WO2020039537A1 - Control device, control method, and control system - Google Patents

Control device, control method, and control system Download PDF

Info

Publication number
WO2020039537A1
WO2020039537A1 PCT/JP2018/031119 JP2018031119W WO2020039537A1 WO 2020039537 A1 WO2020039537 A1 WO 2020039537A1 JP 2018031119 W JP2018031119 W JP 2018031119W WO 2020039537 A1 WO2020039537 A1 WO 2020039537A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power
input
circuit
set voltage
Prior art date
Application number
PCT/JP2018/031119
Other languages
French (fr)
Japanese (ja)
Inventor
石橋 義人
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to PCT/JP2018/031119 priority Critical patent/WO2020039537A1/en
Publication of WO2020039537A1 publication Critical patent/WO2020039537A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell

Definitions

  • the present disclosure relates to a control device, a control method, and a control system.
  • a solar cell is known to have a current-voltage characteristic (IV characteristic) in which a current flowing from the solar cell is determined by a terminal voltage generated at a terminal of the solar cell when the solar cell generates power.
  • FIG. 12 is a diagram showing IV characteristics of a solar cell. The horizontal axis indicates the terminal voltage of the solar cell, and the vertical axis indicates the current flowing from the solar cell. For example, when the terminal voltage V11 is generated in the solar cell, a current I11 flows from the solar cell. At this time, electric power P represented by the product of current I11 and voltage V11 is supplied to a load or the like connected to the solar cell.
  • FIG. 13 is a diagram showing power voltage characteristics (PV characteristics) of the solar cell.
  • the abscissa indicates the terminal voltage of the solar cell, and the ordinate indicates power, which is the product of the voltage generated at the terminal of the solar cell and the current flowing from the solar cell.
  • the power of the solar cell has a tendency to project upward with respect to the terminal voltage, and takes an MPP (MaximumimPower Point) in which the power has a maximum value at a certain terminal voltage.
  • MPP MaximumimPower Point
  • the power taken out of the solar cell becomes the maximum value power Pmax. Therefore, if the terminal voltage of the solar cell can be appropriately controlled, power can be efficiently extracted from the solar cell.
  • MPPT control is a technology applied from household solar cells to mega solar cells.
  • a general method of the MPPT control is a hill-climbing method.
  • FIG. 14 is a diagram for explaining MPPT control by the hill-climbing method. For example, when the terminal voltage of the solar cell is the voltage V13, the electric power extracted from the solar cell is electric power P13. Next, when the current taken out of the solar cell is reduced until the terminal voltage becomes the voltage V14, the terminal voltage becomes the voltage V14 and the electric power becomes the electric power P14. The next terminal voltage is determined by comparing the power P14 with the power P13.
  • the power P14 is higher than the power P13, it is expected that the power will increase as the terminal voltage further increases. Therefore, the power is reduced to the power P15 by further reducing the current drawn from the solar cell until the terminal voltage reaches the voltage V15.
  • the next terminal voltage is determined to be, for example, the voltage V16, and the power becomes the power P16.
  • the terminal voltage is subsequently reduced, that is, the terminal voltage is determined to be, for example, the voltage V15, and the power becomes the power P15.
  • the power P15 is higher than the power P16, the power is expected to increase as the terminal voltage further decreases. Then, the electric power becomes electric power P14 by further increasing the current drawn from the solar cell until the terminal voltage becomes voltage V14.
  • the control is switched in the direction of increasing the terminal voltage. In this way, the terminal voltage of the solar cell is controlled so that the power of the solar cell is maximized so as to climb a mountain.
  • the present disclosure has been made in view of the above problems, and the object of the present disclosure is to be able to efficiently extract power from the power supply even if there is a change in the power that can be generated by the power supply, It is another object of the present invention to provide a new and improved control device capable of reducing the cost for controlling power to be efficiently taken out.
  • a voltage setting circuit that sets a set voltage
  • a comparison circuit that compares an input voltage input from a power supply with the set voltage, and a result of the comparison
  • a power control circuit that controls output power according to the following
  • a storage circuit that acquires an input power value of the power generation source and stores the input power value
  • the voltage setting circuit changes the set voltage.
  • a new set voltage is set in accordance with the result of comparing the input power value of the power supply according to the new set voltage with the previous input power value stored in the storage circuit.
  • a method for setting a set voltage comparing an input voltage input from a power generation source with the set voltage, and a result of the comparison. Outputting the output power according to the above, acquiring the input power value of the power generation source, storing the input power value, changing the set voltage, setting a new set voltage, and setting the new set voltage. Setting a next set voltage according to a result of comparing the input power value of the power generation source according to the set voltage with the stored previous input power value. .
  • a power supply for setting a set voltage
  • a comparison for comparing an input voltage input from the power supply with the set voltage.
  • Circuit a power control circuit that controls output power according to the result of the comparison, and a storage circuit that acquires an input power value of the power generation source and stores the input power value
  • the voltage setting circuit is Setting the new set voltage by changing the set voltage, and comparing the input power value of the power generation source according to the new set voltage with the previous input power value stored in the storage circuit.
  • a control system for setting the next set voltage according to the control system.
  • the input voltage input from the power source to the control device is compared with the set voltage set by the voltage setting circuit provided in the control device.
  • Output power is output from the power source according to the result of the comparison. Therefore, the output power from the power generation source is controlled by controlling the set voltage.
  • FIG. 1 is a block diagram illustrating a configuration of an example of a control system according to an embodiment of the present disclosure.
  • 1 is a diagram illustrating an entire configuration of a specific example of a control system according to an embodiment of the present disclosure.
  • 1 is a diagram illustrating a configuration of a control device according to an embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating an example of a relationship between a voltage output from a voltage setting circuit and a voltage input to the voltage setting circuit.
  • 5 is a flowchart illustrating an example of a process performed by a control device according to an embodiment of the present disclosure.
  • FIG. 4 is a diagram for describing processing performed by the control device according to an embodiment of the present disclosure.
  • FIG. 6 is a diagram for describing an effect of the control device according to an embodiment of the present disclosure.
  • FIG. 7 is a diagram for describing processing performed by the control device according to an embodiment of the present disclosure in a situation where weather changes.
  • FIG. 11 is a diagram for describing an effect that the control device of the present disclosure further has.
  • 5 shows an example in which a power combiner is connected to the control device of the present disclosure.
  • FIG. 5 is a diagram showing IV characteristics of a solar cell. It is a figure which shows the electric power voltage characteristic (PV characteristic) of a solar cell. It is a figure for explaining MPPT control by the hill climbing method.
  • PV characteristic electric power voltage characteristic
  • Control system 2. Specific example 2.1. Overall configuration of control system 2.2. Function of control device 2.3. Processing example 2.4. Effect 2.5. Modified example 3. Supplement
  • FIG. 1 is a block diagram illustrating a configuration of an example of a control system 10 according to an embodiment of the present disclosure.
  • the control system 10 includes a power source 100 and a control device 102.
  • the power supply 100 has a function of supplying power by various known methods.
  • the power generation source 100 can be various known power supply sources.
  • the power generation source 100 may be a power supply reduction of an AC adapter or the like.
  • the power generation source 100 may have a function of generating power by various known methods.
  • the power generation source 100 may generate power using natural energy.
  • the power source 100 may be a solar cell that generates power using sunlight.
  • the power generation source 100 may be, for example, a mega solar that generates 1 MW or more of power by arranging a plurality of solar cells.
  • the power generation source 100 may be a wind power generator that generates power using wind power.
  • the voltage generated by the power generation power supply 100 is measured by the control device 102 as an input voltage. Further, a current generated by the generation of the power from the power generation source is measured by the control device 102 as an input current. Further, input power, which is a product of the input current and the input voltage, is calculated by control device 102.
  • the control device 102 includes a storage circuit 104, a voltage setting circuit 106, a comparison circuit 108, and a power control circuit 110.
  • a storage circuit 104 includes a storage circuit 104, a voltage setting circuit 106, a comparison circuit 108, and a power control circuit 110.
  • functions of each circuit included in the control device 102 will be described.
  • the storage circuit 104 has a function of storing various types of information regarding the power generated from the power generation source 100.
  • the storage circuit 104 may store a parameter for calculating the input power input from the power supply 100 to the control device 102. More specifically, the storage circuit 104 may store information on an input voltage value or an input current value measured by the control device 102 as a parameter. Further, the storage circuit 104 may store information on an input power value which is power input from the power supply 100. Further, when the power generation source 100 is a wind power generator, the storage circuit 104 may store the number of revolutions of the power generation motor connected to the windmill of the power generation source 100. Various types of information stored in the storage circuit 104 are transmitted to the voltage setting circuit 106.
  • the voltage setting circuit 106 has a function of setting a set voltage.
  • the set voltage is a voltage that is input to the comparison circuit 108 and set as a voltage to be compared with the input voltage by the comparison circuit 108.
  • the voltage setting circuit 106 sets a set voltage based on the information stored in the storage circuit 104.
  • the set voltage set by the voltage setting circuit 106 is stored in the storage circuit 104.
  • the set voltage set by the voltage setting circuit 106 is input to the comparison circuit 108.
  • the voltage setting circuit 106 sets a new set voltage by changing the set voltage, and sets the input power value of the power supply 100 according to the new set voltage and the previous input power value stored in the storage circuit 104. Has a function of setting the next set voltage in accordance with the result of comparing.
  • the voltage setting circuit 106 may include a processor such as a CPU (Central Processing Unit) that performs various types of arithmetic processing. Further, the voltage setting circuit 106 may execute various kinds of processing by software using a CPU.
  • a processor such as a CPU (Central Processing Unit) that performs various types of arithmetic processing.
  • the voltage setting circuit 106 may execute various kinds of processing by software using a CPU.
  • the comparison circuit 108 has a function of comparing the magnitude relationship between the input voltage and the set voltage set by the voltage setting circuit 106.
  • the comparison circuit 108 outputs a voltage according to the result of comparing the input voltage and the set voltage. For example, the comparison circuit 108 may output the voltage Vh when the input voltage is higher than the set voltage. On the other hand, when the input voltage is lower than the set voltage, the comparison circuit 108 may output a voltage Vl lower than the voltage Vh.
  • the voltage output from the comparison circuit 108 is input to the power control circuit 110.
  • the comparison circuit 108 may divide the input voltage of the power supply 100 and compare the divided input voltage with the set voltage set by the voltage setting circuit 106.
  • the input voltage of the power generation source 100 may always be higher than the upper limit of the set voltage that can be set by the voltage setting circuit 106.
  • the comparison circuit 108 compares the input voltage with the set voltage, the input voltage is always higher than the set voltage.
  • the comparison circuit 108 always outputs, for example, the voltage Vh from the comparison circuit 108, and it is difficult to change the output according to the change in the input voltage. Therefore, the comparison circuit 108 can change the output voltage according to the change of the input voltage by dividing the input voltage so as to approach the voltage range that can be set by the voltage setting circuit 106. Become.
  • the power control circuit 110 has a function of controlling output power, which is power output from the power generation source 100, according to the result of the comparison by the comparison circuit 108. Further, the power control circuit 110 may control the output current according to the result of the comparison by the comparison circuit 108. For example, the power control circuit 110 may increase the output current when the input voltage of the power generation source 100 is higher than the set voltage as a result of the comparison by the comparison circuit 108. As a result, the output power increases. On the other hand, when the input voltage is lower than the set voltage, the output current may be reduced. Thereby, the output power decreases.
  • FIG. 2 is a diagram illustrating an entire configuration of a specific example of the control system 12 according to an embodiment of the present disclosure.
  • the control system 12 includes a solar cell 112, a junction box 113, a control device 114, and a battery 116.
  • the solar cell 112 is an example of the power source 100 shown in FIG. 1 and has a function of generating electric power by converting solar energy into electric power.
  • the power generated by the solar cell 112 is input to the control device 114 as input power.
  • the voltage and the current generated by the solar cell 112 are measured by the control device 114 as the input voltage and the input current. Further, the controller 114 can calculate an input power value as a product of the input voltage and the input current.
  • connection box 113 has a function of electrically connecting the solar cell 112 to the control device 114 or opening the solar cell 112 by turning on or off a switch included in the connection box 113.
  • the switch included in the connection box 113 When the switch included in the connection box 113 is ON, the voltage or current generated by the power generation of the solar cell 112 is measured by the control device 114 as the input voltage or input current. Further, when the switch included in the connection box 113 is in an OFF state, no current flows from the solar cell 112 to the control device 114, and an open voltage is generated in the solar cell 112.
  • the open-circuit voltage generated in the solar cell 112 may be stored in a storage circuit 118 included in the control device 114 described later.
  • the control device 114 includes a storage circuit 118, a voltage setting circuit 120, a comparison circuit 122, and a power control circuit 124.
  • a storage circuit 118 stores data and control signals.
  • the storage circuit 118 includes various known memories.
  • the storage circuit 118 includes various memories such as a ROM (Read Only Memory) or a RAM (Random Access Memory).
  • the storage circuit 118 has a function of storing various types of information, for example, a function of storing an input power value from the solar cell 112. Further, the storage circuit 118 may store an input current value and an input voltage value for calculating the input power value. Further, the storage circuit 118 stores the set voltage value set by the voltage setting circuit 120. Various types of information stored in the storage circuit 118 are transmitted to the voltage setting circuit 120.
  • the voltage setting circuit 120 has the same function as the function of the voltage setting circuit 106 included in the control device 102 described above.
  • the voltage setting circuit 120 may be configured by a CPU. Further, the voltage setting circuit 120 may further include a D / A converter (Digital to Analog Converter). The set voltage set by the voltage setting circuit 120 is generated by the D / A converter, and the generated set voltage is output to the comparison circuit 122.
  • D / A converter Digital to Analog Converter
  • the power control circuit 124 has the same function as the function of the power control circuit 110 included in the control device 102 described above.
  • the power control circuit 124 also has a function as a battery charger that supplies power to the battery 116.
  • the power control circuit 124 outputs the output power according to the result of the comparison by the comparison circuit 122.
  • the output power is input to the battery 116.
  • Battery 116 is charged by electric power input from electric power control circuit 124.
  • the power control circuit 124 uses the input power input from the solar cell 112 as a power source. That is, the input power of the solar cell 112 is supplied to the battery 116 via the power control circuit 124.
  • FIG. 3 is a diagram illustrating a configuration of the control device 114 according to an embodiment of the present disclosure. Hereinafter, a flow from when the power generated by the solar cell 112 generating power is input to the control device 114 as input power, and until the output power is supplied from the control device 114 to the battery 116 will be described.
  • the power generated by the solar cell 112 is input to the control device 114 via the connection box 113. That is, the voltage generated by the solar cell 112 generating power is measured by the control device 114 as the input voltage Vin. At this time, the switch provided on the connection box 113 is in an ON state. (Memory circuit)
  • the input voltage Vin from the solar cell 112 is input to an A / D converter or the like, is converted into digital data, and is stored in the storage circuit 118.
  • the input voltage Vin may be measured after being divided as necessary.
  • the current flowing from the solar cell 112 to the control device 114 mainly flows to the current measuring circuit 126 as the input current Iin.
  • the magnitude of the input current Iin measured by the current measurement circuit 126 is stored in the storage circuit 118.
  • the input voltage Vin from the solar cell 112 is input to the comparison circuit 122.
  • the comparison circuit 122 includes resistors R1 and R2 for dividing the input voltage Vin, and an operational amplifier 130 having a function of outputting a voltage corresponding to a result of comparing the divided input voltages.
  • the input voltage Vin input to the comparison circuit 122 is divided by the resistors R1 and R2 included in the comparison circuit 122. Note that a relationship represented by the following equation (1) is established between the input voltage Vin and the divided input voltage V +.
  • the divided input voltage V + is input to the + side of the operational amplifier 130.
  • the set voltage set by the voltage setting circuit 120 is input to the negative side of the operational amplifier 130.
  • the operational amplifier 130 outputs to the power control circuit 124 a voltage Vc corresponding to the result of comparing the divided input voltage V + with the set voltage.
  • the operational amplifier 130 when the voltage V + is sufficiently higher than the set voltage and the difference between the voltage V + and the set voltage is higher than the first threshold voltage, the operational amplifier 130 supplies the voltage Vc substantially equal to the power supply voltage Vcc of the operational amplifier 130 to the power supply. Input to the control circuit 124.
  • the operational amplifier 130 inputs 0 V to the power control circuit 124.
  • the operational amplifier 130 switches from the operational amplifier 130 as the voltage V + becomes higher than the set voltage.
  • the output voltage Vc may be increased.
  • the voltage Vc output from the operational amplifier 130 has a magnitude between 0 V and the power supply voltage Vcc.
  • the voltage Vc output from the operational amplifier 130 increases. Accordingly, as the input voltage Vin of the solar cell 112 increases, the voltage Vc output from the operational amplifier 130 increases.
  • the operational amplifier 130 is driven by a power supply voltage generated by the power supply 128 using power input from the solar cell 112. For example, when the weather is bad and the solar battery 112 is not generating power, no power is input from the solar battery 112 to the power supply 128. Then, since the power supply voltage is not supplied to the operational amplifier 130, the operational amplifier 130 is not driven. Therefore, in a case where the solar battery 112 does not generate power due to bad weather, the operational amplifier 130 is not driven, so that power consumption for the operational amplifier 130 to perform comparison is suppressed.
  • the voltage Vc input to the power control circuit 124 is input to a terminal 2 of a voltage control circuit 125 included in the power control circuit 124.
  • the voltage control circuit 125 is driven by the power input from the solar cell 112 to the control device 114 being input to the terminal 1 of the voltage control circuit 125.
  • the voltage control circuit 125 outputs the output current Iout from the terminal 3 of the voltage control circuit 125.
  • the output current Iout flows through the battery 116 connected to the voltage control circuit 125, so that the battery 116 is charged.
  • the output current Iout that has been output flows through the resistor R3, so that a voltage Va is generated between the terminal 3 and the terminal 4.
  • Voltage Va is approximately directly proportional to output current Iout. Therefore, the voltage Va increases as the output current Iout increases. Further, the output power output from power control circuit 124 increases as output current Iout increases.
  • FIG. 4 is a diagram illustrating an example of a relationship between the voltage Va output from the voltage control circuit 125 and the voltage Vc input to the voltage control circuit 125 used in the present embodiment.
  • the voltage Va tends to increase as the voltage Vc input to the voltage control circuit 125 used in the present embodiment increases.
  • the voltage Va saturates to the maximum value Vmax.
  • the voltage Va becomes 0V.
  • the voltage Va becomes the voltage V1 which is half the maximum value Vmax.
  • the voltage control circuit 125 that controls the output voltage Va in accordance with the input voltage Vc uses an LT3652 which is a battery charger IC (Integrated @ Circuit) manufactured by Linear Technology Corporation. It may be realized.
  • the voltage Vc input to the voltage control circuit 125 is the voltage Vc output according to the result of the comparison performed by the operational amplifier 130 included in the comparison circuit 122.
  • the voltage Vc output from the operational amplifier 130 increases as the input voltage Vin input from the solar cell 112 increases. Therefore, as the input voltage Vin input from the solar cell 112 increases, the voltage Va increases and the output current Iout also increases. As for the power, as the output current Iout increases, the output power output to the battery 116 increases.
  • the function of the control device 114 has been described above.
  • the functions of the control device 114 will be summarized.
  • the input voltage Vin input from the solar cell 112 is divided by the comparison circuit 122.
  • the divided input voltage Vin is compared with the set voltage set by the voltage setting circuit 120 by the operational amplifier 130.
  • the operational amplifier 130 outputs a voltage Vc according to the result of the comparison, and the output voltage Vc is input to the voltage control circuit 125 included in the power control circuit 124.
  • Voltage control circuit 125 outputs an output current Iout according to input voltage Vc. Then, the output current Iout flows through the battery 116, so that the battery 116 is charged.
  • the solar radiation intensity to the solar cell 112 is reduced.
  • the power generated by the solar cell 112 decreases.
  • the input voltage Vin of the solar cell 112 decreases, and the voltage V + input to the operational amplifier 130 decreases.
  • the voltage Vc output from the operational amplifier 130 decreases.
  • the voltage Va output from the voltage control circuit 125 decreases.
  • the output current Iout output from the voltage control circuit 125 decreases. Therefore, the current supplied to the battery 116 decreases.
  • the output power supplied to the battery 116 decreases.
  • the load viewed from the solar cell 112 decreases, and the input voltage Vin of the solar cell 112 increases.
  • the input voltage Vin of the solar cell 112 decreases due to the deterioration of the weather, but the Vin increases as the load decreases, so that the input voltage Vin of the solar cell 112 converges to a certain voltage.
  • the output power supplied to the battery 116 increases.
  • the load viewed from the solar cell 112 increases, so that the input voltage Vin of the solar cell 112 decreases.
  • the input voltage Vin of the solar cell 112 increases due to the better weather, but the Vin decreases as the load increases, so that the input voltage Vin of the solar cell 112 converges to a certain voltage.
  • the voltage V + is determined according to the result of the comparison between the voltage V + by the comparison circuit 122 and the set voltage. Converges to the set voltage.
  • the speed at which the voltage V + follows the set voltage by this circuit configuration is very fast, and can sufficiently respond to weather fluctuations. As a result, the input voltage Vin converges to a voltage corresponding to the set voltage.
  • FIG. 5 is a flowchart illustrating an example of a process performed by the control device 114 according to an embodiment of the present disclosure.
  • step S201 the terminals of the solar cell 112 are opened in the connection box 113, and the open-circuit voltage of the solar cell 112 is measured.
  • the measured open circuit voltage is stored in the storage circuit 118.
  • the open circuit voltage may be measured a plurality of times, and the storage circuit 118 may store an average value or a maximum value of the open circuit voltages measured a plurality of times.
  • the storage circuit 118 may store an average value or a maximum value of the open-circuit voltages measured four times.
  • the number of times the open circuit voltage is measured may be set by a device provided outside the voltage setting circuit 120.
  • the number of times the open circuit voltage is measured may be manually set from an input device provided outside the voltage setting circuit 120.
  • the stored open-circuit voltage or the average value of the open-circuit voltages measured a plurality of times is transmitted to the voltage setting circuit 120.
  • the voltage setting circuit 120 sets an initial set voltage.
  • the initial set voltage may be set by a device provided outside the voltage setting circuit 120.
  • an initial set voltage may be manually set from an input device provided outside the voltage setting circuit 120.
  • the initial set voltage may be a voltage obtained by multiplying the average value of the open-circuit voltage by a predetermined coefficient.
  • the voltage that becomes the MPP Maximum Power Point
  • the voltage setting circuit 120 may set a value obtained by multiplying the open-circuit voltage by a predetermined coefficient, for example, a coefficient of 65%, as the initial setting voltage.
  • step S205 the voltage setting circuit 120 inputs the initial set voltage to the negative terminal of the operational amplifier.
  • the operational amplifier 130 compares the initial set voltage with the divided input voltage V +.
  • the voltage Vc according to the comparison result is output from the operational amplifier 130, and the output voltage Vc is input to the voltage control circuit 125 included in the power control circuit 124.
  • the voltage control circuit 125 outputs a voltage Va according to the input voltage Vc.
  • An output current Iout according to the voltage Va output from the voltage control circuit 125 is output, and the output current Iout flows to the battery 116, so that the battery 116 is charged.
  • the input voltage Vin converges to a voltage corresponding to the initial set voltage set by the set voltage.
  • step S207 the voltage setting circuit 120 calculates an initial input power value of the solar cell 112.
  • the voltage setting circuit 120 calculates an input power value by multiplying the input voltage Vin of the solar cell 112 by the input current Iin.
  • the calculated initial input power value is stored in the storage circuit 118.
  • the calculated initial input power value is transmitted to the voltage setting circuit 120.
  • the voltage setting circuit 120 changes the set voltage from the initial set voltage and sets a new set voltage.
  • the sign of the amount of change which is the amount by which the set voltage is changed, may be plus or minus.
  • the sign of the change amount of the set voltage is positive, the set voltage changes in the increasing direction, and when the sign of the change amount of the set voltage is negative, the set voltage changes in the decreasing direction.
  • the magnitude of the amount of change in the set voltage may be any magnitude.
  • the magnitude of the change amount of the set voltage is a magnitude proportional to the shift voltage ⁇ 0.
  • the magnitude of the shift voltage ⁇ 0 may be, for example, about 50 mV.
  • the voltage setting circuit 120 sets a new set voltage in which the set voltage is changed so as to increase from the initial set voltage by the shift voltage ⁇ 0. Then, the input voltage Vin converges to a voltage according to the new set voltage.
  • step S211 after the input voltage Vin and the input current Iin of the solar cell 112 are measured, the input voltage Vin and the input current Iin are stored in the storage circuit 118.
  • the voltage setting circuit 120 calculates the input power value of the solar cell 112 by multiplying the input voltage value and the input current value stored in the storage circuit 118. The calculated input power value is stored in the storage circuit 118.
  • step S213 the voltage setting circuit 120 compares the previous input power value with the current input power value, and determines whether the current input power value has increased from the previous input power value.
  • step S213: Yes the process proceeds to step S215.
  • step S213: No the process proceeds to step S217.
  • step S213 a process performed when the determination is Yes in step S213 will be described, and then a process performed when the determination is No in step S213 will be described.
  • step S215 the voltage setting circuit 120 maintains the sign of the amount of change in the set voltage. For example, when the sign of the change amount of the set voltage is plus, the voltage setting circuit 120 maintains the sign of the change amount of the set voltage to plus. On the other hand, when the sign of the change amount of the set voltage is minus, the voltage setting circuit 120 maintains the sign of the change amount of the set voltage to minus.
  • step S217 the voltage setting circuit 120 inverts the sign of the amount of change in the set voltage. For example, when the sign of the change amount of the set voltage is plus, the voltage setting circuit 120 inverts the sign of the change amount of the set voltage to minus. On the other hand, when the sign of the change amount of the set voltage is minus, the voltage setting circuit 120 inverts the sign of the change amount of the set voltage to plus.
  • the voltage setting circuit 120 When the voltage setting circuit 120 maintains or reverses the sign of the change amount of the set voltage, the voltage setting circuit 120 next determines the magnitude of the change amount of the set voltage in step S219.
  • the magnitude of the change amount of the set voltage may be any magnitude. For example, when it is determined in step S213 that the current input power value is higher than the previous input power value, the voltage setting circuit 120 sets the magnitude of the change amount of the set voltage as the shift voltage ⁇ 0. Good. On the other hand, if it is not determined in step S213 that the current input power value has increased from the previous input power value, the voltage setting circuit 120 determines the magnitude of the change amount of the set voltage as the shift voltage ⁇ 0. The size may be doubled.
  • step S221 the voltage setting circuit 120 sets a new set voltage.
  • step S215 or step S217 the sign of the amount of change in the set voltage is determined.
  • step S219 the magnitude of the change in the set voltage is determined.
  • the voltage setting circuit 120 sets a new set voltage by adding the change amount of the set voltage having the determined sign and magnitude to the previous set voltage.
  • step S211 the processing from step S211 to step S221 is repeatedly performed.
  • the frequency at which the set voltage is set by the voltage setting circuit 120 by repeating the processing from step S211 to step S221 may be about once every 200 to 300 ms.
  • FIG. 6 is a diagram for describing processing performed by the control device 114 according to an embodiment of the present disclosure.
  • the horizontal axis is the input voltage Vin of the solar cell 112, and the vertical axis is the input power input from the solar cell 112.
  • the input voltage Vin corresponding to the initial set voltage is the voltage V2.
  • the voltage setting circuit 120 first sets a new set voltage so as to increase the set voltage by the shift voltage ⁇ 0. Then, the output current is limited so that the input voltage Vin becomes a voltage corresponding to the voltage ⁇ 1 corresponding to the shift voltage ⁇ 0, and the input voltage Vin becomes the voltage V3.
  • the voltage setting circuit 120 compares the input power P2 when the input voltage Vin is the voltage V2 with the input power P3 when the input voltage Vin is the voltage V3. If the current input power P3 is higher than the previous input power P2, the voltage setting circuit 120 sets a voltage obtained by increasing the set voltage by the shift voltage ⁇ 0 as a new set voltage. As a result, the input voltage Vin increases by ⁇ 1 to become the voltage V4. Since the voltage V4 is higher than the voltage V3, the set voltage is increased by the shift voltage ⁇ 0 by the voltage setting circuit 120, and the output current is limited until the input voltage Vin becomes the voltage V5 higher by the voltage ⁇ 1. At this time, the input power P5 corresponding to the voltage V5 is smaller than the input power P4.
  • the voltage setting circuit 120 lowers the set voltage by a voltage twice as large as the shift voltage ⁇ 0 to obtain a new set voltage.
  • the comparison of the input voltage calculated by the voltage setting circuit 120 and the setting of a new set voltage are repeatedly performed. Thereby, the MPP of the input power is searched for as in the MPPT control by the hill-climbing method.
  • FIG. 7 is a diagram illustrating a change in the input voltage of the solar cell when the solar radiation intensity changes in the current-voltage characteristics of the solar cell.
  • the control device 114 of the present disclosure is not connected to the solar cell, and a load is directly connected instead of the control device 114.
  • the horizontal axis indicates the input voltage to the solar cell load, and the vertical axis indicates the input power to the solar cell load.
  • FIG. 7 shows three curves C1, C2, and C3 indicating the current-voltage characteristics of the solar cell corresponding to the case where the insolation intensity is different.
  • Curves C1, C2, and C3 are shown in order from the curve corresponding to the situation where the solar radiation intensity is high.
  • the input voltage of the solar cell is the voltage V6 and the input current is the current I6 in the curve C1 corresponding to the situation where the solar radiation intensity is the highest among the three curves.
  • the curve indicating the current-voltage characteristic of the solar cell changes from the curve C1 to the curves C2 and C3.
  • the input current I6 of the solar cell does not change, the input voltage decreases from the voltage V6.
  • the current-voltage characteristics are as shown by the curve C3, if the input current is maintained at the current I6, the input voltage drops to 0V. That is, power is not supplied to the load connected to the solar cell.
  • the input power of the solar cell is calculated by multiplying the input current and the input voltage by a processor such as a DSP (Digital Signal Processor).
  • a processor such as a DSP (Digital Signal Processor).
  • DSP Digital Signal Processor
  • the input power is controlled so as not to decrease.
  • a processor such as a DSP for performing the calculation process requires a high cost.
  • FIG. 8 is a diagram for describing an effect of the control device 114 according to an embodiment of the present disclosure.
  • the horizontal axis in FIG. 8 indicates the input voltage of the solar cell 112, and the vertical axis indicates the input current.
  • curves C1, C2, and C3 are shown in order from the current-voltage characteristic corresponding to the situation of high solar radiation intensity. For example, consider the case where the current I6 is the input current in the curve C1 corresponding to the current-voltage characteristic having the strongest solar radiation intensity among the three curves. For example, when the solar radiation intensity decreases due to a change in the weather from a sunny state to a cloudy state, the curve indicating the current-voltage characteristic changes from the curve C1 to the curves C2 and C3.
  • the input voltage of the solar cell 112 converges on the voltage corresponding to the set voltage even when the weather changes. Therefore, even when the curve C1 indicating the current-voltage characteristic changes to the curves C2 and C3 due to the change in the weather, the input voltage does not change from V6.
  • FIG. 9 is a diagram for describing processing performed by the control device 114 according to an embodiment of the present disclosure in a situation where the weather changes.
  • the horizontal axis of FIG. 9 indicates the input voltage of the solar cell 112, and the vertical axis indicates the input power of the solar cell 112.
  • the power-voltage characteristics of the solar cell 112 are indicated by curves C4 and C5 in order from the case corresponding to the situation of high solar radiation intensity.
  • the input voltage of the solar cell 112 converges to a voltage corresponding to the set voltage set by the voltage setting circuit 120 even when the solar radiation intensity is reduced due to a change in weather.
  • the input voltage is maintained at the voltage V7.
  • the input voltage is increased by voltage ⁇ 1 corresponding to shift voltage ⁇ 0 by setting the set voltage by voltage setting circuit 120 so as to increase by shift voltage ⁇ 0.
  • a new set voltage is set according to the result of the comparison by the comparison circuit 108, and the input voltage converges to a voltage corresponding to the new set voltage.
  • the input voltage changes from, for example, voltage V7 to voltage V8 and voltage V9, and is controlled so as to approach the voltage at which MPP is obtained.
  • the control device 114 since the input voltage is maintained even when the weather changes, the control device 114 does not require high-speed processing, and performs the MPPT control without connecting the control device 114 of the present disclosure to the solar cell 112. Control for searching for the MPP can be performed at a lower speed than in the case. For this reason, the power consumed for performing multiplication of the input current and the input voltage or the like to search for the MPP is reduced. Further, since the control device 114 of the present disclosure does not require high-speed processing, it is not necessary to include a processor such as a DSP having a high-speed processing capability, and the cost of the control device 114 itself is reduced.
  • FIG. 10 is a diagram for describing an effect that the control device 114 according to the present disclosure further has.
  • FIG. 10 shows curves C6, C7, and C8 in order from the curve indicating the current-voltage characteristic corresponding to the situation of high solar radiation intensity.
  • the short-circuit currents corresponding to curves C6, C7, and C8 are currents I1, I2, and I3, respectively.
  • the input current of the solar cell is reduced in advance. For example, a current I4 of about 20% of the short-circuit current I1 of the current-voltage characteristics in a good weather condition is operated as an input current. By operating at such a low current, a decrease in the voltage at the operating point of the solar cell is suppressed even when the weather changes. This suppresses a significant decrease in the power taken out of the solar cell due to a change in weather.
  • the input voltage of the solar cell is fixed to a voltage corresponding to the set voltage set by the voltage setting circuit 120 even when the weather changes and the solar radiation intensity decreases. Therefore, there is no need to set the input current low in order to prepare for a decrease in the input voltage of the solar cell due to a decrease in the solar radiation intensity. Therefore, the control device 114 of the present disclosure can use the current I5 capable of realizing the MPP as the input current for the curve C6 indicating the current-voltage characteristics when the solar radiation intensity is high.
  • ⁇ Also it is assumed that the magnitude of the power to be extracted is a certain power Px.
  • desired power can be obtained with one solar cell panel having maximum output power Px.
  • a desired power Px is extracted from the solar cell panel. Can not. Therefore, it is necessary to use a plurality of solar cell panels or to connect solar cell panels having a larger maximum output power.
  • control device 114 of the present disclosure can take out the power generated by the solar cell very efficiently. For this reason, according to the control device 114 of the present disclosure, it is possible to extract the maximum power with, for example, one solar panel, and to extract sufficient power without connecting the solar cells of a plurality of cells. Becomes
  • the input power input from the solar cell 112 is received by the control device 114 and supplied to the battery 116 as output power.
  • the control device 114 may supply power to various devices.
  • the control device 114 may convert the DC power of the solar cell into AC power and supply the power to the power combiner 132 having a function of sending the power to the distribution line 134.
  • FIG. 11 illustrates an example in which the power combiner 132 is connected to the control device 114 of the present disclosure.
  • the output power output from the power control circuit 124 is supplied to the power combiner 132.
  • the output power supplied to the power combiner 132 is converted into AC power and sent to the distribution line 134. That is, the output power flows backward.
  • the power flowing backward is controlled.
  • the power generation source 100 may be, for example, a mega solar that generates 1 MW or more of power by arranging a plurality of solar cells.
  • the output power output from the control device 102 may be output to a motor or the like.
  • the DC power generated by the motor can be converted to AC by an inverter connected to the motor and sent to a distribution line.
  • each step in the processing executed by each device in this specification does not necessarily have to be processed in chronological order in the order described as a sequence diagram or a flowchart.
  • each step in the processing executed by each device may be processed in an order different from the order described in the flowchart, or may be processed in parallel.
  • a computer program for causing hardware such as the CPU, ROM, and RAM incorporated in the control devices 102 and 114 to perform the same functions as the configurations of the above-described devices can be created.
  • a storage medium storing the computer program can be provided. Further, by configuring each functional block shown in the functional block diagram by hardware, a series of processing can be realized by hardware.
  • a voltage setting circuit for setting a set voltage A comparison circuit that compares the input voltage input from the power supply with the set voltage; A power control circuit that controls output power according to the result of the comparison, A storage circuit that acquires an input power value of the power generation source and stores the input power value, With The voltage setting circuit sets a new set voltage by changing the set voltage, an input power value of the power supply according to the new set voltage, and a previous input power value stored in the storage circuit. A control device that sets the next set voltage according to the result of comparing with. (2) The control device according to (1), wherein the comparison circuit outputs a voltage according to a result of the comparison to the power control circuit.
  • the control device controls an output current according to a result of the comparison.
  • the storage circuit stores a parameter for calculating input power input from the power supply.
  • the storage circuit stores, as the parameters, an input current value input from the power supply and an input voltage value input from the power supply.
  • the input voltage compared by the comparison circuit is a divided input voltage.
  • the power generation source generates power using natural energy.
  • the control device is a solar cell or a wind power generator.
  • the control device according to any one of (1) to (8), wherein the output power is output to at least one of a battery, a power combiner, and a motor.
  • the power control circuit increases the output power when the input voltage is higher than the set voltage as a result of the comparison, and reduces the output power when the input voltage is lower than the set voltage.
  • the control device according to any one of (1) to (9).
  • Power source A voltage setting circuit for setting a set voltage; A comparison circuit that compares the input voltage input from the power supply with the set voltage; A power control circuit that controls output power according to the result of the comparison, A storage circuit that acquires an input power value of the power generation source and stores the input power value, With The voltage setting circuit sets the new set voltage by changing the set voltage, the input power value of the power generation source according to the new set voltage, and the previous input power value stored in the storage circuit A control system that sets the next set voltage according to the result of comparing with.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

[Problem] To enable efficient extraction of power from a power generation source even when the power generatable by the power generation source varies, and enable reduction of the cost for control that is performed in order to efficiently extract power. [Solution] Provided is a control device provided with: a voltage setting circuit that sets a set voltage; a comparison circuit that compares an input voltage inputted from a power generation source, with the set voltage; a power control circuit that controls output power in accordance with the comparison result; and a storage circuit that acquires the input power value of the power generation source and stores the input power value, wherein the voltage setting circuit changes the set voltage and sets a new set voltage, and sets a next set voltage in accordance with the result of comparison between the input power value of the power generation source corresponding to the new set voltage, with the previous input power value stored in the storage circuit.

Description

制御装置、制御方法、及び制御システムControl device, control method, and control system
 本開示は、制御装置、制御方法、及び制御システムに関する。 The present disclosure relates to a control device, a control method, and a control system.
 太陽電池は、太陽電池が発電することにより太陽電池の端子に発生する端子電圧によって太陽電池から流れる電流が決定される電流電圧特性(I-V特性)を有することが知られている。図12は、太陽電池のI-V特性を示す図である。横軸には太陽電池の端子電圧、縦軸には太陽電池から流れる電流を示している。例えば、太陽電池に端子電圧V11が発生する場合、太陽電池から電流I11が流れる。このとき、電流I11と電圧V11の積で表される電力Pが太陽電池に接続される負荷等に供給される。 A solar cell is known to have a current-voltage characteristic (IV characteristic) in which a current flowing from the solar cell is determined by a terminal voltage generated at a terminal of the solar cell when the solar cell generates power. FIG. 12 is a diagram showing IV characteristics of a solar cell. The horizontal axis indicates the terminal voltage of the solar cell, and the vertical axis indicates the current flowing from the solar cell. For example, when the terminal voltage V11 is generated in the solar cell, a current I11 flows from the solar cell. At this time, electric power P represented by the product of current I11 and voltage V11 is supplied to a load or the like connected to the solar cell.
 また、図13は、太陽電池の電力電圧特性(P-V特性)を示す図である。横軸には太陽電池の端子電圧、縦軸には太陽電池の端子に発生する電圧と太陽電池から流れる電流の積である電力を示している。図13に示すように、太陽電池の電力は端子電圧に対して上に凸の傾向を示し、ある端子電圧において電力が最大値であるMPP(Maximum Power Point)をとる。図13の場合では、例えば、端子電圧V12において、太陽電池から取り出される電力が最大値の電力Pmaxとなる。従って、太陽電池の端子電圧を適切に制御することができれば、太陽電池から効率よく電力を取り出すことができる。 FIG. 13 is a diagram showing power voltage characteristics (PV characteristics) of the solar cell. The abscissa indicates the terminal voltage of the solar cell, and the ordinate indicates power, which is the product of the voltage generated at the terminal of the solar cell and the current flowing from the solar cell. As shown in FIG. 13, the power of the solar cell has a tendency to project upward with respect to the terminal voltage, and takes an MPP (MaximumimPower Point) in which the power has a maximum value at a certain terminal voltage. In the case of FIG. 13, for example, at the terminal voltage V12, the power taken out of the solar cell becomes the maximum value power Pmax. Therefore, if the terminal voltage of the solar cell can be appropriately controlled, power can be efficiently extracted from the solar cell.
 太陽電池から取り出される電力を最大にする制御として、最大電力点追跡(MPPT:Maximum Power Point Tracking)制御がある。MPPT制御は、家庭用太陽電池からメガソーラーにまで適用される技術である。MPPT制御には各種の制御方法があるが、MPPT制御の一般的な方法として山登り法がある。図14は、山登り法によるMPPT制御を説明するための図である。例えば、太陽電池の端子電圧が電圧V13である場合、太陽電池から取り出される電力は電力P13となる。次に、端子電圧が電圧V14になるまで太陽電池から取り出す電流を減らすと、端子電圧は電圧V14となり、電力は電力P14となる。この電力P14と電力P13が比較されることにより、次の端子電圧が決定される。図14に示す電力電圧特性の場合、電力P14の方が電力P13よりも高くなることから、さらに端子電圧が高くなると電力も上がることが期待される。そこで、更に端子電圧が電圧V15になるまで太陽電池から取り出す電流を減らすことで、電力は電力P15になる。次に、電力P15と電力P14が比較されることにより、次の端子電圧が例えば電圧V16に決定され、電力は電力P16となる。ところが、電力P16は電力P15より電力が減少したことから、次には端子電圧を引き下げる方向、つまり端子電圧が例えば電圧V15に決定され、電力は電力P15となる。その結果、電力P15は電力P16より電力が高いことから、さらに端子電圧が低くなると電力も上がることが期待される。そこで、更に端子電圧が電圧V14になるまで太陽電池から取り出す電流を増やすことで、電力は電力P14になる。ここで再び電力が減少したことから、取り出す電流量を増やしすぎたと判定され、再び電流が減らされる。つまり、端子電圧を上げる方向に制御が切り替えられる。このように、山登りをするように太陽電池の電力が最大となるように太陽電池の端子電圧が制御される。 As a control for maximizing the power taken from the solar cell, there is a maximum power point tracking (MPPT) control. MPPT control is a technology applied from household solar cells to mega solar cells. There are various control methods in the MPPT control, and a general method of the MPPT control is a hill-climbing method. FIG. 14 is a diagram for explaining MPPT control by the hill-climbing method. For example, when the terminal voltage of the solar cell is the voltage V13, the electric power extracted from the solar cell is electric power P13. Next, when the current taken out of the solar cell is reduced until the terminal voltage becomes the voltage V14, the terminal voltage becomes the voltage V14 and the electric power becomes the electric power P14. The next terminal voltage is determined by comparing the power P14 with the power P13. In the case of the power voltage characteristics shown in FIG. 14, since the power P14 is higher than the power P13, it is expected that the power will increase as the terminal voltage further increases. Therefore, the power is reduced to the power P15 by further reducing the current drawn from the solar cell until the terminal voltage reaches the voltage V15. Next, by comparing the power P15 and the power P14, the next terminal voltage is determined to be, for example, the voltage V16, and the power becomes the power P16. However, since the power of the power P16 is lower than that of the power P15, the terminal voltage is subsequently reduced, that is, the terminal voltage is determined to be, for example, the voltage V15, and the power becomes the power P15. As a result, since the power P15 is higher than the power P16, the power is expected to increase as the terminal voltage further decreases. Then, the electric power becomes electric power P14 by further increasing the current drawn from the solar cell until the terminal voltage becomes voltage V14. Here, since the power has decreased again, it is determined that the amount of current to be extracted has been excessively increased, and the current is decreased again. That is, the control is switched in the direction of increasing the terminal voltage. In this way, the terminal voltage of the solar cell is controlled so that the power of the solar cell is maximized so as to climb a mountain.
特開2013-97596号公報JP 2013-97596 A
 上記で説明してように、MPPT制御においては、電流及び電圧をA/D(Analog/Digital)変換し、電力を求めるための乗算回路が必要となる。一方で、急激な天候の変化等により発電源である太陽電池が発電できる電力が減少した場合、その減少速度に応じて太陽電池から取り出す電力を減らす必要がある。もし、その処理速度が間に合わない場合、太陽電池の端子電圧が0Vにまで低下し、負荷側の処理が一旦停止するという事態に陥ってしまうからである。 As described above, in the MPPT control, a multiplying circuit for A / D (Analog / Digital) conversion of a current and a voltage and obtaining power is required. On the other hand, when the power that can be generated by the solar cell, which is the power supply, decreases due to a sudden change in weather or the like, it is necessary to reduce the amount of power extracted from the solar cell in accordance with the rate of decrease. If the processing speed is not enough, the terminal voltage of the solar cell drops to 0 V, and the processing on the load side temporarily stops.
 このことから、MPPT制御においては、天候の変動に十分対応できるだけの高速な処理をすることができるA/D変換器と乗算機が必要になる。その結果として高いコストと消費電力の増大を招くという課題があった。 Therefore, in the MPPT control, an A / D converter and a multiplier that can perform high-speed processing that can sufficiently cope with weather fluctuations are required. As a result, there is a problem that high cost and increase in power consumption are caused.
 そこで、本開示は、上記問題に鑑みてなされたものであり、本開示の目的とするところは、発電源の発電できる電力に変化があっても効率よく発電源から電力を取り出すことができ、かつ、効率よく電力を取り出すための制御にかかるコストを低減することが可能な、新規かつ改良された制御装置を提供することにある。 Therefore, the present disclosure has been made in view of the above problems, and the object of the present disclosure is to be able to efficiently extract power from the power supply even if there is a change in the power that can be generated by the power supply, It is another object of the present invention to provide a new and improved control device capable of reducing the cost for controlling power to be efficiently taken out.
 上記課題を解決するために、本開示のある観点によれば、設定電圧を設定する電圧設定回路と、発電源から入力される入力電圧と前記設定電圧を比較する比較回路と、前記比較の結果に応じて出力電力を制御する電力制御回路と、前記発電源の入力電力値を取得し、前記入力電力値を記憶する記憶回路と、を備え、前記電圧設定回路は、前記設定電圧を変化させて新たな設定電圧を設定し、前記新たな設定電圧に応じた前記発電源の入力電力値と、前記記憶回路に記憶された前回の入力電力値とを比較した結果に応じて次回の設定電圧を設定する、制御装置が提供される。 In order to solve the above problems, according to an aspect of the present disclosure, a voltage setting circuit that sets a set voltage, a comparison circuit that compares an input voltage input from a power supply with the set voltage, and a result of the comparison A power control circuit that controls output power according to the following, and a storage circuit that acquires an input power value of the power generation source and stores the input power value, wherein the voltage setting circuit changes the set voltage. A new set voltage is set in accordance with the result of comparing the input power value of the power supply according to the new set voltage with the previous input power value stored in the storage circuit. , A control device is provided.
 また、上記課題を解決するために、本開示の別の観点によれば、設定電圧を設定することと、発電源から入力される入力電圧と前記設定電圧を比較することと、前記比較の結果に応じた出力電力を出力することと、前記発電源の入力電力値を取得し、前記入力電力値を記憶することと、前記設定電圧を変化させて新たな設定電圧を設定し、前記新たな設定電圧に応じた前記発電源の入力電力値と、前記記憶された前回の入力電力値とを比較した結果に応じて次回の設定電圧を設定することと、を含む、制御方法が提供される。 According to another embodiment of the present disclosure, there is provided a method for setting a set voltage, comparing an input voltage input from a power generation source with the set voltage, and a result of the comparison. Outputting the output power according to the above, acquiring the input power value of the power generation source, storing the input power value, changing the set voltage, setting a new set voltage, and setting the new set voltage. Setting a next set voltage according to a result of comparing the input power value of the power generation source according to the set voltage with the stored previous input power value. .
 また、上記課題を解決するために、本開示の別の観点によれば、発電源と、設定電圧を設定する電圧設定回路と、発電源から入力される入力電圧と前記設定電圧を比較する比較回路と、前記比較の結果に応じて出力電力を制御する電力制御回路と、前記発電源の入力電力値を取得し、前記入力電力値を記憶する記憶回路と、を備え、前記電圧設定回路は、前記設定電圧を変化させて新たな設定電圧を設定し、前記新たな設定電圧に応じた前記発電源の入力電力値と、前記記憶回路に記憶された前回の入力電力値とを比較した結果に応じて次回の設定電圧を設定する、制御システムが提供される。 According to another embodiment of the present disclosure, there is provided a power supply, a voltage setting circuit for setting a set voltage, and a comparison for comparing an input voltage input from the power supply with the set voltage. Circuit, a power control circuit that controls output power according to the result of the comparison, and a storage circuit that acquires an input power value of the power generation source and stores the input power value, wherein the voltage setting circuit is Setting the new set voltage by changing the set voltage, and comparing the input power value of the power generation source according to the new set voltage with the previous input power value stored in the storage circuit. And a control system for setting the next set voltage according to the control system.
 上記構成により、発電源から制御装置に入力される入力電圧が、制御装置が備える電圧設定回路が設定する設定電圧と比較される。比較された結果に応じて、発電源から出力電力が出力される。このため、設定電圧が制御されることにより、発電源からの出力電力が制御される。 According to the above configuration, the input voltage input from the power source to the control device is compared with the set voltage set by the voltage setting circuit provided in the control device. Output power is output from the power source according to the result of the comparison. Therefore, the output power from the power generation source is controlled by controlling the set voltage.
 以上説明したように本開示によれば、発電源の発電できる電力に変化があっても効率よく発電源から電力を取り出すことができ、かつ、効率よく電力を取り出すための制御にかかるコストを低減することが可能な、新規かつ改良された制御装置を提供することができる。 As described above, according to the present disclosure, even if there is a change in the power that can be generated by the power generation source, it is possible to efficiently extract power from the power generation source, and reduce the cost required for control for efficiently extracting power. And a new and improved control device that can perform the control.
本開示の一実施形態に係る制御システムの一例の構成を示すブロック図である。1 is a block diagram illustrating a configuration of an example of a control system according to an embodiment of the present disclosure. 本開示の一実施形態の制御システムの具体例の全体構成を示す図である。1 is a diagram illustrating an entire configuration of a specific example of a control system according to an embodiment of the present disclosure. 本開示の一実施形態に係る制御装置の構成を示す図である。1 is a diagram illustrating a configuration of a control device according to an embodiment of the present disclosure. 電圧設定回路から出力される電圧と電圧設定回路に入力される電圧の関係の一例を示す図である。FIG. 4 is a diagram illustrating an example of a relationship between a voltage output from a voltage setting circuit and a voltage input to the voltage setting circuit. 本開示の一実施形態に係る制御装置が実施する処理の一例を示すフローチャートである。5 is a flowchart illustrating an example of a process performed by a control device according to an embodiment of the present disclosure. 本開示の一実施形態の制御装置が実施する処理を説明するための図である。FIG. 4 is a diagram for describing processing performed by the control device according to an embodiment of the present disclosure. 太陽電池の電流電圧特性において、日射強度が変化したときの太陽電池の入力電圧の変化を示す図である。It is a figure which shows the change of the input voltage of a solar cell when the solar radiation intensity changes in the current-voltage characteristic of a solar cell. 本開示の一実施形態の制御装置の効果について説明するための図である。FIG. 6 is a diagram for describing an effect of the control device according to an embodiment of the present disclosure. 天候が変化する状況で、本開示の一実施形態に係る制御装置が実施する処理を説明するための図である。FIG. 7 is a diagram for describing processing performed by the control device according to an embodiment of the present disclosure in a situation where weather changes. 本開示の制御装置が更に有する効果について説明するための図である。FIG. 11 is a diagram for describing an effect that the control device of the present disclosure further has. 本開示の制御装置にパワーコンバイナーが接続された例を示す。5 shows an example in which a power combiner is connected to the control device of the present disclosure. 太陽電池のI-V特性を示す図である。FIG. 5 is a diagram showing IV characteristics of a solar cell. 太陽電池の電力電圧特性(P-V特性)を示す図である。It is a figure which shows the electric power voltage characteristic (PV characteristic) of a solar cell. 山登り法によるMPPT制御を説明するための図である。It is a figure for explaining MPPT control by the hill climbing method.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In the specification and the drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.
 なお、説明は以下の順序で行うものとする。
 1.制御システム
 2.具体例
  2.1.制御システムの全体構成
  2.2.制御装置の機能
  2.3.処理例
  2.4.効果
  2.5.変形例
 3.補足
The description will be made in the following order.
1. Control system 2. Specific example 2.1. Overall configuration of control system 2.2. Function of control device 2.3. Processing example 2.4. Effect 2.5. Modified example 3. Supplement
 <<1.制御システム>>
 図1は、本開示の一実施形態に係る制御システム10の一例の構成を示すブロック図である。制御システム10は、発電源100と制御装置102を備える。
<< 1. Control system >>
FIG. 1 is a block diagram illustrating a configuration of an example of a control system 10 according to an embodiment of the present disclosure. The control system 10 includes a power source 100 and a control device 102.
 (発電源)
 本開示の一実施形態に係る発電源100は、各種の公知の手法により電力を供給する機能を有する。発電源100は、各種の公知の電力供給源であり得る。例えば、発電源100は、ACアダプタ等の電力供給減であり得る。また、発電源100は、各種の公知の手法により発電する機能を有してもよい。例えば、発電源100は、自然エネルギーを利用して電力を発電してもよい。より具体的には、発電源100は、太陽光を利用して電力を発電する太陽電池であってもよい。発電源100は、例えば複数の太陽電池が配置されることにより1メガワット以上の電力を発電するメガソーラーであってもよい。または、発電源100は、風力を利用して電力を発電する風力発電機であってもよい。
(Power source)
The power supply 100 according to an embodiment of the present disclosure has a function of supplying power by various known methods. The power generation source 100 can be various known power supply sources. For example, the power generation source 100 may be a power supply reduction of an AC adapter or the like. In addition, the power generation source 100 may have a function of generating power by various known methods. For example, the power generation source 100 may generate power using natural energy. More specifically, the power source 100 may be a solar cell that generates power using sunlight. The power generation source 100 may be, for example, a mega solar that generates 1 MW or more of power by arranging a plurality of solar cells. Alternatively, the power generation source 100 may be a wind power generator that generates power using wind power.
 発電源100が発電することにより生成される電圧は、入力電圧として制御装置102により計測される。また、発電源が発電することにより生成される電流は、入力電流として制御装置102により計測される。さらに、入力電流と入力電圧の積である入力電力が制御装置102により算出される。 The voltage generated by the power generation power supply 100 is measured by the control device 102 as an input voltage. Further, a current generated by the generation of the power from the power generation source is measured by the control device 102 as an input current. Further, input power, which is a product of the input current and the input voltage, is calculated by control device 102.
 (制御装置)
 本開示の一実施形態に係る制御装置102は、記憶回路104、電圧設定回路106、比較回路108、及び電力制御回路110を備える。以下、制御装置102が備える各回路が有する機能について説明する。
(Control device)
The control device 102 according to an embodiment of the present disclosure includes a storage circuit 104, a voltage setting circuit 106, a comparison circuit 108, and a power control circuit 110. Hereinafter, functions of each circuit included in the control device 102 will be described.
 記憶回路104は、発電源100から発電される電力に関する各種の情報を記憶する機能を有する。例えば、記憶回路104は、発電源100から制御装置102に入力される入力電力を算出するためのパラメータを記憶してもよい。より具体的には、記憶回路104は、パラメータとして、制御装置102により計測される入力電圧値又は入力電流値の情報を記憶してもよい。また、記憶回路104は、発電源100から入力される電力である入力電力値の情報を記憶してもよい。さらに、発電源100が風力発電機である場合には、記憶回路104は、発電源100の風車に接続された発電用モーターの回転数を記憶してもよい。記憶回路104が記憶した各種の情報は、電圧設定回路106に伝達される。 (4) The storage circuit 104 has a function of storing various types of information regarding the power generated from the power generation source 100. For example, the storage circuit 104 may store a parameter for calculating the input power input from the power supply 100 to the control device 102. More specifically, the storage circuit 104 may store information on an input voltage value or an input current value measured by the control device 102 as a parameter. Further, the storage circuit 104 may store information on an input power value which is power input from the power supply 100. Further, when the power generation source 100 is a wind power generator, the storage circuit 104 may store the number of revolutions of the power generation motor connected to the windmill of the power generation source 100. Various types of information stored in the storage circuit 104 are transmitted to the voltage setting circuit 106.
 電圧設定回路106は、設定電圧を設定する機能を有する。設定電圧は、比較回路108に入力され、比較回路108により入力電圧と比較される電圧として設定される電圧である。電圧設定回路106は、記憶回路104に記憶された情報に基づいて設定電圧を設定する。電圧設定回路106が設定した設定電圧は、記憶回路104に記憶される。また、電圧設定回路106が設定した設定電圧は、比較回路108に入力される。 The voltage setting circuit 106 has a function of setting a set voltage. The set voltage is a voltage that is input to the comparison circuit 108 and set as a voltage to be compared with the input voltage by the comparison circuit 108. The voltage setting circuit 106 sets a set voltage based on the information stored in the storage circuit 104. The set voltage set by the voltage setting circuit 106 is stored in the storage circuit 104. The set voltage set by the voltage setting circuit 106 is input to the comparison circuit 108.
 また、電圧設定回路106は、設定電圧を変化させて新たな設定電圧を設定し、新たな設定電圧に応じた発電源100の入力電力値と、記憶回路104に記憶された前回の入力電力値とを比較した結果に応じて次回の設定電圧を設定する機能を有する。電圧設定回路106は、各種の演算処理を実施するCPU(Central Processing Unit)等のプロセッサを備えていてもよい。さらに、電圧設定回路106は、CPUによりソフトウェア的に各種の処理を実施してもよい。 Further, the voltage setting circuit 106 sets a new set voltage by changing the set voltage, and sets the input power value of the power supply 100 according to the new set voltage and the previous input power value stored in the storage circuit 104. Has a function of setting the next set voltage in accordance with the result of comparing. The voltage setting circuit 106 may include a processor such as a CPU (Central Processing Unit) that performs various types of arithmetic processing. Further, the voltage setting circuit 106 may execute various kinds of processing by software using a CPU.
 比較回路108は、入力電圧と電圧設定回路106が設定した設定電圧との大小関係を比較する機能を有する。比較回路108は、入力電圧と設定電圧とを比較した結果に応じた電圧を出力する。例えば、比較回路108は、入力電圧が設定電圧よりも高い場合には電圧Vhを出力してもよい。一方、比較回路108は、入力電圧が設定電圧よりも低い場合には、電圧Vhよりも低い電圧Vlを出力してもよい。比較回路108から出力された電圧は、電力制御回路110に入力される。 The comparison circuit 108 has a function of comparing the magnitude relationship between the input voltage and the set voltage set by the voltage setting circuit 106. The comparison circuit 108 outputs a voltage according to the result of comparing the input voltage and the set voltage. For example, the comparison circuit 108 may output the voltage Vh when the input voltage is higher than the set voltage. On the other hand, when the input voltage is lower than the set voltage, the comparison circuit 108 may output a voltage Vl lower than the voltage Vh. The voltage output from the comparison circuit 108 is input to the power control circuit 110.
 また、比較回路108は、発電源100の入力電圧を分圧し、分圧された入力電圧と電圧設定回路106が設定した設定電圧とを比較してもよい。発電源100の入力電圧は、電圧設定回路106が設定することができる設定電圧の上限よりも常に高い場合がある。この場合、比較回路108が入力電圧と設定電圧とを比較すると、常に入力電圧の方が設定電圧よりも高くなる。この場合、比較回路108は、常に比較回路108から例えば電圧Vhが出力されるようになり、入力電圧の変化に応じて出力を変化させることが困難となる。そこで、比較回路108は、入力電圧を分圧することによって電圧設定回路106が設定することができる電圧の範囲に近づけることにより、入力電圧の変化に応じて出力する電圧を変化させることができるようになる。 The comparison circuit 108 may divide the input voltage of the power supply 100 and compare the divided input voltage with the set voltage set by the voltage setting circuit 106. The input voltage of the power generation source 100 may always be higher than the upper limit of the set voltage that can be set by the voltage setting circuit 106. In this case, when the comparison circuit 108 compares the input voltage with the set voltage, the input voltage is always higher than the set voltage. In this case, the comparison circuit 108 always outputs, for example, the voltage Vh from the comparison circuit 108, and it is difficult to change the output according to the change in the input voltage. Therefore, the comparison circuit 108 can change the output voltage according to the change of the input voltage by dividing the input voltage so as to approach the voltage range that can be set by the voltage setting circuit 106. Become.
 電力制御回路110は、比較回路108が比較した結果に応じて、発電源100から出力される電力である出力電力を制御する機能を有する。さらに、電力制御回路110は、比較回路108が比較した結果に応じて出力電流を制御してもよい。例えば、電力制御回路110は、比較回路108が比較した結果、発電源100の入力電圧が設定電圧よりも高い場合には、出力電流を増加させるようにしてもよい。これにより、出力電力が増加する。一方、入力電圧が設定電圧よりも低い場合には、出力電流を減少させてもよい。これにより、出力電力が減少する。 (4) The power control circuit 110 has a function of controlling output power, which is power output from the power generation source 100, according to the result of the comparison by the comparison circuit 108. Further, the power control circuit 110 may control the output current according to the result of the comparison by the comparison circuit 108. For example, the power control circuit 110 may increase the output current when the input voltage of the power generation source 100 is higher than the set voltage as a result of the comparison by the comparison circuit 108. As a result, the output power increases. On the other hand, when the input voltage is lower than the set voltage, the output current may be reduced. Thereby, the output power decreases.
 <<2.具体例>>
 <2.1.制御システムの全体構成>
 図2は、本開示の一実施形態の制御システム12の具体例の全体構成を示す図である。制御システム12は、太陽電池112、接続箱113、制御装置114、及びバッテリ116を備える。
<< 2. Specific example >>
<2.1. Overall configuration of control system>
FIG. 2 is a diagram illustrating an entire configuration of a specific example of the control system 12 according to an embodiment of the present disclosure. The control system 12 includes a solar cell 112, a junction box 113, a control device 114, and a battery 116.
 (太陽電池)
 太陽電池112は、図1に示した発電源100の一例であり、太陽光エネルギーを電力に変換することにより電力を生成する機能を有する。太陽電池112で生成された電力は入力電力として制御装置114に入力される。また、太陽電池112により生成された電圧及び電流は、入力電圧及び入力電流として制御装置114によって計測される。さらに、制御装置114により、入力電圧及び入力電流の積として入力電力値が算出され得る。
(Solar cells)
The solar cell 112 is an example of the power source 100 shown in FIG. 1 and has a function of generating electric power by converting solar energy into electric power. The power generated by the solar cell 112 is input to the control device 114 as input power. The voltage and the current generated by the solar cell 112 are measured by the control device 114 as the input voltage and the input current. Further, the controller 114 can calculate an input power value as a product of the input voltage and the input current.
 (接続箱)
 接続箱113は、接続箱113が備えるスイッチをON又はOFFにすることにより、太陽電池112を電気的に制御装置114に接続又は太陽電池112を開放する機能を有する。接続箱113が備えるスイッチがONの状態では、太陽電池112の発電により生成される電圧又は電流が入力電圧又は入力電流として制御装置114により計測される。また、接続箱113が備えるスイッチがOFFの状態では、太陽電池112から制御装置114に電流が流れず、太陽電池112には開放電圧が発生する。太陽電池112に発生する開放電圧は、後述する制御装置114が備える記憶回路118に記憶されてもよい。
(Connection box)
The connection box 113 has a function of electrically connecting the solar cell 112 to the control device 114 or opening the solar cell 112 by turning on or off a switch included in the connection box 113. When the switch included in the connection box 113 is ON, the voltage or current generated by the power generation of the solar cell 112 is measured by the control device 114 as the input voltage or input current. Further, when the switch included in the connection box 113 is in an OFF state, no current flows from the solar cell 112 to the control device 114, and an open voltage is generated in the solar cell 112. The open-circuit voltage generated in the solar cell 112 may be stored in a storage circuit 118 included in the control device 114 described later.
 (制御装置)
 制御装置114は、記憶回路118、電圧設定回路120、比較回路122、及び電力制御回路124を備える。以下、制御装置114が備える各回路が有する機能について説明する。
(Control device)
The control device 114 includes a storage circuit 118, a voltage setting circuit 120, a comparison circuit 122, and a power control circuit 124. Hereinafter, functions of each circuit included in the control device 114 will be described.
 記憶回路118は、各種の公知のメモリを備える。例えば、記憶回路118は、ROM(Read Only Memory)又はRAM(Random Access Memory)等の各種のメモリを備える。記憶回路118は、各種の情報を記憶する機能を有し、例えば、太陽電池112からの入力電力値を記憶する機能を有する。また、記憶回路118は、入力電力値を算出するための入力電流値及び入力電圧値を記憶してもよい。さらに、記憶回路118は、電圧設定回路120が設定した設定電圧値を記憶する。記憶回路118が記憶した各種の情報は、電圧設定回路120に伝達される。 The storage circuit 118 includes various known memories. For example, the storage circuit 118 includes various memories such as a ROM (Read Only Memory) or a RAM (Random Access Memory). The storage circuit 118 has a function of storing various types of information, for example, a function of storing an input power value from the solar cell 112. Further, the storage circuit 118 may store an input current value and an input voltage value for calculating the input power value. Further, the storage circuit 118 stores the set voltage value set by the voltage setting circuit 120. Various types of information stored in the storage circuit 118 are transmitted to the voltage setting circuit 120.
 電圧設定回路120は、前述した制御装置102が備える電圧設定回路106の機能と同様の機能を有する。電圧設定回路120は、CPUにより構成されてもよい。さらに、電圧設定回路120は、さらにD/A変換機(Digital to Analog Converter)を備えてもよい。電圧設定回路120が設定した設定電圧はD/A変換機により生成され、生成された設定電圧は比較回路122へ出力される。 The voltage setting circuit 120 has the same function as the function of the voltage setting circuit 106 included in the control device 102 described above. The voltage setting circuit 120 may be configured by a CPU. Further, the voltage setting circuit 120 may further include a D / A converter (Digital to Analog Converter). The set voltage set by the voltage setting circuit 120 is generated by the D / A converter, and the generated set voltage is output to the comparison circuit 122.
 電力制御回路124は、前述した制御装置102が備える電力制御回路110の機能と同様の機能を有する。電力制御回路124は、バッテリ116に電力を供給するバッテリチャージャーとしての機能も有する。電力制御回路124は、比較回路122の比較の結果に応じて、出力電力を出力する。出力電力は、バッテリ116に入力される。バッテリ116は、電力制御回路124から入力された電力により充電される。なお、電力制御回路124は、太陽電池112から入力される入力電力を電源としている。つまり、太陽電池112の入力電力が電力制御回路124を介して、バッテリ116に供給されている。 The power control circuit 124 has the same function as the function of the power control circuit 110 included in the control device 102 described above. The power control circuit 124 also has a function as a battery charger that supplies power to the battery 116. The power control circuit 124 outputs the output power according to the result of the comparison by the comparison circuit 122. The output power is input to the battery 116. Battery 116 is charged by electric power input from electric power control circuit 124. The power control circuit 124 uses the input power input from the solar cell 112 as a power source. That is, the input power of the solar cell 112 is supplied to the battery 116 via the power control circuit 124.
 <2.2.制御装置の機能>
 図3は、本開示の一実施形態に係る制御装置114の構成を示す図である。以下、太陽電池112が発電することにより生成される電力が入力電力として制御装置114に入力され、制御装置114から出力電力がバッテリ116に供給されるまでの流れについて説明する。
<2.2. Functions of control device>
FIG. 3 is a diagram illustrating a configuration of the control device 114 according to an embodiment of the present disclosure. Hereinafter, a flow from when the power generated by the solar cell 112 generating power is input to the control device 114 as input power, and until the output power is supplied from the control device 114 to the battery 116 will be described.
 太陽電池112が発電した電力は、接続箱113を介して制御装置114に入力される。つまり、太陽電池112が発電することにより生成された電圧が入力電圧Vinとして制御装置114により計測される。なお、このとき接続箱113に設けられたスイッチはONの状態である。
 (記憶回路)
 太陽電池112からの入力電圧Vinは、A/D変換器などに入力され、デジタルデータに変換された後、記憶回路118により記憶される。なお、入力電圧Vinは必要に応じて分圧された後、計測されても良い。また、太陽電池112から制御装置114に流れる電流は、主に電流計測回路126に入力電流Iinとして流れる。電流計測回路126により計測された入力電流Iinの大きさは記憶回路118により記憶される。
The power generated by the solar cell 112 is input to the control device 114 via the connection box 113. That is, the voltage generated by the solar cell 112 generating power is measured by the control device 114 as the input voltage Vin. At this time, the switch provided on the connection box 113 is in an ON state.
(Memory circuit)
The input voltage Vin from the solar cell 112 is input to an A / D converter or the like, is converted into digital data, and is stored in the storage circuit 118. The input voltage Vin may be measured after being divided as necessary. Further, the current flowing from the solar cell 112 to the control device 114 mainly flows to the current measuring circuit 126 as the input current Iin. The magnitude of the input current Iin measured by the current measurement circuit 126 is stored in the storage circuit 118.
 (比較回路)
 太陽電池112からの入力電圧Vinは、比較回路122に入力される。比較回路122は、入力電圧Vinを分圧するための抵抗R1及び抵抗R2と、分圧された入力電圧を比較した結果に対応する電圧を出力する機能を有するオペアンプ130と、を備える。比較回路122に入力された入力電圧Vinは、比較回路122が備える抵抗R1及びR2により分圧される。なお、入力電圧Vinと、分圧された入力電圧V+との間には、以下の数式(1)で示す関係が成立する。
(Comparison circuit)
The input voltage Vin from the solar cell 112 is input to the comparison circuit 122. The comparison circuit 122 includes resistors R1 and R2 for dividing the input voltage Vin, and an operational amplifier 130 having a function of outputting a voltage corresponding to a result of comparing the divided input voltages. The input voltage Vin input to the comparison circuit 122 is divided by the resistors R1 and R2 included in the comparison circuit 122. Note that a relationship represented by the following equation (1) is established between the input voltage Vin and the divided input voltage V +.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 分圧された入力電圧V+はオペアンプ130の+側に入力される。また、オペアンプ130の-側には、電圧設定回路120により設定された設定電圧が入力される。オペアンプ130は、分圧された入力電圧V+と設定電圧を比較した結果に応じた電圧Vcを電力制御回路124に出力する。 入 力 The divided input voltage V + is input to the + side of the operational amplifier 130. The set voltage set by the voltage setting circuit 120 is input to the negative side of the operational amplifier 130. The operational amplifier 130 outputs to the power control circuit 124 a voltage Vc corresponding to the result of comparing the divided input voltage V + with the set voltage.
 例えば、オペアンプ130は、電圧V+が設定電圧よりも十分大きく、電圧V+と設定電圧の差分が第1の閾値電圧よりも高い場合には、オペアンプ130の電源電圧Vccと同程度の電圧Vcを電力制御回路124に入力する。また、オペアンプ130は、電圧V+が設定電圧よりも十分低く、電圧V+と設定電圧の差が第2の閾値電圧よりも低い場合には、0Vを電力制御回路124に入力する。さらに、電圧V+と設定電圧の差分が第1の閾値電圧と第2の閾値電圧の間である場合には、オペアンプ130は、電圧V+が設定電圧に比べて高くなるに伴って、オペアンプ130から出力する電圧Vcを高くするようにしてもよい。なお、このときにオペアンプ130から出力される電圧Vcは0Vから電源電圧Vccの間の大きさの電圧になる。このように、オペアンプ130の+側に入力される電圧V+が高くなるほど、オペアンプ130から出力される電圧Vcが高くなる。従って、太陽電池112の入力電圧Vinが高くなるほど、オペアンプ130から出力される電圧Vcが高くなる。 For example, when the voltage V + is sufficiently higher than the set voltage and the difference between the voltage V + and the set voltage is higher than the first threshold voltage, the operational amplifier 130 supplies the voltage Vc substantially equal to the power supply voltage Vcc of the operational amplifier 130 to the power supply. Input to the control circuit 124. When the voltage V + is sufficiently lower than the set voltage and the difference between the voltage V + and the set voltage is lower than the second threshold voltage, the operational amplifier 130 inputs 0 V to the power control circuit 124. Further, when the difference between the voltage V + and the set voltage is between the first threshold voltage and the second threshold voltage, the operational amplifier 130 switches from the operational amplifier 130 as the voltage V + becomes higher than the set voltage. The output voltage Vc may be increased. At this time, the voltage Vc output from the operational amplifier 130 has a magnitude between 0 V and the power supply voltage Vcc. As described above, as the voltage V + input to the + side of the operational amplifier 130 increases, the voltage Vc output from the operational amplifier 130 increases. Accordingly, as the input voltage Vin of the solar cell 112 increases, the voltage Vc output from the operational amplifier 130 increases.
 なお、オペアンプ130は、電源128が太陽電池112から入力される電力により生成する電源電圧で駆動している。例えば天候が悪く、太陽電池112が発電していないような場合には、電源128には太陽電池112から電力が入力されない。すると、オペアンプ130には電源電圧が供給されないため、オペアンプ130は駆動しない。このため、天候が悪く太陽電池112が発電しないような場合には、オペアンプ130が駆動しないため、オペアンプ130が比較を実施するための電力の消費が抑えられる。 The operational amplifier 130 is driven by a power supply voltage generated by the power supply 128 using power input from the solar cell 112. For example, when the weather is bad and the solar battery 112 is not generating power, no power is input from the solar battery 112 to the power supply 128. Then, since the power supply voltage is not supplied to the operational amplifier 130, the operational amplifier 130 is not driven. Therefore, in a case where the solar battery 112 does not generate power due to bad weather, the operational amplifier 130 is not driven, so that power consumption for the operational amplifier 130 to perform comparison is suppressed.
 (電力制御回路)
 電力制御回路124に入力された電圧Vcは、電力制御回路124が備える電圧制御回路125の端子2に入力される。電圧制御回路125は、太陽電池112から制御装置114に入力される電力が電圧制御回路125の端子1に入力されることにより駆動している。
(Power control circuit)
The voltage Vc input to the power control circuit 124 is input to a terminal 2 of a voltage control circuit 125 included in the power control circuit 124. The voltage control circuit 125 is driven by the power input from the solar cell 112 to the control device 114 being input to the terminal 1 of the voltage control circuit 125.
 電圧制御回路125は、出力電流Ioutを電圧制御回路125の端子3から出力する。出力電流Ioutが電圧制御回路125に接続されたバッテリ116に流れることにより、バッテリ116が充電される。出力された出力電流Ioutが抵抗R3に流れることにより、端子3と端子4の間に電圧Vaが生成される。 The voltage control circuit 125 outputs the output current Iout from the terminal 3 of the voltage control circuit 125. The output current Iout flows through the battery 116 connected to the voltage control circuit 125, so that the battery 116 is charged. The output current Iout that has been output flows through the resistor R3, so that a voltage Va is generated between the terminal 3 and the terminal 4.
 電圧Vaは、出力電流Ioutにおよそ正比例する。このため、出力電流Ioutが大きいほど、電圧Vaが高くなる。また、電力制御回路124から出力される出力電力は、出力電流Ioutが大きくなるに従って高くなる。 Voltage Va is approximately directly proportional to output current Iout. Therefore, the voltage Va increases as the output current Iout increases. Further, the output power output from power control circuit 124 increases as output current Iout increases.
 図4は、本実施形態で用いる電圧制御回路125から出力される電圧Vaと電圧制御回路125に入力される電圧Vcの関係の一例を示す図である。本実施形態で用いる電圧制御回路125に入力される電圧Vcが高いほど、電圧Vaが高くなる傾向を示している。電圧制御回路125に入力される電圧Vcが十分に高い場合には、電圧Vaは最大値Vmaxに飽和する。一方、電圧Vcが十分に小さい場合には、電圧Vaは0Vとなる。また、図4に示すように、電圧制御回路125の端子2に入力される電圧Vcが電圧V0である場合には、電圧Vaは最大値Vmaxの半分の大きさの電圧V1となる。特に入力される電圧Vcが電圧V0程度である場合には、電圧Vaは電圧制御回路125の電圧Vcにおよそ正比例する。なお、図4に示すように入力される電圧Vcに応じて出力される電圧Vaを制御する電圧制御回路125は、リニアテクノロジー社製のバッテリチャージャIC(Integrated Circuit)であるLT3652を使用することで実現されてもよい。 FIG. 4 is a diagram illustrating an example of a relationship between the voltage Va output from the voltage control circuit 125 and the voltage Vc input to the voltage control circuit 125 used in the present embodiment. The voltage Va tends to increase as the voltage Vc input to the voltage control circuit 125 used in the present embodiment increases. When the voltage Vc input to the voltage control circuit 125 is sufficiently high, the voltage Va saturates to the maximum value Vmax. On the other hand, when the voltage Vc is sufficiently small, the voltage Va becomes 0V. Further, as shown in FIG. 4, when the voltage Vc input to the terminal 2 of the voltage control circuit 125 is the voltage V0, the voltage Va becomes the voltage V1 which is half the maximum value Vmax. In particular, when the input voltage Vc is about the voltage V0, the voltage Va is approximately directly proportional to the voltage Vc of the voltage control circuit 125. As shown in FIG. 4, the voltage control circuit 125 that controls the output voltage Va in accordance with the input voltage Vc uses an LT3652 which is a battery charger IC (Integrated @ Circuit) manufactured by Linear Technology Corporation. It may be realized.
 また、電圧制御回路125に入力される電圧Vcは、比較回路122が備えるオペアンプ130が比較した結果に応じて出力される電圧Vcである。オペアンプ130から出力される電圧Vcは、前述のとおり太陽電池112から入力される入力電圧Vinが高いほど高くなる。従って、太陽電池112から入力される入力電圧Vinが高くなるほど、電圧Vaは高くなり、出力電流Ioutも高くなる。電力は出力電流Ioutが高くなるほど、バッテリ116に出力される出力電力が高くなる。 The voltage Vc input to the voltage control circuit 125 is the voltage Vc output according to the result of the comparison performed by the operational amplifier 130 included in the comparison circuit 122. As described above, the voltage Vc output from the operational amplifier 130 increases as the input voltage Vin input from the solar cell 112 increases. Therefore, as the input voltage Vin input from the solar cell 112 increases, the voltage Va increases and the output current Iout also increases. As for the power, as the output current Iout increases, the output power output to the battery 116 increases.
 出力電力が高くなると、太陽電池112から見た負荷が大きくなるため、太陽電池112の入力電圧Vinが低くなる。一方、出力電力が低くなると、太陽電池112から見た負荷が小さくなるため、太陽電池112の入力電圧Vinが高くなる。このように、電圧制御回路125からバッテリ116に出力される出力電力に応じて、太陽電池112から入力される入力電圧Vinが変化する。 (4) When the output power increases, the load seen from the solar cell 112 increases, and the input voltage Vin of the solar cell 112 decreases. On the other hand, when the output power decreases, the load viewed from the solar cell 112 decreases, and the input voltage Vin of the solar cell 112 increases. As described above, the input voltage Vin input from the solar cell 112 changes according to the output power output from the voltage control circuit 125 to the battery 116.
 以上、本開示の一実施形態に係る制御装置114の機能を説明した。ここで、制御装置114の機能についてまとめる。まず、太陽電池112から入力された入力電圧Vinは比較回路122により分圧される。分圧された入力電圧Vinは、オペアンプ130により電圧設定回路120が設定した設定電圧と比較される。オペアンプ130は、比較の結果に応じた電圧Vcを出力し、出力された電圧Vcは電力制御回路124が備える電圧制御回路125に入力される。電圧制御回路125は、入力された電圧Vcに応じた出力電流Ioutを出力する。そして、バッテリ116に出力電流Ioutが流れることにより、バッテリ116が充電される。 The function of the control device 114 according to an embodiment of the present disclosure has been described above. Here, the functions of the control device 114 will be summarized. First, the input voltage Vin input from the solar cell 112 is divided by the comparison circuit 122. The divided input voltage Vin is compared with the set voltage set by the voltage setting circuit 120 by the operational amplifier 130. The operational amplifier 130 outputs a voltage Vc according to the result of the comparison, and the output voltage Vc is input to the voltage control circuit 125 included in the power control circuit 124. Voltage control circuit 125 outputs an output current Iout according to input voltage Vc. Then, the output current Iout flows through the battery 116, so that the battery 116 is charged.
 ここで、天候が変化したときの本開示の一実施形態の制御装置114の効果について説明する。電圧設定回路120が設定電圧を設定した後、設定電圧が維持された場合を考える。 Here, the effect of the control device 114 according to an embodiment of the present disclosure when the weather changes will be described. Consider a case where the set voltage is maintained after the voltage setting circuit 120 sets the set voltage.
 まず、太陽電池112への日射強度が低下した場合について説明する。例えば、晴れていた天気が曇り、天候が悪化するような場合である。この場合、太陽電池112が発電する電力が低下する。すると、太陽電池112の入力電圧Vinが低下し、オペアンプ130に入力される電圧V+が低下する。設定電圧と比較される電圧V+が低くなることにより、オペアンプ130から出力される電圧Vcが低下する。すると、電圧制御回路125に入力される電圧Vcが低下するため、電圧制御回路125から出力される電圧Vaが低下する。この結果、電圧制御回路125から出力される出力電流Ioutが低下する。従って、バッテリ116に供給される電流が低下する。つまり、バッテリ116に供給される出力電力が低下する。バッテリ116に供給される出力電力が低下すると、太陽電池112から見た負荷が小さくなるため、太陽電池112の入力電圧Vinが上昇する。このように、天候が悪化することにより太陽電池112の入力電圧Vinは低下するが、負荷が小さくなることによりVinが高くなるため、太陽電池112の入力電圧Vinはある電圧に収束する。 First, the case where the solar radiation intensity to the solar cell 112 is reduced will be described. For example, there is a case where the sunny weather becomes cloudy and the weather worsens. In this case, the power generated by the solar cell 112 decreases. Then, the input voltage Vin of the solar cell 112 decreases, and the voltage V + input to the operational amplifier 130 decreases. As the voltage V + compared with the set voltage decreases, the voltage Vc output from the operational amplifier 130 decreases. Then, since the voltage Vc input to the voltage control circuit 125 decreases, the voltage Va output from the voltage control circuit 125 decreases. As a result, the output current Iout output from the voltage control circuit 125 decreases. Therefore, the current supplied to the battery 116 decreases. That is, the output power supplied to the battery 116 decreases. When the output power supplied to the battery 116 decreases, the load viewed from the solar cell 112 decreases, and the input voltage Vin of the solar cell 112 increases. As described above, the input voltage Vin of the solar cell 112 decreases due to the deterioration of the weather, but the Vin increases as the load decreases, so that the input voltage Vin of the solar cell 112 converges to a certain voltage.
 一方、太陽電池112への日射強度が上昇した場合について説明する。例えば、曇っていた天気が晴れ、天候が良くなるような場合である。この場合、太陽電池112への日射強度が低下した場合とは反対に、太陽電池112の入力電圧Vinが上昇し、オペアンプ130に入力される電圧V+が上昇する。設定電圧と比較される電圧V+が高くなることにより、オペアンプ130から出力される電圧Vcが上昇する。すると、電圧制御回路125に入力される電圧Vcが上昇するため、電圧制御回路125から出力される電圧Vaが上昇する。この結果、電圧制御回路125から出力される出力電流Ioutが増加する。従って、バッテリ116に供給される電流が増加する。つまり、バッテリ116に供給される出力電力が増加する。バッテリ116に供給される出力電力が増加すると、太陽電池112から見た負荷が大きくなるため、太陽電池112の入力電圧Vinが低下する。このように、天候が良くなることにより太陽電池112の入力電圧Vinは上昇するが、負荷が大きくなることによりVinが低くなるため、太陽電池112の入力電圧Vinはある電圧に収束する。 On the other hand, a case where the solar radiation intensity on the solar cell 112 increases will be described. For example, there is a case where the cloudy weather clears and the weather improves. In this case, the input voltage Vin of the solar cell 112 increases, and the voltage V + input to the operational amplifier 130 increases, contrary to the case where the solar radiation intensity to the solar cell 112 decreases. As the voltage V + compared with the set voltage increases, the voltage Vc output from the operational amplifier 130 increases. Then, since the voltage Vc input to the voltage control circuit 125 increases, the voltage Va output from the voltage control circuit 125 increases. As a result, the output current Iout output from the voltage control circuit 125 increases. Therefore, the current supplied to battery 116 increases. That is, the output power supplied to the battery 116 increases. When the output power supplied to the battery 116 increases, the load viewed from the solar cell 112 increases, so that the input voltage Vin of the solar cell 112 decreases. As described above, the input voltage Vin of the solar cell 112 increases due to the better weather, but the Vin decreases as the load increases, so that the input voltage Vin of the solar cell 112 converges to a certain voltage.
 このようにして、天気の変化等により日射強度が変化することで太陽電池112の発電電力が変化する場合であっても、比較回路122による電圧V+と設定電圧の比較結果に応じて、電圧V+は設定電圧に収束する。しかも、この回路構成による電圧V+が設定電圧に追従する速度は非常に速く、天候変動に十分応じることが出来る。この結果、入力電圧Vinは設定電圧に応じた電圧に収束する。 In this way, even when the generated power of the solar cell 112 changes due to a change in the solar radiation intensity due to a change in weather or the like, the voltage V + is determined according to the result of the comparison between the voltage V + by the comparison circuit 122 and the set voltage. Converges to the set voltage. In addition, the speed at which the voltage V + follows the set voltage by this circuit configuration is very fast, and can sufficiently respond to weather fluctuations. As a result, the input voltage Vin converges to a voltage corresponding to the set voltage.
 <2.3.処理例>
 以下、本開示の一実施形態に係る制御装置114が実施する処理の一例について説明する。図5は、本開示の一実施形態に係る制御装置114が実施する処理の一例を示すフローチャートである。
<2.3. Processing example>
Hereinafter, an example of a process performed by the control device 114 according to an embodiment of the present disclosure will be described. FIG. 5 is a flowchart illustrating an example of a process performed by the control device 114 according to an embodiment of the present disclosure.
 ステップS201において、接続箱113で太陽電池112の端子が開放され、太陽電池112の開放電圧が計測される。計測された開放電圧は記憶回路118に記憶される。また、開放電圧は複数回計測され、記憶回路118には複数回計測された開放電圧の平均値や、最大値が記憶されてもよい。例えば、記憶回路118には、4回計測された開放電圧の平均値や最大値が記憶され得る。なお、開放電圧が計測される回数は、電圧設定回路120の外部に設けられた装置により設定されてもよい。例えば、電圧設定回路120の外部に設けられた入力装置から手動により、開放電圧が計測される回数が設定されてもよい。記憶された開放電圧又は複数回計測された開放電圧の平均値は電圧設定回路120に伝達される。 In step S201, the terminals of the solar cell 112 are opened in the connection box 113, and the open-circuit voltage of the solar cell 112 is measured. The measured open circuit voltage is stored in the storage circuit 118. The open circuit voltage may be measured a plurality of times, and the storage circuit 118 may store an average value or a maximum value of the open circuit voltages measured a plurality of times. For example, the storage circuit 118 may store an average value or a maximum value of the open-circuit voltages measured four times. Note that the number of times the open circuit voltage is measured may be set by a device provided outside the voltage setting circuit 120. For example, the number of times the open circuit voltage is measured may be manually set from an input device provided outside the voltage setting circuit 120. The stored open-circuit voltage or the average value of the open-circuit voltages measured a plurality of times is transmitted to the voltage setting circuit 120.
 次に、ステップS203において、電圧設定回路120が初期の設定電圧を設定する。なお、初期の設定電圧は、電圧設定回路120の外部に設けられた装置により設定されてもよい。例えば、電圧設定回路120の外部に設けられた入力装置から手動により、初期の設定電圧が設定されてもよい。初期の設定電圧は、開放電圧の平均値に所定の係数をかけた電圧であってもよい。太陽電池の電力電圧特性において、MPP(Maximum Power Point)となる電圧は、開放電圧の例えば65~70%程度である場合がある。このため、電圧設定回路120は、開放電圧に所定の係数として例えば65%の係数をかけた値を初期の設定電圧として設定してもよい。 Next, in step S203, the voltage setting circuit 120 sets an initial set voltage. Note that the initial set voltage may be set by a device provided outside the voltage setting circuit 120. For example, an initial set voltage may be manually set from an input device provided outside the voltage setting circuit 120. The initial set voltage may be a voltage obtained by multiplying the average value of the open-circuit voltage by a predetermined coefficient. In the power-voltage characteristics of the solar cell, the voltage that becomes the MPP (Maximum Power Point) may be, for example, about 65 to 70% of the open-circuit voltage. Therefore, the voltage setting circuit 120 may set a value obtained by multiplying the open-circuit voltage by a predetermined coefficient, for example, a coefficient of 65%, as the initial setting voltage.
 次に、ステップS205において、電圧設定回路120が初期の設定電圧をオペアンプ130の-端子に入力する。すると、オペアンプ130は、初期の設定電圧と分圧された入力電圧V+を比較する。すると、比較された結果に応じた電圧Vcがオペアンプ130から出力され、出力された電圧Vcは電力制御回路124が備える電圧制御回路125に入力される。電圧制御回路125は、入力された電圧Vcに応じた電圧Vaを出力する。電圧制御回路125から出力される電圧Vaに応じた出力電流Ioutが出力され、出力電流Ioutがバッテリ116に流れることにより、バッテリ116が充電される。このとき、入力電圧Vinは、設定電圧が設定した初期の設定電圧に応じた電圧に収束する。 Next, in step S205, the voltage setting circuit 120 inputs the initial set voltage to the negative terminal of the operational amplifier. Then, the operational amplifier 130 compares the initial set voltage with the divided input voltage V +. Then, the voltage Vc according to the comparison result is output from the operational amplifier 130, and the output voltage Vc is input to the voltage control circuit 125 included in the power control circuit 124. The voltage control circuit 125 outputs a voltage Va according to the input voltage Vc. An output current Iout according to the voltage Va output from the voltage control circuit 125 is output, and the output current Iout flows to the battery 116, so that the battery 116 is charged. At this time, the input voltage Vin converges to a voltage corresponding to the initial set voltage set by the set voltage.
 次に、ステップS207において、電圧設定回路120が、太陽電池112の初期の入力電力値を算出する。電圧設定回路120は、太陽電池112の入力電圧Vinと入力電流Iinの乗算することにより入力電力値を算出する。算出された初期の入力電力値は、記憶回路118に記憶される。算出された初期の入力電力値は電圧設定回路120に伝達される。 Next, in step S207, the voltage setting circuit 120 calculates an initial input power value of the solar cell 112. The voltage setting circuit 120 calculates an input power value by multiplying the input voltage Vin of the solar cell 112 by the input current Iin. The calculated initial input power value is stored in the storage circuit 118. The calculated initial input power value is transmitted to the voltage setting circuit 120.
 次に、ステップS209において、電圧設定回路120が、設定電圧を初期の設定電圧から変更し、新たな設定電圧を設定する。電圧設定回路120は、設定電圧を変化させる量である変化量の符号は、プラス又はマイナスとし得る。設定電圧の変化量の符号がプラスである場合には設定電圧は増加する方向に変化し、設定電圧の変化量の符号がマイナスである場合には設定電圧は低下する方向に変化する。また、設定電圧の変化量の大きさは任意の大きさであってよい。ここでは、設定電圧の変化量の大きさはシフト電圧ε0に比例した大きさとする。シフト電圧ε0の大きさは、例えば50mV程度の大きさであってもよい。電圧設定回路120は、初期の設定電圧からシフト電圧ε0だけ増加するように設定電圧を変化させた新たな設定電圧を設定する。すると、入力電圧Vinは、新たな設定電圧に応じた電圧に収束する。 Next, in step S209, the voltage setting circuit 120 changes the set voltage from the initial set voltage and sets a new set voltage. In the voltage setting circuit 120, the sign of the amount of change, which is the amount by which the set voltage is changed, may be plus or minus. When the sign of the change amount of the set voltage is positive, the set voltage changes in the increasing direction, and when the sign of the change amount of the set voltage is negative, the set voltage changes in the decreasing direction. Further, the magnitude of the amount of change in the set voltage may be any magnitude. Here, the magnitude of the change amount of the set voltage is a magnitude proportional to the shift voltage ε0. The magnitude of the shift voltage ε0 may be, for example, about 50 mV. The voltage setting circuit 120 sets a new set voltage in which the set voltage is changed so as to increase from the initial set voltage by the shift voltage ε0. Then, the input voltage Vin converges to a voltage according to the new set voltage.
 次に、ステップS211において、太陽電池112の入力電圧Vin及び入力電流Iinが計測された後、入力電圧Vin及び入力電流Iinが記憶回路118に記憶される。電圧設定回路120は、記憶回路118に記憶された入力電圧値及び入力電流値を乗算して太陽電池112の入力電力値を算出する。算出された入力電力値は、記憶回路118に記憶される。 Next, in step S211, after the input voltage Vin and the input current Iin of the solar cell 112 are measured, the input voltage Vin and the input current Iin are stored in the storage circuit 118. The voltage setting circuit 120 calculates the input power value of the solar cell 112 by multiplying the input voltage value and the input current value stored in the storage circuit 118. The calculated input power value is stored in the storage circuit 118.
 次に、ステップS213において、電圧設定回路120が、前回の入力電力値と今回の入力電力値を比較し、今回の入力電力値が前回の入力電力値から上がったか否かを判定する。今回の入力電力値が前回の入力電力値から上がったことが判定された場合(ステップS213:Yes)には、ステップS215に進む。一方、今回の入力電力値が前回の入力電力値から上がっていないことが判定された場合(ステップS213:No)、ステップS217に進む。 Next, in step S213, the voltage setting circuit 120 compares the previous input power value with the current input power value, and determines whether the current input power value has increased from the previous input power value. When it is determined that the current input power value has increased from the previous input power value (step S213: Yes), the process proceeds to step S215. On the other hand, when it is determined that the current input power value has not risen from the previous input power value (step S213: No), the process proceeds to step S217.
 以下、ステップS213においてYesと判定された場合に実施される処理を説明した後に、ステップS213においてNoと判定された場合に実施される処理を説明する。 Hereinafter, a process performed when the determination is Yes in step S213 will be described, and then a process performed when the determination is No in step S213 will be described.
 ステップS213においてYesと判定された場合、ステップS215において、電圧設定回路120は、設定電圧の変化量の符号を維持する。例えば、設定電圧の変化量の符号がプラスである場合には、電圧設定回路120は、設定電圧の変化量の符号をプラスに維持する。一方、設定電圧の変化量の符号がマイナスである場合には、電圧設定回路120は、設定電圧の変化量の符号をマイナスに維持する。 If it is determined Yes in step S213, in step S215, the voltage setting circuit 120 maintains the sign of the amount of change in the set voltage. For example, when the sign of the change amount of the set voltage is plus, the voltage setting circuit 120 maintains the sign of the change amount of the set voltage to plus. On the other hand, when the sign of the change amount of the set voltage is minus, the voltage setting circuit 120 maintains the sign of the change amount of the set voltage to minus.
 ステップS213においてNoと判定された場合、ステップS217において、電圧設定回路120は、設定電圧の変化量の符号を反転させる。例えば、設定電圧の変化量の符号がプラスである場合には、電圧設定回路120は、設定電圧の変化量の符号をマイナスに反転させる。一方、設定電圧の変化量の符号がマイナスである場合には、電圧設定回路120は、設定電圧の変化量の符号をプラスに反転させる。 場合 If No is determined in step S213, in step S217, the voltage setting circuit 120 inverts the sign of the amount of change in the set voltage. For example, when the sign of the change amount of the set voltage is plus, the voltage setting circuit 120 inverts the sign of the change amount of the set voltage to minus. On the other hand, when the sign of the change amount of the set voltage is minus, the voltage setting circuit 120 inverts the sign of the change amount of the set voltage to plus.
 電圧設定回路120が設定電圧の変化量の符号を維持し、または反転させると、次に、ステップS219において、電圧設定回路120は、設定電圧の変化量の大きさを決定する。設定電圧の変化量の大きさは任意の大きさであってもよい。例えば、電圧設定回路120は、ステップS213において今回の入力電力値が前回の入力電力値に比べて上がったことが判定された場合には、設定電圧の変化量の大きさをシフト電圧ε0としてもよい。一方、電圧設定回路120は、ステップS213において今回の入力電力値が前回の入力電力値に比べて上がったことが判定されなかった場合には、設定電圧の変化量の大きさをシフト電圧ε0の2倍の大きさとしてもよい。 (4) When the voltage setting circuit 120 maintains or reverses the sign of the change amount of the set voltage, the voltage setting circuit 120 next determines the magnitude of the change amount of the set voltage in step S219. The magnitude of the change amount of the set voltage may be any magnitude. For example, when it is determined in step S213 that the current input power value is higher than the previous input power value, the voltage setting circuit 120 sets the magnitude of the change amount of the set voltage as the shift voltage ε0. Good. On the other hand, if it is not determined in step S213 that the current input power value has increased from the previous input power value, the voltage setting circuit 120 determines the magnitude of the change amount of the set voltage as the shift voltage ε0. The size may be doubled.
 次に、ステップS221において、電圧設定回路120は新たな設定電圧を設定する。以上のように、ステップS215又はステップS217において、設定電圧の変化量の符号が決定されている。また、ステップS219において、設定電圧の変化量の大きさが決定されている。電圧設定回路120は、決定された符号と大きさをもつ設定電圧の変化量を前回の設定電圧に加算することにより、新たな設定電圧を設定する。新たな設定電圧が設定されると、ステップS211に戻る。以下、ステップS211からステップS221の処理が繰り返し実施される。なお、ステップS211からステップS221の処理が繰り返されることにより電圧設定回路120により設定電圧が設定される頻度は、200~300msに一回程度の頻度であってもよい。 Next, in step S221, the voltage setting circuit 120 sets a new set voltage. As described above, in step S215 or step S217, the sign of the amount of change in the set voltage is determined. In step S219, the magnitude of the change in the set voltage is determined. The voltage setting circuit 120 sets a new set voltage by adding the change amount of the set voltage having the determined sign and magnitude to the previous set voltage. When a new set voltage is set, the process returns to step S211. Hereinafter, the processing from step S211 to step S221 is repeatedly performed. The frequency at which the set voltage is set by the voltage setting circuit 120 by repeating the processing from step S211 to step S221 may be about once every 200 to 300 ms.
 図6は、本開示の一実施形態の制御装置114が実施する処理を説明するための図である。横軸は、太陽電池112の入力電圧Vinであり、縦軸は太陽電池112から入力される入力電力である。例えば、初期の設定電圧に対応する入力電圧Vinが電圧V2であるとする。電圧設定回路120は、まず、設定電圧をシフト電圧ε0だけ増加させるように新たな設定電圧を設定する。すると、入力電圧Vinはシフト電圧ε0に対応する電圧ε1に対応する電圧になるよう出力電流を制限し、入力電圧Vinは電圧V3となる。このとき、電圧設定回路120は、入力電圧Vinが電圧V2であるときの入力電力P2と、入力電圧Vinが電圧V3であるときの入力電力P3を比較する。今回の入力電力P3が前回の入力電力P2よりも高い場合には、電圧設定回路120は設定電圧をシフト電圧ε0だけ増加させた電圧を新たな設定電圧として設定する。これにより入力電圧Vinは、ε1だけ増加して電圧V4となる。電圧V4は電圧V3よりも高いため、電圧設定回路120により設定電圧がシフト電圧ε0だけ増加し、入力電圧Vinは電圧ε1だけ高い電圧V5になるまで出力電流が制限される。このとき、電圧V5に対応する入力電力P5は、入力電力P4に比べると小さい。このため、電圧設定回路120は、設定電圧をシフト電圧ε0の2倍の大きさの電圧だけ下げて、新たな設定電圧とする。以下、電圧設定回路120により算出される入力電圧の比較と、新たな設定電圧の設定が繰り返し実施される。これにより、入力電力のMPPが、山登り法によるMPPT制御のように探索される。 FIG. 6 is a diagram for describing processing performed by the control device 114 according to an embodiment of the present disclosure. The horizontal axis is the input voltage Vin of the solar cell 112, and the vertical axis is the input power input from the solar cell 112. For example, it is assumed that the input voltage Vin corresponding to the initial set voltage is the voltage V2. The voltage setting circuit 120 first sets a new set voltage so as to increase the set voltage by the shift voltage ε0. Then, the output current is limited so that the input voltage Vin becomes a voltage corresponding to the voltage ε1 corresponding to the shift voltage ε0, and the input voltage Vin becomes the voltage V3. At this time, the voltage setting circuit 120 compares the input power P2 when the input voltage Vin is the voltage V2 with the input power P3 when the input voltage Vin is the voltage V3. If the current input power P3 is higher than the previous input power P2, the voltage setting circuit 120 sets a voltage obtained by increasing the set voltage by the shift voltage ε0 as a new set voltage. As a result, the input voltage Vin increases by ε1 to become the voltage V4. Since the voltage V4 is higher than the voltage V3, the set voltage is increased by the shift voltage ε0 by the voltage setting circuit 120, and the output current is limited until the input voltage Vin becomes the voltage V5 higher by the voltage ε1. At this time, the input power P5 corresponding to the voltage V5 is smaller than the input power P4. For this reason, the voltage setting circuit 120 lowers the set voltage by a voltage twice as large as the shift voltage ε0 to obtain a new set voltage. Hereinafter, the comparison of the input voltage calculated by the voltage setting circuit 120 and the setting of a new set voltage are repeatedly performed. Thereby, the MPP of the input power is searched for as in the MPPT control by the hill-climbing method.
 <2.4.効果>
 以下、本開示の一実施形態に係る制御装置114の効果について説明する。図7は、太陽電池の電流電圧特性において、日射強度が変化したときの太陽電池の入力電圧の変化を示す図である。図7の説明では、太陽電池には本開示の制御装置114が接続されず、制御装置114の代わりに負荷が直接接続されている場合を想定している。横軸は太陽電池の負荷への入力電圧、縦軸は太陽電池の負荷への入力電力を示す。図7では、日射強度の異なる場合に対応する太陽電池の電流電圧特性を示す3つの曲線C1、C2、及びC3を示している。日射強度が強い状況に対応する曲線から順番に、曲線C1、C2、及びC3が示されている。例えば今、3つの曲線のうちで最も日射強度が強い状況に対応する曲線C1において、太陽電池の入力電圧が電圧V6、入力電流が電流I6である場合について考える。例えば、天候が晴れの状態から曇りの状態に変化していき、日射強度が低下すると、太陽電池の電流電圧特性を示す曲線は、曲線C1から曲線C2、C3へと変化していく。すると、太陽電池の入力電流I6が変化しない場合には、入力電圧は電圧V6から減少していく。例えば、曲線C3のような電流電圧特性になると、入力電流が電流I6に維持された場合には、入力電圧が0Vまで下がってしまう。つまり、太陽電池に接続されている負荷に電力が供給されなくなってしまう。
<2.4. Effect>
Hereinafter, effects of the control device 114 according to an embodiment of the present disclosure will be described. FIG. 7 is a diagram illustrating a change in the input voltage of the solar cell when the solar radiation intensity changes in the current-voltage characteristics of the solar cell. In the description of FIG. 7, it is assumed that the control device 114 of the present disclosure is not connected to the solar cell, and a load is directly connected instead of the control device 114. The horizontal axis indicates the input voltage to the solar cell load, and the vertical axis indicates the input power to the solar cell load. FIG. 7 shows three curves C1, C2, and C3 indicating the current-voltage characteristics of the solar cell corresponding to the case where the insolation intensity is different. Curves C1, C2, and C3 are shown in order from the curve corresponding to the situation where the solar radiation intensity is high. For example, consider the case where the input voltage of the solar cell is the voltage V6 and the input current is the current I6 in the curve C1 corresponding to the situation where the solar radiation intensity is the highest among the three curves. For example, when the weather changes from a sunny state to a cloudy state and the solar radiation intensity decreases, the curve indicating the current-voltage characteristic of the solar cell changes from the curve C1 to the curves C2 and C3. Then, when the input current I6 of the solar cell does not change, the input voltage decreases from the voltage V6. For example, when the current-voltage characteristics are as shown by the curve C3, if the input current is maintained at the current I6, the input voltage drops to 0V. That is, power is not supplied to the load connected to the solar cell.
 このような天候の変化に対処するためには、太陽電池の入力電力を算出し、算出結果に応じて入力電流を制御する必要がある。例えばA/D変換器により太陽電池の入力電流及び入力電圧が取得され、例えばDSP(Digital Signal Processor)等のプロセッサにより入力電流と入力電圧の乗算を実施して入力電力が算出される。この結果に応じて、入力電圧を制御することにより、入力電力が低下しないように制御される。特に、急激な天候の変化に対応するためには、プロセッサの計算処理の速度を高める必要があり、処理を実施するための消費電力が高くなる。また、計算処理を実施するためのDSP等のプロセッサに高額の費用がかかる。 対 処 To cope with such a change in weather, it is necessary to calculate the input power of the solar cell and control the input current according to the calculation result. For example, the input current and the input voltage of the solar cell are obtained by an A / D converter, and the input power is calculated by multiplying the input current and the input voltage by a processor such as a DSP (Digital Signal Processor). By controlling the input voltage according to this result, the input power is controlled so as not to decrease. In particular, in order to cope with a sudden change in weather, it is necessary to increase the speed of the calculation processing of the processor, and the power consumption for performing the processing increases. In addition, a processor such as a DSP for performing the calculation process requires a high cost.
 図8は、本開示の一実施形態の制御装置114の効果について説明するための図である。図8の横軸は太陽電池112の入力電圧、縦軸は入力電流を示す。図7と同様に日射強度の強い状況に対応する電流電圧特性から順番に曲線C1、C2、及びC3が示されている。例えば今、3つの曲線のうちの最も日射強度の強い電流電圧特性に対応する曲線C1において、電流I6が入力電流となっている場合を考える。例えば天候が晴れの状態から曇りの状態に変化することにより日射強度が低下すると、電流電圧特性を示す曲線は、曲線C1から曲線C2、C3へと変化していく。前述のように、本開示の一実施形態に係る制御装置114では、天候が変化した場合であっても、太陽電池112の入力電圧は、設定電圧に対応する電圧に収束する。従って、天候が変化することにより、電流電圧特性を示す曲線C1が曲線C2、C3へと変化した場合であっても、入力電圧はV6から変化しない。 FIG. 8 is a diagram for describing an effect of the control device 114 according to an embodiment of the present disclosure. The horizontal axis in FIG. 8 indicates the input voltage of the solar cell 112, and the vertical axis indicates the input current. Similar to FIG. 7, curves C1, C2, and C3 are shown in order from the current-voltage characteristic corresponding to the situation of high solar radiation intensity. For example, consider the case where the current I6 is the input current in the curve C1 corresponding to the current-voltage characteristic having the strongest solar radiation intensity among the three curves. For example, when the solar radiation intensity decreases due to a change in the weather from a sunny state to a cloudy state, the curve indicating the current-voltage characteristic changes from the curve C1 to the curves C2 and C3. As described above, in the control device 114 according to an embodiment of the present disclosure, the input voltage of the solar cell 112 converges on the voltage corresponding to the set voltage even when the weather changes. Therefore, even when the curve C1 indicating the current-voltage characteristic changes to the curves C2 and C3 due to the change in the weather, the input voltage does not change from V6.
 図9は、天候が変化する状況で、本開示の一実施形態に係る制御装置114が実施する処理を説明するための図である。図9の横軸は太陽電池112の入力電圧、縦軸は太陽電池112の入力電力を示している。また、太陽電池112の電力電圧特性が、日射強度の強い状況に対応する場合から順番に、曲線C4、C5で示されている。前述のように、天候が変化することにより日射強度が低下した場合であっても、太陽電池112の入力電圧は、電圧設定回路120が設定した設定電圧に対応する電圧に収束する。従って、日射強度が低下することにより電力電圧特性を示す曲線C4が曲線C5に変化した場合であっても、入力電圧は電圧V7のまま維持される。以下、電圧設定回路120により設定電圧がシフト電圧ε0だけ増加するように設定されることにより、入力電圧はシフト電圧ε0に対応する電圧ε1だけ増加する。そして、比較回路108による比較の結果に応じて、新たな設定電圧が設定され、入力電圧は新たな設定電圧に応じた電圧に収束する。このようにして、入力電圧は、例えば、電圧V7から電圧V8、電圧V9のように変化し、MPPが得られる電圧に近づくように制御される。 FIG. 9 is a diagram for describing processing performed by the control device 114 according to an embodiment of the present disclosure in a situation where the weather changes. The horizontal axis of FIG. 9 indicates the input voltage of the solar cell 112, and the vertical axis indicates the input power of the solar cell 112. In addition, the power-voltage characteristics of the solar cell 112 are indicated by curves C4 and C5 in order from the case corresponding to the situation of high solar radiation intensity. As described above, the input voltage of the solar cell 112 converges to a voltage corresponding to the set voltage set by the voltage setting circuit 120 even when the solar radiation intensity is reduced due to a change in weather. Therefore, even when the curve C4 indicating the power voltage characteristic changes to the curve C5 due to the decrease in the solar radiation intensity, the input voltage is maintained at the voltage V7. Hereinafter, the input voltage is increased by voltage ε1 corresponding to shift voltage ε0 by setting the set voltage by voltage setting circuit 120 so as to increase by shift voltage ε0. Then, a new set voltage is set according to the result of the comparison by the comparison circuit 108, and the input voltage converges to a voltage corresponding to the new set voltage. In this way, the input voltage changes from, for example, voltage V7 to voltage V8 and voltage V9, and is controlled so as to approach the voltage at which MPP is obtained.
 このように、天候が変化しても入力電圧が維持されるため、制御装置114は、高速な処理を必要とせず、本開示の制御装置114を太陽電池112に接続しないでMPPT制御を実施する場合よりも低速でMPPを探索する制御を実施することができる。このため、MPPを探索するために入力電流と入力電圧の乗算等を実施するために消費される電力が低減される。また、本開示の制御装置114は、高速な処理を必要としないため、高速な処理能力を有するDSP等のプロセッサを備える必要がなくなり、制御装置114そのもののコストも低減される。 As described above, since the input voltage is maintained even when the weather changes, the control device 114 does not require high-speed processing, and performs the MPPT control without connecting the control device 114 of the present disclosure to the solar cell 112. Control for searching for the MPP can be performed at a lower speed than in the case. For this reason, the power consumed for performing multiplication of the input current and the input voltage or the like to search for the MPP is reduced. Further, since the control device 114 of the present disclosure does not require high-speed processing, it is not necessary to include a processor such as a DSP having a high-speed processing capability, and the cost of the control device 114 itself is reduced.
 本開示の制御装置114が有する更なる効果について説明する。図10は、本開示の制御装置114が更に有する効果について説明するための図である。図10には、日射強度の強い状況に対応する電流電圧特性を示す曲線から順番に、曲線C6、C7、及びC8が示されている。曲線C6、C7、及びC8に対応する短絡電流は、それぞれ電流I1、I2、及びI3である。図7を用いて説明したように、太陽電池の入力電流が固定されている場合には、天候が変化して日射強度が低下すると入力電圧が低下する。入力電圧が低下し過ぎると、太陽電池から取り出せる電力が非常に小さくなったり、0になってしまう場合がある。その際、負荷装置には、ラッチするものもある。しかし、負荷装置に供給される電力が0になることで入力電圧が回復し、再び負荷装置に電力が供給され、それに伴い再び入力電圧が低下し、再度負荷装置がラッチすることになる。これを繰り返すことで、負荷装置が壊れてしまうことがある。このように、天候の変化によって太陽電池から取り出せる電力が小さくなったり、0になることを防止するための方法として、あらかじめ太陽電池の入力電流を低くしておく方法がある。例えば、天候の良い状態における電流電圧特性の短絡電流I1の20%程度の電流I4を入力電流として動作させる。このように低い電流で動作させることにより、天候が変化した場合であっても太陽電池の動作点の電圧の低下が抑制される。これにより、天候の変化によって太陽電池から取り出される電力が著しく低下することが抑制される。 更 A further effect of the control device 114 of the present disclosure will be described. FIG. 10 is a diagram for describing an effect that the control device 114 according to the present disclosure further has. FIG. 10 shows curves C6, C7, and C8 in order from the curve indicating the current-voltage characteristic corresponding to the situation of high solar radiation intensity. The short-circuit currents corresponding to curves C6, C7, and C8 are currents I1, I2, and I3, respectively. As described with reference to FIG. 7, when the input current of the solar cell is fixed, if the weather changes and the solar radiation intensity decreases, the input voltage decreases. If the input voltage is too low, the power that can be extracted from the solar cell may become extremely small or may become zero. At this time, some load devices latch. However, when the power supplied to the load device becomes 0, the input voltage is restored, the power is supplied to the load device again, and accordingly, the input voltage decreases again, and the load device latches again. By repeating this, the load device may be broken. As described above, as a method for preventing the power that can be extracted from the solar cell from being reduced or becoming zero due to a change in weather, there is a method in which the input current of the solar cell is reduced in advance. For example, a current I4 of about 20% of the short-circuit current I1 of the current-voltage characteristics in a good weather condition is operated as an input current. By operating at such a low current, a decrease in the voltage at the operating point of the solar cell is suppressed even when the weather changes. This suppresses a significant decrease in the power taken out of the solar cell due to a change in weather.
 しかしながら、上記のような方法では、天候がよく日射強度が強い場合において、太陽電池から効率よく電力を取り出されない。例えば、日射強度が強い場合に対応する電流電圧特性を示す曲線C6において、電流I5及び電圧V10でMPPをとるとする。このとき、入力電流I4を短絡電流I1の例えば20%程度としていると、電流I5で動作している場合に比べて、太陽電池から取り出される電力が小さくなってしまう。従って、太陽電池から取り出せる最大の電力に対して、太陽電池から取り出せる電力が小さくなってしまう。 However, according to the above method, power cannot be efficiently extracted from the solar cell when the weather is good and the solar radiation intensity is strong. For example, it is assumed that an MPP is taken at a current I5 and a voltage V10 in a curve C6 indicating a current-voltage characteristic corresponding to a case where the solar radiation intensity is high. At this time, when the input current I4 is set to, for example, about 20% of the short-circuit current I1, the power taken out of the solar cell becomes smaller than in the case where the operation is performed with the current I5. Therefore, the power that can be extracted from the solar cell is smaller than the maximum power that can be extracted from the solar cell.
 一方、本開示の制御装置114では、天候が変化して日射強度が低下した場合であっても、太陽電池の入力電圧は電圧設定回路120が設定した設定電圧に対応する電圧に固定される。このため、日射強度の低下による太陽電池の入力電圧の低下に備えるために、入力電流を低くする設定する必要がない。従って、本開示の制御装置114は、日射強度の強い場合における電流電圧特性を示す曲線C6について、MPPを実現することができる電流I5を入力電流とすることができる。 On the other hand, in the control device 114 of the present disclosure, the input voltage of the solar cell is fixed to a voltage corresponding to the set voltage set by the voltage setting circuit 120 even when the weather changes and the solar radiation intensity decreases. Therefore, there is no need to set the input current low in order to prepare for a decrease in the input voltage of the solar cell due to a decrease in the solar radiation intensity. Therefore, the control device 114 of the present disclosure can use the current I5 capable of realizing the MPP as the input current for the curve C6 indicating the current-voltage characteristics when the solar radiation intensity is high.
 また、取り出したい電力の大きさが、ある電力Pxであったと仮定する。本開示に係る制御装置114によれば、最大出力電力Pxの太陽電池パネル1枚で所望の電力が得られることになる。しかし、図10を用いて説明したように、天候の変化に伴う太陽電池の入力電圧の低下を抑制するために入力電流を低く設定する方法では、上記太陽電池パネルから所望の電力Pxを取り出すことができない。従って、複数の太陽電池パネルを用いるか、最大出力電力がより大きい太陽電池パネルをつなげる必要が生じる。 {Also, it is assumed that the magnitude of the power to be extracted is a certain power Px. According to control device 114 according to the present disclosure, desired power can be obtained with one solar cell panel having maximum output power Px. However, as described with reference to FIG. 10, in the method of setting the input current low in order to suppress a decrease in the input voltage of the solar cell due to a change in weather, a desired power Px is extracted from the solar cell panel. Can not. Therefore, it is necessary to use a plurality of solar cell panels or to connect solar cell panels having a larger maximum output power.
 上記のように、本開示の制御装置114は、太陽電池が発電する発電電力を非常に効率よく取り出すことができる。このため、本開示の制御装置114によれば、例えば太陽電池パネル1枚で、最大となる電力を取り出すことができ、複数のセルの太陽電池を接続しなくとも十分な電力を取り出すことが可能となる。 の As described above, the control device 114 of the present disclosure can take out the power generated by the solar cell very efficiently. For this reason, according to the control device 114 of the present disclosure, it is possible to extract the maximum power with, for example, one solar panel, and to extract sufficient power without connecting the solar cells of a plurality of cells. Becomes
 <2.5.変形例>
 (変形例1)
 本開示の一実施形態に係る制御装置114は、太陽電池112から入力された入力電力を制御装置114で受け取り、バッテリ116に出力電力として供給した。これに限らず、制御装置114は、各種の装置に電力を供給してもよい。例えば、制御装置114は、太陽電池の直流電力を交流電力に変換し、配電線134に送り込む機能を有するパワーコンバイナー132に電力を供給してもよい。図11は、本開示の制御装置114にパワーコンバイナー132が接続された例を示す。図11の構成では電力制御回路124から出力される出力電力がパワーコンバイナー132に供給される。パワーコンバイナー132に供給された出力電力は交流電力に変換され、配電線134に送り込まれる。つまり、出力電力は逆潮流される。電力制御回路124により出力電力の大きさが制御されることにより、逆潮流される電力が制御される。
<2.5. Modification>
(Modification 1)
In the control device 114 according to an embodiment of the present disclosure, the input power input from the solar cell 112 is received by the control device 114 and supplied to the battery 116 as output power. Not limited to this, the control device 114 may supply power to various devices. For example, the control device 114 may convert the DC power of the solar cell into AC power and supply the power to the power combiner 132 having a function of sending the power to the distribution line 134. FIG. 11 illustrates an example in which the power combiner 132 is connected to the control device 114 of the present disclosure. In the configuration of FIG. 11, the output power output from the power control circuit 124 is supplied to the power combiner 132. The output power supplied to the power combiner 132 is converted into AC power and sent to the distribution line 134. That is, the output power flows backward. By controlling the magnitude of the output power by the power control circuit 124, the power flowing backward is controlled.
 (変形例2)
 また、図1に示す制御システム10において、発電源100は、例えば複数の太陽電池が配置されることにより1メガワット以上の電力を発電するメガソーラーであってもよい。この場合、制御装置102から出力される出力電力はモーター等に出力されてもよい。モーターが発電した直流の電力はモーターに接続されたインバーターにより交流に変換され、配電線に送り込まれ得る。
(Modification 2)
In the control system 10 shown in FIG. 1, the power generation source 100 may be, for example, a mega solar that generates 1 MW or more of power by arranging a plurality of solar cells. In this case, the output power output from the control device 102 may be output to a motor or the like. The DC power generated by the motor can be converted to AC by an inverter connected to the motor and sent to a distribution line.
 <<3.補足>>
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示はかかる例に限定されない。本開示の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
<< 3. Supplement >>
The preferred embodiments of the present disclosure have been described above in detail with reference to the accompanying drawings, but the present disclosure is not limited to such examples. It is obvious that those skilled in the art to which the present disclosure belongs can conceive various changes or modifications within the scope of the technical idea described in the claims. It is understood that these also belong to the technical scope of the present disclosure.
 本明細書の各装置が実行する処理における各ステップは、必ずしもシーケンス図またはフローチャートとして記載された順序に沿って時系列に処理する必要はない。例えば、各装置が実行する処理における各ステップは、フローチャートとして記載した順序と異なる順序で処理されても、並列的に処理されてもよい。 各 Each step in the processing executed by each device in this specification does not necessarily have to be processed in chronological order in the order described as a sequence diagram or a flowchart. For example, each step in the processing executed by each device may be processed in an order different from the order described in the flowchart, or may be processed in parallel.
 また、制御装置102、114に内蔵されるCPU、ROMおよびRAMなどのハードウェアを、上述した各装置の構成と同等の機能を発揮させるためのコンピュータプログラムも作成可能である。また、該コンピュータプログラムを記憶させた記憶媒体も提供されることが可能である。また、機能ブロック図で示したそれぞれの機能ブロックをハードウェアで構成することで、一連の処理をハードウェアで実現することもできる。 Also, a computer program for causing hardware such as the CPU, ROM, and RAM incorporated in the control devices 102 and 114 to perform the same functions as the configurations of the above-described devices can be created. Also, a storage medium storing the computer program can be provided. Further, by configuring each functional block shown in the functional block diagram by hardware, a series of processing can be realized by hardware.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 設定電圧を設定する電圧設定回路と、
 発電源から入力される入力電圧と前記設定電圧を比較する比較回路と、
 前記比較の結果に応じて出力電力を制御する電力制御回路と、
 前記発電源の入力電力値を取得し、前記入力電力値を記憶する記憶回路と、
 を備え、
 前記電圧設定回路は、前記設定電圧を変化させて新たな設定電圧を設定し、前記新たな設定電圧に応じた前記発電源の入力電力値と、前記記憶回路に記憶された前回の入力電力値とを比較した結果に応じて次回の設定電圧を設定する、制御装置。
(2)
 前記比較回路は、前記比較の結果に応じた電圧を前記電力制御回路に出力する、前記(1)に記載の制御装置。
(3)
 前記電力制御回路は、前記比較の結果に応じて出力電流を制御する、前記(1)又は(2)に記載の制御装置。
(4)
 前記記憶回路は、前記発電源から入力される入力電力を算出するためのパラメータを記憶する、前記(1)~(3)のいずれか1項に記載の制御装置。
(5)
 前記記憶回路は、前記パラメータとして、前記発電源から入力される入力電流値と、前記発電源から入力される入力電圧値とを記憶する、前記(4)に記載の制御装置。
(6)
 前記比較回路が比較する前記入力電圧は、分圧された入力電圧である、前記(1)~(5)のいずれか1項に記載の制御装置。
(7)
 前記発電源は、自然エネルギーによって発電する、前記(1)~(6)のいずれか1項に記載の制御装置。
(8)
 前記発電源は、太陽電池又は風力発電機である、前記(7)に記載の制御装置。
(9)
 前記出力電力は、バッテリ、パワーコンバイナー又はモーターのうちの少なくともいずれかに出力される、前記(1)~(8)のいずれか1項に記載の制御装置。
(10)
 前記電力制御回路は、前記比較の結果、前記入力電圧が前記設定電圧よりも高い場合には出力電力を増加させ、前記入力電圧が前記設定電圧よりも低い場合には出力電力を低減する、前記(1)~(9)のいずれか1項に記載の制御装置。
(11)
 設定電圧を設定することと、
 発電源から入力される入力電圧と前記設定電圧を比較することと、
 前記比較の結果に応じた出力電力を出力することと、
 前記発電源の入力電力値を取得し、前記入力電力値を記憶することと、
 前記設定電圧を変化させて新たな設定電圧を設定し、前記新たな設定電圧に応じた前記発電源の入力電力値と、前記記憶された前回の入力電力値とを比較した結果に応じて次回の設定電圧を設定することと、を含む、制御方法。
(12)
 発電源と、
 設定電圧を設定する電圧設定回路と、
 発電源から入力される入力電圧と前記設定電圧を比較する比較回路と、
 前記比較の結果に応じて出力電力を制御する電力制御回路と、
 前記発電源の入力電力値を取得し、前記入力電力値を記憶する記憶回路と、
 を備え、
 前記電圧設定回路は、前記設定電圧を変化させて新たな設定電圧を設定し、前記新たな設定電圧に応じた前記発電源の入力電力値と、前記記憶回路に記憶された前回の入力電力値とを比較した結果に応じて次回の設定電圧を設定する、制御システム。
Note that the following configuration also belongs to the technical scope of the present disclosure.
(1)
A voltage setting circuit for setting a set voltage;
A comparison circuit that compares the input voltage input from the power supply with the set voltage;
A power control circuit that controls output power according to the result of the comparison,
A storage circuit that acquires an input power value of the power generation source and stores the input power value,
With
The voltage setting circuit sets a new set voltage by changing the set voltage, an input power value of the power supply according to the new set voltage, and a previous input power value stored in the storage circuit. A control device that sets the next set voltage according to the result of comparing with.
(2)
The control device according to (1), wherein the comparison circuit outputs a voltage according to a result of the comparison to the power control circuit.
(3)
The control device according to (1) or (2), wherein the power control circuit controls an output current according to a result of the comparison.
(4)
The control device according to any one of (1) to (3), wherein the storage circuit stores a parameter for calculating input power input from the power supply.
(5)
The control device according to (4), wherein the storage circuit stores, as the parameters, an input current value input from the power supply and an input voltage value input from the power supply.
(6)
The control device according to any one of (1) to (5), wherein the input voltage compared by the comparison circuit is a divided input voltage.
(7)
The control device according to any one of (1) to (6), wherein the power generation source generates power using natural energy.
(8)
The control device according to (7), wherein the power source is a solar cell or a wind power generator.
(9)
The control device according to any one of (1) to (8), wherein the output power is output to at least one of a battery, a power combiner, and a motor.
(10)
The power control circuit increases the output power when the input voltage is higher than the set voltage as a result of the comparison, and reduces the output power when the input voltage is lower than the set voltage. The control device according to any one of (1) to (9).
(11)
Setting the set voltage,
Comparing the input voltage input from the power supply with the set voltage,
Outputting output power according to the result of the comparison;
Obtaining an input power value of the power generation source, and storing the input power value;
A new set voltage is set by changing the set voltage, and the next input power value of the power source according to the new set voltage is compared with the stored previous input power value according to a result of the comparison. Setting a set voltage of the control signal.
(12)
Power source,
A voltage setting circuit for setting a set voltage;
A comparison circuit that compares the input voltage input from the power supply with the set voltage;
A power control circuit that controls output power according to the result of the comparison,
A storage circuit that acquires an input power value of the power generation source and stores the input power value,
With
The voltage setting circuit sets the new set voltage by changing the set voltage, the input power value of the power generation source according to the new set voltage, and the previous input power value stored in the storage circuit A control system that sets the next set voltage according to the result of comparing with.
 10、12、14 制御システム
 102、114  制御装置
 108、122  比較回路
 106、120  電圧設定回路
 104、118  記憶回路
 110、124  電力制御回路
 116      バッテリ
 125      電圧制御回路
10, 12, 14 Control system 102, 114 Control device 108, 122 Comparison circuit 106, 120 Voltage setting circuit 104, 118 Storage circuit 110, 124 Power control circuit 116 Battery 125 Voltage control circuit

Claims (12)

  1.  設定電圧を設定する電圧設定回路と、
     発電源から入力される入力電圧と前記設定電圧を比較する比較回路と、
     前記比較の結果に応じて出力電力を制御する電力制御回路と、
     前記発電源の入力電力値を取得し、前記入力電力値を記憶する記憶回路と、
     を備え、
     前記電圧設定回路は、前記設定電圧を変化させて新たな設定電圧を設定し、前記新たな設定電圧に応じた前記発電源の入力電力値と、前記記憶回路に記憶された前回の入力電力値とを比較した結果に応じて次回の設定電圧を設定する、制御装置。
    A voltage setting circuit for setting a set voltage;
    A comparison circuit that compares the input voltage input from the power supply with the set voltage;
    A power control circuit that controls output power according to the result of the comparison,
    A storage circuit that acquires an input power value of the power generation source and stores the input power value,
    With
    The voltage setting circuit sets a new set voltage by changing the set voltage, an input power value of the power supply according to the new set voltage, and a previous input power value stored in the storage circuit. A control device that sets the next set voltage according to the result of comparing with.
  2.  前記比較回路は、前記比較の結果に応じた電圧を前記電力制御回路に出力する、請求項1に記載の制御装置。 The control device according to claim 1, wherein the comparison circuit outputs a voltage corresponding to a result of the comparison to the power control circuit.
  3.  前記電力制御回路は、前記比較の結果に応じて出力電流を制御する、請求項1に記載の制御装置。 The control device according to claim 1, wherein the power control circuit controls an output current according to a result of the comparison.
  4.  前記記憶回路は、前記発電源から入力される入力電力を算出するためのパラメータを記憶する、請求項1に記載の制御装置。 The control device according to claim 1, wherein the storage circuit stores a parameter for calculating input power input from the power supply.
  5.  前記記憶回路は、前記パラメータとして、前記発電源から入力される入力電流値と、前記発電源から入力される入力電圧値とを記憶する、請求項4に記載の制御装置。 The control device according to claim 4, wherein the storage circuit stores, as the parameters, an input current value input from the power supply and an input voltage value input from the power supply.
  6.  前記比較回路が比較する前記入力電圧は、分圧された入力電圧である、請求項1に記載の制御装置。 The control device according to claim 1, wherein the input voltage compared by the comparison circuit is a divided input voltage.
  7.  前記発電源は、自然エネルギーによって発電する、請求項1に記載の制御装置。 The control device according to claim 1, wherein the power generation source generates power by natural energy.
  8.  前記発電源は、太陽電池又は風力発電機である、請求項7に記載の制御装置。 The control device according to claim 7, wherein the power source is a solar cell or a wind power generator.
  9.  前記出力電力は、バッテリ、パワーコンバイナー又はモーターのうちの少なくともいずれかに出力される、請求項1に記載の制御装置。 The control device according to claim 1, wherein the output power is output to at least one of a battery, a power combiner, and a motor.
  10.  前記電力制御回路は、前記比較の結果、前記入力電圧が前記設定電圧よりも高い場合には出力電力を増加させ、前記入力電圧が前記設定電圧よりも低い場合には出力電力を低減する、請求項1に記載の制御装置。 The power control circuit increases the output power when the input voltage is higher than the set voltage as a result of the comparison, and reduces the output power when the input voltage is lower than the set voltage. Item 2. The control device according to Item 1.
  11.  設定電圧を設定することと、
     発電源から入力される入力電圧と前記設定電圧を比較することと、
     前記比較の結果に応じた出力電力を出力することと、
     前記発電源の入力電力値を取得し、前記入力電力値を記憶することと、
     前記設定電圧を変化させて新たな設定電圧を設定し、前記新たな設定電圧に応じた前記発電源の入力電力値と、前記記憶された前回の入力電力値とを比較した結果に応じて次回の設定電圧を設定することと、を含む、制御方法。
    Setting the set voltage,
    Comparing the input voltage input from the power supply with the set voltage,
    Outputting output power according to the result of the comparison;
    Obtaining an input power value of the power generation source, and storing the input power value;
    A new set voltage is set by changing the set voltage, and an input power value of the power source according to the new set voltage is compared with the stored input power value of the previous time, and a next time is set according to a result of the comparison. Setting a set voltage of the control signal.
  12.  発電源と、
     設定電圧を設定する電圧設定回路と、
     発電源から入力される入力電圧と前記設定電圧を比較する比較回路と、
     前記比較の結果に応じて出力電力を制御する電力制御回路と、
     前記発電源の入力電力値を取得し、前記入力電力値を記憶する記憶回路と、
     を備え、
     前記電圧設定回路は、前記設定電圧を変化させて新たな設定電圧を設定し、前記新たな設定電圧に応じた前記発電源の入力電力値と、前記記憶回路に記憶された前回の入力電力値とを比較した結果に応じて次回の設定電圧を設定する、制御システム。
    Power source,
    A voltage setting circuit for setting a set voltage;
    A comparison circuit that compares the input voltage input from the power supply with the set voltage;
    A power control circuit that controls output power according to the result of the comparison,
    A storage circuit that acquires an input power value of the power generation source and stores the input power value,
    With
    The voltage setting circuit sets a new set voltage by changing the set voltage, an input power value of the power supply according to the new set voltage, and a previous input power value stored in the storage circuit. A control system that sets the next set voltage according to the result of comparing with.
PCT/JP2018/031119 2018-08-23 2018-08-23 Control device, control method, and control system WO2020039537A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/031119 WO2020039537A1 (en) 2018-08-23 2018-08-23 Control device, control method, and control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/031119 WO2020039537A1 (en) 2018-08-23 2018-08-23 Control device, control method, and control system

Publications (1)

Publication Number Publication Date
WO2020039537A1 true WO2020039537A1 (en) 2020-02-27

Family

ID=69591944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031119 WO2020039537A1 (en) 2018-08-23 2018-08-23 Control device, control method, and control system

Country Status (1)

Country Link
WO (1) WO2020039537A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117220399A (en) * 2023-09-13 2023-12-12 北京昆仑海岸科技股份有限公司 Lithium battery, solar power supply conversion circuit and conversion control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06214667A (en) * 1993-01-13 1994-08-05 Sansha Electric Mfg Co Ltd Output controller for solar battery
JP3352334B2 (en) * 1996-08-30 2002-12-03 キヤノン株式会社 Solar cell power controller
JP3554116B2 (en) * 1996-09-06 2004-08-18 キヤノン株式会社 Power control device and solar power generation system using the same
WO2010110383A1 (en) * 2009-03-26 2010-09-30 パナソニック電工株式会社 Power supply system and power supply management device
JP2013188084A (en) * 2012-03-09 2013-09-19 Sharp Corp Dc-dc converter
JP2015203904A (en) * 2014-04-11 2015-11-16 株式会社三社電機製作所 PV power conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06214667A (en) * 1993-01-13 1994-08-05 Sansha Electric Mfg Co Ltd Output controller for solar battery
JP3352334B2 (en) * 1996-08-30 2002-12-03 キヤノン株式会社 Solar cell power controller
JP3554116B2 (en) * 1996-09-06 2004-08-18 キヤノン株式会社 Power control device and solar power generation system using the same
WO2010110383A1 (en) * 2009-03-26 2010-09-30 パナソニック電工株式会社 Power supply system and power supply management device
JP2013188084A (en) * 2012-03-09 2013-09-19 Sharp Corp Dc-dc converter
JP2015203904A (en) * 2014-04-11 2015-11-16 株式会社三社電機製作所 PV power conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117220399A (en) * 2023-09-13 2023-12-12 北京昆仑海岸科技股份有限公司 Lithium battery, solar power supply conversion circuit and conversion control method
CN117220399B (en) * 2023-09-13 2024-03-12 北京昆仑海岸科技股份有限公司 Lithium battery, solar power supply conversion circuit and conversion control method

Similar Documents

Publication Publication Date Title
Benlahbib et al. Experimental investigation of power management and control of a PV/wind/fuel cell/battery hybrid energy system microgrid
Elgendy et al. Operating characteristics of the P&O algorithm at high perturbation frequencies for standalone PV systems
Fathabadi Novel standalone hybrid solar/wind/fuel cell/battery power generation system
Duru A maximum power tracking algorithm based on Impp= f (Pmax) function for matching passive and active loads to a photovoltaic generator
JP5995041B2 (en) Charge control device, solar power generation system, and charge control method
Fathabadi Novel high-efficient large-scale stand-alone solar/wind hybrid power source equipped with battery bank used as storage device
EP3616289B1 (en) Control system and method for an energy storage system
Parthasarathy et al. Modelling and simulation of hybrid pv & bes systems as flexible resources in smartgrids–sundom smart grid case
Osman et al. Adaptive multi-variable step size P&O MPPT for high tracking-speed and accuracy
Wang et al. New MPPT solar generation implemented with constant-voltage constant-current DC/DC converter
Elsherbiny et al. Smooth transition from grid to standalone solar diesel mode hybrid generation system with a battery
Dey et al. Analysis of a Microgrid having Solar System with Maximum Power Point Tracking and Battery Energy System
Li et al. A modified MPPT algorithm with integrated active power control for PV-battery systems
Aghmadi et al. Enhancing energy management system for a hybrid wind solar battery based standalone microgrid
WO2020039537A1 (en) Control device, control method, and control system
Pradipta et al. Power flow control of battery energy storage system using droop voltage regulation technique integrated with hybrid PV/Wind generation system
Boutabba et al. A hybrid power generations system (Wind Turbine/Photovoltaic) to driving a DFIG fed by a three inverter
Angalaeswari et al. Modified iterative learning controller for efficient power management of hybrid AC/DC microgrid
Gupta et al. Modeling & Performance Investigation of PV Integrated IEEE 14 Bus Test System
Oussama et al. Wind turbine generator based on PMSG connected to DC microgrid system
Moradi et al. Study of a DC micro-gird configuration to produce hydrogen (DCMG-H2)
Papageorgiou et al. Enhancing stability of DC microgrids employing SMES-Battery hybrid energy storage system
Ismail Protection of three-phase VSI grid-connected pv system during transient conditions using fuzzy logic
Kanojia et al. Fault Detection at PCC Using Wavelet Theory in Grid-Tied Solar PV Battery-Based AC Microgrid
CN117254586B (en) Distributed energy grid-connected monitoring regulation and control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP