WO2020039553A1 - Method for growing silicon single crystal - Google Patents

Method for growing silicon single crystal Download PDF

Info

Publication number
WO2020039553A1
WO2020039553A1 PCT/JP2018/031164 JP2018031164W WO2020039553A1 WO 2020039553 A1 WO2020039553 A1 WO 2020039553A1 JP 2018031164 W JP2018031164 W JP 2018031164W WO 2020039553 A1 WO2020039553 A1 WO 2020039553A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
gap
growing
crystal
crucible
Prior art date
Application number
PCT/JP2018/031164
Other languages
French (fr)
Japanese (ja)
Inventor
良太 末若
建 濱田
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to KR1020207036806A priority Critical patent/KR102461073B1/en
Priority to PCT/JP2018/031164 priority patent/WO2020039553A1/en
Priority to JP2020537967A priority patent/JP7036217B2/en
Priority to CN201880095845.XA priority patent/CN112639175A/en
Priority to TW108123902A priority patent/TWI722480B/en
Publication of WO2020039553A1 publication Critical patent/WO2020039553A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/203Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/206Controlling or regulating the thermal history of growing the ingot
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/26Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using television detectors; using photo or X-ray detectors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a method for growing a silicon single crystal by the Czochralski method (hereinafter, referred to as a “CZ method”), and particularly to an OSF (Oxidation Induced Stacking Fault), a COP (Crystal Originated Particle) and the like.
  • the present invention relates to a method for growing a defect-free crystal free from point defects such as infrared scatterer defects and dislocation clusters such as LD (Interstitial-type Large Dislocation).
  • FIG. 1 is a schematic diagram for explaining a situation in which various defects occur based on the Bornkov theory.
  • the Bornkov theory when the pulling speed is V (mm / min) and the temperature gradient in the pulling axis direction near the solid-liquid interface of the ingot (silicon single crystal) is G (° C./mm), The relationship between V / G and the point defect concentration is schematically shown by plotting the ratio of V / G, which is their ratio, on the horizontal axis and the concentration of vacancy type point defects and the concentration of interstitial silicon point defects on the same vertical axis. expressing.
  • thermo gradient in the pulling-up axis direction may be simply referred to as “temperature gradient”.
  • Vacancy-type point defects originate from vacancies lacking silicon atoms that constitute a crystal lattice, and COP is a typical example of an aggregate of the vacancy-type point defects.
  • the interstitial silicon type point defect originates from interstitial silicon in which silicon atoms enter between crystal lattices, and a typical example of the aggregate of the interstitial silicon type point defect is LD.
  • V / G exceeds the critical point, a single crystal in which vacancy type point defects predominate is grown.
  • V / G falls below the critical point, a single crystal in which interstitial silicon type point defects predominate is grown.
  • V / G is lower than the critical point (V / G) 1
  • interstitial silicon type point defects are dominant in the single crystal, and aggregates of interstitial silicon point defects are present.
  • An area [I] appears, and LD occurs.
  • V / G is larger than the critical point (V / G) 2 , vacancy-type point defects are dominant in the single crystal, and the region [V] where vacancy-type point defect aggregates are present Appears, and COP occurs.
  • the defect-free region [P I ] in which the interstitial silicon type point defect does not exist as an aggregate in the single crystal is in the range of the critical point to (V / G) 2.
  • a defect-free region [P V ] in which vacancy-type point defects do not exist as aggregates appears in the single crystal, and neither COP nor LD defects including OSFs are generated.
  • the defect-free area [P I ] and [P V ] are collectively referred to as a defect-free area [P].
  • An OSF region forming an OSF nucleus exists in a region [V] (V / G is in the range of (V / G) 2 to (V / G) 3 ) adjacent to the defect-free region [P V ].
  • FIG. 2 is a schematic diagram showing the relationship between the pulling speed and the defect distribution during single crystal growth.
  • the defect distribution shown in the figure is obtained by growing a silicon single crystal while gradually lowering the pulling speed V, cutting the grown single crystal along a central axis (pulling axis) into a plate-shaped specimen, The figure shows the results of observing the plate-like specimen by X-ray topography after Cu was attached and heat treatment was performed.
  • the OSF region appears in a ring shape from the outer periphery of the single crystal.
  • the OSF region is a diameter with decreasing pulling rate gradually reduced, pulling rate disappears and becomes V 1. Accordingly, a defect-free region [P] (region [P V ]) appears instead of the OSF region, and the entire in-plane region of the single crystal is occupied by the defect-free region [P].
  • V / G is generated in the hot zone, and aggregates of interstitial silicon type point defects are generated over the entire surface. It is necessary to perform management so as to secure the first critical point (V / G) 1 or higher and the second critical point (V / G) 2 or lower where no aggregate of vacancy type point defects is generated. .
  • the aim of the pulling speed is set between V 1 and V 2 (for example, the median value of both), and even if the pulling speed is changed during the growth, the range of V 1 to V 2 (“pulling speed margin”) ”Or“ PvPi margin ”).
  • the hot zone is appropriately designed in advance before growing a single crystal.
  • the hot zone is composed of a water-cooled body arranged to surround the growing single crystal, and a heat shield arranged to surround the outer peripheral surface and lower end surface of the water-cooled body.
  • the management indicators in designing the hot zone, and the temperature gradient G c of the center portion of the single crystal, the temperature gradient G e of the outer peripheral portion of the single crystal is used.
  • the diameter is the subject of development over the single crystal 300 mm, taking into account the effect of the stress in the single crystal, the temperature gradient G c and the single crystal outer peripheral portion of the single crystal center the ratio of the temperature gradient G e (hereinafter, referred to as "temperature gradient ratio") G c / G e to be greater than 1.8 technique are disclosed.
  • temperature gradient ratio the ratio of the temperature gradient G e
  • the present invention has been made in view of the above problems, and takes into account the effect of stress acting on a single crystal during single crystal growth, and a method of growing a silicon single crystal capable of growing a defect-free crystal with high accuracy.
  • the purpose is to provide.
  • the present inventors focused on stress acting in a single crystal during single crystal growth, and conducted intensive studies by performing numerical analysis taking this stress into account. As a result, the following findings were obtained.
  • FIG. 3 is a diagram showing the relationship between the stress ⁇ mean acting in the single crystal and the critical V / G.
  • the distribution of stress in the vicinity of the solid-liquid interface of a single crystal has a regularity, and the distribution of in-plane stress can be grasped by a stress or a temperature gradient limited to the central portion of the single crystal.
  • the temperature gradient at the center of the single crystal or the stress at the center of the single crystal is determined in consideration of the effect of the stress in the single crystal, so that the distribution of the in-plane temperature gradient optimal for growing a defect-free crystal is determined. Further it becomes possible to grasp the optimum temperature gradient ratio G c / G e.
  • the present invention has been completed based on the above findings, and is a method for growing a silicon single crystal by the CZ method, in which a single crystal having a diameter of 300 mm or more is pulled from a raw material melt in a crucible disposed in a chamber, Using a single crystal growing apparatus in which a water-cooled body surrounding the growing single crystal is arranged and a heat shield surrounding the outer peripheral surface and the lower end face of the water-cooled body is arranged, the water-cooled surrounding the growing single crystal is used. With the body disposed, using a single crystal growing apparatus in which a heat shield surrounding the outer peripheral surface and the lower end surface of the water-cooled body is disposed, and the liquid surface of the raw material melt and the raw material melt are disposed above the raw material melt.
  • a high-quality wafer having a diameter of 300 mm or 450 mm can be efficiently manufactured.
  • the diameter of the wafer is 300 mm, it is preferable that the diameter of the single crystal (straight body) is 301 mm or more and 340 mm or less.
  • the diameter of the single crystal (straight body) is 451 mm or more. It is preferable to set it to 510 mm or less.
  • the gap variable control is determined from a quantitative value of a crucible rising speed required to maintain the gap, which changes with the pulling of the single crystal, at a constant distance, and a change in a target value of the gap. Controlling the crucible ascent speed using a total value of the fluctuation value of the crucible ascent speed and a correction value of the crucible ascent speed obtained from a difference between the target value and the actual measurement value of the gap. preferable.
  • the role of the correction value of the crucible ascending speed is specialized only to the correction for eliminating the gap between the target value of the gap and the measured value, it is possible to prevent the amplitude of the crucible ascending speed from increasing. Can be. Therefore, stabilization of the crystal heat history from the top to the bottom of the silicon single crystal can be realized, the change in the in-plane distribution of crystal defects can be suppressed, and the production yield of a high-quality silicon single crystal can be increased. .
  • the change in the target value of the gap is obtained from a gap profile that defines the relationship between the crystal length and the target value of the gap that change with the pulling of the single crystal.
  • the correction value is obtained from a difference between a target value of the gap obtained from the gap profile and a measured value of the gap.
  • the method for producing a single crystal according to the present invention determines the decrease in the volume of the melt from the increase in the volume of the single crystal accompanying the pulling of the single crystal, and calculates the decrease in the volume of the melt and the inner diameter of the crucible.
  • the quantitative value is determined.
  • the quantitative value of the crucible rising speed can be easily and accurately obtained.
  • the gap profile includes at least one gap constant control section for maintaining the gap at a constant distance and at least one gap variable control section for gradually changing the gap.
  • the gap variable control section may be provided in the latter half of the single crystal body part growing step and after the constant gap control section, and may be provided in the first half of the single crystal body part growing step. It may be provided before the constant gap control section.
  • the gap profile includes first and second gap variable control sections for gradually changing the gap, and the first gap variable control section is a first half of the single crystal body part growing step.
  • the second gap variable control section is provided before the constant gap control section, and the second variable gap control section is provided after the constant gap control section in the latter half of the single crystal body portion growing step.
  • the first half of the body part growing step means a step of manufacturing a single crystal of the first half part of the body part by dividing the entire length of the body part of the single crystal into two equal parts. This means a step of manufacturing a single crystal in the latter half of the body part.
  • the measured value of the gap is calculated from the position of the mirror image of the heat shield reflected on the liquid surface of the melt taken by a camera. As a result, the measured value of the gap can be easily and accurately obtained with an inexpensive configuration.
  • the defect-free crystal accurately It is possible to nurture.
  • FIG. 1 is a schematic diagram illustrating a situation in which various defects occur based on the Bornkov theory.
  • FIG. 2 is a schematic diagram showing the relationship between the pulling speed and the defect distribution during single crystal growth.
  • FIG. 3 is a diagram showing the relationship between the stress ⁇ mean at the center of the single crystal and the critical V / G.
  • Figure 4 is a diagram illustrating the distribution of the temperature gradient G c each optimal plane temperature gradient G in the single crystal center (r).
  • Figure 5 is a diagram illustrating the distribution of the optimum temperature gradient ratio G c / G e in accordance with the temperature gradient G c of the single crystal center.
  • FIG. 1 is a schematic diagram illustrating a situation in which various defects occur based on the Bornkov theory.
  • FIG. 2 is a schematic diagram showing the relationship between the pulling speed and the defect distribution during single crystal growth.
  • FIG. 3 is a diagram showing the relationship between the stress ⁇ mean at the center of the single crystal and the critical V / G.
  • Figure 4 is
  • FIG. 6 is a diagram exemplifying a distribution state of the optimal in-plane temperature gradient G (r) for each stress ⁇ mean_c at the center of the single crystal.
  • Figure 7 is a diagram illustrating the distribution of the optimum temperature gradient ratio G c / G e in accordance with the stress sigma Mean_c monocrystalline center.
  • FIG. 8 is a diagram schematically showing a configuration of a single crystal growing apparatus to which the silicon single crystal growing method of the present invention can be applied.
  • Figure 9 is a graph showing the relationship between the gap H and the temperature gradient ratio G c / G e between the liquid surface of the thermal shield 10 and the raw material melt 9.
  • FIG. 10 is a flowchart showing a process for manufacturing a silicon single crystal.
  • FIG. 10 is a flowchart showing a process for manufacturing a silicon single crystal.
  • FIG. 11 is a schematic sectional view showing the shape of a silicon single crystal ingot.
  • FIG. 12 is a schematic diagram for explaining the relationship between the gap profile and the crystal defect distribution during the crystal pulling step, and particularly shows the case of conventional gap constant control.
  • FIG. 13 is a schematic diagram for explaining the relationship between the gap profile and the crystal defect distribution during the crystal pulling step, and particularly shows the case of the variable gap control of the present invention.
  • FIG. 14 is a block diagram of a variable gap control function for describing a method of calculating a crucible lifting speed.
  • Critical V / G formula introducing stress effect
  • the pulling speed (hereinafter also referred to as “critical pulling speed”) aimed at growing a defect-free crystal is defined as V cri (unit: mm / min), and a single crystal solid-liquid
  • the critical V cri / G which is the ratio, can be obtained by introducing the effect of stress acting on the single crystal during single crystal growth.
  • the vicinity of the solid-liquid interface of the single crystal means that the temperature of the single crystal ranges from the melting point to 1350 ° C.
  • is a stress coefficient
  • ⁇ mean is an average stress (unit: MPa) in the single crystal.
  • MPa average stress
  • ⁇ rr , ⁇ ⁇ , and ⁇ zz of the stress acting on each of the three surfaces are extracted, and these are summed and divided by three.
  • a positive mean stress ⁇ mean means a tensile stress
  • a negative mean compressive stress is extracted, and these are summed and divided by three.
  • the above equation (2) expresses the relationship between the one-dimensional critical V cri / G and the average stress ( ⁇ mean ). In order to grow a defect-free crystal, it is perpendicular to the pulling axis direction of the single crystal. You need to think in the plane.
  • ⁇ mean (r) is the average stress (unit: MPa) near the solid-liquid interface at a position of radius r from the center of the single crystal, and the average in-plane near the solid-liquid interface of the single crystal. 3 shows a stress distribution.
  • the temperature gradient G (r) at the position of the radius r can be expressed by the following equation (4).
  • G (r) V cri / ( ⁇ + ⁇ ⁇ ⁇ mean (r)) (4)
  • the temperature gradient G (r) indicates the distribution of the temperature gradient in a plane orthogonal to the pulling axis direction of the single crystal. Therefore, in order to grow a defect-free crystal, the optimal in-plane temperature gradient G ( Although it is desired to obtain the distribution of r), it is difficult to predict the distribution of the average stress ⁇ mean (r) in the plane. Another problem is that the distribution of the in-plane average stress ⁇ mean (r) varies depending on conditions.
  • the condition of the hot zone was changed by changing the gap between the lower end of the heat shield surrounding the single crystal and the liquid level of the raw material melt in the quartz crucible (hereinafter, also referred to as “liquid level gap”).
  • liquid level gap the liquid level of the raw material melt in the quartz crucible
  • the condition change of the solid-liquid interface shape the height in the direction of the pulling axis from the liquid surface of the raw material melt to the center of the solid-liquid interface (hereinafter, also referred to as “interface height”) was changed.
  • the stress average stress was calculated based on the temperature distribution in the single crystal obtained by the recalculation.
  • n (r) 0.000000524 ⁇ r 3 ⁇ 0.000134 ⁇ r 2 + 0.00173 ⁇ r + 0.986 (7)
  • n (0) 1 from the above equation (6).
  • n (0) 1 from the above equation (6).
  • ⁇ mean (r) 0
  • n (e) It is 0 according to equation (6).
  • the in-plane temperature gradient G (r) can be expressed by the following equation (11).
  • G (r) [( ⁇ + ⁇ ⁇ n (0) ⁇ ( ⁇ 15.879 ⁇ G (0) +38.57))) / ( ⁇ + ⁇ ⁇ n (r) ⁇ ( ⁇ 15.879 ⁇ G (0) +38. 57))] ⁇ G (0) (11)
  • n (0) is 1 as described above.
  • the in-plane temperature gradient G (r) can be expressed by the above equation (4), and its standardized temperature gradient ratio (G (r) / G (0 )),
  • the following equation (12) is derived from equation (4).
  • the in-plane temperature gradient G (r) can be expressed by the following equation (13).
  • G (r) [( ⁇ + ⁇ ⁇ n (0) ⁇ ⁇ mean (0)) / ( ⁇ + ⁇ ⁇ n (r) ⁇ ⁇ mean (0))] ⁇ G (0) (13)
  • n (0) is 1 as described above.
  • the optimum distribution of the in-plane temperature gradient G (r) can be calculated using the above equation (13). It can be said that it can be grasped.
  • the main management indicator for growing a defect-free crystal it is the ratio G c / G e between the temperature gradient G e of the outer peripheral portion of the temperature gradient G c and the single crystal in the center portion of the single crystal.
  • the temperature gradient ratio G c / distribution of G e is, for example, as shown in FIG.
  • FIG. 5 is a diagram illustrating the distribution of the optimum temperature gradient ratio G c / G e in accordance with the temperature gradient G c of the single crystal center.
  • G c / G e 0.1769 ⁇ G c +0.5462 (14)
  • the temperature gradient ratio G c / G e is less than “0.9 ⁇ A” or exceeds “1.1 ⁇ A”, the growth of defect-free crystals becomes unstable. More preferably, the temperature gradient ratio G c / G e is equal to or greater than “0.95 ⁇ A” and equal to or less than “1.05 ⁇ A”.
  • the main management indicator for growing a defect-free crystal there is a temperature gradient ratio G c / G e.
  • Figure 7 is a diagram illustrating the distribution of the optimum temperature gradient ratio G c / G e in accordance with the stress sigma Mean_c monocrystalline center.
  • the temperature gradient ratio G c / G e is less than “0.9 ⁇ B” or exceeds “1.1 ⁇ B”, the growth of defect-free crystals becomes unstable. More preferably, the temperature gradient ratio G c / G e is not less than “0.95 ⁇ B” and not more than “1.05 ⁇ B”.
  • the temperature gradient G c at the central portion of the single crystal is in the range of 2.0 to 4.0 ° C./mm when a single crystal having a diameter of 310 mm is to be grown. Inside. This is because if it is out of this range, various point defects such as OSF, COP and LD occur. A more preferred range of the temperature gradient G c of the single crystal center is 2.5 ⁇ 3.5 °C / mm.
  • the distribution of the stress ⁇ mean (r) in the vicinity of the solid-liquid interface of the single crystal has a regularity
  • the distribution of the in-plane stress ⁇ mean (r) is the stress ⁇ mean_c limited to the center of the single crystal. or it can be grasped by the temperature gradient G c.
  • the stress sigma Mean_c temperature gradient G c or single crystal center portion of the single crystal heart for growing a defect-free crystal distribution of optimal plane temperature gradient G (r), further it is possible to grasp the optimum temperature gradient ratio G c / G e.
  • FIG. 8 is a diagram schematically showing the configuration of a single crystal growing apparatus to which the method for growing a silicon single crystal of the present invention can be applied.
  • the single crystal growing apparatus has a chamber 1 at its outer periphery, and a crucible 2 is arranged at the center thereof.
  • the crucible 2 has a double structure including an inner quartz crucible 2a and an outer graphite crucible 2b, and is fixed to an upper end of a support shaft 3 that can rotate and move up and down. The rotation and elevating operation of the support shaft 3 are controlled by the crucible drive mechanism 14.
  • a resistance heating type heater 4 surrounding the crucible 2 is disposed outside the crucible 2, and a heat insulating material 5 is disposed outside the crucible 2 along the inner surface of the chamber 1.
  • a lifting shaft 6 such as a wire that rotates at a predetermined speed in the opposite direction or the same direction coaxially with the support shaft 3 is disposed.
  • a seed crystal 7 is attached to a lower end of the pulling shaft 6. The operation of the pulling shaft 6 is controlled by a crystal pulling mechanism 15.
  • a cylindrical water-cooled body 11 surrounding the silicon single crystal 8 being grown above the raw material melt 9 in the crucible 2 is arranged.
  • the water-cooled body 11 is made of, for example, a metal having good thermal conductivity such as copper, and is forcibly cooled by cooling water flowing inside.
  • the water-cooled body 11 plays a role of promoting cooling of the single crystal 8 during growth and controlling a temperature gradient in a pulling axial direction of a central portion of the single crystal and a peripheral portion of the single crystal.
  • a tubular heat shield 10 is arranged so as to surround the outer peripheral surface and the lower end surface of the water cooling body 11.
  • the heat shield 10 blocks the raw material melt 9 in the crucible 2 and the high-temperature radiant heat from the heater 4 and the side wall of the crucible 2 with respect to the single crystal 8 being grown, and also forms a solid-liquid interface as a crystal growth interface. In the vicinity of, the diffusion of heat to the low-temperature water-cooled body 11 is suppressed, and the temperature gradient of the central portion of the single crystal and the outer peripheral portion of the single crystal is controlled together with the water-cooled body 11.
  • a gas inlet 12 for introducing an inert gas such as Ar gas into the chamber 1 is provided at an upper portion of the chamber 1.
  • An exhaust port 13 for sucking and discharging the gas in the chamber 1 by driving a vacuum pump (not shown) is provided below the chamber 1.
  • the inert gas introduced into the chamber 1 from the gas inlet 12 descends between the growing single crystal 8 and the water-cooled body 11, and the inert gas flows between the lower end of the heat shield 10 and the liquid surface of the raw material melt 9. After passing through the gap (liquid level gap), it flows toward the outside of the heat shield 10 and further to the outside of the crucible 2, then descends outside the crucible 2, and is discharged from the exhaust port 13.
  • a camera 16 is provided outside the chamber 1, and the camera 16 photographs the vicinity of the solid-liquid interface through a viewing window provided in the chamber 1.
  • the image captured by the camera 16 is processed by the image processing unit 17, and the crystal diameter, the liquid level, and the like are obtained.
  • the control unit 18 controls the heater 4, the crucible driving mechanism 14, and the crystal pulling mechanism 15 based on the image processing result.
  • a solid raw material such as polycrystalline silicon filled in the crucible 2 is supplied to the heater 4 while the inside of the chamber 1 is maintained in an inert gas atmosphere under reduced pressure.
  • the material is melted by heating to form a raw material melt 9.
  • the lifting shaft 6 is lowered to immerse the seed crystal 7 in the raw material melt 9, and while rotating the crucible 2 and the lifting shaft 6 in a predetermined direction, the lifting shaft is rotated. 6 is gradually pulled up, thereby growing a single crystal 8 connected to the seed crystal 7.
  • the temperature gradient ratio Gc / Ge is set near the solid-liquid interface of the single crystal according to the above equation (a) or (b).
  • the pulling speed of the single crystal and the gap (height of the crucible 2) are adjusted so as to satisfy the conditions, and the single crystal is pulled.
  • the (14) or (15) to conform to the optimum temperature gradient ratio G c / G e which is obtained by the formula, the dimensions of the hot zone (thermal shield and a water-cooled body) shape And use this hot zone. Thereby, a defect-free crystal can be grown with high accuracy.
  • Figure 9 is a graph showing the relationship between the gap H and the temperature gradient ratio G c / G e between the liquid surface of the thermal shield 10 and the raw material melt 9, the horizontal axis represents the gap H, the vertical axis G c / Ge is shown.
  • the triangular plot points represent the value of the gap H and the temperature gradient ratio G c / G e obtained by a comprehensive heat transfer simulation in which a silicon single crystal having a diameter of 310 mm is grown using a hot zone having a specific structure.
  • the lower limit of 0.9 C and the upper limit of 1.1 A of G c / G e in equation (a) are indicated by two straight lines. The region sandwiched between these two straight lines is the range defined by the equation (a), that is, the range in which defect-free crystals can be obtained.
  • G c / G e satisfies the expression (a) when the gap H is in the range of about 58 to 70 mm.
  • the temperature gradient ratio G c / G e can be set within the range of 0.9A to 1.1A.
  • FIG. 10 is a flowchart showing a process for manufacturing the silicon single crystal 8.
  • FIG. 11 is a schematic sectional view showing the shape of a silicon single crystal ingot.
  • the manufacturing process of the silicon single crystal 8 includes a raw material melting step S11 in which a silicon raw material in the crucible 2 is heated and melted by the heater 4 to generate a raw material melt 9, A dipping step S12 in which the seed crystal attached to the tip end of the pulling shaft 6 is lowered to be immersed in the raw material melt 9, and the seed crystal is gradually pulled up while maintaining the state of contact with the raw material melt 9 to form a single crystal.
  • a crystal pulling step (S13 to S16) for growing a crystal is provided.
  • a necking step S13 for forming a neck portion 8a having a narrowed crystal diameter for eliminating dislocations
  • a shoulder growing step S14 for forming a shoulder portion 8b having a crystal diameter gradually increased with crystal growth.
  • a body part growing step S15 for forming the body part 8c in which the crystal diameter is kept constant
  • a tail part growing step S16 for forming the tail part 8d in which the crystal diameter is gradually reduced as the crystal grows.
  • a cooling step S17 of separating the silicon single crystal 8 from the melt surface to promote cooling is performed.
  • a silicon single crystal ingot 8I having a neck portion 8a, a shoulder portion 8b, a body portion 8c, and a tail portion 8d as shown in FIG. 11 is completed.
  • the type and distribution of the crystal defects contained in the silicon single crystal 8 depend on the ratio V / G of the crystal pulling speed V and the temperature gradient G, and the thermal environment in the furnace surrounding the crystal, that is, the hot zone Strongly influenced by Therefore, when the hot zone changes with the progress of the crystal pulling process, Gc / Ge cannot be kept within the range of 0.9A to 1.1A even if the gap is maintained at a constant distance. In some cases, a desired lifting speed margin cannot be secured.
  • a single crystal ingot having a sufficient length exists in the space above the silicon melt, but at the start of the body part growing step S15. Since there is no single crystal ingot, even if the heat shield 10 is provided, the heat distribution in the space is slightly different. Further, at the end of the body part growing step S15, the output of the heater 4 is increased to prevent the silicon melt from solidifying due to the decrease of the raw material melt 9 in the crucible, thereby changing the heat distribution around the crystal. . When the hot zone changes in this way, even if the gap is maintained at a constant distance, the thermal history in the crystal changes, so that the in-plane distribution of crystal defects cannot be maintained constant.
  • the gap is not always kept at a constant distance from the top to the bottom of the ingot, but is changed according to the crystal growth stage. That is, the gap is changed so that the temperature gradient ratio G c / G e satisfies the above equation (a) or (b).
  • the gap is changed so that the temperature gradient ratio G c / G e satisfies the above equation (a) or (b).
  • FIG. 12 and 13 are schematic diagrams for explaining the relationship between the gap profile and the crystal defect distribution during the crystal pulling step.
  • FIG. 12 shows the case of the conventional constant gap control
  • FIG. 13 shows the gap of the present invention.
  • Each shows the case of variable control.
  • Figure 12 As shown, at all times the gap constant control for maintaining a constant distance gap during crystal pulling process, the temperature gradient ratio G c / G e is changed by the hot zone is changed, the plane of the crystal defects The distribution cannot be kept constant. That is, the top of the silicon single crystal ingot 8I (Top), the center (Mid), in the bottom (Bot), by in-plane distribution of the crystal defects are different, in the center of the ingot 8I by optimizing the G c / G e desired Can be secured, but a desired lifting speed margin cannot be secured at the top and bottom of the ingot 8I.
  • the gap profile is set so that the gap gradually narrows as the crystal pulling process proceeds.
  • the gap profile according to the present embodiment includes a first gap constant control section S1 for maintaining the gap constant from the start of the crystal pulling step, and a first gap provided in the first half of the body part growing step to gradually reduce the gap.
  • a variable control section S2 a second gap constant control section S3 for maintaining a constant gap, a second gap variable control section S4 provided in the latter half of the body part cultivation step to gradually reduce the gap, and until the end of the crystal pulling step.
  • a third constant gap control section S5 for keeping the gap constant is provided in this order.
  • Such a gap profile is set in accordance with the change of the hot zone, thereby maintaining a constant in-plane distribution of crystal defects from the top to the bottom of the ingot 8I as shown in the drawing to increase the production yield of defect-free crystals. Becomes possible.
  • the above-described gap profile is an example, and is not limited to a profile in which the gap gradually narrows as the crystal pulling process proceeds. Therefore, for example, it is possible to gradually decrease the gap in the first gap variable control section S2 and gradually increase the gap in the second gap variable control section S4.
  • the temperature gradient at the outer periphery of the single crystal 8 is more susceptible to the change in the gap than the temperature gradient at the center. If the gap is wide, because radiation heat from the heater 4 is easily transmitted to the single crystal 8 through the gap, the temperature gradient G e of the outer peripheral portion of the single crystal 8 becomes relatively small, the temperature gradient ratio G c / G e Becomes larger. Conversely, when the gap is narrow, since the radiant heat from the heater 4 is not easily transmitted to the single crystal 8 is blocked by the thermal shield 10, the temperature gradient G e of the outer peripheral portion of the single crystal 8 becomes relatively large, the temperature gradient ratio G c / G e is small. Therefore, by adjusting the gap, it is possible to easily adjust the temperature gradient ratio G c / G e.
  • the variable gap control function has a crucible lifting speed calculation unit 30.
  • the crucible rising speed calculating unit 30 includes a quantitative value calculating unit 31 that calculates a quantitative value Vf of the crucible rising speed necessary to control the liquid level and the gap that change as the silicon single crystal 8 is pulled up.
  • a variation value calculating unit 32 that calculates a variation value Va of the crucible ascending speed from a change amount of the target value of the gap, and calculates a correction value Vadj of the crucible ascending speed from a difference between the target value of the gap and the measured value of the gap.
  • a crucible drive mechanism 14 outputs the liquid level rising speed V M, the position of the crucible using quantitative value V f, the total value of the variation value V a and the correction value V adj Control.
  • the crystal pulling mechanism 15 outputs a crystal length ⁇ L S (crystal pulling speed V S ).
  • the image processing unit 17 measures a gap between the liquid surface of the raw material melt 9 and the heat shield 10 and a crystal diameter from an image captured by the camera 16.
  • gap variable control controls the crucible lifting speed for each control period based on the crucible lifting speed V C calculated using shown below (16).
  • V C V f + V a + V adj (16)
  • Vf is a quantitative value of the crucible rise speed required to maintain the gap constant, and is a crucible rise speed used for constant gap control.
  • the V a is a variation value of a crucible lifting speed which is determined from the variation of the gap target value
  • V adj is the current correction value of the crucible lifting speed which is determined from the difference between the actual measured value and the target value of the gap.
  • V f ((P S ⁇ D S 2) ⁇ (P L ⁇ D C 2)) ⁇ (V S -V M) + V M ⁇ (17)
  • D S the current crystal diameter
  • D C inner diameter
  • V S of the current of the quartz crucible Current crystal pulling speed
  • V M increase the speed of the previous crucible (liquid level rising speed)
  • the liquid level rising speed V M is given by the following equation (18).
  • V M - ((P S ⁇ D S 2 ⁇ ⁇ L S) ⁇ (P L ⁇ D C 2 -P S ⁇ D S 2)) + ((P L ⁇ D C 2 ⁇ ⁇ L C) ⁇ (P L ⁇ D C 2 -P S ⁇ D S 2 )) (18) ⁇ L S : crystal movement amount per control cycle ⁇ L C : crucible movement amount per control cycle
  • crystal movement amount per one control cycle from the crystal pulling mechanism 15 acquires (crystal length) [Delta] L S, crystal diameter D S and the crystal moving amount [Delta] L C seeking the increase in crystal volume from calculates the decrease of the melt volume from increase and the crucible inner diameter D C of the crystal volume, further quantitative value V of the crucible lifting speed from decrease and the crucible inner diameter D C of the melt volume Calculate f .
  • the crystal diameter D S is obtained by the image processing unit 17 processing a single crystal appearing in an image captured by the camera 16.
  • Crucible inner diameter D C is a fixed value determined from the design dimensions of the quartz crucible 2a.
  • the gap is maintained at a constant distance.
  • the liquid level rising speed V M of the current crystal pulling speed V S is greater if the crucible ascent speed of the quantitative value V f than is smaller than the liquid level rise velocity V M, contrary to the liquid level rising speed V M is currently the crystal pulling speed V S if smaller crucible ascent speed of the quantitative value V f than is larger than the liquid level rise velocity V M, it is possible to keep the gap constant.
  • V a of the crucible lifting speed is given by the following equation (19).
  • V a (H pf — i ⁇ H pf — i + 1 ) ⁇ T (19)
  • Hpf_i is the current (i-th) gap target value (mm)
  • Hpf_i + 1 is the gap target value (mm) after one control cycle (i + 1-th).
  • the gap target value is set, for example, according to the crystal length, and the crystal length after one control cycle can be obtained from the increment of the crystal length obtained by multiplying the current crystal pulling speed V S by the control cycle T (min).
  • the control cycle T is not particularly limited, but can be set to, for example, 2 minutes.
  • variation value V a of the crucible lifting speed is to be determined from the difference between the current gap target value H pf_i + 1 after the gap target value H Pf_i and one control period.
  • the correction value Vadj of the crucible ascending speed is represented by the following equation (20).
  • V adj (H pf — i ⁇ H i ) ⁇ T ⁇ k (20)
  • Hi is the current gap measurement value (mm), preferably a moving average value instead of the latest single value.
  • the calculation of the quantitative value V f of the crucible lifting speed is required exact value of the inner diameter D C of the quartz crucible 2a.
  • the quartz crucible 2a softens near the melting point of silicon and may be deformed during pulling, the value of the gap deviates from the target value.
  • the gap value deviates from the target value due to various other factors. Therefore, in the present embodiment, the gap is actually measured from the position of the mirror image of the heat shield 10 reflected on the melt surface, and the gap control error is calculated from the crucible rising speed calculated from the decrease amount of the raw material melt 9. Then, the gap is controlled with high accuracy by adding the correction value Vadj of the rising speed of the quartz crucible 2a for eliminating this control error to the quantitative value Vf .
  • the crucible ascending speed V C is determined by the quantitative value V f of the crucible ascending speed required to maintain the gap constant, and the fluctuation value V a of the crucible ascending speed obtained from the change in the gap target value. It consists of the sum of the correction value V adj of the crucible ascending speed obtained from the difference between the target value of the gap and the actual measurement value, and the change in the gap target value that can be obtained from the gap profile is based on the quantitative value.
  • the fluctuation of the crucible ascending speed correction value Vadj can be made as small as possible.
  • the role of the correction value V adj of the crucible ascending speed is specialized only for the correction for eliminating the difference between the target value of the gap and the measured value, so that the amplitude of the crucible ascending speed is prevented from increasing. And stable control of the crucible ascent speed is made possible.
  • the method for growing a silicon single crystal includes gap variable control for pulling up the single crystal while changing the gap between the liquid surface of the raw material melt and the heat shield,
  • G c the temperature gradient near the solid-liquid interface at the center
  • G e the temperature gradient near the solid-liquid interface at the outer periphery of the single crystal
  • A 0.1769 ⁇ G c +0.5462
  • the temperature gradient ratio G Since the single crystal is pulled while changing the gap under the condition that c / Ge is 0.9 ⁇ A ⁇ Gc / Ge ⁇ 1.1 ⁇ A, the stress acting on the single crystal during the growth of the single crystal is reduced. It is possible to grow a defect-free crystal with high accuracy while taking this into consideration.
  • a gap profile in which a gap target value changes according to the crystal length is prepared, and the crucible rising speed V C is adjusted so that the gap measurement value follows the gap profile during crystal growth. Control, the crucible rise rate amplitude can be prevented from increasing, and as a result, a high-quality silicon single crystal with little change in the in-plane distribution of crystal defects from the top to the bottom of the silicon single crystal can be produced. Can be manufactured well.
  • the quantitative value Vf of the crucible rising speed required to maintain the gap constant and the variation value Vf of the crucible rising speed required to change the gap from the change in the target value of the gap. and a, since using the total value of the correction value V adj of the crucible increasing speed required in order to correct the difference between the target value and the measured value of the gap as the crucible lifting speed V C, the crucible lifting speed caused by a gap variable control Control instability can be improved, and thereby the crystal acquisition rate can be improved.
  • the present invention is not limited to such values, and correction values calculated by various calculation methods can be used.
  • the method of growing a silicon single crystal has been described as an example, but the present invention is not limited to this, and can be applied to various single crystals pulled by the CZ method.
  • the method for growing a silicon single crystal of the present invention is extremely useful for growing a defect-free crystal free of various point defects such as OSF, COP and LD.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

[Problem] To provide a method for growing a silicon single crystal, wherein a defect-free crystal can be grown accurately by considering the effect of the stress acting on the single crystal during single crystal growth. [Solution] Provided is a method for pulling a single crystal 8 using a single-crystal growth apparatus comprising: a water-cooled body 11 surrounding a growing single crystal 8; and a heat shield 10 surrounding the outer circumferential surface and the bottom surface of the water-cooled body 11. The method comprises a variable gap control for pulling up the single crystal while changing the gap between the liquid surface of a raw material melt 9 and the heat shield 10. The single crystal 8 is pulled up under conditions satisfying 0.9×A≤Gc/Ge≤1.1×A, where A=0.1769×Gc+0.5462, Gc represents the temperature gradient in the pulling axis direction in the vicinity of the solid-liquid interface at the central portion of the single crystal 8, and Ge represents the temperature gradient in the pulling axis direction in the vicinity of the solid-liquid interface at the outer circumferential portion of the single crystal 8.

Description

シリコン単結晶の育成方法Silicon single crystal growth method
 本発明は、チョクラルスキー法(以下、「CZ法」という)によるシリコン単結晶の育成方法に関し、特に、OSF(Oxidation Induced Stacking Fault:酸化誘起積層欠陥)や、COP(Crystal Originated Particle)などの赤外線散乱体欠陥や、LD(Interstitial-type Large Dislocation)などの転位クラスタといった点欠陥が発生しない無欠陥結晶を育成する方法に関する。 The present invention relates to a method for growing a silicon single crystal by the Czochralski method (hereinafter, referred to as a “CZ method”), and particularly to an OSF (Oxidation Induced Stacking Fault), a COP (Crystal Originated Particle) and the like. The present invention relates to a method for growing a defect-free crystal free from point defects such as infrared scatterer defects and dislocation clusters such as LD (Interstitial-type Large Dislocation).
 半導体デバイスの基板材料となるシリコン単結晶の多くはCZ法により製造されている。CZ法では、減圧下の不活性ガス雰囲気に維持されたチャンバ内において、石英ルツボに貯溜されたシリコンの原料融液に種結晶を浸漬し、浸漬した種結晶を徐々に引き上げる。これにより、種結晶の下端に連なってシリコン単結晶が育成される。 多 く Most of silicon single crystals used as substrate materials for semiconductor devices are manufactured by the CZ method. In the CZ method, a seed crystal is immersed in a silicon raw material melt stored in a quartz crucible in a chamber maintained in an inert gas atmosphere under reduced pressure, and the immersed seed crystal is gradually pulled up. Thereby, a silicon single crystal is grown continuously from the lower end of the seed crystal.
 図1は、ボロンコフ理論に基づいて各種の欠陥が発生する状況を説明する模式図である。同図に示すように、ボロンコフ理論では、引き上げ速度をV(mm/min)、インゴット(シリコン単結晶)の固液界面近傍における引き上げ軸方向の温度勾配をG(℃/mm)としたとき、それらの比であるV/Gを横軸にとり、空孔型点欠陥の濃度と格子間シリコン型点欠陥の濃度を同一の縦軸にとって、V/Gと点欠陥濃度との関係を模式的に表現している。そして、空孔型点欠陥の発生する領域と格子間シリコン型点欠陥の発生する領域の境界が存在し、その境界がV/Gによって決定されることを説明している。以下では、「引き上げ軸方向の温度勾配」を単に「温度勾配」と記すことがある。 FIG. 1 is a schematic diagram for explaining a situation in which various defects occur based on the Bornkov theory. As shown in the figure, in the Bornkov theory, when the pulling speed is V (mm / min) and the temperature gradient in the pulling axis direction near the solid-liquid interface of the ingot (silicon single crystal) is G (° C./mm), The relationship between V / G and the point defect concentration is schematically shown by plotting the ratio of V / G, which is their ratio, on the horizontal axis and the concentration of vacancy type point defects and the concentration of interstitial silicon point defects on the same vertical axis. expressing. Further, it is described that there is a boundary between a region where a vacancy type point defect occurs and a region where an interstitial silicon type point defect occurs, and the boundary is determined by V / G. Hereinafter, the “temperature gradient in the pulling-up axis direction” may be simply referred to as “temperature gradient”.
 空孔型点欠陥は、結晶格子を構成すべきシリコン原子が欠けた空孔を根源とするものであり、この空孔型点欠陥の凝集体の代表格がCOPである。格子間シリコン型点欠陥は、結晶格子間にシリコン原子が入り込んだ格子間シリコンを根源とするものであり、この格子間シリコン型点欠陥の凝集体の代表格がLDである。 Vacancy-type point defects originate from vacancies lacking silicon atoms that constitute a crystal lattice, and COP is a typical example of an aggregate of the vacancy-type point defects. The interstitial silicon type point defect originates from interstitial silicon in which silicon atoms enter between crystal lattices, and a typical example of the aggregate of the interstitial silicon type point defect is LD.
 図1に示すように、V/Gが臨界点を上回ると、空孔型点欠陥が優勢な単結晶が育成される。その反面、V/Gが臨界点を下回ると、格子間シリコン型点欠陥が優勢な単結晶が育成される。このため、V/Gが臨界点より小さい(V/G)1を下回る範囲では、単結晶内で格子間シリコン型点欠陥が支配的であって、格子間シリコン点欠陥の凝集体が存在する領域[I]が出現し、LDが発生する。V/Gが臨界点より大きい(V/G)2を上回る範囲では、単結晶内で空孔型点欠陥が支配的であって、空孔型点欠陥の凝集体が存在する領域[V]が出現し、COPが発生する。 As shown in FIG. 1, when V / G exceeds the critical point, a single crystal in which vacancy type point defects predominate is grown. On the other hand, when V / G falls below the critical point, a single crystal in which interstitial silicon type point defects predominate is grown. For this reason, in the range where V / G is lower than the critical point (V / G) 1 , interstitial silicon type point defects are dominant in the single crystal, and aggregates of interstitial silicon point defects are present. An area [I] appears, and LD occurs. In the range where V / G is larger than the critical point (V / G) 2 , vacancy-type point defects are dominant in the single crystal, and the region [V] where vacancy-type point defect aggregates are present Appears, and COP occurs.
 V/Gが臨界点~(V/G)1の範囲では単結晶内で格子間シリコン型点欠陥が凝集体として存在しない無欠陥領域[PI]が、臨界点~(V/G)2の範囲では単結晶内で空孔型点欠陥が凝集体としては存在しない無欠陥領域[PV]が出現し、OSFを含めCOPおよびLDのいずれの欠陥も発生しない。ここで、無欠陥領域[PI]と[PV]を合わせて無欠陥領域[P]と呼ぶ。無欠陥領域[PV]に隣接する領域[V](V/Gが(V/G)2~(V/G)3の範囲)には、OSF核を形成するOSF領域が存在する。 When V / G is in the range of the critical point to (V / G) 1 , the defect-free region [P I ] in which the interstitial silicon type point defect does not exist as an aggregate in the single crystal is in the range of the critical point to (V / G) 2. In this range, a defect-free region [P V ] in which vacancy-type point defects do not exist as aggregates appears in the single crystal, and neither COP nor LD defects including OSFs are generated. Here, the defect-free area [P I ] and [P V ] are collectively referred to as a defect-free area [P]. An OSF region forming an OSF nucleus exists in a region [V] (V / G is in the range of (V / G) 2 to (V / G) 3 ) adjacent to the defect-free region [P V ].
 図2は、単結晶育成時の引き上げ速度と欠陥分布との関係を示す模式図である。同図に示す欠陥分布は、引き上げ速度Vを徐々に低下させながらシリコン単結晶を育成し、育成した単結晶を中心軸(引き上げ軸)に沿って切断して板状試片とし、その表面にCuを付着させ、熱処理を施した後、その板状試片をX線トポグラフ法により観察した結果を示している。 FIG. 2 is a schematic diagram showing the relationship between the pulling speed and the defect distribution during single crystal growth. The defect distribution shown in the figure is obtained by growing a silicon single crystal while gradually lowering the pulling speed V, cutting the grown single crystal along a central axis (pulling axis) into a plate-shaped specimen, The figure shows the results of observing the plate-like specimen by X-ray topography after Cu was attached and heat treatment was performed.
 図2に示すように、引き上げ速度を高速にして育成を行った場合、単結晶の引き上げ軸方向と直交する面内全域にわたり、空孔型点欠陥の凝集体(COP)が存在する領域[V]が発生する。引き上げ速度を低下させていくと、単結晶の外周部からOSF領域がリング状に出現する。このOSF領域は、引き上げ速度の低下に伴ってその径が次第に縮小し、引き上げ速度がV1になると消滅する。これに伴い、OSF領域に代わって無欠陥領域[P](領域[PV])が出現し、単結晶の面内全域が無欠陥領域[P]で占められる。そして、引き上げ速度がV2までに低下すると、格子間シリコン型点欠陥の凝集体(LD)が存在する領域[I]が出現し、ついには無欠陥領域[P](領域[PI])に代わって単結晶の面内全域が領域[I]で占められる。 As shown in FIG. 2, when the growth is performed at a high pulling speed, the region [V] where the aggregate of vacancy type point defects (COP) exists over the entire surface in a plane orthogonal to the pulling axis direction of the single crystal. ] Occurs. As the pulling speed is reduced, the OSF region appears in a ring shape from the outer periphery of the single crystal. The OSF region is a diameter with decreasing pulling rate gradually reduced, pulling rate disappears and becomes V 1. Accordingly, a defect-free region [P] (region [P V ]) appears instead of the OSF region, and the entire in-plane region of the single crystal is occupied by the defect-free region [P]. When the pulling speed is reduced to V 2 , a region [I] in which an aggregate (LD) of interstitial silicon-type point defects is present, and finally a defect-free region [P] (region [P I ]) Instead, the entire in-plane region of the single crystal is occupied by the region [I].
 昨今、半導体デバイスの微細化の発展により、シリコンウェーハに要求される品質がますます高まっている。このため、シリコンウェーハの素材であるシリコン単結晶の製造においては、OSFやCOPやLDなどの各種の点欠陥を排除し、面内全域にわたって無欠陥領域[P]が分布する無欠陥結晶を育成する技術が強く望まれている。 品質 The quality required for silicon wafers has been increasing more and more recently due to the development of miniaturization of semiconductor devices. For this reason, in the production of a silicon single crystal, which is a raw material of a silicon wafer, various point defects such as OSF, COP, and LD are eliminated, and a defect-free crystal in which a defect-free region [P] is distributed over the entire in-plane region is grown. There is a strong need for a technology that does this.
 この要求に応えるには、シリコン単結晶を引き上げる際、前記図1および図2に示すように、ホットゾーン内でV/Gが、面内全域にわたり、格子間シリコン型点欠陥の凝集体が発生しない第1臨界点(V/G)1以上であって、空孔型点欠陥の凝集体が発生しない第2臨界点(V/G)2以下に確保されるように管理を行う必要がある。実操業では、引き上げ速度の狙いをV1とV2の間(例えば両者の中央値)に設定し、仮に育成中に引き上げ速度を変更したとしてもV1~V2の範囲(「引き上げ速度マージン」又は「PvPiマージン」という)に収まるように管理する。 In order to meet this demand, when pulling a silicon single crystal, as shown in FIGS. 1 and 2, V / G is generated in the hot zone, and aggregates of interstitial silicon type point defects are generated over the entire surface. It is necessary to perform management so as to secure the first critical point (V / G) 1 or higher and the second critical point (V / G) 2 or lower where no aggregate of vacancy type point defects is generated. . In actual operation, the aim of the pulling speed is set between V 1 and V 2 (for example, the median value of both), and even if the pulling speed is changed during the growth, the range of V 1 to V 2 (“pulling speed margin”) ”Or“ PvPi margin ”).
 また、温度勾配Gは、固液界面近傍のホットゾーンの寸法に依存することから、単結晶育成に先立ち、予めそのホットゾーンを適正に設計しておく。一般に、ホットゾーンは、育成中の単結晶を囲繞するように配置された水冷体と、この水冷体の外周面および下端面を包囲するように配置された熱遮蔽体とから構成される。ここで、ホットゾーンを設計するにあたっての管理指標としては、単結晶の中心部の温度勾配Gcと、単結晶の外周部の温度勾配Geが用いられる。そして、無欠陥結晶を育成するために、例えば特許文献1に開示された技術では、単結晶中心部の温度勾配Gcと単結晶外周部の温度勾配Geとの差ΔG(=Ge-Gc)が0.5℃/mm以内となるようにしている。 Further, since the temperature gradient G depends on the size of the hot zone near the solid-liquid interface, the hot zone is appropriately designed in advance before growing a single crystal. In general, the hot zone is composed of a water-cooled body arranged to surround the growing single crystal, and a heat shield arranged to surround the outer peripheral surface and lower end surface of the water-cooled body. Here, the management indicators in designing the hot zone, and the temperature gradient G c of the center portion of the single crystal, the temperature gradient G e of the outer peripheral portion of the single crystal is used. Then, in order to grow a defect-free crystal, for example, in the technique disclosed in Patent Document 1, the difference between the temperature gradient G e of the temperature gradient G c and the single crystal outer peripheral portion of the single crystal center ΔG (= G e - G c ) is set to be within 0.5 ° C./mm.
 ところで、近年、無欠陥結晶の育成で狙うべきV/G、すなわち臨界V/Gが、単結晶育成時に単結晶中に作用する応力によって変動することが分かってきている。このため、前記特許文献1に開示された技術では、その応力の効果をまったく考慮していないことから、完全な無欠陥結晶が得られない状況が少なからず起こる。 In recent years, it has been found that the V / G to be aimed at in growing a defect-free crystal, that is, the critical V / G fluctuates due to the stress acting on the single crystal during the growth of the single crystal. For this reason, in the technique disclosed in Patent Document 1, the effect of the stress is not taken into consideration at all, so that a situation in which a perfect defect-free crystal cannot be obtained occurs in some cases.
 この点、例えば特許文献2には、直径が300mm以上の単結晶を育成の対象とし、単結晶中の応力の効果を考慮して、単結晶中心部の温度勾配Gcと単結晶外周部の温度勾配Geとの比(以下、「温度勾配比」ともいう)Gc/Geを1.8よりも大きくする技術が開示されている。しかし、特許文献2に開示される技術では、単結晶中の応力の効果を考慮しているといえども、必ずしも完全な無欠陥結晶が得られるとは限らない。これは、温度勾配比Gc/Geの管理範囲が十分でないことによると考えられる。 In this regard, for example, Patent Document 2, the diameter is the subject of development over the single crystal 300 mm, taking into account the effect of the stress in the single crystal, the temperature gradient G c and the single crystal outer peripheral portion of the single crystal center the ratio of the temperature gradient G e (hereinafter, referred to as "temperature gradient ratio") G c / G e to be greater than 1.8 technique are disclosed. However, in the technique disclosed in Patent Document 2, even though the effect of stress in a single crystal is considered, a completely defect-free crystal is not always obtained. This is believed to be due to the management range of the temperature gradient ratio G c / G e is not sufficient.
特開平11-79889号公報JP-A-11-79889 特許第4819833号公報Japanese Patent No. 4819833
 本発明は、上記の問題に鑑みてなされたものであり、単結晶育成時に単結晶中に作用する応力の効果を考慮し、無欠陥結晶を精度良く育成することができるシリコン単結晶の育成方法を提供することを目的とする。 The present invention has been made in view of the above problems, and takes into account the effect of stress acting on a single crystal during single crystal growth, and a method of growing a silicon single crystal capable of growing a defect-free crystal with high accuracy. The purpose is to provide.
 本発明者らは、上記目的を達成するため、単結晶育成時に単結晶中に作用する応力に着目し、この応力を加味した数値解析を行って鋭意検討を重ねた。その結果、下記の知見を得た。 In order to achieve the above object, the present inventors focused on stress acting in a single crystal during single crystal growth, and conducted intensive studies by performing numerical analysis taking this stress into account. As a result, the following findings were obtained.
 図3は、単結晶中に作用する応力σmeanと臨界V/Gの関係を示す図である。ホットゾーンの条件を種々変更した総合伝熱解析により、臨界V/Gと平均応力σmeanとの関係を調査した結果、図3に示すように、(臨界V/G)=0.17+0.0013×σmeanであることが見出された。 FIG. 3 is a diagram showing the relationship between the stress σ mean acting in the single crystal and the critical V / G. As a result of investigating the relationship between the critical V / G and the average stress σ mean by comprehensive heat transfer analysis in which the conditions of the hot zone were variously changed, as shown in FIG. 3, (critical V / G) = 0.17 + 0.0013 × σ mean was found.
 単結晶の固液界面近傍における応力の分布には規則性があり、その面内応力の分布は、単結晶中心部に限定した応力または温度勾配により把握することができる。その結果、単結晶中の応力の効果を加味して、単結晶中心部の温度勾配または単結晶中心部の応力を定めることにより、無欠陥結晶を育成するのに最適な面内温度勾配の分布、さらにはその最適な温度勾配比Gc/Geを把握することが可能となる。そして、その最適な温度勾配比Gc/Geを管理指標として用いることにより、ホットゾーンの適正な寸法設計が行えるようになり、しかも、その最適な温度勾配比Gc/Geを基準とした管理範囲を設定することにより、無欠陥結晶を精度良く育成することが可能になる。 The distribution of stress in the vicinity of the solid-liquid interface of a single crystal has a regularity, and the distribution of in-plane stress can be grasped by a stress or a temperature gradient limited to the central portion of the single crystal. As a result, the temperature gradient at the center of the single crystal or the stress at the center of the single crystal is determined in consideration of the effect of the stress in the single crystal, so that the distribution of the in-plane temperature gradient optimal for growing a defect-free crystal is determined. further it becomes possible to grasp the optimum temperature gradient ratio G c / G e. Then, by using the optimum temperature gradient ratio G c / G e as a management indicator, able to operate properly dimensioning of the hot zone, moreover, a reference to its optimum temperature gradient ratio G c / G e By setting the control range, it is possible to grow a defect-free crystal with high accuracy.
 本発明は、上記の知見に基づいて完成させたものであり、チャンバ内に配置したルツボ内の原料融液から直径が300mm以上の単結晶を引き上げるCZ法によるシリコン単結晶の育成方法であって、育成中の単結晶を囲繞する水冷体を配置するとともに、この水冷体の外周面および下端面を包囲する熱遮蔽体を配置した単結晶育成装置を用い、育成中の単結晶を囲繞する水冷体を配置するとともに、この水冷体の外周面および下端面を包囲する熱遮蔽体を配置した単結晶育成装置を用い、前記原料融液の液面と前記原料融液の上方に配置された前記熱遮蔽体との間のギャップを変化させながら前記単結晶を引き上げるギャップ可変制御を含み、前記単結晶の中心部の固液界面近傍における引き上げ軸方向の温度勾配をGc、前記単結晶の外周部の固液界面近傍における引き上げ軸方向の温度勾配をGe、A=0.1769×Gc+0.5462とするとき、0.9×A≦Gc/Ge≦1.1×Aを満足する条件で前記単結晶の引き上げを行うことを特徴とする。 The present invention has been completed based on the above findings, and is a method for growing a silicon single crystal by the CZ method, in which a single crystal having a diameter of 300 mm or more is pulled from a raw material melt in a crucible disposed in a chamber, Using a single crystal growing apparatus in which a water-cooled body surrounding the growing single crystal is arranged and a heat shield surrounding the outer peripheral surface and the lower end face of the water-cooled body is arranged, the water-cooled surrounding the growing single crystal is used. With the body disposed, using a single crystal growing apparatus in which a heat shield surrounding the outer peripheral surface and the lower end surface of the water-cooled body is disposed, and the liquid surface of the raw material melt and the raw material melt are disposed above the raw material melt. includes a gap variable control pulling the single crystal while changing the gap between the heat shield, the temperature gradient in the pulling axis direction in the solid-liquid interface near the central portion of the single crystal G c, out of the single crystal The temperature gradient G e solid-liquid of the pulling axis direction in the vicinity of the interface section, when the A = 0.1769 × G c +0.5462, a 0.9 × A ≦ G c / G e ≦ 1.1 × A The single crystal is pulled under a satisfactory condition.
 従来の知見では、無欠陥結晶を取得できる引き上げ速度マージンを広げるためには結晶内温度勾配の面内分布をとにかく均一にしたほうがよいと考えられていた。しかしながら、本願発明者らの新たな知見によれば、結晶内の応力状態に応じた結晶内温度勾配の面内分布にしなければ引き上げ速度マージンを広げることができないことが明らかとなった。本発明によれば、単結晶中の応力の効果を考慮して温度勾配比Gc/Geの管理範囲を適正に設定するので、単結晶のトップからボトムまで無欠陥結晶を精度良く育成することが可能になる。さらに、本発明によって製造された単結晶を用いることにより、直径が300mm又は450mmの高品質なウエーハを効率よく製造することが可能となる。なお、ウェーハの直径が300mmの場合、単結晶(直胴部)の直径を301mm以上340mm以下にすることが好ましく、ウェーハの直径が450mmの場合、単結晶(直胴部)の直径を451mm以上510mm以下にすることが好ましい。 According to the conventional knowledge, it is considered that it is better to make the in-plane distribution of the temperature gradient in the crystal uniform anyway in order to widen the pulling speed margin for obtaining a defect-free crystal. However, according to the present inventors' new knowledge, it has become clear that the pulling speed margin cannot be widened unless the in-plane temperature gradient in the crystal according to the stress state in the crystal is used. According to the present invention, since the properly setting the control range of the temperature gradient ratio G c / G e in consideration of the effects of stress in the single crystal, a defect-free crystals from the top of the single crystal to the bottom of accurately grown It becomes possible. Furthermore, by using the single crystal manufactured according to the present invention, a high-quality wafer having a diameter of 300 mm or 450 mm can be efficiently manufactured. When the diameter of the wafer is 300 mm, it is preferable that the diameter of the single crystal (straight body) is 301 mm or more and 340 mm or less. When the diameter of the wafer is 450 mm, the diameter of the single crystal (straight body) is 451 mm or more. It is preferable to set it to 510 mm or less.
 本発明において、前記ギャップ可変制御は、前記単結晶の引き上げに伴って変化する前記ギャップを一定の距離に維持するために必要なルツボ上昇速度の定量値と、前記ギャップの目標値の変化分から求められる前記ルツボ上昇速度の変動値と、前記ギャップの前記目標値と実際の計測値との差分から求められる前記ルツボ上昇速度の補正値との合計値を用いて前記ルツボ上昇速度を制御することが好ましい。この制御では、ルツボ上昇速度の補正値の役割がギャップの目標値と計測値の乖離をなくすための補正だけに特化したものとなるため、ルツボ上昇速度振幅量が大きくなることを防止することができる。したがって、シリコン単結晶のトップからボトムまでの結晶熱履歴の安定化を実現して、結晶欠陥の面内分布の変化を抑えることができ、高品質なシリコン単結晶の製造歩留まりを高めることができる。 In the present invention, the gap variable control is determined from a quantitative value of a crucible rising speed required to maintain the gap, which changes with the pulling of the single crystal, at a constant distance, and a change in a target value of the gap. Controlling the crucible ascent speed using a total value of the fluctuation value of the crucible ascent speed and a correction value of the crucible ascent speed obtained from a difference between the target value and the actual measurement value of the gap. preferable. In this control, since the role of the correction value of the crucible ascending speed is specialized only to the correction for eliminating the gap between the target value of the gap and the measured value, it is possible to prevent the amplitude of the crucible ascending speed from increasing. Can be. Therefore, stabilization of the crystal heat history from the top to the bottom of the silicon single crystal can be realized, the change in the in-plane distribution of crystal defects can be suppressed, and the production yield of a high-quality silicon single crystal can be increased. .
 本発明において、前記ギャップの目標値の変化分は、前記単結晶の引き上げに伴って変化する結晶長とギャップの目標値との関係を規定したギャッププロファイルから求めることが好ましい。これにより、ルツボ上昇速度の変動値を容易かつ正確に求めることができ、ルツボ上昇速度の安定性をさらに向上させることができる。 In the present invention, it is preferable that the change in the target value of the gap is obtained from a gap profile that defines the relationship between the crystal length and the target value of the gap that change with the pulling of the single crystal. As a result, the fluctuation value of the crucible rising speed can be easily and accurately obtained, and the stability of the crucible rising speed can be further improved.
 本発明において、前記補正値は、前記ギャッププロファイルから求められる前記ギャップの目標値と前記ギャップの計測値との差分から求めることが好ましい。これにより、ルツボ上昇速度の補正値を容易かつ正確に求めることができ、ルツボ上昇速度の安定性をさらに向上させることができる。 In the present invention, it is preferable that the correction value is obtained from a difference between a target value of the gap obtained from the gap profile and a measured value of the gap. Thereby, the correction value of the crucible rising speed can be easily and accurately obtained, and the stability of the crucible rising speed can be further improved.
 本発明による単結晶の製造方法は、前記単結晶の引き上げに伴う前記単結晶の体積の増加分から前記融液の体積の減少分を求め、前記融液の体積の減少分及び前記ルツボの内径から前記定量値を求めることが好ましい。これにより、ルツボ上昇速度の定量値を簡単かつ正確に求めることができる。 The method for producing a single crystal according to the present invention determines the decrease in the volume of the melt from the increase in the volume of the single crystal accompanying the pulling of the single crystal, and calculates the decrease in the volume of the melt and the inner diameter of the crucible. Preferably, the quantitative value is determined. Thus, the quantitative value of the crucible rising speed can be easily and accurately obtained.
 本発明において、前記ギャッププロファイルは、前記ギャップを一定の距離に維持する少なくとも一つのギャップ一定制御区間と、前記ギャップを徐々に変化させる少なくとも一つのギャップ可変制御区間とを含むことが好ましい。この場合、前記ギャップ可変制御区間は、前記単結晶のボディ部育成工程の後半であって前記ギャップ一定制御区間の後に設けられていてもよく、前記単結晶のボディ部育成工程の前半であって前記ギャップ一定制御区間の前に設けられていてもよい。さらに、前記ギャッププロファイルは、前記ギャップを徐々に変化させる第1及び第2のギャップ可変制御区間を含み、前記第1のギャップ可変制御区間は、前記単結晶のボディ部育成工程の前半であって前記ギャップ一定制御区間の前に設けられており、前記第2のギャップ可変制御区間は、前記単結晶のボディ部育成工程の後半であって前記ギャップ一定制御区間の後に設けられていることが好ましい。これにより、単結晶のトップからボトムまで結晶欠陥の面内分布をほぼ一定にすることができ、これにより高品質な単結晶の製造歩留まりを高めることができる。なお、ボディ部育成工程の前半とは、単結晶のボディ部の全長を2等分して前記ボディ部の前半部分の単結晶を製造する工程を意味し、ボディ部育成工程の後半とは、前記ボディ部の後半部分の単結晶を製造する工程を意味する。 In the present invention, it is preferable that the gap profile includes at least one gap constant control section for maintaining the gap at a constant distance and at least one gap variable control section for gradually changing the gap. In this case, the gap variable control section may be provided in the latter half of the single crystal body part growing step and after the constant gap control section, and may be provided in the first half of the single crystal body part growing step. It may be provided before the constant gap control section. Further, the gap profile includes first and second gap variable control sections for gradually changing the gap, and the first gap variable control section is a first half of the single crystal body part growing step. Preferably, the second gap variable control section is provided before the constant gap control section, and the second variable gap control section is provided after the constant gap control section in the latter half of the single crystal body portion growing step. . As a result, the in-plane distribution of crystal defects from the top to the bottom of the single crystal can be made substantially constant, thereby increasing the production yield of high-quality single crystals. The first half of the body part growing step means a step of manufacturing a single crystal of the first half part of the body part by dividing the entire length of the body part of the single crystal into two equal parts. This means a step of manufacturing a single crystal in the latter half of the body part.
 本発明による単結晶の製造方法は、カメラで撮影した前記融液の液面に映る前記熱遮蔽体の鏡像の位置から前記ギャップの計測値を算出することが好ましい。これにより、ギャップの計測値を安価な構成により簡単かつ正確に求めることができる。 In the method for producing a single crystal according to the present invention, it is preferable that the measured value of the gap is calculated from the position of the mirror image of the heat shield reflected on the liquid surface of the melt taken by a camera. As a result, the measured value of the gap can be easily and accurately obtained with an inexpensive configuration.
 本発明のシリコン単結晶の育成方法によれば、単結晶中の応力の効果を考慮し、温度勾配比Gc/Geの管理範囲を適正に設定しているので、無欠陥結晶を精度良く育成することが可能になる。 According to the method for growing a silicon single crystal of the present invention, taking into account the effect of the stress in the single crystal, since the properly setting the control range of the temperature gradient ratio G c / G e, the defect-free crystal accurately It is possible to nurture.
図1は、ボロンコフ理論に基づいて各種の欠陥が発生する状況を説明する模式図である。FIG. 1 is a schematic diagram illustrating a situation in which various defects occur based on the Bornkov theory. 図2は、単結晶育成時の引き上げ速度と欠陥分布との関係を示す模式図である。FIG. 2 is a schematic diagram showing the relationship between the pulling speed and the defect distribution during single crystal growth. 図3は、単結晶中心部の応力σmeanと臨界V/Gの関係を示す図である。FIG. 3 is a diagram showing the relationship between the stress σ mean at the center of the single crystal and the critical V / G. 図4は、単結晶中心部の温度勾配Gcごとに最適な面内温度勾配G(r)の分布状況を例示する図である。Figure 4 is a diagram illustrating the distribution of the temperature gradient G c each optimal plane temperature gradient G in the single crystal center (r). 図5は、単結晶中心部の温度勾配Gcに応じた最適な温度勾配比Gc/Geの分布状況を例示する図である。Figure 5 is a diagram illustrating the distribution of the optimum temperature gradient ratio G c / G e in accordance with the temperature gradient G c of the single crystal center. 図6は、単結晶中心部の応力σmean_cごとに最適な面内温度勾配G(r)の分布状況を例示する図である。FIG. 6 is a diagram exemplifying a distribution state of the optimal in-plane temperature gradient G (r) for each stress σ mean_c at the center of the single crystal. 図7は、単結晶中心部の応力σmean_cに応じた最適な温度勾配比Gc/Geの分布状況を例示する図である。Figure 7 is a diagram illustrating the distribution of the optimum temperature gradient ratio G c / G e in accordance with the stress sigma Mean_c monocrystalline center. 図8は、本発明のシリコン単結晶の育成方法を適用できる単結晶育成装置の構成を模式的に示す図である。FIG. 8 is a diagram schematically showing a configuration of a single crystal growing apparatus to which the silicon single crystal growing method of the present invention can be applied. 図9は、熱遮蔽体10と原料融液9の液面との間のギャップHと温度勾配比Gc/Geとの関係を示すグラフである。Figure 9 is a graph showing the relationship between the gap H and the temperature gradient ratio G c / G e between the liquid surface of the thermal shield 10 and the raw material melt 9. 図10は、シリコン単結晶の製造工程を示すフローチャートである。FIG. 10 is a flowchart showing a process for manufacturing a silicon single crystal. 図11は、シリコン単結晶インゴットの形状を示す略断面図である。FIG. 11 is a schematic sectional view showing the shape of a silicon single crystal ingot. 図12は、結晶引き上げ工程中のギャッププロファイルと結晶欠陥分布との関係を説明するための模式図であって、特に従来のギャップ一定制御の場合を示している。FIG. 12 is a schematic diagram for explaining the relationship between the gap profile and the crystal defect distribution during the crystal pulling step, and particularly shows the case of conventional gap constant control. 図13は、結晶引き上げ工程中のギャッププロファイルと結晶欠陥分布との関係を説明するための模式図であって、特に本発明のギャップ可変制御の場合を示している。FIG. 13 is a schematic diagram for explaining the relationship between the gap profile and the crystal defect distribution during the crystal pulling step, and particularly shows the case of the variable gap control of the present invention. 図14は、ルツボ上昇速度の算出方法について説明するためのギャップ可変制御機能のブロック図である。FIG. 14 is a block diagram of a variable gap control function for describing a method of calculating a crucible lifting speed.
 以下に、本発明のシリコン単結晶の育成方法について、その実施形態を詳述する。 Hereinafter, embodiments of the method for growing a silicon single crystal of the present invention will be described in detail.
 1.応力効果を導入した臨界V/Gの式
 無欠陥結晶を育成するときに狙う引き上げ速度(以下、「臨界引き上げ速度」ともいう)をVcri(単位:mm/min)とし、単結晶の固液界面近傍における引き上げ軸方向の温度勾配をG(単位:℃/mm)としたとき、その比である臨界Vcri/Gは、単結晶育成時に単結晶中に作用する応力の効果を導入すれば、下記の(1)式で定義することができる。ここでいう単結晶の固液界面近傍とは、単結晶の温度が融点から1350℃までの範囲のことをいう。
 Vcri/G=(V/G)σmean=0+α×σmean  ・・・(1)
1. Critical V / G formula introducing stress effect The pulling speed (hereinafter also referred to as “critical pulling speed”) aimed at growing a defect-free crystal is defined as V cri (unit: mm / min), and a single crystal solid-liquid Assuming that the temperature gradient in the pulling axis direction near the interface is G (unit: ° C./mm), the critical V cri / G, which is the ratio, can be obtained by introducing the effect of stress acting on the single crystal during single crystal growth. , Can be defined by the following equation (1). Here, the vicinity of the solid-liquid interface of the single crystal means that the temperature of the single crystal ranges from the melting point to 1350 ° C.
V cri / G = (V / G) σmean = 0 + α × σ mean (1)
 同式中、(V/G)σmean=0は、結晶中の平均応力がゼロであるときの臨界V/Gを示す定数である。αは応力係数であり、σmeanは単結晶中の平均応力(単位:MPa)である。例えば、直径が310mmの単結晶を育成対象とする場合、(V/G)σmean=0は0.17であり、αは0.0013である。ここで、平均応力σmeanは、育成時に単結晶の体積変化を及ぼす成分の応力に相当し、数値解析により把握できるものであり、単結晶中の微小部分における径方向に沿った面、円周方向に沿った面、および引き上げ軸方向と直交する面の3面それぞれに作用する応力の垂直成分σrr、σθθ、およびσzzを抽出し、これらを合計して3で割ったものである。ここで、平均応力σmeanの正は引張り応力を、負は圧縮応力を意味する。 In the equation, (V / G) σmean = 0 is a constant indicating the critical V / G when the average stress in the crystal is zero. α is a stress coefficient, and σ mean is an average stress (unit: MPa) in the single crystal. For example, when a single crystal having a diameter of 310 mm is to be grown, (V / G) σmean = 0 is 0.17 and α is 0.0013. Here, the average stress σ mean corresponds to the stress of the component that changes the volume of the single crystal during growth, and can be grasped by numerical analysis. The vertical components σ rr , σ θθ , and σ zz of the stress acting on each of the three surfaces, that is, the surface along the direction and the surface perpendicular to the direction of the pulling axis are extracted, and these are summed and divided by three. . Here, a positive mean stress σ mean means a tensile stress, and a negative mean compressive stress.
 (V/G)σmean=0は定数であるので、上記(1)式は、(V/G)σmean=0をξと置き換えて下記の(2)式となる。
 Vcri/G=ξ+α×σmean  ・・・(2)
Since (V / G) σmean = 0 is a constant, the above equation (1) becomes the following equation (2) by replacing (V / G) σmean = 0 with ξ.
V cri / G = ξ + α × σ mean (2)
 上記(2)式は、一次元での臨界Vcri/Gと平均応力(σmean)の関係を表しているが、無欠陥結晶を育成するためには、単結晶の引き上げ軸方向と直交する面内で考える必要がある。 The above equation (2) expresses the relationship between the one-dimensional critical V cri / G and the average stress (σ mean ). In order to grow a defect-free crystal, it is perpendicular to the pulling axis direction of the single crystal. You need to think in the plane.
 2.応力効果を導入した臨界V/Gの式の単結晶面内分布への拡張
 単結晶の中心から半径r(単位:mm)の位置において、臨界引き上げ速度Vcri(単位:mm/min)と、半径rの位置での温度勾配G(r)(単位:℃/mm)との比である臨界Vcri/G(r)は、応力効果を導入すれば、上記(2)式に準じて、下記の(3)式で定義することができる。
 Vcri/G(r)=ξ+α×σmean(r)  ・・・(3)
2. Expansion of the Critical V / G Equation Introducing the Stress Effect to Single Crystal In-Plane Distribution At a position of radius r (unit: mm) from the center of the single crystal, a critical pulling speed V cri (unit: mm / min), The critical V cri / G (r), which is the ratio to the temperature gradient G (r) (unit: ° C./mm) at the position of the radius r, can be obtained by applying the stress effect according to the above equation (2). It can be defined by the following equation (3).
V cri / G (r) = ξ + α × σ mean (r) (3)
 同式中、σmean(r)は、単結晶の中心から半径rの位置の固液界面近傍での平均応力(単位:MPa)であり、単結晶の固液界面近傍の面内での平均応力の分布を示す。同式から、半径rの位置での温度勾配G(r)は、下記の(4)式で表すことができる。
 G(r)=Vcri/(ξ+α×σmean(r))  ・・・(4)
In the equation, σ mean (r) is the average stress (unit: MPa) near the solid-liquid interface at a position of radius r from the center of the single crystal, and the average in-plane near the solid-liquid interface of the single crystal. 3 shows a stress distribution. From the equation, the temperature gradient G (r) at the position of the radius r can be expressed by the following equation (4).
G (r) = V cri / (ξ + α × σ mean (r)) (4)
 ここで、温度勾配G(r)は、単結晶の引き上げ軸方向と直交する面内での温度勾配の分布を示すので、無欠陥結晶を育成するために、その最適な面内温度勾配G(r)の分布を求めたいが、面内での平均応力σmean(r)の分布の予測が難しいことが問題となる。また、その面内平均応力σmean(r)の分布が条件によって異なるのも問題である。 Here, the temperature gradient G (r) indicates the distribution of the temperature gradient in a plane orthogonal to the pulling axis direction of the single crystal. Therefore, in order to grow a defect-free crystal, the optimal in-plane temperature gradient G ( Although it is desired to obtain the distribution of r), it is difficult to predict the distribution of the average stress σ mean (r) in the plane. Another problem is that the distribution of the in-plane average stress σ mean (r) varies depending on conditions.
 そこで、面内平均応力σmean(r)の予測方法を検討した。 Therefore, a method for predicting the in-plane average stress σ mean (r) was examined.
 2-1.単結晶中心部の温度勾配と平均応力(応力)の関係
 単結晶中心部の温度勾配G(0)(=Gc)と単結晶中心部の平均応力σmean(0)(=σmean_c)の関係を検討した。この検討は、以下のように行った。直径が310mmの単結晶を育成する場合を前提にし、まずホットゾーンの条件を種々変更した総合伝熱解析により、各ホットゾーン条件での単結晶表面の輻射熱を算出し、次いで算出された各ホットゾーン条件での輻射熱と、種々変更した固液界面形状を境界条件として、各境界条件での単結晶内の温度を再計算した。ここで、ホットゾーンの条件変更としては、単結晶を包囲する熱遮蔽体の下端と石英ルツボ内の原料融液の液面とのギャップ(以下、「液面ギャップ」ともいう)を変更した。また、固液界面形状の条件変更としては、原料融液の液面から固液界面の中心部までの引き上げ軸方向の高さ(以下、「界面高さ」ともいう)を変更した。そして、各条件について、再計算によって得られた単結晶内温度の分布に基づき、応力(平均応力)の計算を実施した。
2-1. Relationship between the temperature gradient at the center of the single crystal and the average stress (stress) The temperature gradient G (0) (= G c ) at the center of the single crystal and the average stress σ mean (0) (= σ mean_c ) at the center of the single crystal Considered the relationship. This examination was performed as follows. Assuming that a single crystal having a diameter of 310 mm is grown, first, the radiant heat of the single crystal surface under each hot zone condition is calculated by comprehensive heat transfer analysis in which the conditions of the hot zone are variously changed. With the radiant heat under the zone conditions and the solid-liquid interface shape changed variously as the boundary conditions, the temperature in the single crystal under each boundary condition was recalculated. Here, the condition of the hot zone was changed by changing the gap between the lower end of the heat shield surrounding the single crystal and the liquid level of the raw material melt in the quartz crucible (hereinafter, also referred to as “liquid level gap”). As the condition change of the solid-liquid interface shape, the height in the direction of the pulling axis from the liquid surface of the raw material melt to the center of the solid-liquid interface (hereinafter, also referred to as “interface height”) was changed. For each condition, the stress (average stress) was calculated based on the temperature distribution in the single crystal obtained by the recalculation.
 その解析結果から、単結晶中心部の平均応力σmean(0)(=σmean_c)は、界面高さにかかわることなく、単結晶中心部の温度勾配G(0)(=Gc)に比例し、両者の間に下記の(5)式の関係があることが分かった。
 σmean(0)=-15.879×G(0)+38.57  ・・・(5)
From the analysis results, the average stress σ mean (0) (= σ mean_c ) at the center of the single crystal is proportional to the temperature gradient G (0) (= G c ) at the center of the single crystal, regardless of the interface height. However, it was found that there was a relationship represented by the following equation (5).
σ mean (0) = − 15.879 × G (0) +38.57 (5)
 2-2.面内平均応力の標準化
 引き続き、上記の数値解析により、面内平均応力σmean(r)の分布を標準化することを検討した。ここでは、下記の(6)式で示すとおり、半径rの位置での平均応力σmean(r)と、単結晶中心部の平均応力σmean(0)(=σmean_c)との比n(r)を標準化応力比とした。
 n(r)=σmean(r)/σmean_c  ・・・(6)
2-2. Standardization of In-Plane Average Stress Subsequently, standardization of the distribution of the in-plane average stress σ mean (r) was examined by the above-described numerical analysis. Here, as shown by the following equation (6), the ratio n () between the average stress σ mean (r) at the position of the radius r and the average stress σ mean (0) (= σ mean_c ) at the center of the single crystal. r) was defined as a standardized stress ratio.
n (r) = σ mean (r) / σ mean_c (6)
 その結果、標準化応力比n(r)は、液面Gapと界面高さが異なっても、半径rの位置に応じてほぼ同じ傾向であり、下記の(7)式で表すことができることが分かった。
 n(r)=0.000000524×r3-0.000134×r2+0.00173×r+0.986  ・・・(7)
As a result, it can be seen that the standardized stress ratio n (r) has almost the same tendency according to the position of the radius r even when the interface height is different from the liquid level Gap, and can be expressed by the following equation (7). Was.
n (r) = 0.000000524 × r 3 −0.000134 × r 2 + 0.00173 × r + 0.986 (7)
 ただし、単結晶の中心部(r=0)では、σmean(r)=σmean_cであるので、n(0)は上記(6)式より1である。単結晶の外周部(r=e(eは、例えば直径が310mmの単結晶を対象とする場合、155mmである))では、σmean(r)=0であるので、n(e)は上記(6)式より0である。 However, since σ mean (r) = σ mean_c at the center of the single crystal (r = 0), n (0) is 1 from the above equation (6). At the outer periphery of the single crystal (r = e (e is, for example, 155 mm when a single crystal having a diameter of 310 mm is targeted)), since σ mean (r) = 0, n (e) is It is 0 according to equation (6).
 そうすると、上記(6)式および上記(5)式から、面内平均応力σmean(r)は、下記の(8)式で表すことができる。
 σmean(r)=n(r)×σmean_c
=n(r)×(-15.879×G(0)+38.57)  ・・・(8)
Then, from the above equations (6) and (5), the in-plane average stress σ mean (r) can be expressed by the following equation (8).
σ mean (r) = n (r) × σ mean_c
= N (r) × (-15.879 × G (0) +38.57) (8)
 同式より、面内平均応力σmean(r)の分布は、単結晶中心部の平均応力σmean(0)(=σmean_c)が分かれば把握することができ、いいかえれば、単結晶中心部の温度勾配G(0)(=Gc)が分かれば把握することができるといえる。 From the equation, the distribution of the in-plane average stress σ mean (r) can be grasped if the average stress σ mean (0) (= σ mean_c ) at the center of the single crystal is known. It can be understood that the temperature gradient G (0) (= Gc ) can be grasped.
 3.最適な面内温度勾配G(r)の分布の導出
 直径が310mmの単結晶を育成対象とする場合、面内温度勾配G(r)は、上記(4)式に上記(8)式を代入して、下記の(9)式で表すことができる。
 G(r)=Vcri/(ξ+α×n(r)×(-15.879×G(0)+38.57))  ・・・(9)
3. Derivation of distribution of optimum in-plane temperature gradient G (r) When a single crystal having a diameter of 310 mm is to be grown, the in-plane temperature gradient G (r) is obtained by substituting the above equation (8) into the above equation (4). Then, it can be expressed by the following equation (9).
G (r) = V cri /(ξ+α×n(r)×(−15.879×G(0)+38.57)) (9)
 ここで、温度勾配G(r)の分布を標準化することを検討し、半径rの位置での温度勾配G(r)と、単結晶中心部の温度勾配G(0)との比(G(r)/G(0))を標準化温度勾配比とすると、上記(9)式より、下記の(10)式が導かれる。
 G(r)/G(0)=[Vcri/(ξ+α×n(r)×(-15.879×G(0)+38.57))]/[Vcri/(ξ+α×n(0)×(-15.879×G(0)+38.57))]
=(ξ+α×n(0)×(-15.879×G(0)+38.57))/(ξ+α×n(r)×(-15.879×G(0)+38.57))  ・・・(10)
Here, consideration is given to standardizing the distribution of the temperature gradient G (r), and the ratio (G (0) between the temperature gradient G (r) at the position of the radius r and the temperature gradient G (0) at the center of the single crystal. r) / G (0)) as the standardized temperature gradient ratio, the following equation (10) is derived from the above equation (9).
G (r) / G (0) = [V cri /(ξ+α×n(r)×(−15.879×G(0)+38.57))]/[V cri / (ξ + α × n (0)) × (-15.879 × G (0) +38.57))]
= (Ξ + α × n (0) × (−15.879 × G (0) +38.57)) / (ξ + α × n (r) × (−15.879 × G (0) +38.57))・ (10)
 同式から、面内温度勾配G(r)は、下記の(11)式で表すことができる。
 G(r)=[(ξ+α×n(0)×(-15.879×G(0)+38.57))/(ξ+α×n(r)×(-15.879×G(0)+38.57))]×G(0)  ・・・(11)
From the equation, the in-plane temperature gradient G (r) can be expressed by the following equation (11).
G (r) = [(ξ + α × n (0) × (−15.879 × G (0) +38.57))) / (ξ + α × n (r) × (−15.879 × G (0) +38. 57))] × G (0) (11)
 上記(10)式、(11)式中、n(0)は、上述のとおりに1である。n(r)は上記(7)式より表されるものである。ただし、上述のとおり、単結晶の外周部(r=e)におけるn(r)、すなわちn(e)は0である。 中 In the formulas (10) and (11), n (0) is 1 as described above. n (r) is represented by the above equation (7). However, as described above, n (r) at the outer peripheral portion (r = e) of the single crystal, that is, n (e) is 0.
 このため、単結晶中心部の温度勾配G(0)(=Gc)を定めることにより、上記(11)式を用いて、最適な面内温度勾配G(r)の分布を把握することができるといえる。 Therefore, by determining the temperature gradient G (0) (= G c ) at the center of the single crystal, it is possible to grasp the optimal distribution of the in-plane temperature gradient G (r) using the above equation (11). It can be said that it can be done.
 また、直径が310mmの単結晶を育成対象とする場合、面内温度勾配G(r)は、上記(4)式で表すことができ、その標準化温度勾配比(G(r)/G(0))として、同(4)式より、下記の(12)式が導かれる。
 G(r)/G(0)=[Vcri/(ξ+α×n(r)×σmean(0))]/[Vcri/(ξ+α×n(0)×σmean(0))]
=(ξ+α×n(0)×σmean(0))/(ξ+α×n(r)×σmean(0))  ・・・(12)
When a single crystal having a diameter of 310 mm is to be grown, the in-plane temperature gradient G (r) can be expressed by the above equation (4), and its standardized temperature gradient ratio (G (r) / G (0 )), The following equation (12) is derived from equation (4).
G (r) / G (0) = [V cri / (ξ + α × n (r) × σ mean (0))] / [V cri / (ξ + α × n (0) × σ mean (0))]
= (Ξ + α × n (0) × σ mean (0)) / (ξ + α × n (r) × σ mean (0)) (12)
 同式から、面内温度勾配G(r)は、下記の(13)式で表すことができる。
 G(r)=[(ξ+α×n(0)×σmean(0))/(ξ+α×n(r)×σmean(0))]×G(0)  ・・・(13)
From the equation, the in-plane temperature gradient G (r) can be expressed by the following equation (13).
G (r) = [(ξ + α × n (0) × σ mean (0)) / (ξ + α × n (r) × σ mean (0))] × G (0) (13)
 上記(12)式、(13)式中、n(0)は、上述のとおりに1である。n(r)は上記(7)式より表されるものである。ただし、上述のとおり、単結晶の外周部(r=e)におけるn(r)、すなわちn(e)は0である。 中 In the formulas (12) and (13), n (0) is 1 as described above. n (r) is represented by the above equation (7). However, as described above, n (r) at the outer peripheral portion (r = e) of the single crystal, that is, n (e) is 0.
 このため、単結晶中心部の平均応力、すなわち応力σmean(0)(=σmean_c)を定めることにより、上記(13)式を用いて、最適な面内温度勾配G(r)の分布を把握することができるといえる。 Therefore, by determining the average stress at the central portion of the single crystal, that is, the stress σ mean (0) (= σ mean_c ), the optimum distribution of the in-plane temperature gradient G (r) can be calculated using the above equation (13). It can be said that it can be grasped.
 4.単結晶の中心部の温度勾配Gcと外周部の温度勾配Geとの比Gc/Geの最適範囲
 直径が310mmの単結晶を育成対象とする場合、上記(11)式により、単結晶中心部の温度勾配Gcごとに、単結晶中心からの半径rの位置に応じた最適な温度勾配G(r)を算出すると、その面内温度勾配G(r)の分布状況は、例えば図4に示すようになる。
4. If the optimum range diameter ratio G c / G e between the temperature gradient G e of the temperature gradient G c and the outer peripheral portion of the central portion of the single crystal is a growing interest for single crystal 310 mm, by the above equation (11), a single When the optimum temperature gradient G (r) corresponding to the position of the radius r from the center of the single crystal is calculated for each temperature gradient Gc at the center of the crystal, the distribution of the in-plane temperature gradient G (r) is, for example, As shown in FIG.
 図4は、単結晶中心部の温度勾配Gcごとに最適な面内温度勾配G(r)の分布状況を例示する図である。同図から、単結晶中心部の温度勾配G(0)(=Gc)を定めることにより、最適な面内温度勾配G(r)の分布を把握できることがわかる。 Figure 4 is a diagram illustrating the distribution of the temperature gradient G c each optimal plane temperature gradient G in the single crystal center (r). From the figure, it can be seen that by determining the temperature gradient G (0) (= G c ) at the central portion of the single crystal, the optimum distribution of the in-plane temperature gradient G (r) can be grasped.
 ここで、無欠陥結晶を育成するための主たる管理指標としては、単結晶の中心部の温度勾配Gcと単結晶の外周部の温度勾配Geとの比Gc/Geがある。上記(11)式による算出結果から、単結晶中心部の温度勾配G(0)(=Gc)に応じて最適な温度勾配比Gc/Geを算出すると、その温度勾配比Gc/Geの分布状況は、例えば図5に示すようになる。 Here, the main management indicator for growing a defect-free crystal, it is the ratio G c / G e between the temperature gradient G e of the outer peripheral portion of the temperature gradient G c and the single crystal in the center portion of the single crystal. When the optimum temperature gradient ratio G c / G e is calculated based on the temperature gradient G (0) (= G c ) at the central portion of the single crystal from the calculation result by the above equation (11), the temperature gradient ratio G c / distribution of G e is, for example, as shown in FIG.
 図5は、単結晶中心部の温度勾配Gcに応じた最適な温度勾配比Gc/Geの分布状況を例示する図である。同図は、直径が310mmの単結晶を育成対象とする場合、すなわちr=e=155mmの場合を示している。同図から、単結晶中心部の温度勾配Gcと最適な温度勾配比Gc/Ge(=G(0)/G(150))との間には相関があり、下記の(14)式で表される一次式の関係が成り立つことが明らかとなった。
 Gc/Ge=0.1769×Gc+0.5462  ・・・(14)
Figure 5 is a diagram illustrating the distribution of the optimum temperature gradient ratio G c / G e in accordance with the temperature gradient G c of the single crystal center. The figure shows a case where a single crystal having a diameter of 310 mm is to be grown, that is, a case where r = e = 155 mm. From the figure, there is a correlation between the single crystal center temperature gradient G c and optimal temperature gradient ratio G c / G e (= G (0) / G (150)), the following (14) It became clear that the relationship of the linear expression represented by the expression holds.
G c / G e = 0.1769 × G c +0.5462 (14)
 このため、単結晶中心部の温度勾配G(0)(=Gc)を定めることにより、上記(14)式を用いて、最適な温度勾配比Gc/Geを把握することができる。そして、同(14)式の関係が成り立つので、下記の(a)式を満足するGc/Geの条件で単結晶の引き上げを行えば、無欠陥結晶を精度良く育成することが可能になる。
 0.9×A≦Gc/Ge≦1.1×A  ・・・(a)
 上記(a)式中、Aは0.1769×Gc+0.5462である。
Therefore, by determining the temperature gradient G in the single crystal center (0) (= G c), using the above equation (14), it is possible to grasp the optimum temperature gradient ratio G c / G e. Then, since the relation of the equation (14) holds, if the single crystal is pulled under the condition of G c / G e that satisfies the following equation (a), a defect-free crystal can be grown with high accuracy. Become.
0.9 × A ≦ G c / G e ≦ 1.1 × A (a)
In the above formula (a), A is 0.1769 × G c +0.5462.
 温度勾配比Gc/Geは、「0.9×A」未満であるか、または「1.1×A」を超えると、無欠陥結晶の育成が不安定になる。より好ましくは、温度勾配比Gc/Geは、「0.95×A」以上、「1.05×A」以下である。 If the temperature gradient ratio G c / G e is less than “0.9 × A” or exceeds “1.1 × A”, the growth of defect-free crystals becomes unstable. More preferably, the temperature gradient ratio G c / G e is equal to or greater than “0.95 × A” and equal to or less than “1.05 × A”.
 また、直径が310mmの単結晶を育成対象とする場合、上記(13)式により、単結晶中心部の応力σmean_cごとに、単結晶中心からの半径rの位置に応じた最適な温度勾配G(r)を算出すると、その面内温度勾配G(r)の分布状況は、例えば図6に示すようになる。 When a single crystal having a diameter of 310 mm is to be grown, the optimum temperature gradient G according to the position of the radius r from the center of the single crystal for each stress σ mean_c at the center of the single crystal by the above equation (13). When (r) is calculated, the distribution of the in-plane temperature gradient G (r) is, for example, as shown in FIG.
 図6は、単結晶中心部の応力σmean_cごとに最適な面内温度勾配G(r)の分布状況を例示する図である。同図から、単結晶中心部の応力σmean(0)(=σmean_c)を定めることにより、最適な面内温度勾配G(r)の分布を把握できることがわかる。 FIG. 6 is a diagram exemplifying a distribution state of the optimal in-plane temperature gradient G (r) for each stress σ mean_c at the center of the single crystal. From the figure, it can be seen that the optimum distribution of the in-plane temperature gradient G (r) can be grasped by determining the stress σ mean (0) (= σ mean_c ) at the central portion of the single crystal.
 ここで、無欠陥結晶を育成するための主たる管理指標としては、温度勾配比Gc/Geがある。上記(13)式による算出結果から、単結晶中心部の応力σmean_(0)(=σmean_c)に応じて最適な温度勾配比Gc/Geを算出すると、その温度勾配比Gc/Geの分布状況は、例えば図7に示すようになる。 Here, the main management indicator for growing a defect-free crystal, there is a temperature gradient ratio G c / G e. When the optimum temperature gradient ratio G c / G e is calculated from the calculation result by the above equation (13) according to the stress σ mean — (0) (= σ meanc ) at the central portion of the single crystal, the temperature gradient ratio G c / distribution of G e is, for example, as shown in FIG.
 図7は、単結晶中心部の応力σmean_cに応じた最適な温度勾配比Gc/Geの分布状況を例示する図である。同図は、直径が310mmの単結晶を育成対象とする場合、すなわちr=e=155mmの場合を示している。同図から、単結晶中心部の応力σmean_cと最適な温度勾配比Gc/Ge(=G(0)/G(150))との間には相関があり、下記の(15)式で表される一次式の関係が成り立つことが明らかとなった。
 Gc/Ge=-0.0111×σmean_c+0.976  ・・・(15)
Figure 7 is a diagram illustrating the distribution of the optimum temperature gradient ratio G c / G e in accordance with the stress sigma Mean_c monocrystalline center. The figure shows a case where a single crystal having a diameter of 310 mm is to be grown, that is, a case where r = e = 155 mm. From the figure, there is a correlation between the stress σ mean_c at the central portion of the single crystal and the optimum temperature gradient ratio G c / G e (= G (0) / G (150)). It has been clarified that the linear relationship represented by
G c / G e = −0.0111 × σ mean_c +0.976 (15)
 このため、単結晶中心部の応力σmean_(0)(=σmean_c)を定めることにより、上記(15)式を用いて、最適な温度勾配比Gc/Geを把握することができる。そして、同(15)式の関係が成り立つので、下記の(b)式を満足するGc/Geの条件で単結晶の引き上げを行えば、無欠陥結晶を精度良く育成することが可能になる。
 0.9×B≦Gc/Ge≦1.1×B  ・・・(b)
 上記(b)式中、Bは-0.0111×σmean_c+0.976である。
Therefore, by determining the stress sigma Mean_ single crystal center (0) (= σmean_c), using the above equation (15), it is possible to grasp the optimum temperature gradient ratio G c / G e. Then, since the relationship of the formula (15) holds, if the single crystal is pulled under the condition of G c / G e that satisfies the following formula (b), a defect-free crystal can be grown with high accuracy. Become.
0.9 × B ≦ G c / G e ≦ 1.1 × B (b)
In the above equation (b), B is −0.0111 × σ mean_c +0.976.
 温度勾配比Gc/Geは、「0.9×B」未満であるか、または「1.1×B」を超えると、無欠陥結晶の育成が不安定になる。より好ましくは、温度勾配比Gc/Geは、「0.95×B」以上、「1.05×B」以下である。 If the temperature gradient ratio G c / G e is less than “0.9 × B” or exceeds “1.1 × B”, the growth of defect-free crystals becomes unstable. More preferably, the temperature gradient ratio G c / G e is not less than “0.95 × B” and not more than “1.05 × B”.
 ただし、上記(a)式、(b)式において、単結晶中心部の温度勾配Gcは、直径が310mmの単結晶を育成対象とする場合、2.0~4.0℃/mmの範囲内とする。この範囲を外れると、OSFやCOPやLDなどの各種の点欠陥が発生するからである。より好ましい単結晶中心部の温度勾配Gcの範囲は、2.5~3.5℃/mmである。 However, in the above formulas (a) and (b), the temperature gradient G c at the central portion of the single crystal is in the range of 2.0 to 4.0 ° C./mm when a single crystal having a diameter of 310 mm is to be grown. Inside. This is because if it is out of this range, various point defects such as OSF, COP and LD occur. A more preferred range of the temperature gradient G c of the single crystal center is 2.5 ~ 3.5 ℃ / mm.
 以上のとおり、単結晶の固液界面近傍における応力σmean(r)の分布には規則性があり、その面内応力σmean(r)の分布は、単結晶中心部に限定した応力σmean_cまたは温度勾配Gcにより把握することができる。その結果、点欠陥の発生に影響を及ぼす応力の効果を加味して、単結晶中心部の温度勾配Gcまたは単結晶中心部の応力σmean_cを定めることにより、無欠陥結晶を育成するのに最適な面内温度勾配G(r)の分布、さらにはその最適な温度勾配比Gc/Geを把握することが可能となる。そして、その最適な温度勾配比Gc/Geを管理指標として用いることにより、ホットゾーンの適正な寸法設計が行えるようになり、しかも、その最適な温度勾配比Gc/Geを基準とした管理範囲を設定することにより、無欠陥結晶を精度良く育成することが可能になる。 As described above, the distribution of the stress σ mean (r) in the vicinity of the solid-liquid interface of the single crystal has a regularity, and the distribution of the in-plane stress σ mean (r) is the stress σ mean_c limited to the center of the single crystal. or it can be grasped by the temperature gradient G c. As a result, in consideration of the effect of the impact stress on the generation of point defects, by determining the stress sigma Mean_c temperature gradient G c or single crystal center portion of the single crystal heart, for growing a defect-free crystal distribution of optimal plane temperature gradient G (r), further it is possible to grasp the optimum temperature gradient ratio G c / G e. Then, by using the optimum temperature gradient ratio G c / G e as a management indicator, able to operate properly dimensioning of the hot zone, moreover, a reference to its optimum temperature gradient ratio G c / G e By setting the control range, it is possible to grow a defect-free crystal with high accuracy.
 5.シリコン単結晶の育成
 図8は、本発明のシリコン単結晶の育成方法を適用できる単結晶育成装置の構成を模式的に示す図である。同図に示すように、単結晶育成装置は、その外郭をチャンバ1で構成され、その中心部にルツボ2が配置されている。ルツボ2は、内側の石英ルツボ2aと、外側の黒鉛ルツボ2bとから構成される二重構造であり、回転および昇降が可能な支持軸3の上端部に固定されている。支持軸3の回転および昇降動作はルツボ駆動機構14によって制御される。
5. FIG. 8 is a diagram schematically showing the configuration of a single crystal growing apparatus to which the method for growing a silicon single crystal of the present invention can be applied. As shown in FIG. 1, the single crystal growing apparatus has a chamber 1 at its outer periphery, and a crucible 2 is arranged at the center thereof. The crucible 2 has a double structure including an inner quartz crucible 2a and an outer graphite crucible 2b, and is fixed to an upper end of a support shaft 3 that can rotate and move up and down. The rotation and elevating operation of the support shaft 3 are controlled by the crucible drive mechanism 14.
 ルツボ2の外側には、ルツボ2を囲繞する抵抗加熱式のヒータ4が配設され、その外側には、チャンバ1の内面に沿って断熱材5が配設されている。ルツボ2の上方には、支持軸3と同軸上で逆方向または同一方向に所定の速度で回転するワイヤなどの引き上げ軸6が配されている。この引き上げ軸6の下端には種結晶7が取り付けられている。引き上げ軸6の動作は結晶引き上げ機構15によって制御される。 A resistance heating type heater 4 surrounding the crucible 2 is disposed outside the crucible 2, and a heat insulating material 5 is disposed outside the crucible 2 along the inner surface of the chamber 1. Above the crucible 2, a lifting shaft 6 such as a wire that rotates at a predetermined speed in the opposite direction or the same direction coaxially with the support shaft 3 is disposed. A seed crystal 7 is attached to a lower end of the pulling shaft 6. The operation of the pulling shaft 6 is controlled by a crystal pulling mechanism 15.
 チャンバ1内には、ルツボ2内の原料融液9の上方で育成中のシリコン単結晶8を囲繞する円筒状の水冷体11が配置されている。水冷体11は、例えば、銅などの熱伝導性の良好な金属からなり、内部に流通される冷却水により強制的に冷却される。この水冷体11は、育成中の単結晶8の冷却を促進し、単結晶中心部および単結晶外周部の引き上げ軸方向の温度勾配を制御する役割を担う。 (4) In the chamber 1, a cylindrical water-cooled body 11 surrounding the silicon single crystal 8 being grown above the raw material melt 9 in the crucible 2 is arranged. The water-cooled body 11 is made of, for example, a metal having good thermal conductivity such as copper, and is forcibly cooled by cooling water flowing inside. The water-cooled body 11 plays a role of promoting cooling of the single crystal 8 during growth and controlling a temperature gradient in a pulling axial direction of a central portion of the single crystal and a peripheral portion of the single crystal.
 さらに、水冷体11の外周面および下端面を包囲するように、筒状の熱遮蔽体10が配置されている。熱遮蔽体10は、育成中の単結晶8に対して、ルツボ2内の原料融液9やヒータ4やルツボ2の側壁からの高温の輻射熱を遮断するとともに、結晶成長界面である固液界面の近傍に対しては、低温の水冷体11への熱の拡散を抑制し、単結晶中心部および単結晶外周部の温度勾配を水冷体11とともに制御する役割を担う。 Furthermore, a tubular heat shield 10 is arranged so as to surround the outer peripheral surface and the lower end surface of the water cooling body 11. The heat shield 10 blocks the raw material melt 9 in the crucible 2 and the high-temperature radiant heat from the heater 4 and the side wall of the crucible 2 with respect to the single crystal 8 being grown, and also forms a solid-liquid interface as a crystal growth interface. In the vicinity of, the diffusion of heat to the low-temperature water-cooled body 11 is suppressed, and the temperature gradient of the central portion of the single crystal and the outer peripheral portion of the single crystal is controlled together with the water-cooled body 11.
 チャンバ1の上部には、Arガスなどの不活性ガスをチャンバ1内に導入するガス導入口12が設けられている。チャンバ1の下部には、図示しない真空ポンプの駆動によりチャンバ1内の気体を吸引して排出する排気口13が設けられている。ガス導入口12からチャンバ1内に導入された不活性ガスは、育成中の単結晶8と水冷体11との間を下降し、熱遮蔽体10の下端と原料融液9の液面とのギャップ(液面ギャップ)を経た後、熱遮蔽体10の外側、さらにルツボ2の外側に向けて流れ、その後にルツボ2の外側を下降し、排気口13から排出される。 ガ ス A gas inlet 12 for introducing an inert gas such as Ar gas into the chamber 1 is provided at an upper portion of the chamber 1. An exhaust port 13 for sucking and discharging the gas in the chamber 1 by driving a vacuum pump (not shown) is provided below the chamber 1. The inert gas introduced into the chamber 1 from the gas inlet 12 descends between the growing single crystal 8 and the water-cooled body 11, and the inert gas flows between the lower end of the heat shield 10 and the liquid surface of the raw material melt 9. After passing through the gap (liquid level gap), it flows toward the outside of the heat shield 10 and further to the outside of the crucible 2, then descends outside the crucible 2, and is discharged from the exhaust port 13.
 チャンバ1の外側にはカメラ16が設けられており、カメラ16はチャンバ1に設けられた覗き窓を通じて固液界面近傍を撮影する。カメラ16の撮影画像は画像処理部17で処理され、結晶直径、液面位置等が求められる。制御部18は画像処理結果に基づいてヒータ4、ルツボ駆動機構14および結晶引き上げ機構15を制御する。 カ メ ラ A camera 16 is provided outside the chamber 1, and the camera 16 photographs the vicinity of the solid-liquid interface through a viewing window provided in the chamber 1. The image captured by the camera 16 is processed by the image processing unit 17, and the crystal diameter, the liquid level, and the like are obtained. The control unit 18 controls the heater 4, the crucible driving mechanism 14, and the crystal pulling mechanism 15 based on the image processing result.
 このような育成装置を用いたシリコン単結晶8の育成の際、チャンバ1内を減圧下の不活性ガス雰囲気に維持した状態で、ルツボ2に充填した多結晶シリコンなどの固形原料をヒータ4の加熱により溶融させ、原料融液9を形成する。ルツボ2内に原料融液9が形成されると、引き上げ軸6を下降させて種結晶7を原料融液9に浸漬し、ルツボ2および引き上げ軸6を所定の方向に回転させながら、引き上げ軸6を徐々に引き上げ、これにより種結晶7に連なった単結晶8を育成する。 At the time of growing the silicon single crystal 8 using such a growing apparatus, a solid raw material such as polycrystalline silicon filled in the crucible 2 is supplied to the heater 4 while the inside of the chamber 1 is maintained in an inert gas atmosphere under reduced pressure. The material is melted by heating to form a raw material melt 9. When the raw material melt 9 is formed in the crucible 2, the lifting shaft 6 is lowered to immerse the seed crystal 7 in the raw material melt 9, and while rotating the crucible 2 and the lifting shaft 6 in a predetermined direction, the lifting shaft is rotated. 6 is gradually pulled up, thereby growing a single crystal 8 connected to the seed crystal 7.
 直径が310mmの単結晶の育成に際しては、無欠陥結晶を育成するために、単結晶の固液界面近傍にて、温度勾配比Gc/Geが上記(a)式または(b)式の条件を満足するように、単結晶の引き上げ速度及びギャップ(ルツボ2の高さ)を調整し、単結晶の引き上げを行う。また、単結晶の育成に先立ち、上記(14)式または(15)式で求まる最適な温度勾配比Gc/Geに適合するように、ホットゾーン(熱遮蔽体および水冷体)の寸法形状を設計し、このホットゾーンを用いる。これにより、無欠陥結晶を精度良く育成することができる。 When growing a single crystal having a diameter of 310 mm, in order to grow a defect-free crystal, the temperature gradient ratio Gc / Ge is set near the solid-liquid interface of the single crystal according to the above equation (a) or (b). The pulling speed of the single crystal and the gap (height of the crucible 2) are adjusted so as to satisfy the conditions, and the single crystal is pulled. Further, prior to the growth of a single crystal, the (14) or (15) to conform to the optimum temperature gradient ratio G c / G e which is obtained by the formula, the dimensions of the hot zone (thermal shield and a water-cooled body) shape And use this hot zone. Thereby, a defect-free crystal can be grown with high accuracy.
 図9は、熱遮蔽体10と原料融液9の液面との間のギャップHと温度勾配比Gc/Geとの関係を示すグラフであり、横軸はギャップH、縦軸はGc/Geを示している。同図において、三角形のプロット点は、特定の構造のホットゾーンを用いて直径が310mmのシリコン単結晶を育成する総合伝熱シミュレーションによって求めた、ギャップHの値と温度勾配比Gc/Geとの関係を示しており、さらに(a)式のGc/Geの下限である0.9A及び上限である1.1Aを2本の直線で示している。この2本の直線に挟まれた領域が、(a)式で規定する範囲、すなわち、無欠陥結晶が得られる範囲である。 Figure 9 is a graph showing the relationship between the gap H and the temperature gradient ratio G c / G e between the liquid surface of the thermal shield 10 and the raw material melt 9, the horizontal axis represents the gap H, the vertical axis G c / Ge is shown. In the figure, the triangular plot points represent the value of the gap H and the temperature gradient ratio G c / G e obtained by a comprehensive heat transfer simulation in which a silicon single crystal having a diameter of 310 mm is grown using a hot zone having a specific structure. Further, the lower limit of 0.9 C and the upper limit of 1.1 A of G c / G e in equation (a) are indicated by two straight lines. The region sandwiched between these two straight lines is the range defined by the equation (a), that is, the range in which defect-free crystals can be obtained.
 図9に示すように、ギャップHがおよそ58~70mmの範囲で、Gc/Geが(a)式を満たすことが分かる。このように、ギャップHを調整することで、温度勾配比Gc/Geを0.9A~1.1Aの範囲内に設定することができる。 As shown in FIG. 9, it can be seen that G c / G e satisfies the expression (a) when the gap H is in the range of about 58 to 70 mm. Thus, by adjusting the gap H, the temperature gradient ratio G c / G e can be set within the range of 0.9A to 1.1A.
 図10は、シリコン単結晶8の製造工程を示すフローチャートである。また、図11は、シリコン単結晶インゴットの形状を示す略断面図である。 FIG. 10 is a flowchart showing a process for manufacturing the silicon single crystal 8. FIG. 11 is a schematic sectional view showing the shape of a silicon single crystal ingot.
 図10に示すように、本実施形態によるシリコン単結晶8の製造工程は、ルツボ2内のシリコン原料をヒータ4で加熱して融解することにより原料融液9を生成する原料融解工程S11と、引き上げ軸6の先端部に取り付けられた種結晶を降下させて原料融液9に着液させる着液工程S12と、原料融液9との接触状態を維持しながら種結晶を徐々に引き上げて単結晶を育成する結晶引き上げ工程(S13~S16)を有している。 As shown in FIG. 10, the manufacturing process of the silicon single crystal 8 according to the present embodiment includes a raw material melting step S11 in which a silicon raw material in the crucible 2 is heated and melted by the heater 4 to generate a raw material melt 9, A dipping step S12 in which the seed crystal attached to the tip end of the pulling shaft 6 is lowered to be immersed in the raw material melt 9, and the seed crystal is gradually pulled up while maintaining the state of contact with the raw material melt 9 to form a single crystal. A crystal pulling step (S13 to S16) for growing a crystal is provided.
 結晶引き上げ工程では、無転位化のために結晶直径が細く絞られたネック部8aを形成するネッキング工程S13と、結晶成長と共に結晶直径が徐々に増加したショルダー部8bを形成するショルダー部育成工程S14と、結晶直径が一定に維持されたボディ部8cを形成するボディ部育成工程S15と、結晶成長と共に結晶直径が徐々に減少したテール部8dを形成するテール部育成工程S16とが順に実施される。 In the crystal pulling step, a necking step S13 for forming a neck portion 8a having a narrowed crystal diameter for eliminating dislocations, and a shoulder growing step S14 for forming a shoulder portion 8b having a crystal diameter gradually increased with crystal growth. And a body part growing step S15 for forming the body part 8c in which the crystal diameter is kept constant, and a tail part growing step S16 for forming the tail part 8d in which the crystal diameter is gradually reduced as the crystal grows. .
 その後、シリコン単結晶8を融液面から切り離して冷却を促進させる冷却工程S17が実施される。以上により、図11に示すようなネック部8a、ショルダー部8b、ボディ部8c及びテール部8dを有するシリコン単結晶インゴット8Iが完成する。 (4) Thereafter, a cooling step S17 of separating the silicon single crystal 8 from the melt surface to promote cooling is performed. Thus, a silicon single crystal ingot 8I having a neck portion 8a, a shoulder portion 8b, a body portion 8c, and a tail portion 8d as shown in FIG. 11 is completed.
 上記のように、シリコン単結晶8に含まれる結晶欠陥の種類や分布は、結晶引き上げ速度Vと温度勾配Gとの比V/Gに依存し、結晶を取り巻く炉内熱環境、すなわち、ホットゾーンの影響を強く受ける。そのため、結晶引き上げ工程の進行に伴ってホットゾーンが変化した場合には、たとえギャップを一定の距離に維持したとしてもGc/Geを0.9A~1.1Aの範囲内に収めることができず、所望の引き上げ速度マージンを確保することができない場合がある。 As described above, the type and distribution of the crystal defects contained in the silicon single crystal 8 depend on the ratio V / G of the crystal pulling speed V and the temperature gradient G, and the thermal environment in the furnace surrounding the crystal, that is, the hot zone Strongly influenced by Therefore, when the hot zone changes with the progress of the crystal pulling process, Gc / Ge cannot be kept within the range of 0.9A to 1.1A even if the gap is maintained at a constant distance. In some cases, a desired lifting speed margin cannot be secured.
 例えば、図11に示すボディ部育成工程S15の中盤では、シリコン融液の上方の空間に十分な長さの単結晶インゴットが存在しているのに対し、ボディ部育成工程S15の開始時にはそのような単結晶インゴットが存在しないため、たとえ熱遮蔽体10が設けられていたとしても空間内の熱分布は多少異なるものとなる。またボディ部育成工程S15の終盤では、ルツボ内の原料融液9の減少に伴うシリコン融液の固化を防止するためヒータ4の出力を増加させるため、これにより、結晶周囲の熱分布も変化する。このようにホットゾーンが変化している場合には、ギャップを一定の距離に維持したとしても結晶中の熱履歴が変化するため、結晶欠陥の面内分布を一定に維持することができない。 For example, in the middle stage of the body part growing step S15 shown in FIG. 11, a single crystal ingot having a sufficient length exists in the space above the silicon melt, but at the start of the body part growing step S15. Since there is no single crystal ingot, even if the heat shield 10 is provided, the heat distribution in the space is slightly different. Further, at the end of the body part growing step S15, the output of the heater 4 is increased to prevent the silicon melt from solidifying due to the decrease of the raw material melt 9 in the crucible, thereby changing the heat distribution around the crystal. . When the hot zone changes in this way, even if the gap is maintained at a constant distance, the thermal history in the crystal changes, so that the in-plane distribution of crystal defects cannot be maintained constant.
 そこで本実施形態では、インゴットのトップからボトムまでギャップを常に一定の距離に維持するのではなく、結晶成長段階に合わせてギャップを変化させる。すなわち、温度勾配比Gc/Geが上記(a)式または(b)式を満足するようにギャップを変化させる。このようにギャップを変化させることにより、インゴットのトップからボトムまで結晶欠陥の面内分布を狙い通りに制御することができ、引き上げ速度マージンの低下を抑制して無欠陥結晶の製造歩留まりを向上させることができる。ギャップをどのように変化させれば引き上げ速度マージンの低下を抑制できるかは、ホットゾーンによって異なる。したがって、結晶のトップからボトムまで温度勾配比Gc/Geを0.9A~1.1Aの範囲内に収めて結晶欠陥の面内分布を一定にするためには、結晶引き上げ工程の進行に伴ってホットゾーンがどのように変化するかを考慮しながら、結晶成長段階に合わせたギャッププロファイルを適宜設定する必要がある。 Therefore, in the present embodiment, the gap is not always kept at a constant distance from the top to the bottom of the ingot, but is changed according to the crystal growth stage. That is, the gap is changed so that the temperature gradient ratio G c / G e satisfies the above equation (a) or (b). By changing the gap in this manner, the in-plane distribution of crystal defects from the top to the bottom of the ingot can be controlled as intended, and a reduction in the pulling speed margin is suppressed to improve the production yield of defect-free crystals. be able to. How to change the gap to suppress a decrease in the pulling speed margin depends on the hot zone. Therefore, in order to fix the in-plane distribution range crystal defects contained within the 0.9 A ~ 1.1A temperature gradient ratio G c / G e from the top of the crystal to the bottom is the progress of the crystal pulling process It is necessary to appropriately set a gap profile according to the crystal growth stage while considering how the hot zone changes accordingly.
 図12及び図13は、結晶引き上げ工程中のギャッププロファイルと結晶欠陥分布との関係を説明するための模式図であって、図12は従来のギャップ一定制御の場合、図13は本発明のギャップ可変制御の場合をそれぞれ示している。 12 and 13 are schematic diagrams for explaining the relationship between the gap profile and the crystal defect distribution during the crystal pulling step. FIG. 12 shows the case of the conventional constant gap control, and FIG. 13 shows the gap of the present invention. Each shows the case of variable control.
 図12に示すように、結晶引き上げ工程中ギャップを常に一定の距離に維持するギャップ一定制御では、ホットゾーンが変化することにより温度勾配比Gc/Geが変化するため、結晶欠陥の面内分布を一定に維持することができない。すなわち、シリコン単結晶インゴット8Iのトップ(Top)、中央(Mid)、ボトム(Bot)において、結晶欠陥の面内分布が異なることにより、インゴット8Iの中央ではGc/Geを適正化して所望の引き上げ速度マージンを確保することができるが、インゴット8Iのトップとボトムでは所望の引き上げ速度マージンを確保することができない。 Figure 12 As shown, at all times the gap constant control for maintaining a constant distance gap during crystal pulling process, the temperature gradient ratio G c / G e is changed by the hot zone is changed, the plane of the crystal defects The distribution cannot be kept constant. That is, the top of the silicon single crystal ingot 8I (Top), the center (Mid), in the bottom (Bot), by in-plane distribution of the crystal defects are different, in the center of the ingot 8I by optimizing the G c / G e desired Can be secured, but a desired lifting speed margin cannot be secured at the top and bottom of the ingot 8I.
 これに対し、本発明では、図13に示すように、結晶引き上げ工程の進行に合わせてギャップが段階的に狭くなるようにギャッププロファイルを設定する。特に本実施形態によるギャッププロファイルは、結晶引き上げ工程の開始時からギャップを一定に維持する第1のギャップ一定制御区間S1、ボディ部育成工程の前半に設けられギャップを徐々に低下させる第1のギャップ可変制御区間S2、ギャップを一定に維持する第2のギャップ一定制御区間S3、ボディ部育成工程の後半に設けられギャップを徐々に低下させる第2のギャップ可変制御区間S4、結晶引き上げ工程の終了までギャップを一定に維持する第3のギャップ一定制御区間S5がこの順で設けられている。このようなギャッププロファイルはホットゾーンの変化に合わせて設定され、これにより図示のようにインゴット8Iのトップからボトムまで結晶欠陥の面内分布を一定に維持して無欠陥結晶の製造歩留まりを高めることが可能となる。 In contrast, in the present invention, as shown in FIG. 13, the gap profile is set so that the gap gradually narrows as the crystal pulling process proceeds. In particular, the gap profile according to the present embodiment includes a first gap constant control section S1 for maintaining the gap constant from the start of the crystal pulling step, and a first gap provided in the first half of the body part growing step to gradually reduce the gap. A variable control section S2, a second gap constant control section S3 for maintaining a constant gap, a second gap variable control section S4 provided in the latter half of the body part cultivation step to gradually reduce the gap, and until the end of the crystal pulling step. A third constant gap control section S5 for keeping the gap constant is provided in this order. Such a gap profile is set in accordance with the change of the hot zone, thereby maintaining a constant in-plane distribution of crystal defects from the top to the bottom of the ingot 8I as shown in the drawing to increase the production yield of defect-free crystals. Becomes possible.
 なお上記のギャッププロファイルは一例であって、結晶引き上げ工程の進行に合わせてギャップが段階的に狭くなるプロファイルに限定されない。したがって、例えば第1のギャップ可変制御区間S2でギャップを徐々に低下させ、第2のギャップ可変制御区間S4でギャップを徐々に増加させることも可能である。 The above-described gap profile is an example, and is not limited to a profile in which the gap gradually narrows as the crystal pulling process proceeds. Therefore, for example, it is possible to gradually decrease the gap in the first gap variable control section S2 and gradually increase the gap in the second gap variable control section S4.
 単結晶8の外周部の温度勾配は中心部の温度勾配よりもギャップの変化の影響を受けやすい。ギャップが広い場合、ヒータ4からの輻射熱がギャップを通って単結晶8に伝わりやすくなるので、単結晶8の外周部の温度勾配Geは相対的に小さくなり、温度勾配比Gc/Geは大きくなる。逆に、ギャップが狭い場合、ヒータ4からの輻射熱が熱遮蔽体10によって遮られて単結晶8に伝わりにくくなるので、単結晶8の外周部の温度勾配Geは相対的に大きくなり、温度勾配比Gc/Geは小さくなる。したがって、ギャップを調整することにより、温度勾配比Gc/Geを容易に調整することができる。 The temperature gradient at the outer periphery of the single crystal 8 is more susceptible to the change in the gap than the temperature gradient at the center. If the gap is wide, because radiation heat from the heater 4 is easily transmitted to the single crystal 8 through the gap, the temperature gradient G e of the outer peripheral portion of the single crystal 8 becomes relatively small, the temperature gradient ratio G c / G e Becomes larger. Conversely, when the gap is narrow, since the radiant heat from the heater 4 is not easily transmitted to the single crystal 8 is blocked by the thermal shield 10, the temperature gradient G e of the outer peripheral portion of the single crystal 8 becomes relatively large, the temperature gradient ratio G c / G e is small. Therefore, by adjusting the gap, it is possible to easily adjust the temperature gradient ratio G c / G e.
 ギャップ可変制御を行う場合、単にルツボ上昇速度を補正してギャップを可変するだけでは、ルツボ上昇速度が大きく振動する現象が起こる場合がある。このような振動現象は、ギャップ可変制御によりインゴット8Iのトップからボトムまで結晶欠陥の面内分布を一定に維持して無欠陥結晶の製造歩留まりを高めるという目的の障害となるおそれがある。そこで本発明では、このような振動現象を防止し、高品質な結晶を製造できるようにする。 When performing the variable gap control, simply correcting the crucible ascending speed and varying the gap may cause a phenomenon in which the crucible ascending speed greatly fluctuates. Such a vibration phenomenon may be an obstacle for the purpose of maintaining a constant in-plane distribution of crystal defects from the top to the bottom of the ingot 8I by the variable gap control and increasing the production yield of defect-free crystals. Therefore, in the present invention, such a vibration phenomenon is prevented, and a high-quality crystal can be manufactured.
 次に、図14の機能ブロック図を参照しながら、本発明のギャップ可変制御におけるルツボ上昇速度の算出方法について説明する。 Next, a method of calculating the crucible lifting speed in the variable gap control according to the present invention will be described with reference to the functional block diagram of FIG.
 図14に示すように、ギャップ可変制御機能はルツボ上昇速度算出部30を有している。ルツボ上昇速度算出部30は、シリコン単結晶8の引き上げに伴って変化する液面位置及びギャップを一定に制御するために必要なルツボ上昇速度の定量値Vfを算出する定量値算出部31と、ギャップの目標値の変化分からルツボ上昇速度の変動値Vaを算出する変動値算出部32と、ギャップの目標値とギャップの計測値との差分からルツボ上昇速度の補正値Vadjを算出する補正値算出部33とを有し、ルツボ駆動機構14は、液面上昇速度VMを出力すると共に、定量値Vf、変動値Va及び補正値Vadjの合計値を用いてルツボの位置を制御する。また結晶引き上げ機構15は、結晶長ΔLS(結晶引き上げ速度VS)を出力する。画像処理部17は、カメラ16の撮影画像から原料融液9の液面と熱遮蔽体10との間のギャップ及び結晶直径を計測する。 As shown in FIG. 14, the variable gap control function has a crucible lifting speed calculation unit 30. The crucible rising speed calculating unit 30 includes a quantitative value calculating unit 31 that calculates a quantitative value Vf of the crucible rising speed necessary to control the liquid level and the gap that change as the silicon single crystal 8 is pulled up. A variation value calculating unit 32 that calculates a variation value Va of the crucible ascending speed from a change amount of the target value of the gap, and calculates a correction value Vadj of the crucible ascending speed from a difference between the target value of the gap and the measured value of the gap. and a correction value calculation unit 33, a crucible drive mechanism 14 outputs the liquid level rising speed V M, the position of the crucible using quantitative value V f, the total value of the variation value V a and the correction value V adj Control. The crystal pulling mechanism 15 outputs a crystal length ΔL S (crystal pulling speed V S ). The image processing unit 17 measures a gap between the liquid surface of the raw material melt 9 and the heat shield 10 and a crystal diameter from an image captured by the camera 16.
 ギャップ可変制御では、以下に示す(16)式を用いて算出したルツボ上昇速度VCに基づいてルツボ上昇速度を制御周期ごとに制御する。 In the gap variable control controls the crucible lifting speed for each control period based on the crucible lifting speed V C calculated using shown below (16).
 VC=Vf+Va+Vadj  ・・・(16) V C = V f + V a + V adj (16)
 ここで、Vfはギャップを一定に維持するために必要なルツボ上昇速度の定量値であり、ギャップ一定制御に用いられるルツボ上昇速度である。またVaはギャップ目標値の変化分から求められるルツボ上昇速度の変動値であり、Vadjはギャップの現在の目標値と実際の計測値との差分から求められるルツボ上昇速度の補正値である。 Here, Vf is a quantitative value of the crucible rise speed required to maintain the gap constant, and is a crucible rise speed used for constant gap control. The V a is a variation value of a crucible lifting speed which is determined from the variation of the gap target value, V adj is the current correction value of the crucible lifting speed which is determined from the difference between the actual measured value and the target value of the gap.
 ルツボ上昇速度の定量値Vfは、次の(17)式から求められる。 The quantitative value Vf of the crucible rising speed is obtained from the following equation (17).
 V=((PS×DS 2)÷(PL×DC 2))×(VS-VM)+VM  ・・・(17)
 PS :シリコン固体比重(= 2.33 × 10-3
 PL :シリコン融液比重(= 2.53 × 10-3
 DS :現在の結晶直径
 DC :現在の石英ルツボの内径
 VS :現在の結晶引き上げ速度
 VM :前回のルツボの上昇速度(液面上昇速度)
V f = ((P S × D S 2) ÷ (P L × D C 2)) × (V S -V M) + V M ··· (17)
P S : Specific gravity of silicon solid (= 2.33 × 10 -3 )
P L : Specific gravity of silicon melt (= 2.53 × 10 -3 )
D S: the current crystal diameter D C: inner diameter V S of the current of the quartz crucible: Current crystal pulling speed V M: increase the speed of the previous crucible (liquid level rising speed)
 また液面上昇速度VMは、次の(18)式のようになる。 The liquid level rising speed V M is given by the following equation (18).
 VM=-((PS×DS 2×ΔLS)÷(PL×DC 2-PS×DS 2))+((PL×DC 2×ΔLC)÷(PL×DC 2-PS×DS 2))  ・・・(18)
 ΔLS :1制御周期当たりの結晶移動量
 ΔLC :1制御周期当たりのルツボ移動量
V M = - ((P S × D S 2 × ΔL S) ÷ (P L × D C 2 -P S × D S 2)) + ((P L × D C 2 × ΔL C) ÷ (P L × D C 2 -P S × D S 2 )) (18)
ΔL S : crystal movement amount per control cycle ΔL C : crucible movement amount per control cycle
 このように、ルツボ上昇速度の定量値Vfの算出では、結晶引き上げ機構15からの1制御周期当たりの結晶移動量(結晶長)ΔLSを取得し、結晶直径DSと結晶移動量ΔLCから結晶体積の増加分を求め、結晶体積の増加分及びルツボ内径DCから融液体積の減少分を算出し、さらに融液体積の減少分及びルツボ内径DCからルツボ上昇速度の定量値Vfを算出する。結晶直径DSは、カメラ16の撮影画像中に写る単結晶を画像処理部17が処理することにより求められる。ルツボ内径DCは石英ルツボ2aの設計寸法から求められる固定値である。 Thus, in the calculation of the quantitative value V f of the crucible lifting speed, crystal movement amount per one control cycle from the crystal pulling mechanism 15 acquires (crystal length) [Delta] L S, crystal diameter D S and the crystal moving amount [Delta] L C seeking the increase in crystal volume from calculates the decrease of the melt volume from increase and the crucible inner diameter D C of the crystal volume, further quantitative value V of the crucible lifting speed from decrease and the crucible inner diameter D C of the melt volume Calculate f . The crystal diameter D S is obtained by the image processing unit 17 processing a single crystal appearing in an image captured by the camera 16. Crucible inner diameter D C is a fixed value determined from the design dimensions of the quartz crucible 2a.
 液面上昇速度VMが現在の結晶引き上げ速度VSと釣り合っているとき、ルツボ上昇速度の定量値Vfは液面上昇速度VMと等しくなるので、ギャップは一定の距離に維持される。また液面上昇速度VMが現在の結晶引き上げ速度VSよりも大きければルツボ上昇速度の定量値Vfが液面上昇速度VMよりも小さくなり、逆に液面上昇速度VMが現在の結晶引き上げ速度VSよりも小さければルツボ上昇速度の定量値Vfが液面上昇速度VMよりも大きくなるので、ギャップを一定に保つことができる。 When the liquid level rise velocity V M is balanced with the current crystal pulling speed V S, since the quantitative value V f of the crucible lifting speed becomes equal to the liquid level rising speed V M, the gap is maintained at a constant distance. The liquid level rising speed V M of the current crystal pulling speed V S is greater if the crucible ascent speed of the quantitative value V f than is smaller than the liquid level rise velocity V M, contrary to the liquid level rising speed V M is currently the crystal pulling speed V S if smaller crucible ascent speed of the quantitative value V f than is larger than the liquid level rise velocity V M, it is possible to keep the gap constant.
 ルツボ上昇速度の変動値Vaは、次の(19)式のようになる。 Variation value V a of the crucible lifting speed is given by the following equation (19).
 Va=(Hpf_i-Hpf_i+1)÷T  ・・・(19) V a = (H pf — i −H pf — i + 1 ) ÷ T (19)
 ここで、Hpf_iは現在(i回目)のギャップ目標値(mm)、Hpf_i+1は1制御周期後(i+1回目)のギャップ目標値(mm)である。このギャップ目標値は例えば結晶長に応じて設定され、1制御周期後の結晶長は現行の結晶引き上げ速度VSに制御周期T(min)を乗じて得られる結晶長の増分から求めることができる。制御周期Tは特に限定されないが、例えば2分に設定することができる。このように、ルツボ上昇速度の変動値Vaは、現在のギャップ目標値Hpf_iと1制御周期後のギャップ目標値Hpf_i+1との差分から求められるものである。ギャップの目標値が変化せず一定(Hpf_i+1=Hpf_i)の場合、Va=0となる。例えば、キャップが50mmから51mmにする場合、ギャップを1mm増加させる必要があるが、このようなギャップの目標値の変化分はギャッププロファイルから知ることができるので、ギャップを1mm増加させるために必要なルツボ上昇速度の変動値Vaを定量値Vfに加算する。 Here, Hpf_i is the current (i-th) gap target value (mm), and Hpf_i + 1 is the gap target value (mm) after one control cycle (i + 1-th). The gap target value is set, for example, according to the crystal length, and the crystal length after one control cycle can be obtained from the increment of the crystal length obtained by multiplying the current crystal pulling speed V S by the control cycle T (min). . The control cycle T is not particularly limited, but can be set to, for example, 2 minutes. Thus, variation value V a of the crucible lifting speed is to be determined from the difference between the current gap target value H pf_i + 1 after the gap target value H Pf_i and one control period. For certain (H pf_i + 1 = H pf_i ) the target value of the gap is not changed, the V a = 0. For example, when the cap is changed from 50 mm to 51 mm, the gap needs to be increased by 1 mm. Since the change in the target value of such a gap can be known from the gap profile, it is necessary to increase the gap by 1 mm. adding the variation value V a of the crucible ascent speed in quantitative value V f.
 ルツボ上昇速度の補正値Vadjは、次の(20)式のようになる。 The correction value Vadj of the crucible ascending speed is represented by the following equation (20).
 Vadj=(Hpf_i-Hi)÷T×k  ・・・(20) V adj = (H pf — i −H i ) ÷ T × k (20)
 ここで、Hiは現在のギャップ計測値(mm)であり、好ましくは最新の単一値でなく移動平均値である。またkはゲインであり、0.001以上0.1以下であることが好ましい。kを例えば0.05に設定した場合、ギャップ計測値のバラツキがルツボ上昇速度に与える影響が1/20に抑えられる。ギャップ計測値がギャップ目標値と等しい場合、ルツボ上昇補正速度Vadj=0である。 Here, Hi is the current gap measurement value (mm), preferably a moving average value instead of the latest single value. Further, k is a gain, and is preferably 0.001 or more and 0.1 or less. When k is set to, for example, 0.05, the influence of the variation in the measured gap value on the crucible ascending speed can be suppressed to 1/20. When the gap measurement value is equal to the gap target value, the crucible rise correction speed V adj = 0.
 上記のように、ルツボ上昇速度の定量値Vfの算出には石英ルツボ2aの内径DCの正確な値が必要である。しかし石英ルツボ2aはシリコンの融点付近では軟化し、引き上げ中に変形することがあるため、ギャップの値は目標値から乖離する。その他にもさまざまな要因でギャップの値は目標値から乖離する。そこで本実施形態においては、融液面に映り込んだ熱遮蔽体10の鏡像の位置からギャップを実際に測定し、原料融液9の減少量から算出したルツボ上昇速度からギャップの制御誤差を算出し、この制御誤差を解消する石英ルツボ2aの上昇速度の補正値Vadjを定量値Vfに加算することにより、ギャップを高精度に制御する。 As described above, the calculation of the quantitative value V f of the crucible lifting speed is required exact value of the inner diameter D C of the quartz crucible 2a. However, since the quartz crucible 2a softens near the melting point of silicon and may be deformed during pulling, the value of the gap deviates from the target value. The gap value deviates from the target value due to various other factors. Therefore, in the present embodiment, the gap is actually measured from the position of the mirror image of the heat shield 10 reflected on the melt surface, and the gap control error is calculated from the crucible rising speed calculated from the decrease amount of the raw material melt 9. Then, the gap is controlled with high accuracy by adding the correction value Vadj of the rising speed of the quartz crucible 2a for eliminating this control error to the quantitative value Vf .
 以上のように、ルツボ上昇速度VCは、ギャップを一定に維持するために必要なルツボ上昇速度の定量値Vfと、ギャップ目標値の変化分から求められるルツボ上昇速度の変動値Vaと、ギャップの目標値と実際の計測値との差分から求められるルツボ上昇速度の補正値Vadjとの合計値からなり、ギャッププロファイルから求めることができるギャップ目標値の変化分については定量値に準じた値としてギャップ計測値とは無関係にルツボ上昇速度に予め含めておくことで、ルツボ上昇速度の補正値Vadjの変動をできるだけ小さくすることができる。すなわち、ルツボ上昇速度の補正値Vadjが担う役割が、ギャップの目標値と計測値の乖離をなくすための補正だけに特化したものとなるため、ルツボ上昇速度振幅量が大きくなることを防止することができ、ルツボ上昇速度の安定した制御が可能となる。 As described above, the crucible ascending speed V C is determined by the quantitative value V f of the crucible ascending speed required to maintain the gap constant, and the fluctuation value V a of the crucible ascending speed obtained from the change in the gap target value. It consists of the sum of the correction value V adj of the crucible ascending speed obtained from the difference between the target value of the gap and the actual measurement value, and the change in the gap target value that can be obtained from the gap profile is based on the quantitative value. By including the value in advance in the crucible ascending speed irrespective of the gap measurement value, the fluctuation of the crucible ascending speed correction value Vadj can be made as small as possible. That is, the role of the correction value V adj of the crucible ascending speed is specialized only for the correction for eliminating the difference between the target value of the gap and the measured value, so that the amplitude of the crucible ascending speed is prevented from increasing. And stable control of the crucible ascent speed is made possible.
 以上説明したように、本実施形態によるシリコン単結晶の育成方法は、原料融液の液面と熱遮蔽体との間のギャップを変化させながら単結晶を引き上げるギャップ可変制御を含み、単結晶の中心部の固液界面近傍における温度勾配をGc、単結晶の外周部の固液界面近傍における温度勾配Geとし、A=0.1769×Gc+0.5462とするとき、温度勾配比Gc/Geが0.9×A≦Gc/Ge≦1.1×Aを満足する条件でギャップを変化させながら単結晶を引き上げるので、単結晶育成時に単結晶中に作用する応力を考慮しながら、無欠陥結晶を精度よく育成することができる。 As described above, the method for growing a silicon single crystal according to the present embodiment includes gap variable control for pulling up the single crystal while changing the gap between the liquid surface of the raw material melt and the heat shield, When the temperature gradient near the solid-liquid interface at the center is G c and the temperature gradient near the solid-liquid interface at the outer periphery of the single crystal is G e , and when A = 0.1769 × G c +0.5462, the temperature gradient ratio G Since the single crystal is pulled while changing the gap under the condition that c / Ge is 0.9 × A ≦ Gc / Ge ≦ 1.1 × A, the stress acting on the single crystal during the growth of the single crystal is reduced. It is possible to grow a defect-free crystal with high accuracy while taking this into consideration.
 また、本実施形態によるシリコン単結晶の育成方法は、結晶長に応じてギャップ目標値が変化するギャッププロファイルを用意し、結晶育成中にギャップ計測値が前記ギャッププロファイルに従うようにルツボ上昇速度VCを制御するので、ルツボ上昇速度振幅量が大きくなることを防止することができ、その結果シリコン単結晶のトップからボトムまで結晶欠陥の面内分布の変化が少ない高品質なシリコン単結晶を歩留良く製造することができる。 Further, in the method for growing a silicon single crystal according to the present embodiment, a gap profile in which a gap target value changes according to the crystal length is prepared, and the crucible rising speed V C is adjusted so that the gap measurement value follows the gap profile during crystal growth. Control, the crucible rise rate amplitude can be prevented from increasing, and as a result, a high-quality silicon single crystal with little change in the in-plane distribution of crystal defects from the top to the bottom of the silicon single crystal can be produced. Can be manufactured well.
 また、本実施形態においては、ギャップを一定に維持するために必要なルツボ上昇速度の定量値Vfと、ギャップの目標値の変化分からギャップを変化させるために必要なルツボ上昇速度の変動値Vaと、ギャップの目標値と計測値との差分を補正するために必要なルツボ上昇速度の補正値Vadjとの合計値をルツボ上昇速度VCとして用いるので、ギャップ可変制御によって生じるルツボ上昇速度の制御の不安定さを改善することができ、これにより結晶取得率を向上させることができる。 Further, in the present embodiment, the quantitative value Vf of the crucible rising speed required to maintain the gap constant and the variation value Vf of the crucible rising speed required to change the gap from the change in the target value of the gap. and a, since using the total value of the correction value V adj of the crucible increasing speed required in order to correct the difference between the target value and the measured value of the gap as the crucible lifting speed V C, the crucible lifting speed caused by a gap variable control Control instability can be improved, and thereby the crystal acquisition rate can be improved.
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 As described above, the preferred embodiments of the present invention have been described. However, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention. It goes without saying that they are included in the range.
 例えば、上記実施形態においては、ルツボ上昇速度の補正値として、ギャップ目標値Hpf_iとギャップ計測値Hiとの差分(Hpf_i - Hi)に制御周期の逆数1/T及びゲインkを乗じた値を用いているが、本発明はこのような値に限定されるものではなく、種々の計算方法によって計算した補正値を用いることができる。 For example, in the above embodiment, as the correction value of the crucible lifting speed, the difference between the gap target value H Pf_i and the gap measured value H i - multiplied by (H pf_i H i) the reciprocal 1 / T and the gain k of the control cycle However, the present invention is not limited to such values, and correction values calculated by various calculation methods can be used.
 また上記実施形態においてはシリコン単結晶の育成方法を例に挙げたが、本発明はこれに限定されず、CZ法により引き上げられる種々の単結晶を対象とすることができる。 In the above embodiment, the method of growing a silicon single crystal has been described as an example, but the present invention is not limited to this, and can be applied to various single crystals pulled by the CZ method.
 本発明のシリコン単結晶の育成方法は、OSFやCOPやLDなどの各種の点欠陥が発生しない無欠陥結晶を育成するのに極めて有用である。 The method for growing a silicon single crystal of the present invention is extremely useful for growing a defect-free crystal free of various point defects such as OSF, COP and LD.
    1:チャンバ、    2:ルツボ、    2a:石英ルツボ、    2b:黒鉛ルツボ、    3:支持軸、    4:ヒータ、    5:断熱材、    6:引き上げ軸、    7:種結晶、    8:シリコン単結晶、    8I:シリコン単結晶インゴット、    8a:ネック部、    8b:ショルダー部、    8c:ボディ部、    8d:テール部、    9:原料融液、    10:熱遮蔽体、    11:水冷体、    12:ガス導入口、    13:排気口、    14:ルツボ駆動機構、    15:結晶引き上げ機構、    16:カメラ、    17:画像処理部、    18:制御部、    30:ルツボ上昇速度算出部、    31:定量値算出部、    32:変動値算出部、    33:補正値算出部 1: chamber, 2: crucible, 2a: quartz crucible, 2b: graphite crucible, 軸 3: support shaft, 4: heater, 5: heat insulating material, 6: pull-up shaft, 7: seed crystal, 8: silicon single crystal, 8I: Silicon single crystal ingot, # 8a: neck, # 8b: shoulder, # 8c: body, # 8d: tail, # 9: raw material melt, # 10: heat shield, # 11: water cooled, # 12: gas inlet, # 13: Exhaust port, # 14: crucible drive mechanism, # 15: crystal pulling mechanism, # 16: camera, # 17: image processing section, # 18: control section, # 30: crucible rise speed calculation section, # 31: quantitative value calculation section, # 32: fluctuation value calculation Section, # 33: correction value calculation section

Claims (10)

  1.  チャンバ内に配置したルツボ内の原料融液から直径が300mm以上の単結晶を引き上げるチョクラルスキー法によるシリコン単結晶の育成方法であって、
     育成中の単結晶を囲繞する水冷体を配置するとともに、この水冷体の外周面および下端面を包囲する熱遮蔽体を配置した単結晶育成装置を用い、
     前記原料融液の液面と前記原料融液の上方に配置された前記熱遮蔽体との間のギャップを変化させながら前記単結晶を引き上げるギャップ可変制御を含み、
     前記単結晶の中心部の固液界面近傍における引き上げ軸方向の温度勾配をGc、前記単結晶の外周部の固液界面近傍における引き上げ軸方向の温度勾配をGe、A=0.1769×Gc+0.5462とするとき、0.9×A≦Gc/Ge≦1.1×Aを満足する条件で前記単結晶の引き上げを行うことを特徴とするシリコン単結晶の育成方法。
    A method for growing a silicon single crystal by the Czochralski method of pulling a single crystal having a diameter of 300 mm or more from a raw material melt in a crucible disposed in a chamber,
    With a water-cooled body surrounding the single crystal being grown, and using a single-crystal growing apparatus with a heat shield surrounding the outer peripheral surface and lower end surface of the water-cooled body,
    Gap variable control for pulling up the single crystal while changing the gap between the liquid surface of the raw material melt and the heat shield disposed above the raw material melt,
    The temperature gradient in the pulling axis direction near the solid-liquid interface at the center of the single crystal is G c , the temperature gradient in the pulling axis direction near the solid-liquid interface at the outer periphery of the single crystal is G e , and A = 0.1769 × A method for growing a silicon single crystal, comprising: pulling the single crystal under a condition satisfying 0.9 × A ≦ G c / G e ≦ 1.1 × A, where G c +0.5462.
  2.  前記ギャップ可変制御は、
     前記単結晶の引き上げに伴って変化する前記ギャップを一定の距離に維持するために必要なルツボ上昇速度の定量値と、
     前記ギャップの目標値の変化分から求められる前記ルツボ上昇速度の変動値と、
     前記ギャップの前記目標値と実際の計測値との差分から求められる前記ルツボ上昇速度の補正値との合計値を用いて前記ルツボ上昇速度を制御することを特徴とする請求項1のシリコン単結晶の育成方法。
    The gap variable control,
    Quantitative value of the crucible rise speed required to maintain the gap changing with the pulling of the single crystal at a constant distance,
    A variation value of the crucible ascending speed obtained from a change amount of the target value of the gap,
    2. The silicon single crystal according to claim 1, wherein the crucible rising speed is controlled by using a total value of a correction value of the crucible rising speed obtained from a difference between the target value of the gap and an actual measurement value. Training method.
  3.  前記ギャップの目標値の変化分は、前記単結晶の引き上げに伴って変化する結晶長とギャップの目標値との関係を規定したギャッププロファイルから求める、請求項2に記載のシリコン単結晶の育成方法。 The method for growing a silicon single crystal according to claim 2, wherein the amount of change in the target value of the gap is obtained from a gap profile that defines a relationship between a crystal length that changes as the single crystal is pulled and a target value of the gap. .
  4.  前記補正値は、前記ギャッププロファイルから求められる前記ギャップの目標値と前記ギャップの計測値との差分から求める、請求項3に記載のシリコン単結晶の育成方法。 4. The method of growing a silicon single crystal according to claim 3, wherein the correction value is obtained from a difference between a target value of the gap obtained from the gap profile and a measured value of the gap.
  5.  前記単結晶の引き上げに伴う前記単結晶の体積の増加分から前記原料融液の体積の減少分を求め、前記原料融液の体積の減少分及び前記ルツボの内径から前記定量値を求める、請求項2乃至4のいずれか一項に記載のシリコン単結晶の育成方法。 The amount of decrease in the volume of the raw material melt is determined from the amount of increase in the volume of the single crystal accompanying the pulling of the single crystal, and the quantitative value is determined from the amount of decrease in the volume of the raw material melt and the inner diameter of the crucible. 5. The method for growing a silicon single crystal according to any one of 2 to 4.
  6.  前記ギャッププロファイルは、前記ギャップを一定の距離に維持する少なくとも一つのギャップ一定制御区間と、前記ギャップを徐々に変化させる少なくとも一つのギャップ可変制御区間とを含む、請求項1乃至5のいずれか一項に記載のシリコン単結晶の育成方法。 6. The gap profile according to claim 1, wherein the gap profile includes at least one gap constant control section for maintaining the gap at a constant distance, and at least one gap variable control section for gradually changing the gap. The method for growing a silicon single crystal according to the above item.
  7.  前記ギャップ可変制御区間は、前記単結晶のボディ部育成工程の後半であって前記ギャップ一定制御区間の後に設けられている、請求項6に記載のシリコン単結晶の育成方法。 7. The method for growing a silicon single crystal according to claim 6, wherein the variable gap control section is provided in a latter half of the single crystal body growing step and after the constant gap control section.
  8.  前記ギャップ可変制御区間は、前記単結晶のボディ部育成工程の前半であって前記ギャップ一定制御区間の前に設けられている、請求項6に記載のシリコン単結晶の育成方法。 7. The method of growing a silicon single crystal according to claim 6, wherein the variable gap control section is provided in a first half of the body growing step of the single crystal and before the constant gap control section.
  9.  前記ギャッププロファイルは、前記ギャップを徐々に変化させる第1及び第2のギャップ可変制御区間を含み、
     前記第1のギャップ可変制御区間は、前記単結晶のボディ部育成工程の前半であって前記ギャップ一定制御区間の前に設けられており、
     前記第2のギャップ可変制御区間は、前記単結晶のボディ部育成工程の後半であって前記ギャップ一定制御区間の後に設けられている、請求項6に記載のシリコン単結晶の育成方法。
    The gap profile includes first and second gap variable control sections that gradually change the gap,
    The first gap variable control section is provided in the first half of the body part growing step of the single crystal and before the constant gap control section,
    The method of growing a silicon single crystal according to claim 6, wherein the second gap variable control section is provided in a latter half of the body growth step of the single crystal and after the constant gap control section.
  10.  カメラで撮影した前記原料融液の液面に映る前記熱遮蔽体の鏡像の位置から前記ギャップの計測値を算出する、請求項1乃至9のいずれか一項に記載のシリコン単結晶の育成方法。 The method for growing a silicon single crystal according to any one of claims 1 to 9, wherein a measurement value of the gap is calculated from a position of a mirror image of the heat shield reflected on a liquid surface of the raw material melt photographed by a camera. .
PCT/JP2018/031164 2018-08-23 2018-08-23 Method for growing silicon single crystal WO2020039553A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207036806A KR102461073B1 (en) 2018-08-23 2018-08-23 Silicon single crystal growth method
PCT/JP2018/031164 WO2020039553A1 (en) 2018-08-23 2018-08-23 Method for growing silicon single crystal
JP2020537967A JP7036217B2 (en) 2018-08-23 2018-08-23 How to grow a silicon single crystal
CN201880095845.XA CN112639175A (en) 2018-08-23 2018-08-23 Method for growing single crystal silicon
TW108123902A TWI722480B (en) 2018-08-23 2019-07-08 Method for growing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/031164 WO2020039553A1 (en) 2018-08-23 2018-08-23 Method for growing silicon single crystal

Publications (1)

Publication Number Publication Date
WO2020039553A1 true WO2020039553A1 (en) 2020-02-27

Family

ID=69592822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031164 WO2020039553A1 (en) 2018-08-23 2018-08-23 Method for growing silicon single crystal

Country Status (5)

Country Link
JP (1) JP7036217B2 (en)
KR (1) KR102461073B1 (en)
CN (1) CN112639175A (en)
TW (1) TWI722480B (en)
WO (1) WO2020039553A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084843A1 (en) * 2019-10-29 2021-05-06 株式会社Sumco Point defect simulator, point defect simulation program, point defect simulation method, method for manufacturing silicon single crystal, and single crystal pulling device
CN114134559A (en) * 2020-09-03 2022-03-04 胜高股份有限公司 Single crystal manufacturing apparatus and single crystal manufacturing method
US11832364B2 (en) 2018-09-28 2023-11-28 Apple Inc. Systems and methods for wavelength locking in optical sensing systems
US11835836B1 (en) 2019-09-09 2023-12-05 Apple Inc. Mach-Zehnder interferometer device for wavelength locking
JP7452505B2 (en) 2020-09-29 2024-03-19 株式会社Sumco Defect-free single crystal silicon manufacturing method and device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114438585A (en) * 2021-12-27 2022-05-06 徐州鑫晶半导体科技有限公司 Method for producing single crystal and silicon crystal
WO2023125206A1 (en) * 2021-12-27 2023-07-06 中环领先半导体材料有限公司 Method for preparing single crystal, and silicon crystal
CN117187942B (en) * 2023-09-11 2024-03-26 保定景欣电气有限公司 Crucible position control method and device in crystal pulling process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189485A (en) * 2007-02-01 2008-08-21 Sumco Corp Method and apparatus for manufacturing silicon single crystal
JP2010155726A (en) * 2008-12-26 2010-07-15 Sumco Corp Method for growing single crystal and single crystal grown by the same
JP2011246341A (en) * 2010-04-26 2011-12-08 Sumco Corp Silicon single crystal pull-up apparatus and method of manufacturing silicon single crystal
JP2015107897A (en) * 2013-12-05 2015-06-11 株式会社Sumco Method of raising silicon single crystal
JP2017105654A (en) * 2015-12-07 2017-06-15 株式会社Sumco Method of manufacturing silicon single crystal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3566899A (en) 1969-01-07 1971-03-02 Foxboro Co Pneumatic relay
JPH1179889A (en) 1997-07-09 1999-03-23 Shin Etsu Handotai Co Ltd Production of and production unit for silicon single crystal with few crystal defect, and silicon single crystal and silicon wafer produced thereby
JP4808832B2 (en) * 2000-03-23 2011-11-02 Sumco Techxiv株式会社 Method for producing defect-free crystals
JP2007261846A (en) * 2006-03-28 2007-10-11 Sumco Techxiv株式会社 Method for manufacturing defect-free silicon single crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189485A (en) * 2007-02-01 2008-08-21 Sumco Corp Method and apparatus for manufacturing silicon single crystal
JP2010155726A (en) * 2008-12-26 2010-07-15 Sumco Corp Method for growing single crystal and single crystal grown by the same
JP2011246341A (en) * 2010-04-26 2011-12-08 Sumco Corp Silicon single crystal pull-up apparatus and method of manufacturing silicon single crystal
JP2015107897A (en) * 2013-12-05 2015-06-11 株式会社Sumco Method of raising silicon single crystal
JP2017105654A (en) * 2015-12-07 2017-06-15 株式会社Sumco Method of manufacturing silicon single crystal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11832364B2 (en) 2018-09-28 2023-11-28 Apple Inc. Systems and methods for wavelength locking in optical sensing systems
US11835836B1 (en) 2019-09-09 2023-12-05 Apple Inc. Mach-Zehnder interferometer device for wavelength locking
WO2021084843A1 (en) * 2019-10-29 2021-05-06 株式会社Sumco Point defect simulator, point defect simulation program, point defect simulation method, method for manufacturing silicon single crystal, and single crystal pulling device
CN114134559A (en) * 2020-09-03 2022-03-04 胜高股份有限公司 Single crystal manufacturing apparatus and single crystal manufacturing method
CN114134559B (en) * 2020-09-03 2023-10-31 胜高股份有限公司 Single crystal manufacturing apparatus and single crystal manufacturing method
JP7452505B2 (en) 2020-09-29 2024-03-19 株式会社Sumco Defect-free single crystal silicon manufacturing method and device

Also Published As

Publication number Publication date
JPWO2020039553A1 (en) 2021-08-10
JP7036217B2 (en) 2022-03-15
TWI722480B (en) 2021-03-21
KR20210010583A (en) 2021-01-27
KR102461073B1 (en) 2022-10-28
TW202014565A (en) 2020-04-16
CN112639175A (en) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2020039553A1 (en) Method for growing silicon single crystal
JP4808832B2 (en) Method for producing defect-free crystals
JP6583142B2 (en) Method and apparatus for producing silicon single crystal
JP4380537B2 (en) Method for producing silicon single crystal
US7582160B2 (en) Silicone single crystal production process
JP6729470B2 (en) Single crystal manufacturing method and apparatus
JP5170061B2 (en) Resistivity calculation program and single crystal manufacturing method
TWI568897B (en) Cultivation method of silicon single crystal
KR101862157B1 (en) Method and apparatus for manufacturing silicon monocrystalline ingot
KR101942322B1 (en) An apparatus for growing a crystal ingot and a method for growing a crystal ingot using the same
KR20060028425A (en) Method for producing single crystal and single crystal
CN108291327B (en) Method for producing silicon single crystal and silicon single crystal
JP2020114802A (en) Method for manufacturing silicon single crystal
JP6263999B2 (en) Method for growing silicon single crystal
JP4457584B2 (en) Method for producing single crystal and single crystal
JP2007308335A (en) Method for pulling single crystal
JP2013159525A (en) Method for manufacturing silicon single crystal and device for manufacturing silicon single crystal
KR100665683B1 (en) Method for manufacturing silicon single crystal
JP7238709B2 (en) Manufacturing method of silicon single crystal
KR20150019780A (en) Apparutus and Method for Manufacturing Single Crystal Ingot
WO2020220766A1 (en) Semiconductor crystal growth method and apparatus
JP2018043904A (en) Method for manufacturing silicon single crystal
JP6414161B2 (en) Method and apparatus for producing silicon single crystal
JP2020105048A (en) Production method of single crystal silicon
JP2022186036A (en) Method for manufacturing silicon single crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207036806

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020537967

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931185

Country of ref document: EP

Kind code of ref document: A1