다른 에너지준위 설계를 나타낸 도면,13 is a view showing another energy level design of the "molecular sensor" of the present invention;
도 14는 본 발명 "분자센서"의 또 다른 에너지준위 설계를 나타낸 도면,14 is a view showing another energy level design of the invention "molecular sensor",
도 15는 본 발명의 시스템 구성을 나타낸 블록도,15 is a block diagram showing a system configuration of the present invention;
도 16은 본 발명 센서전극부의 구성을 나타낸 도면,16 is a view showing the configuration of the sensor electrode unit of the present invention;
도 17은 본 발명의 실시예에 따른 에너지준위 설계를 나타낸 도면,17 is a view showing an energy level design according to an embodiment of the present invention;
도 18은 본 발명의 실시예에 따른 센서전극부의 구성을 나타낸 도면,18 is a view showing a configuration of a sensor electrode unit according to an embodiment of the present invention;
도 19는 본 발명의 실시예에 따른 센서전극부의 다른 구성을 나타낸 도면,19 is a view showing another configuration of a sensor electrode unit according to an embodiment of the present invention;
도 20은 본 발명의 실시 예에 따른 센서전극부의 또 다른 구성을 나타낸 도면,20 is a view showing another configuration of a sensor electrode unit according to an embodiment of the present invention;
도 21a 는 이온내포풀러렌을 나타낸 개념도,21A is a conceptual diagram showing an ion containing fullerene,
도 21b 는 이온내포풀러렌과 색소가 결합한 중합체의 구성을 나타낸 개념도,Fig. 21B is a conceptual diagram showing the structure of a polymer in which an iontophorfullerene and a dye are bonded;
도 21c 는 광에너지에 의한 전자의 여기 상태를 나타낸 개념도,21C is a conceptual diagram showing an excited state of electrons by light energy;
도 22 은 양극에 풀러렌-색소 중합체를 전기영동 시킨 것을 나타낸 개념도,22 is a conceptual diagram showing the electrophoresis of fullerene-pigment polymer on the positive electrode,
도 23 는 전자의 에너지준위 나타낸 도면Fig. 23 shows the energy level of electrons.
도 24는 포텐시오스타트의 회로구성을 개념적으로 나타낸 도면,24 is a diagram conceptually showing a circuit configuration of a potentiostat;
도 25는 측정 전극 구성의 일례를 나타낸 도면,25 is a diagram showing an example of a configuration of a measuring electrode;
도 26은 CV 그래프의 구간 확대를 나타낸 그래프,26 is a graph illustrating interval enlargement of a CV graph;
도 27은 파장에 따른 양자수율의 일례를 나타낸 그래프.27 is a graph showing an example of quantum yield according to wavelength.
도 29 및 도 28은 본 발명의 제 2실시 예를 설명하기 위한 도면,29 and 28 are views for explaining a second embodiment of the present invention;
도 30 내지 도 32는 본 발명의 제 3실시 예를 설명하기 위한 도면, 30 to 32 are views for explaining a third embodiment of the present invention;
도 33 내지 도 38은 본 발명의 제 4실시 예를 설명하기 위한 도면, 33 to 38 are views for explaining a fourth embodiment of the present invention;
도 39 및 도 40은 본 발명의 제 5실시 예를 설명하기 위한 도면, 39 and 40 are views for explaining a fifth embodiment of the present invention;
도 41 내지 도 45는 본 발명의 제 6실시 예를 설명하기 위한 도면, 41 to 45 are views for explaining a sixth embodiment of the present invention;
도 46은 본 발명의 제 7실시 예를 설명하기 위한 도면, 46 is a view for explaining a seventh embodiment of the present invention;
도 47 및 도 48은 본 발명의 제 8실시 예를 설명하기 위한 도면, 47 and 48 are views for explaining an eighth embodiment of the present invention;
도 49는 본 발명의 제 9실시 예를 설명하기 위한 도면, 49 is a view for explaining a ninth embodiment of the present invention;
이하 본 발명의 실시 예를 설명한다, Hereinafter, an embodiment of the present invention will be described.
[제1실시예][First Embodiment]
본 발명의 제 1실시예는 분자 센서에 관한 것으로 이 분자 센서의 에너지를 준위를 이용하여 암 또는 다른 분자 예를 들어 폭발물 등을 검출할 수 있다. 바람직하게 본 발명에서는 암 검출을 기본으로 하며, 하기의 구성 1 내지 7 그리고 기타 구성은 암 진단 센서의 센서 전극부 에너지 준위 설계에 활용한다. The first embodiment of the present invention relates to a molecular sensor and can detect cancer or other molecules such as explosives using the energy of the molecular sensor. Preferably, the present invention is based on cancer detection, and the following configurations 1 to 7 and other configurations are utilized for designing the energy level of the sensor electrode of the cancer diagnostic sensor.
<구성 1><Configuration 1>
본 발명 "분자센서"의 기술적 사상에 따른 구성1은, 도1에서 도시되는 바와 같이, 검출하고자하는 검출대상물질의 가전자대의 에너지준위보다 높은 산화환원전위를 갖도록 구성된 음극; 및, 검출대상물질의 가전자대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 양극;을 포함하여 이루어져, 상기 음극과 양극 사이에 검출대상물질이 유입되었을 경우, 이 검출대상물질을 매개로 하여 음극에서 양극으로 전자 이동이 이루어지도록 에너지준위가 설정됨을 그 기술적 구성상의 특징으로 한다. Configuration 1 according to the technical idea of the "molecular sensor" of the present invention, as shown in Figure 1, the negative electrode configured to have a redox potential higher than the energy level of the valence band of the detection target material to be detected; And an anode configured to have a redox potential lower than the energy level of the valence band of the detection target material. When the detection target material is introduced between the cathode and the anode, The technical configuration is characterized by the fact that the energy level is set to allow electron movement to the anode.
이와 같이 구성된 본 발명의 구성1은, 음극의 에너지준위는 검출대상물질보다 높게 설계하고, 양극의 에너지준위는 검출대상물질보다 낮게 설계하여, 상기 검출대상물질에서 공여되는 전자를 매개로 하여 음극에서 양극으로 전자의 이동이 이루어질 수 있도록 한 것이다.In the configuration 1 of the present invention configured as described above, the energy level of the cathode is designed to be higher than that of the detection target material, and the energy level of the anode is designed to be lower than that of the detection target material. The electrons can be moved to the anode.
양극의 가전자대의 에너지 준위 c와, 검출대상물질의 가전자대의 에너지 준위 e 및, 음극의 가전자대의 에너지준위 a의 관계는 다음과 같다.The relationship between the energy level c of the valence band of the positive electrode, the energy level e of the valence band of the detection target material, and the energy level a of the valence band of the negative electrode is as follows.
구성1의 에너지 준위: c<e, e<aEnergy level of configuration 1: c <e, e <a
이러한 본 발명의 구성1은, 상기 음극의 에너지준위 값과 양극의 에너지준위 값 사이의 에너지준위를 갖는 검출대상물질이 유입되면, 상기 검출대상물질의 가전자대에 있던 전자가 자신보다 낮은 에너지준위를 갖는 양극으로 이동하고, 양극으로 이동한 전자로 인하여 생긴 검출대상물질의 가전자대의 양공으로 음극에서 전자가 이동하게 되는 것으로, 검출대상물질이 존재하는 한 검출대상물질에 비례하는 수의 전자가 지속적으로 이동하게 된다. In the configuration 1 of the present invention, when a detection material having an energy level between the energy level value of the cathode and the energy level value of the anode is introduced, electrons in the valence band of the detection material have a lower energy level than their own. The electrons move from the cathode to the hole of the valence band of the detection target material caused by the electrons moved to the anode, and the number of electrons proportional to the detection target material is maintained as long as the detection target material exists. Will be moved to.
이때, 전자의 이동 여부(전류의 흐름 여부)를 검출하여 검출대상물질이 존재하는 지의 여부를 판단하고, 전자의 이동 정도(전류량)를 검출하여 유입된 검출대상물질의 양을 정밀하게 판단할 수 있다. At this time, it is possible to determine whether the detection target material exists by detecting the movement of electrons (whether the current flows), and precisely determine the amount of the detection target material introduced by detecting the degree of movement of electrons (amount of current). have.
전자의 이동은 유입되는 검출대상물질의 분자 수에 비례하므로, 이동하는 전자의 이동(전류량)을 검출함으로써 분자 단위의 아주 정밀한 검측을 할 수 있다.Since the movement of electrons is proportional to the number of molecules of the incoming detection target material, very precise detection of the molecular units can be performed by detecting the movement (current amount) of the moving electrons.
검출대상물질에 대한 선택성은 음극과 양극의 에너지준위 차를 미세하게 할수록 높아진다.The selectivity for the substance to be detected increases as the energy level difference between the cathode and the anode becomes smaller.
이러한 본 발명의 구성1에 따른 기술은 질소산화물(NOx)이나, 과산화수소와 같이 자연 상태에서 라디칼을 가지고 있는 물질을 검출하고자 할 때 사용됨이 바람직하다.The technique according to the configuration 1 of the present invention is preferably used when detecting a substance having a radical in a natural state such as nitrogen oxides (NOx) or hydrogen peroxide.
<구성 2><Configuration 2>
본 발명 "분자센서"의 기술적 사상에 따른 구성2는, 도2에서 도시되는 바와 같이, 검출하고자하는 검출대상물질의 가전자대의 에너지준위보다 높은 산화환원전위를 갖도록 구성된 음극; 검출대상물질의 전도대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 양극; 및, 상기 검출대상물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하는 여기에너지공급부;를 포함하여 이루어져, 상기 음극과 양극 사이에 검출대상물질이 유입되었을 경우, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 검출대상물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 전도대로 여기된 전자가 양극으로 이동하며, 상기 검출대상물질의 가전자대에 생긴 양공으로 음극에서 전자가 이동하는 과정이 이루어지도록 에너지준위가 설정됨을 그 기술적 구성상의 특징으로 한다.Configuration 2 according to the technical idea of the "molecular sensor" of the present invention, as shown in Figure 2, the negative electrode configured to have a redox potential higher than the energy level of the valence band of the detection target material to be detected; An anode configured to have a redox potential lower than the energy level of the conduction band of the detection target material; And an excitation energy supply unit for supplying excitation energy so that electrons in the valence band of the detection target material can be excited with a conduction band, when the detection target material is introduced between the cathode and the anode. The excitation energy supplied from the supply unit excites the electrons in the valence band of the target material into the conduction band, the electrons excited in the conduction band move to the anode, and are holes in the valence band of the material to be detected. It is characterized by the technical configuration that the energy level is set so that the process of moving is accomplished.
구성2의 에너지 준위: c>e, e<aEnergy levels in composition 2: c> e, e <a
이와 같이 구성된 본 발명의 구성2는, 검출대상물질의 가전자대와 전도대의 밴드갭(Band Gap) 에너지 보다 큰 여기 에너지(예: 광)를 검출대상물질에 공급하여 상기 검출대상물질의 가전자대에 있는 전자가 전도대로 여기하도록 하고, 이 전도대에 여기된 전자는 전도대의 에너지준위보다 낮은 에너지준위를 갖는 양극으로 이동되도록 한 것이다. 또한, 상기 검출대상물질의 가전자대에 생긴 양공으로 음극에서 전자가 이동되어 전류가 흐르도록 한 것으로, 여기 에너지가 공급되는 한 상기와 같은 과정을 반복 수행하여 검출대상물질의 분자 수에 비례하는 전류가 흐르도록 한 것이다.In the configuration 2 of the present invention configured as described above, excitation energy (for example, light) larger than the band gap energy of the valence band and conduction band of the detection target material is supplied to the detection target material to provide the valence band of the detection target material. The electrons in the band are excited by the conduction band, and the electrons excited in the band are transferred to the anode having an energy level lower than the energy level of the band. In addition, the electrons are moved from the cathode to the positive holes generated in the valence band of the detection target material, and the current is proportional to the number of molecules of the detection target material by repeating the above process as long as the excitation energy is supplied. Is to flow.
이러한 본 발명의 구성2는 양극의 에너지준위가 검출대상물질의 가전자대의 에너지준위보다 높아 검출대상물질의 가전자대에 있는 전자가 양극으로 이동할 수 없는 경우, 상기 검출대상물질의 가전자대에 있는 전자를 전도대로 여기시켜 여기된 전자가 갖는 에너지준위를 이용하여 여기된 전자가 양극으로 이동할 수 있도록 한 것이다.According to the configuration 2 of the present invention, when the energy level of the anode is higher than the energy level of the valence band of the detection target material, the electrons in the valence band of the detection target material cannot move to the anode. It is excited to conduct the excited electrons to the anode by using the energy level of the excited electrons.
이를 다시 설명하면 다음과 같다.This will be described as follows.
주지하다시피, 도22에서 도시되는 바와 같이, 전자로 가득 차있는 밴드(Band)를 가전자대(Valence band)라 하고, 그 최고점유궤도를 호모(HOMO)라 한다. 또한, 전자가 비어있는 밴드를 전도대(Conduction band)라 하고, 그 최저궤도를 루모(LUMO)라 하고, 호모와 루모 사이의 에너지를 밴드갭 에너지(Eg)라 하며, 이 밴드갭 에너지 이상의 에너지를 공급하면 가전자대에 있는 전자를 전도대로 여기시킬 수 있다. As is well known, as shown in Fig. 22, a band filled with electrons is called a valence band, and its highest trajectory is called a HOMO. In addition, the band in which the electron is empty is called a conduction band, the lowest orbit is called LUMO, and the energy between the homo and lumo is called bandgap energy (Eg). When supplied, the electrons in the valence band can be excited by a conduction band.
본 발명의 구성2는, 도2에서 도시되는 바와 같이, 여기에너지공급부를 통해 상기 밴드갭 에너지 이상의 에너지를 공급하여 검출대상물질의 가전자대에 있는 전자를 전도대로 여기시켜 에너지준위를 높임으로써 양극으로의 전자 이동이 이루어지도록 한 것이다. As shown in FIG. 2, the configuration 2 of the present invention supplies energy above the bandgap energy through an excitation energy supply unit to excite electrons in the valence band of the detection target to a conduction band to raise the energy level to the anode. Is to make the electron transfer.
상기 여기에너지공급부는, 가전자대와 전도대 사이의 밴드갭 에너지 이상의 에너지를 공급하는 광에너지공급부, 또는 전자파에너지공급부, 또는 열에너지공급부 중 어느 하나 이상으로 구성됨을 특징으로 한다.The excitation energy supply unit is characterized in that it is composed of any one or more of an optical energy supply unit, an electromagnetic wave energy supply unit, or a thermal energy supply unit for supplying energy above the band gap energy between the valence band and the conduction band.
이러한 여기에너지공급부는 광에너지나, 전자파에너지, 또는 열에너지를 이용하여 여기 에너지를 구성한 것으로, 경우에 따라서는 두 개 이상의 에너지원을 함께 사용하여 여기 에너지를 구성할 수 있다. 예를 들어, 광에너지로 일정 크기의 여기 에너지를 공급하고, 열에너지로 일정 크기의 여기 에너지를 공급할 수 있도록 구성 할 수 있다. 이러한 구성은 하나의 에너지원으로 원하는 크기의 여기 에너지를 공급할 수 없을 경우 사용하기 위한 것이다. The excitation energy supply unit configures excitation energy using light energy, electromagnetic wave energy, or thermal energy, and in some cases, excitation energy may be configured by using two or more energy sources together. For example, it may be configured to supply a predetermined amount of excitation energy with light energy and to supply a predetermined amount of excitation energy with thermal energy. This configuration is intended to be used when one energy source cannot supply excitation energy of the desired size.
설명에 있어서 상기 "전자파"란 개념에는 열과 광이 모두 포함되나 설명의 편의상 구별하여 사용한다.In the description, the term "electromagnetic wave" includes both heat and light, but is used for convenience of description.
상기 광에너지공급부에서 조사하는 광은 각기 다른 파장과 밝기를 가지는 하나 이상의 광으로 구성됨을 특징으로 한다.The light irradiated by the optical energy supply unit is characterized by consisting of one or more lights having different wavelengths and brightness.
상기 광에너지공급부에서 조사하는 광원은, 각기 다른 파장을 가지는 LED 광원, 또는 각기 다른 파장을 가지는 레이저 광원, 또는 할로겐 램프, 또는 수은 램프, 또는 크세논 램프 중 어느 하나 이상으로 구성됨을 특징으로 한다.The light source irradiated by the light energy supply unit is characterized in that the LED light source having a different wavelength, or a laser light source having a different wavelength, a halogen lamp, a mercury lamp, or any one of xenon lamp.
이와 같은 광에너지공급부는, 파장이나 밝기로 여기 에너지 양을 설계하여 각기 다른 밴드갭 에너지를 공급하기 위한 것이다.Such an optical energy supply unit is for supplying different bandgap energy by designing an amount of excitation energy by wavelength or brightness.
예를 들어, 양극측이동유도물질, 또는 음극측이동유도물질이 다수 개 사용되고, 그 사용된 이동유도물질의 밴드갭 에너지가 다르고, 또한, 각각의 밴드갭 에너지를 구별하여 공급할 필요가 있을 경우, 공급하는 광의 파장이나 밝기를 조절하여 이를 달성할 수 있다.For example, when a plurality of anode-side induction materials or cathode-side movement induction materials are used, and the bandgap energy of the used mobile induction materials is different, and each bandgap energy needs to be supplied separately, This can be achieved by adjusting the wavelength or brightness of the light to be supplied.
이때, 상기와는 별도로 하나의 광을 이용하여 모든 이동유도물질에 밴드갭 에너지를 공급할 수 있음은 물론이다. 즉, 가장 큰 밴드갭 에너지 이상의 에너지를 공급하는 하나의 광원을 사용하여 다수 개 이동유도물질에 여기 에너지를 공급하도록 구성할 수 있다.At this time, the band gap energy can be supplied to all the mobile induction materials by using one light separately. That is, it can be configured to supply excitation energy to a plurality of moving induction materials by using one light source that supplies energy above the largest bandgap energy.
상기 각기 다른 광원을 구동시키는 구동장치의 구성 및 동작은 주지하는 바와 같으므로 그 상세한 설명은 생략한다.Since the configuration and operation of the driving device for driving the different light sources are well known, detailed description thereof will be omitted.
상기 전자파에너지공급부에서 공급하는 전자파는 각기 다른 파장과 세기를 가지는 하나 이상의 전자파로 구성됨을 특징으로 한다.The electromagnetic wave supplied from the electromagnetic wave energy supply unit is characterized by consisting of one or more electromagnetic waves having different wavelengths and intensities.
이러한 전자파에너지공급부는, 파장이나 세기로 여기 에너지 양을 설계하여 각기 다른 밴드갭 에너지를 공급하기 위한 것이다. 예를 들어, 1.0GHz, 1.2GHz, 2GHz 등의 전자파를 사용할 수 있다.The electromagnetic wave energy supply unit is for supplying different bandgap energy by designing the amount of excitation energy by wavelength or intensity. For example, electromagnetic waves such as 1.0 GHz, 1.2 GHz, and 2 GHz may be used.
상기 각기 다른 전자파를 공급하는 전자파발생장치의 구성 및 동작은 주지하는 바와 같으므로 그 상세한 설명은 생략한다.Since the configuration and operation of the electromagnetic wave generating device for supplying the different electromagnetic waves are well known, detailed description thereof will be omitted.
상기 열에너지공급부에서 조사하는 열은 각기 다른 온도와 세기를 가지는 하나 이상의 열로 구성됨을 특징으로 한다.The heat irradiated by the heat energy supply unit is characterized by consisting of one or more heat having different temperatures and intensities.
이러한 열에너지공급부는, 온도와 세기로 여기 에너지 양을 설계하여 각기 다른 밴드갭 에너지를 공급하기 위한 것이다. 예를 들어, 1,000℃ 열, 1,500℃ 열 등의 열을 공급하도록 구성할 수 있다. The thermal energy supply unit is designed to supply different bandgap energy by designing an amount of excitation energy by temperature and intensity. For example, it can be comprised so that heat, such as 1,000 degreeC heat and 1,500 degreeC heat, may be supplied.
상기 열을 발생하는 발열장치의 구성과 동작은 주지하는 바와 같으므로 그 상세한 설명은 생략한다.Since the configuration and operation of the heat generating device for generating heat are well known, detailed description thereof will be omitted.
본 구성2에 있어서 상기 양극 또는 음극은 투명전극으로 이루어짐이 바람직하다. 이러한 투명전극은 여기에너지공급부에서 조사되는 광이 검출대상물질에 투과되어 조사되도록 하기 위한 것으로, TCO(Transparent conducting oxide: 투명 전도성 산화물), FTO(F-doped [SnO₂]: 불소 도핑 산화주석), ITO(Indium tin oxide: 인듐 주석산화물), AZO(Al-doped ZnO: 알류미늄 도핑 산화아연), GZO(Ga-doped ZnO: 갈류 도핑 산화아연) 등의 투명전극이 사용될 수 있다.In this configuration 2, the anode or cathode is preferably made of a transparent electrode. Such a transparent electrode is intended to allow light emitted from the excitation energy supply to be transmitted through the detection target material. The transparent electrode is transparent conducting oxide (TCO), F-doped [SnO₂] fluorine-doped tin oxide, Transparent electrodes such as ITO (Indium tin oxide), AZO (Al-doped ZnO: aluminum doped zinc oxide), GZO (Ga-doped ZnO: galvanized doped zinc oxide) may be used.
<구성 3><Configuration 3>
본 발명 "분자센서"의 기술적 사상에 따른 구성3은, 도3에서 도시되는 바와 같이, 검출하고자하는 검출대상물질의 가전자대의 에너지준위보다 높은 산화환원전위를 갖도록 구성된 음극; 검출대상물질의 가전자대의 에너지준위 보다 높은 산화환원전위를 갖도록 구성된 양극; 가전자대의 산화환원전위의 에너지준위가 상기 검출대상물질의 가전자대의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 양극의 산화환원준위의 에너지준위보다 높은 에너지준위를 갖도록 구성된 양극측이동유도물질; 및, 상기 양극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하는 여기에너지공급부;를 포함하여 이루어져, 상기 음극과 양극 사이에 검출대상물질이 유입되었을 경우, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 양극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 양극측이동유도물질의 전도대로 여기된 전자가 양극으로 이동하고, 상기 양극측이동유도물질의 가전자대에 생긴 양공으로 검출대상물질의 전자가 이동하고, 상기 검출대상물질의 가전자대에 생긴 양공으로 음극에서 전자가 이동하는 과정이 이루어지도록 에너지준위가 설정됨을 그 기술적 구성상의 특징으로 한다. Configuration 3 according to the technical idea of the "molecular sensor" of the present invention, as shown in Figure 3, the negative electrode configured to have a redox potential higher than the energy level of the valence band of the detection target material to be detected; An anode configured to have a redox potential higher than the energy level of the valence band of the detection target material; The anode side is configured such that the energy level of the redox potential of the valence band is lower than that of the valence band of the substance to be detected, and that the energy level of the redox potential of the conduction band has a higher energy level than that of the redox level of the anode. Mobile derivatives; And an excitation energy supply unit for supplying excitation energy to excite electrons in the valence band of the anode-side movement inducing material to a conduction band, when the detection target material is introduced between the cathode and the anode. Electrons in the valence band of the anode-side induction material are excited as conduction bands by the excitation energy supplied from an excitation energy supply unit, electrons excited in the conduction band of the cathode-side transport induction material are moved to the anode, and the anode-side movement is performed. The technical configuration is characterized in that the energy level is set so that the electrons of the detection target material move to the holes generated in the valence band of the inductive material, and the electrons move from the cathode to the holes generated in the valence band of the detection target material. do.
구성3의 에너지 준위: c>e>g, e<aEnergy levels in composition 3: c> e> g, e <a
이와 같이 구성된 본 발명의 구성3은, 검출대상물질과 양극 사이에 양극측이동유도물질을 더 구성하여 전자 이동 경로를 설계함을 특징으로 한다. Configuration 3 of the present invention configured as described above is characterized in that an electron transfer path is designed by further configuring an anode-side movement inducing material between the detection target material and the anode.
즉, 검출대상물질의 가전자대의 에너지준위보다 더 낮은 에너지준위를 갖는 양극측이동유도물질을 양극측에 더 구성하여 검출대상물질에서 공여된 전자를 매개로하는 전자 이동 경로를 설계한 것이다.In other words, an electron transport path is designed through the electron donated from the detection target material by further configuring an anode-side movement induction material having an energy level lower than the energy level of the valence band of the detection target material.
상기 양극측이동유도물질 또는 음극측이동유도물질은, 풀러렌, 풀러렌염, 이온내포풀러렌, 색소, 또는 이온내포풀러렌과 색소의 중합체 중 어느 하나 이상으로 구성됨을 특징으로 한다.The anode-side movement inducing material or the cathode-side movement inducing material is characterized in that it is composed of any one or more of a fullerene, a fullerene salt, ion-containing fullerenes, pigments, or polymers of ion-containing fullerenes and pigments.
상기 풀러렌은, C60, C70, C72, C78, C82, C90, C94, C96 중 어느 하나인 것을 특징으로 한다.The fullerene is characterized in that any one of C60, C70, C72, C78, C82, C90, C94, C96.
상기 풀러렌에 내포되는 이온은, 리튬, 나트륨, 칼륨, 세슘, 마그네슘, 칼슘, 또는 스트론튬 중 어느 하나인 것을 특징한다.The ion contained in the fullerene is any one of lithium, sodium, potassium, cesium, magnesium, calcium, or strontium.
상기 색소는 폴리-3-헥실 티 오펜(P3HT) 등의 폴리 티 오펜, 폴리p-페닐 렌, 폴리p-페닐 렌 비닐 렌, 폴리아닐린, 폴리피롤, PEDOT, P3OT, POPT, MDMO-PPV, MEH-PPV 등의 고분자 중합체 또는 그 유도체 중 하나 이상임을 특징으로 한다.The pigment is polythiophene such as poly-3-hexyl thiophene (P3HT), poly p-phenylene, poly p-phenylene vinylene, polyaniline, polypyrrole, PEDOT, P3OT, POPT, MDMO-PPV, MEH-PPV It is characterized by one or more of a high molecular polymer or derivatives thereof.
도20a는 C60 풀러렌에 이온이 내포된 것을 나타낸 것이고, 도20b는 이온내포풀러렌과 색소의 결합을 나타낸 것이고, 20c는 광에너지에 의한 전자의 여기를 나타낸 개념도이다.FIG. 20A shows the inclusion of ions in C60 fullerene, FIG. 20B shows the binding of ionic inclusion fullerene and a pigment, and 20c is a conceptual diagram showing excitation of electrons by light energy.
리튬내포풀러렌은 가전자대의 산화환원전위의 에너지준위가 매우 낮아 검출하고자 하는 검출대상물질의 범위를 넓힐 수 있는 장점이 있다.Lithium-included fullerene has an advantage that the energy level of the redox potential of the valence band is very low, thereby broadening the range of a target to be detected.
또한, 리튬내포풀러렌은 양자수율(IPCE: Incident Photon to Current Efficiency)이 높아 측정 감도를 향상시킬 수 있는 장점이 있다. In addition, lithium-encapsulated fullerene has a high quantum yield (IPCE: Incident Photon to Current Efficiency) has the advantage of improving the measurement sensitivity.
상기 양자수율이란, 광화학 반응에서 실제로 화학 변화를 일으킨 분자수와 흡수된 광양자 수의 비를 나타낸 것이다.The quantum yield indicates the ratio of the number of molecules and the number of photons absorbed, which actually caused a chemical change in the photochemical reaction.
상기 양극측이동유도물질, 또는 음극측이동유도물질은 전기영동(電氣泳動, electrophoresis)을 이용하여 양극, 또는 음극에 포함시킴을 특징으로 한다.The anode-side movement inducing material, or cathode-side movement inducing material is characterized in that it is included in the positive electrode, or the negative electrode by using electrophoresis (electrophoresis).
도21은 양극(121a)에 풀러렌-색소 중합체(122a)를 전기영동 시킨 것을 나타낸 구성도이다.FIG. 21 is a diagram showing the electrophoresis of the fullerene-pigment polymer 122a on the positive electrode 121a.
상기 양극측이동유도물질 또는 음극측이동유도물질은 [TiO₂], [SnO₂]을 비롯한 다양한 산화환원전위의 에너지준위를 갖는 물질이 사용될 수 있으며, 이러한 이동유도물질을 이용하여 더욱 정밀하고 정확한 에너지준위를 설계할 수 있다.The anode-side movement inducing material or cathode-side movement inducing material may be a material having energy levels of various redox potentials, such as [TiO₂], [SnO₂], by using such a mobile induction material more precise and accurate energy level Can be designed.
<구성 4><Configuration 4>
본 발명 "분자센서"의 기술적 사상에 따른 구성4는, 도4에서 도시되는 바와 같이, 검출하고자하는 검출대상물질의 가전자대의 에너지준위보다 높은 산화환원전위를 갖도록 구성된 음극; 검출대상물질의 가전자대의 에너지준위 보다 높은 산화환원전위를 갖도록 구성된 양극; 가전자대의 산화환원전위의 에너지준위가 상기 검출대상물질의 전도대의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 양극의 산화환원준위의 에너지준위보다 높은 에너지준위를 갖도록 구성된 양극측이동유도물질; 및, 상기 양극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하고, 상기 검출대상물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하는 여기에너지공급부;를 포함하여 이루어져, 상기 음극과 양극 사이에 검출대상물질이 유입되었을 경우, 첫째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 양극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 양극측이동유도물질의 전도대로 여기된 전자가 양극으로 이동하고, 둘째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 검출대상물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 검출대상물질의 전도대로 여기된 전자가 양극측이동유도물질의 가전자대에 생긴 양공으로 이동하고, 셋째, 상기 검출대상물질의 가전자대에 생긴 양공으로 음극에서 전자가 이동하는 과정이 이루어지도록 에너지준위가 설정됨을 그 기술적 구성상의 특징으로 한다.Configuration 4 according to the technical idea of the "molecular sensor" of the present invention, as shown in Figure 4, the negative electrode configured to have a redox potential higher than the energy level of the valence band of the detection target material to be detected; An anode configured to have a redox potential higher than the energy level of the valence band of the detection target material; Anode-side shifting where the energy level of the redox potential of the valence band is lower than the energy level of the conduction band of the material to be detected and the energy level of the redox potential of the conduction band has a higher energy level than that of the redox level of the anode. Inducer; And excitation energy for supplying excitation energy to excite the electrons in the valence band of the anode-side moving induction material to the conduction band, and excitation energy for supplying excitation energy for electrons in the valence band of the detection target material to the conduction band. When the detection target material is introduced between the cathode and the anode, first, the electrons in the valence band of the anode-side moving induction material by the excitation energy supplied from the excitation energy supply unit Electrons excited by the conduction band of the anode-side moving inducing material move to the anode, and second, electrons in the valence band of the detection target material are excited by the excitation energy supplied from the excitation energy supply unit, Electrons excited by the conduction band of the detection target material are holes generated in the valence band of the anode-side transfer inducing material. And, third, an energy level is set so that a process of moving electrons from the cathode to the holes formed in the valence band of the detection target material is made.
구성4의 에너지 준위: c>g>e, e<aEnergy levels in Configuration 4: c> g> e, e <a
이와 같이 구성된 본 발명의 구성4는, 검출대상물질의 유입에 따른 전자 이동 경로를 설계함에 있어서, 검출대상물질과 양극측이동유도물질의 가전자대에 있는 전자를 전도대로 여기시켜 분자센서를 구성함에 특징이 있다.In the configuration 4 of the present invention configured as described above, in designing the electron migration path according to the inflow of the detection target material, the molecular sensor is configured by exciting the electrons in the valence band of the detection target material and the anode-side movement induction material with a conduction band. There is a characteristic.
<구성 5><Configuration 5>
본 발명 "분자센서"의 기술적 사상에 따른 구성5는, 도5에서 도시되는 바와 같이, 검출하고자하는 검출대상물질의 가전자대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 음극; 검출대상물질의 가전자대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 양극; 가전자대의 산화환원전위의 에너지준위가 상기 음극의 산화환원전위의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 검출대상물질의 가전자대의 에너지준위보다 높은 에너지준위를 갖도록 구성된 음극측이동유도물질; 및, 상기 음극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하는 여기에너지공급부;를 포함하여 이루어져, 상기 음극과 양극 사이에 검출대상물질이 유입되었을 경우, 첫째, 검출대상물질에 있는 전자가 양극으로 이동하고, 둘째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 음극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 음극측이동유도물질의 전도대로 여기된 전자가 검출대상물질의 가전자대에 생긴 양공으로 이동하고, 셋째, 상기 음극측이동유도물질의 가전자대에 생긴 양공으로 음극에서 전자가 이동하는 과정이 이루어지도록 에너지준위가 설정됨을 그 기술적 구성상의 특징으로 한다. Configuration 5 according to the technical idea of the "molecular sensor" of the present invention, as shown in Figure 5, the negative electrode configured to have a redox potential lower than the energy level of the valence band of the detection target material to be detected; An anode configured to have a redox potential lower than the energy level of the valence band of the detection target material; The cathode side is configured such that the energy level of the redox potential of the valence band is lower than the energy level of the redox potential of the cathode, and that the energy level of the redox potential of the conduction band has a higher energy level than that of the valence band of the detection target material. Mobile derivatives; And an excitation energy supply unit for supplying excitation energy to excite the electrons in the valence band of the cathode-side movement inducing material to the conduction band, when the detection target material is introduced between the cathode and the anode. And electrons in the detection target material move to the anode, and second, electrons in the valence band of the cathode-side moving induction material are excited by the excitation energy supplied from the excitation energy supply unit, and the cathode-side moving induction material Electron excited by the conduction of the electrons moved to the hole formed in the valence band of the target material, and third, the energy level is set so that the process of electrons move from the cathode to the hole formed in the valence band of the cathode-side moving induction material The technical configuration features.
구성5의 에너지 준위: c<e, e>a>iEnergy level in Configuration 5: c <e, e> a> i
이와 같이 구성된 본 발명의 구성5는, 검출대상물질의 에너지준위가 음극보다 높은 경우 음극측이동유도물질에 의해 원활한 전자 이동이 이루어질 수 있도록 함에 특징이 있다.The configuration 5 of the present invention configured as described above is characterized in that when the energy level of the detection target material is higher than that of the cathode, smooth electron transfer can be performed by the cathode-side movement inducing substance.
<구성 6><Configuration 6>
본 발명 "분자센서"의 기술적 사상에 따른 구성6은, 도6에서 도시되는 바와 같이, 검출하고자하는 검출대상물질의 가전자대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 음극; 검출대상물질의 전도대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 양극; 가전자대의 산화환원전위의 에너지준위가 상기 음극의 산화환원전위의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 검출대상물질의 가전자대의 에너지준위보다 높은 에너지준위를 갖도록 구성된 음극측이동유도물질; 및, 상기 음극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하고, 상기 검출대상물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하는 여기에너지공급부;를 포함하여 이루어져, 상기 음극과 양극 사이에 검출대상물질이 유입되었을 경우, 첫째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 검출대상물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 검출대상물질의 전도대로 여기된 전자가 양극으로 이동하고, 둘째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 음극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 음극측이동유도물질의 전도대로 여기된 전자가 검출대상물질의 가전자대에 생긴 양공으로 이동하고, 셋째, 상기 음극측이동유도물질의 가전자대에 생긴 양공으로 음극에서 전자가 이동하는 과정이 이루어지도록 에너지준위가 설정됨을 그 기술적 구성상의 특징으로 한다.According to the technical idea of the "molecular sensor" of the present invention, the configuration 6, as shown in Figure 6, the negative electrode configured to have a redox potential lower than the energy level of the valence band of the detection target material to be detected; An anode configured to have a redox potential lower than the energy level of the conduction band of the detection target material; The cathode side is configured such that the energy level of the redox potential of the valence band is lower than the energy level of the redox potential of the cathode, and that the energy level of the redox potential of the conduction band has a higher energy level than that of the valence band of the detection target material. Mobile derivatives; And excitation energy for supplying excitation energy to excite the electrons in the valence band of the cathode-side moving induction material to the conduction band, and excitation energy for supplying excitation energy for electrons in the valence band of the detection target material to the conduction band. When the detection target material is introduced between the cathode and the anode, first, the electrons in the valence band of the detection target material is excited by the excitation energy supplied from the excitation energy supply unit, Electrons excited by the conduction band of the detection target material move to the anode, and second, electrons in the valence band of the cathode-side moving induction material are excited by the excitation energy supplied from the excitation energy supply unit, and the cathode side The electrons excited by the conduction band of the mobile induction material move to the hole formed in the valence band of the detection target material. Second, and that the process of the electron transfer from the cathode to the electron hole occurs in the valence band of the cathode-side movement inducer done so that the energy level is set, characterized in that on the technical configuration.
구성6의 에너지 준위: c>e, e>a>iEnergy levels in Configuration 6: c> e, e> a> i
이와 같이 구성된 본 발명의 구성6은, 검출대상물질의 유입에 따른 전자 이동 경로를 설계함에 있어서, 검출대상물질과 음극측이동유도물질의 가전자대에 있는 전자를 전도대로 여기시켜 분자센서를 구성함에 특징이 있다.In the structure 6 of the present invention configured as described above, in designing an electron migration path according to the inflow of the detection target material, the molecular sensor is configured by exciting the electrons in the valence band of the detection target material and the cathode-side moving induction material with a conduction band. There is a characteristic.
<구성 7><Configuration 7>
본 발명 "분자센서"의 기술적 사상에 따른 구성7은, 도7에서 도시되는 바와 같이, 검출하고자하는 검출대상물질의 가전자대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 음극; 검출대상물질의 가전자대의 에너지준위 보다 높은 산화환원전위를 갖도록 구성된 양극; 가전자대의 산화환원전위의 에너지준위가 상기 검출대상물질의 가전자대의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 양극의 산화환원준위의 에너지준위보다 높은 에너지준위를 갖도록 구성된 양극측이동유도물질; 가전자대의 산화환원전위의 에너지준위가 상기 음극의 산화환원전위의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 검출대상물질의 가전자대의 에너지준위보다 높은 에너지준위를 갖도록 구성된 음극측이동유도물질; 및, 상기 양극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하고, 상기 음극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하는 여기에너지공급부;를 포함하여 이루어져, 상기 음극과 양극 사이에 검출대상물질이 유입되었을 경우, 첫째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 양극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 양극측이동유도물질의 전도대로 여기된 전자가 양극으로 이동하고, 둘째, 상기 양극측이동유도물질의 가전자대에 생긴 양공으로 검출대상물질의 전자가 이동하고, 셋째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 음극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 음극측이동유도물질의 전도대로 여기된 전자가 상기 검출대상물질의 가전자대에 생긴 양공으로 이동하고, 넷째, 상기 음극측이동유도물질의 가전자대에 생긴 양공으로 음극에서 전자가 이동하는 과정이 이루어지도록 에너지준위가 설정됨을 그 기술적 구성상의 특징으로 한다.According to the technical idea of the "molecular sensor" of the present invention, a configuration 7 includes: a cathode configured to have a redox potential lower than the energy level of the valence band of a detection target material to be detected; An anode configured to have a redox potential higher than the energy level of the valence band of the detection target material; The anode side is configured such that the energy level of the redox potential of the valence band is lower than the energy level of the valence band of the substance to be detected, and the energy level of the redox potential of the conduction band has a higher energy level than the energy level of the redox level of the anode. Mobile derivatives; The cathode side is configured such that the energy level of the redox potential of the valence band is lower than the energy level of the redox potential of the cathode, and that the energy level of the redox potential of the conduction band has a higher energy level than that of the valence band of the detection target material. Mobile derivatives; And supplying excitation energy so that electrons in the valence band of the anode-side mobile induction material can be excited with a conduction band, and supplying excitation energy so that electrons in the valence band of the cathode-side moving inductive material can be excited with a conduction band. When the detection target material is introduced between the cathode and the anode, first, the electrons in the valence band of the positive electrode-side moving induction material by the excitation energy supplied from the excitation energy supply unit Electrons excited by the conduction band and excited by the conduction band of the anode-side transport inducing material move to the anode, and second, electrons of the detection target material move to the holes generated in the valence band of the anode-side transport inducing material. The electrons in the valence band of the cathode-side mobile induction material are excited by the excitation energy supplied from the excitation energy supply unit. Electrons excited by the conduction band of the cathode-side movement inducing material move to holes formed in the valence band of the detection target material, and fourth, holes generated in the valence band of the cathode-side movement inducing material are electrons in the cathode. The technical configuration is characterized by the fact that the energy level is set so that the process of movement takes place.
구성7의 에너지 준위: c>e>g, e>a>iEnergy level of composition 7: c> e> g, e> a> i
이와 같이 구성된 본 발명의 구성7은, 양극측이동유도물질과 음극측이동유도물질을 이용하여 검출대상물질 유입에 따른 전자 이동 경로를 설계하여 분자센서를 구성함에 특징이 있다.Configuration 7 of the present invention configured as described above is characterized by configuring the molecular sensor by designing the electron transfer path according to the inflow of the detection target material using the anode-side induction material and the cathode-side movement induction material.
<구성 8><Configuration 8>
본 발명 "분자센서"의 기술적 사상에 따른 구성8은, 도8에서 도시되는 바와 같이, 검출하고자하는 검출대상물질의 가전자대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 음극; 검출대상물질의 가전자대의 에너지준위 보다 높은 산화환원전위를 갖도록 구성된 양극; 가전자대의 산화환원전위의 에너지준위가 상기 검출대상물질의 전도대의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 양극의 산화환원준위의 에너지준위보다 높은 에너지준위를 갖도록 구성된 양극측이동유도물질; 가전자대의 산화환원전위의 에너지준위가 상기 음극의 산화환원전위의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 검출대상물질의 가전자대의 에너지준위보다 높은 에너지준위를 갖도록 구성된 음극측이동유도물질; 및, 상기 양극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하고, 상기 음극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하고, 상기 검출대상물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하는 여기에너지공급부;를 포함하여 이루어져, 상기 음극과 양극 사이에 검출대상물질이 유입되었을 경우, 첫째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 양극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 양극측이동유도물질의 전도대로 여기된 전자가 양극으로 이동하고, 둘째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 검출대상물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 검출대상물질의 전도대로 여기된 전자가 양극측이동유도물질의 가전자대에 생긴 양공으로 이동하고, 셋째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 음극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 음극측이동유도물질의 전도대로 여기된 전자가 상기 검출대상물질의 가전자대에 생긴 양공으로 이동하고, 넷째, 상기 음극측이동유도물질의 가전자대에 생긴 양공으로 음극에서 전자가 이동하는 과정이 이루어지도록 에너지준위가 설정됨을 그 기술적 구성상의 특징으로 한다.Configuration 8 according to the technical idea of the "molecular sensor" of the present invention, as shown in Figure 8, the negative electrode configured to have a redox potential lower than the energy level of the valence band of the detection target material to be detected; An anode configured to have a redox potential higher than the energy level of the valence band of the detection target material; Anode-side shifting where the energy level of the redox potential of the valence band is lower than the energy level of the conduction band of the material to be detected and the energy level of the redox potential of the conduction band has a higher energy level than that of the redox level of the anode. Inducer; The cathode side is configured such that the energy level of the redox potential of the valence band is lower than the energy level of the redox potential of the cathode, and that the energy level of the redox potential of the conduction band has a higher energy level than that of the valence band of the detection target material. Mobile derivatives; And supplying excitation energy so that the electrons in the valence band of the anode-side mobile induction material can be excited with a conduction band, and supplying excitation energy so that electrons in the valence band of the cathode-side moving inductive material can be excited with a conduction band. And an excitation energy supply unit for supplying excitation energy so that electrons in the valence band of the detection target material can be excited with a conduction band. When the detection target material is introduced between the cathode and the anode, first, the The electrons in the valence band of the anode-side induction material are excited to the conduction band by the excitation energy supplied from the excitation energy supply unit, and the electrons excited in the conduction band of the cathode-side transport induction material are moved to the anode, and second, the excitation Excitation energy supplied from the energy supply unit causes electrons in the valence band of the detection target to The electrons excited by the conduction band of the detection target material move to the positive holes generated in the valence band of the anode-side moving induction material, and third, the home appliance of the cathode-side moving induction material is excited by the excitation energy supplied from the excitation energy supply unit. The electrons in the magnetic field are excited by the conduction band, the electrons excited by the conduction band of the cathode-side transport inducing material move to the hole formed in the valence band of the detection target material, and fourth, the electrons generated in the valence band of the cathode-side transport inducing material It is characterized by the technical configuration that the energy level is set so that the process of electrons move from the cathode to the positive hole.
구성8의 에너지 준위: c>g>e, e>a>iEnergy level of configuration 8: c> g> e, e> a> i
이와 같이 구성된 본 발명의 구성8은, 양극측이동유도물질과 음극측이동유도물질을 이용하여 검출대상물질 유입에 따른 전자 이동 경로를 설계함에 있어서, 양극측이동유도물질과, 음극측이동유도물질 및 검출대상물질을 여기시켜 분자센서를 구성함에 특징이 있다.In the configuration 8 of the present invention configured as described above, in designing the electron transfer path according to the inflow of the detection target material using the anode-side induction material and the cathode-side movement induction material, the anode-side movement induction material and the cathode-side movement induction material And constituting a molecular sensor by exciting the detection target material.
<기타 구성 요소><Other components>
상기의 구성들에 있어서, 검출대상물질에서 공여되는 전자의 양극으로의 이동을 유도하는 양극측이동유도물질은, 하나 이상으로 구성됨을 특징으로 한다.In the above configurations, the anode-side movement inducing material for inducing the movement of the donated electrons to the anode is characterized in that it is composed of one or more.
상기 구성들에 있어서 양극측이동유도물질을 다수 개로 구성할 경우에는, 도9 내지 도10, 도13 내지 도14에서 도시되는 바와 같이, 상기 검출대상물질에서 전자를 공여받는 최초의 양극측이동유도물질의 전도대의 에너지준위는, 그 다음번째 양극측이동유도물질의 가전자대의 에너지준위보다 높게 설정하고, 양극으로 전자를 공여하는 마지막의 양극측이동유도물질의 전도대의 에너지준위는 양극의 에너지준위보다 높게 설정하며, 그 중간단계에 있는 양극측이동유도물질들의 에너지준위는, 전도대의 에너지준위를 그 다음단계에 있는 양극측이동유도물질의 가전자대의 에너지준위보다 높게 설정하고, 가전자대의 에너지준위를 그 전단계에 있는 양극측이동유도물질의 전도대의 에너지준위보다 낮게 설정함을 특징으로 한다.In the above configurations, when a plurality of anode-side movement inducing substances are formed, as shown in FIGS. 9 to 10 and 13 to 14, the first anode-side movement induction for receiving electrons from the detection target material is shown. The energy level of the conduction band of the material is set to be higher than the energy level of the valence band of the next anode-side inductive material, and the energy level of the conduction band of the anode-side mobile inductive material that contributes electrons to the anode is the energy level of the anode. The energy level of the anode-side mobile induction material in the intermediate stage is set higher than the energy level of the valence band of the anode-side mobile inductive material in the next stage. It is characterized by setting the level below the energy level of the conduction band of the anode-side mobile induction material in the previous stage.
이러한 구성은 양극측이동유도물질을 다수 개 사용하여 검출대상물질을 검출할 수 있도록 한 것으로, 검출대상물질에 대한 더욱 정확한 에너지 준위 설계를 할 수 있도록 한 것이다. Such a configuration enables the detection of a detection target material by using a plurality of anode-side moving induction materials, and enables a more accurate energy level design for the detection target material.
상기의 구성들에 있어서, 음극에서 공여되는 전자의 검출대상물질로의 이동을 유도하는 음극측이동유도물질은 하나 이상으로 구성됨을 특징으로 한다.In the above configurations, the cathode-side movement inducing material for inducing the movement of the electrons donated from the cathode to the detection target material is characterized in that it is composed of one or more.
상기 구성에 있어서 음극측이동유도물질을 다수 개로 구성할 경우에는, 도11 내지 도14에서 도시되는 바와 같이, 상기 음극에서 전자를 공여받는 최초의 음극측이동유도물질의 전도대의 에너지준위는, 그 다음번째 음극측이동유도물질의 가전자대의 에너지준위보다 높게 설정하고, 검출대상물질의 가전자대에 생긴 양공으로 전자를 공여하는 마지막의 음극측이동유도물질의 전도대의 에너지준위는 상기 검출대상물질의 가전자대의 에너지준위보다 높게 설정하며, 그 중간단계에 있는 음극측이동유도물질들의 에너지준위는, 전도대의 에너지준위를 그 다음단계에 있는 음극측이동유도물질의 가전자대의 에너지준위보다 높게 설정하고, 가전자대의 에너지준위를 그 전단계에 있는 음극측이동유도물질의 전도대의 에너지준위보다 낮게 설정함을 특징으로 한다.In the above configuration, in the case where a plurality of cathode-side movement inducing substances are formed, as shown in Figs. 11 to 14, the energy level of the conduction band of the first cathode-side movement inducing substance that receives electrons from the cathode is The energy level of the conduction band of the cathode-side moving inductive material which is higher than the energy level of the valence band of the cathode-side moving induction material and donates electrons to the holes generated in the valence band of the detection material is determined by The energy level of the cathode-side mobile induction materials in the middle stage is set higher than the energy level of the valence band, and the energy level of the conduction band is set higher than that of the valence band of the cathode-side mobile induction material in the next stage. In other words, the energy level of the valence band is set lower than that of the conduction band of the cathode-side mobile inductive material in the previous stage. It shall be.
이러한 구성은 음극측이동유도물질을 다수 개 사용하여 검출대상물질을 검출할 수 있도록 한 것으로, 검출대상물질에 대한 더욱 정확한 에너지 준위 설계를 할 수 있도록 한 것이다. This configuration allows the detection of the detection target material by using a plurality of cathode-side moving induction materials, which allows for more accurate energy level design for the detection target material.
상기 구성에 있어서, 도15에서 도시되는 바와 같이, 상기 검출대상물질에 따른 전자의 흐름을 검출하는 검출부(110):를 더 포함하여 구성됨을 특징으로 한다.In the above configuration, as shown in Figure 15, the detection unit 110 for detecting the flow of electrons according to the detection target material: characterized in that it further comprises a.
이러한 검출부(110)는 음극에서 양극으로 이동하는 전자의 흐름을 검출하여 검출대상물질이 존재하는 지의 여부는 물론, 그 양을 산출한다. 즉, 양극과 음극 사이의 전류 및 전압을 검출하여 검출대상물질의 유입 여부 및 그 유입량을 검출한다.The detection unit 110 detects the flow of electrons moving from the cathode to the anode and calculates the amount, as well as whether or not the substance to be detected is present. That is, the current and the voltage between the positive electrode and the negative electrode are detected to detect whether or not the detection target material flows in and its amount.
상기 검출부는 검출대상물질의 CV(Cyclic Voltammetry) 또는, CA(Chrono Amperometry), 또는 CP(Chorono Potentiommetry), 또는 SV(Stripping Voltammetry), 또는 LSV(Linear Sweep Voltammetry) 중 어느 하나 이상을 검출하여 검출대상물질의 존재 여부 및 양을 검출함을 특징으로 한다.The detection unit detects one or more of Cyclic Voltammetry (CV), Chrono Amperometry (CA), Chrono Potentiommetry (CP), Stripping Voltammetry (SV), or Linear Sweep Voltammetry (LSV) of a target substance. Detecting the presence and amount of the substance.
즉, 포텐시오스타트(Potentiostat)를 이용하여 검출대상물질의 CV나, 또는 CA나, 또는 CP나, 또는 SV나, 또는 LSV 등을 측정하여 검출대상물질의 존재 여부 및 양을 검출함을 특징으로 한다. That is, the presence or the amount of the detection target material is detected by measuring the CV, or CA, or CP, or SV, or LSV of the detection target material using a potentiostat. do.
도23은 포텐시오스타트의 구성을 간략화하여 나타낸 회로도로, 워킹전극(Working electrode: W)과, 레퍼런스전극(Reference electrode: RE) 및, 카운터전극(Counter electrode: CE)를 통해 검출대상물질을 검출할 수 있다. 즉, 이동유도물질(양극측이동유도물질, 음극측이동유도물질)을 이용하여 워킹전극(W)을 구성한 후 3전극법이나 2전극법을 통해 CV, CA, CP, SV, LSV 등을 구한 후, 이를 분석하여 검출대상물질의 존재 여부 및 양을 정밀하게 측정할 수 있다.FIG. 23 is a circuit diagram showing a simplified configuration of a potentiostat. The detection target material is detected through a working electrode (W), a reference electrode (RE), and a counter electrode (CE). can do. That is, after constructing the working electrode (W) using a moving induction material (anode-side moving induction material, cathode side moving induction material), after obtaining the CV, CA, CP, SV, LSV, etc. By analyzing this, it is possible to precisely determine the presence and amount of the detection target material.
전기화학분야에서 사용하는 포텐시오스타트의 구성이나 작동 원리 및 3전극법, 2전극법, CV, CA, CP, SV, LSV 등에 대한 것은 주지하는 바와 같으므로 그 상세한 설명은 생략한다.Since the structure and operation principle of the potentiostat used in the electrochemical field, the three-electrode method, the two-electrode method, CV, CA, CP, SV, LSV, etc. are well known, the detailed description thereof is omitted.
상기 검출부는 여기 에너지로 공급되는 광원의 파장에 따른 양자수율(IPCE: Incident Photon to Current Efficiency)을 검출하여 검출대상물질의 존재 여부 및 양을 검출함을 특징으로 한다.The detection unit is characterized by detecting the presence and amount of the detection target material by detecting the quantum yield (IPCE: Incident Photon to Current Efficiency) according to the wavelength of the light source supplied to the excitation energy.
도26은 광원의 파장에 따른 양자수율(IPCE)을 나타낸 것으로, 도면에서 도시되는 바와 같이, 물질에 따라 파장에 따른 양자수율이 다름을 나타낸다. 따라서, 양자수율 곡성의 특성을 이용하여 검출대상물질의 존재 여부를 알 수 있다. 예를 들어, 도26의 (가)의 양자수율 그래프는 약 440nm에서 최대이고, 560nm에서 2차 피크값, 620nm에서 3차 피크값을 가지는데 이 특성(피크값, 파장, 기울기, 피크 간격 등)을 분석하여 검출대상물질의 존재 여부를 알 수 있다.FIG. 26 shows the quantum yield (IPCE) according to the wavelength of the light source. As shown in the figure, the quantum yield according to the wavelength varies depending on the material. Therefore, it is possible to know the presence or absence of the detection target material by using the characteristics of the quantum yield curvature. For example, the quantum yield graph of Fig. 26A has a maximum at about 440 nm, a second peak value at 560 nm, and a third order peak value at 620 nm, and this characteristic (peak value, wavelength, slope, peak interval, etc.). ) Can be determined whether or not the substance to be detected.
양자수율 측정에 대한 것은 주지하는 바와 같으므로 그 상세한 설명은 생략한다.Since the quantum yield measurement is well known, its detailed description is omitted.
상기 구성에 있어서, 상기 검출대상물질에 대한 정보를 나타내는 표시부(160);를 더 포함하여 구성함을 특징으로 한다.In the above configuration, the display unit 160 for displaying information on the detection target material; characterized in that it further comprises a configuration.
상기 표시부(160)는 검출대상물질 검출에 따른 전자의 흐름에 대한 정보를 시각적으로 나타내는 시각표시부(161)와, 청각적으로 나타내는 청각표시부(162)를 포함하여 구성됨이 바람직하다.The display unit 160 preferably includes a visual display unit 161 that visually displays information on the flow of electrons according to the detection of a detection target material, and an auditory display unit 162 that is acoustically displayed.
상기 구성에 있어서, 검출대상물질 검출에 대한 정보를 외부로 전송하는 통신부(170);를 더 포함하여 구성됨을 특징으로 한다.In the above configuration, the communication unit 170 for transmitting information on the detection of the detection target material to the outside; further comprises.
상기 통신부(170)는, 검출대상물질 검출에 대한 정보를 유선(전용선, 전용망, 인터넷 등)으로 전송하는 유선통신부(171)와, 검출대상물질 검출에 대한 정보를 무선(무선통신, 이동통신, 근거리 무선통신, 와이파이, 블루투스 등)으로 전송하는 무선통신부(172)로 구성됨이 바람직하다.The communication unit 170, the wired communication unit 171 for transmitting information on the detection of the detection target material to a wired line (dedicated line, dedicated network, Internet, etc.), and the information on the detection of the detection target material wireless (wireless communication, mobile communication, Short-range wireless communication, Wi-Fi, Bluetooth, etc.) is preferably composed of a wireless communication unit 172 for transmitting.
상기 구성에 있어서, 검출대상물질 검출에 대한 정보를 저장하는 데이터저장부(140);를 더 포함하여 구성됨을 특징으로 한다.In the above configuration, the data storage unit 140 for storing information on the detection of the detection target material; further comprises.
도면 중 미설명 부호 (150)은 제어부, (180)은 각 구성요소에 동작전원을 공급하는 전원공급부를 각각 나타낸 것이다.In the drawing, reference numeral 150 denotes a controller, and 180 denotes a power supply unit for supplying operating power to each component.
이하, 본 발명 "분자센서"의 기술적 사상을 실시예를 들어 상세히 설명하면 다음과 같다.Hereinafter, the technical idea of the "molecular sensor" of the present invention will be described in detail with reference to Examples.
설명을 함에 있어서 동일, 또는 유사한 구성 및 기능을 갖는 구성요소에 대해서는 동일 또는 유사한 명칭 및 부호를 사용한다.In the description, the same or similar names and symbols are used for components having the same or similar configurations and functions.
<실시예><Example>
본 실시예에서는 양극으로 FTO(F-doped [SnO₂]) 투명전극을 사용하고, 음극으로 백금(Pt)을 사용하고, 양극측이동유도물질로 이산화 타이타늄(Titanium dioxide, [TiO₂])과, 리튬내포풀러렌 헥사 플루오르 포스페이트 염([Li+@C60][PF6-])을 사용하여 센서전극부를 구성하고, 이 센서전극부를 통해 암기인물질(암을 원인으로 하여 발생하는 물질)의 하나인 톨루엔(Toluene)을 검출하는 것을 예로 하여 설명한다.In this embodiment, an FTO (F-doped [SnO₂]) transparent electrode is used as the anode, platinum (Pt) is used as the cathode, and titanium dioxide (TiO₂) and lithium are used as the anode-side inductive materials. containing-fullerene hexafluorotitanate phosphate salt - one in toluene ([Li + @ C60] [ PF6]) to the (material arising as a cause of cancer) configure the sensor electrode unit, and the memorization of material through the sensor electrode used ( Toluene) will be described as an example.
따라서 본 실시예에서는 상기 양극측이동유도물질에 여기 에너지를 공급하는 여기에너지공급부를 더 포함하여 구성한 것을 예로 하여 설명한다. 본실시예에서 상기 여기에너지공급부는 광에너지를 공급하는 것을 예로 하여 설명한다.Therefore, the present embodiment will be described by further comprising an excitation energy supply unit for supplying excitation energy to the anode-side movement inducing material. In the present embodiment, the excitation energy supply unit will be described with an example of supplying light energy.
또한 본 실시예에 있어서는 상기 센서전극부에 검출대상물질(톨루엔)이 유입되었을 경우 음극에서 양극으로 이동하는 전자의 흐름을 검출하는 검출부와, 검측 정보(검측과정, 검측조건, 검측결과 등)를 표시하는 표시부와, 이를 저장하는 데이터저장부 및, 상기 검측에 대한에 대한 정보를 외부 기기와 교환하는 통신부를 구비하여 구성한 것을 예로 하여 설명한다.In the present embodiment, the detection unit for detecting the flow of electrons from the cathode to the anode when the detection material (toluene) is introduced into the sensor electrode portion, and the detection information (detection process, detection conditions, detection results, etc.) A display unit for displaying, a data storage unit for storing the same, and a communication unit for exchanging information on the detection with an external device will be described as an example.
또한, 본 실시예에 있어서는 공기(날숨) 중에 포함된 톨루엔을 검출하는 것을 예로 하여 설명한다. 따라서 상기 센서전극부는 음극과 양극 사이에 공기가 유통될 수 있는 구조로 구성된 것을 예로 하여 설명한다. 검출대상물질이 포함된 공기(날숨)는 펌핑장치를 이용하여 상기 센서전극부에 공급한다.In the present embodiment, the detection of toluene contained in air (exhalation) will be described as an example. Therefore, the sensor electrode unit will be described with an example in which a structure in which air flows between the cathode and the anode is configured. Air (exhalation) containing the detection target material is supplied to the sensor electrode unit using a pumping device.
이와 같이 본 실시예를 구성한 이유는, 본 발명의 기술적 사상에 따른 다른 구성 및 실시예들은 본 실시예로부터 용이하게 알 수 있기 때문이다.The reason why the present embodiment is configured as described above is that other configurations and embodiments according to the technical idea of the present invention can be easily understood from the present embodiment.
이하, 상기와 같이 본 실시예의 구성을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. Hereinafter, the configuration of the present embodiment as described above with reference to the accompanying drawings in detail as follows.
1) 에너지준위 설계1) Energy level design
톨루엔을 검출하기 위한 본 실시예의 에너지준위 설계 과정을 도17을 참조하여 설명하면 다음과 같다. An energy level design process of this embodiment for detecting toluene will be described with reference to FIG. 17 as follows.
검출대상물질인 톨루엔의 가전자대의 진공을 기준으로 한 에너지준위는 -6.55eV이고, 전도대의 에너지준위는 -0.18eV이다. 따라서 음극의 에너지준위는 상기 검출대상물질인 톨루엔의 가전자대의 에너지준위인 -6.55eV보다 높은 에너지준위를 갖는 전극이 필요하다. 본 실시예에서는 가전자대의 에너지준위는 -5.93eV이고, 전도대의 에너지준위는 -5.12eV인 백금(Pt)을 음극으로 사용한다. 따라서 백금(Pt)으로 이루어진 음극에 검출대상물질인 톨루엔이 접촉하면 에너지준위 차에 의하여 검출대상물질인 톨루엔의 가전자대에 생기는 양공으로 음극에서 전자가 이동할 수 있는 에너지준위 구조를 갖게 된다.The energy level based on the vacuum of the valence band of toluene, the substance to be detected, is -6.55 eV, and the energy level of the conduction band is -0.18 eV. Therefore, the energy level of the cathode requires an electrode having an energy level higher than -6.55 eV, which is the energy level of the valence band of the toluene. In this embodiment, platinum (Pt) whose energy level is -5.93 eV and the conduction band is -5.12 eV is used as the cathode. Therefore, when toluene, which is a detection target material, contacts the cathode made of platinum (Pt), it has an energy level structure in which electrons can move from the cathode as holes generated in the valence band of toluene, which is a detection target, due to the difference in energy levels.
본 실시예에서 검측하는 검출대상물질인 톨루엔은 가전자대의 에너지준위가 매우 낮은 -6.55eV이므로 이보다 더 낮은 에너지준위를 갖는 양극측이동유도물질이 필요하다. 본 실시예에서는 가전자대의 에너지준위가 -7.70eV인 [Li+@C60][PF6-]를 양극측제1이동유도물질로 사용한다. 양극측제1이동유도물질로 사용하는 [Li+@C60][PF6-]의 가전자대의 에너지준위는, 상기 검출대상물질인 톨루엔의 가전자대의 에너지준위 -6.55eV 보다 낮아, 상기 톨루엔의 가전자대에 있는 전자가 [Li+@C60][PF6-]의 가전자대에 생기는 양공으로 이동할 수 있는 에너지준위 구조를 갖게 된다.In the present embodiment, toluene, which is a detection target material to be detected, has a very low energy level of -6.55 eV in the valence band, and thus an anode-side inductive material having a lower energy level is required. In this embodiment, [Li + @ C60] [PF6 ] having an energy level of -7.70 eV in the valence band is used as the anode-side first moving inducer. The energy level of the valence band of [Li + @ C60] [PF6 ] used as the anode-side first moving inducer is lower than the energy level of the valence band of toluene as the detection target material at −6.55 eV. the electrons that [Li + @ C60] [PF6 -] will have the energy level structure that can move electron hole generated in the valence band.
상기 양극측제1이동유도물질인 [Li+@C60][PF6-]의 전도대의 에너지준위가 -4.90eV이고, 양극으로 사용하는 FTO의 가전자대의 에너지준위가 -4.85eV이므로, 상기 [Li+@C60][PF6-]의 전도대에 있는 전자가 직접 양극으로 이동할 수 없다. 따라서 이를 매개할 양극측제2이동유도물질이 필요하다.Since the energy level of the conduction band of [Li + @ C60] [PF6 ], which is the anode-side first moving inducer, is -4.90 eV, and the energy level of the valence band of FTO used as the anode is -4.85 eV, the [Li + @ C60] [PF6 -] the electrons in the conduction band can not move directly to the anode of. Therefore, a positive electrode-side second moving material is required.
양극측제1이동유도물질인 [Li+@C60][PF6-]의 전도대의 에너지준위가 -4.90eV이고, 양극 FTO의 가전자대의 에너지준위가 -4.85eV이므로, 양극측제2이동유도물질은 -4.90eV 보다 낮은 에너지준위를 갖는 가전자대와, -4.85eV 보다 높은 에너지준위를 갖는 전도대로 이루어진 물질이 필요하다.An anode cheukje first mobile inducers [Li + @ C60] [PF6 -] Since the energy level of the conduction band is -4.90eV, the energy level of the valence band of the positive electrode FTO is -4.85eV, anode cheukje second mobile inducer of the - There is a need for a valence band with an energy level lower than 4.90 eV and a conduction band with an energy level higher than -4.85 eV.
이산화 타이타늄(Titanium dioxide, [TiO₂])은 가전자대의 에너지준위가 -6.21eV이고, 전도대의 에너지준위가 -3.21eV로 위의 조건을 충족하므로 이 [TiO₂]를 양극측제2이동유도물질로 사용한다. 그러면 상기 [TiO₂]의 전도대에 여기된 전자가 양극으로 이동할 수 있는 에너지준위 구조를 갖게 된다.Titanium dioxide (TiO₂) has -6.21eV energy level in valence band and -3.21eV energy level in conduction band. do. Then, the electron excited in the conduction band of [TiO₂] has an energy level structure that can move to the anode.
즉, 조건이 충족되었을 시, 상기 양극측제2이동유도물질인 [TiO₂]의 전자대에 여기된 전자가 양극으로 이동하고, 상기 [TiO₂]의 가전자대에 생기는 양공으로 양극측제1유도물질인 [Li+@C60][PF6-]의 전도대에 여기된 전자가 이동하고, 상기 [Li+@C60][PF6-]의 가전자대에 생기는 양공으로 검출대상물질인 톨루엔의 전자가 이동하고, 상기 톨루엔의 가전자대에 생기는 양공으로 음극인 백금(Pt)에서 전자가 이동하는 에너지준위를 갖게 된다.That is, when the conditions are satisfied, the electrons excited in the electron band of [TiO₂], which is the anode-side second mobile induction material, move to the anode, and the positive holes in the valence band of [TiO₂] are [ Li + @ C60] [PF6 -] move the electrons excited to the conduction band, and wherein [Li + @ C60] [PF6 of -] e of toluene target substance with electron hole generated in the valence band movement, and the toluene Holes in the valence band of the electrons have a moving energy level in the platinum (Pt) cathode.
상기 양극측제1이동유도물질인 [Li+@C60][PF6-]의 여기에는 457nm의 파장을 갖는 광원 2.8eV 이상의 파워가 필요하고, 양극측제2이동유도물질인 [TiO₂]의 여기에는 413nm의 파장을 갖는 광원 3.0eV 이상의 파워가 필요하다. 따라서 상기 여기에너지공급부에서 공급하는 광에너지는 상기 조건을 충족하는 광원을 사용한다. 예를 들어 상기 조건을 충족하는 할로겐 램프가 사용될 수 있다.The positive electrode cheukje first mobile inducer of [Li + @ C60] [PF6 -] Here, the excitation of the light source need 2.8eV or more power with a wavelength of 457nm, and the [TiO₂] cheukje anode 2 move inducer has a 413nm A power of 3.0 eV or more with a light source having a wavelength is required. Therefore, the light energy supplied from the excitation energy supply unit uses a light source that satisfies the above conditions. For example, a halogen lamp that meets the above conditions can be used.
도17은 상기와 같은 과정을 거쳐 설계된 에너지준위 및 해당 물질을 나타낸 것으로, 도면에서 도시되는 바와 같이, 검출대상물질인 톨루엔이 유입되었을 경우 에너지준위에 따라 2번의 여기 과정을 거쳐 음극에서 양극으로 전자가 이동할 수 있도록 설계되었다.FIG. 17 illustrates the energy level and the corresponding material designed through the above process, and as shown in the drawing, when toluene as the detection target material is introduced, electrons are moved from the cathode to the anode through two excitation processes according to the energy level. It is designed to move.
2) 센서전극부 구성2) Sensor electrode part composition
도18에서 도시되는 바와 같이, 케이스(125) 내부에 양극(121)과 음극(124)을 장착하고, 상기 양극(121)과 음극(124)에 전원공급부(180)를 통해 동작전원을 공급하고, 상기 양극(121)과 음극(124) 사이에 흐르는 전류를 검출할 수 있도록 검출부(110)를 연결하여 본 실시예에 의한 센서전극부(120)를 구성한다.As shown in FIG. 18, the cathode 121 and the cathode 124 are mounted inside the case 125, and operation power is supplied to the anode 121 and the cathode 124 through the power supply unit 180. In addition, the sensor 110 is connected to the detector 110 so as to detect a current flowing between the anode 121 and the cathode 124.
상기 케이스(125)는 투명전극인 양극(121)이 장착되는 면, 또는 케이스 전체를 투명재질(예: 유리, 석영 등)로 구성하여 여기에너지공급부(130)인 광원(131)에서 공급하는 광이 투명전극인 양극(121)에 조사될 수 있도록 구성한다.The case 125 is formed of a transparent material (eg, glass, quartz, etc.) on the surface on which the anode 121, which is a transparent electrode, is mounted, and light supplied from the light source 131, which is the excitation energy supply unit 130. It is comprised so that it may irradiate to the positive electrode 121 which is this transparent electrode.
상기 케이스(125)는, 도19에서 도시되는 바와 같이, 양극이 장착되는 부위를 절개하여 광원(131)에서 조사되는 광원이 직접 투명전극은 양극(121)에 조사되도록 구성할 수 있다.As shown in FIG. 19, the case 125 may be configured such that a light source irradiated from the light source 131 is directly irradiated to the anode 121 by cutting a portion where the anode is mounted.
도면 중 미설명 부호 (122a)는 양극측제1이동유도물질, (122b)는 양극측제2이동유도물질을 각각 나타내며, 미설명 부호 (1)은 검출대상물질인 톨루엔이 포함된 공기(날숨)를 나타낸다.In the drawing, reference numeral 122a denotes an anode-side first moving inducer and 122b denotes an anode-side second movement inducing substance, respectively, and reference numeral 1 denotes air (exhalation) containing toluene as a detection target substance. Indicates.
상기 공기(날숨)(1)은 센서전극부(120) 후면에 위치한 펌프(미도시)에 의해 센서전극부(120) 내부를 통과하는 것으로, 그 상세한 설명은 생략한다.The air (exhalation) 1 passes through the inside of the sensor electrode part 120 by a pump (not shown) located at the rear of the sensor electrode part 120, and a detailed description thereof will be omitted.
3) 검출 시스템 구성3) Detection system configuration
도15에서 도시되는 바와 같이, 센서전극부(120)에 여기에너지공급부(130)의 광원(131)이 조사될 수 있도록 하고, 상기 센서전극부(120)에 검출부(110)를 연결한다. 이후, 상기 검출부(110)와, 여기에너지공급부(130)와, 데이터저장부(140)와, 표시부(160)와, 통신부(170)를 제어부(150)에 접속하여 본 실시예에 의한 검출 시스템을 구성한다. 상기 전원공급부(180)는 각 구성요소에 동작전원을 공급한다. As shown in FIG. 15, the light source 131 of the excitation energy supply unit 130 is irradiated to the sensor electrode unit 120, and the detection unit 110 is connected to the sensor electrode unit 120. Thereafter, the detection unit 110, the excitation energy supply unit 130, the data storage unit 140, the display unit 160, and the communication unit 170 are connected to the control unit 150 to detect the system according to the present embodiment. Configure The power supply unit 180 supplies operating power to each component.
상기 제어부(150)는 마이크로프로세서, 또는 컴퓨터 시스템으로 구성됨이 바람직하며, 상기 데이터저장부(140)는 상기 제어부(150)의 내부메모리, 또는 상기 제어부(150)의 제어를 받는 외부메모리로 구성됨이 바람직하다. Preferably, the controller 150 is configured as a microprocessor or a computer system, and the data storage 140 is configured as an internal memory of the controller 150 or an external memory controlled by the controller 150. desirable.
상기 데이터저장부(140)에는 검출대상물질의 검측 결과 및, 검측대상물질의 양과 전류량의 상관관계를 나타낸 데이터테이블 등이 저장된다. The data storage unit 140 stores a detection result of the detection target material and a data table indicating a correlation between the amount of detection target material and the amount of current.
이하, 상기와 같이 구성된 본 실시예의 동작에 대해 상세히 설명하면 다음과 같다.Hereinafter, the operation of the present embodiment configured as described above will be described in detail.
먼저, 상기 여기에너지공급부(130)의 광원(131)이 온(ON)되면, 상기 광원(131)에서 조사되는 광에너지가 상기 양극측제1이동유도물질(122a)인 [Li+@C60][PF6-]과 양극측제2이동유도물질(122b)인 [TiO₂]에 여기 에너지를 공급하게 된다.First, when the light source 131 of the excitation energy supply unit 130 is turned on (ON), the light energy irradiated from the light source 131 is [Li + @ C60] [where the anode-side first moving inducer 122a is used. PF6 ] and [TiO₂], the anode-side second moving inducer 122b, supply excitation energy.
그러면 상기 양극측제2이동유도물질인 [TiO₂]의 가전자대에 있는 전자가 전도대로 여기하게 되며, 상기 [TiO₂]의 가전자대에는 양공이 생성되게 된다. [TiO₂]의 전도대로 여기된 전자의 에너지준위는 -3.21eV로 양극인 FTO의 가전자대의 에너지준위인 -4.85eV 보다 높아져, 상기 전도대로 여기된 전자가 양극인 FTO로 이동하게 된다.Then, the electrons in the valence band of [TiO₂], which is the anode-side second moving induction material, are excited with a conduction band, and holes are generated in the valence band of [TiO₂]. The energy level of electrons excited by the conduction band of [TiO₂] is -3.21 eV, which is higher than the energy level of -4.85 eV, which is the valence band of the FTO, which is the anode, and the electrons excited by the conduction band move to the FTO, which is the anode.
상기 광원(131)에서 조사되는 광에너지에 의해 양극측제1이동유도물질인 [Li+@C60][PF6-]의 가전자대에 있는 전자가 전도대로 여기되고, 상기 [Li+@C60][PF6-]의 가전자대에는 양공이 생성된다. 상기 [Li+@C60][PF6-]의 전도대로 여기된 전자의 에너지준위는 -4.90eV로 양극측제2이동유도물질인 [TiO₂]의 가전자대의 에너지준위인 -6.21eV 보다 높아져, 상기 전도대로 여기된 전자가 [TiO₂]의 가전자대에 생긴 양공으로 이동하게 된다.By the light energy irradiated from the light source 131, the electrons in the valence band of the anode-side first moving inducer [Li + @ C60] [PF6-] are excited to the conduction band, and the [Li + @ C60] [PF6-] A hole is generated in the valence band of. The energy level of electrons excited by the conduction band of [Li + @ C60] [PF6-] is -4.90 eV, which is higher than the energy level of -6.21 eV, which is the valence band of [TiO₂], which is the anode-side second moving inducer. The excited electrons move to the hole formed in the valence band of [TiO₂].
이러한 상태에서, 검출대상물질인 톨루엔이 양극인 FTO와 음극인 백금{Pt) 사이에 유입되면, 상기 톨루엔의 가전자대에 있는 전자(에너지준위: -6.55eV)가 상기 양극측제1이동유도물질인 [Li+@C60][PF6-]의 가전자대에 생긴 양공(에너지준위: -7.70eV)으로 이동하고, 상기 톨루엔의 가전자대에는 양공이 생성되게 된다.In this state, when toluene as a detection target material flows between FTO as a cathode and platinum (Pt) as a cathode, electrons (energy level: -6.55 eV) in the valence band of the toluene are the anode-side first inducing substance. The hole moves to the valence band of [Li + @ C60] [PF6-] (energy level: -7.70 eV), and the hole is generated in the valence band of toluene.
그러면 상기 검출대상물질인 톨루엔의 가전자대에 생긴 양공(에너지준위: -6.55eV)으로 음극인 백금(Pt)의 가전자대에 있는 전자(에너지준위: -5.93eV)가 이동하게 된다.Then, the electrons (energy level: -5.93eV) in the valence band of platinum (Pt), which is a cathode, move to the hole (energy level: -6.55 eV) generated in the valence band of the toluene as the detection target material.
이후, 상기 여기에너지공급부(130)에서 여기 에너지가 공급되는 한 상기와 같은 과정을 반복 수행하여 음극에서 양극으로 상기 검출대상물질인 톨루엔에 비례하는 수의 전자가 지속적으로 이동하게 된다.Thereafter, as long as the excitation energy is supplied from the excitation energy supply unit 130, the above process is repeated to move electrons proportionally to the toluene, the detection target material, from the cathode to the anode.
상기 검출부(110)는 상기 음극과 양극 사이에 흐르는 전류(전자의 이동)를 검출한다.The detector 110 detects a current (movement of electrons) flowing between the cathode and the anode.
상기 제어부(150)는 상기 검출부(110)를 통해 전류가 흐르는 지의 여부를 검출하여 검출대상물질인 톨루엔이 존재하는지의 여부를 판단하고, 전류의 양으로부터 검출대상물질인 톨루엔의 양을 판단하게 된다. 즉, 검출된 전류량을 상기 데이터저장부(140)에 저장된 검출대상물질의 양과 전류량과의 관계를 나타내는 데이터테이블과 비교하여 얼마만큼의 톨루엔이 유입되었는지를 산출하게 된다.The controller 150 detects whether or not current flows through the detection unit 110 to determine whether or not toluene as a detection target material is present, and determines the amount of toluene as a detection target material from the amount of current. . That is, the amount of toluene introduced is calculated by comparing the detected current amount with the data table indicating the relationship between the amount of the target substance stored in the data storage unit and the current amount.
이후, 상기 제어부(150)는 상기 검측에 대한 정보(검측과정, 검측조건, 검측결과 등)를 데이터저장부(140)에 저장하고, 표시부(160)를 통해 나타내며, 상기 통신부(170)를 통해 외부기기와 교환하게 되는 것으로, 이와 같은 과정을 반복 수행하여 검출대상물질을 지속적으로 검측하게 된다.Thereafter, the controller 150 stores the information on the detection (detection process, detection condition, detection result, etc.) in the data storage unit 140, is displayed through the display unit 160, and through the communication unit 170. By exchanging with an external device, such a process is repeatedly performed to continuously detect a detection target material.
이때, 상기 검출대상물질에서 공여하는 전자를 매개로 하여 흐르는 전류를 검출함으로써 검출대상물질의 분자 수에 비례하는 정확하고 정밀한 검측을 할 수 있게 된다.In this case, by detecting the current flowing through the electrons donated from the detection target material, accurate and accurate detection in proportion to the number of molecules of the detection target material can be performed.
참고로, 검출된 톨루엔의 양을 나타내는 데이터는, 톨루엔의 양과 암의 진행정도를 나타내는 데이터테이블을 참조하여 암의 진행 정도를 진단하도록 구성될 수 있다.For reference, the data indicating the amount of toluene detected may be configured to diagnose the degree of cancer by referring to a data table indicating the amount of toluene and the degree of cancer progression.
폐암센서의 정밀도에 대해 설명하면 다음과 같다.The precision of the lung cancer sensor is described as follows.
약 500cc의 호기에 포함된 분자수는 약 1.19×1022개 이다.The number of molecules in the expiration of about 500cc is about 1.19 × 10 22 .
이 500cc의 호기 1ppt에 포함된 분자수는, The number of molecules contained in 1 ppt of aerobic gas of 500 cc is
1.19×1022×10-12 = 1.19×1010 개 이다.1.19 × 10 22 × 10 -12 = 1.19 × 10 10 .
이를 전하량으로 나타내면,If this is expressed as the amount of charge,
(1.19×1010)×(1.62×10)-19C) = 약 1.19×10-9C = 1.9nA 이다.(1.19 × 10 10 ) × (1.62 × 10 ) -19 C) = about 1.19 × 10 -9 C = 1.9 nA.
즉, 500cc의 호기 속에 암기인물질이 1ppt 만큼 포함되었다 하더라도 이를 검출할 수 있다.That is, even if 1ppt of the memorizing substance is contained in the expiration of 500cc it can be detected.
만약, 500cc의 호기 중 1ppt 만큼의 공기 속에 1% 만큼의 암기인물질이 포함되어 있다고 하면 약 19pA의 전하량을 나타낸다.If 500 ppm of exhaled air contains 1% of memorizing substance in 1ppt of air, the charge amount is about 19pA.
상기 나노 암페아(nA)나, 피코 암페아(pA) 단위의 전하량을 검출하는 검출부(110)의 구성은 주지하는 바와 같으므로 그 상세한 설명은 생략한다.Since the configuration of the detection unit 110 for detecting the charge amount in the nano-ampere (nA) or pico-ampere (pA) unit is well known, its detailed description is omitted.
한편, 본 발명 중 이동유도물질(양극측이동유도물질, 음극측이동유도물질)을 구성하는 [C60] 풀러렌 및 리튬이온내포풀러렌은 전자운을 포함한 크기가 약 1nm이고, 상기 리튬이온내포풀러렌과 색소로 이루어진 초분자의 크기는 약 2nm이다.On the other hand, in the present invention [C60] fullerene and lithium ion-encapsulated fullerene constituting a mobile induction material (anode-side mobile induction material, negative electrode-side mobile induction material) is about 1nm in size including an electron cloud, the lithium ion containing fullerene and The supramolecular molecule consists of pigments of about 2 nm in size.
따라서 상기 500cc 호기에 1ppt의 암기인물질이 있다고 하고, 그 이동유도물질을 리튬이온내포풀러렌과 색소로 이루어진 초분자(약 2nm)로 구성하였다고 할 경우, 상기 암기인물질이 동시에 반응하기 극판의 크기는 약 (0.22mm ㅧ 0.22mm)의 크기면 충분하다. 상기 500cc 중 1ppt 만큼의 호기 내에 1%의 암기인물질이 있다고 할 경우에는 더욱 작은 크기의 극판으로 양극(또는 음극)을 만들 수 있다.Therefore, if the 500cc unit contains 1ppt of memorizing substance, and the mobile inducing substance is composed of ultra-molecules (about 2 nm) composed of lithium ion containing fullerene and pigment, the size of the electrode plate to react simultaneously with the memorizing substance is A size of about (0.22 mm ㅧ 0.22 mm) is sufficient. In the case where 1% of the memorized substance is present in 1 ppt of the 500cc, the positive electrode (or negative electrode) may be made of a smaller electrode plate.
즉, 암기인물질의 분자수에 비례하는 수의 전자가 이동하도록 하고, 그 이동된 전자의 수를 직접 검출함으로써 ppt 레벨의 정밀도, 또는 그 이상의 더욱 정밀도를 갖는 폐암 센서를 구성할 수 있다.That is, a lung cancer sensor having a precision of ppt level or more can be configured by allowing electrons in proportion to the number of molecules of the memorandous substance to move and directly detecting the number of moved electrons.
그러나 상기의 실시예에 있어서는, 양극측이동유도물질 2개를 사용하여 검출대상물질을 검출하는 것을 예로 하여 설명하였으나, 본 발명이 기술적 사상은 이에 한정되지 않음을 밝혀둔다. 즉, 도1 내지 도14에서 도시되는 바와 같이, 이동유도물질 없이 본 발명의 분자센서를 구성하거나, 또는 1개의 양극측이동유도물질이나 1개의 음극측이동유도물질을 이용하여 본 발명이 분자센서를 구성하거나, 또는 다수개의 양극측이동유도물질이나 다수개의 음극측이동유도물질을 이용하여 본 발명의 분자센서를 구성하거나, 또는 필요한 수 만큼의 양극측이동유도물질 및 필요한 수 만큼의 음극측이동유도물질을 모두 사용하여 본 발명에 의한 분자센서를 구성할 수 있음을 밝혀둔다. 도16은 양극측이동유도물질(122)과 음극측이동유도물질(123)을 모두 사용하는 센서전극부의 구성예를 나타낸 도면이다.However, in the above embodiment, the detection of the detection target material using two anode-side movement inducing materials as an example, but the technical concept of the present invention is not limited to this. That is, as shown in Figs. 1 to 14, the molecular sensor of the present invention is constructed without a moving inducing substance or by using one anode-side inducing substance or one cathode side inducing substance. Or by constructing the molecular sensor of the present invention using a plurality of anode side movement inducing materials or a plurality of cathode side movement inducing materials, or as many anode side movement inducing materials as required and as many cathode side movements as necessary. It turns out that the molecular sensor according to the present invention can be configured by using all of the inducers. Fig. 16 is a diagram showing an example of the configuration of the sensor electrode part using both the anode side movement inducing material 122 and the cathode side movement inducing material 123.
또한, 상기의 실시예에 있어서는, 여기에너지공급부에서 광에너지를 공급하도록 하고, 그 광원을 1개로 한정한 것을 예로 하여 설명하였으나, 본 발명의 기술적 사상은 이에 한정되지 않음을 밝혀둔다. 즉, 다른 광원 여러개를 사용하여 여기에너지공급부를 구성할 수 있음은 물론, 각기 다른 에너지원을 사용하여 여기 에너지를 공급하도록 구성할 수 있음을 밝혀둔다.In addition, in the above-described embodiment, the light source is supplied with an excitation energy supply unit, and the light source is limited to one, which has been described as an example. However, the technical spirit of the present invention is not limited thereto. That is, the excitation energy supply unit may be configured using several different light sources, and it may be configured to supply excitation energy using different energy sources.
또한, 상기의 실시예에 있어서는, 공기 중에 포함된 검출대상물질을 검출하는 것을 예로 하여 설명하였으나, 본 발명의 기술적 사상은 이에 한정되지 않음을 밝혀둔다. 즉, 액체 중에 포함된 검출대상물질을 검출하도록 구성할 수 있음을 밝혀둔다. 예를 들어, 센서전극부를 구성함에 있어서 공기가 지나가도록 구성하는 것이 아니라 액체(혈액, 소변, 타액, 기타 액체 등)가 담겨지도록 구성하거나 또는 일시적으로 머물도록 구성하여 본 발명을 구성할 수 있음을 밝혀둔다.In addition, in the above embodiment, the detection of the detection target material contained in the air has been described as an example, but the technical spirit of the present invention is not limited thereto. In other words, it can be configured to detect the detection target material contained in the liquid. For example, in the construction of the sensor electrode unit, the present invention can be configured to be configured to contain liquids (blood, urine, saliva, other liquids, etc.) or to temporarily stay, rather than to allow air to pass. Reveal.
또한, 상기의 실시예에 있어서는, 검출대상물질 1개만을 검출하는 것을 예로하여 설명하였으나, 본 발명의 기술적 사상은 이에 한정되지 않음을 밝혀둔다. 즉, 다수개의 검출대상물질을 검출하도록 구성할 수 있음을 밝혀둔다. 예를 들어, 다수의 양극측이동유도물질이나 다수의 음극측이동유도물질 및 다수의 여기에너지공급부를 이용하여 동시에 2개 이상의 검출대상물질을 검출하도록 구성할 수 있음을 밝혀둔다.In addition, in the above embodiment, the detection of only one detection target substance has been described as an example, but the technical spirit of the present invention is not limited thereto. In other words, it can be configured to detect a plurality of detection target material. For example, it will be appreciated that it can be configured to detect two or more detection target materials at the same time by using a plurality of anode-side inducing substances, a plurality of cathode-side inducing substances and a plurality of excitation energy supply units.
또한, 본 실시예에 있어서는 암기인물질인 톨루엔을 검출하는 것을 예로하여 본 발명의 기술적 사상을 설명하였으나 본 발명의 기술적 사상은 이에 한정되지 않음을 밝혀둔다. 즉, 결핵기인물질을 검출하여 결핵을 조기 진단할 수 있도록 구성할 수 있고, 구취기인물질질)을 검출하여 구취 원인을 알 수 있도록 구성할 수 있고, 스트레스기인물질을 검출하여 스트레스 정도를 검출할 수 있고, 사린가스, 다이옥신 등과 같은 독가스를 검출하도록 구성할 수 있음은 물론, 본 발명의 기술적 사상이 포함하는 범위 내에서 검출대상물질에 제한 없이 본 발명에 의한 분자센서를 구성할 수 있음을 밝혀둔다.In addition, in the present embodiment, the technical idea of the present invention has been described with the example of detecting toluene, which is a cancerous substance, but the technical idea of the present invention is not limited thereto. That is, it can be configured to detect tuberculosis-related substances to diagnose tuberculosis early, to detect the cause of bad breath by detecting bad breathing substance), and to detect stress levels by detecting stress-causing substances. It can be configured to detect poisonous gas such as sarin gas, dioxin and the like, as well as the molecular sensor according to the present invention can be configured within the scope of the technical idea of the present invention without limiting the detection target material. Put it.
또한, 상기의 실시예에 있어서는 검출대상물질에 의해 이동하는 전자의 양을 검출하는 것을 예로 하여 설명하였으나 본 발명의 기술적 사상은 이에 한정되지 않음을 밝혀둔다. 즉, 포텐시오스타트를 사용하여 CV를 측정하거나, 또는 CA를 측정하거나, 또는 CP를 측정하거나, 또는 SV를 측정하거나, 또는 LSV 등을 측정하여 검출대상물질을 검출함은 물론 그 양을 측정할 수 있다. 예를 들어, 도24에서 도시되는 바와 같이, FTO 투명전극에 [TiO₂]와, [Li+@C60][PF6-]를 영동시켜 워킹전극(W)을 구성하고, 백금전극(Pt)으로 카운터전극(CE)을 구성하고, 염화은전극(AgCl)으로 레퍼런스전극(RE)을 구성하여 석영유리 시험관에 장착한 후, 검출하고자 하는 대상을 전해액(예: 아세토니트릴)에 넣어 CV 측정을 함으로써 검출대상물질의 존재 여부 및 그 양을 측정할 수 있다. 도25는 CV 곡선의 일부분을 확대하여 나타낸 그래프로, 검출하고자 하는 물질((가)곡선)과 그렇지 않은 물질((나)곡선)의 에너지준위 설계에 따른 반응을 나타내고 있다. (가)곡선에서 "a"는 광(여기에너지)의 조사와 차단을 주기적으로 스위칭하였을 경우 광의 여기에너지에 의해 양극측이동유도물질에 여기가 일어나 전류가 많아졌다(광 조사) 적어졌다(광 차단)하는 것을 나타낸 것이고, "b"는 광을 조사하지 않았을 때를 나타낸 것이다("b"구간은 설명의 편의를 위해 광원을 OFF 시킨 상태를 삽입하여 나타낸 것임). 이때 발생한 전류 값의 차나, 그래프 특성을 분석하여 검출대상물질의 유무 및 양을 알 수 있다. (나)곡선은 검출하고자하는 물질이 아니어서 여기에너지(광 조사)에 따른 변화가 없음을 나타낸다.In addition, in the above embodiment, the detection of the amount of electrons moved by the detection target material has been described as an example, but the technical spirit of the present invention is not limited thereto. In other words, potentiostat is used to measure CV, measure CA, measure CP, measure SV, measure LSV, etc., to detect a substance to be detected as well as to measure the amount thereof. Can be. For example, as shown in FIG. 24, [TiO2] and [Li + @ C60] [PF6-] are moved to the FTO transparent electrode to form the working electrode W, and the counter electrode is formed of the platinum electrode Pt. (CE), a reference electrode (RE) made of silver chloride electrode (AgCl), mounted on a quartz glass test tube, and the target to be detected was placed in an electrolyte solution (eg, acetonitrile) and subjected to CV measurement. The presence and amount of can be measured. 25 is an enlarged graph of a portion of a CV curve, and shows a response according to energy level design of a substance ((curve) curve) and a substance ((curve) curve) to be detected. In the curve (a), when "a" is periodically switched on and off of light (excitation energy), excitation occurs at the anode-side induction material due to the excitation energy of light, resulting in a large amount of current (light irradiation). "B" shows when the light is not irradiated (the "b" section shows the state where the light source was turned off for convenience of explanation). At this time, it is possible to know the presence or absence of the detection target material by analyzing the difference of the current value or the graph characteristic. (B) The curve is not a substance to be detected, indicating that there is no change according to excitation energy (light irradiation).
또한, 도26에서 도시되는 바와 같이, 여기 에너지로 공급되는 광원의 파장에 따른 양자수율(IPCE)을 특징 요소로 하여 검출대상물질을 특정할 수 있음을 밝혀둔다.In addition, as shown in FIG. 26, it is found that the detection target material can be specified by using quantum yield (IPCE) according to the wavelength of the light source supplied with excitation energy as a feature.
[실시 예2]Example 2
다음은, 상기 에너지준위를 이용한 암 진단 시스템 특히 암 진단 센서를 구체적으로 설명한다. Next, a cancer diagnosis system using the energy level, in particular a cancer diagnostic sensor will be described in detail.
도면에서 본 발명은, 도 28 및 도 29 그리고 상기 분자 센서의 도면을 참고로 한다. In the drawings, the present invention is referred to FIGS. 28 and 29 and the drawings of the molecular sensor.
본 발명에 따른 에너지 준위를 이용한 암 센서도 상기한 분자 센서와 마찬가지로, 도15에서 도시되는 바와 같이, 상기 암기인물질에 따른 전자의 흐름을 검출하는 검출부(110):를 더 포함한다.Like the molecular sensor described above, the cancer sensor using the energy level according to the present invention further includes a detection unit 110 for detecting the flow of electrons according to the dark matter, as shown in FIG. 15.
검출부(110)는 음극에서 양극으로 이동하는 전자의 흐름을 검출하여 암기인물질이 존재하는 지의 여부는 물론, 그 양을 산출한다. 즉, 양극과 음극 사이의 전류 및 전압을 검출하여 암기인물질의 유입 여부 및 그 유입량을 검출한다.The detection unit 110 detects the flow of electrons moving from the cathode to the anode and calculates the amount, as well as whether the memorandous material is present. That is, the current and the voltage between the positive electrode and the negative electrode are detected to detect whether the memorandum is introduced and the amount thereof is detected.
상기 구성에 있어서, 상기 암기인물질에 따른 전자의 흐름에 대한 정보를 나타내는 표시부(160);를 더 포함하여 구성함을 특징으로 한다.In the above configuration, the display unit 160 for indicating the information on the flow of electrons according to the memorizing material; it characterized in that it further comprises a configuration.
상기 표시부(160)는 암기인물질 검출에 대한 정보를 시각적으로 나타내는 시각표시부(161)와, 청각적으로 나타내는 청각표시부(162)를 포함하여 구성됨이 바람직하다.The display unit 160 preferably includes a visual display unit 161 that visually displays information on the detection of a memorandum and an auditory display unit 162 that is auditory.
상기 구성에 있어서, 암기인물질 검출에 대한 정보를 외부로 전송하는 통신부(170);를 더 포함하여 구성됨을 특징으로 한다.In the above configuration, the communication unit 170 for transmitting the information on the memorizing substance detection to the outside; further comprises.
상기 통신부(170)는, 암기인물질 검출에 대한 정보를 유선(전용선, 전용망, 인터넷 등)으로 전송하는 유선통신부(171)와, 암기인물질 검출에 대한 정보를 무선(무선통신, 이동통신, 근거리 무선통신, 와이파이, 블루투스 등)으로 전송하는 무선통신부(172)로 구성됨이 바람직하다.The communication unit 170, the wired communication unit 171 for transmitting the information on the memorizing substance detection to a wire (dedicated line, dedicated network, Internet, etc.), and the information on the memorizing substance detection wireless (wireless communication, mobile communication, Short-range wireless communication, Wi-Fi, Bluetooth, etc.) is preferably composed of a wireless communication unit 172 for transmitting.
상기 구성에 있어서, 암기인물질 검출에 대한 정보를 저장하는 데이터저장부(140);를 더 포함하여 구성됨을 특징으로 한다. 도면 중 미설명 부호 (150)은 제어부, (180)은 각 구성요소에 동작전원을 공급하는 전원공급부를 각각 나타낸 것이다.In the above configuration, the data storage unit 140 for storing the information on the memorandum detection, characterized in that it further comprises. In the drawing, reference numeral 150 denotes a controller, and 180 denotes a power supply unit for supplying operating power to each component.
이하, 본 발명 "에너지준위를 이용한 암 센서"의 기술적 사상을 실시예를 들어 상세히 설명하면 다음과 같다.Hereinafter, the technical concept of the "arm sensor using the energy level" of the present invention will be described in detail with reference to Examples.
설명을 함에 있어서 동일, 또는 유사한 구성 및 기능을 갖는 구성요소에 대해서는 동일 또는 유사한 명칭 및 부호를 사용한다.In the description, the same or similar names and symbols are used for components having the same or similar configurations and functions.
<에너지 준위을 이용한 암 진진 센서의 실시예1><Example 1 of Cancer Progressive Sensor Using Energy Level>
본 실시예1에서는 암기인물질의 하나인 2,6-디이소프롤필페놀(2,6-Diisopropylphenol)을 검출하는 것을 예로 하여 설명한다.In Example 1, the detection of 2,6-diisopropyl phenol (2,6-Diisopropylphenol), which is one of memorizing substances, will be described as an example.
또한, 본 실시예1에서는 양극으로 FTO(F-doped [SnO2]) 투명전극을 사용하고, 음극으로 백금(Pt)을 사용한 것을 예로 하여 설명한다.In addition, in Example 1, an FTO (F-doped [SnO 2]) transparent electrode is used as the anode and platinum (Pt) is used as the cathode.
또한, 본 실시예1에 있어서는 양극측이동유도물질로 풀러렌 [C60]을 사용한 것을 예로 하여 설명한다.In addition, in Example 1, fullerene [C60] is used as an anode side movement inducing substance, and it demonstrates as an example.
따라서 본실시예1에 의한 센서전극부는 양극으로 FTO를 사용하고, 이 FTO에 [C60]을 전기 영동시키고, 음극으로 백금(Pt)을 사용하여 구성한다. 또한, 상기 양극측이동유도물질에 여기 에너지를 공급하는 여기에너지공급부를 더 포함하여 구성하며, 상기 여기에너지공급부는 광에너지를 공급하는 것을 예로 하여 설명한다.Therefore, the sensor electrode part according to the first embodiment uses FTO as the anode, electrophoreses [C60] to the FTO, and uses platinum (Pt) as the cathode. In addition, the excitation energy supply unit for supplying excitation energy to the anode-side movement inducing material is further configured, and the excitation energy supply unit will be described as an example of supplying optical energy.
또한 본 실시예1에 있어서는 상기 센서전극부에 암기인물질(2,6-디이소프롤필페놀)이 유입되었을 경우 음극에서 양극으로 이동하는 전자의 흐름을 검출하는 검출부와, 검측 정보(검측과정, 검측조건, 검측결과 등)를 표시하는 표시부와, 이를 저장하는 데이터저장부 및, 상기 검측에 대한에 대한 정보를 외부 기기와 교환하는 통신부를 구비하여 구성한 것을 예로 하여 설명한다.In addition, in the first embodiment, when the memorizing substance (2,6-diisoprophylphenol) is introduced into the sensor electrode unit, a detector for detecting the flow of electrons moving from the cathode to the anode, and the detection information (detection process, A display unit for displaying detection conditions, detection results, etc.), a data storage unit for storing the detection conditions, and a communication unit for exchanging information on the detection with an external device will be described as an example.
또한, 본 실시예에 있어서는 공기(날숨) 중에 포함된 2,6-디이소프롤필페놀을 검출하는 것을 예로 하여 설명한다. 따라서 상기 센서전극부는 음극과 양극 사이에 공기가 유통될 수 있는 구조로 구성된 것을 예로 하여 설명한다. 암기인물질이 포함된 공기(날숨)는 펌핑 장치를 이용하여 상기 센서전극부에 공급한다.In addition, in this Example, the detection of 2, 6- diisoprofil phenol contained in air (exhalation) is demonstrated as an example. Therefore, the sensor electrode unit will be described with an example in which a structure in which air flows between the cathode and the anode is configured. The air (exhalation) containing the memorizing substance is supplied to the sensor electrode unit by using a pumping device.
이와 같이 본 실시예1을 구성한 이유는, 본 발명의 기술적 사상에 따른 다른 구성 및 실시예들은 본 실시예로부터 용이하게 알 수 있기 때문이다.The reason why the first embodiment is configured as described above is that other configurations and embodiments according to the technical idea of the present invention can be easily understood from the present embodiment.
이하, 상기와 같이 구성된 본 실시예1의 구성을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. Hereinafter, the configuration of the first embodiment configured as described above with reference to the accompanying drawings in detail as follows.
1) 에너지준위 설계1) Energy level design
2,6-디이소프롤필페놀을 검출하기 위한 본 실시예1의 에너지준위 설계 과정을 도17을 참조하여 설명하면 다음과 같다. The energy level design process of Example 1 for detecting 2,6-diisoprophylphenol is described below with reference to FIG.
암기인물질인 2,6-디이소프롤필페놀의 가전자대의 진공을 기준으로 한 에너지준위는 -5.93eV이고, 전도대의 에너지준위는 -0.01eV이다. 따라서 음극의 에너지준위는 상기 암기인물질인 2,6-디이소프롤필페놀의 가전자대의 에너지준위인 -5.93eV보다 높은 에너지준위를 갖는 전극이 필요하다. 본 실시예1에서는 가전자대의 에너지준위는 -5.93eV이고, 전도대의 에너지준위는 -5.12eV인 백금(Pt)을 음극으로 사용한다. 따라서 백금(Pt)으로 이루어진 음극에 암기인물질인 2,6-디이소프롤필페놀이 접촉하면 암기인물질인 2,6-디이소프롤필페놀의 가전자대에 생기는 양공으로 음극에서 전자가 이동할 수 있는 에너지준위 구조를 갖게 된다.The energy level based on the vacuum of the valence band of 2,6-diisoprophylphenol, a memorized substance, is -5.93 eV, and the energy level of the conduction band is -0.01 eV. Therefore, the energy level of the negative electrode requires an electrode having an energy level higher than -5.93 eV, which is the energy level of the valence band of the memorized substance 2,6-diisoprophylphenol. In Example 1, platinum (Pt) whose energy level is -5.93 eV and the conduction band is -5.12 eV is used as the cathode. Therefore, when 2,6-diisoprophyl phenol which is a memorized substance is contacted with a cathode made of platinum (Pt), electrons can move from the cathode to a hole generated in the valence band of 2,6-diisoprophyl phenol which is a memorized substance. It has an energy level structure.
본 실시예1에서 검측하는 암기인물질인 2,6-디이소프롤필페놀은 가전자대의 에너지준위가 낮은 -5.93eV이므로 이보다 더 낮은 에너지준위를 갖는 양극측이동유도물질이 필요하다. 본 실시예1에서는 가전자대의 에너지준위가 -6.72eV인 [C60]을 양극측이동유도물질로 사용한다. 양극측이동유도물질로 사용하는 [C60]의 가전자대의 에너지준위는, 상기 암기인물질인 2,6-디이소프롤필페놀의 가전자대의 에너지준위 -5.93eV 보다 낮아, 상기 2,6-디이소프롤필페놀의 가전자대에 있는 전자가 [C60]의 가전자대에 생기는 양공으로 이동할 수 있는 에너지준위 구조를 갖게 된다.2,6-diisoprophylphenol, the memorizing substance to be detected in Example 1, has a low energy level of -5.93 eV in the valence band, and thus an anode-side inducing substance having a lower energy level is required. In Example 1, [C60] having an energy level of -6.72 eV in the valence band is used as the anode-side inductive material. The energy level of the valence band of [C60] used as the anode-side inducing substance is lower than the energy level of the valence band of the 2,6-diisoprophylphenol, which is the base material, is -5.93 eV. The electrons in the valence band of soprophyllphenol have an energy level structure that can move to the positive holes generated in the valence band of [C60].
상기 양극측이동유도물질인 [C60]의 전도대의 에너지준위가 -3.89eV이고, 양극으로 사용하는 FTO의 가전자대의 에너지준위가 -4.85eV이므로, 상기 [C60]의 전도대에 여기된 전자가 양극으로 이동할 수 있는 에너지준위 구조를 갖게 된다.Since the energy level of the conduction band of [C60], which is the anode-side inductive substance, is -3.89 eV, and the energy level of the valence band of the FTO used as the anode, is -4.85 eV, the electrons excited in the conduction band of [C60] are anodes. It has an energy level structure that can move to.
즉, 조건이 충족되었을 시, 상기 양극측이동유도물질인 [C60]의 전자대에 여기된 전자가 양극으로 이동하고, 상기 [C60]의 가전자대에 생기는 양공으로 암기인물질인 2,6-디이소프롤필페놀의 전자가 이동하고, 상기 2,6-디이소프롤필페놀의 가전자대에 생기는 양공으로 음극인 백금(Pt)에서 전자가 이동하는 에너지준위를 갖게 된다.That is, when the conditions are satisfied, electrons excited in the electron band of [C60], which is the positive electrode-side transfer inducing material, move to the anode, and 2,6-, which is a memorized substance, are holes generated in the valence band of [C60]. The electrons of the diisoprophyl phenol are moved, and the electrons move in the platinum (Pt), which is a cathode, as holes generated in the valence band of the 2,6-diisoprophyl phenol.
상기 양극측이동유도물질인 [C60]의 여기에는 438nm의 파장을 갖는 광원 2.83eV 이상의 파워가 필요하다. 따라서 상기 여기에너지공급부에서 공급하는 광에너지는 상기 조건을 충족하는 광원을 사용한다. 예를 들어 상기 조건을 충족하는 할로겐 램프가 사용될 수 있다.Excitation of [C60], which is the anode-side mobile induction material, requires a power of 2.83 eV or more, which has a wavelength of 438 nm. Therefore, the light energy supplied from the excitation energy supply unit uses a light source that satisfies the above conditions. For example, a halogen lamp that meets the above conditions can be used.
도23은 상기와 같은 과정을 거쳐 설계된 에너지준위 및 해당 물질을 나타낸 것으로, 도면에서 도시되는 바와 같이, 암기인물질인 2,6-디이소프롤필페놀이 유입되었을 경우 에너지준위에 따라 1번의 여기 과정을 거쳐 음극에서 양극으로 전자가 이동할 수 있도록 설계되었다.Figure 23 shows the energy level and the corresponding material designed through the process as described above, as shown in the figure, once the excitation process according to the energy level when the 2,6-diisoprophylphenol which is a memorandous material is introduced It is designed to move electrons from cathode to anode via
2) 센서전극부 구성2) Sensor electrode part composition
도 21 내지 도 23과 같이, 케이스(125) 내부에 양극(121)과 음극(124)을 장착하여 본 실시예1에 의한 센서전극부(120)를 구성한다.21 to 23, the anode 121 and the cathode 124 are mounted inside the case 125 to form the sensor electrode 120 according to the first embodiment.
상기 양극(121)과 음극(124)에 전원공급부(180)를 통해 동작전원을 공급하고, 상기 양극(121)과 음극(124) 사이를 흐르는 전류를 검출할 수 있도록 검출부(110)를 연결한다.The operating power is supplied to the positive electrode 121 and the negative electrode 124 through a power supply unit 180, and the detection unit 110 is connected to detect a current flowing between the positive electrode 121 and the negative electrode 124. .
상기 케이스(125)는 투명전극인 양극(121)이 장착되는 면, 또는 케이스 전체를 투명재질(예: 유리, 석영 등)로 구성하여 여기에너지공급부(130)인 광원(131)에서 공급하는 광이 투명전극인 양극(121)에 조사될 수 있도록 구성한다.The case 125 is formed of a transparent material (eg, glass, quartz, etc.) on the surface on which the anode 121, which is a transparent electrode, is mounted, and light supplied from the light source 131, which is the excitation energy supply unit 130. It is comprised so that it may irradiate to the positive electrode 121 which is this transparent electrode.
상기 케이스(125)는, 도20에서 도시되는 바와 같이, 양극이 장착되는 부위를 절개하여 광원(131)에서 조사되는 광이 직접 투명전극은 양극(121)에 조사되도록 구성할 수 있다.As shown in FIG. 20, the case 125 may be configured such that light irradiated from the light source 131 is directly irradiated to the anode 121 by cutting a portion where the anode is mounted.
도면 중 미설명 부호 (122)는 양극측이동유도물질, (1)은 암기인물질인 2,6-디이소프롤필페놀이 포함된 공기(날숨)를 나타낸다.In the figure, reference numeral 122 denotes an anode-side moving inducer, and 1 denotes air (exhalation) containing 2,6-diisoprophylphenol, which is a memorandous substance.
상기 공기(날숨)(1)은 센서전극부(120) 후면에 위치한 펌프(미도시)에 의해 센서전극부(120) 내부를 통과하는 것으로, 그 상세한 설명은 생략한다.The air (exhalation) 1 passes through the inside of the sensor electrode part 120 by a pump (not shown) located at the rear of the sensor electrode part 120, and a detailed description thereof will be omitted.
3) 검출 시스템 구성3) Detection system configuration
도15에서 도시되는 바와 같이, 센서전극부(120)에 여기에너지공급부(130)의 광원(131)이 조사될 수 있도록 하고, 상기 센서전극부(120)에 검출부(110)를 연결한다. 이후, 상기 검출부(110)와, 여기에너지공급부(130)와, 데이터저장부(140)와, 표시부(160)와, 통신부(170)를 제어부(150)에 접속하여 본 실시예1에 의한 검출 시스템을 구성한다. 상기 전원공급부(180)는 각 구성요소에 동작전원을 공급한다. As shown in FIG. 15, the light source 131 of the excitation energy supply unit 130 is irradiated to the sensor electrode unit 120, and the detection unit 110 is connected to the sensor electrode unit 120. Thereafter, the detection unit 110, the excitation energy supply unit 130, the data storage unit 140, the display unit 160, and the communication unit 170 are connected to the control unit 150 to detect the first embodiment. Configure the system. The power supply unit 180 supplies operating power to each component.
상기 제어부(150)는 마이크로프로세서, 또는 컴퓨터 시스템으로 구성됨이 바람직하며, 상기 데이터저장부(140)는 상기 제어부(150)의 내부메모리, 또는 상기 제어부(150)의 제어를 받는 외부메모리로 구성됨이 바람직하다. Preferably, the controller 150 is configured as a microprocessor or a computer system, and the data storage 140 is configured as an internal memory of the controller 150 or an external memory controlled by the controller 150. desirable.
상기 데이터저장부(140)에는 암기인물질의 검측 결과 및, 검측대상물질의 양과 전류량의 상관관계를 나타낸 데이터테이블 등이 저장된다. The data storage unit 140 stores a result of the detection of the memorized substance and a data table indicating a correlation between the amount of the substance to be detected and the amount of current.
이하, 상기와 같이 구성된 본 실시예1의 동작에 대해 상세히 설명하면 다음과 같다.Hereinafter, the operation of the first embodiment configured as described above will be described in detail.
먼저, 상기 여기에너지공급부(130)의 광원(131)이 온(ON)되면, 상기 광원(131)에서 조사되는 광에너지가 상기 양극측이동유도물질(122)인 [C60]에 여기 에너지를 공급하게 된다.First, when the light source 131 of the excitation energy supply unit 130 is turned on (ON), the excitation energy is supplied to [C60] that the light energy irradiated from the light source 131 is the anode-side movement inducing material 122 Done.
그러면 상기 양극측이동유도물질인 [C60]의 가전자대에 있는 전자가 전도대로 여기하게 되며, 상기 [C60]의 가전자대에는 양공이 생성되게 된다. [C60]의 전도대로 여기된 전자의 에너지준위는 -3.89eV로 양극인 FTO의 가전자대의 에너지준위인 -4.85eV 보다 높아져, 상기 전도대로 여기된 전자가 양극인 FTO로 이동하게 된다.Then, the electrons in the valence band of [C60], which is the anode-side movement inducing material, are excited with a conduction band, and a hole is generated in the valence band of [C60]. The energy level of the electrons excited by the conduction band of [C60] is -3.89 eV, which is higher than the energy level of -4.85 eV of the valence band of the anode FTO, and the electrons excited by the conduction band move to the anode FTO.
이러한 상태에서, 암기인물질인 2,6-디이소프롤필페놀이 양극인 FTO와 음극인 백금{Pt) 사이에 유입되면, 상기 2,6-디이소프롤필페놀의 가전자대에 있는 전자(에너지준위: -5.93eV)가 상기 양극측이동유도물질인 [C60]의 가전자대에 생긴 양공(에너지준위: -6.72eV)으로 이동하고, 상기 2,6-디이소프롤필페놀의 가전자대에는 양공이 생성되게 된다.In this state, when 2,6-diisoprophyl phenol, which is a memorizing substance, flows between FTO, which is an anode, and platinum (Pt), which is a cathode, electrons (energy levels) in the valence band of the 2,6-diisoprophyl phenol are : -5.93eV) moves to the positive hole (energy level: -6.72eV) generated in the valence band of [C60] which is the anode-side mobile induction material, and the positive hole is generated in the valence band of 2,6-diisoprophylphenol. Will be.
그러면 상기 암기인물질인 2,6-디이소프롤필페놀의 가전자대에 생긴 양공(에너지준위: -5.93eV)으로 음극인 백금(Pt)의 가전자대에 있는 전자(에너지준위: -5.93eV)가 이동하게 된다.Then, the electrons (energy level: -5.93eV) in the valence band of platinum (Pt) as the positive hole generated in the valence band of the memorized substance 2,6-diisoprophylphenol (energy level: -5.93 eV) Will move.
이후, 상기 여기에너지공급부(130)에서 여기 에너지가 공급되는 한 상기와 같은 과정을 반복 수행하여 음극에서 양극으로 상기 암기인물질인 2,6-디이소프롤필페놀의 분자 수에 비례하는 수의 전자가 지속적으로 이동하게 된다.Thereafter, as long as the excitation energy is supplied from the excitation energy supply unit 130, the above process is repeated, and the number of electrons proportional to the number of molecules of the 2,6-diisoprophylphenol, which is the base material, is from the cathode to the anode. Will continue to move.
상기 검출부(110)는 상기 음극과 양극 사이에 흐르는 전류(전자의 이동)를 검출한다.The detector 110 detects a current (movement of electrons) flowing between the cathode and the anode.
상기 제어부(150)는 상기 검출부(110)를 통해 전류가 흐르는 지의 여부를 검출하여 암기인물질인 2,6-디이소프롤필페놀이 존재하는지의 여부를 판단하고, 전류의 양으로부터 암기인물질인 2,6-디이소프롤필페놀의 양을 판단하게 된다. 즉, 검출된 전류량을 상기 데이터저장부(140)에 저장된 암기인물질의 양과 전류량과의 관계를 나타내는 데이터테이블과 비교하여 얼마만큼의 2,6-디이소프롤필페놀이 유입되었는지를 산출하게 된다.The controller 150 detects whether current flows through the detector 110 to determine whether 2,6-diisoprophylphenol, which is a memorandous substance, is present, and the memorized substance is determined from the amount of current. The amount of 2,6-diisoprophylphenol is determined. That is, the amount of 2,6-diisoprophylphenol introduced is calculated by comparing the detected current amount with the data table indicating the relationship between the amount of the memorizing substance and the current amount stored in the data storage 140.
이후, 상기 제어부(150)는 상기 검측에 대한 정보(검측과정, 검측조건, 검측결과 등)를 데이터저장부(140)에 저장하고, 표시부(160)를 통해 나타내며, 상기 통신부(170)를 통해 외부기기와 교환하게 되는 것으로, 이와 같은 과정을 반복 수행하여 암기인물질을 지속적으로 검측하게 된다.Thereafter, the controller 150 stores the information on the detection (detection process, detection condition, detection result, etc.) in the data storage unit 140, is displayed through the display unit 160, and through the communication unit 170. By exchanging with an external device, this process is repeated to continuously detect the memorandum.
이때, 상기 암기인물질에서 공여하는 전자를 매개로 하여 흐르는 전류를 검출함으로써 암기인물질의 분자 수에 비례하는 정확하고 정밀한 검측을 할 수 있게 된다.At this time, by detecting the current flowing through the electrons donated from the memorized material, accurate and precise detection in proportion to the number of molecules of the memorized material can be performed.
즉, 암기인물질의 존재 유무로 암 세포의 존재 유무를 검출하고, 암기인물질의 양으로 암의 진행 정도를 판단하게 된다. 암의 종류는 동일한 시료에서 검출되는 2개 이상이 암기인물질의 구성비로 판단한다. That is, the presence or absence of a memorandous substance is detected and the presence or absence of cancer cells is determined, and the extent of cancer is determined by the amount of the memorandum. Two or more types of cancers detected in the same sample are determined by the composition ratio of the cancer-causing substance.
암 진행 정도는 암기인물질의 양과 암 진행 정도를 나타내는 데이터테이블을 참조하여 판단하며, 암의 종류는 암기인물질의 구성비와 암 종류에 대한 데이터테이블을 참조하여 판단한다.The progress of cancer is determined by referring to the data table indicating the amount of cancer and the progress of cancer, and the type of cancer is determined by referring to the data table of the composition and the type of cancer.
폐암센서의 정밀도에 대해 설명하면 다음과 같다.The precision of the lung cancer sensor is described as follows.
약 500cc의 호기에 포함된 분자수는 약 1.19×1022개 이다.The number of molecules in the expiration of about 500cc is about 1.19 × 10 22 .
이 500cc의 호기 1ppt에 포함된 분자수는, The number of molecules contained in 1 ppt of aerobic gas of 500 cc is
1.19×1022×10-12 = 1.19×1010 개 이다.1.19 × 10 22 × 10 -12 = 1.19 × 10 10 .
이를 전하량으로 나타내면,If this is expressed as the amount of charge,
(1.19×1010)×(1.62×10)-19C) = 약 1.19×10-9C = 1.9nA 이다.(1.19 × 10 10 ) × (1.62 × 10 ) -19 C) = about 1.19 × 10 -9 C = 1.9 nA.
즉, 500cc의 호기 속에 암기인물질이 1ppt 만큼 포함되었다 하더라도 이를 검출할 수 있다.That is, even if 1ppt of the memorizing substance is contained in the expiration of 500cc it can be detected.
만약, 500cc의 호기 중 1ppt 만큼의 공기 속에 1% 만큼의 암기인물질이 포함되어 있다고 하면 약 19pA의 전하량을 나타낸다.If 500 ppm of exhaled air contains 1% of memorizing substance in 1ppt of air, the charge amount is about 19pA.
상기 나노 암페아(nA)나, 피코 암페아(pA) 단위의 전하량을 검출하는 검출부(110)의 구성은 주지하는 바와 같으므로 그 상세한 설명은 생략한다.Since the configuration of the detection unit 110 for detecting the charge amount in the nano-ampere (nA) or pico-ampere (pA) unit is well known, its detailed description is omitted.
한편, 본 발명 중 이동유도물질(양극측이동유도물질, 음극측이동유도물질)을 구성하는 [C60] 풀러렌 및 리튬이온내포풀러렌은 전자운을 포함한 크기가 약 1nm이고, 상기 리튬이온내포풀러렌과 색소로 이루어진 초분자의 크기는 약 2nm이다.On the other hand, in the present invention [C60] fullerene and lithium ion-encapsulated fullerene constituting a mobile induction material (anode-side mobile induction material, negative electrode-side mobile induction material) is about 1nm in size including an electron cloud, the lithium ion containing fullerene and The supramolecular molecule consists of pigments of about 2 nm in size.
따라서 상기 500cc 호기에 1ppt의 암기인물질이 있다고 하고, 그 이동유도물질을 리튬이온내포풀러렌과 색소로 이루어진 초분자(약 2nm)로 구성하였다고 할 경우, 상기 암기인물질이 동시에 반응하기 극판의 크기는 약 (0.22mm ㅧ 0.22mm)의 크기면 충분하다. 상기 500cc 중 1ppt 만큼의 호기 내에 1%의 암기인물질이 있다고 할 경우에는 더욱 작은 크기의 극판으로 양극(또는 음극)을 만들 수 있다.Therefore, if the 500cc unit contains 1ppt of memorizing substance, and the mobile inducing substance is composed of ultra-molecules (about 2 nm) composed of lithium ion containing fullerene and pigment, the size of the electrode plate to react simultaneously with the memorizing substance is A size of about (0.22 mm ㅧ 0.22 mm) is sufficient. In the case where 1% of the memorized substance is present in 1 ppt of the 500cc, the positive electrode (or negative electrode) may be made of a smaller electrode plate.
즉, 암기인물질의 분자수에 비례하는 수의 전자가 이동하도록 하고, 그 이동된 전자의 수를 직접 검출함으로써 ppt 레벨의 정밀도, 또는 그 이상의 더욱 정밀도를 갖는 폐암 센서를 구성할 수 있다.That is, a lung cancer sensor having a precision of ppt level or more can be configured by allowing electrons in proportion to the number of molecules of the memorandous substance to move and directly detecting the number of moved electrons.
<에너지 준위를 이용한 암 센서의 실시예2><Example 2 of Cancer Sensor Using Energy Level>
본 실시예2에서는 암기인물질의 하나인 톨루엔(Toluene)을 검출하는 것을 예로 하여 설명한다.In Example 2, the detection of toluene, which is one of memorizing substances, will be described as an example.
본 실시예2에서는 실시예1과 마찬자지로 양극으로 FTO를 사용하고, 음극으로 백금(Pt)을 사용한 것을 예로 하여 한다. In Example 2, as in Example 1, FTO is used as the positive electrode and platinum (Pt) is used as the negative electrode.
또한 본 실시예2에 있어서는 양극측제2이동유도물질로 이산화 타이타늄(Titanium dioxide, [TiO2])과, 양극측제1리튬내포풀러렌 헥사 플루오르 포스페이트 염([Li+c60][PF6-])을 사용한 것을 예로 하여 설명한다.In addition, in Example 2, titanium dioxide (TiO2) and anode-side first lithium-included fullerene hexafluorophosphate salt ([Li + c60] [PF6-]) were used as the anode-side second moving inducer. It demonstrates as an example.
따라서 본실시예1에 의한 센서전극부는 양극으로 FTO를 사용하고, 이 FTO에 [TiO2]과 [Li+c60][PF6-]을 전기 영동시키고, 음극으로 백금(Pt)을 사용하여 구성한다. 또한, 상기 [TiO2]과 [Li+c60][PF6-]에 여기 에너지를 공급하는 여기에너지공급부를 더 포함하여 구성하며, 상기 여기에너지공급부는 광에너지를 공급하는 것을 예로 하여 설명한다.Therefore, the sensor electrode part according to the first embodiment uses FTO as an anode, electrophoreses [TiO2] and [Li + c60] [PF6-] to the FTO, and uses platinum (Pt) as the cathode. In addition, the excitation energy supply unit for supplying excitation energy to [TiO2] and [Li + c60] [PF6-] is further configured, and the excitation energy supply unit will be described with an example of supplying optical energy.
또한 본 실시예2에 있어서는 실시예1에서와 같이, 검출부와, 표시부와, 데이터저장부 및 통신부를 구비하는 것을 예로 하여 설명하며, 공기(날숨) 중에 포함된 톨루엔을 검출하는 것을 예로 하여 설명한다. In the second embodiment, as in the first embodiment, a detection unit, a display unit, a data storage unit, and a communication unit are described as an example, and the detection of toluene contained in air (exhalation) will be described as an example. .
이와 같이 본 실시예2를 구성한 이유는, 본 발명의 기술적 사상에 따른 다른 구성 및 실시예들은 본 실시예로부터 용이하게 알 수 있기 때문이다.The reason why the present embodiment 2 is configured as described above is that other configurations and embodiments according to the technical idea of the present invention can be easily understood from the present embodiment.
이하, 상기와 같이 본 실시예2의 구성을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. Hereinafter, the configuration of the second embodiment as described above with reference to the accompanying drawings in detail as follows.
1) 에너지준위 설계1) Energy level design
톨루엔을 검출하기 위한 본 실시예2의 에너지준위 설계 과정을 도18을 참조하여 설명하면 다음과 같다. An energy level design process of the second embodiment for detecting toluene will be described with reference to FIG. 18 as follows.
암기인물질인 톨루엔의 가전자대의 진공을 기준으로 한 에너지준위는 -6.55eV이고, 전도대의 에너지준위는 -0.18eV이다. 따라서 음극의 에너지준위는 상기 암기인물질인 톨루엔의 가전자대의 에너지준위인 -6.55eV보다 높은 에너지준위를 갖는 전극이 필요하다. 본 실시예2에서는 가전자대의 에너지준위는 -5.93eV이고, 전도대의 에너지준위는 -5.12eV인 백금(Pt)을 음극으로 사용한다. 따라서 백금(Pt)으로 이루어진 음극에 암기인물질인 톨루엔이 접촉하면 에너지준위 차에 의하여 암기인물질인 톨루엔의 가전자대에 생기는 양공으로 음극에서 전자가 이동할 수 있는 에너지준위 구조를 갖게 된다.The energy level based on the vacuum of the valence band of toluene, the memorized substance, is -6.55 eV, and the energy level of the conduction band is -0.18 eV. Therefore, the energy level of the cathode requires an electrode having an energy level higher than -6.55 eV, which is the energy level of the valence band of the toluene. In the second embodiment, platinum (Pt) whose energy level is -5.93 eV and the conduction band is -5.12 eV is used as the cathode. Therefore, when toluene, which is a memorized substance, comes into contact with a cathode made of platinum (Pt), has an energy level structure in which electrons can move from the cathode to holes formed in the valence band of toluene, which is a memorized substance, by the energy level difference.
본 실시예2에서 검측하는 암기인물질인 톨루엔은 가전자대의 에너지준위가 매우 낮은 -6.55eV이므로 이보다 더 낮은 에너지준위를 갖는 양극측이동유도물질이 필요하다. 본 실시예에서는 가전자대의 에너지준위가 -7.70eV인 [Li+@C60][PF6-]를 양극측제1이동유도물질로 사용한다. 양극측제1이동유도물질로 사용하는 [Li+@C60][PF6-]의 가전자대의 에너지준위는, 상기 암기인물질인 톨루엔의 가전자대의 에너지준위 -6.55eV 보다 낮아, 상기 톨루엔의 가전자대에 있는 전자가 [Li+@C60][PF6-]의 가전자대에 생기는 양공으로 이동할 수 있는 에너지준위 구조를 갖게 된다.Toluene, which is a memorized substance to be detected in Example 2, has a very low energy level of -6.55 eV in the valence band, and thus an anode-side inductive substance having a lower energy level is required. In this embodiment, [Li + @ C60] [PF6-] having an energy level of -7.70eV in the valence band is used as the anode-side first inducing substance. The energy level of the valence band of [Li + @ C60] [PF6-], which is used as the anode-side first moving inducer, is lower than the energy level of the valence band of the toluene, which is the base material, of -6.55 eV. The electrons have an energy level structure that can move to the positive holes in the valence band of [Li + @ C60] [PF6-].
상기 양극측제1이동유도물질인 [Li+@C60][PF6-]의 전도대의 에너지준위가 -4.90eV이고, 양극으로 사용하는 FTO의 가전자대의 에너지준위가 -4.85eV이므로, 상기 [Li+@C60][PF6-]의 전도대에 있는 전자가 직접 양극으로 이동할 수 없다. 따라서 이를 매개할 양극측제2이동유도물질이 필요하다.Since the energy level of the conduction band of [Li + @ C60] [PF6-], which is the anode-side first moving induction material, is -4.90 eV, and the energy level of the valence band of FTO used as the anode is -4.85 eV, the [Li + @ C60 ] The electrons in the conduction band of [PF6-] cannot move directly to the anode. Therefore, a positive electrode-side second moving material is required.
양극측제1이동유도물질인 [Li+@C60][PF6-]의 전도대의 에너지준위가 -4.90eV이고, 양극 FTO의 가전자대의 에너지준위가 -4.85eV이므로, 양극측제2이동유도물질은 -4.90eV 보다 낮은 에너지준위를 갖는 가전자대와, -4.85eV 보다 높은 에너지준위를 갖는 전도대로 이루어진 물질이 필요하다.The energy level of the conduction band of [Li + @ C60] [PF6-], the anode-side first induction material, is -4.90 eV, and the energy level of the valence band of the anode FTO is -4.85 eV. What is needed is a material consisting of a valence band with an energy level lower than eV and a conduction band with an energy level higher than -4.85 eV.
이산화 타이타늄(Titanium dioxide, [TiO2])은 가전자대의 에너지준위가 -6.21eV이고, 전도대의 에너지준위가 -3.21eV로 위의 조건을 충족하므로 이 [TiO2]를 양극측제2이동유도물질로 사용한다. 그러면 상기 [TiO2]의 전도대에 여기된 전자가 양극으로 이동할 수 있는 에너지준위 구조를 갖게 된다.Titanium dioxide (TiO2) has the energy level of the valence band of -6.21 eV and the conduction band of energy of -3.21 eV, which satisfies the above conditions. do. Then, the electrons excited in the conduction band of [TiO 2] have an energy level structure that can move to the anode.
즉, 조건이 충족되었을 시, 상기 양극측제2이동유도물질인 [TiO2]의 전자대에 여기된 전자가 양극으로 이동하고, 상기 [TiO2]의 가전자대에 생기는 양공으로 양극측제1유도물질인 [Li+@C60][PF6-]의 전도대에 여기된 전자가 이동하고, 상기 [Li+@C60][PF6-]의 가전자대에 생기는 양공으로 암기인물질인 톨루엔의 전자가 이동하고, 상기 톨루엔의 가전자대에 생기는 양공으로 음극인 백금(Pt)에서 전자가 이동하는 에너지준위를 갖게 된다.That is, when the conditions are satisfied, the electrons excited in the electron band of [TiO2], which is the anode-side second moving inducing material, move to the anode, and the positive holes generated in the valence band of [TiO2] are [ Electrons excited in the conduction band of Li + @ C60] [PF6-] move, and electrons of toluene, which is a memorized substance, move to the hole generated in the valence band of [Li + @ C60] [PF6-], and the home appliances of the toluene The positive holes in the magnetic field cause the electrons to move in the platinum (Pt) cathode.
상기 양극측제1이동유도물질인 [Li+@C60][PF6-]의 여기에는 457nm의 파장을 갖는 광원 2.8eV 이상의 파워가 필요하고, 양극측제2이동유도물질인 [TiO2]의 여기에는 413nm의 파장을 갖는 광원 3.0eV 이상의 파워가 필요하다. 따라서 상기 여기에너지공급부에서 공급하는 광에너지는 상기 조건을 충족하는 광원을 사용한다.[Li + @ C60] [PF6-], which is the anode-side first mobile induction material, requires a power of 2.8 eV or more with a light source having a wavelength of 457 nm, and a wavelength of 413 nm for the [TiO2], which is an anode-side second mobile inductive material. Power of 3.0 eV or more is required. Therefore, the light energy supplied from the excitation energy supply unit uses a light source that satisfies the above conditions.
도18은 상기와 같은 과정을 거쳐 설계된 에너지준위 및 해당 물질을 나타낸 것으로, 도면에서 도시되는 바와 같이, 암기인물질인 톨루엔이 유입되었을 경우 에너지준위에 따라 2번의 여기 과정을 거쳐 음극에서 양극으로 전자가 이동할 수 있도록 설계되었다.Figure 18 shows the energy level and the corresponding material designed through the process as described above, as shown in the figure, when toluene is a memorandous substance is introduced into the electron from the cathode to the anode through two excitation processes according to the energy level It is designed to move.
2) 센서전극부 구성2) Sensor electrode part composition
도21에서 도시되는 바와 같이, 케이스(125) 내부에 양극(121)과 음극(124)을 장착하고, 상기 양극(121)과 음극(124)에 전원공급부(180)를 통해 동작전원을 공급하고, 상기 양극(121)과 음극(124) 사이에 흐르는 전류를 검출할 수 있도록 검출부(110)를 연결하여 본 실시예에 의한 센서전극부(120)를 구성한다.As shown in FIG. 21, the cathode 121 and the cathode 124 are mounted inside the case 125, and operation power is supplied to the anode 121 and the cathode 124 through the power supply unit 180. In addition, the sensor 110 is connected to the detector 110 so as to detect a current flowing between the anode 121 and the cathode 124.
상기 케이스(125)는 투명전극인 양극(121)이 장착되는 면, 또는 케이스 전체를 투명재질로 구성하여 여기에너지공급부(130)인 광원(131)에서 공급하는 광이 투명전극인 양극(121)에 조사될 수 있도록 구성한다.The case 125 has a surface on which the anode 121, which is a transparent electrode, is mounted, or the entire case is made of a transparent material, and the light supplied from the light source 131, which is the excitation energy supply unit 130, is the anode 121, which is a transparent electrode. Configure it to be investigated.
도면 중 미설명 부호 (122a)는 양극측제1이동유도물질, (122b)는 양극측제2이동유도물질을 각각 나타내며, (1)은 암기인물질인 톨루엔이 포함된 공기(날숨)를 나타낸다.In the figure, reference numeral 122a denotes an anode-side first moving inducer, and 122b denotes an anode-side second moving inducer, and (1) represents air (exhalation) containing toluene, which is a memorizing substance.
상기 공기(날숨)(1)은 센서전극부(120) 후면에 위치한 펌프(미도시)에 의해 센서전극부(120) 내부를 통과하도록 구성된다.The air (exhalation) 1 is configured to pass through the inside of the sensor electrode part 120 by a pump (not shown) located at the rear of the sensor electrode part 120.
3) 검출 시스템 구성3) Detection system configuration
도15에서 도시되는 바와 같이, 센서전극부(120)에 여기에너지공급부(130)의 광원(131)이 조사될 수 있도록 하고, 상기 센서전극부(120)에 검출부(110)를 연결한다. 이후, 상기 검출부(110)와, 여기에너지공급부(130)와, 데이터저장부(140)와, 표시부(160)와, 통신부(170)를 제어부(150)에 접속하여 본 실시예2에 의한 검출 시스템을 구성한다. 상기 전원공급부(180)는 각 구성요소에 동작전원을 공급한다. As shown in FIG. 15, the light source 131 of the excitation energy supply unit 130 is irradiated to the sensor electrode unit 120, and the detection unit 110 is connected to the sensor electrode unit 120. Thereafter, the detection unit 110, the excitation energy supply unit 130, the data storage unit 140, the display unit 160, and the communication unit 170 are connected to the control unit 150 to detect the second embodiment. Configure the system. The power supply unit 180 supplies operating power to each component.
이하, 상기와 같이 구성된 본 실시예2의 동작에 대해 상세히 설명하면 다음과 같다.Hereinafter, the operation of the second embodiment configured as described above will be described in detail.
먼저, 상기 여기에너지공급부(130)의 광원(131)이 온(ON)되면, 상기 광원(131)에서 조사되는 광에너지가 상기 양극측제1이동유도물질(122a)인 [Li+@C60][PF6-]과 양극측제2이동유도물질(122b)인 [TiO2]에 여기 에너지를 공급하게 된다.First, when the light source 131 of the excitation energy supply unit 130 is turned on (ON), the light energy irradiated from the light source 131 is [Li + @ C60] [PF6] being the anode-side first moving inducer 122a. Excitation energy is supplied to [TiO 2], which is the negative electrode-side second moving inducer 122b.
그러면 상기 양극측제2이동유도물질인 [TiO2]의 가전자대에 있는 전자가 전도대로 여기하게 되며, 상기 [TiO2]의 가전자대에는 양공이 생성되게 된다. [TiO2]의 전도대로 여기된 전자의 에너지준위는 -3.21eV로 양극인 FTO의 가전자대의 에너지준위인 -4.85eV 보다 높아져, 상기 전도대로 여기된 전자가 양극인 FTO로 이동하게 된다.Then, the electrons in the valence band of [TiO2], which is the anode-side second moving induction material, are excited with a conduction band, and holes are generated in the valence band of [TiO2]. The energy level of electrons excited by the conduction band of [TiO2] is -3.21 eV, which is higher than the energy level of -4.85 eV, which is the valence band of the FTO, which is the anode, and the electrons excited by the conduction band move to the FTO, which is the anode.
상기 광원(131)에서 조사되는 광에너지에 의해 양극측제1이동유도물질인 [Li+@C60][PF6-]의 가전자대에 있는 전자가 전도대로 여기되고, 상기 [Li+@C60][PF6-]의 가전자대에는 양공이 생성된다. 상기 [Li+@C60][PF6-]의 전도대로 여기된 전자의 에너지준위는 -4.90eV로 양극측제2이동유도물질인 [TiO2]의 가전자대의 에너지준위인 -6.21eV 보다 높아져, 상기 전도대로 여기된 전자가 [TiO2]의 가전자대에 생긴 양공으로 이동하게 된다.By the light energy irradiated from the light source 131, the electrons in the valence band of the anode-side first moving inducer [Li + @ C60] [PF6-] are excited to the conduction band, and the [Li + @ C60] [PF6-] A hole is generated in the valence band of. The energy level of electrons excited by the conduction band of [Li + @ C60] [PF6-] is -4.90 eV, which is higher than the energy level of -6.21 eV, which is the valence band of [TiO2], which is the anode-side second moving inducer. The excited electrons are moved to the holes generated in the valence band of [TiO 2].
이러한 상태에서, 암기인물질인 톨루엔이 양극인 FTO와 음극인 백금{Pt) 사이에 유입되면, 상기 톨루엔의 가전자대에 있는 전자(에너지준위: -6.55eV)가 상기 양극측제1이동유도물질인 [Li+@C60][PF6-]의 가전자대에 생긴 양공(에너지준위: -7.70eV)으로 이동하고, 상기 톨루엔의 가전자대에는 양공이 생성되게 된다.In this state, when the toluene, which is a memorizing substance, is introduced between the anode, FTO, and the cathode, platinum (Pt), the electrons (energy level: -6.55 eV) in the valence band of the toluene are the anode-side first moving inducing substance. The hole moves to the valence band of [Li + @ C60] [PF6-] (energy level: -7.70 eV), and the hole is generated in the valence band of toluene.
그러면 상기 암기인물질인 톨루엔의 가전자대에 생긴 양공(에너지준위: -6.55eV)으로 음극인 백금(Pt)의 가전자대에 있는 전자(에너지준위: -5.93eV)가 이동하게 된다.Then, the electrons (energy level: -5.93eV) in the valence band of platinum (Pt), which is a cathode, move to the hole (energy level: -6.55eV) generated in the valence band of the toluene, which is the memorizing substance.
이후, 상기 여기에너지공급부(130)에서 여기 에너지가 공급되는 한 상기와 같은 과정을 반복 수행하여 음극에서 양극으로 상기 암기인물질인 톨루엔에 비례하는 수의 전자가 지속적으로 이동하게 된다.Thereafter, as long as the excitation energy is supplied by the excitation energy supply unit 130, the above process is repeated, and the number of electrons proportional to the toluene, which is the base material, is continuously moved from the cathode to the anode.
상기 검출부(110)는 상기 음극과 양극 사이에 흐르는 전류(전자의 이동)를 검출한다.The detector 110 detects a current (movement of electrons) flowing between the cathode and the anode.
상기 제어부(150)는 상기 검출부(110)를 통해 전류가 흐르는 지의 여부를 검출하여 암기인물질인 톨루엔이 존재하는지의 여부를 판단하고, 전류의 양으로부터 암기인물질인 톨루엔의 양을 판단하게 된다. 즉, 검출된 전류량을 상기 데이터저장부(140)에 저장된 암기인물질의 양과 전류량과의 관계를 나타내는 데이터테이블과 비교하여 얼마만큼의 톨루엔이 유입되었는지를 산출하게 된다.The control unit 150 detects whether current flows through the detection unit 110 to determine whether or not toluene, which is a memorandant, is present, and determines the amount of toluene, which is a memorized substance, from the amount of current. . That is, the amount of toluene introduced is calculated by comparing the detected current amount with the data table indicating the relationship between the amount of the memorizing substance and the current amount stored in the data storage 140.
이후, 상기 제어부(150)는 상기 검측에 대한 정보(검측과정, 검측조건, 검측결과 등)를 데이터저장부(140)에 저장하고, 표시부(160)를 통해 나타내며, 상기 통신부(170)를 통해 외부기기와 교환하게 되는 것으로, 이와 같은 과정을 반복 수행하여 암기인물질을 지속적으로 검측하게 된다.Thereafter, the controller 150 stores the information on the detection (detection process, detection condition, detection result, etc.) in the data storage unit 140, is displayed through the display unit 160, and through the communication unit 170. By exchanging with an external device, this process is repeated to continuously detect the memorandum.
이때, 상기 암기인물질에서 공여하는 전자를 매개로 하여 흐르는 전류를 검출함으로써 암기인물질의 분자 수에 비례하는 정확하고 정밀한 검측을 할 수 있게 된다.At this time, by detecting the current flowing through the electrons donated from the memorized material, accurate and precise detection in proportion to the number of molecules of the memorized material can be performed.
즉, 암기인물질인 톨루엔의 존재 유무로 암 세포의 존재 유무를 검출하고, 암기인물질의 양으로 암의 진행 정도를 판단하게 된다. 암의 종류는 동일한 시료에서 검출되는 2개 이상이 암기인물질의 구성비로 판단한다(예: 톨루엔과 2,6-디이소프롤필페놀의 구성비, 또는 톨루엔, 2,6-디이소프롤필페놀, 2-메틸피라진, 사이클로헥사논의 구성비 등) That is, the presence of cancer cells is detected by the presence or absence of toluene, which is a cancerous substance, and the progress of cancer is determined by the amount of the cancerous substance. The type of cancer is determined by the composition ratio of two or more cancer-causing substances detected in the same sample (for example, the composition ratio of toluene and 2,6-diisoprophylphenol, or toluene, 2,6-diisoprophylphenol, 2- Composition of methyl pyrazine, cyclohexanone, etc.)
암 진행 정도는 암기인물질의 양과 암 진행 정도를 나타내는 데이터테이블을 참조하여 판단하며, 암의 종류는 암기인물질의 구성비와 암 종류에 대한 데이터테이블을 참조하여 판단한다.The progress of cancer is determined by referring to the data table indicating the amount of cancer and the progress of cancer, and the type of cancer is determined by referring to the data table of the composition and the type of cancer.
그러나 상기의 실시예들에 있어서는, 양극측이동유도물질 2개를 사용하여 암기인물질을 검출하는 것을 예로 하여 설명하였으나, 본 발명이 기술적 사상은 이에 한정되지 않음을 밝혀둔다. 즉, 도1 내지 도14에서 도시되는 바와 같이, 이동유도물질 없이 본 발명의 암 센서를 구성하거나, 또는 다수개의 양극측이동유도물질이나 다수개의 음극측이동유도물질을 이용하여 본 발명의 암 센서를 구성하거나, 또는 필요한 수 만큼의 양극측이동유도물질 및 필요한 수 만큼의 음극측이동유도물질을 모두 사용하여 본 발명에 의한 암 센서를 구성할 수 있음을 밝혀둔다. 도16은 양극측이동유도물질(122)과 음극측이동유도물질(123)을 모두 사용하는 센서전극부의 구성예를 나타낸 도면이다.However, in the above embodiments, it has been described with the example of detecting the memorizing material using two anode-side movement inducing material, it is clear that the present invention is not limited to this. That is, as shown in Figs. 1 to 14, the arm sensor of the present invention is configured without a moving induction material, or the cancer sensor of the present invention using a plurality of anode-side movement inducing materials or a plurality of cathode-side movement inducing materials. Or it can be understood that the cancer sensor according to the present invention can be configured by using both the required number of the anode-side induction material and the required number of cathode-side movement inducing material. Fig. 16 is a diagram showing an example of the configuration of the sensor electrode part using both the anode side movement inducing material 122 and the cathode side movement inducing material 123.
또한, 상기의 실시예에 있어서는, 여기에너지공급부에서 광에너지를 공급하도록 하고, 그 광원을 1개로 한정한 것을 예로 하여 설명하였으나, 본 발명의 기술적 사상은 이에 한정되지 않음을 밝혀둔다. 즉, 다른 광원 여러 개를 사용하여 여기에너지공급부를 구성할 수 있음은 물론, 각기 다른 에너지원을 사용하여 여기 에너지를 공급하도록 구성할 수 있음을 밝혀둔다.In addition, in the above-described embodiment, the light source is supplied with an excitation energy supply unit, and the light source is limited to one, which has been described as an example. However, the technical spirit of the present invention is not limited thereto. That is, the excitation energy supply unit may be configured using several different light sources, and it may be configured to supply excitation energy using different energy sources.
또한, 상기의 실시예에 있어서는, 공기 중에 포함된 암기인물질을 검출하는 것을 예로 하여 설명하였으나, 본 발명의 기술적 사상은 이에 한정되지 않음을 밝혀둔다. 즉, 액체 중에 포함된 암기인물질을 검출하도록 구성할 수 있음을 밝혀둔다. 예를 들어, 센서전극부를 구성함에 있어서 공기가 지나가도록 구성하는 것이 아니라 액체(혈액, 소변, 타액, 기타 액체 등)가 담겨지도록 구성하거나 또는 일시적으로 머물도록 구성하여 본 발명을 구성할 수 있음을 밝혀둔다.In addition, in the above embodiment, it has been described with an example of detecting the dark base material contained in the air, but the technical spirit of the present invention is not limited thereto. In other words, it can be configured to detect the memorizing substance contained in the liquid. For example, in the construction of the sensor electrode unit, the present invention can be configured to be configured to contain liquids (blood, urine, saliva, other liquids, etc.) or to temporarily stay, rather than to allow air to pass. Reveal.
또한, 상기의 실시예에 있어서는, 암기인물질 1개씩을 검출하는 것을 예로하여 설명하였으나, 본 발명의 기술적 사상은 이에 한정되지 않음을 밝혀둔다. 즉, 다수개의 암기인물질을 검출하도록 구성할 수 있음을 밝혀둔다. 예를 들어, 다수의 양극측이동유도물질이나 다수의 음극측이동유도물질 및 다수의 여기에너지공급부를 이용하여 동시에 2개 이상의 암기인물질을 검출하도록 구성할 수 있음을 밝혀둔다.In addition, in the above embodiment, it has been described with the example of detecting one memorizing substance, but the technical idea of the present invention is not limited thereto. In other words, it can be configured to detect a plurality of memorandous substances. For example, it can be configured to detect two or more memorizing substances at the same time by using a plurality of anode-side inducing substances or a plurality of cathode-side inducing substances and a plurality of excitation energy supply units.
또한, 본 실시예에 있어서는 암기인물질 중 톨루엔과 2,6-디이소프롤필페놀을 검출하는 것을 예로 하여 본 발명의 기술적 사상을 설명하였으나 본 발명의 기술적 사상은 이에 한정되지 않음을 밝혀둔다. 즉, 톨루엔, 2,6-디이소프롤필페놀, 2-메틸피라진, 사이클로헥사논 및 기타의 암기인물질을 검출하도록 구성할 수 있음을 밝혀둔다.In addition, in the present embodiment, the technical idea of the present invention has been described with an example of detecting toluene and 2,6-diisoprophylphenol in the base material, but the technical idea of the present invention is not limited thereto. That is, it can be configured to detect toluene, 2,6-diisoprophylphenol, 2-methylpyrazine, cyclohexanone, and other memorandants.
[제 3실시 예]Third Embodiment
본 발명에 따른 제 3실시 예는 날숨을 포집하고, 이를 이용하여 암을 진단 특히 페암을 진단하는 것이다. The third embodiment according to the present invention is to capture the exhalation, and to use it to diagnose cancer, especially lung cancer.
이러한 본 발명은, 도 30 내지 도 32에서 도시되는 바와 같이, 호기에 포함된 암기인물질을 매개로 하여 음극에서 양극으로 전자가 이동되도록 산화환원전위의 에너지준위가 설계된 센서전극부(120); 이 센서전극부에 전자의 여기 에너지를 공급하는 여기에너지공급부(130); 상기 센서전극부(120)의 전자 이동을 검출하는 검출부(110); 이 검출부(110)의 검측 내용을 나타내는 표시부(160); 상기 검출부의 검측 내용을 저장하는 데이터저장부(140); 상기 검측 정보를 전송하는 통신부(170); 상기 센서전극부(120)와, 여기에너지공급부(130)와, 검출부(110)와, 데이터저장부(140)와, 표시부(160)와, 통신부(170)에 접속되는 제어부(150); 및, 상기 각 구성요소에 동작전원을 공급하는 전원공급부(180)를 포함하여 구성되어, 상기 센서전극부(120)에 유입되는 호기에서 암기인물질을 검측하여 나타냄을 그 기술적 구성상의 특징으로 한다.The present invention, as shown in Figures 30 to 32, the sensor electrode portion 120 is designed for the energy level of the redox potential to move the electrons from the cathode to the anode via a memorandum material contained in the expiration; An excitation energy supply unit 130 for supplying excitation energy of electrons to the sensor electrode portion; A detection unit 110 for detecting electron movement of the sensor electrode unit 120; A display unit 160 showing the detection contents of the detection unit 110; A data storage unit 140 for storing detection contents of the detection unit; Communication unit 170 for transmitting the detection information; A control unit 150 connected to the sensor electrode unit 120, the excitation energy supply unit 130, the detection unit 110, the data storage unit 140, the display unit 160, and the communication unit 170; And a power supply unit 180 for supplying operation power to each of the components, and detecting and displaying a memorizing substance in the exhalation flowed into the sensor electrode unit 120. .
이러한 본 발명은 피술자의 호기가 상기 센서전극부(120)의 음극과 양극 사이에 유입되었을 경우, 상기 호기에 포함된 암기인물질에서 공여하는 전자를 매개로 하여 음극에서 양극으로 전자가 이동하도록 센서전극부를 구성하는 각 구성요소의 산화환원전위의 에너지준위를 설계한 것이다. The present invention is such that when the subject breath is introduced between the cathode and the anode of the sensor electrode unit 120, the sensor to move the electron from the cathode to the anode via the electrons donated from the memorandum included in the breath The energy level of the redox potential of each component constituting the electrode part is designed.
즉, 호기에 포함된 암기인물질에 비례하는 수의 전자가 음극에서 양극으로 이동하도록 에너지준위를 설계한 것으로, 상기 전자의 이동 여부(전류의 흐름 여부)를 검출하여 암기인물질이 존재하는 지의 여부를 판단하고, 전자의 이동 정도(전류량)를 검출하여 유입된 암기인물질의 양을 정밀하게 판단하고, 암기인물질의 종류와 양으로부터 폐암 발생 여부 및 암 발생여부를 판단하여 검측 결과를 데이터저장부(140)에 저장하고, 표시부(160)를 통해 나타내고, 통신부(170)를 통해 외부기기에 전송한다. That is, the energy level is designed so that the number of electrons proportional to the memorandum contained in the exhalation moves from the cathode to the anode, and the presence or absence of the memorandum is detected by detecting whether the electrons move (current flow). It determines whether or not, by detecting the degree of movement of the electrons (current amount) to accurately determine the amount of the memorizing substance introduced, and whether the lung cancer has occurred and whether or not the cancer occurs from the type and amount of the memorizing substance, the data storage unit The data is stored in the display unit 140, displayed on the display unit 160, and transmitted to the external device through the communication unit 170.
전자의 이동은 유입되는 암기인물질의 분자 수에 비례하므로, 암기인물질을 분자단위로 검출할 수 있으며, 암기인물질의 양을 전류량으로 나타냄으로써 실시간 검측이 가능하다. Since the movement of electrons is proportional to the number of molecules of the memorandum, the memorandum can be detected in molecular units, and real-time detection is possible by indicating the amount of the memorandum as an amount of current.
상기 구성에 있어서, 도25에 도시되는 바와 같이, 피술자의 호기를 포집하는 호기포집장치(190);를 더 포함하여 구성됨을 특징으로 한다.In the above configuration, as shown in Figure 25, the breathing apparatus 190 for collecting the breath of the subject; characterized in that it further comprises.
이러한 호기포집장치(190)은 피술자의 호기를 용이하게 포집하여 센서전극부(120)에 공급하기 위한 것이다.The exhalation collecting device 190 is for easily collecting the exhalation of the subject to supply to the sensor electrode unit 120.
상기 암기인물질은 암을 원인으로 하여 발생하는 암 대사물질로, 이 암기인물질이 발견된다는 것은 체내에 암 세포가 있다는 것을 뜻한다. The memorandum is a cancer metabolite that is caused by cancer, and the discovery of this memorandum means that there are cancer cells in the body.
암기인물질에는 톨루엔(Toluene), 2,6-디이소프롤필페놀(2,6-Diisopropylphenol), 2-메틸피라진(2-Methylpyrazine), 사이클로헥사논(Cyclohexanone) 등이 있다. 암기인물질이 검출되면 그 암기인물질의 종류를 판단하고, 각 암기인물질의 비율을 판단하여 암 종류를 판단하며, 암기인물질의 양을 검출하여 암 진행 정도를 판단하게 된다.Memorandizers include toluene, 2,6-diisopropylphenol, 2-methylpyrazine, cyclohexanone, and the like. When the memorizing substance is detected, the type of the memorizing substance is determined, the ratio of each memorizing substance is judged to determine the type of cancer, and the amount of the memorizing substance is detected to determine the progress of the cancer.
상기 여기에너지공급부(130)는, 상술한 바와 같이 가전자대와 전도대 사이의 밴드갭 에너지 이상의 에너지를 공급하는 광에너지공급부(미도시), 또는 전자파에너지공급부(미도시), 또는 열에너지공급부(미도시) 중 어느 하나 이상으로 구성됨을 특징으로 한다.As described above, the excitation energy supply unit 130 may include an optical energy supply unit (not shown), an electromagnetic wave energy supply unit (not shown), or a thermal energy supply unit (not shown) for supplying energy above the band gap energy between the valence band and the conduction band as described above. It is characterized by consisting of any one or more of).
상기 표시부(160)는 암기인물질 검출에 대한 정보를 시각적으로 나타내는 시각표시부(161)와, 청각적으로 나타내는 청각표시부(162)를 포함하여 구성됨이 바람직하다.The display unit 160 preferably includes a visual display unit 161 that visually displays information on the detection of a memorandum and an auditory display unit 162 that is auditory.
상기 통신부(170)는, 암기인물질 검출에 대한 정보를 유선(전용선, 전용망, 인터넷 등)으로 전송하는 유선통신부(171)와, 암기인물질 검출에 대한 정보를 무선(무선통신, 이동통신, 근거리 무선통신, 와이파이, 블루투스 등)으로 전송하는 무선통신부(172)로 구성됨이 바람직하다.The communication unit 170, the wired communication unit 171 for transmitting the information on the memorizing substance detection to a wire (dedicated line, dedicated network, Internet, etc.), and the information on the memorizing substance detection wireless (wireless communication, mobile communication, Short-range wireless communication, Wi-Fi, Bluetooth, etc.) is preferably composed of a wireless communication unit 172 for transmitting.
한편, 본 발명 제3실시 예에 적용되는 센서 전극부(120)는 도 21 내지 도 23과 동일하고, 에너지 준위 설계는 상기 제 1실시 예의 구성 1 내지 7 그리고 기타 구성이 이용된다. On the other hand, the sensor electrode 120 applied to the third embodiment of the present invention is the same as Figs. 21 to 23, the energy level design of the configuration 1 to 7 and the other configuration of the first embodiment is used.
이하 제3실시 예를 설명한다. A third embodiment will be described below.
1) 호기포집장치 구성1) Composition of Exhalation Collector
호기포집장치(190)는, 도30 및 도 32에서 도시되는 바와 같이, 정량외피(194) 내부에 호기포켓(193)을 끼우고, 상기 호기포켓(193) 일측에 호기유입관(191) 및 유입개폐수단(192)을 구비하고, 대향측에 호기유출관(196) 및 유출개폐수단(197)을 구비하여 구성한다.As shown in FIGS. 30 and 32, the exhalation collecting device 190 fits an exhalation pocket 193 into the inside of the quantitative jacket 194, and an exhalation inlet pipe 191 and one side of the exhalation pocket 193. It is provided with the inflow opening and closing means 192, and is provided with the air outlet pipe 196 and the outflow opening and closing means 197 on the opposite side.
2) 센서전극부의 에너지준위 설계2) Energy level design of sensor electrode
2,6-디이소프롤필페놀을 검출하기 위한 본 실시예1의 에너지준위 설계 과정을 도23을 참조하여 설명하면 다음과 같다. The energy level design process of Example 1 for detecting 2,6-diisoprofil phenol is described with reference to FIG.
암기인물질인 2,6-디이소프롤필페놀의 가전자대의 진공을 기준으로 한 에너지준위는 -5.93eV이고, 전도대의 에너지준위는 -0.01eV이다. 따라서 음극의 에너지준위는 상기 암기인물질인 2,6-디이소프롤필페놀의 가전자대의 에너지준위인 -5.93eV보다 높은 에너지준위를 갖는 전극이 필요하다. 본 실시예1에서는 가전자대의 에너지준위는 -5.93eV이고, 전도대의 에너지준위는 -5.12eV인 백금(Pt)을 음극으로 사용한다. 따라서 백금(Pt)으로 이루어진 음극에 암기인물질인 2,6-디이소프롤필페놀이 접촉하면 암기인물질인 2,6-디이소프롤필페놀의 가전자대에 생기는 양공으로 음극에서 전자가 이동할 수 있는 에너지준위 구조를 갖게 된다.The energy level based on the vacuum of the valence band of 2,6-diisoprophylphenol, a memorized substance, is -5.93 eV, and the energy level of the conduction band is -0.01 eV. Therefore, the energy level of the negative electrode requires an electrode having an energy level higher than -5.93 eV, which is the energy level of the valence band of the memorized substance 2,6-diisoprophylphenol. In Example 1, platinum (Pt) whose energy level is -5.93 eV and the conduction band is -5.12 eV is used as the cathode. Therefore, when 2,6-diisoprophyl phenol which is a memorized substance is contacted with a cathode made of platinum (Pt), electrons can move from the cathode to a hole generated in the valence band of 2,6-diisoprophyl phenol which is a memorized substance. It has an energy level structure.
본 실시 예에서 검측하는 암기인물질인 2,6-디이소프롤필페놀은 가전자대의 에너지준위가 낮은 -5.93eV이므로 이보다 더 낮은 에너지준위를 갖는 양극측이동유도물질이 필요하다. 본 실시예1에서는 가전자대의 에너지준위가 -6.72eV인 [C60]을 양극측이동유도물질로 사용한다. 양극측이동유도물질로 사용하는 [C60]의 가전자대의 에너지준위는, 상기 암기인물질인 2,6-디이소프롤필페놀의 가전자대의 에너지준위 -5.93eV 보다 낮아, 상기 2,6-디이소프롤필페놀의 가전자대에 있는 전자가 [C60]의 가전자대에 생기는 양공으로 이동할 수 있는 에너지준위 구조를 갖게 된다.In the present embodiment, 2,6-diisoprophylphenol, which is a memorized substance to be detected, has a low energy level of -5.93 eV in the valence band, and thus an anode-side inductive substance having a lower energy level is required. In Example 1, [C60] having an energy level of -6.72 eV in the valence band is used as the anode-side inductive material. The energy level of the valence band of [C60] used as the anode-side inducing substance is lower than the energy level of the valence band of the 2,6-diisoprophylphenol, which is the base material, is -5.93 eV. The electrons in the valence band of soprophyllphenol have an energy level structure that can move to the positive holes generated in the valence band of [C60].
상기 양극측이동유도물질인 [C60]의 전도대의 에너지준위가 -3.89eV이고, 양극으로 사용하는 FTO의 가전자대의 에너지준위가 -4.85eV이므로, 상기 [C60]의 전도대에 여기된 전자가 양극으로 이동할 수 있는 에너지준위 구조를 갖게 된다.Since the energy level of the conduction band of [C60], which is the anode-side inductive substance, is -3.89 eV, and the energy level of the valence band of the FTO used as the anode, is -4.85 eV, the electrons excited in the conduction band of [C60] are anodes. It has an energy level structure that can move to.
즉, 조건이 충족되었을 시, 상기 양극측이동유도물질인 [C60]의 전자대에 여기된 전자가 양극으로 이동하고, 상기 [C60]의 가전자대에 생기는 양공으로 암기인물질인 2,6-디이소프롤필페놀의 전자가 이동하고, 상기 2,6-디이소프롤필페놀의 가전자대에 생기는 양공으로 음극인 백금(Pt)에서 전자가 이동하는 에너지준위를 갖게 된다.That is, when the conditions are satisfied, electrons excited in the electron band of [C60], which is the positive electrode-side transfer inducing material, move to the anode, and 2,6-, which is a memorized substance, are holes generated in the valence band of [C60]. The electrons of the diisoprophyl phenol are moved, and the electrons move in the platinum (Pt), which is a cathode, as holes generated in the valence band of the 2,6-diisoprophyl phenol.
상기 양극측이동유도물질인 [C60]의 여기에는 438nm의 파장을 갖는 광원 2.83eV 이상의 파워가 필요하다. 따라서 상기 여기에너지공급부에서 공급하는 광에너지는 상기 조건을 충족하는 광원을 사용한다. 예를 들어 상기 조건을 충족하는 할로겐 램프가 사용될 수 있다.Excitation of [C60], which is the anode-side mobile induction material, requires a power of 2.83 eV or more, which has a wavelength of 438 nm. Therefore, the light energy supplied from the excitation energy supply unit uses a light source that satisfies the above conditions. For example, a halogen lamp that meets the above conditions can be used.
도29은 상기와 같은 과정을 거쳐 설계된 에너지준위 및 해당 물질을 나타낸 것으로, 도면에서 도시되는 바와 같이, 암기인물질인 2,6-디이소프롤필페놀이 유입되었을 경우 에너지준위에 따라 1번의 여기 과정을 거쳐 음극에서 양극으로 전자가 이동할 수 있도록 설계되었다.Figure 29 shows the energy level and the corresponding material designed through the process as described above, as shown in the figure, once the excitation process according to the energy level when the 2,6-diisoprophylphenol which is a memorandous material is introduced It is designed to move electrons from cathode to anode via
3) 센서전극부 구성3) Sensor electrode part composition
도 18 내지 20에서 도시되는 바와 같이, 케이스(125) 내부에 양극(121)과 음극(124)을 장착하여 본 실시예1에 의한 센서전극부(120)를 구성한다.As shown in FIGS. 18 to 20, the sensor electrode unit 120 according to the first embodiment is configured by mounting the anode 121 and the cathode 124 in the case 125.
상기 양극(121)과 음극(124)에 전원공급부(180)를 통해 동작전원을 공급하고, 상기 양극(121)과 음극(124) 사이를 흐르는 전류를 검출할 수 있도록 검출부(110)를 연결한다.The operating power is supplied to the positive electrode 121 and the negative electrode 124 through a power supply unit 180, and the detection unit 110 is connected to detect a current flowing between the positive electrode 121 and the negative electrode 124. .
상기 케이스(125)는 투명전극인 양극(121)이 장착되는 면, 또는 케이스 전체를 투명재질(예: 유리, 석영 등)로 구성하여 여기에너지공급부(130)인 광원(131)에서 공급하는 광이 투명전극인 양극(121)에 조사될 수 있도록 구성한다.The case 125 is formed of a transparent material (eg, glass, quartz, etc.) on the surface on which the anode 121, which is a transparent electrode, is mounted, and light supplied from the light source 131, which is the excitation energy supply unit 130. It is comprised so that it may irradiate to the positive electrode 121 which is this transparent electrode.
상기 케이스(125)는, 도면에서 도시되는 바와 같이, 양극이 장착되는 부위를 절개하여 광원(131)에서 조사되는 광이 직접 투명전극은 양극(121)에 조사되도록 구성할 수 있다.As shown in the figure, the case 125 may be configured such that the light irradiated from the light source 131 is directly irradiated to the anode 121 by cutting a portion where the anode is mounted.
도면 중 미설명 부호 (122)는 양극측이동유도물질, (1)은 암기인물질인 2,6-디이소프롤필페놀이 포함된 호기(날숨)를 나타낸다.In the figure, reference numeral 122 denotes an anode-side movement inducing substance, and (1) denotes an exhalation (exhalation) containing 2,6-diisoprophylphenol which is a memorizing substance.
상기 호기(날숨)(1)은 센서전극부(120) 후면에 위치한 펌프(미도시)에 의해 센서전극부(120) 내부를 통과하는 것으로, 그 상세한 설명은 생략한다.The exhalation (exhalation) 1 passes through the inside of the sensor electrode unit 120 by a pump (not shown) located at the rear of the sensor electrode unit 120, and a detailed description thereof will be omitted.
이와 같이 구성된 센서전극부(120)에는 도30에서 도시되는 바와 같이, 결합구조물을 통해 호기포집장치(190)가 결합된다.As shown in FIG. 30, the aerobic collecting device 190 is coupled to the sensor electrode unit 120 configured as described above through a coupling structure.
4) 시스템 구성4) System Configuration
도1에서 도시되는 바와 같이, 센서전극부(120)에 여기에너지공급부(130)의 광원(131)이 조사될 수 있도록 하고, 상기 센서전극부(120)에 검출부(110)를 연결한다. 이후, 상기 검출부(110)와, 여기에너지공급부(130)와, 데이터저장부(140)와, 표시부(160)와, 통신부(170)를 제어부(150)에 접속하여 본 실시예1에 의한 검출 시스템을 구성한다. 상기 전원공급부(180)는 각 구성요소에 동작전원을 공급한다. As shown in FIG. 1, the light source 131 of the excitation energy supply unit 130 is irradiated to the sensor electrode unit 120, and the detection unit 110 is connected to the sensor electrode unit 120. Thereafter, the detection unit 110, the excitation energy supply unit 130, the data storage unit 140, the display unit 160, and the communication unit 170 are connected to the control unit 150 to detect the first embodiment. Configure the system. The power supply unit 180 supplies operating power to each component.
상기 제어부(150)는 마이크로프로세서, 또는 컴퓨터 시스템으로 구성됨이 바람직하며, 상기 데이터저장부(140)는 상기 제어부(150)의 내부메모리, 또는 상기 제어부(150)의 제어를 받는 외부메모리로 구성됨이 바람직하다. Preferably, the controller 150 is configured as a microprocessor or a computer system, and the data storage 140 is configured as an internal memory of the controller 150 or an external memory controlled by the controller 150. desirable.
상기 데이터저장부(140)에는 암기인물질인 2,6-디이소프롤필페놀의 검측 결과 및, 2,6-디이소프롤필페놀의 양과 전류량의 상관관계를 나타낸 데이터테이블 등이 저장된다. The data storage unit 140 stores a detection result of 2,6-diisoprophyl phenol, which is a memorizing substance, and a data table showing a correlation between the amount of 2,6-diisoprophyl phenol and the amount of current.
이하, 상기와 같이 구성된 본 실시예1의 동작에 대해 상세히 설명하면 다음과 같다.Hereinafter, the operation of the first embodiment configured as described above will be described in detail.
먼저, 도32에서 도시되는 바와 같이 호기를 포집한다. 피술자가 (a)에서 도시되는 바와 같이 호기유입관(191)을 입에 물고 불면, 도 32 (b)에서 도시되는 바와 같이 부는 힘에 의해 유입개폐수단(192)이 열리고, 호기포켓(193)이 부풀어 오르며 포집공간(195)에 호기가 포집된다. First, as shown in Fig. 32, exhalation is collected. When the operator bites and blows the exhalation inlet pipe 191 into the mouth as shown in (a), the inflow opening and closing means 192 is opened by the blowing force as shown in Fig. 32 (b), and the exhalation pocket 193 This swells and exhalation is collected in the collecting space 195.
이후, 도32(c)에서 도시되는 바와 같이, 상기 호기포집장치(190)를 센서전극부(120)에 결착시킨다. 그러면, 호기유도관(127)에 의해 호기유출관(196)에 마련된 유출개폐수단(197)에 열러 상기 호기유도관(127)을 통해 센서전극부(120)로 호기가 공급되게 된다.Thereafter, as shown in FIG. 32 (c), the exhalation collecting device 190 is attached to the sensor electrode unit 120. Then, the exhalation opening means 197 provided in the exhalation outlet pipe 196 by the exhalation induction pipe 127 is opened to supply the exhalation to the sensor electrode unit 120 through the exhalation induction pipe 127.
도32 (d)는 상기 호기포켓(193)을 고무와 같은 신축성 있는 재질로 구성하였을 경우 그 탄성력에 의해 상기 호기유도관(127)을 통해 호기가 유출되는 것을 나타낸 것이고, 도28 (e)는 상기 호기포켓(193)을 비닐과 같이, 신축성이 없는 재질로 구성하였을 경우 팬(126)을 통해 센서전극부(120)에 호기를 공급하는 것을 나타낸 것이다. Figure 32 (d) shows that when the exhalation pocket 193 is made of a flexible material such as rubber, the exhalation flows out through the exhalation guide pipe 127 by its elastic force, Figure 28 (e) When the exhalation pocket 193 is made of a material having no elasticity, such as vinyl, it shows that exhalation is supplied to the sensor electrode unit 120 through the fan 126.
상기 호기는 도32 (e)에서 도시되는 바와 같이, 팬(126)을 이용함이 바람직하다. 상기 팬(126)을 이용할 경우 공급되는 호기량 및 공급여부를 제어할 수 있다.The exhalation preferably uses a fan 126, as shown in Figure 32 (e). When the fan 126 is used, it is possible to control the amount of exhaled air supplied and whether it is supplied.
상기 호기포집장치(190)에 포집된 호기가 호기유도관(127)을 통해 센서전극부(120)에 유입되고, 상기 여기에너지공급부(130)의 광원(131)이 온(ON)되면, 상기 광원(131)에서 조사되는 광에너지가 상기 양극측이동유도물질(122)인 [C60]에 여기 에너지를 공급하게 된다.When the exhaled air collected in the exhalation trap device 190 flows into the sensor electrode unit 120 through the exhalation induction pipe 127, the light source 131 of the excitation energy supply unit 130 is turned on (ON), The light energy irradiated from the light source 131 supplies excitation energy to [C60], which is the anode-side movement inducing material 122.
그러면 상기 양극측이동유도물질인 [C60]의 가전자대에 있는 전자가 전도대로 여기하게 되며, 상기 [C60]의 가전자대에는 양공이 생성되게 된다. [C60]의 전도대로 여기된 전자의 에너지준위는 -3.89eV로 양극인 FTO의 가전자대의 에너지준위인 -4.85eV 보다 높아져, 상기 전도대로 여기된 전자가 양극인 FTO로 이동하게 된다.Then, the electrons in the valence band of [C60], which is the anode-side movement inducing material, are excited with a conduction band, and a hole is generated in the valence band of [C60]. The energy level of the electrons excited by the conduction band of [C60] is -3.89 eV, which is higher than the energy level of -4.85 eV of the valence band of the anode FTO, and the electrons excited by the conduction band move to the anode FTO.
이러한 상태에서, 호기에 포함된 암기인물질인 2,6-디이소프롤필페놀이 양극인 FTO와 음극인 백금{Pt) 사이에 유입되면, 상기 2,6-디이소프롤필페놀의 가전자대에 있는 전자(에너지준위: -5.93eV)가 상기 양극측이동유도물질인 [C60]의 가전자대에 생긴 양공(에너지준위: -6.72eV)으로 이동하고, 상기 2,6-디이소프롤필페놀의 가전자대에는 양공이 생성되게 된다.In this state, when the 2,6-diisoprophyl phenol, which is a memorandous substance contained in the aerobic phase, flows between the positive electrode FTO and the negative electrode platinum (Pt), the 2,6-diisoprophyl phenol is in the valence band of the 2,6-diisoprophyl phenol. The electrons (energy level: -5.93 eV) move to the hole (energy level: -6.72 eV) generated in the valence band of [C60] which is the anode-side transfer inducing substance, and the valence band of the 2,6-diisoprophylphenol. Holes will be generated in.
그러면 상기 암기인물질인 2,6-디이소프롤필페놀의 가전자대에 생긴 양공(에너지준위: -5.93eV)으로 음극인 백금(Pt)의 가전자대에 있는 전자(에너지준위: -5.93eV)가 이동하게 된다.Then, the electrons (energy level: -5.93eV) in the valence band of platinum (Pt) as the positive hole generated in the valence band of the memorized substance 2,6-diisoprophylphenol (energy level: -5.93 eV) Will move.
이후, 상기 여기에너지공급부(130)에서 여기 에너지가 공급되는 한 상기와 같은 과정을 반복 수행하여 음극에서 양극으로 상기 암기인물질인 2,6-디이소프롤필페놀의 분자 수에 비례하는 수의 전자가 지속적으로 이동하게 된다.Thereafter, as long as the excitation energy is supplied from the excitation energy supply unit 130, the above process is repeated, and the number of electrons proportional to the number of molecules of the 2,6-diisoprophylphenol, which is the base material, is from the cathode to the anode. Will continue to move.
상기 검출부(110)는 상기 음극과 양극 사이에 흐르는 전류(전자의 이동)를 검출한다.The detector 110 detects a current (movement of electrons) flowing between the cathode and the anode.
상기 제어부(150)는 상기 검출부(110)를 통해 전류가 흐르는 지의 여부를 검출하여 암기인물질인 2,6-디이소프롤필페놀이 존재하는지의 여부를 판단하고, 전류의 양으로부터 암기인물질인 2,6-디이소프롤필페놀의 양을 판단하게 된다. 즉, 검출된 전류량을 상기 데이터저장부(140)에 저장된 암기인물질의 양과 전류량과의 관계를 나타내는 데이터테이블과 비교하여 얼마만큼의 2,6-디이소프롤필페놀이 유입되었는지를 산출하게 된다.The controller 150 detects whether current flows through the detector 110 to determine whether 2,6-diisoprophylphenol, which is a memorandous substance, is present, and the memorized substance is determined from the amount of current. The amount of 2,6-diisoprophylphenol is determined. That is, the amount of 2,6-diisoprophylphenol introduced is calculated by comparing the detected current amount with the data table indicating the relationship between the amount of the memorizing substance and the current amount stored in the data storage 140.
이후, 상기 제어부(150)는 상기 검측에 대한 정보(검측과정, 검측조건, 검측결과 등)를 데이터저장부(140)에 저장하고, 표시부(160)를 통해 나타내며, 상기 통신부(170)를 통해 외부기기와 교환하게 되는 것으로, 이와 같은 과정을 반복 수행하여 암기인물질을 지속적으로 검측하게 된다.Thereafter, the controller 150 stores the information on the detection (detection process, detection condition, detection result, etc.) in the data storage unit 140, is displayed through the display unit 160, and through the communication unit 170. By exchanging with an external device, this process is repeated to continuously detect the memorandum.
이때, 상기 암기인물질에서 공여하는 전자를 매개로 하여 흐르는 전류를 검출함으로써 암기인물질의 분자 수에 비례하는 정확하고 정밀한 검측을 할 수 있게 된다.At this time, by detecting the current flowing through the electrons donated from the memorized material, accurate and precise detection in proportion to the number of molecules of the memorized material can be performed.
즉, 호기에 포함된 암기인물질의 존재 유무로 암 세포의 존재 유무를 검출하고, 암기인물질의 양으로 암의 진행 정도를 판단하게 된다. 암의 종류는 동일한 시료에서 검출되는 2개 이상이 암기인물질의 구성비로 판단한다. In other words, the presence or absence of a memorandum contained in the expiration is detected whether the presence of cancer cells, and the extent of cancer is determined by the amount of the memorandum. Two or more types of cancers detected in the same sample are determined by the composition ratio of the cancer-causing substance.
암 진행 정도는 암기인물질의 양과 암 진행 정도를 나타내는 데이터테이블을 참조하여 판단하며, 암의 종류는 암기인물질의 구성비와 암 종류에 대한 데이터테이블을 참조하여 판단한다.The progress of cancer is determined by referring to the data table indicating the amount of cancer and the progress of cancer, and the type of cancer is determined by referring to the data table of the composition and the type of cancer.
폐암센서의 정밀도에 대해 설명하면 다음과 같다.The precision of the lung cancer sensor is described as follows.
약 500cc의 호기에 포함된 분자수는 약 1.19×1022개 이다.The number of molecules in the expiration of about 500cc is about 1.19 × 10 22 .
이 500cc의 호기 1ppt에 포함된 분자수는, The number of molecules contained in 1 ppt of aerobic gas of 500 cc is
1.19×1022×10-12 = 1.19×1010 개 이다.1.19 × 10 22 × 10 -12 = 1.19 × 10 10 .
이를 전하량으로 나타내면,If this is expressed as the amount of charge,
(1.19×1010)×(1.62×10)-19C) = 약 1.19×10-9C = 1.9nA 이다.(1.19 × 10 10 ) × (1.62 × 10 ) -19 C) = about 1.19 × 10 -9 C = 1.9 nA.
즉, 500cc의 호기 속에 암기인물질이 1ppt 만큼 포함되었다 하더라도 이를 검출할 수 있다.That is, even if 1ppt of the memorizing substance is contained in the expiration of 500cc it can be detected.
만약, 500cc의 호기 중 1ppt 만큼의 공기 속에 1% 만큼의 암기인물질이 포함되어 있다고 하면 약 19pA의 전하량을 나타낸다.If 500 ppm of exhaled air contains 1% of memorizing substance in 1ppt of air, the charge amount is about 19pA.
상기 나노 암페아(nA)나, 피코 암페아(pA) 단위의 전하량을 검출하는 검출부(110)의 구성은 주지하는 바와 같으므로 그 상세한 설명은 생략한다.Since the configuration of the detection unit 110 for detecting the charge amount in the nano-ampere (nA) or pico-ampere (pA) unit is well known, its detailed description is omitted.
한편, 본 발명 중 이동유도물질(양극측이동유도물질, 음극측이동유도물질)을 구성하는 [C60] 풀러렌 및 리튬이온내포풀러렌은 전자운을 포함한 크기가 약 1nm이고, 상기 리튬이온내포풀러렌과 색소로 이루어진 초분자의 크기는 약 2nm이다.On the other hand, in the present invention [C60] fullerene and lithium ion-encapsulated fullerene constituting a mobile induction material (anode-side mobile induction material, negative electrode-side mobile induction material) is about 1nm in size including an electron cloud, the lithium ion containing fullerene and The supramolecular molecule consists of pigments of about 2 nm in size.
따라서 상기 500cc 호기에 1ppt의 암기인물질이 있다고 하고, 그 이동유도물질을 리튬이온내포풀러렌과 색소로 이루어진 초분자(약 2nm)로 구성하였다고 할 경우, 상기 암기인물질이 동시에 반응하기 극판의 크기는 약 (0.22mm ㅧ 0.22mm)의 크기면 충분하다. 상기 500cc 중 1ppt 만큼의 호기 내에 1%의 암기인물질이 있다고 할 경우에는 더욱 작은 크기의 극판으로 양극(또는 음극)을 만들 수 있다.Therefore, if the 500cc unit contains 1ppt of memorizing substance, and the mobile inducing substance is composed of ultra-molecules (about 2 nm) composed of lithium ion containing fullerene and pigment, the size of the electrode plate to react simultaneously with the memorizing substance is A size of about (0.22 mm ㅧ 0.22 mm) is sufficient. In the case where 1% of the memorized substance is present in 1 ppt of the 500cc, the positive electrode (or negative electrode) may be made of a smaller electrode plate.
즉, 암기인물질의 분자수에 비례하는 수의 전자가 이동하도록 하고, 그 이동된 전자의 수를 직접 검출함으로써 ppt 레벨의 정밀도, 또는 그 이상의 더욱 정밀도를 갖는 폐암 센서를 구성할 수 있다.That is, a lung cancer sensor having a precision of ppt level or more can be configured by allowing electrons in proportion to the number of molecules of the memorandous substance to move and directly detecting the number of moved electrons.
<호기를 이용한 폐암 센서의 실시예2><Example 2 of Lung Cancer Sensor Using Exhalation>
본 <실시예2>에서는 폐암이 발생하였을 때 나타나는 암기인물질의 하나인 톨루엔(Toluene)을 검출하는 것을 예로 하여 설명한다. In Example 2, the detection of toluene, which is one of the cancer-causing substances that occur when lung cancer occurs, will be described as an example.
본 <실시예2>에서는 실시예1과 마찬자지로 양극으로 FTO를 사용하고, 음극으로 백금(Pt)을 사용한 것을 예로 하여 한다. In Example 2, as in Example 1, FTO is used as the positive electrode and platinum (Pt) is used as the negative electrode.
또한 본 <실시예2>에 있어서는 양극측제2이동유도물질로 이산화 타이타늄(Titanium dioxide, [TiO2])과, 양극측제1리튬내포풀러렌 헥사 플루오르 포스페이트 염([Li+c60][PF6-])을 사용한 것을 예로 하여 설명한다.In the present Example 2, titanium dioxide (TiO 2) and the positive electrode 1 lithium-pothofullerene hexafluorophosphate salt ([Li + c60] [PF6-]) were used as the anode-side second moving inducer. The example used is demonstrated.
따라서 본 <실시예2>에 의한 센서전극부는 양극으로 FTO를 사용하고, 이 FTO에 [TiO2]과 [Li+c60][PF6-]을 전기 영동시키고, 음극으로 백금(Pt)을 사용하여 구성한다. 또한, 상기 [TiO2]과 [Li+c60][PF6-]에 여기 에너지를 공급하는 여기에너지공급부를 더 포함하여 구성하며, 상기 여기에너지공급부는 광에너지를 공급하는 것을 예로 하여 설명한다.Therefore, the sensor electrode part according to the present Example 2 uses FTO as an anode, electrophoreses [TiO2] and [Li + c60] [PF6-] to the FTO, and uses platinum (Pt) as the cathode. do. In addition, the excitation energy supply unit for supplying excitation energy to [TiO2] and [Li + c60] [PF6-] is further configured, and the excitation energy supply unit will be described with an example of supplying optical energy.
또한 본 실시예2에 있어서는 실시예1에서와 같이, 검출부와, 표시부와, 데이터저장부 및 통신부를 구비하는 것을 예로 하여 설명하며, 호기(날숨) 중에 포함된 톨루엔을 검출하는 것을 예로 하여 설명한다. In the second embodiment, as in the first embodiment, a detection unit, a display unit, a data storage unit, and a communication unit are described as an example, and the detection of toluene contained in the exhalation (exhalation) will be described as an example. .
이와 같이 본 <실시예2>를 구성한 이유는, 본 발명의 기술적 사상에 따른 다른 구성 및 실시예들은 본 실시예로부터 용이하게 알 수 있기 때문이다.The reason why the present Embodiment 2 is configured is because other configurations and embodiments according to the technical spirit of the present invention can be easily understood from the present embodiment.
이하, 상기와 같이 본 <실시예2>의 구성을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. Hereinafter, the configuration of the present embodiment 2 will be described in detail with reference to the accompanying drawings.
1) 호기포집장치 구성1) Composition of Exhalation Collector
<실시예1>와 동일하다.Same as <Example 1>.
2) 센서전극부의 에너지준위 설계2) Energy level design of sensor electrode
톨루엔을 검출하기 위한 본 실시예2의 에너지준위 설계 과정을 도30을 참조하여 설명하면 다음과 같다. An energy level design process of the second embodiment for detecting toluene will be described with reference to FIG. 30 as follows.
암기인물질인 톨루엔의 가전자대의 진공을 기준으로 한 에너지준위는 -6.55eV이고, 전도대의 에너지준위는 -0.18eV이다. 따라서 음극의 에너지준위는 상기 암기인물질인 톨루엔의 가전자대의 에너지준위인 -6.55eV보다 높은 에너지준위를 갖는 전극이 필요하다. 본 실시예2에서는 가전자대의 에너지준위는 -5.93eV이고, 전도대의 에너지준위는 -5.12eV인 백금(Pt)을 음극으로 사용한다. 따라서 백금(Pt)으로 이루어진 음극에 암기인물질인 톨루엔이 접촉하면 에너지준위 차에 의하여 암기인물질인 톨루엔의 가전자대에 생기는 양공으로 음극에서 전자가 이동할 수 있는 에너지준위 구조를 갖게 된다.The energy level based on the vacuum of the valence band of toluene, the memorized substance, is -6.55 eV, and the energy level of the conduction band is -0.18 eV. Therefore, the energy level of the cathode requires an electrode having an energy level higher than -6.55 eV, which is the energy level of the valence band of the toluene. In Example 2, platinum (Pt) whose energy level of the valence band is -5.93 eV and the energy level of the conduction band is -5.12 eV is used as the cathode. Therefore, when toluene, which is a memorized substance, comes into contact with a cathode made of platinum (Pt), has an energy level structure in which electrons can move from the cathode to holes formed in the valence band of toluene, which is a memorized substance, due to the difference in energy levels.
본 <실시예2>에서 검측하는 암기인물질인 톨루엔은 가전자대의 에너지준위가 매우 낮은 -6.55eV이므로 이보다 더 낮은 에너지준위를 갖는 양극측이동유도물질이 필요하다. 본 실시예2에서는 가전자대의 에너지준위가 -7.70eV인 [Li+@C60][PF6-]를 양극측제1이동유도물질로 사용한다. 양극측제1이동유도물질로 사용하는 [Li+@C60][PF6-]의 가전자대의 에너지준위는, 상기 암기인물질인 톨루엔의 가전자대의 에너지준위 -6.55eV 보다 낮아, 상기 톨루엔의 가전자대에 있는 전자가 [Li+@C60][PF6-]의 가전자대에 생기는 양공으로 이동할 수 있는 에너지준위 구조를 갖게 된다.Toluene, which is a memorized substance detected in <Example 2>, has a very low energy level of -6.55 eV in the valence band, and thus an anode-side inductive substance having a lower energy level is required. In Example 2, [Li + @ C60] [PF6-] having the valence band energy level of −7.70 eV is used as the anode-side first moving inducing substance. The energy level of the valence band of [Li + @ C60] [PF6-], which is used as the anode-side first moving inducer, is lower than the energy level of the valence band of the toluene, which is the base material, of -6.55 eV. The electrons have an energy level structure that can move to the positive holes in the valence band of [Li + @ C60] [PF6-].
상기 양극측제1이동유도물질인 [Li+@C60][PF6-]의 전도대의 에너지준위가 -4.90eV이고, 양극으로 사용하는 FTO의 가전자대의 에너지준위가 -4.85eV이므로, 상기 [Li+@C60][PF6-]의 전도대에 있는 전자가 직접 양극으로 이동할 수 없다. 따라서 이를 매개할 양극측제2이동유도물질이 필요하다.Since the energy level of the conduction band of [Li + @ C60] [PF6-], which is the anode-side first moving induction material, is -4.90 eV, and the energy level of the valence band of FTO used as the anode is -4.85 eV, the [Li + @ C60 ] The electrons in the conduction band of [PF6-] cannot move directly to the anode. Therefore, a positive electrode-side second moving material is required.
양극측제1이동유도물질인 [Li+@C60][PF6-]의 전도대의 에너지준위가 -4.90eV이고, 양극 FTO의 가전자대의 에너지준위가 -4.85eV이므로, 양극측제2이동유도물질은 -4.90eV 보다 낮은 에너지준위를 갖는 가전자대와, -4.85eV 보다 높은 에너지준위를 갖는 전도대로 이루어진 물질이 필요하다.The energy level of the conduction band of [Li + @ C60] [PF6-], the anode-side first induction material, is -4.90 eV, and the energy level of the valence band of the anode FTO is -4.85 eV. What is needed is a material consisting of a valence band with an energy level lower than eV and a conduction band with an energy level higher than -4.85 eV.
이산화 타이타늄(Titanium dioxide, [TiO2])은 가전자대의 에너지준위가 -6.21eV이고, 전도대의 에너지준위가 -3.21eV로 위의 조건을 충족하므로 이 [TiO2]를 양극측제2이동유도물질로 사용한다. 그러면 상기 [TiO2]의 전도대에 여기된 전자가 양극으로 이동할 수 있는 에너지준위 구조를 갖게 된다.Titanium dioxide (TiO2) has the energy level of the valence band of -6.21 eV and the conduction band of energy of -3.21 eV, which satisfies the above conditions. do. Then, the electrons excited in the conduction band of [TiO 2] have an energy level structure that can move to the anode.
즉, 조건이 충족되었을 시, 상기 양극측제2이동유도물질인 [TiO2]의 전자대에 여기된 전자가 양극으로 이동하고, 상기 [TiO2]의 가전자대에 생기는 양공으로 양극측제1유도물질인 [Li+@C60][PF6-]의 전도대에 여기된 전자가 이동하고, 상기 [Li+@C60][PF6-]의 가전자대에 생기는 양공으로 암기인물질인 톨루엔의 전자가 이동하고, 상기 톨루엔의 가전자대에 생기는 양공으로 음극인 백금(Pt)에서 전자가 이동하는 에너지준위를 갖게 된다.That is, when the conditions are satisfied, the electrons excited in the electron band of [TiO2], which is the anode-side second moving inducing material, move to the anode, and the positive holes generated in the valence band of [TiO2] are [ Electrons excited in the conduction band of Li + @ C60] [PF6-] move, and electrons of toluene, which is a memorized substance, move to the hole generated in the valence band of [Li + @ C60] [PF6-], and the home appliances of the toluene The positive holes in the magnetic field cause the electrons to move in the platinum (Pt) cathode.
상기 양극측제1이동유도물질인 [Li+@C60][PF6-]의 여기에는 457nm의 파장을 갖는 광원 2.8eV 이상의 파워가 필요하고, 양극측제2이동유도물질인 [TiO2]의 여기에는 413nm의 파장을 갖는 광원 3.0eV 이상의 파워가 필요하다. 따라서 상기 여기에너지공급부에서 공급하는 광에너지는 상기 조건을 충족하는 광원을 사용한다.[Li + @ C60] [PF6-], which is the anode-side first mobile induction material, requires a power of 2.8 eV or more with a light source having a wavelength of 457 nm, and a wavelength of 413 nm for the [TiO2], which is an anode-side second mobile inductive material. Power of 3.0 eV or more is required. Therefore, the light energy supplied from the excitation energy supply unit uses a light source that satisfies the above conditions.
도30은 상기와 같은 과정을 거쳐 설계된 에너지준위 및 해당 물질을 나타낸 것으로, 도면에서 도시되는 바와 같이, 암기인물질인 톨루엔이 유입되었을 경우 에너지준위에 따라 2번의 여기 과정을 거쳐 음극에서 양극으로 전자가 이동할 수 있도록 설계되었다.Figure 30 shows the energy level and the corresponding material designed through the process as described above, as shown in the figure, when toluene is a memorandous material is introduced into the electron from the cathode to the anode through two excitation processes according to the energy level It is designed to move.
3) 센서전극부 구성3) Sensor electrode part composition
도 21 내지 23에서 도시되는 바와 같이, 케이스(125) 내부에 양극(121)과 음극(124)을 장착하고, 상기 양극(121)과 음극(124)에 전원공급부(180)를 통해 동작전원을 공급하고, 상기 양극(121)과 음극(124) 사이에 흐르는 전류를 검출할 수 있도록 검출부(110)를 연결하여 본 실시예2에 의한 센서전극부(120)를 구성한다.As shown in FIGS. 21 to 23, the cathode 121 and the cathode 124 are mounted inside the case 125, and operating power is supplied to the anode 121 and the cathode 124 through the power supply unit 180. The sensor electrode unit 120 according to the second embodiment is configured by connecting the detection unit 110 so as to supply and detect a current flowing between the anode 121 and the cathode 124.
상기 케이스(125)는 투명전극인 양극(121)이 장착되는 면, 또는 케이스 전체를 투명재질로 구성하여 여기에너지공급부(130)인 광원(131)에서 공급하는 광이 투명전극인 양극(121)에 조사될 수 있도록 구성한다.The case 125 has a surface on which the anode 121, which is a transparent electrode, is mounted, or the entire case is made of a transparent material, and the light supplied from the light source 131, which is the excitation energy supply unit 130, is the anode 121, which is a transparent electrode. Configure it to be investigated.
도면 중 미설명 부호 (122a)는 양극측제1이동유도물질, (122b)는 양극측제2이동유도물질을 각각 나타내며, (1)은 암기인물질인 톨루엔이 포함된 호기(날숨)를 나타낸다.In the figure, reference numeral 122a denotes an anode-side first moving inducer, and 122b denotes an anode-side second moving inducer, and (1) denotes an exhalation (exhalation) containing toluene, which is a cancerous substance.
상기 호기(날숨)(1)은 센서전극부(120) 후면에 위치한 펌프(미도시)에 의해 센서전극부(120) 내부를 통과하도록 구성된다.The exhalation (exhalation) 1 is configured to pass through the inside of the sensor electrode 120 by a pump (not shown) located in the rear of the sensor electrode 120.
4) 시스템 구성4) System Configuration
도26에서 도시되는 바와 같이, 센서전극부(120)에 여기에너지공급부(130)의 광원(131)이 조사될 수 있도록 하고, 상기 센서전극부(120)에 검출부(110)를 연결한다. 이후, 상기 검출부(110)와, 여기에너지공급부(130)와, 데이터저장부(140)와, 표시부(160)와, 통신부(170)를 제어부(150)에 접속하여 본 실시예2에 의한 검출 시스템을 구성한다. 상기 전원공급부(180)는 각 구성요소에 동작전원을 공급한다. As shown in FIG. 26, the light source 131 of the excitation energy supply unit 130 is irradiated to the sensor electrode unit 120, and the detection unit 110 is connected to the sensor electrode unit 120. Thereafter, the detection unit 110, the excitation energy supply unit 130, the data storage unit 140, the display unit 160, and the communication unit 170 are connected to the control unit 150 to detect the second embodiment. Configure the system. The power supply unit 180 supplies operating power to each component.
상기 데이터저장부(140)에는 톨루엔의 검측 결과 및, 톨루엔의 양과 전류량의 상관관계를 나타낸 데이터테이블 등이 저장된다. The data storage unit 140 stores a result of detection of toluene and a data table indicating a correlation between the amount of toluene and the amount of current.
이하, 상기와 같이 구성된 본 <실시예2>의 동작에 대해 상세히 설명하면 다음과 같다.Hereinafter, the operation of the present Embodiment 2 configured as described above will be described in detail.
상기 호기포집장치(190)에 포집된 호기가 호기유도관(127)을 통해 센서전극부(120)에 유입되고, 상기 여기에너지공급부(130)의 광원(131)이 온(ON)되면, 상기 광원(131)에서 조사되는 광에너지가 상기 양극측제1이동유도물질(122a)인 [Li+@C60][PF6-]과 양극측제2이동유도물질(122b)인 [TiO2]에 여기 에너지를 공급하게 된다.When the exhaled air collected in the exhalation trap device 190 flows into the sensor electrode unit 120 through the exhalation induction pipe 127, the light source 131 of the excitation energy supply unit 130 is turned on (ON), The light energy irradiated from the light source 131 supplies excitation energy to [Li + @ C60] [PF6-], which is the anode-side first movement inducing material 122a, and [TiO2], which is the anode-side second movement inducing material 122b. do.
그러면 상기 양극측제2이동유도물질인 [TiO2]의 가전자대에 있는 전자가 전도대로 여기하게 되며, 상기 [TiO2]의 가전자대에는 양공이 생성되게 된다. [TiO2]의 전도대로 여기된 전자의 에너지준위는 -3.21eV로 양극인 FTO의 가전자대의 에너지준위인 -4.85eV 보다 높아져, 상기 전도대로 여기된 전자가 양극인 FTO로 이동하게 된다.Then, the electrons in the valence band of [TiO2], which is the anode-side second moving induction material, are excited with a conduction band, and holes are generated in the valence band of [TiO2]. The energy level of electrons excited by the conduction band of [TiO2] is -3.21 eV, which is higher than the energy level of -4.85 eV, which is the valence band of the FTO, which is the anode, and the electrons excited by the conduction band move to the FTO, which is the anode.
상기 광원(131)에서 조사되는 광에너지에 의해 양극측제1이동유도물질인 [Li+@C60][PF6-]의 가전자대에 있는 전자가 전도대로 여기되고, 상기 [Li+@C60][PF6-]의 가전자대에는 양공이 생성된다. 상기 [Li+@C60][PF6-]의 전도대로 여기된 전자의 에너지준위는 -4.90eV로 양극측제2이동유도물질인 [TiO2]의 가전자대의 에너지준위인 -6.21eV 보다 높아져, 상기 전도대로 여기된 전자가 [TiO2]의 가전자대에 생긴 양공으로 이동하게 된다.By the light energy irradiated from the light source 131, the electrons in the valence band of the anode-side first moving inducer [Li + @ C60] [PF6-] are excited to the conduction band, and the [Li + @ C60] [PF6-] A hole is generated in the valence band of. The energy level of electrons excited by the conduction band of [Li + @ C60] [PF6-] is -4.90 eV, which is higher than the energy level of -6.21 eV, which is the valence band of [TiO2], which is the anode-side second moving inducer. The excited electrons are moved to the holes generated in the valence band of [TiO 2].
이러한 상태에서, 암기인물질인 톨루엔이 양극인 FTO와 음극인 백금{Pt) 사이에 유입되면, 상기 톨루엔의 가전자대에 있는 전자(에너지준위: -6.55eV)가 상기 양극측제1이동유도물질인 [Li+@C60][PF6-]의 가전자대에 생긴 양공(에너지준위: -7.70eV)으로 이동하고, 상기 톨루엔의 가전자대에는 양공이 생성되게 된다.In this state, when the toluene, which is a memorizing substance, is introduced between the anode, FTO, and the cathode, platinum (Pt), the electrons (energy level: -6.55 eV) in the valence band of the toluene are the anode-side first moving inducing substance. The hole moves to the valence band of [Li + @ C60] [PF6-] (energy level: -7.70 eV), and the hole is generated in the valence band of toluene.
그러면 상기 암기인물질인 톨루엔의 가전자대에 생긴 양공(에너지준위: -6.55eV)으로 음극인 백금(Pt)의 가전자대에 있는 전자(에너지준위: -5.93eV)가 이동하게 된다.Then, the electrons (energy level: -5.93eV) in the valence band of platinum (Pt), which is a cathode, move to the hole (energy level: -6.55eV) generated in the valence band of the toluene, which is the memorizing substance.
이후, 상기 여기에너지공급부(130)에서 여기 에너지가 공급되는 한 상기와 같은 과정을 반복 수행하여 음극에서 양극으로 상기 암기인물질인 톨루엔에 비례하는 수의 전자가 지속적으로 이동하게 된다.Thereafter, as long as the excitation energy is supplied by the excitation energy supply unit 130, the above process is repeated, and the number of electrons proportional to the toluene, which is the base material, is continuously moved from the cathode to the anode.
상기 검출부(110)는 상기 음극과 양극 사이에 흐르는 전류(전자의 이동)를 검출한다.The detector 110 detects a current (movement of electrons) flowing between the cathode and the anode.
상기 제어부(150)는 상기 검출부(110)를 통해 전류가 흐르는 지의 여부를 검출하여 암기인물질인 톨루엔이 존재하는지의 여부를 판단하고, 전류의 양으로부터 암기인물질인 톨루엔의 양을 판단하게 된다. 즉, 검출된 전류량을 상기 데이터저장부(140)에 저장된 암기인물질의 양과 전류량과의 관계를 나타내는 데이터테이블과 비교하여 얼마만큼의 톨루엔이 유입되었는지를 산출하게 된다.The control unit 150 detects whether current flows through the detection unit 110 to determine whether or not toluene, which is a memorandant, is present, and determines the amount of toluene, which is a memorized substance, from the amount of current. . That is, the amount of toluene introduced is calculated by comparing the detected current amount with the data table indicating the relationship between the amount of the memorizing substance and the current amount stored in the data storage 140.
이후, 상기 제어부(150)는 상기 검측에 대한 정보(검측과정, 검측조건, 검측결과 등)를 데이터저장부(140)에 저장하고, 표시부(160)를 통해 나타내며, 상기 통신부(170)를 통해 외부기기와 교환하게 되는 것으로, 이와 같은 과정을 반복 수행하여 암기인물질을 지속적으로 검측하게 된다.Thereafter, the controller 150 stores the information on the detection (detection process, detection condition, detection result, etc.) in the data storage unit 140, is displayed through the display unit 160, and through the communication unit 170. By exchanging with an external device, this process is repeated to continuously detect the memorandum.
이때, 상기 암기인물질에서 공여하는 전자를 매개로 하여 흐르는 전류를 검출함으로써 암기인물질의 분자 수에 비례하는 정확하고 정밀한 검측을 할 수 있게 된다.At this time, by detecting the current flowing through the electrons donated from the memorized material, accurate and precise detection in proportion to the number of molecules of the memorized material can be performed.
즉, 암기인물질인 톨루엔의 존재 유무로 암 세포의 존재 유무를 검출하고, 암기인물질의 양으로 암의 진행 정도를 판단하게 된다. 암의 종류는 동일한 시료에서 검출되는 2개 이상이 암기인물질의 구성비로 판단한다(예: 톨루엔과 2,6-디이소프롤필페놀의 구성비, 또는 톨루엔, 2,6-디이소프롤필페놀, 2-메틸피라진, 사이클로헥사논의 구성비 등) That is, the presence of cancer cells is detected by the presence or absence of toluene, which is a cancerous substance, and the progress of cancer is determined by the amount of the cancerous substance. The type of cancer is determined by the composition ratio of two or more cancer-causing substances detected in the same sample (for example, the composition ratio of toluene and 2,6-diisoprophylphenol, or toluene, 2,6-diisoprophylphenol, 2- Composition of methyl pyrazine, cyclohexanone, etc.)
암 진행 정도는 암기인물질의 양과 암 진행 정도를 나타내는 데이터테이블을 참조하여 판단하며, 암의 종류는 암기인물질의 구성비와 암 종류에 대한 데이터테이블을 참조하여 판단한다.The progress of cancer is determined by referring to the data table indicating the amount of cancer and the progress of cancer, and the type of cancer is determined by referring to the data table of the composition and the type of cancer.
[실시 예4]Example 4
본 발명에 따른 제 4실시 예는 에너지준위를 이용한 휴대용 암 진단 시스템에 관한 것이다. A fourth embodiment according to the present invention relates to a portable cancer diagnosis system using energy levels.
이 시스템은 특히 체액(體液)(혈액, 소변, 땀, 눈물, 콧물 등)에 포함된 암기인물질(암을 원인으로 하여 발생하는 물질)에서 공여하는 전자를 매개로 하여 음극에서 양극으로 전자가 이동할 수 있도록 산화환원전위의 에너지준위를 설계함으로써, 분자 단위의 정밀한 진단을 할 수 있도록 한 것이다.This system uses electrons from the cathode to the anode, especially through donations from memorandum (a substance that is caused by cancer) contained in body fluids (blood, urine, sweat, tears, runny nose, etc.). By designing the energy level of the redox potential to move, it is possible to make a precise diagnosis on a molecular basis.
이 실시 예에서 1) 제1양극과 제2양극 에너지준위 설계는 상기한 제 2, 3실시 예 즉 도면 29, 30을 기준으로하는 제 2, 3실시 예의 에너지 준위 설계와 동일하게 구성하고, 센서 전극부는 다음과 같다. In this embodiment, 1) the first and second anode energy level designs are constructed in the same manner as the energy level designs of the second and third embodiments, that is, the second and third embodiments based on FIGS. The electrode portion is as follows.
2) 센서전극부의 구성2) Sensor electrode part
도 34에서 도시되는 바와 같이, 투명재질의 기재 위에 제1양극(121a)과, 음극(124)과, 제2양극(121b)을 지그재그로 형성한다. 상기 제1양극(121a)과, 음극(124)과 제2양극(121b)의 일측은 본 실시예의 의한 휴대용 암 진단 장치(100)에 마련된 커넥터(120b)에 끼워져 접속되도록 접속 패턴을 마련하여 본 실시예의 의한 센서전극부(120)를 구성한다.As shown in FIG. 34, the first anode 121a, the cathode 124, and the second anode 121b are zigzag formed on the transparent substrate. One side of the first positive electrode 121a, the negative electrode 124 and the second positive electrode 121b is provided with a connection pattern so as to be inserted into and connected to the connector 120b provided in the portable arm diagnosis apparatus 100 according to the present embodiment. The sensor electrode unit 120 according to the embodiment is configured.
상기 제1양극(121a)과, 제2양극(121b)에는 이동유도물질이 전기영동에 의해 도핑된다.The first anode 121a and the second cathode 121b are doped with a moving induction material by electrophoresis.
상기 제1양극(121a)과, 음극(124)과 제2양극(121b) 상부에는 박막의 흡수포(126)를 구비하여 체액을 상기 흡수포(126)에 떨구었을 시 고르게 퍼져 상기 제1양극(121a)과, 음극(124)과 제2양극(121b)에 체약이 고르게 접촉할 수 있도록 한다.The first anode 121a, the cathode 124, and the second anode 121b are provided with an absorbent cloth 126 of a thin film, and when the body fluid is dropped onto the absorbent cloth 126, the first anode is spread evenly. The medicine may be evenly contacted with the 121a, the cathode 124, and the second anode 121b.
이후 상기 제1양극(121a)과, 음극(124)과 제2양극(121b)에 전원공급부(180)를 통해 동작전원을 공급하고, 상기 제1양극(121a)과, 음극(124)과, 제2양극(121b) 사이를 흐르는 전류를 검출할 수 있도록 검출부(110a, 110b)를 연결한다.Thereafter, operating power is supplied to the first positive electrode 121a, the negative electrode 124 and the second positive electrode 121b through the power supply unit 180, and the first positive electrode 121a, the negative electrode 124, The detection units 110a and 110b are connected to detect a current flowing between the second anodes 121b.
본 실시예에 의한 휴대용 암 진단 장치(100)에는, 도1에서 도시되는 바와 같이, 상기 센서전극부(120a)가 연결되는 커넥터(120b)가 마련되어 있고, 상기 센서전극부(120a)각 전극(제1양극, 음극, 제2양극)이 위치하는 아래에는 여기에너지공급부(130)의 광원(131a)이 위치하고 있어, 투명창을 통해 상기 센서전극부(120a)에 광 에너지를 공급하도록 구성된다. As shown in FIG. 1, the portable cancer diagnosis apparatus 100 according to the present embodiment is provided with a connector 120b to which the sensor electrode part 120a is connected, and each electrode of the sensor electrode part 120a is provided. The light source 131a of the excitation energy supply unit 130 is positioned below the first anode, the cathode, and the second anode, and is configured to supply light energy to the sensor electrode unit 120a through a transparent window.
3) 시스템 구성3) System Configuration
도33 내지 도38에서 도시되는 바와 같이, 센서전극부(120)에 여기에너지공급부(130)의 광원(131a)이 조사될 수 있도록 하고, 상기 센서전극부(120a)에 검출부(110a, 110b)를 연결한다. 이후, 상기 검출부(110a, 110b)와, 여기에너지공급부(130)와, 데이터저장부(140)와, 표시부(160)와, 통신부(170)와, 스위치부(190)를 제어부(150)에 접속하여 본 실시예에 의한 검출 시스템을 구성한다. 상기 전원공급부(180)는 각 구성요소에 동작전원을 공급한다. 33 to 38, the light source 131a of the excitation energy supply unit 130 is irradiated to the sensor electrode unit 120, and the detection units 110a and 110b are applied to the sensor electrode unit 120a. Connect it. Thereafter, the detectors 110a and 110b, the excitation energy supply unit 130, the data storage unit 140, the display unit 160, the communication unit 170, and the switch unit 190 are connected to the control unit 150. It connects and comprises the detection system which concerns on a present Example. The power supply unit 180 supplies operating power to each component.
상기 제어부(150)는 마이크로프로세서, 또는 소형 컴퓨터 시스템으로 구성됨이 바람직하며, 상기 데이터저장부(140)는 상기 제어부(150)의 내부메모리, 또는 상기 제어부(150)의 제어를 받는 외부메모리로 구성됨이 바람직하다. Preferably, the controller 150 is configured as a microprocessor or a small computer system. The data storage unit 140 is configured as an internal memory of the controller 150 or an external memory controlled by the controller 150. This is preferred.
상기 표시부(160)의 시각표시부(161)는 터치스크린(161a)으로 구성되고, 청각표시부(162)는 본 휴대용 암 진단 장치(100)에 내장된 스피커(162a)로 구성되며, 상기 통신부(170)의 유선통신부(171)는 USB 접속장치(171a)를 통해 통신할 수 있도록 구성함이 바람직하다. 무선통신장치(172)는 블루투스와 와이파이(wifi)로 구성된다(미도시).The visual display unit 161 of the display unit 160 includes a touch screen 161a, and the auditory display unit 162 includes a speaker 162a embedded in the portable cancer diagnosis apparatus 100, and the communication unit 170 Wired communication unit 171 of the) is preferably configured to communicate through the USB connection device (171a). The wireless communication device 172 is composed of Bluetooth and Wi-Fi (not shown).
상기 스위치부(190)는 버튼식 스위치(191)와, 상기 시각표시부(161a)를 이루는 터치스크린 상에 구성된다.The switch unit 190 is configured on the touch screen that forms the button-type switch 191 and the visual display unit 161a.
상기 데이터저장부(140)에는 암기인물질인 2,6-디이소프롤필페놀의 검측 결과 및, 2,6-디이소프롤필페놀의 양과 전류량의 상관관계를 나타낸 데이터테이블, 톨루엔의 검측 결과 및, 톨루엔의 양과 전류량의 상관관계를 나타낸 데이터테이블 등이 저장된다. The data storage unit 140 includes a detection result of the 2,6-diisoprophylphenol phenol, which is a memorizing substance, a data table showing the correlation between the amount of the 2,6-diisoprophyl phenol and the current amount, the detection result of toluene, A data table and the like showing the correlation between the amount of toluene and the amount of current are stored.
이하, 상기와 같이 구성된 본 실시예의 동작에 대해 상세히 설명하면 다음과 같다.Hereinafter, the operation of the present embodiment configured as described above will be described in detail.
먼저, 도34에서 도시되는 바와 같이, 센서전극부(120a)를 커넥터(120b)에 장착한다.First, as shown in FIG. 34, the sensor electrode portion 120a is mounted on the connector 120b.
이후, 상기 센서전극부(120a)의 흡수포(126)에 체액을 한 방울 떨어뜨린다.Thereafter, a drop of body fluid is dropped onto the absorbent cloth 126 of the sensor electrode 120a.
그러면 흡수포(126)에 떨어진 체액이 고르게 퍼져 나가 제1양극(121a)과, 음극(124)과, 제2양극(121b)에 고르게 접촉하게 된다.As a result, the body fluid dropped on the absorbent cloth 126 is evenly spread to contact the first positive electrode 121a, the negative electrode 124, and the second positive electrode 121b evenly.
이 상태에서 상기 제1검출부(110a)와 제2검출부(110b)를 통해 음극(124)과 제1양극(121a) 및, 음극(124)과 제2양극(121b)의 전자 이동(전류)를 검출한다. 즉, 상기 여기에너지공급부(130) 광원(131a)의 오프(off) 상태를 유지한 상태에서 전자 이동을 검측한다.In this state, electron movement (current) of the cathode 124 and the first anode 121a and the cathode 124 and the second anode 121b is performed through the first detector 110a and the second detector 110b. Detect. That is, the electron movement is detected while the off state of the light source 131a of the excitation energy supply unit 130 is maintained.
이러한 초기 검측은 여기에너지공급부(130)가 동작하지 않은 상태, 즉, 암기인물질에 의한 전자 이동이 없는 상태에서 체액 자체에 의한 전류 값을 검출하기 위한 것이다. 이 초기 검측 값은 암기인물질에 의한 검측 값과 비교하여 암기인물질을 원인으로 하는 전자 이동의 값만 산출하기 위한 것이다.This initial detection is for detecting the current value by the body fluid itself in a state where the excitation energy supply unit 130 is not operated, that is, there is no electron movement by the memorandous substance. This initial detection value is for calculating only the value of the electron transfer which causes the memorandable substance compared with the detection value by the memorable substance.
이후, 상기 여기에너지공급부(130)의 광원(131a)을 온(on)시켜 상기 센서전극부(120a)에 여기 에너지를 공급한 상태에서의 전자 이동을 검출한다. 그러면, 상기 체액 속에 포함된 암기인물질에 의한 전자 이동이 일어나 초기 검측 값에 암기인물질에 의한 값이 포함된 값이 검출되게 되는 것으로, 암기인물질이 포함된 검측 값에서 초기 검측 값을 제하면 암기인물질에 의한 전자 이동 값을 알 수 있고, 이 암기인물질의 존재 유무, 양 및 각 암기인물질의 구성비로부터 암의 종류와 암의 진행 정도를 판단할 수 있다.Thereafter, the light source 131a of the excitation energy supply unit 130 is turned on to detect electron movement in the state where the excitation energy is supplied to the sensor electrode unit 120a. Then, the electron transfer by the memorandum contained in the body fluid occurs to detect the value including the value by the memorandum in the initial detection value, the initial detection value is removed from the detection value containing the memorandum The electron transfer value by the memorandum can be known, and the kind and the progress of the cancer can be determined from the presence, the amount, and the composition ratio of each memorandum.
한편, 본 실시 예에서 제1양극(121a)과, 제2양극(121b)에서 암기인물질에 의해 일어나는 전자 이동 과정을 상세히 설명하면 다음과 같다.On the other hand, in the present embodiment will be described in detail the electron transfer process caused by the memorized material in the first anode (121a) and the second anode (121b) as follows.
<암기인물질에 의해 제1양극에서의 일어나는 전자의 이동><The movement of electrons occurring in the first anode by memorizing matter>
본 실시예에서는 상기 제1양극(121a)에서 체액 속에 포함된 암기인물질인 2,6-디이소프롤필페놀을 검출하고, 양극측이동유도물질로 [C60]을 사용한 것을 예로 하였으므로 이에 대해 설명한다.In the present embodiment, since the first anode 121a detects 2,6-diisoprophylphenol, which is a memorandous substance contained in the body fluid, and uses [C60] as an anode-side inducing substance, it will be described. .
먼저, 상기 센서전극부(120a)에 체액이 공급된 상태에서 상기 여기에너지공급부(130)의 광원(131a)이 온 되면, 상기 광원(131a)에서 조사되는 광에너지가 상기 양극측이동유도물질(122)인 [C60]에 여기 에너지를 공급하게 된다.First, when the light source 131a of the excitation energy supply unit 130 is turned on while the body fluid is supplied to the sensor electrode unit 120a, the light energy irradiated from the light source 131a is transferred to the anode side induction material ( Excitation energy is supplied to [C60].
그러면 도 17에서 도시되는 바와 같이, 상기 양극측이동유도물질인 [C60]의 가전자대에 있는 전자가 전도대로 여기하게 되며, 상기 [C60]의 가전자대에는 양공이 생성되게 된다. [C60]의 전도대로 여기된 전자의 에너지준위는 -3.89eV로 양극인 FTO의 가전자대의 에너지준위인 -4.85eV 보다 높아져, 상기 전도대로 여기된 전자가 양극인 FTO로 이동하게 된다.Then, as illustrated in FIG. 17, electrons in the valence band of the anode-side movement inducing material [C60] are excited as conduction bands, and holes are generated in the valence band of [C60]. The energy level of the electrons excited by the conduction band of [C60] is -3.89 eV, which is higher than the energy level of -4.85 eV of the valence band of the anode FTO, and the electrons excited by the conduction band move to the anode FTO.
또한, 상기 2,6-디이소프롤필페놀의 가전자대에 있는 전자(에너지준위: -5.93eV)가 상기 양극측이동유도물질인 [C60]의 가전자대에 생긴 양공(에너지준위: -6.72eV)으로 이동하고, 상기 2,6-디이소프롤필페놀의 가전자대에는 양공이 생성되게 된다.In addition, the hole (energy level: -6.72eV) in which the electron (energy level: -5.93eV) in the valence band of the 2,6-diisoprophylphenol is generated in the valence band of [C60] which is the anode-side mobile inducer In the valence band of the 2,6-diisoprophylphenol phenol, holes are generated.
그러면 상기 암기인물질인 2,6-디이소프롤필페놀의 가전자대에 생긴 양공(에너지준위: -5.93eV)으로 음극인 백금(Pt)의 가전자대에 있는 전자(에너지준위: -5.93eV)가 이동하게 된다.Then, the electrons (energy level: -5.93eV) in the valence band of platinum (Pt) as the positive hole generated in the valence band of the memorized substance 2,6-diisoprophylphenol (energy level: -5.93 eV) Will move.
이후, 상기 여기에너지공급부(130)의 광원(131a)에서 여기 에너지가 공급되는 한 상기와 같은 과정을 반복 수행하여 음극에서 제1양극(121a)으로 상기 암기인물질인 2,6-디이소프롤필페놀의 분자 수에 비례하는 수의 전자가 지속적으로 이동하게 된다.Thereafter, the same process is repeated as long as the excitation energy is supplied from the light source 131a of the excitation energy supply unit 130, and the 2,6-diisoprofil which is the memorized substance from the cathode to the first anode 121a is then repeated. The number of electrons in proportion to the number of molecules of the phenol is constantly moving.
상기 제1검출부(110a)는 상기 음극(124)과 제1양극(121a) 사이에 흐르는 전류(전자의 이동)를 검출한다.The first detector 110a detects a current (movement of electrons) flowing between the cathode 124 and the first anode 121a.
상기 제어부(150)는 상기 제1검출부(110a)를 통해 전류가 흐르는 지의 여부를 검출하여 암기인물질인 2,6-디이소프롤필페놀이 존재하는지의 여부를 판단하고, 전류의 양으로부터 암기인물질인 2,6-디이소프롤필페놀의 양을 판단하게 된다. 즉, 검출된 전류량을 상기 데이터저장부(140)에 저장된 암기인물질의 양과 전류량과의 관계를 나타내는 데이터테이블과 비교하여 얼마만큼의 2,6-디이소프롤필페놀이 유입되었는지를 산출하게 된다.The controller 150 detects whether a current flows through the first detection unit 110a to determine whether 2,6-diisoprophylphenol, which is a memorandum, is present, and memorizes from the amount of current. The amount of 2,6-diisoprophylphenol which is a substance is determined. That is, the amount of 2,6-diisoprophylphenol introduced is calculated by comparing the detected current amount with the data table indicating the relationship between the amount of the memorizing substance and the current amount stored in the data storage 140.
이후, 상기 제어부(150)는 상기 검측에 대한 정보(검측과정, 검측조건, 검측결과 등)를 데이터저장부(140)에 저장하고, 표시부(160)를 통해 나타내며, 상기 통신부(170)를 통해 외부기기와 교환하게 되는 것으로, 이와 같은 과정을 반복 수행하여 암기인물질을 지속적으로 검측하게 된다.Thereafter, the controller 150 stores the information on the detection (detection process, detection condition, detection result, etc.) in the data storage unit 140, is displayed through the display unit 160, and through the communication unit 170. By exchanging with an external device, this process is repeated to continuously detect the memorandum.
이때, 상기 암기인물질에서 공여하는 전자를 매개로 하여 흐르는 전류를 검출함으로써 암기인물질의 분자 수에 비례하는 정확하고 정밀한 검측을 할 수 있게 된다.At this time, by detecting the current flowing through the electrons donated from the memorized material, accurate and precise detection in proportion to the number of molecules of the memorized material can be performed.
<암기인물질에 의해 제2양극에서의 일어나는 전자의 이동><The movement of electrons in the second anode by memorizing matter>
본 실시예에서는 상기 제2양극(121b)에서 체액 속에 포함된 암기인물질인 톨루엔을 검출하고, 양극측제1이동유도물질로 [Li+@C60][PF6-]을 사용하고, 양극측제2이동유도물질로 [TiO2]을 사용한 것을 예로 하였으므로 이에 대해 설명한다.In the present exemplary embodiment, toluene, which is a memorized substance contained in the body fluid, is detected at the second anode 121b, and [Li + @ C60] [PF6-] is used as the anode-side first movement inducing substance, and the anode-side second movement induction. Since [TiO 2] is used as an example, it will be described.
먼저, 상기 센서전극부(120a)에 체액이 공급된 상태에서 상기 여기에너지공급부(130)의 광원(131a)이 온 되면, 상기 광원(131a)에서 조사되는 광에너지가 상기 양극측제1이동유도물질(122a)인 [Li+@C60][PF6-]과 양극측제2이동유도물질(122b)인 [TiO2]에 여기 에너지를 공급하게 된다.First, when the light source 131a of the excitation energy supply unit 130 is turned on while the body fluid is supplied to the sensor electrode unit 120a, the light energy irradiated from the light source 131a is the anode-side first moving inducing material. Excitation energy is supplied to [Li + @ C60] [PF6-] (122a) and [TiO2], which is the anode-side second moving inducer 122b.
그러면 상기 양극측제2이동유도물질인 [TiO2]의 가전자대에 있는 전자가 전도대로 여기하게 되며, 상기 [TiO2]의 가전자대에는 양공이 생성되게 된다. [TiO2]의 전도대로 여기된 전자의 에너지준위는 -3.21eV로 양극인 FTO의 가전자대의 에너지준위인 -4.85eV 보다 높아져, 상기 전도대로 여기된 전자가 양극인 FTO로 이동하게 된다.Then, the electrons in the valence band of [TiO2], which is the anode-side second moving induction material, are excited with a conduction band, and holes are generated in the valence band of [TiO2]. The energy level of electrons excited by the conduction band of [TiO2] is -3.21 eV, which is higher than the energy level of -4.85 eV, which is the valence band of the FTO, which is the anode, and the electrons excited by the conduction band move to the FTO, which is the anode.
상기 광원(131a)에서 조사되는 광에너지에 의해 양극측제1이동유도물질인 [Li+@C60][PF6-]의 가전자대에 있는 전자가 전도대로 여기되고, 상기 [Li+@C60][PF6-]의 가전자대에는 양공이 생성된다. 상기 [Li+@C60][PF6-]의 전도대로 여기된 전자의 에너지준위는 -4.90eV로 양극측제2이동유도물질인 [TiO2]의 가전자대의 에너지준위인 -6.21eV 보다 높아져, 상기 전도대로 여기된 전자가 [TiO2]의 가전자대에 생긴 양공으로 이동하게 된다.By the light energy irradiated from the light source 131a, electrons in the valence band of [Li + @ C60] [PF6-], which are anode-side first moving induction materials, are excited as conduction bands, and [Li + @ C60] [PF6-] A hole is generated in the valence band of. The energy level of electrons excited by the conduction band of [Li + @ C60] [PF6-] is -4.90 eV, which is higher than the energy level of -6.21 eV, which is the valence band of [TiO2], which is the anode-side second moving inducer. The excited electrons are moved to the holes generated in the valence band of [TiO 2].
또한, 상기 톨루엔의 가전자대에 있는 전자(에너지준위: -6.55eV)가 상기 양극측제1이동유도물질인 [Li+@C60][PF6-]의 가전자대에 생긴 양공(에너지준위: -7.70eV)으로 이동하고, 상기 톨루엔의 가전자대에는 양공이 생성되게 된다.In addition, the holes (energy level: -6.55eV) in the valence band of toluene are generated in the valence band of [Li + @ C60] [PF6-] which is the anode-side first moving inducer (energy level: -7.70eV) It moves to and the hole is generated in the valence band of toluene.
그러면 상기 암기인물질인 톨루엔의 가전자대에 생긴 양공(에너지준위: -6.55eV)으로 음극인 백금(Pt)의 가전자대에 있는 전자(에너지준위: -5.93eV)가 이동하게 된다.Then, the electrons (energy level: -5.93eV) in the valence band of platinum (Pt), which is a cathode, move to the hole (energy level: -6.55eV) generated in the valence band of the toluene, which is the memorizing substance.
이후, 상기 여기에너지공급부(130)의 광원(131a)에서 여기 에너지가 공급되는 한 상기와 같은 과정을 반복 수행하여 음극(124)에서 제2양극(121b)으로 상기 암기인물질인 톨루엔에 비례하는 수의 전자가 지속적으로 이동하게 된다.Thereafter, the same process is repeated as long as the excitation energy is supplied from the light source 131a of the excitation energy supply unit 130 to be proportional to the toluene which is the memorized substance from the cathode 124 to the second anode 121b. The number of electrons are constantly moving.
상기 제2검출부(110b)는 상기 음극(124)과 제2양극(121b) 사이에 흐르는 전류(전자의 이동)를 검출한다.The second detector 110b detects a current (movement of electrons) flowing between the cathode 124 and the second anode 121b.
상기 제어부(150)는 상기 제2검출부(110b)를 통해 전류가 흐르는 지의 여부를 검출하여 암기인물질인 톨루엔이 존재하는지의 여부를 판단하고, 전류의 양으로부터 암기인물질인 톨루엔의 양을 판단하게 된다. 즉, 검출된 전류량을 상기 데이터저장부(140)에 저장된 암기인물질의 양과 전류량과의 관계를 나타내는 데이터테이블과 비교하여 얼마만큼의 톨루엔이 유입되었는지를 산출하게 된다.The controller 150 determines whether current is flowing through the second detector 110b to determine whether or not toluene, which is a cancerous substance, is present, and determines the amount of toluene, which is a cancerous substance, from the amount of current. Done. That is, the amount of toluene introduced is calculated by comparing the detected current amount with the data table indicating the relationship between the amount of the memorizing substance and the current amount stored in the data storage 140.
이후, 상기 제어부(150)는 상기 검측에 대한 정보(검측과정, 검측조건, 검측결과 등)를 데이터저장부(140)에 저장하고, 표시부(160)를 통해 나타내며, 상기 통신부(170)를 통해 외부기기와 교환하게 되는 것으로, 이와 같은 과정을 반복 수행하여 암기인물질을 지속적으로 검측하게 된다.Thereafter, the controller 150 stores the information on the detection (detection process, detection condition, detection result, etc.) in the data storage unit 140, is displayed through the display unit 160, and through the communication unit 170. By exchanging with an external device, this process is repeated to continuously detect the memorandum.
이때, 상기 암기인물질에서 공여하는 전자를 매개로 하여 흐르는 전류를 검출함으로써 암기인물질의 분자 수에 비례하는 정확하고 정밀한 검측을 할 수 있게 된다.At this time, by detecting the current flowing through the electrons donated from the memorized material, accurate and precise detection in proportion to the number of molecules of the memorized material can be performed.
즉, 암기인물질인 톨루엔의 존재 유무로 암 세포의 존재 유무를 검출하고, 암기인물질의 양으로 암의 진행 정도를 판단하게 된다. That is, the presence of cancer cells is detected by the presence or absence of toluene, which is a cancerous substance, and the progress of cancer is determined by the amount of the cancerous substance.
암의 종류는 동일한 시료에서 검출되는 2개 이상이 암기인물질의 구성비로 판단한다(예: 톨루엔과 2,6-디이소프롤필페놀의 구성비, 또는 톨루엔, 2,6-디이소프롤필페놀, 2-메틸피라진, 사이클로헥사논의 구성비 등) The type of cancer is determined by the composition ratio of two or more cancer-causing substances detected in the same sample (for example, the composition ratio of toluene and 2,6-diisoprophylphenol, or toluene, 2,6-diisoprophylphenol, 2- Composition of methyl pyrazine, cyclohexanone, etc.)
암 진행 정도는 암기인물질의 양과 암 진행 정도를 나타내는 데이터테이블을 참조하여 판단하며, 암의 종류는 암기인물질의 구성비와 암 종류에 대한 데이터테이블을 참조하여 판단한다.The progress of cancer is determined by referring to the data table indicating the amount of cancer and the progress of cancer, and the type of cancer is determined by referring to the data table of the composition and the type of cancer.
본 발명에 의한 휴대용 암 진단 장치의 정밀도에 대해 설명하면 다음과 같다. 체액의 분자량은 체액의 종류에 따라 달라지므로 물을 기준으로 하여 설명한다.The precision of the portable cancer diagnostic apparatus according to the present invention will be described as follows. Since the molecular weight of the body fluid varies depending on the type of body fluid, it will be described based on water.
스포이드로 떨어트리는 액체 1방울의 부피는 약 0.05cc이다.The volume of one drop of liquid dropped into the dropper is about 0.05 cc.
따라서 한 방울의 물에 포함된 분자수는,So the number of molecules in a drop of water is
(0.00005ℓ/18ℓ) × (6.02 ×1023)≒ 1.67 ×1018 개 이다.(0.00005ℓ / 18ℓ) × (6.02 × 10 23 ) ≒ 1.67 × 10 18 pieces.
이 0.05cc의 물 1ppt에 포함된 분자수는.The number of molecules contained in 1 ppt of this 0.05cc of water is
(1.67×1018)×10-12 = 1.67 ×106 개 이다.(1.67 × 10 18 ) × 10 -12 = 1.67 × 10 6
이를 전하량으로 나타내면,If this is expressed as the amount of charge,
(1.67×106)×(1.62×10-19C) = 약 1.99×10-11C ≒ 20pA 이다.(1.67 x 10 6 ) x (1.62 x 10 -19 C) = approximately 1.99 x 10 -11 C ≒ 20 pA.
즉, 0.05cc의 물 속에 암기인물질이 1ppt 만큼 포함되었다 하더라도 이를 검출할 수 있다.That is, even if 1ppt of the memorized substance is contained in 0.05cc of water, it can be detected.
나노 암페아(nA)나, 피코 암페아(pA) 단위의 전하량을 검출하는 검출부(110)의 구성은 주지하는 바와 같으므로 그 상세한 설명은 생략한다.Since the configuration of the detection unit 110 for detecting the charge amount in the nano ampere (nA) or the picoampere (pA) unit is well known, its detailed description is omitted.
한편, 본 발명 중 이동유도물질(양극측이동유도물질, 음극측이동유도물질)을 구성하는 [C60] 풀러렌 및 리튬이온내포풀러렌은 전자운을 포함한 크기가 약 1nm이고, 상기 리튬이온내포풀러렌과 색소로 이루어진 초분자의 크기는 약 2nm이다.On the other hand, in the present invention [C60] fullerene and lithium ion-encapsulated fullerene constituting a mobile induction material (anode-side mobile induction material, negative electrode-side mobile induction material) is about 1nm in size including an electron cloud, the lithium ion containing fullerene and The supramolecular molecule consists of pigments of about 2 nm in size.
따라서 상기 0.05cc 물 속에 1ppt의 암기인물질이 있다고 하고, 그 이동유도물질을 리튬이온내포풀러렌과 색소로 이루어진 초분자(약 2nm)로 구성하였다고 할 경우, 상기 암기인물질이 동시에 반응하기 극판의 크기는 약 (0.22mm ㅧ 0.22mm)의 크기면 충분하다. Therefore, it is said that there is 1 ppm of the memorandable substance in the 0.05cc water, and the mobile inducing substance is composed of ultra-molecules (about 2 nm) composed of lithium ion containing fullerene and a pigment. Should be about (0.22mm ㅧ 0.22mm).
즉, 암기인물질의 분자수에 비례하는 수의 전자가 이동하도록 하고, 그 이동된 전자의 수를 직접 검출함으로써 ppt 레벨의 정밀도, 또는 그 이상의 더욱 정밀도를 갖는 폐암 진단 장치를 구성할 수 있다. That is, a lung cancer diagnosis apparatus having a precision of ppt level or more can be configured by allowing electrons in proportion to the number of molecules of the memorandant to be moved and directly detecting the number of moved electrons.
침고로 소변의 경우 95%의 물과 5%의 기타 성분(요소, 요산 등)으로 구성된다. 물의 분자량은 약 18이며, 요소의 분자량은 약 60이며, 요산의 분자량은 약 168이다. Urine consists of 95% water and 5% other components (urea, uric acid, etc.). The molecular weight of water is about 18, the molecular weight of urea is about 60, and the molecular weight of uric acid is about 168.
[실시 예 5]Example 5
본 발명의 실시 예 5는 스마트폰을 이용한 휴대용 암 진단 시스템이다. Embodiment 5 of the present invention is a portable cancer diagnosis system using a smartphone.
이 시스템은 기본적으로 실시 예 1 내지 4의 에너지 준위 설계와 동일하고, 센서전극부는 실시 예 4와 동일하다. 따라서 이 실 예의 센서 전극부는 도 34를 참조하여 설명하며, 시스템 구성은 도 30을 참조한다. This system is basically the same as the energy level design of Examples 1 to 4, and the sensor electrode portion is the same as Example 4. Therefore, the sensor electrode of this example will be described with reference to FIG. 34, and the system configuration will be described with reference to FIG. 30.
본 발명에 따른 암 진단 시스템은 체액에 포함된 암기인물질을 매개로 하여 음극에서 양극으로 전자가 이동되도록 산화환원전위의 에너지준위를 설정하여 암기인물질을 검측하는 휴대검측장치와, 상기 휴대검측장치에서 측정하는 측정값을 비교 분석하여 암기인물질의 존재 여부와 암 발생여부를 나타내는 암진단앱과, 상기 암진단앱이 설치되며, 상기 휴대검측장치와 통신을 수행하는 스마트폰을 포함한다. The cancer diagnosis system according to the present invention is a portable detection device for detecting a cancer-causing substance by setting the energy level of the redox potential so that electrons are moved from the cathode to the anode via the cancer-causing substance contained in the body fluid, and the portable detection Comparing and analyzing the measured value measured by the device is a cancer diagnostic app indicating the presence or absence of cancer memorandum and cancer, and the cancer diagnostic app is installed, and includes a smart phone for communicating with the mobile detection device.
상기 암진단앱은, 암기인물질의 존재 유무로 암의 존재 여부를 판단하고, 암기인물질의 양으로써 암의 진행정도를 판단하는 것이다. The cancer diagnostic app is to determine the presence of cancer in the presence or absence of the memorandum, and to determine the progress of the cancer by the amount of the memorandum.
이러한 스마트폰을 이용하는 암 진단 시스템의 기본적인 구성은 도34에 도시되는 바와 같이, 센서전극부(120)에 여기에너지공급부(130)의 광원(131a)이 조사될 수 있도록 하고, 상기 센서전극부(120a)에 검출부(110a, 110b)를 연결한다. 이후, 상기 검출부(110a, 110b)와, 여기에너지공급부(130)와, 데이터저장부(140)와, 표시부(160)와, 통신부(170)와, 스위치부(190)를 제어부(150)에 접속하여 본 실시예에 의한 휴대검측장치(100)를 구성한다. 상기 전원공급부(180)는 각 구성요소에 동작전원을 공급한다. As shown in FIG. 34, the basic configuration of the cancer diagnosis system using the smart phone enables the light source 131a of the excitation energy supply unit 130 to be irradiated to the sensor electrode unit 120, and the sensor electrode unit ( The detectors 110a and 110b are connected to the 120a. Thereafter, the detectors 110a and 110b, the excitation energy supply unit 130, the data storage unit 140, the display unit 160, the communication unit 170, and the switch unit 190 are connected to the control unit 150. By connecting, the portable detection device 100 according to the present embodiment is configured. The power supply unit 180 supplies operating power to each component.
상기 제어부(150)는 마이크로프로세서, 또는 소형 컴퓨터 시스템으로 구성됨이 바람직하며, 상기 데이터저장부(140)는 상기 제어부(150)의 내부메모리, 또는 상기 제어부(150)의 제어를 받는 외부메모리로 구성됨이 바람직하다. Preferably, the controller 150 is configured as a microprocessor or a small computer system. The data storage unit 140 is configured as an internal memory of the controller 150 or an external memory controlled by the controller 150. This is preferred.
상기 표시부(160)의 시각표시부(161)는 터치스크린(161a)으로 구성되고, 청각표시부(162)는 휴대검측장치(100)에 내장된 스피커(162a)로 구성되며, 상기 통신부(170)의 유선통신부(171)는 USB 접속장치(171a)를 통해 통신할 수 있도록 구성함이 바람직하다. 무선통신장치(172)는 블루투스와 와이파이(wifi)로 구성된다(미도시).The visual display unit 161 of the display unit 160 is composed of a touch screen 161a, the auditory display unit 162 is composed of a speaker 162a built in the portable detection device 100, the communication unit 170 Wired communication unit 171 is preferably configured to communicate through the USB connection device (171a). The wireless communication device 172 is composed of Bluetooth and Wi-Fi (not shown).
상기 스위치부(190)는 버튼식 스위치(191)와, 상기 시각표시부(161a)를 이루는 터치스크린 상에 구성된다.The switch unit 190 is configured on the touch screen that forms the button-type switch 191 and the visual display unit 161a.
한편, 스마트폰(200)의 메모리(미도시)에는 암기인물질인 2,6-디이소프롤필페놀의 검측 결과 및, 2,6-디이소프롤필페놀의 양과 전류량의 상관관계를 나타낸 데이터테이블, 톨루엔의 검측 결과 및, 톨루엔의 양과 전류량의 상관관계를 나타낸 데이터테이블 등이 저장된다. On the other hand, the memory (not shown) of the smartphone 200, the data table showing the correlation between the result of the detection of 2,6-diisoprophylphenol phenol, and the amount and current amount of 2,6-diisoprophylphenol, The detection result of toluene, and a data table showing the correlation between the amount of toluene and the amount of current are stored.
이하, 상기와 같이 구성된 본 실시예의 동작에 대해 상세히 설명하면 다음과 같다.Hereinafter, the operation of the present embodiment configured as described above will be described in detail.
먼저, 도 36와 도38에서 도시되는 바와 같이, 센서전극부(120a)를 커넥터(120b)에 장착한다.First, as shown in Figs. 36 and 38, the sensor electrode portion 120a is mounted on the connector 120b.
이후, 상기 센서전극부(120a)의 흡수포(126)에 체액을 한 방울 떨어뜨린다.Thereafter, a drop of body fluid is dropped onto the absorbent cloth 126 of the sensor electrode 120a.
그러면 흡수포(126)에 떨어진 체액이 고르게 퍼져 나가 제1양극(121a)과, 음극(124)과, 제2양극(121b)에 고르게 접촉하게 된다.As a result, the body fluid dropped on the absorbent cloth 126 is evenly spread to contact the first positive electrode 121a, the negative electrode 124, and the second positive electrode 121b evenly.
이 상태에서 상기 제1검출부(110a)와 제2검출부(110b)를 통해 음극(124)과 제1양극(121a) 및, 음극(124)과 제2양극(121b)의 전자 이동(전류)를 검출한다. 즉, 상기 여기에너지공급부(130) 광원(131a)의 오프(off) 상태를 유지한 상태에서 전자 이동을 검측한다.In this state, electron movement (current) of the cathode 124 and the first anode 121a and the cathode 124 and the second anode 121b is performed through the first detector 110a and the second detector 110b. Detect. That is, the electron movement is detected while the off state of the light source 131a of the excitation energy supply unit 130 is maintained.
이러한 초기 검측은 여기에너지공급부(130)가 동작하지 않은 상태, 즉, 암기인물질에 의한 전자 이동이 없는 상태에서 체액 자체에 의한 전류 값을 검출하기 위한 것이다. 이 초기 검측 값은 암진단앱(300)에서 암기인물질에 의한 검측 값과 비교하여 암기인물질을 원인으로 하는 전자 이동의 값만 산출하기 위한 것이다.This initial detection is for detecting the current value by the body fluid itself in a state where the excitation energy supply unit 130 is not operated, that is, there is no electron movement by the memorandous substance. This initial detection value is for calculating only the value of the electron transfer caused by the memorandum substance compared with the detection value by the memorandum substance in the cancer diagnostic app 300.
이후, 상기 여기에너지공급부(130)의 광원(131a)을 온(on)시켜 상기 센서전극부(120a)에 여기 에너지를 공급한 상태에서의 전자 이동을 검출한다. 그러면, 상기 체액 속에 포함된 암기인물질에 의한 전자 이동이 일어나 초기 검측 값에 암기인물질에 의한 값이 포함된 값이 검출되게 되는 것으로, 암기인물질이 포함된 검측 값에서 초기 검측 값을 제하면 암기인물질에 의한 전자 이동 값을 알 수 있고, 이 암기인물질의 존재 유무, 양 및 각 암기인물질의 구성비로부터 암의 종류와 암의 진행 정도를 판단할 수 있다.Thereafter, the light source 131a of the excitation energy supply unit 130 is turned on to detect electron movement in the state where the excitation energy is supplied to the sensor electrode unit 120a. Then, the electron transfer by the memorandum contained in the body fluid occurs to detect the value including the value by the memorandum in the initial detection value, the initial detection value is removed from the detection value containing the memorandum The electron transfer value by the memorandum can be known, and the kind and the progress of the cancer can be determined from the presence, the amount, and the composition ratio of each memorandum.
도면 40은 상기 스마트폰을 이용한 암진단 시스템의 진단 과정을 도시한 것이다. 40 shows a diagnosis process of the cancer diagnosis system using the smart phone.
[실시 예 6]Example 6
호기를 이용한 암 검출 시스템에서 현대인이 가장 두려워하는 폐암을 진단하기 위한 것이다. It is for diagnosing lung cancer most feared by modern people in the cancer detection system using exhalation.
이 시스템의 센서전극부는 바람직하게 첨부된 도 43 내지 도 45의 센서전극부로 구성되는 것이다. The sensor electrode part of this system is preferably composed of the sensor electrode part of FIGS. 43 to 45 attached thereto.
즉 도시되는 바와 같이, 투명재질의 사각관 기재 내부에 제1양극(121a)과, 음극(124)과, 제2양극(121b)을 형성한다. 상기 제1양극(121a)과, 제2양극(121b)에는 이동유도물질이 전기영동에 의해 도핑된다.That is, as shown, the first positive electrode 121a, the negative electrode 124, and the second positive electrode 121b are formed inside the transparent rectangular tube base material. The first anode 121a and the second cathode 121b are doped with a moving induction material by electrophoresis.
상기 제1양극(121a)과, 음극(124)과 제2양극(121b)에 전원공급부(180)를 통해 동작전원을 공급하고, 상기 제1양극(121a)과, 음극(124)과, 제2양극(121b) 사이를 흐르는 전류를 검출할 수 있도록 검출부(110a, 110b)를 연결한다.The operating power is supplied to the first positive electrode 121a, the negative electrode 124 and the second positive electrode 121b through the power supply unit 180, and the first positive electrode 121a, the negative electrode 124, The detectors 110a and 110b are connected to detect a current flowing between the two anodes 121b.
상기 센서전극부(120a)의 좌우 호기 유입부와 유출부에는 도2에서 도시되는 바와 같이, 호기를 유도하는 호기유도관(126a)과, 호기가 유출되는 호기유출관(126b)을 끼워 구성한다. As shown in FIG. 2, the left and right exhalation inlets and outlets of the sensor electrode unit 120a are fitted with an exhalation induction pipe 126a for inducing exhalation and an exhalation exhalation pipe 126b for exhalation. .
상기 호기유도관(126a)에는 마우스피스(127)를 끼워 이를 물고 호기를 불어 넣도록 한다. The mouthpiece 127 is inserted into the exhalation induction pipe 126a so as to inhale it and blow the exhalation.
그러면, 상기 호기유도관(126a)과, 센서전극부(120a) 내부와, 호기유출관(126b)을 거쳐 호기가 지나게 되고, 그 과정에 상기 센서전극부(120a)에 구성된 제1양극(121a), 음극(124) 및, 제2양극(121b)에 고르게 접촉되게 된다.Then, the exhalation passes through the exhalation induction pipe 126a, the inside of the sensor electrode part 120a, and the exhalation outlet pipe 126b, and the first anode 121a configured in the sensor electrode part 120a in the process. ), The cathode 124 and the second anode 121b are uniformly contacted.
상기 여기에너지공급부(130)는 상기 센서전극부(120a)에 광에너지를 공급할 수 있는 위치에 설치되어, 상기 여기에너지공급부(130)의 광원(131)에서 공급되는 에너지에 의해 양극측이동유도물질이 여기하도록 구성된다.The excitation energy supply unit 130 is installed at a position capable of supplying optical energy to the sensor electrode unit 120a, and the anode-side moving induction material by energy supplied from the light source 131 of the excitation energy supply unit 130. This is configured to be excited.
진단 장치 구성Diagnostic device configuration
기본적인 구성은 도41 및 도45에서 도시되는 바와 같고, 시스템은 구성은 도 35도 참고로 한다. 센서전극부(120a)에 여기에너지공급부(130)의 광원(131)이 조사될 수 있도록 하고, 상기 센서전극부(120a)에 검출부(110a, 110b)를 연결한다. 이후, 상기 검출부(110a, 110b)와, 여기에너지공급부(130)와, 데이터저장부(140)와, 표시부(160)와, 통신부(170)와, 스위치부(190)를 제어부(150)에 접속하여 본 실시예를 구성한다. 상기 전원공급부(180)는 각 구성요소에 동작전원을 공급한다. The basic configuration is as shown in Figs. 41 and 45, and the system is referred to Fig. 35 for the configuration. The light source 131 of the excitation energy supply unit 130 is irradiated to the sensor electrode unit 120a, and the detection units 110a and 110b are connected to the sensor electrode unit 120a. Thereafter, the detectors 110a and 110b, the excitation energy supply unit 130, the data storage unit 140, the display unit 160, the communication unit 170, and the switch unit 190 are connected to the control unit 150. The present embodiment is constructed by connecting. The power supply unit 180 supplies operating power to each component.
상기 제어부(150)는 마이크로프로세서, 또는 소형 컴퓨터 시스템으로 구성됨이 바람직하며, 상기 데이터저장부(140)는 상기 제어부(150)의 내부메모리, 또는 상기 제어부(150)의 제어를 받는 외부메모리로 구성됨이 바람직하다. Preferably, the controller 150 is configured as a microprocessor or a small computer system. The data storage unit 140 is configured as an internal memory of the controller 150 or an external memory controlled by the controller 150. This is preferred.
상기 표시부(160)의 시각표시부(161)는 터치스크린(161a)으로 구성되고, 청각표시부(162)는 몸체(100a)에 내장된 스피커(162a)로 구성되며, 상기 통신부(170)의 유선통신부(171)는 USB 접속장치(171a)를 통해 통신할 수 있도록 구성함이 바람직하다. 무선통신장치(172)는 블루투스와 와이파이(wifi)로 구성된다(미도시).The visual display unit 161 of the display unit 160 includes a touch screen 161a, the auditory display unit 162 includes a speaker 162a embedded in the body 100a, and the wired communication unit of the communication unit 170. 171 is preferably configured to communicate via the USB connection device (171a). The wireless communication device 172 is composed of Bluetooth and Wi-Fi (not shown).
상기 스위치부(190)는 버튼식 스위치(191)와, 상기 시각표시부(161a)를 이루는 터치스크린 상에 구성된다.The switch unit 190 is configured on the touch screen that forms the button-type switch 191 and the visual display unit 161a.
상기 데이터저장부(140)에는 암기인물질인 2,6-디이소프롤필페놀의 검측 결과 및, 2,6-디이소프롤필페놀의 양과 전류량의 상관관계를 나타낸 데이터테이블, 톨루엔의 검측 결과 및, 톨루엔의 양과 전류량의 상관관계를 나타낸 데이터테이블 등이 저장된다. The data storage unit 140 includes a detection result of the 2,6-diisoprophylphenol phenol, which is a memorizing substance, a data table showing the correlation between the amount of the 2,6-diisoprophyl phenol and the current amount, the detection result of toluene, A data table and the like showing the correlation between the amount of toluene and the amount of current are stored.
진단 과정은 호기유도관(126a)에 마우스피스(127)를 끼우고 스위치부(191)의 동작 버튼을 누른 후 상기 마우스피스(127)에 호기를 불어넣는다. 그러면 상기 호기(1)가 호기유도관(126a)을 통해 센서전극부(120a)의 제1양극(121a)과, 음극(124)과, 제2양극(121b)에 고르게 접촉하게 된다.In the diagnosis process, the mouthpiece 127 is inserted into the aerobic induction conduit 126a, the operation button of the switch unit 191 is pressed, and the breath is blown into the mouthpiece 127. Then, the exhalation 1 is in contact with the first positive electrode 121a, the negative electrode 124, and the second positive electrode 121b of the sensor electrode 120a through the air induction pipe 126a.
상기 센서전극부(120a)에 호기가 유입되면, 상기 제어부(150)는 상기 여기에너지공급부(130)의 광원(131)과 제1검출부(110a) 및 제2검출부(110b)의 동작을 제어하여 상기 광원(131)을 온(on) 시켰을 때의 값과, 오프(off) 시켰을 때의 값을 각각 검출한다.When exhalation flows into the sensor electrode unit 120a, the controller 150 controls the operations of the light source 131, the first detector 110a, and the second detector 110b of the excitation energy supply unit 130. The value when the light source 131 is turned on and the value when the light source 131 is turned off are respectively detected.
상기 광원(131)은 온 시켰을 때의 값과, 오프 시켰을 때의 값을 각각 검출하는 이유는 상기 값으로부터 오차를 보정하고, 순수한 암기인물질에 의한 전자 이동을 산출하기 위한 것이다. 즉, 광원(131)을 온 시켰을 때 검출한 값에서 오프 시켰을 때 검출한 값을 뺌으로써 여러 오류 원인을 제거하고, 오차를 보정하여 암기인물질을 매개로한 전자의 이동을 검출할 수 있다. 상기 암기인물질의 존재 유무, 양 및 각 암기인물질의 구성비로부터 암 발생 여부, 암의 종류 및, 암의 진행 정도를 판단할 수 있다.The reason why the light source 131 detects the value when it is turned on and the value when it is turned off, is to correct an error from the value and to calculate the electron movement by pure memorized substance. That is, by subtracting the value detected when the light source 131 is turned on from the value detected when the light source 131 is turned off, various sources of error can be eliminated, and the error can be corrected to detect the movement of electrons through the memorized substance. From the presence or absence of the memorizing substance, the amount and the composition ratio of each memorizing substance can determine whether the cancer occurs, the type of cancer, and the progress of the cancer.
[실시 예7]Example 7
본 발명의 실시 예 7은 첨부된 도 46과 같이, 스마트폰을 이용한 휴대용 폐암 진단 시스템에 관한 것이다. Embodiment 7 of the present invention relates to a portable lung cancer diagnosis system using a smart phone, as shown in FIG. 46.
즉 상기 휴대용 페암 진단 시스템과 휴대폰을 블루투스 또는 와이파이 등 단거리 무선 통신망 또는 GPS가 이용될 수도 있으며, 실시 예 5와 같이 스마트폰에는 암진단앱이 설치되는 것이다. That is, a short range wireless communication network such as Bluetooth or Wi-Fi or GPS may be used for the portable lung cancer diagnosis system and the mobile phone, and the cancer diagnosis app is installed in the smartphone as in the fifth embodiment.
이 시스템은 실시 예 6과 같이 호기유도관(126a)에 마우스피스(127)를 끼우고 스위치부(191)의 동작 버튼을 누른 후 상기 마우스피스(127)에 호기를 불어넣는다. 그러면 상기 호기(1)가 호기유도관(126a)을 통해 센서전극부(120a)의 제1양극(121a)과, 음극(124)과, 제2양극(121b)에 고르게 접촉하게 된다.In this system, the mouthpiece 127 is inserted into the aerobic induction pipe 126a as in the sixth embodiment, the operation button of the switch unit 191 is pressed, and the breath is injected into the mouthpiece 127. Then, the exhalation 1 is in contact with the first positive electrode 121a, the negative electrode 124, and the second positive electrode 121b of the sensor electrode 120a through the air induction pipe 126a.
상기 센서전극부(120a)에 호기가 유입되면, 상기 제어부(150)는 상기 여기에너지공급부(130)의 광원(131)과 제1검출부(110a) 및 제2검출부(110b)의 동작을 제어하여 상기 광원(131)을 온(on) 시켰을 때의 값과, 오프(off) 시켰을 때의 값을 각각 검출한다.When exhalation flows into the sensor electrode unit 120a, the controller 150 controls the operations of the light source 131, the first detector 110a, and the second detector 110b of the excitation energy supply unit 130. The value when the light source 131 is turned on and the value when the light source 131 is turned off are respectively detected.
검출된 값은 스마트폰에 전송되고, 이용자가 바로 확인할 수 있다. The detected value is transmitted to the smartphone and can be immediately confirmed by the user.
[실시 예 8]Example 8
이 실시 예는 암 진단 시스템에 관한 것이다. This embodiment relates to a cancer diagnostic system.
상기 제 1 내지 제 7실시 예에서 설명한 센서전극부(120)와, 여기에너지공급부(130) 그리고 날숨이 포집된 포집장치(210)가 센서전극부와 연결되도록 하는 착탈부로 구성된다. 여기서 포집장치는 실시 예 3의 포집장치와 유사하나, 약간 더 슬립한 형태의 튜브형으로 구성될 수 있음을 보여주는 것이다.The sensor electrode unit 120 described in the first to seventh embodiments, the excitation energy supply unit 130 and the exhalation collecting device 210 is configured to be connected to the sensor electrode unit. Here, the collecting device is similar to the collecting device of Example 3, but shows that it can be configured as a tube of a slightly slippery form.
다시 말해 본 실시 예는 도 47 내지 48을 참고로 설명하면, 암 진단을 위해 조작되는 스위치부(190)와, 암기인물질을 검출하는 센서전극부(120)와, 상기 센서전극부(120)에 전자의 여기 에너지를 공급하는 여기에너지공급부(130)와, 상기 센서전극부의 전자 이동을 검출하는 검출부(110)와, 상기 암기인물질 검측에 대한 정보를 저장하는 데이터저장부(140)와, 외부기기와 통신을 수행하는 통신부(170) 및 암 진단을 수행하는 제어부(150)로 구성되며, In other words, the present embodiment will be described with reference to FIGS. 47 to 48, the switch unit 190 operated for diagnosing cancer, the sensor electrode unit 120 for detecting a cancer-causing substance, and the sensor electrode unit 120. An excitation energy supply unit 130 for supplying excitation energy to electrons, a detection unit 110 for detecting electron movement of the sensor electrode unit, a data storage unit 140 for storing information on the detection of the memorizing substance, Consists of a communication unit 170 for communicating with an external device and a control unit 150 for performing cancer diagnosis,
이들이 수용되고, 상면에 스위치부와 착탈부를 갖는 본체(200)와, 이 본체에 설치되는 모니터 즉 표시부로 구성되는 것이다. They are accommodated, and are comprised by the main body 200 which has a switch part and a detachable part in the upper surface, and a monitor, a display part provided in this main body.
이러한 구성의 본 발명은 포집장치에 포집된 호기를 센서전극부에 연결하여 암을 진단하는 것이다. The present invention of such a configuration is to diagnose the cancer by connecting the exhalation collected in the collecting device to the sensor electrode.
[실시 예 9]Example 9
본 발명은 빅 데이터를 이용한 암 진단 시스템에 관한 것으로, 특히, 방대한 진단 자료를 분석 및 가공하여 데이터베이스를 구축하고, 클라이언트가 의뢰하는 암 검측 데이터를 분석하여, 암 발생 여부, 암 종류, 암 진행 정도에 대한 정보를 제공하기 위한 것이다. The present invention relates to a cancer diagnosis system using big data, and in particular, to build a database by analyzing and processing a large amount of diagnostic data, and to analyze the cancer detection data requested by the client, cancer occurrence, cancer type, cancer progression degree This is to provide information about.
본 발명 "빅 데이터를 이용한 암 진단 시스템"의 기술적 사상에 따른 구성은, 도39에서 도시되는 바와 같이, According to the technical idea of the present invention "cancer diagnosis system using big data", as shown in FIG.
통신을 수행하는 통신서버; A communication server performing communication;
가입자에 대한 정보를 관리하는 고객관리서버;A customer management server managing information about subscribers;
진단 데이터를 저장하는 데이터베이스서버;A database server for storing diagnostic data;
데이터 백업을 수행하는 백업서버;A backup server performing data backup;
하나의 서버(12)로부터 전달된 정보에 대하여 미리 결정된 판단 기준에 따라 가치 수준을 결정할 수 있는 수준 결정 유닛을 가진 결정 서버;A decision server having a level determining unit capable of determining a value level according to a predetermined decision criterion with respect to information transmitted from one server 12;
외부로부터 전달된 정보 매체의 정보를 분류하기 위한 필터 모듈; 및 상기 각 구성요소의 동작을 제어하는 메인서버;를 포함하여 이루어져, 각각의 클라이언트 시스템인 암진단시스템에서 전송되는 진단 데이터를 분석하여 암 발생 여부, 종류 및 진행정도를 산출하게 된다.A filter module for classifying information of an information medium transmitted from the outside; And a main server for controlling the operation of each component. The diagnostic data transmitted from the cancer diagnosis system, which is a client system, is analyzed to calculate whether cancer is generated, the type, and the degree of progression.
클라이언트 시스템인 클라이언트 암진단시스템은, 호기, 또는 체액에 포함된 암기인물질을 검출하는 시스템으로, 이 암기인물질이 발견된다는 것은 체내에 암 세포가 있다는 것을 뜻한다. The client cancer diagnosis system, which is a client system, is a system that detects a memorandum contained in exhalation or body fluid. The discovery of this memorandum means that there are cancer cells in the body.
전자의 이동은 유입되는 암기인물질의 분자 수에 비례하므로, 암기인물질을 분자단위로 검출할 수 있으며, 암기인물질의 양을 전류량으로 나타냄으로써 실시간 검측이 가능하다. Since the movement of electrons is proportional to the number of molecules of the memorandum, the memorandum can be detected in molecular units, and real-time detection is possible by indicating the amount of the memorandum as an amount of current.
이러한 시스템은 상기한 제 1 내지 7 실시 예에 기재된 시스템 구성, 센서전극부, 에너지 준위 설계 중 어느 하나에 채용되는 것이다. Such a system is employed in any one of the system configuration, sensor electrode portion, and energy level design described in the above first to seventh embodiments.
본 발명은 분자 센서와, 이 분자 센서를 이용하여 암을 진단하는 센서 및 이 암 진단 센서가 구비하고 호기를 포집하여 상기 암 진단 센서를 통해 암을 진단하는 시스템에 이용된다. The present invention is used in a molecular sensor, a sensor for diagnosing cancer using the molecular sensor, and a system for diagnosing cancer through the cancer diagnostic sensor provided with the cancer diagnostic sensor and collecting the breath.

Claims (67)

  1. 검출하고자하는 검출대상물질의 가전자대의 에너지준위보다 높은 산화환원전위를 갖도록 구성된 음극; 및,A cathode configured to have a redox potential higher than the energy level of the valence band of the detection target material; And,
    검출대상물질의 가전자대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 양극;을 포함하여 이루어져,It includes; an anode configured to have a redox potential lower than the energy level of the valence band of the detection target material,
    상기 음극과 양극 사이에 검출대상물질이 유입되었을 경우, 이 검출대상물질을 매개로 하여 음극에서 양극으로 전자 이동이 이루어지도록 에너지준위가 설정됨을 특징으로 하는 분자센서.When the detection target material is introduced between the cathode and the anode, the molecular level sensor is characterized in that the energy level is set so that the electron movement from the cathode to the anode via the detection target material.
  2. 검출하고자하는 검출대상물질의 가전자대의 에너지준위보다 높은 산화환원전위를 갖도록 구성된 음극;A cathode configured to have a redox potential higher than the energy level of the valence band of the detection target material;
    검출대상물질의 전도대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 양극; 및,An anode configured to have a redox potential lower than the energy level of the conduction band of the detection target material; And,
    상기 검출대상물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하는 여기에너지공급부;를 포함하여 이루어져,And an excitation energy supply unit for supplying excitation energy to excite the electrons in the valence band of the detection target material to the conduction band.
    상기 음극과 양극 사이에 검출대상물질이 유입되었을 경우, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 검출대상물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 전도대로 여기된 전자가 양극으로 이동하며, 상기 검출대상물질의 가전자대에 생긴 양공으로 음극에서 전자가 이동하는 과정이 이루어지도록 에너지준위가 설정됨을 특징으로 하는 분자센서.When the detection target material flows between the cathode and the anode, the electrons in the valence band of the detection target material are excited by the excitation energy supplied from the excitation energy supply unit, and the electrons excited by the conduction band are transferred to the anode. The molecular sensor is characterized in that the energy level is set to move the electrons from the cathode to the hole formed in the valence band of the detection target material.
  3. 검출하고자하는 검출대상물질의 가전자대의 에너지준위보다 높은 산화환원전위를 갖도록 구성된 음극; A cathode configured to have a redox potential higher than the energy level of the valence band of the detection target material;
    검출대상물질의 가전자대의 에너지준위 보다 높은 산화환원전위를 갖도록 구성된 양극;An anode configured to have a redox potential higher than the energy level of the valence band of the detection target material;
    가전자대의 산화환원전위의 에너지준위가 상기 검출대상물질의 가전자대의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 양극의 산화환원준위의 에너지준위보다 높은 에너지준위를 갖도록 구성된 양극측이동유도물질; 및,The anode side is configured such that the energy level of the redox potential of the valence band is lower than that of the valence band of the substance to be detected, and that the energy level of the redox potential of the conduction band has a higher energy level than that of the redox level of the anode. Mobile derivatives; And,
    상기 양극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하는 여기에너지공급부;를 포함하여 이루어져,And an excitation energy supply unit for supplying excitation energy to excite the electrons in the valence band of the anode-side movement inducing material to a conduction band.
    상기 음극과 양극 사이에 검출대상물질이 유입되었을 경우, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 양극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 양극측이동유도물질의 전도대로 여기된 전자가 양극으로 이동하고, 상기 양극측이동유도물질의 가전자대에 생긴 양공으로 검출대상물질의 전자가 이동하고, 상기 검출대상물질의 가전자대에 생긴 양공으로 음극에서 전자가 이동하는 과정이 이루어지도록 에너지준위가 설정됨을 특징으로 하는 분자센서.When the detection target material flows between the cathode and the anode, the electrons in the valence band of the anode-side induction material are excited by the excitation energy supplied from the excitation energy supply unit, and the cathode-side movement induction material The electrons excited by the conduction band move to the anode, the electrons of the detection target material move to the holes generated in the valence band of the anode-side transfer induction material, and the electrons move from the cathode to the holes generated in the valence band of the detection target material. Molecular sensor characterized in that the energy level is set to achieve the process.
  4. 검출하고자하는 검출대상물질의 가전자대의 에너지준위보다 높은 산화환원전위를 갖도록 구성된 음극; A cathode configured to have a redox potential higher than the energy level of the valence band of the detection target material;
    검출대상물질의 가전자대의 에너지준위 보다 높은 산화환원전위를 갖도록 구성된 양극;An anode configured to have a redox potential higher than the energy level of the valence band of the detection target material;
    가전자대의 산화환원전위의 에너지준위가 상기 검출대상물질의 전도대의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 양극의 산화환원준위의 에너지준위보다 높은 에너지준위를 갖도록 구성된 양극측이동유도물질; 및,Anode-side shifting where the energy level of the redox potential of the valence band is lower than the energy level of the conduction band of the material to be detected and the energy level of the redox potential of the conduction band has a higher energy level than that of the redox level of the anode. Inducer; And,
    상기 양극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하고, 상기 검출대상물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하는 여기에너지공급부;를 포함하여 이루어져,An excitation energy supply unit supplies excitation energy to excite the electrons in the valence band of the anode-side moving induction material to the conduction band, and supplies excitation energy to excite the electrons in the valence band of the detection target material into the conduction band. Including;
    상기 음극과 양극 사이에 검출대상물질이 유입되었을 경우, 첫째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 양극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 양극측이동유도물질의 전도대로 여기된 전자가 양극으로 이동하고, 둘째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 검출대상물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 검출대상물질의 전도대로 여기된 전자가 양극측이동유도물질의 가전자대에 생긴 양공으로 이동하고, 셋째, 상기 검출대상물질의 가전자대에 생긴 양공으로 음극에서 전자가 이동하는 과정이 이루어지도록 에너지준위가 설정됨을 특징으로 하는 분자센서.When the detection target material is introduced between the cathode and the anode, first, electrons in the valence band of the anode-side induction material are excited by the excitation energy supplied from the excitation energy supply unit, and the anode-side induction is induced. Electrons excited by the conduction of the material move to the anode, and second, electrons in the valence band of the detection target material are excited by the excitation energy supplied from the excitation energy supply unit, and excitation according to the conduction of the detection target material The electrons move to the holes formed in the valence band of the anode-side moving induction material, and third, the energy level is set so that the electrons move from the cathode to the holes formed in the valence band of the detection target material. sensor.
  5. 검출하고자하는 검출대상물질의 가전자대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 음극; A cathode configured to have a redox potential lower than the energy level of the valence band of the detection target material;
    검출대상물질의 가전자대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 양극;An anode configured to have a redox potential lower than the energy level of the valence band of the detection target material;
    가전자대의 산화환원전위의 에너지준위가 상기 음극의 산화환원전위의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 검출대상물질의 가전자대의 에너지준위보다 높은 에너지준위를 갖도록 구성된 음극측이동유도물질; 및,The cathode side is configured such that the energy level of the redox potential of the valence band is lower than the energy level of the redox potential of the cathode, and that the energy level of the redox potential of the conduction band has a higher energy level than that of the valence band of the detection target material. Mobile derivatives; And,
    상기 음극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하는 여기에너지공급부;를 포함하여 이루어져,And an excitation energy supply unit for supplying excitation energy to excite the electrons in the valence band of the cathode-side movement inducing material to a conduction band.
    상기 음극과 양극 사이에 검출대상물질이 유입되었을 경우, 첫째, 검출대상물질에 있는 전자가 양극으로 이동하고, 둘째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 음극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 음극측이동유도물질의 전도대로 여기된 전자가 검출대상물질의 가전자대에 생긴 양공으로 이동하고, 셋째, 상기 음극측이동유도물질의 가전자대에 생긴 양공으로 음극에서 전자가 이동하는 과정이 이루어지도록 에너지준위가 설정됨을 특징으로 하는 분자센서.When the detection target material is introduced between the cathode and the anode, first, electrons in the detection target material move to the anode, and second, the valence band of the cathode-side moving induction material is excited by the excitation energy supplied from the excitation energy supply unit. Electrons in the substrate are excited by the conduction band, and the electrons excited by the conduction band of the cathode-side transport inducing material move to the holes formed in the valence band of the detection target material, and third, the holes in the valence band of the cathode-side transport inductive material Molecular sensor, characterized in that the energy level is set so that the process of electrons in the cathode is made.
  6. 검출하고자하는 검출대상물질의 가전자대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 음극; A cathode configured to have a redox potential lower than the energy level of the valence band of the detection target material;
    검출대상물질의 전도대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 양극;An anode configured to have a redox potential lower than the energy level of the conduction band of the detection target material;
    가전자대의 산화환원전위의 에너지준위가 상기 음극의 산화환원전위의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 검출대상물질의 가전자대의 에너지준위보다 높은 에너지준위를 갖도록 구성된 음극측이동유도물질; 및,The cathode side is configured such that the energy level of the redox potential of the valence band is lower than the energy level of the redox potential of the cathode, and that the energy level of the redox potential of the conduction band has a higher energy level than that of the valence band of the detection target material. Mobile derivatives; And,
    상기 음극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하고, 상기 검출대상물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하는 여기에너지공급부;를 포함하여 이루어져,An excitation energy supply unit supplies excitation energy to excite the electrons in the valence band of the cathode-side moving induction material to the conduction band, and supplies excitation energy to excite the electrons in the valence band of the detection target material into the conduction band. Including;
    상기 음극과 양극 사이에 검출대상물질이 유입되었을 경우, 첫째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 검출대상물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 검출대상물질의 전도대로 여기된 전자가 양극으로 이동하고, 둘째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 음극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 음극측이동유도물질의 전도대로 여기된 전자가 검출대상물질의 가전자대에 생긴 양공으로 이동하고, 셋째, 상기 음극측이동유도물질의 가전자대에 생긴 양공으로 음극에서 전자가 이동하는 과정이 이루어지도록 에너지준위가 설정됨을 특징으로 하는 분자센서.When the detection target material is introduced between the cathode and the anode, first, electrons in the valence band of the detection target material are excited by the excitation energy supplied from the excitation energy supply unit, and the excitation zone is excited by the conduction band of the detection target material. Electrons are moved to the anode, and second, the electrons in the valence band of the cathode-side mobile induction material are excited by the excitation energy supplied from the excitation energy supply unit, and are excited to the conduction band of the cathode-side mobile induction material. The molecular sensor is characterized in that the energy level is set so that the electron moves to the hole formed in the valence band of the detection target material, and third, the electron moves from the cathode to the hole formed in the valence band of the cathode-side moving induction material. .
  7. 검출하고자하는 검출대상물질의 가전자대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 음극; A cathode configured to have a redox potential lower than the energy level of the valence band of the detection target material;
    검출대상물질의 가전자대의 에너지준위 보다 높은 산화환원전위를 갖도록 구성된 양극;An anode configured to have a redox potential higher than the energy level of the valence band of the detection target material;
    가전자대의 산화환원전위의 에너지준위가 상기 검출대상물질의 가전자대의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 양극의 산화환원준위의 에너지준위보다 높은 에너지준위를 갖도록 구성된 양극측이동유도물질;The anode side is configured such that the energy level of the redox potential of the valence band is lower than that of the valence band of the substance to be detected, and that the energy level of the redox potential of the conduction band has a higher energy level than that of the redox level of the anode. Mobile derivatives;
    가전자대의 산화환원전위의 에너지준위가 상기 음극의 산화환원전위의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 검출대상물질의 가전자대의 에너지준위보다 높은 에너지준위를 갖도록 구성된 음극측이동유도물질; 및,The cathode side is configured such that the energy level of the redox potential of the valence band is lower than the energy level of the redox potential of the cathode, and that the energy level of the redox potential of the conduction band has a higher energy level than that of the valence band of the detection target material. Mobile derivatives; And,
    상기 양극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하고, 상기 음극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하는 여기에너지공급부;를 포함하여 이루어져,Excitation energy to supply electrons in the valence band of the cathode-side mobile induction material to excite the conduction band and excitation energy to supply electrons in the valence band of the cathode-side mobile induction material to the conduction band Including an energy supply unit,
    상기 음극과 양극 사이에 검출대상물질이 유입되었을 경우, 첫째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 양극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 양극측이동유도물질의 전도대로 여기된 전자가 양극으로 이동하고, 둘째, 상기 양극측이동유도물질의 가전자대에 생긴 양공으로 검출대상물질의 전자가 이동하고, 셋째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 음극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 음극측이동유도물질의 전도대로 여기된 전자가 상기 검출대상물질의 가전자대에 생긴 양공으로 이동하고, 넷째, 상기 음극측이동유도물질의 가전자대에 생긴 양공으로 음극에서 전자가 이동하는 과정이 이루어지도록 에너지준위가 설정됨을 특징으로 하는 분자센서.When the detection target material is introduced between the cathode and the anode, first, electrons in the valence band of the anode-side induction material are excited by the excitation energy supplied from the excitation energy supply unit, and the anode-side induction is induced. The electrons excited by the conduction of the material move to the anode, and second, the electrons of the detection target material move to the holes generated in the valence band of the anode-side moving induction material, and third, by the excitation energy supplied from the excitation energy supply unit. The electrons in the valence band of the cathode-side transfer inducing material are excited by the conduction band, and the electrons excited in the conduction band of the cathode-side transfer inducing material move to the holes generated in the valence band of the detection target material. Fourth, the cathode side The energy level is set so that electrons move from the cathode to the hole formed in the valence band of the mobile inductive material. Molecular sensor, characterized.
  8. 검출하고자하는 검출대상물질의 가전자대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 음극; A cathode configured to have a redox potential lower than the energy level of the valence band of the detection target material;
    검출대상물질의 가전자대의 에너지준위 보다 높은 산화환원전위를 갖도록 구성된 양극;An anode configured to have a redox potential higher than the energy level of the valence band of the detection target material;
    가전자대의 산화환원전위의 에너지준위가 상기 검출대상물질의 전도대의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 양극의 산화환원준위의 에너지준위보다 높은 에너지준위를 갖도록 구성된 양극측이동유도물질; Anode-side shifting where the energy level of the redox potential of the valence band is lower than the energy level of the conduction band of the material to be detected and the energy level of the redox potential of the conduction band has a higher energy level than that of the redox level of the anode. Inducer;
    가전자대의 산화환원전위의 에너지준위가 상기 음극의 산화환원전위의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 검출대상물질의 가전자대의 에너지준위보다 높은 에너지준위를 갖도록 구성된 음극측이동유도물질; 및,The cathode side is configured such that the energy level of the redox potential of the valence band is lower than the energy level of the redox potential of the cathode, and that the energy level of the redox potential of the conduction band has a higher energy level than that of the valence band of the detection target material. Mobile derivatives; And,
    상기 양극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하고, 상기 음극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하고, 상기 검출대상물질의 가전자대에 있는 전자가 전도대로 여기할 수 있도록 여기 에너지를 공급하는 여기에너지공급부;를 포함하여 이루어져,Supply excitation energy to excite the electrons in the valence band of the anode-side mobile induction material to the conduction band, supply excitation energy to excite the electrons in the valence band of the cathode-side mobile induction material to the conduction band, And an excitation energy supply unit for supplying excitation energy to excite the electrons in the valence band of the detection target material to the conduction band.
    상기 음극과 양극 사이에 검출대상물질이 유입되었을 경우, 첫째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 양극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 양극측이동유도물질의 전도대로 여기된 전자가 양극으로 이동하고, 둘째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 검출대상물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 검출대상물질의 전도대로 여기된 전자가 양극측이동유도물질의 가전자대에 생긴 양공으로 이동하고, 셋째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 음극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 음극측이동유도물질의 전도대로 여기된 전자가 상기 검출대상물질의 가전자대에 생긴 양공으로 이동하고, 넷째, 상기 음극측이동유도물질의 가전자대에 생긴 양공으로 음극에서 전자가 이동하는 과정이 이루어지도록 에너지준위가 설정됨을 특징으로 하는 분자센서.When the detection target material is introduced between the cathode and the anode, first, electrons in the valence band of the anode-side induction material are excited by the excitation energy supplied from the excitation energy supply unit, and the anode-side induction is induced. Electrons excited by the conduction of the material move to the anode, and second, electrons in the valence band of the detection target material are excited by the excitation energy supplied from the excitation energy supply unit, and excitation according to the conduction of the detection target material Electrons in the valence band of the cathode-side movement inducing material are excited by the excitation energy supplied from the excitation energy supply unit, and the electrons in the valence band of the anode-side movement inducing material are excited as conduction bands. Electrons excited by the conduction band of the cathode-side transfer inducing material are holes generated in the valence band of the detection target material. Fourth, the molecular sensor, characterized in that the energy level is set so that the process of the electrons from the cathode to the hole formed in the valence band of the cathode-side movement inducing material.
  9. 제 1 항에 있어서, 상기 검출대상물질은, 질소산화물(NOx), 또는 자연상태에서 라디칼을 가지고 있는 물질임을 특징으로 하는 분자센서.The molecular sensor according to claim 1, wherein the detection target material is nitrogen oxide (NOx) or a substance having radicals in a natural state.
  10. 제 3 항 내지 제 4 항, 또는 제 7항 내지 제 8 항 중 어느 한 항에 있어서, 상기 검출대상물질에서 공여되는 전자의 양극으로의 이동을 유도하는 양극측이동유도물질은 하나 이상으로 구성됨을 특징으로 하는 분자센서.The method according to any one of claims 3 to 4 or 7 to 8, wherein the anode-side movement inducing substance which induces the movement of donated electrons to the anode is composed of one or more. Molecular sensor characterized by.
  11. 제 10 항에 있어서, 상기 양극측이동유도물질을 다수 개로 구성할 경우에는, The method of claim 10, wherein when the anode-side movement inducing substance is composed of a plurality of
    상기 검출대상물질에서 전자를 공여받는 최초의 양극측이동유도물질의 전도대의 에너지준위는, 그 다음번째 양극측이동유도물질의 가전자대의 에너지준위보다 높게 설정하고,The energy level of the conduction band of the first anode-side mobile induction material that receives electrons from the detection target material is set higher than the energy level of the valence band of the next anode-side mobile induction material,
    양극으로 전자를 공여하는 마지막의 양극측이동유도물질의 전도대의 에너지준위는 양극의 에너지준위보다 높게 설정하며,The energy level of the conduction band of the last anode-side inductive material that donates electrons to the anode is set higher than that of the anode.
    그 중간단계에 있는 양극측이동유도물질들의 에너지준위는, 전도대의 에너지준위를 그 다음단계에 있는 양극측이동유도물질의 가전자대의 에너지준위보다 높게 설정하고, 가전자대의 에너지준위를 그 전단계에 있는 양극측이동유도물질의 전도대의 에너지준위보다 낮게 설정함을 특징으로 하는 분자센서.The energy level of the anode-side mobile induction material in the middle stage is set to the energy level of the conduction band higher than that of the valence band of the anode-side mobile induction material in the next stage, and the energy level of the valence band is set to the previous stage. Molecular sensor characterized in that the lower than the energy level of the conduction band of the anode-side moving induction material.
  12. 제 5 항 내지 제 8 항 중 어느 한 항에 있어서, 상기 음극에서 공여되는 전자의 검출대상물질로의 이동을 유도하는 음극측이동유도물질은 하나 이상으로 구성됨을 특징으로 하는 분자센서.The molecular sensor according to any one of claims 5 to 8, wherein the cathode-side movement inducing substance which induces the movement of the electrons donated from the cathode to the substance to be detected is composed of one or more.
  13. 제 12 항에 있어서, 상기 음극측이동유도물질을 다수 개로 구성할 경우에는,The method of claim 12, wherein when the cathode-side movement inducing substance is composed of a plurality of
    상기 음극에서 전자를 공여받는 최초의 음극측이동유도물질의 전도대의 에너지준위는, 그 다음번째 음극측이동유도물질의 가전자대의 에너지준위보다 높게 설정하고,The energy level of the conduction band of the first cathode-side mobile induction material receiving electrons from the cathode is set higher than the energy level of the valence band of the next cathode-side mobile induction material,
    검출대상물질의 가전자대에 생긴 양공으로 전자를 공여하는 마지막의 음극측이동유도물질의 전도대의 에너지준위는 상기 검출대상물질의 가전자대의 에너지준위보다 높게 설정하며,The energy level of the conduction band of the last cathode-side mobile inductive material that contributes electrons to the hole generated in the valence band of the detection target material is set higher than the energy level of the valence band of the detection target material.
    그 중간단계에 있는 음극측이동유도물질들의 에너지준위는, 전도대의 에너지준위를 그 다음단계에 있는 음극측이동유도물질의 가전자대의 에너지준위보다 높게 설정하고, 가전자대의 에너지준위를 그 전단계에 있는 음극측이동유도물질의 전도대의 에너지준위보다 낮게 설정함을 특징으로 하는 분자센서.The energy level of the cathode-side mobile induction material in the middle stage is set to the energy level of the conduction band higher than the energy level of the valence band of the cathode-side mobile induction material in the next stage, and the energy level of the valence band is set to the previous stage. Molecular sensor, characterized in that the lower than the energy level of the conduction band of the cathode-side moving induction material.
  14. 제 2 항 내지 제 8 항에 있어서, 상기 여기에너지공급부는, 가전자대와 전도대 사이의 밴드갭 에너지 이상의 광 에너지를 공급하는 광에너지공급부, 또는 전자파 에너지를 공급하는 전자파에너지공급부, 또는 열 에너지를 공급하는 열에너지공급부 중 어느 하나 이상으로 구성됨을 특징으로 하는 분자센서.9. The excitation energy supply unit according to claim 2, wherein the excitation energy supply unit supplies an optical energy supply unit supplying optical energy equal to or greater than the bandgap energy between the valence band and the conduction band, or an electromagnetic energy supply unit supplying electromagnetic wave energy, or thermal energy. Molecular sensor, characterized in that consisting of any one or more of the heat energy supply.
  15. 제 14 항에 있어서, 상기 광에너지공급부는, 각기 다른 파장과 밝기를 가지는 하나 이상의 광 에너지를 공급함을 특징으로 하는 분자센서.The molecular sensor of claim 14, wherein the optical energy supply unit supplies one or more optical energy having different wavelengths and brightnesses.
  16. 제 14 항에 있어서, 상기 광에너지공급부의 광원은, 각기 다른 파장을 가지는 LED 광원, 또는 각기 다른 파장을 가지는 레이저 광원, 또는 할로겐 램프 중 어느 하나 이상으로 구성됨을 특징으로 하는 분자센서.15. The molecular sensor according to claim 14, wherein the light source of the light energy supply unit comprises at least one of an LED light source having different wavelengths, a laser light source having different wavelengths, or a halogen lamp.
  17. 제 14 항에 있어서, 상기 전자파에너지공급부는, 각기 다른 파장과 세기를 가지는 하나 이상의 전자파 에너지를 공급함을 특징으로 하는 분자센서.15. The molecular sensor according to claim 14, wherein the electromagnetic wave energy supply unit supplies one or more electromagnetic energy with different wavelengths and intensities.
  18. 제 14 항에 있어서, 상기 열에너지공급부는, 각기 다른 온도를 가지는 하나 이상의 열 에너지를 공급함을 특징으로 하는 분자센서.15. The molecular sensor of claim 14, wherein the thermal energy supply unit supplies one or more thermal energy having different temperatures.
  19. 제 3 항 내지 제 4 항, 또는 제 7 항 내지 제 8 항 중 어느 한 항에 있어서, 상기 양극측이동유도물질은, 풀러렌, 풀러렌염, 이온내포풀러렌, 색소, 또는 이온내포풀러렌과 색소의 복합체 중 어느 하나 이상으로 구성됨을 특징으로 하는 분자센서.The method of any one of claims 3 to 4 or 7 to 8, wherein the positive electrode-side transfer inducing substance is a fullerene, a fullerene salt, an iontofullerene, a pigment, or a complex of an iontofullerene and a pigment. Molecular sensor, characterized in that composed of any one or more of.
  20. 제 19 항에 있어서, 상기 풀러렌은, C60, C70, C72, C78, C82, C90, C94, C96 중 어느 하나인 것을 특징으로 하는 분자센서.The molecular sensor according to claim 19, wherein the fullerene is any one of C60, C70, C72, C78, C82, C90, C94, and C96.
  21. 제 19 항에 있어서, 상기 이온내포풀러렌에 내포되는 이온은, 리튬, 나트륨, 칼륨, 세슘, 마그네슘, 칼슘, 또는 스트론튬 중 어느 하나인 것을 특징으로 하는 분자센서.20. The molecular sensor according to claim 19, wherein the ions contained in the iontophorus fullerene are any one of lithium, sodium, potassium, cesium, magnesium, calcium, and strontium.
  22. 제 19 항에 있어서, 상기 색소는, 폴리-3-헥실 티 오펜(P3HT) 등의 폴리 티 오펜, 폴리p-페닐 렌, 폴리p-페닐 렌 비닐 렌, 폴리아닐린, 폴리피롤, PEDOT, P3OT, POPT, MDMO-PPV, MEH-PPV 등의 고분자 중합체 또는 그 유도체 중 하나 이상임을 특징으로 하는 분자센서.The method of claim 19, wherein the pigment is polythiophene such as poly-3-hexyl thiophene (P3HT), poly p-phenylene, poly p-phenylene vinylene, polyaniline, polypyrrole, PEDOT, P3OT, POPT, A molecular sensor characterized in that at least one of a polymer polymer or derivatives thereof, such as MDMO-PPV, MEH-PPV.
  23. 제 5 항 내지 제 8 항 중 어느 한 항에 있어서, 상기 음극측이동유도물질은, 풀러렌, 풀러렌염, 이온내포풀러렌, 색소, 또는 이온내포풀러렌과 색소의 복합체 중 어느 하나 이상으로 구성됨을 특징으로 하는 분자센서.The method of claim 5, wherein the cathode-side movement inducing substance, characterized in that composed of any one or more of fullerenes, fullerene salts, ion-containing fullerenes, pigments, or complexes of ion-containing fullerenes and pigments. Molecular sensor.
  24. 제 23 항에 있어서, 상기 풀러렌은, C60, C70, C72, C78, C82, C90, C94, C96 중 어느 하나인 것을 특징으로 하는 분자센서.The molecular sensor according to claim 23, wherein the fullerene is any one of C60, C70, C72, C78, C82, C90, C94, and C96.
  25. 제 23 항에 있어서, 상기 이온내포풀러렌에 내포되는 이온은, 리튬, 나트륨, 칼륨, 세슘, 마그네슘, 칼슘, 또는 스트론튬 중 어느 하나인 것을 특징으로 하는 분자센서.24. The molecular sensor according to claim 23, wherein the ion contained in the iontophorus fullerene is any one of lithium, sodium, potassium, cesium, magnesium, calcium, and strontium.
  26. 제 23 항에 있어서, 상기 색소는, 폴리-3-헥실 티 오펜(P3HT) 등의 폴리 티 오펜, 폴리p-페닐 렌, 폴리p-페닐 렌 비닐 렌, 폴리아닐린, 폴리피롤, PEDOT, P3OT, POPT, MDMO-PPV, MEH-PPV 등의 고분자 중합체 또는 그 유도체 중 하나 이상임을 특징으로 하는 분자센서.The method of claim 23, wherein the pigment is polythiophene such as poly-3-hexyl thiophene (P3HT), poly p-phenylene, poly p-phenylene vinylene, polyaniline, polypyrrole, PEDOT, P3OT, POPT, A molecular sensor characterized in that at least one of a polymer polymer or derivatives thereof, such as MDMO-PPV, MEH-PPV.
  27. 제 3 항 내지 제 4 항, 또는 제 7 항 내지 제 8 항 중 어느 한 항에 있어서, 상기 양극측이동유도물질은 전기영동을 이용하여 양극에 포함시킴을 특징으로 하는 분자센서.The molecular sensor according to any one of claims 3 to 4 or 7 to 8, wherein the anode-side movement inducing substance is included in the anode using electrophoresis.
  28. 제 5 항 내지 제 8 항 중 어느 한 항에 있어서, 상기 음극측이동유도물질은 전기영동을 이용하여 음극에 포함시킴을 특징으로 하는 분자센서.The molecular sensor according to any one of claims 5 to 8, wherein the cathode-side movement inducing substance is included in the cathode by using electrophoresis.
  29. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서, 상기 검출대상물질에 따른 전자의 흐름을 검출하는 검출부:를 더 포함하여 구성됨을 특징으로 하는 분자센서.The molecular sensor according to any one of claims 1 to 8, further comprising a detection unit for detecting the flow of electrons according to the detection target material.
  30. 제 29 항에 있어서, 상기 검출대상물질 검출에 대한 정보를 나타내는 표시부;를 더 포함하여 구성함을 특징으로 하는 분자센서.30. The molecular sensor according to claim 29, further comprising a display unit for displaying information on the detection of the detection target substance.
  31. 제 29 항에 있어서, 상기 검출대상물질 검출에 대한 정보를 외부로 전송하는 통신부;를 더 포함하여 구성됨을 특징으로 하는 분자센서.30. The molecular sensor according to claim 29, further comprising a communication unit which transmits information on the detection of the detection target substance to the outside.
  32. 제 29 항에 있어서, 상기 검출대상물질 검출에 대한 정보를 저장하는 데이터저장부;를 더 포함하여 구성됨을 특징으로 하는 분자센서.30. The molecular sensor according to claim 29, further comprising a data storage unit for storing information on the detection of the detection target substance.
  33. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서, 상기 음극 또는 양극은 투명전극으로 구성됨을 특징으로 하는 분자센서.The molecular sensor according to any one of claims 1 to 8, wherein the cathode or anode comprises a transparent electrode.
  34. 제 33 항에 있어서, 상기 투명전극은, FTO, ITO, AZO, GZO, TCO 중 어느 하나 이상으로 구성됨을 특징으로 하는 분자센서. 34. The molecular sensor according to claim 33, wherein the transparent electrode is made of at least one of FTO, ITO, AZO, GZO, and TCO.
  35. 제 1항 내지 제 8항 중 어느 한 항에 있어서, 상기 검출대상물질은 암기인물질은 것을 특징으로 하는 암 진단 시스템.The cancer diagnosis system according to any one of claims 1 to 8, wherein the detection target material is a memorandum.
  36. 제 35항에 있어서, 상기 암기인물질은, 자연상태에서 라디칼을 가지고 있는 물질임을 특징으로 하는 에너지준위를 이용한 암 진단 시스템. 36. The cancer diagnosis system according to claim 35, wherein the memorizing substance is a substance having radicals in its natural state.
  37. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서, 상기 검출대상물질은 암기인무질이며, 이 암기인물질은 톨루엔(Toluene), 2,6-디이소프롤필페놀(2,6-Diisopropylphenol), 2-메틸피라진(2-Methylpyrazine), 사이클로헥사논(Cyclohexanone) 중 어느 하나 이상인 것을 특징으로 하는 암 진단 시스템.The method according to any one of claims 1 to 8, wherein the detection target substance is a memorizing substance, and the memorizing substance is toluene, 2,6-diisopropyl phenol (2,6-Diisopropylphenol), Cancer diagnosis system, characterized in that any one or more of 2-methylpyrazine (cyclomethylazine), cyclohexanone (Cyclohexanone).
  38. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서, 두 개 이상의 검출대상물질의 비율을 산출하여 암의 종류를 판단하는 것을 특징으로 하는 에너지준위를 이용한 암 진단 시스템.9. The cancer diagnosis system according to any one of claims 1 to 8, wherein the type of cancer is determined by calculating a ratio of two or more detection target substances.
  39. 제 35항에 있어서, 암기인물질의 양을 검출하여 암의 진행 정도를 판단함을 특징으로 하는 에너지준위를 이용한 암 진단 시스템.36. The cancer diagnostic system using energy level according to claim 35, wherein the amount of the memorandum is detected to determine the progress of cancer.
  40. 호기에 포함된 암기인물질을 매개로 하여 음극에서 양극으로 전자가 이동되도록 산화환원전위의 에너지준위가 설정된 센서전극부;A sensor electrode part in which an energy level of a redox potential is set to move electrons from a cathode to an anode through a memorandum included in the expiratory phase;
    상기 센서전극부의 전자 이동을 검출하는 검출부;A detector for detecting electron movement of the sensor electrode unit;
    상기 암기인물질 검측에 대한 정보를 나타내는 표시부; A display unit which displays information on the memorized substance detection;
    상기 센서전극부와, 검출부와, 표시부 사이에 접속되는 제어부; 및,A control unit connected between the sensor electrode unit, the detection unit, and the display unit; And,
    상기 각 구성요소에 동작전원을 공급하는 전원공급부;를 포함하여 구성되어,And a power supply unit supplying operation power to each of the components.
    상기 센서전극부에 유입되는 호기에서 암기인물질을 검측하여 나타냄을 특징으로 하는 암 진단 시스템.Cancer diagnosis system, characterized in that the detection of the memorizing substance in the exhalation flows into the sensor electrode.
  41. 호기에 포함된 암기인물질을 매개로 하여 음극에서 양극으로 전자가 이동되도록 산화환원전위의 에너지준위가 설정된 센서전극부;A sensor electrode part in which an energy level of a redox potential is set to move electrons from a cathode to an anode through a memorandum included in the expiratory phase;
    상기 센서전극부에 전자의 여기 에너지를 공급하는 여기에너지공급부;An excitation energy supply unit supplying excitation energy of electrons to the sensor electrode unit;
    상기 센서전극부의 전자 이동을 검출하는 검출부;A detector for detecting electron movement of the sensor electrode unit;
    상기 암기인물질 검측에 대한 정보를 나타내는 표시부; A display unit which displays information on the memorized substance detection;
    상기 센서전극부와, 여기에너지공급부와, 검출부와, 표시부 사이에 접속되는 제어부; 및,A control unit connected between the sensor electrode unit, the excitation energy supply unit, the detection unit, and the display unit; And,
    상기 각 구성요소에 동작전원을 공급하는 전원공급부;를 포함하여 구성되어,And a power supply unit supplying operation power to each of the components.
    상기 센서전극부에 유입되는 호기에서 암기인물질을 검측하여 나타냄을 특징으로 하는 암 진단 시스템.Cancer diagnosis system, characterized in that the detection of the memorizing substance in the exhalation flows into the sensor electrode.
  42. 호기에 포함된 암기인물질을 매개로 하여 음극에서 양극으로 전자가 이동되도록 산화환원전위의 에너지준위가 설정된 센서전극부;A sensor electrode part in which an energy level of a redox potential is set to move electrons from a cathode to an anode through a memorandum included in the expiratory phase;
    상기 센서전극부에 전자의 여기 에너지를 공급하는 여기에너지공급부;An excitation energy supply unit supplying excitation energy of electrons to the sensor electrode unit;
    상기 센서전극부의 전자 이동을 검출하는 검출부;A detector for detecting electron movement of the sensor electrode unit;
    상기 암기인물질 검측에 대한 정보를 나타내는 표시부; A display unit which displays information on the memorized substance detection;
    상기 암기인물질 검측에 대한 정보를 저장하는 데이터저장부;A data storage unit for storing information on the memorized substance detection;
    상기 센서전극부와, 여기에너지공급부와, 검출부와, 표시부와, 데이터저장부 사이에 접속되는 제어부; 및, A control unit connected between the sensor electrode unit, the excitation energy supply unit, the detection unit, the display unit, and the data storage unit; And,
    상기 각 구성요소에 동작전원을 공급하는 전원공급부;를 포함하여 구성되어,And a power supply unit supplying operation power to each of the components.
    상기 센서전극부에 유입되는 호기에서 암기인물질을 검측하여 나타냄을 특징으로 하는 암 진단 시스템.Cancer diagnosis system, characterized in that the detection of the memorizing substance in the exhalation flows into the sensor electrode.
  43. 호기에 포함된 암기인물질을 매개로 하여 음극에서 양극으로 전자가 이동되도록 산화환원전위의 에너지준위가 설정된 센서전극부;A sensor electrode part in which an energy level of a redox potential is set to move electrons from a cathode to an anode through a memorandum included in the expiratory phase;
    상기 센서전극부에 전자의 여기 에너지를 공급하는 여기에너지공급부;An excitation energy supply unit supplying excitation energy of electrons to the sensor electrode unit;
    상기 센서전극부의 전자 이동을 검출하는 검출부;A detector for detecting electron movement of the sensor electrode unit;
    상기 암기인물질 검측에 대한 정보를 나타내는 표시부; A display unit which displays information on the memorized substance detection;
    상기 암기인물질 검측에 대한 정보를 저장하는 데이터저장부;A data storage unit for storing information on the memorized substance detection;
    상기 암기인물질 검측데 대한 정보를 외부기기와 교환하는 통신부;A communication unit for exchanging information about the memorizing substance detection with an external device;
    상기 센서전극부와, 여기에너지공급부와, 검출부와, 표시부와, 데이터저장부와, 통신부 사이에 접속되는 제어부; 및, A control unit connected between the sensor electrode unit, the excitation energy supply unit, the detection unit, the display unit, the data storage unit, and the communication unit; And,
    상기 각 구성요소에 동작전원을 공급하는 전원공급부;를 포함하여 구성되어,And a power supply unit supplying operation power to each of the components.
    상기 센서전극부에 유입되는 호기에서 암기인물질을 검측하여 나타냄을 특징으로 하는 암 진단 시스템.Cancer diagnosis system, characterized in that the detection of the memorizing substance in the exhalation flows into the sensor electrode.
  44. 제 40 항 내지 제 43 항 중 어느 한 항에 있어서, 상기 암기인물질은 톨루엔(Toluene), 2,6-디이소프롤필페놀(2,6-Diisopropylphenol), 2-메틸피라진(2-Methylpyrazine), 사이클로헥사논(Cyclohexanone) 중 어느 하나 이상인 것을 특징으로 하는 암 진단 시스템.44. The method of any one of claims 40 to 43, wherein the memorizing agent is toluene, 2,6-diisopropylphenol, 2-methylpyrazine, Cancer diagnostic system, characterized in that any one or more of cyclohexanone.
  45. 제 40 항 내지 제 43 항 중 어느 한 항에 있어서, 상기 센서전극부는,The method according to any one of claims 40 to 43, wherein the sensor electrode unit,
    호기에 포함된 암기인물질의 가전자대의 에너지준위보다 높은 산화환원전위를 갖도록 구성된 음극; 및,A negative electrode configured to have a redox potential higher than the energy level of the valence band of the memorandous substance contained in the expiratory phase; And,
    암기인물질의 전도대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 양극;을 포함하여 이루어져,It comprises; a positive electrode configured to have a redox potential lower than the energy level of the conduction band of the memorized material
    상기 음극과 양극 사이에 암기인물질이 유입되었을 경우, 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 암기인물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 전도대로 여기된 전자가 양극으로 이동하며, 상기 암기인물질의 가전자대에 생긴 양공으로 음극에서 전자가 이동하는 과정이 이루어지도록 에너지준위가 설정됨을 특징으로 하는 암 진단 시스템.When the memorized material is introduced between the cathode and the anode, the electrons in the valence band of the memorized material are excited by the excitation energy supplied from the excitation energy supply unit, and the electrons excited by the conduction band move to the anode. Cancer energy system, characterized in that the energy level is set so that the process of moving electrons from the cathode to the hole formed in the valence band of the memorandous material.
  46. 제 40 항 내지 제 43 항 중 어느 한 항에 있어서, 상기 센서전극부는,The method according to any one of claims 40 to 43, wherein the sensor electrode unit,
    호기에 포함된 암기인물질의 가전자대의 에너지준위보다 높은 산화환원전위를 갖도록 구성된 음극; A negative electrode configured to have a redox potential higher than the energy level of the valence band of the memorandous substance contained in the expiratory phase;
    암기인물질의 가전자대의 에너지준위 보다 높은 산화환원전위를 갖도록 구성된 양극; 및,An anode configured to have a redox potential higher than the energy level of the valence band of the dark base material; And,
    가전자대의 산화환원전위의 에너지준위가 상기 암기인물질의 가전자대의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 양극의 산화환원전위의 에너지준위보다 높은 에너지준위를 갖도록 구성된 양극측이동유도물질;을 포함하여 이루어져,The anode side movement is configured such that the energy level of the redox potential of the valence band is lower than the energy level of the valence band of the memorized material, and the energy level of the redox potential of the conduction band has a higher energy level than that of the redox potential of the anode. Inducer; consisting of,
    상기 음극과 양극 사이에 암기인물질이 유입되었을 경우, 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 양극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 양극측이동유도물질의 전도대로 여기된 전자가 양극으로 이동하고, 상기 양극측이동유도물질의 가전자대에 생긴 양공으로 암기인물질의 가전자대에 있는 전자가 이동하고, 상기 암기인물질의 가전자대에 생긴 양공으로 음극에서 전자가 이동하는 과정이 이루어지도록 에너지준위가 설정됨을 특징으로 하는 암 진단 시스템. When the memorizing material flows between the cathode and the anode, the electrons in the valence band of the anode-side induction material are excited by the excitation energy supplied from the excitation energy supply unit, and the conduction band of the anode-side induction material is excited. The electrons excited to move to the anode, the electrons in the valence band of the memorized material move to the hole formed in the valence band of the anode-side moving induction material, and the electrons move from the cathode to the holes generated in the valence band of the memorized material. Cancer diagnosis system, characterized in that the energy level is set so that the process.
  47. 제 40 항 내지 제 43 항 중 어느 한 항에 있어서, 상기 센서전극부는,The method according to any one of claims 40 to 43, wherein the sensor electrode unit,
    호기에 포함된 암기인물질의 가전자대의 에너지준위보다 높은 산화환원전위를 갖도록 구성된 음극; A negative electrode configured to have a redox potential higher than the energy level of the valence band of the memorandous substance contained in the expiratory phase;
    암기인물질의 가전자대의 에너지준위 보다 높은 산화환원전위를 갖도록 구성된 양극; 및,An anode configured to have a redox potential higher than the energy level of the valence band of the dark base material; And,
    가전자대의 산화환원전위의 에너지준위가 상기 암기인물질의 전도대의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 양극의 산화환원전위의 에너지준위보다 높은 에너지준위를 갖도록 구성된 양극측이동유도물질;을 포함하여 이루어져,The anode-side movement induction is configured such that the energy level of the redox potential of the valence band is lower than the energy level of the conduction band of the memorized material, and the energy level of the redox potential of the conduction band has a higher energy level than that of the redox potential of the anode. Including substance;
    상기 음극과 양극 사이에 암기인물질이 유입되었을 경우, 첫째, 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 양극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 양극측이동유도물질의 전도대로 여기된 전자가 양극으로 이동하고, 둘째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 암기인물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 암기인물질의 전도대로 여기된 전자가 양극측이동유도물질의 가전자대에 생긴 양공으로 이동하고, 셋째, 상기 암기인물질의 가전자대에 생긴 양공으로 음극에서 전자가 이동하는 과정이 이루어지도록 에너지준위가 설정됨을 특징으로 하는 암 진단 시스템.When the memorizing material is introduced between the cathode and the anode, first, electrons in the valence band of the anode-side induction material are excited by the excitation energy supplied from the excitation energy supply unit, and the anode-side induction material is excited. The electrons excited by the conduction of are moved to the anode, and second, the electrons in the valence band of the memorized material are excited by the excitation energy supplied from the excitation energy supply unit, and the electrons excited by the conduction of the memorized material are And an energy level is set to move the electrons from the cathode to the holes formed in the valence band of the anode-side moving induction material.
  48. 제 40 항 내지 제 43 항 중 어느 한 항에 있어서, 상기 센서전극부는,The method according to any one of claims 40 to 43, wherein the sensor electrode unit,
    호기에 포함된 암기인물질의 가전자대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 음극; A negative electrode configured to have a redox potential lower than the energy level of the valence band of the memorizing substance contained in the expiratory phase;
    암기인물질의 가전자대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 양극; 및,An anode configured to have a redox potential lower than the energy level of the valence band of the dark base material; And,
    가전자대의 산화환원전위의 에너지준위가 상기 음극의 산화환원전위의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 암기인물질의 가전자대의 에너지준위보다 높은 에너지준위를 갖도록 구성된 음극측이동유도물질;을 포함하여 이루어져,The cathode side movement is configured such that the energy level of the redox potential of the valence band is lower than that of the cathode and the energy level of the redox potential of the conduction band has a higher energy level than that of the valence band of the memorized material. Inducer; consisting of,
    상기 음극과 양극 사이에 암기인물질이 유입되었을 경우, 첫째, 암기인물질에 있는 전자가 양극으로 이동하고, 둘째, 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 음극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 음극측이동유도물질의 전도대로 여기된 전자가 암기인물질의 가전자대에 생긴 양공으로 이동하고, 셋째, 상기 음극측이동유도물질의 가전자대에 생긴 양공으로 음극에서 전자가 이동하는 과정이 이루어지도록 에너지준위가 설정됨을 특징으로 하는 암 진단 시스템.When the memorizing material is introduced between the cathode and the anode, first, electrons in the memorizing material move to the anode, and second, the excitation energy supplied from the excitation energy supply unit is applied to the valence band of the cathode-side moving induction material. Electrons excited by the conduction band, and electrons excited by the conduction band of the cathode-side moving induction material move to the hole formed in the valence band of the memorizing material, and thirdly, the hole formed in the valence band of the cathode-side moving induction material Cancer diagnosis system, characterized in that the energy level is set so that the process of the electron movement.
  49. 제 40 항 내지 제 43 항 중 어느 한 항에 있어서, 상기 센서전극부는,The method according to any one of claims 40 to 43, wherein the sensor electrode unit,
    호기에 포함된 암기인물질의 가전자대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 음극; A negative electrode configured to have a redox potential lower than the energy level of the valence band of the memorizing substance contained in the expiratory phase;
    암기인물질의 전도대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 양극; 및,An anode configured to have a redox potential lower than the energy level of the conduction band of the memorizing material; And,
    가전자대의 산화환원전위의 에너지준위가 상기 음극의 산화환원전위의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 암기인물질의 가전자대의 에너지준위보다 높은 에너지준위를 갖도록 구성된 음극측이동유도물질;을 포함하여 이루어져,The cathode side movement is configured such that the energy level of the redox potential of the valence band is lower than that of the cathode and the energy level of the redox potential of the conduction band has a higher energy level than that of the valence band of the memorized material. Inducer; consisting of,
    상기 음극과 양극 사이에 암기인물질이 유입되었을 경우, 첫째, 여기에너지공급부에서 공급되는 여기 에너지에 의해 암기인물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 암기인물질의 전도대로 여기된 전자가 양극으로 이동하고, 둘째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 음극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 음극측이동유도물질의 전도대로 여기된 전자가 암기인물질의 가전자대에 생긴 양공으로 이동하고, 셋째, 상기 음극측이동유도물질의 가전자대에 생긴 양공으로 음극에서 전자가 이동하는 과정이 이루어지도록 에너지준위가 설정됨을 특징으로 하는 암 진단 시스템.When the memorized material is introduced between the cathode and the anode, first, electrons in the valence band of the memorized material are excited by the excitation energy supplied from the excitation energy supply unit, and electrons excited by the conduction of the memorized material are The electrons in the valence band of the cathode-side mobile induction material are excited to the conduction band, and the electrons excited in the conduction band of the cathode-side mobile induction material are memorized by excitation energy supplied from the excitation energy supply unit. A cancer diagnosis system, characterized in that the energy level is set to move to the hole formed in the valence band of the phosphorus material, and third, the electron is moved from the cathode to the hole formed in the valence band of the cathode-side movement inducing material.
  50. 제 40 항 내지 제 43 항 중 어느 한 항에 있어서, 상기 센서전극부는,The method according to any one of claims 40 to 43, wherein the sensor electrode unit,
    호기에 포함된 암기인물질의 가전자대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 음극; A negative electrode configured to have a redox potential lower than the energy level of the valence band of the memorizing substance contained in the expiratory phase;
    암기인물질의 가전자대의 에너지준위 보다 높은 산화환원전위를 갖도록 구성된 양극;An anode configured to have a redox potential higher than the energy level of the valence band of the dark base material;
    가전자대의 산화환원전위의 에너지준위가 상기 암기인물질의 가전자대의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 양극의 산화환원전위의 에너지준위보다 높은 에너지준위를 갖도록 구성된 양극측이동유도물질; 및,The anode side movement is configured such that the energy level of the redox potential of the valence band is lower than the energy level of the valence band of the memorized material, and the energy level of the redox potential of the conduction band has a higher energy level than that of the redox potential of the anode. Inducer; And,
    가전자대의 산화환원전위의 에너지준위가 상기 음극의 산화환원전위의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 암기인물질의 가전자대의 에너지준위보다 높은 에너지준위를 갖도록 구성된 음극측이동유도물질;을 포함하여 이루어져,The cathode side movement is configured such that the energy level of the redox potential of the valence band is lower than that of the cathode and the energy level of the redox potential of the conduction band has a higher energy level than that of the valence band of the memorized material. Inducer; consisting of,
    상기 음극과 양극 사이에 암기인물질이 유입되었을 경우, 첫째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 양극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 양극측이동유도물질의 전도대로 여기된 전자가 양극으로 이동하고, 둘째, 상기 양극측이동유도물질의 가전자대에 생긴 양공으로 암기인물질의 가전자대에 있는 전자가 이동하고, 셋째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 음극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 음극측이동유도물질의 전도대로 여기된 전자가 상기 암기인물질의 가전자대에 생긴 양공으로 이동하고, 넷째, 상기 음극측이동유도물질의 가전자대에 생긴 양공으로 음극에서 전자가 이동하는 과정이 이루어지도록 에너지준위가 설정됨을 특징으로 하는 암 진단 시스템.When the memorizing material is introduced between the cathode and the anode, first, electrons in the valence band of the anode-side induction material are excited by the excitation energy supplied from the excitation energy supply unit, and the anode-side induction is induced. The electrons excited by the conduction of the material move to the anode, and second, the electrons in the valence band of the memorized material move to the holes generated in the valence band of the anode-side moving induction material, and third, the excitation supplied from the excitation energy supply unit. The electrons in the valence band of the cathode-side transfer inducing substance are excited by conduction bands by energy, and the electrons excited in the conduction band of the cathode-side transfer induction substance move to holes formed in the valence band of the memorized substance. Holes in the valence band of the cathode-side transfer inducing material are used to move the energy from the cathode to the energy level. Cancer diagnosis system, characterized in that is set.
  51. 제 40 항 내지 제 43 항 중 어느 한 항에 있어서, 상기 센서전극부는,The method according to any one of claims 40 to 43, wherein the sensor electrode unit,
    호기에 포함된 암기인물질의 가전자대의 에너지준위보다 낮은 산화환원전위를 갖도록 구성된 음극; A negative electrode configured to have a redox potential lower than the energy level of the valence band of the memorizing substance contained in the expiratory phase;
    암기인물질의 가전자대의 에너지준위 보다 높은 산화환원전위를 갖도록 구성된 양극;An anode configured to have a redox potential higher than the energy level of the valence band of the dark base material;
    가전자대의 산화환원전위의 에너지준위가 상기 암기인물질의 전도대의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 양극의 산화환원전위의 에너지준위보다 높은 에너지준위를 갖도록 구성된 양극측이동유도물질; 및,The anode-side movement induction is configured such that the energy level of the redox potential of the valence band is lower than the energy level of the conduction band of the memorized material, and the energy level of the redox potential of the conduction band has a higher energy level than that of the redox potential of the anode. matter; And,
    가전자대의 산화환원전위의 에너지준위가 상기 음극의 산화환원전위의 에너지준위보다 낮고, 전도대의 산화환원전위의 에너지준위가 상기 암기인물질의 가전자대의 에너지준위보다 높은 에너지준위를 갖도록 구성된 음극측이동유도물질;을 포함하여 이루어져,The cathode side movement is configured such that the energy level of the redox potential of the valence band is lower than that of the cathode and the energy level of the redox potential of the conduction band has a higher energy level than that of the valence band of the memorized material. Inducer; consisting of,
    상기 음극과 양극 사이에 암기인물질이 유입되었을 경우, 첫째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 양극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 양극측이동유도물질의 전도대로 여기된 전자가 양극으로 이동하고, 둘째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 암기인물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 암기인물질의 전도대로 여기된 전자가 양극측이동유도물질의 가전자대에 생긴 양공으로 이동하고, 셋째, 상기 여기에너지공급부에서 공급되는 여기 에너지에 의해 상기 음극측이동유도물질의 가전자대에 있는 전자가 전도대로 여기하고, 상기 음극측이동유도물질의 전도대로 여기된 전자가 상기 암기인물질의 가전자대에 생긴 양공으로 이동하고, 넷째, 상기 음극측이동유도물질의 가전자대에 생긴 양공으로 음극에서 전자가 이동하는 과정이 이루어지도록 에너지준위가 설정됨을 특징으로 하는 암 진단 시스템.When the memorizing material is introduced between the cathode and the anode, first, electrons in the valence band of the anode-side induction material are excited by the excitation energy supplied from the excitation energy supply unit, and the anode-side induction is induced. Electrons excited by the conduction of the material move to the anode, and second, electrons in the valence band of the memorized material are excited by the excitation energy supplied from the excitation energy supply unit, and the electrons excited by the conduction of the memorized material Is moved to the positive hole formed in the valence band of the anode-side moving induction material, and third, the electrons in the valence band of the cathode-side moving induction material are excited by the excitation energy supplied from the excitation energy supply unit, and the cathode side The electrons excited by the conduction material of the mobile induction material move to the hole formed in the valence band of the memorizing material. Fourth, the cancer diagnosis system, characterized in that the energy level is set so that the process of moving the electrons from the cathode to the hole formed in the valence band of the cathode-side movement inducing material.
  52. 제 40 항 내지 제 43 항 중 어느 한 항에 있어서, 상기 센서전극부에서 암기인물질에서 공여하는 전자를 매개로 하여 음극에서 양극으로 전자가 이동되도록 산화환원전위의 에너지준위를 설정함에 있어서, 상기 암기인물질에서 공여되는 전자의 양극으로의 이동을 유도하는 양극측이동유도물질을 다수 개로 구성할 경우에는, 44. The method according to any one of claims 40 to 43, wherein the energy level of the redox potential is set so that the electrons are moved from the cathode to the anode via the electrons donated by the memorizing material in the sensor electrode. In the case of constructing a plurality of anode-side movement inducing materials that induce the movement of donor electrons to the anode,
    상기 암기인물질에서 전자를 공여받는 최초의 양극측이동유도물질의 전도대의 에너지준위는, 그 다음번째 양극측이동유도물질의 가전자대의 에너지준위보다 높게 설정하고,The energy level of the conduction band of the first anode-side mobile induction material receiving electrons from the memorization material is set higher than the energy level of the valence band of the next anode-side mobile induction material,
    양극으로 전자를 공여하는 마지막의 양극측이동유도물질의 전도대의 에너지준위는 양극의 에너지준위보다 높게 설정하며,The energy level of the conduction band of the last anode-side inductive material that donates electrons to the anode is set higher than that of the anode.
    그 중간단계에 있는 양극측이동유도물질들의 에너지준위는, 전도대의 에너지준위를 그 다음단계에 있는 양극측이동유도물질의 가전자대의 에너지준위보다 높게 설정하고, 가전자대의 에너지준위를 그 전단계에 있는 양극측이동유도물질의 전도대의 에너지준위보다 낮게 설정함을 특징으로 암 진단 시스템.The energy level of the anode-side mobile induction material in the middle stage is set to the energy level of the conduction band higher than that of the valence band of the anode-side mobile induction material in the next stage, and the energy level of the valence band is set to the previous stage. Cancer diagnosis system, characterized in that the lower than the energy level of the conduction band of the anode-side mobile induction material.
  53. 제 40 항 내지 제 43 항 중 어느 한 항에 있어서, 상기 센서전극부에서 암기인물질에서 공여하는 전자를 매개로 하여 음극에서 양극으로 전자가 이동되도록 산화환원전위의 에너지준위를 설정함에 있어서, 상기 음극에서 공여되는 전자의 암기인물질로의 이동을 유도하는 음극측이동유도물질을 다수 개로 구성할 경우에는,44. The method according to any one of claims 40 to 43, wherein the energy level of the redox potential is set so that the electrons are moved from the cathode to the anode via the electrons donated by the memorizing material in the sensor electrode. In the case of constituting a plurality of cathode-side movement inducing substances which induce the movement of donated electrons from the cathode to the memorizing substance,
    상기 음극에서 전자를 공여받는 최초의 음극측이동유도물질의 전도대의 에너지준위는, 그 다음번째 음극측이동유도물질의 가전자대의 에너지준위보다 높게 설정하고,The energy level of the conduction band of the first cathode-side mobile induction material receiving electrons from the cathode is set higher than the energy level of the valence band of the next cathode-side mobile induction material,
    암기인물질의 가전자대에 생긴 양공으로 전자를 공여하는 마지막의 음극측이동유도물질의 전도대의 에너지준위는 상기 암기인물질의 가전자대의 에너지준위보다 높게 설정하며,The energy level of the conduction band of the last cathode-side mobile inductive material that contributes electrons to the hole formed in the valence band of the memorized substance is set higher than the energy level of the valence band of the memorized substance.
    그 중간단계에 있는 음극측이동유도물질들의 에너지준위는, 전도대의 에너지준위를 그 다음단계에 있는 음극측이동유도물질의 가전자대의 에너지준위보다 높게 설정하고, 가전자대의 에너지준위를 그 전단계에 있는 음극측이동유도물질의 전도대의 에너지준위보다 낮게 설정함을 특징으로 암 진단 시스템.The energy level of the cathode-side mobile induction material in the middle stage is set to the energy level of the conduction band higher than the energy level of the valence band of the cathode-side mobile induction material in the next stage, and the energy level of the valence band is set to the previous stage. Cancer diagnosis system, characterized in that the lower than the energy level of the conduction band of the cathode-side moving induction material.
  54. 제 40 항 내지 제 43 항 중 어느 한 항에 있어서, 상기 센서전극부에서 암기인물질에서 공여하는 전자를 매개로 하여 음극에서 양극으로 전자가 이동되도록 산화환원전위의 에너지준위를 설정함에 있어서, 상기 암기인물질에서 공여되는 전자의 양극으로의 이동을 유도하는 양극측이동유도물질 또는, 상기 음극에서 공여되는 전자의 암기인물질로의 이동을 유도하는 음극측이동유도물질을 사용하여 에너지준위를 설정할 경우, 상기 양극측이동유도물질 또는, 음극측이동유도물질은,44. The method according to any one of claims 40 to 43, wherein the energy level of the redox potential is set so that the electrons are moved from the cathode to the anode via the electrons donated by the memorizing material in the sensor electrode. When the energy level is set using an anode-side movement inducing material that induces movement of donor electrons from a memorandum to the anode, or a cathode-side movement inducing material that induces movement of donated electrons from the memorization material. , The positive electrode side movement inducing material, or the negative electrode side movement inducing material,
    풀러렌, 풀러렌염, 이온내포풀러렌, 색소, 또는 이온내포풀러렌과 색소의 복합체 중 어느 하나 이상으로 구성됨을 특징으로 암 진단 시스템.Cancer diagnosis system, characterized in that it is composed of any one or more of fullerenes, fullerene salts, ion-containing fullerenes, pigments, or a complex of ion-containing fullerenes and pigments.
  55. 체액에 포함된 암기인물질을 매개로 하여 음극에서 양극으로 전자가 이동되도록 산화환원전위의 에너지준위가 설정된 센서전극부;A sensor electrode part in which an energy level of a redox potential is set to move electrons from the cathode to the anode via a memorandum included in the body fluid;
    상기 센서전극부에 전자의 여기 에너지를 공급하는 여기에너지공급부;An excitation energy supply unit supplying excitation energy of electrons to the sensor electrode unit;
    상기 센서전극부의 전자 이동을 검출하는 검출부;A detector for detecting electron movement of the sensor electrode unit;
    상기 암기인물질 검측에 대한 정보를 나타내는 표시부; A display unit which displays information on the memorized substance detection;
    상기 암기인물질 검측에 대한 정보를 저장하는 데이터저장부;A data storage unit for storing information on the memorized substance detection;
    상기 암기인물질 검측에 대한 정보를 외부기기와 교환하는 통신부;Communication unit for exchanging information on the memorized substance detection with an external device;
    하나 이상이 스위치로 구성된 스위치부;A switch unit comprising one or more switches;
    상기 센서전극부와, 여기에너지공급부와, 검출부와, 표시부와, 데이터저장부와, 통신부와, 스위치부 사이에 접속되는 제어부; 및, A control unit connected between the sensor electrode unit, the excitation energy supply unit, the detection unit, the display unit, the data storage unit, the communication unit, and the switch unit; And,
    상기 각 구성요소에 동작전원을 공급하는 전원공급부;를 포함하여 구성되어,And a power supply unit supplying operation power to each of the components.
    상기 센서전극부에 유입되는 체액에서 암기인물질을 검측하여 나타냄을 특징으로 하는 에너지준위를 이용한 휴대용 암 진단 장치.Portable cancer diagnosis device using the energy level, characterized in that the detection of the memorizing substance in the body fluid flowing into the sensor electrode.
  56. 제 55항에 있어서, 상기 제어부는,The method of claim 55, wherein the control unit,
    여기 에너지를 공급하기 전의 센서전극부의 값을 검출하여, 여기 에너지를 공급한 후에 검출한 센서전극부 값을 보정함을 특징으로 하는 에너지준위를 이용한 휴대용 암 진단 장치.And detecting the value of the sensor electrode portion before supplying the excitation energy, and correcting the value of the sensor electrode portion detected after the excitation energy is supplied.
  57. 제 55 항에 있어서, 상기 제어부는,The method of claim 55, wherein the control unit,
    센서전극부에 공급되는 전원의 극성을 반대로 하여 상기 센서전극부를 리셋시킴을 특징으로 하는 에너지준위를 이용한 휴대용 암 진단 장치.Portable cancer diagnosis device using the energy level, characterized in that to reset the sensor electrode by reversing the polarity of the power supplied to the sensor electrode.
  58. 호기에 포함된 암기인물질을 매개로 하여 음극에서 양극으로 전자가 이동되도록 산화환원전위의 에너지준위가 설정된 센서전극부;A sensor electrode part in which an energy level of a redox potential is set to move electrons from a cathode to an anode through a memorandum included in the expiratory phase;
    상기 센서전극부에 전자의 여기 에너지를 공급하는 여기에너지공급부;An excitation energy supply unit supplying excitation energy of electrons to the sensor electrode unit;
    상기 센서전극부의 전자 이동을 검출하는 검출부;A detector for detecting electron movement of the sensor electrode unit;
    상기 암기인물질 검측에 대한 정보를 나타내는 표시부; A display unit which displays information on the memorized substance detection;
    상기 암기인물질 검측에 대한 정보를 저장하는 데이터저장부;A data storage unit for storing information on the memorized substance detection;
    상기 암기인물질 검측에 대한 정보를 외부기기와 교환하는 통신부;Communication unit for exchanging information on the memorized substance detection with an external device;
    하나 이상이 스위치로 이루어진 스위치부;A switch unit comprising one or more switches;
    상기 센서전극부와, 여기에너지공급부와, 검출부와, 표시부와, 데이터저장부와, 통신부와, 스위치부 사이에 접속되는 제어부; A control unit connected between the sensor electrode unit, the excitation energy supply unit, the detection unit, the display unit, the data storage unit, the communication unit, and the switch unit;
    상기 각 구성요소에 동작전원을 공급하는 전원공급부; 및,A power supply unit supplying operation power to each of the components; And,
    호기유도관과 호기유출관이 좌우에 끼워진 센서전극부가 내부를 관통하도록 설치되고, 상기 여기에너지공급부와, 검출부와, 표시부와, 데이터저장부와, 통신부와, 스위치부와, 제어부와, 전원공급부가 장착되는 몸체;를 포함하여 구성됨을 특징으로 하는 호기를 이용한 휴대용 암 진단 장치.The sensor electrode unit having the aerobic induction pipe and the aerobic outflow pipe inserted into the left and right penetrates the inside, and the excitation energy supply unit, the detection unit, the display unit, the data storage unit, the communication unit, the switch unit, the control unit, and the power supply Portable cancer diagnostic device using the exhalation, characterized in that it comprises a body;
  59. 호기에 포함된 암기인물질을 매개로 하여 음극에서 양극으로 전자가 이동되도록 산화환원전위의 에너지준위를 설정하여 암기인물질을 검측하는 휴대검측장치;A portable detection device for detecting the memorandum by setting the energy level of the redox potential so that electrons are moved from the cathode to the anode through the memorandum included in the expiratory phase;
    상기 휴대검측장치에서 측정하는 측정값을 비교 분석하여 암기인물질의 존재 여부와 암 발생여부를 나타내는 암진단앱; 및,A cancer diagnosis app indicating the presence of cancer memorandum and cancer occurrence by comparing and analyzing the measured values measured by the portable detection device; And,
    상기 암진단앱이 설치되며, 상기 휴대검측장치와 통신을 수행하는 스마트폰;을 포함하여 구성됨을 특징으로 하는 스마트폰을 이용한 휴대용 암 진단 시스템.The cancer diagnosis app is installed, the portable cancer diagnosis system using a smart phone, characterized in that it comprises a; smart communication to communicate with the portable detection device.
  60. 제 59 항에 있어서, 상기 암진단앱은,60. The method of claim 59, wherein the cancer diagnostic app,
    암기인물질의 존재 유무로 암의 존재 여부를 판단하고,Judging the presence of cancer by the presence or absence of a memorandum,
    암기인물질의 양으로써 암의 진행정도를 판단함을 특징으로 하는 스마트폰을 이용한 휴대용 암 진단 시스템. Portable cancer diagnosis system using a smartphone, characterized in that the judging of the cancer progression by the amount of memorandum.
  61. 제 59 항에 있어서, 상기 암진단앱은,60. The method of claim 59, wherein the cancer diagnostic app,
    두 종류 이상의 암기인물질의 비율을 산출하여 암의 종류를 판단함을 특징으로 하는 스마트폰을 이용한 휴대용 폐암 진단 시스템.Portable lung cancer diagnostic system using a smart phone, characterized in that to determine the type of cancer by calculating the ratio of two or more memorandum.
  62. 제 59 항에 있어서, 상기 암기인물질은 톨루엔(Toluene), 2,6-디이소프롤필페놀(2,6-Diisopropylphenol), 2-메틸피라진(2-Methylpyrazine), 사이클로헥사논(Cyclohexanone), 2- 부타논, 초산, 아세톤, 아세토니트릴 중 어느 하나 이상인 것을 특징으로 하는 스마트폰을 이용한 휴대용 암 진단 시스템.60. The method of claim 59, wherein the memorizing substance is toluene (Toluene), 2,6-diisopropyl phenol (2,6-Diisopropylphenol), 2-methylpyrazine (2-Methylpyrazine), cyclohexanone (Cyclohexanone), 2 -Portable cancer diagnosis system using a smartphone, characterized in that any one or more of butanone, acetic acid, acetone, acetonitrile.
  63. 제 59 항에 있어서, 상기 휴대검측장치는,60. The method of claim 59, wherein the portable detection device,
    호기에 포함된 암기인물질을 매개로 하여 음극에서 양극으로 전자가 이동되도록 산화환원전위의 에너지준위가 설정된 센서전극부;A sensor electrode part in which an energy level of a redox potential is set to move electrons from a cathode to an anode through a memorandum included in the expiratory phase;
    상기 센서전극부에 전자의 여기 에너지를 공급하는 여기에너지공급부;An excitation energy supply unit supplying excitation energy of electrons to the sensor electrode unit;
    상기 센서전극부의 전자 이동을 검출하는 검출부;A detector for detecting electron movement of the sensor electrode unit;
    상기 암기인물질 검측에 대한 정보를 나타내는 표시부; A display unit which displays information on the memorized substance detection;
    상기 암기인물질 검측에 대한 정보를 저장하는 데이터저장부;A data storage unit for storing information on the memorized substance detection;
    상기 암기인물질 검측에 대한 정보를 외부기기와 교환하는 통신부;Communication unit for exchanging information on the memorized substance detection with an external device;
    하나 이상이 스위치로 구성된 스위치부;A switch unit comprising one or more switches;
    상기 센서전극부와, 여기에너지공급부와, 검출부와, 표시부와, 데이터저장부와, 통신부와, 스위치부 사이에 접속되는 제어부; A control unit connected between the sensor electrode unit, the excitation energy supply unit, the detection unit, the display unit, the data storage unit, the communication unit, and the switch unit;
    상기 각 구성요소에 동작전원을 공급하는 전원공급부; 및,A power supply unit supplying operation power to each of the components; And,
    호기유도관과 호기유출관이 좌우에 끼워진 센서전극부가 내부를 관통하도록 설치되고, 상기 여기에너지공급부와, 검출부와, 표시부와, 데이터저장부와, 통신부와, 스위치부와, 제어부와, 전원공급부가 장착되는 몸체;를 포함하여 구성됨을 특징으로 하는 스마트폰을 이용한 휴대용 암 진단 시스템.A sensor electrode unit having an aerobic induction pipe and an aerobic outflow pipe inserted into the left and right penetrates the inside thereof, wherein the excitation energy supply unit, the detection unit, the display unit, the data storage unit, the communication unit, the switch unit, the control unit, and the power supply Portable arm diagnosis system using a smart phone, characterized in that it comprises a body;
  64. 제 59 항에 있어서, 상기 센서전극부는,60. The method of claim 59, wherein the sensor electrode unit,
    암기인물질에서 공여하는 전자를 매개로 하여 음극에서 양극으로 전자가 이동되도록 산환환원전위의 에너지준위를 설계하여 전자의 이동이 이루어지도록 하는 메카니즘이 다수 개 구성되어 다수 개의 암기인물질을 검출할 수 있도록 구성됨을 특징으로 하는 스마트폰을 이용한 휴대용 암 진단 시스템.By designing the energy level of the redox potential to move the electron from the cathode to the anode through the electrons donated by the memorandum, there are a number of mechanisms that allow the movement of the electrons. Portable cancer diagnostic system using a smartphone, characterized in that configured to.
  65. 본체;main body;
    상기 본체에 설치되며, 암 진단을 위해 조작되는 스위치부;A switch unit installed at the main body and operated for diagnosing cancer;
    상기 본체에 설치되어 포집장치가 착탈되도록 하며, 암기인물질을 검출하는 센서전극부;A sensor electrode unit installed at the main body to allow the collecting device to be attached and detached and to detect a memorizing substance;
    상기 센서전극부에 전자의 여기 에너지를 공급하는 여기에너지공급부; An excitation energy supply unit supplying excitation energy of electrons to the sensor electrode unit;
    상기 센서전극부의 전자 이동을 검출하는 검출부;A detector for detecting electron movement of the sensor electrode unit;
    상기 암기인물질 검측에 대한 정보를 저장하는 데이터저장부;A data storage unit for storing information on the memorized substance detection;
    외부기기와 통신을 수행하는 통신부 및 Communication unit for communicating with an external device
    암 진단을 수행하는 제어부로 구성된 것을 특징으로 하는 암 진단 시스템.Cancer diagnosis system, characterized in that consisting of a control unit for performing cancer diagnosis.
  66. 통신을 수행하는 통신서버;A communication server performing communication;
    가입자에 대한 정보를 관리하는 고객관리서버;A customer management server managing information about subscribers;
    진단 데이터를 저장하는 데이터베이스서버;A database server for storing diagnostic data;
    데이터 백업을 수행하는 백업서버;A backup server performing data backup;
    하나의 서버로부터 전달된 정보에 대하여 미리 결정된 판단 기준에 따라 가치 수준을 결정할 수 있는 수준 결정 유닛을 가진 결정 서버;A decision server having a level determining unit capable of determining a value level in accordance with a predetermined decision criterion with respect to information transmitted from one server;
    외부로부터 전달된 정보 매체의 정보를 분류하기 위한 필터 모듈; 및 상기 각 구성요소의 동작을 제어하는 메인서버;를 포함하여 이루어져, 각각의 클라이언트 시스템인 암진단시스템에서 전송되는 진단 데이터를 분석하여 암 발생 여부, 종류 및 진행정도를 산출하는 것을 특징으로 하는 빅데이터를 이용한 암 진단 시스템.A filter module for classifying information of an information medium transmitted from the outside; And a main server controlling the operation of each component; and analyzing the diagnostic data transmitted from each of the client systems, the cancer diagnosis system, to calculate whether cancer is generated, the type, and the degree of progress. Cancer diagnosis system using data.
  67. 제 66 항에 있어서, 상기 암기인물질은, 파장에 따른 양자수율을 분석하여 특정함을 특징으로 하는 빅데이터를 이용한 암 진단 시스템.The cancer diagnostic system according to claim 66, wherein the memorizing material is characterized by analyzing quantum yields according to wavelengths.
PCT/KR2019/010737 2018-08-23 2019-08-23 Molecule sensor and cancer diagnostic system using same WO2020040584A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980060107.6A CN112689753A (en) 2018-08-23 2019-08-23 Molecular sensor and cancer diagnosis system using the same

Applications Claiming Priority (22)

Application Number Priority Date Filing Date Title
KR10-2018-0098894 2018-08-23
KR20180098893 2018-08-23
KR20180098895 2018-08-23
KR10-2018-0098892 2018-08-23
KR10-2018-0098890 2018-08-23
KR20180098888 2018-08-23
KR20180098890 2018-08-23
KR20180098892 2018-08-23
KR10-2018-0098893 2018-08-23
KR20180098889 2018-08-23
KR10-2018-0098888 2018-08-23
KR10-2018-0098889 2018-08-23
KR10-2018-0098891 2018-08-23
KR10-2018-0098887 2018-08-23
KR20180098887 2018-08-23
KR20180098891 2018-08-23
KR10-2018-0098895 2018-08-23
KR20180098894 2018-08-23
KR10-2018-0117018 2018-10-01
KR1020180117018A KR20200037595A (en) 2018-10-01 2018-10-01 Breathing collecing device to diagnose cancer
KR10-2019-0103415 2019-08-23
KR1020190103415A KR102231421B1 (en) 2018-08-23 2019-08-23 molecule sensor

Publications (1)

Publication Number Publication Date
WO2020040584A1 true WO2020040584A1 (en) 2020-02-27

Family

ID=69593297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010737 WO2020040584A1 (en) 2018-08-23 2019-08-23 Molecule sensor and cancer diagnostic system using same

Country Status (1)

Country Link
WO (1) WO2020040584A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101278605B1 (en) * 2008-11-04 2013-06-25 파나소닉 주식회사 Measurement device, insulin infusion device, measurement method, method for controlling insulin infusion device, and program
KR20130140199A (en) * 2011-10-06 2013-12-23 에이비 할므스타드 카일테크닉 A device, a system and a method for alcohol measurement
KR20140114005A (en) * 2012-02-06 2014-09-25 더 리전트 오브 더 유니버시티 오브 캘리포니아 Portable rapid diagnostic test reader
KR20170041850A (en) * 2014-08-08 2017-04-17 퀀텀-에스아이 인코포레이티드 Integrated device with external light source for probing, detecting, and analyzing molecules
KR20170065015A (en) * 2015-12-02 2017-06-12 한양대학교 에리카산학협력단 Electrochemical sensor for measuring hemoglobin and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101278605B1 (en) * 2008-11-04 2013-06-25 파나소닉 주식회사 Measurement device, insulin infusion device, measurement method, method for controlling insulin infusion device, and program
KR20130140199A (en) * 2011-10-06 2013-12-23 에이비 할므스타드 카일테크닉 A device, a system and a method for alcohol measurement
KR20140114005A (en) * 2012-02-06 2014-09-25 더 리전트 오브 더 유니버시티 오브 캘리포니아 Portable rapid diagnostic test reader
KR20170041850A (en) * 2014-08-08 2017-04-17 퀀텀-에스아이 인코포레이티드 Integrated device with external light source for probing, detecting, and analyzing molecules
KR20170065015A (en) * 2015-12-02 2017-06-12 한양대학교 에리카산학협력단 Electrochemical sensor for measuring hemoglobin and method for manufacturing the same

Similar Documents

Publication Publication Date Title
WO2016099113A1 (en) Noninvasive blood glucose measurement method and apparatus
WO2015069046A1 (en) X-ray detector, x-ray imaging apparatus and method of controlling the same
WO2012134117A2 (en) Suction device, contamination-sensing member applied to the suction device, suction sensor, selection member, evaporation member, outer case for the suction device, unit for supplying electricity to the suction device, eyelash-curling unit connected to the unit for supplying electricity to the suction device, and mobile phone connection unit connected to the unit for supplying electricity to the suction device
WO2017222346A1 (en) Electronic device having complex human interface
WO2016072756A1 (en) Method of and apparatus for measuring biometric information
WO2015102156A1 (en) Method and apparatus for measuring body fat using mobile device
WO2015199272A1 (en) Capacitive type touch sensing panel and capacitive type touch sensing apparatus having same
WO2017086537A1 (en) Device and method for measuring biological information by using sensor array
WO2014157856A1 (en) Photosensitive coating composition, coating conductive film using photosensitive coating composition, and method for forming coating conductive film
WO2014088206A1 (en) Means and method for detecting capacitance connected to ac power
WO2023058883A1 (en) Biomarker for cancer diagnosis and use thereof
WO2015093787A1 (en) Oil detection device, compressor having the same and method of controlling the compressor
WO2020040584A1 (en) Molecule sensor and cancer diagnostic system using same
WO2023282511A1 (en) Compound for organic electric element, organic electric element using same, and electronic device thereof
WO2018004191A1 (en) Biosensing device and drug delivery device
WO2019088448A1 (en) Electronic device for measuring illuminance, and operating method therefor
WO2023204403A1 (en) Terminal and biosensor system including the same
WO2023229326A1 (en) Apparatus and method for diagnosing battery cell
WO2023177186A1 (en) Cnt film using click reaction, cnt-based biosensor using same, and manufacturing method therefor
WO2023182774A1 (en) Method for monitoring user disease on basis of heart rate information, and server performing same
WO2022158877A1 (en) Substrate including three-dimensional nanoplasmonic composite structure, method for manufacturing same, and rapid analysis method using same
WO2023191206A1 (en) Exploratory data analysis automation system and method based on variable attributes
WO2016105045A1 (en) Electrostatic dust collector
WO2021006675A1 (en) Lens curvature variation apparatus
WO2024058351A1 (en) Air purifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/07/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19851084

Country of ref document: EP

Kind code of ref document: A1