WO2020032681A1 - Method for transmitting and receiving signals in radio communication system and apparatus supporting same - Google Patents

Method for transmitting and receiving signals in radio communication system and apparatus supporting same Download PDF

Info

Publication number
WO2020032681A1
WO2020032681A1 PCT/KR2019/010070 KR2019010070W WO2020032681A1 WO 2020032681 A1 WO2020032681 A1 WO 2020032681A1 KR 2019010070 W KR2019010070 W KR 2019010070W WO 2020032681 A1 WO2020032681 A1 WO 2020032681A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport block
harq
present disclosure
various embodiments
gap
Prior art date
Application number
PCT/KR2019/010070
Other languages
French (fr)
Korean (ko)
Inventor
황승계
박창환
안준기
양석철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2020032681A1 publication Critical patent/WO2020032681A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • Various embodiments of the present disclosure relate to a wireless communication system, and more particularly, to a method for transmitting and receiving a signal in a wireless communication system and an apparatus supporting the same.
  • Wireless access systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • Massive Machine Type Communications which connects multiple devices and objects to provide various services anytime and anywhere, is also being considered in next-generation communication.
  • a communication system design considering a service / UE that is sensitive to reliability and latency is being considered.
  • Various embodiments of the present disclosure may provide a method for transmitting and receiving a signal in a wireless communication system and an apparatus for providing the same.
  • various embodiments of the present disclosure may provide a method for transmitting and receiving a signal based on multiple transport blocks and an apparatus supporting the same in a system to which repetitive transmission is applied to physical signal / channel transmission.
  • Various embodiments of the present disclosure may provide a method for transmitting and receiving a signal in a wireless communication system and an apparatus supporting the same.
  • a method for receiving a signal in a wireless communication system includes: receiving downlink control information (DCI) for scheduling a first transport block and a second transport block, based on the DCI, the first transport block in a first time resource; And receiving the second transport block within a second time resource based on the receiving and the DCI.
  • DCI downlink control information
  • a gap may be established between the first time resource and the second time resource.
  • receiving the first transport block may include repeatedly receiving the first transport block within the first time resource based on the DCI.
  • receiving the second transport block may include repeatedly receiving the second transport block within the second time resource based on the DCI.
  • the size of the gap may be determined based on the time required for the device to combine and decode the first transport block repeatedly received within the first time resource. have.
  • the size of the gap may be determined as the first size.
  • the first size may be determined to be zero.
  • the size of the gap may be determined as the second size.
  • the method may further include transmitting, within the gap, a hybrid automatic repeat and request acknowledgment (HARQ-ACK) associated with the first transport block.
  • HARQ-ACK hybrid automatic repeat and request acknowledgment
  • a HARQ process number associated with the second transport block may be determined based on an HARQ-ACK associated with the first transport block.
  • the HARQ process number associated with the second transport block is a HARQ process number associated with the first transport block. Can be determined as the next HARQ process number.
  • the HARQ process number associated with the second transport block is equal to the HARQ process number associated with the first transport block. The same can be determined.
  • the NACK may include information requesting to change a transmission parameter associated with the second transport block.
  • the second transport block may be configured based on the information requesting to change the transmission parameter.
  • the transmission parameter is one of information about a redundancy version associated with the second transport block or information about a modulation and coding scheme associated with the second transport block. It may contain the above.
  • transmitting the HARQ-ACK associated with the first transport block may include obtaining HARQ-ACK associated with each of a plurality of sub-blocks included in the first transport block. Bundling HARQ-ACK associated with each of the plurality of sub-blocks to obtain HARQ-ACK associated with the first transport block and within the gap, HARQ associated with the first transport block. May include transmitting an -ACK.
  • an apparatus for receiving a signal in a wireless communication system may comprise at least one memory and at least one processor coupled with the at least one memory.
  • the at least one processor is configured to: receive downlink control information (DCI) for scheduling a first transport block and a second transport block, and based on the DCI, The first transport block may be received in one time resource, and the second transport block may be received in a second time resource based on the DCI.
  • DCI downlink control information
  • a gap may be established between the first time resource and the second time resource.
  • the one or more processors may transmit a hybrid automatic repeat and request acknowledgment (HARQ-ACK) associated with the first transport block within the gap.
  • HARQ-ACK hybrid automatic repeat and request acknowledgment
  • the HARQ process number associated with the second transport block may be determined based on the HARQ-ACK associated with the first transport block.
  • an apparatus for transmitting a signal in a wireless communication system may comprise at least one memory and at least one processor coupled with the at least one memory.
  • the at least one processor is configured to: transmit downlink control information (DCI) for scheduling a first transport block and a second transport block, and in the first time resource
  • DCI downlink control information
  • the first transport block can be transmitted, and the second transport block can be transmitted within a second time resource.
  • a gap may be established between the first time resource and the second time resource.
  • the device may communicate with one or more of a mobile terminal, a network, and an autonomous vehicle other than the vehicle that includes the device.
  • a signal transmission / reception method based on multiple transport blocks and an apparatus supporting the same may be provided.
  • the length of the multiple transport block is less than or equal to a certain length, by not setting the above-described gap or setting the size of the gap to 0, there is an effect of increasing the signal transmission / reception effect in the system. have.
  • the terminal reports the HARQ-ACK for the transport block received before the gap in the above-described gap period, and receives after the gap according to the reported HARQ-ACK value.
  • HARQ-ACK feedback can be performed more effectively, and network overhead can be reduced.
  • FIG. 1 is a diagram illustrating a physical channel that can be used in various embodiments of the present disclosure and a signal transmission method using the same.
  • FIG. 2 is a diagram illustrating a radio frame structure based on an LTE system to which various embodiments of the present disclosure are applicable.
  • FIG. 3 is a diagram illustrating a slot structure based on an LTE system to which various embodiments of the present disclosure are applicable.
  • FIG. 4 is a diagram illustrating an uplink subframe structure based on an LTE system to which various embodiments of the present disclosure are applicable.
  • FIG. 5 is a diagram illustrating a downlink subframe structure based on an LTE system to which various embodiments of the present disclosure are applicable.
  • FIG. 6 is a diagram illustrating a radio frame structure based on an NR system to which various embodiments of the present disclosure are applicable.
  • FIG. 7 illustrates a slot structure based on an NR system to which various embodiments of the present disclosure are applicable.
  • FIG. 8 is a diagram illustrating a self-contained slot structure to which various embodiments of the present disclosure are applicable.
  • FIG. 9 is a diagram illustrating one REG structure based on an NR system to which various embodiments of the present disclosure are applicable.
  • FIG. 10 is a diagram illustrating a frame structure based on an NB-IoT system to which various embodiments of the present disclosure are applicable.
  • FIG. 11 is a diagram illustrating transmission of an NB-IoT downlink physical channel / signal in an FDD LTE system to which various embodiments of the present disclosure are applicable.
  • FIG. 12 is a diagram illustrating an NPUSCH format to which various embodiments of the present disclosure are applicable.
  • FIG. 13 is a diagram illustrating an operation when a multi-carrier is configured in an FDD NB-IoT to which various embodiments of the present disclosure are applicable.
  • WUS 14 is a diagram illustrating a wake-up signal (WUS) signal transmission according to various embodiments of the present disclosure.
  • FIG. 15 is a diagram illustrating operations of a terminal and a base station in a wireless communication system to which various embodiments of the present disclosure are applicable.
  • 16 is a diagram illustrating a transmission / reception structure based on multiple transport blocks according to various embodiments of the present disclosure.
  • 17 illustrates a transmission / reception structure based on multiple transport blocks and sub-blocks according to various embodiments of the present disclosure.
  • FIG. 18 is a diagram illustrating a HARQ-ACK transmission and reception structure according to various embodiments of the present disclosure.
  • FIG. 19 is a diagram illustrating a bundled HARQ-ACK transmission and reception structure according to various embodiments of the present disclosure.
  • FIG. 20 is a diagram illustrating a transmission / reception structure based on a compact DCI / indication signal according to various embodiments of the present disclosure.
  • 21 is a diagram illustrating a network initial access and subsequent communication process according to various embodiments of the present disclosure.
  • 22 illustrates an example of preamble transmission in an NB-IoT RACH according to various embodiments of the present disclosure.
  • FIG. 23 is a diagram illustrating an example of a DRX operation according to various embodiments of the present disclosure.
  • 24 is a diagram schematically illustrating a method of operating a terminal and a base station according to various embodiments of the present disclosure.
  • 25 is a flowchart illustrating a method of operating a terminal according to various embodiments of the present disclosure.
  • 26 is a flowchart illustrating a method of operating a base station according to various embodiments of the present disclosure.
  • FIG 27 illustrates an apparatus in which various embodiments of the present disclosure may be implemented.
  • 29 illustrates a wireless device that can be applied to various embodiments of the present disclosure.
  • FIG. 30 illustrates another example of a wireless device applied to various embodiments of the present disclosure.
  • 31 illustrates a portable device applied to various embodiments of the present disclosure.
  • FIG. 32 illustrates a vehicle or autonomous driving vehicle applied to various embodiments of the present disclosure.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form the various embodiments of the present disclosure.
  • the order of the operations described in the various embodiments of the present disclosure may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • the base station has a meaning as a terminal node of the network that directly communicates with the terminal. Certain operations described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • the 'base station' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), a gNode B (gNB), an advanced base station (ABS), or an access point. Can be.
  • a terminal may be a user equipment (UE), a mobile station (MS), a subscriber station (SS), or a mobile subscriber station (MSS). ), A mobile terminal, or an advanced mobile station (AMS).
  • UE user equipment
  • MS mobile station
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS advanced mobile station
  • the transmitting end may refer to a fixed and / or mobile node that provides a data service or a voice service
  • the receiving end may mean a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a mobile station may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
  • Various embodiments of the present disclosure may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802.xx system, 3rd Generation Partnership Project (3GPP) system, 3GPP LTE system, 3GPP 5G NR system and 3GPP2 system.
  • 3GPP 3rd Generation Partnership Project
  • 3GPP LTE / LTE-A system as well as a 3GPP NR system will be described as an example of a wireless access system in which various embodiments of the present disclosure can be used.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented by a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), or the like.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3GPP Long Term Evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (Advanced) system is an improved system of the 3GPP LTE system.
  • a terminal receives information from a base station through downlink (DL) and transmits information to the base station through uplink (UL).
  • the information transmitted and received by the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type / use of the information they transmit and receive.
  • FIG. 1 is a diagram illustrating a physical channel that can be used in various embodiments of the present disclosure and a signal transmission method using the same.
  • an initial cell search operation such as synchronization with a base station is performed (S11).
  • the terminal receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain broadcast information in a cell.
  • PBCH physical broadcast channel
  • the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to confirm the downlink channel state.
  • DL RS downlink reference signal
  • the UE After the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the physical downlink control channel information to provide more detailed system information. It can be obtained (S12).
  • a physical downlink control channel (PDCCH)
  • a physical downlink control channel (PDSCH)
  • the terminal may perform a random access procedure (S13 to S16) to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S13), and a RAR (preamble) for the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Random Access Response) may be received (S14).
  • the UE transmits a Physical Uplink Shared Channel (PUSCH) using scheduling information in the RAR (S15), and a contention resolution procedure such as receiving a physical downlink control channel signal and a corresponding physical downlink shared channel signal (S16).
  • PUSCH Physical Uplink Shared Channel
  • the UE After performing the above-described procedure, the UE subsequently receives a physical downlink control channel signal and / or a physical downlink shared channel signal (S17) and a physical uplink shared channel (PUSCH) as a general uplink / downlink signal transmission procedure.
  • a transmission (Uplink Shared Channel) signal and / or a Physical Uplink Control Channel (PUCCH) signal may be transmitted (S18).
  • UCI uplink control information
  • HARQ-ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgement / Negative-ACK
  • SR Scheduling Request
  • CQI Channel Quality Indication
  • PMI Precoding Matrix Indication
  • RI Rank Indication
  • UCI is periodically transmitted through PUCCH, but may be transmitted through PUSCH when control information and data should be transmitted at the same time.
  • the UE may transmit the UCI aperiodically through the PUSCH according to the request / instruction of the network.
  • FIG. 2 is a diagram illustrating a radio frame structure based on an LTE system to which various embodiments of the present disclosure are applicable.
  • the LTE system supports frame type 1 for frequency division duplex (FDD), frame type 2 for time division duplex (TDD), and frame type 3 for unlicensed cell (UCell).
  • FDD frequency division duplex
  • TDD time division duplex
  • Uell unlicensed cell
  • SCells secondary cells
  • PCell primary cell
  • time resources eg, subframes, slots, and subslots
  • TU time unit
  • the type 1 frame structure can be applied to both full duplex Frequency Division Duplex (FDD) systems and half duplex FDD systems.
  • FDD Frequency Division Duplex
  • the downlink radio frame is defined as ten 1 ms subframes (SFs).
  • the subframe includes 14 or 12 symbols according to a cyclic prefix (CP). If a normal CP is used, the subframe includes 14 symbols. If extended CP is used, the subframe includes 12 symbols.
  • CP cyclic prefix
  • the symbol may mean an OFDM (A) symbol or an SC-FDM (A) symbol according to a multiple access scheme.
  • the symbol may mean an OFDM (A) symbol in downlink and an SC-FDM (A) symbol in uplink.
  • the OFDM (A) symbol is referred to as a Cyclic Prefix-OFDM (A) symbol
  • the SC-FDM (A) symbol is a DFT-s-OFDM (A) (Discrete Fourier Transform-spread-OFDM) symbol. (A)) may be referred to as a symbol.
  • One subframe may be defined as one or more slots according to SCS (Subcarrier Spacing) as follows.
  • SCS Subcarrier Spacing
  • subframe #i is defined as one 1ms slot # 2i.
  • Table 1 illustrates the subslot configuration in one subframe (usually CP).
  • Type 2 frame structure is applied to the TDD system.
  • the type 2 frame structure consists of two half frames.
  • the half frame includes 4 (or 5) general subframes and 1 (or 0) special subframes.
  • the general subframe is used for uplink or downlink according to the UL-Downlink configuration.
  • the subframe consists of two slots.
  • Table 2 illustrates a subframe configuration in a radio frame according to the UL-DL configuration.
  • D represents a DL subframe
  • U represents a UL subframe
  • S represents a special subframe.
  • the special subframe includes a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • Table 3 illustrates the configuration of the special subframe.
  • X is set by higher layer signaling (eg, RRC (Radio Resource Control) signaling, etc.) or is given as 0.
  • RRC Radio Resource Control
  • FIG. 3 is a diagram illustrating a slot structure based on an LTE system to which various embodiments of the present disclosure are applicable.
  • one slot includes a plurality of OFDM symbols in a time domain and a plurality of resource blocks (RBs) in a frequency domain.
  • the symbol may mean a symbol section.
  • the slot structure may be represented by a resource grid composed of N DL / UL RB ⁇ RB sc subcarriers and N DL / UL symb symbols.
  • N DL RB represents the number of RBs in the downlink slot
  • N UL RB represents the number of RBs in the UL slot.
  • N DL RB and N UL RB depend on the DL bandwidth and the UL bandwidth, respectively.
  • N DL symb represents the number of symbols in the DL slot
  • N UL symb represents the number of symbols in the UL slot
  • N RB sc represents the number of subcarriers constituting the RB.
  • the number of symbols in the slot can be changed in various ways according to the length of the SCS, CP (see Table 1). For example, one slot includes 7 symbols in the case of a normal CP, but one slot includes 6 symbols in the case of an extended CP.
  • RB is defined as N DL / UL symb (eg, 7) consecutive symbols in the time domain, and N RB sc (eg, 12) consecutive subcarriers in the frequency domain.
  • the RB may mean a physical resource block (PRB) or a virtual resource block (VRB), and the PRB and the VRB may be mapped one-to-one.
  • Two RBs, one located in each of two slots of a subframe, may be referred to as an RB pair.
  • Two RBs constituting the RB pair may have the same RB number (or also referred to as an RB index).
  • a resource composed of one symbol and one subcarrier is called a resource element (RE) or tone.
  • RE resource element
  • Each RE in a resource grid may be uniquely defined by an index pair (k, l) in a slot.
  • k is an index given from 0 to N DL / UL RB NN RB sc ⁇ 1 in the frequency domain
  • l is an index given from 0 to N DL / UL symb ⁇ 1 in the time domain.
  • FIG. 4 is a diagram illustrating an uplink subframe structure based on an LTE system to which various embodiments of the present disclosure are applicable.
  • one subframe 400 includes two 0.5 ms slots 401.
  • Each slot is composed of a plurality of symbols 402 and one symbol corresponds to one SC-FDMA symbol.
  • the RB 543 is a resource allocation unit corresponding to 12 subcarriers in the frequency domain and one slot in the time domain.
  • the structure of an uplink subframe is largely divided into a data region 404 and a control region 405.
  • the data area means a communication resource used in transmitting data such as voice and packet transmitted from each terminal, and includes a PUSCH (Physical Uplink Shared Channel).
  • the control region means a communication resource used to transmit an uplink control signal, for example, a downlink channel quality report from each user equipment, a reception ACK / NACK for the downlink signal, an uplink scheduling request, and a PUCCH (Physical Uplink). Control Channel).
  • the SRS Sounding Reference Signal
  • SC-FDMA symbol located last on the time axis in one subframe.
  • FIG. 5 is a diagram illustrating a downlink subframe structure based on an LTE system to which various embodiments of the present disclosure are applicable.
  • up to three (or four) OFDM (A) symbols located in front of the first slot in a subframe correspond to a control region to which a downlink control channel is allocated.
  • the remaining OFDM (A) symbol corresponds to a data region to which a PDSCH is allocated, and the basic resource unit of the data region is RB.
  • the downlink control channel includes a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe.
  • the PHICH is a response channel for uplink transmission and carries a HARQ (Hybrid Automatic Repeat Request) acknowledgment (ACK) / Negative-Acknowledgement (NACK) signal.
  • Control information transmitted through the PDCCH is referred to as downlink control information (DCI).
  • DCI includes uplink resource allocation information, downlink resource allocation information, or an uplink transmission (Tx) power control command for a certain terminal group.
  • FIG. 6 is a diagram illustrating a radio frame structure based on an NR system to which various embodiments of the present disclosure are applicable.
  • the NR system can support a number of numerologies.
  • the numerology may be defined by subcarrier spacing (SCS) and cyclic prefix (CP) overhead.
  • the plurality of subcarrier spacings may be derived by scaling the basic subcarrier spacing to an integer N (or ⁇ ).
  • N or ⁇
  • the used numerology may be selected independently of the cell's frequency band.
  • various frame structures according to a number of numerologies may be supported.
  • OFDM orthogonal frequency division multiplexing
  • NR supports a number of pneumatics (eg, subcarrier spacing) to support various 5G services. For example, if the subcarrier spacing is 15 kHz, it supports wide area in traditional cellular bands, and if the subcarrier spacing is 30 kHz / 60 kHz, it is dense-urban, lower latency. Latency and wider carrier carrier bandwidth are supported, and when the subcarrier spacing is 60 kHz or higher, it supports a bandwidth greater than 24.25 GHz to overcome phase noise.
  • pneumatics eg, subcarrier spacing
  • the NR frequency band is defined by two types of frequency ranges, FR1 and FR2.
  • FR1 is in the sub 6 GHz range
  • FR2 is in the above 6 GHz range, which can mean millimeter wave (mmWave).
  • mmWave millimeter wave
  • Table 5 below illustrates the definition of the NR frequency band.
  • T c 1 / ( ⁇ f max * N f ), which is the basic time unit for NR. .
  • ⁇ f max 480 * 10 3 Hz
  • N f 4096 which is a value related to a fast Fourier transform (FFT) or an inverse fast Fourier transform (IFFT) size.
  • FFT fast Fourier transform
  • IFFT inverse fast Fourier transform
  • the slots are n ⁇ s ⁇ ⁇ 0,... In increasing order within the subframe.
  • N slot ⁇ frame -1 ⁇ .
  • One slot is composed of N ⁇ symb consecutive OFDM symbols, and N ⁇ symb depends on a cyclic prefix (CP).
  • CP cyclic prefix
  • the start of slot n ⁇ s in a subframe is aligned in time with the start of OFDM symbol n ⁇ s * N ⁇ symb within the same subframe.
  • Table 6 shows the number of symbols for each slot according to the SCS, the number of slots for each frame and the number of slots for each subframe when the general CP is used, and Table 7 shows the number of slots for each SCS when the extended CSP is used. It indicates the number of symbols, the number of slots per frame, and the number of slots per subframe.
  • N slot symb represents the number of symbols in a slot
  • N frame ⁇ slot represents the number of slots in a frame
  • N subframe ⁇ slot represents the number of slots in a subframe
  • OFDM (A) numerology eg, SCS, CP length, etc.
  • a numerology eg, SCS, CP length, etc.
  • the (absolute time) section of a time resource eg, SF, slot, or TTI
  • a time unit TU
  • one subframe may include four slots.
  • mini-slot may include two, four or seven symbols or may include more or fewer symbols.
  • FIG. 7 illustrates a slot structure based on an NR system to which various embodiments of the present disclosure are applicable.
  • one slot may include a plurality of symbols in the time domain.
  • one slot may include seven symbols in the case of a normal CP, and one slot may include six symbols in the case of an extended CP.
  • the carrier may include a plurality of subcarriers in the frequency domain.
  • Resource block is defined as a plurality of consecutive subcarriers (eg, 12) in the frequency domain.
  • the bandwidth part (BWP) is defined as a plurality of consecutive (P) RBs in the frequency domain, and may correspond to one numerology (eg, SCS, CP length, etc.).
  • numerology eg, SCS, CP length, etc.
  • the carrier may include up to N (eg 5) BWPs. Data communication is performed through an activated BWP, and only one BWP may be activated by one UE. Each element in the resource grid is referred to as a resource element (RE), one complex symbol may be mapped.
  • RE resource element
  • FIG. 8 is a diagram illustrating a self-contained slot structure to which various embodiments of the present disclosure are applicable.
  • the independent slot structure is a slot structure in which a downlink control channel, a downlink / uplink data, and an uplink control channel can be included in one slot. Can be.
  • the base station and the UE may sequentially perform DL transmission and UL transmission in one slot, and may transmit and receive DL data and transmit and receive UL ACK / NACK for the DL data in the one slot.
  • this structure reduces the time taken to retransmit data in the event of a data transmission error, thereby minimizing the delay of the final data transfer.
  • a time gap of a certain length is required for the base station and the UE to switch from the transmission mode to the reception mode or from the reception mode to the transmission mode.
  • some OFDM symbols at the time of switching from DL to UL in the independent slot structure may be set to a guard period (GP).
  • the independent slot structure includes both the DL control region and the UL control region.
  • the control regions may be selectively included in the independent slot structure.
  • the independent slot structure according to various embodiments of the present disclosure may include a case in which both the DL control region and the UL control region are included as well as the case in which both the DL control region and the UL control region are included as shown in FIG. 8. .
  • one slot may be configured in the order of a DL control area / DL data area / UL control area / UL data area, or may be configured in the order of a UL control area / UL data area / DL control area / DL data area.
  • the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
  • PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
  • Downlink Control Information for example, DL data scheduling information, UL data scheduling information, and the like may be transmitted in the PDCCH.
  • DCI Downlink Control Information
  • uplink control information for example, positive acknowledgment / negative acknowledgment (ACK / NACK) information, channel state information (CSI) information, and scheduling request (SR) for DL data may be transmitted.
  • ACK / NACK positive acknowledgment / negative acknowledgment
  • CSI channel state information
  • SR scheduling request
  • the PDSCH carries downlink data (eg, DL-shared channel transport block, DL-SCH TB), and modulation methods such as Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude Modulation (QAM), 64 QAM, and 256 QAM are used. Apply.
  • a codeword is generated by encoding the TB.
  • the PDSCH can carry up to two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword are mapped to one or more layers. Each layer is mapped to a resource together with a DMRS (Demodulation Reference Signal) to generate an OFDM symbol signal, and is transmitted through a corresponding antenna port.
  • DMRS Demodulation Reference Signal
  • the PDCCH carries downlink control information (DCI) and a QPSK modulation method is applied.
  • DCI downlink control information
  • One PDCCH is composed of 1, 2, 4, 8, 16 CCEs (Control Channel Elements) according to an aggregation level (AL).
  • One CCE consists of six Resource Element Groups (REGs).
  • REG is defined by one OFDM symbol and one (P) RB.
  • FIG. 9 is a diagram illustrating one REG structure based on an NR system to which various embodiments of the present disclosure are applicable.
  • D represents a resource element (RE) to which DCI is mapped
  • R represents an RE to which DMRS is mapped.
  • DMRS is mapped to the 1st, 5th, 9th RE in the frequency domain direction in one symbol.
  • CORESET is defined as a set of REGs with a given neurology (eg, SCS, CP length, etc.). A plurality of OCRESET for one terminal may be overlapped in the time / frequency domain.
  • CORESET may be set through system information (eg, MIB) or UE-specific higher layer (eg, Radio Resource Control, RRC, layer) signaling.
  • system information eg, MIB
  • UE-specific higher layer eg, Radio Resource Control, RRC, layer
  • RRC Radio Resource Control
  • the number of RBs and the number of symbols (up to three) constituting the CORESET may be set by higher layer signaling.
  • PUSCH carries uplink data (eg, UL-shared channel transport block, UL-SCH TB) and / or uplink control information (UCI), and uses a Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) waveform. Or based on a Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) waveform.
  • DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing
  • the UE when transform precoding is not possible (eg, transform precoding is disabled), the UE transmits a PUSCH based on a CP-OFDM waveform, and when conversion precoding is possible (eg, transform precoding is enabled), the UE is CP-OFDM.
  • PUSCH may be transmitted based on the waveform or the DFT-s-OFDM waveform.
  • PUSCH transmissions are dynamically scheduled by UL grants in DCI or semi-static based on higher layer (eg RRC) signaling (and / or Layer 1 (L1) signaling (eg PDCCH)). Can be scheduled (configured grant).
  • PUSCH transmission may be performed based on codebook or non-codebook.
  • the PUCCH carries uplink control information, HARQ-ACK and / or scheduling request (SR), and is divided into Short PUCCH and Long PUCCH according to the PUCCH transmission length.
  • Table 8 illustrates the PUCCH formats.
  • PUCCH format 0 carries a maximum of 2 bits of UCI, and is mapped and transmitted based on a sequence. Specifically, the terminal transmits one sequence of the plurality of sequences through the PUCCH of PUCCH format 0 to transmit a specific UCI to the base station. The UE transmits the PUCCH having PUCCH format 0 in the PUCCH resource for the SR configuration only when transmitting the positive SR.
  • PUCCH format 1 carries a UCI of up to two bits in size, and modulation symbols are spread by an orthogonal cover code (OCC) (set differently depending on whether frequency hopping) in the time domain.
  • OCC orthogonal cover code
  • the DMRS is transmitted in a symbol in which a modulation symbol is not transmitted (that is, transmitted by time division multiplexing (TDM)).
  • PUCCH format 2 carries a UCI having a bit size larger than 2 bits, and modulation symbols are transmitted by DMRS and Frequency Division Multiplexing (FDM).
  • the DM-RS is located at symbol indexes # 1, # 4, # 7 and # 10 in a given resource block with a density of 1/3.
  • PN Pulseudo Noise sequence is used for the DM_RS sequence.
  • Frequency hopping may be activated for two symbol PUCCH format 2.
  • PUCCH format 3 is not UE multiplexed in the same physical resource blocks and carries a UCI of a bit size larger than 2 bits.
  • the PUCCH resource of PUCCH format 3 does not include an orthogonal cover code.
  • the modulation symbol is transmitted after being time division multiplexed (DMD) with DMRS.
  • PUCCH format 4 supports multiplexing up to 4 terminals in the same physical resource block, and carries UCI of a bit size larger than 2 bits.
  • the PUCCH resource in PUCCH format 3 includes an orthogonal cover code.
  • the modulation symbol is transmitted after being time division multiplexed (DMD) with DMRS.
  • NB-IoT Nearband Internet of Things
  • NB-IoT represents a narrowband IoT technology that supports low-power wide area networks through existing wireless communication systems (eg, LTE, NR).
  • NB-IoT may refer to a system for supporting low complexity and low power consumption through a narrowband.
  • the NB-IoT system uses OFDM parameters such as subcarrier spacing (SCS) in the same manner as the existing system, and thus does not need to allocate an additional band separately for the NB-IoT system.
  • SCS subcarrier spacing
  • one PRB of the existing system band can be allocated for NB-IoT. Since the NB-IoT terminal recognizes a single PRB as each carrier, the PRB and the carrier may be interpreted to have the same meaning in the description of the NB-IoT.
  • the description of the NB-IoT mainly describes the case that is applied to the existing LTE system, the following description can be extended to the next-generation system (eg, NR system, etc.).
  • the content related to the NB-IoT herein may be extended to MTC for a similar technical purpose (eg, low-power, low-cost, improved coverage, etc.).
  • NB-IoT may be replaced with other equivalent terms such as NB-LTE, NB-IoT enhancement, enhanced NB-IoT, further enhanced NB-IoT, NB-NR, and the like.
  • NB-IoT supports three modes of operation: in-band, guard-band, and stand-alone, with the same requirements for each mode.
  • In-band mode allocate some of the resources in the LTE band to the NB-IoT.
  • Guard-band mode utilizing the guard frequency band of LTE, the NB-IoT carrier is arranged as close as possible to the edge subcarrier of LTE.
  • NB-IoT UE searches for anchor carrier in 100kHz unit for initial synchronization, and the center frequency of anchor carrier in in-band and guard-band should be located within ⁇ 7.5kHz from 100kHz channel raster. .
  • the anchor carrier may be located only in a particular PRB.
  • NB-IoT supports multi-carriers, and a combination of in-band + in-band, in-band + guard-band, guard band + guard-band, stand-alone + stand-alone can be used.
  • FIG. 10 is a diagram illustrating a frame structure based on an NB-IoT system to which various embodiments of the present disclosure are applicable.
  • the NB-IoT frame structure may be set differently according to the subcarrier spacing (SCS).
  • 10A illustrates a frame structure when the subcarrier interval is 15 kHz
  • FIG. 10B illustrates a frame structure when the subcarrier interval is 3.75 kHz.
  • the frame structure of FIG. 10 (a) may be used in downlink / uplink
  • the frame structure of FIG. 10 (b) may be used only in uplink.
  • the NB-IoT frame structure for the 15 kHz subcarrier interval may be set to be the same as the frame structure of legacy systems (ie, LTE systems) (see FIG. A2). That is, a 10 ms NB-IoT frame may include ten 1 ms NB-IoT subframes, and the 1 ms NB-IoT subframe may include two 0.5 ms NB-IoT slots. Each 0.5ms NB-IoT slot may include seven symbols.
  • the 15 kHz subcarrier interval can be applied to both downlink and uplink.
  • the symbol includes an OFDMA symbol in downlink and an SC-FDMA symbol in uplink.
  • the system band is 1.08 MHz and is defined by 12 subcarriers.
  • the 15kHz subcarrier interval is applied to both the downlink and the uplink, and since the orthogonality with the LTE system is guaranteed, coexistence with the LTE system can be smoothly performed.
  • the 10 ms NB-IoT frame includes five 2 ms NB-IoT subframes, and the 2 ms NB-IoT subframe includes seven symbols and one.
  • Guard period (GP) symbol may include.
  • the 2ms NB-IoT subframe may be represented by an NB-IoT slot or an NB-IoT resource unit (RU).
  • the symbol may include an SC-FDMA symbol.
  • the system band is 1.08 MHz and is defined by 48 subcarriers.
  • the 3.75 kHz subcarrier spacing is applied only to the uplink, and the orthogonality with the LTE system may be degraded, resulting in performance degradation due to interference.
  • FIG. 10 illustrates an NB-IoT frame structure based on an LTE system frame structure, and the illustrated NB-IoT frame structure may be extended to a next-generation system (eg, an NR system).
  • a next-generation system eg, an NR system
  • the subframe interval may be replaced with the subframe interval of Table 6.
  • FIG. 11 is a diagram illustrating transmission of an NB-IoT downlink physical channel / signal in an FDD LTE system to which various embodiments of the present disclosure are applicable.
  • NB-IoT downlink uses an OFDMA scheme having a 15 kHz subcarrier spacing. This provides orthogonality between subcarriers to facilitate coexistence with LTE systems.
  • NB-IoT downlink is provided with physical channels such as narrowband physical broadcast channel (NPBCH), narrowband physical downlink shared channel (NPDSCH), narrowband physical downlink control channel (NPDCCH), narrowband primary synchronization signal (NPSS), narrowband (NSSS) Physical signals such as Primary Synchronization Signal (NRS) and Narrowband Reference Signal (NRS) are provided.
  • NPBCH narrowband physical broadcast channel
  • NPDSCH narrowband physical downlink shared channel
  • NPDCCH narrowband physical downlink control channel
  • NPSS narrowband primary synchronization signal
  • NSSS narrowband Physical signals
  • NRS Primary Synchronization Signal
  • NRS Narrowband Reference Signal
  • the NPBCH delivers MIB-NB (Master Information Block-Narrowband), which is the minimum system information necessary for the NB-IoT terminal to access the system, to the terminal.
  • the NPBCH signal can be transmitted eight times in total to improve coverage.
  • the transport block size (TBS) of the MIB-NB is 34 bits and is newly updated every 640ms TTI period.
  • the MIB-NB includes information such as an operation mode, a system frame number (SFN), a hyper-SFN, a number of cell-specific reference signal (CRS) ports, a channel raster offset, and the like.
  • the NRS is provided as a reference signal for channel estimation required for downlink physical channel demodulation and is generated in the same manner as in LTE.
  • NB-PCID Nearband-Physical Cell ID
  • NCell ID NB-IoT base station ID
  • NPDCCH has the same transmit antenna configuration as NPBCH and carries DCI. Three DCI formats are supported. DCI format N0 includes narrowband physical uplink shared channel (NPUSCH) scheduling information, and DCI formats N1 and N2 include NPDSCH scheduling information. NPDCCH can be repeated up to 2048 times to improve coverage.
  • NPUSCH narrowband physical uplink shared channel
  • the NPDSCH is used to transmit data (eg, TB) of a transport channel such as a downlink-shared channel (DL-SCH) and a paging channel (PCH).
  • a transport channel such as a downlink-shared channel (DL-SCH) and a paging channel (PCH).
  • the maximum TBS is 680 bits, and up to 2048 repetitive transmissions can be used to improve coverage.
  • the downlink physical channel / signal is transmitted through one PRB and supports 15kHz subcarrier spacing / multi-tone transmission.
  • NPSS is transmitted in the sixth subframe of every frame and NSSS is transmitted in the last (eg, tenth) subframe of every even frame.
  • the terminal may acquire frequency, symbol, and frame synchronization using the sync signals NPSS and NSSS, and search for 504 physical cell IDs (ie, base station IDs).
  • NPBCH is transmitted in the first subframe of every frame and carries the NB-MIB.
  • the NRS is provided as a reference signal for downlink physical channel demodulation and is generated in the same manner as in LTE.
  • NB-PCID Physical Cell ID
  • NCell ID NB-IoT base station ID
  • NPDCCH and NPDSCH may be transmitted in the remaining subframes except NPSS / NSSS / NPBCH.
  • NPDCCH and NPDSCH cannot be transmitted together in the same subframe.
  • NPDCCH carries DCI and DCI supports three types of DCI formats.
  • DCI format N0 includes narrowband physical uplink shared channel (NPUSCH) scheduling information
  • DCI formats N1 and N2 include NPDSCH scheduling information.
  • NPDCCH can be repeated up to 2048 times to improve coverage.
  • the NPDSCH is used to transmit data (eg, TB) of a transport channel such as a downlink-shared channel (DL-SCH) and a paging channel (PCH).
  • a transport channel such as a downlink-shared channel (DL-SCH) and a paging channel (PCH).
  • the maximum TBS is 680 bits, and up to 2048 repetitive transmissions can be used to improve coverage.
  • the uplink physical channel includes a narrowband physical random access channel (NPRACH) and an NPUSCH, and supports single-tone transmission and multi-tone transmission.
  • NPRACH narrowband physical random access channel
  • NPUSCH NPUSCH
  • Single-tone transmissions are supported for subcarrier spacings of 3.5 kHz and 15 kHz, and multi-tone transmissions are only supported for 15 kHz subcarrier intervals.
  • FIG. 12 is a diagram illustrating an NPUSCH format to which various embodiments of the present disclosure are applicable.
  • NPUSCH supports two formats. NPUSCH format 1 is used for UL-SCH transmission and the maximum TBS is 1000 bits. NPUSCH format 2 is used for uplink control information transmission such as HARQ ACK signaling. NPUSCH format 1 supports single- / multi-tone transmissions, and NPUSCH format 2 supports only single-tone transmissions. For single-tone transmission, pi / 2-BPSK (Binary Phase Shift Keying) and pi / 4-QPSK (Quadrature Phase Shift Keying) are used to reduce the Peer-to-Average Power Ratio (PAPR). The NPUSCH may have a different number of slots occupied by one resource unit (RU) according to resource allocation.
  • RU resource unit
  • the RU represents the smallest resource unit to which a TB is mapped, and consists of N UL symb * N UL slots contiguous SC-FDMA symbols in the time domain and N RU sc contiguous subcarriers in the frequency domain.
  • N UL symb represents the number of SC-FDMA symbols in the slot
  • N UL slots represents the number of slots
  • N RU sc represents the number of subcarriers constituting the RU.
  • Table 9 illustrates the configuration of an RU according to NPUSCH format and subcarrier spacing.
  • the NPUSCH format and SCS supported depend on the uplink-downlink configuration. See Table 9 for uplink-downlink configuration.
  • Scheduling information for transmitting UL-SCH data (eg, UL-SCH TB) is included in DCI format NO, and DCI format NO is transmitted through NPDCCH.
  • the DCI format NO includes information about the start time of the NPUSCH, the number of repetitions, the number of RUs used for TB transmission, the number of subcarriers and resource positions in the frequency domain, MCS, and the like.
  • DMRSs are transmitted in one or three SC-FDMA symbols per slot according to the NPUSCH format.
  • DMRS is multiplexed with data (e.g. TB, UCI) and is only transmitted in the RU that contains the data transmission.
  • FIG. 13 illustrates an operation when a multi-carrier is configured in an FDD NB-IoT to which various embodiments of the present disclosure are applicable.
  • DL / UL anchor-carrier is basically configured, and DL (and UL) non-anchor carrier may be further configured.
  • the RRCConnectionReconfiguration may include information about the non-anchor carrier. If a DL non-anchor carrier is configured, the terminal receives data only from the DL non-anchor carrier. On the other hand, synchronization signals NPSS and NSSS, broadcast signals MIB and SIB, and paging signals are provided only at anchor-carriers. If the DL non-anchor carrier is configured, the terminal listens to only the DL non-anchor carrier while in the RRC_CONNECTED state.
  • the terminal transmits data only on the UL non-anchor carrier, and simultaneous transmission on the UL non-anchor carrier and the UL anchor-carrier is not allowed.
  • the terminal returns to the anchor-carrier.
  • UE1 is configured only with an anchor-carrier
  • UE2 is additionally configured with a DL / UL non-anchor carrier
  • UE3 is configured with an additional DL non-anchor carrier. Accordingly, carriers to which data is transmitted / received in each UE are as follows.
  • UE1 data reception (DL anchor-carrier), data transmission (UL anchor-carrier)
  • UE2 data reception (DL non-anchor-carrier), data transmission (UL non-anchor-carrier)
  • UE3 data reception (DL non-anchor-carrier), data transmission (UL anchor-carrier)
  • the NB-IoT terminal cannot simultaneously perform transmission and reception, and transmission / reception operations are limited to one band each. Therefore, even if the multi-carrier is configured, the terminal requires only one transmit / receive chain in the 180 kHz band.
  • Table 10 illustrates system information defined in the NB-IoT.
  • the system information acquisition / modification process is performed only in the RRC_IDLE state.
  • the UE does not expect to receive the SIB information in the RRC_CONNECTED state.
  • the terminal may be notified through paging or direct indication.
  • the base station may change the terminal to the RRC_IDLE state.
  • the MIB-NB is transmitted through the NPBCH and updated every 640ms period. MIB-NB is first transmitted in subframe # 0 of a radio frame satisfying SFN mod 0, and is transmitted in subframe # 0 of every radio frame. The MIB-NB is transmitted through eight independently decodable blocks, and each block is repeatedly transmitted eight times.
  • Table 11 illustrates the field configuration of the MIB-NB.
  • SIB1-NB is transmitted through NPDSCH and has a period of 2056 ms. SIB1-NB is transmitted in subframe # 4 of even-numbered radio frames (ie, eight radio frames) within 16 consecutive radio frames.
  • the index of the first radio frame in which SIB1-NB is transmitted is derived according to the NPDSCH repetition number (Nrep) and PCID. Specifically, when Nrep is 16 and PCID is 2n, 2n + 1, the index of the first radio frame is ⁇ 0, 1 ⁇ , Nrep is 8, and PCID is 2n, 2n + 1.
  • the index of the first radio frame corresponding to the PCID and the odd PCID is ⁇ 0, 16 ⁇ .
  • SIB1-NB repeats Nrep times within 2560ms and is evenly distributed within 2560ms. TBS and Nrep of SIB1-NB are indicated by SystemInformationBlockType1-NB in MIB-NB.
  • Table 12 shows the number of repetitions according to SystemInformationBlockType1-NB.
  • SI messages ie, information after the SIB2-NB
  • SI-window a periodically occurring time domain window
  • Scheduling information of the SI message is provided by the SIB1-NB.
  • Each SI message is associated with one SI-window, and the SI-windows of different SI messages do not overlap each other. That is, only a corresponding SI is transmitted in one SI-window.
  • the lengths of all SI windows are the same and can be set.
  • WUS 14 is a diagram illustrating a wake-up signal (WUS) signal transmission according to various embodiments of the present disclosure.
  • the NB-IoT terminal and the bandwidth reduced low complexity / coverage enhancement (BL / CE) terminal may use WUS to reduce power consumption associated with paging monitoring according to cell configuration.
  • WUS bandwidth reduced low complexity / coverage enhancement
  • the WUS may instruct the terminal to receive the paging in the cell by monitoring the MPDCCH or NPDCCH.
  • PO means a time resource / interval (eg, subframe, slot) in which a PDCCH scrambled with P-RNTI can be transmitted for paging.
  • One or a plurality of PO (s) is included in a paging frame (PF), and the PF may be periodically set based on the UE ID.
  • the UE ID may be determined based on the International Mobile Subscriber Identity (IMSI) of the terminal.
  • IMSI International Mobile Subscriber Identity
  • paging hyper-frames PH
  • the PTW is defined in the PH, and the UE monitors the PO (s) in the PF in the PTW.
  • the UE may monitor N paging occasions later to receive a paging message.
  • the paging operation of the mobility management entity does not know that the base station uses WUS.
  • the WUS may be transmitted in a "Configured maximum WUS duration" (hereinafter, referred to as a WUS window) before the PO.
  • the UE may expect to repeat WUS transmission in the WUS window, but the actual number of WUS transmissions may be less than the maximum number of WUS transmissions in the WUS window. For example, the number of WUS repetitions may be small for a terminal in good coverage.
  • the resource / chance to which a WUS can be transmitted in the WUS window is referred to as a WUS resource.
  • the WUS resource may be defined as a plurality of consecutive OFDM symbols and a plurality of consecutive subcarriers.
  • the WUS resource may be defined as a plurality of consecutive OFDM symbols and a plurality of consecutive subcarriers in a subframe or slot.
  • the WUS resource may be defined as 14 consecutive OFDM symbols and 12 consecutive subcarriers.
  • a gap exists between the WUS window and the PO, and the terminal does not monitor the WUS in the gap.
  • the terminal may monitor a paging related signal in one or more POs associated with the WUS (window).
  • the UE in the RRC_IDLE state may receive paging in the anchor carrier or the non-anchor carrier based on the system information.
  • Various embodiments of the present disclosure provide a method of scheduling multiple transmission / transport blocks (multi-TB), particularly in a system in which repetition is applied in physical signal / channel transmission. And devices that support it.
  • Narrowband radio frequency or bandwidth reduced may cause problems in terms of coverage.
  • an iterative transmission method is introduced to increase coverage.
  • the repetitive transmission method may mean a method of repeatedly transmitting the same physical signal / channel by a predetermined time unit such as a symbol and / or a slot and / or a subframe.
  • a data repetitive transmission method using multi-subframe repetition has been introduced as a method for increasing coverage.
  • the terminal / base station may combine and detect / decode physical signals / channels transmitted in succession. For example, the terminal / base station can improve discovery / decoding performance by applying a method such as symbol level combining to a physical signal / channel transmitted continuously.
  • the gain through the above-described method such as symbol level combining may be obtained when the mobility of the terminal is very low or very low, and thus the radio environment between symbols or subframes in which repeated transmission is performed is almost constant. On the contrary, when a phenomenon such as deep fading occurs, for example, the reception performance of a physical signal / channel repeatedly transmitted may be affected for a long time.
  • time domain resource consumption is increased by repeatedly transmitting the physical signal / channel, a resource cost problem and a scheduling restriction problem between different terminals may occur from a base station perspective.
  • the coverage enhancement effect also increases, but conversely, since time domain resources consumed also increase, resource efficiency decreases and a problem of scheduling between different terminals may occur.
  • Various embodiments of the present disclosure may relate to various methods that may be applied when transmission of multiple transport block structures is used, particularly in systems where repetitive transmission is applied to physical signal / channel transmission.
  • Various embodiments of the present disclosure may relate to various methods that may be applied when one or more transport blocks may be indicated through one downlink control information (DCI).
  • DCI downlink control information
  • Various embodiments of the present disclosure may be applied even when multiple downlink control information (multiple DCI) is used for multiple transport block transmission or when transmission is performed through a pre-configured resource without downlink control information. have.
  • multiple DCI multiple downlink control information
  • the names of the respective physical channels supported by the NB-IoT system and the MTC system may be prefixed with "N-" or "M-" in front of the names of the physical channels of the legacy system.
  • prefixed channels are channels that are used similarly to the physical channels of legacy systems and can be clearly understood by those of ordinary skill in the art.
  • this prefix may be omitted, and may be mixed with the names of the physical channels of the legacy system.
  • various embodiments of the present disclosure have been described based on names of physical channels of a legacy system, and the above description will be clearly understood by those skilled in the art.
  • FIG. 15 is a diagram illustrating operations of a terminal and a base station in a wireless communication system to which various embodiments of the present disclosure are applicable.
  • a base station may transmit downlink control information (DCI) for scheduling a multi-transport block (TB) to a terminal, and the terminal may transmit the same.
  • DCI downlink control information
  • TB multi-transport block
  • the base station may transmit a multiple transport block scheduled by the DCI to the terminal, and the terminal may receive it based on the DCI (S1503).
  • the terminal may transmit a multiple transport block scheduled by DCI to the base station, and the base station may receive it (S1503).
  • one DCI may include a DL grant (DL grant or DL assignment) for scheduling a plurality of transport blocks to be transmitted in downlink, and the terminal is included in one DCI.
  • the plurality of transport blocks may be received from the base station based on the received DL grant.
  • one DCI may include a UL grant for scheduling a plurality of transport blocks to be transmitted in uplink, and the terminal includes a UL grant included in one DCI.
  • the plurality of transport blocks can be transmitted to the base station based on.
  • a gap may be set between time resources to which each transport block included in the multiple transport blocks is mapped.
  • Various embodiments of the present disclosure may relate to a method in which multiple transport block transmissions are used for a transmit / receive structure using a HARQ process.
  • a transmit / receive structure (using a HARQ process) based on a HARQ (Hybrid Automatic Repeat and request) process means that a terminal and a base station assign a HARQ process number to each transport block, It may refer to a transmission / reception structure capable of retransmission (to used).
  • HARQ Hybrid Automatic Repeat and request
  • a gap may mean a time axis interval between each transport block and / or time domain resources to which sub blocks constituting the transport block are mapped, and the size thereof may be a time unit ( For example, subframes / slots / symbols, etc.).
  • a gap may be defined as an interval between time intervals (resources) to which each PDSCH transport block is mapped.
  • gaps may be replaced with terms that may be understood to have similar meanings to one of ordinary skill in the art, such as intervals, intervals, gaps, and the like.
  • the size of the gap may be related to a time axis distance between the end of the time interval in which the transport block configured before the gap is transmitted and the start of the time interval in which the transport block configured after the gap is transmitted.
  • the gap may have a constant (time unit) size and may be set by constant signaling indicating on / off.
  • constant signaling may be defined indicating the size of the gap.
  • the signaling may be SIB signaling and / or RRC signaling and / or DCI signaling and the like.
  • the size of the gap (or the presence or absence of the gap) may be set according to a predetermined condition without explicit signaling.
  • 16 is a diagram illustrating a transmission / reception structure based on multiple transport blocks according to various embodiments of the present disclosure.
  • the terminal when the terminal detects a DCI scheduling a multiple HARQ process, the terminal may assume a structure in which a transport block corresponding to each HARQ process number is sequentially transmitted.
  • each transport block is composed of a plurality of time domain resources (eg, subframes and / or slots and / or symbols)
  • the terminal transmits the next transmission after all time domain resources constituting one transport block are transmitted.
  • a transport block in case of uplink, may be transmitted from a terminal based on a PUSCH (or (N) PUSCH format 1).
  • a transport block may be transmitted from a base station based on the PDSCH.
  • FIG. 16 an example in which a multiple transport block transmission / reception structure using a HARQ process (2-HARQ process) according to various embodiments of the present disclosure is applied to an NB-IoT system is illustrated.
  • one DCI may schedule two PDSCH transport blocks associated with each HARQ process.
  • the terminal receiving the DCI may recognize / assume or confirm that numbers corresponding to the HARQ process numbers are sequentially assigned to each transport block.
  • the UE may recognize / assume or confirm that the first transport block is a PDSCH transport block corresponding to HARQ # 1 and the second transport block is a PDSCH transport block corresponding to HARQ # 2.
  • a PDSCH transport block corresponding to HARQ # 1 and / or a PDSCH transport block corresponding to HARQ # 2 may include one or more (or plural) time domain resources, eg, subframes and / or slots and / or symbols.
  • the terminal may decode each PDSCH based on combining. For example, after the transmission of all the transport blocks scheduled by the DCI is completed (for example, after the PDSCH transport block corresponding to HARQ # 2 is received), the UE transmits an ACK / NACK based on each HARQ process. Can be.
  • one DCI may schedule two PUSCH transport blocks associated with each HARQ process.
  • the terminal receiving the DCI may sequentially assign a number corresponding to each HARQ process number to each scheduled transmission block, or may recognize / assume or confirm that the terminal is assigned.
  • the UE sequentially assigns HARQ process numbers such that the first transport block is a PUSCH transport block corresponding to HARQ # 1, and the second transport block is a PUSCH transport block corresponding to HARQ # 2, or recognizes or assumes that it has been assigned. You can check it.
  • a PUSCH transport block corresponding to HARQ # 1 and / or a PUSCH transport block corresponding to HARQ # 2 may include one or more (or plural) time domain resources, eg, subframes and / or slots and / or symbols. It can be configured as. For example, when repeated transmission using time domain resources is applied to each PUSCH transport block composed of a plurality of time domain resources, the base station may decode each PUSCH received from the terminal based on combining.
  • a gap of a predetermined size may exist between a first PDSCH transport block corresponding to HARQ # 1 and a second PDSCH transport block corresponding to HARQ # 2.
  • the base station may transmit the second PDSCH transport block with a gap.
  • a gap of a predetermined size may be provided between transport blocks to ensure a processing time of a terminal.
  • a bandwidth limited / coverage enhanced (BL / CE) terminal since combining is applied to a plurality of time domain resources to decode each PDSCH transport block as described above, it may take time accordingly.
  • a gap of a certain size may be provided between each transport block to ensure a time required for the UE to perform combining.
  • a gap of a certain size may exist between each transport block, and the predetermined size may be determined by considering each processing time of the BL / CE terminal. It may be set to a size that can guarantee the time to prepare for the transmission of the block, or complete the reception of each transport block. According to various embodiments of the present disclosure, such a gap may be equally applied to the case of the PUSCH transmitted by the terminal as well as the PDSCH received by the terminal. That is, in the example of FIG. 16, the UE may be configured to set a gap between a PUSCH transport block corresponding to HARQ # 1 and a PUSCH transport block corresponding to HARQ # 2 or to leave a predetermined gap between transport blocks.
  • a gap may be set between each transport block.
  • a gap between transport blocks may be determined based on the transmission length of each transport block or the sum of the transmission lengths of all transport blocks.
  • a transmission length of a plurality of PDSCHs scheduled by one DCI is greater than or equal to a predetermined length, it may be to guarantee a downlink gap for guaranteeing another downlink transmission.
  • an uplink compensation gap for compensating time / frequency error is guaranteed. It may be to.
  • a gap is established or configured between each transport block when the transmission length of each of the plurality of PDSCH (or PUSCH) transport blocks scheduled with one DCI is greater than or equal to a certain length (or a certain threshold).
  • Conditions can be set.
  • a condition may be set such that a gap is set or configured between each transport block when the sum of transmission lengths of the plurality of PDSCHs (or PUSCHs) transport blocks scheduled with one DCI is equal to or greater than a certain length (or a certain threshold). Can be.
  • the terminal may set / configure or set / configure a gap of a predetermined size g1 between two transport blocks.
  • g1 may be configured or configured to ensure a minimum processing time of the terminal.
  • g1 0 may be set.
  • a transmission length of an entire transport block satisfies a condition in which a downlink or uplink gap occurs.
  • the UE may assume that a gap of a predetermined size g2 is set / configured or set / configured between two transport blocks.
  • g2 may be configured or configured to ensure another downlink transmission of the base station.
  • g2 may be configured or configured for the terminal to compensate for time / frequency error.
  • the base station may instruct the terminal to turn on / off gaps between transport blocks. That is, the base station may instruct the terminal on the basis of constant signaling whether a gap is set or configured between transport blocks.
  • the terminal may identify or confirm that a gap is set or configured between transport blocks based on the signaling received from the base station. For example, SIB signaling and / or RRC signaling and / or DCI signaling may be used as the signaling.
  • a terminal that is instructed to set a gap between transport blocks from a base station (or a terminal that is configured to set a gap between transport blocks from a base station) has a predetermined size between two transport blocks of a received downlink signal. It can be assumed that the gap of is set / configured.
  • a terminal that is instructed to set a gap between transport blocks from a base station may have a predetermined size between two transport blocks of an uplink signal to transmit. It can be assumed that the gap of is set / configured, or set / configured.
  • the transmission length of each transport block or the entire transport block does not satisfy the condition that the gap occurs, that is, each If the length of a transport block or the sum of the lengths of each transport block is less than / less than a predetermined threshold, there may be no gap between multiple transport blocks.
  • the size of the gap may be set to 0 when the length of each transport block or the entire transport block does not satisfy a predetermined condition.
  • the base station instructed the terminal that the gap is set or configured between the transport block (for example, indicating that the gap is On). Even in this case, when the sum of the lengths of the multiple transport blocks or the lengths of the multiple transport blocks of the downlink signal received from the base station is equal to or less than a predetermined threshold, or the length or multiple of the multiple transport blocks of the uplink signal to be transmitted by the terminal When the sum of the lengths of the transport blocks is equal to or less than a predetermined threshold, a gap may not be set / configured between multiple transport blocks, or the size of the gap may be set to zero.
  • 17 illustrates a transmission / reception structure based on multiple transport blocks and sub-blocks according to various embodiments of the present disclosure.
  • the terminal when the terminal detects a DCI scheduling a multiple HARQ process, the terminal may assume a structure in which a transport block corresponding to each HARQ process number is sequentially transmitted.
  • each transport block is composed of a plurality of time domain resources (eg, subframes and / or slots and / or symbols), and the time domain resources are used for repetitive transmission, the terminal configures each transport block.
  • a subblock may be formed by dividing time domain resources, and a structure in which subblocks are transmitted in a form in which HARQ process numbers are repeatedly repeated may be expected.
  • a transport block in case of uplink, may be transmitted from a terminal based on a PUSCH (or (N) PUSCH format 1).
  • a transport block may be transmitted from a base station based on the PDSCH.
  • the gap between all subblocks may not be the same size. That is, gaps may exist between transmissions of each subblock, and each gap may have the same size or may have a different size. For example, when an uplink compensation gap or a downlink gap for a specific use is required, the gap for this use may be set or configured to be larger than the gap between other subblocks.
  • FIG. 17 an example of applying a multiple transport block transmission / reception structure using a HARQ process (2-HARQ process) and a sub block according to various embodiments of the present disclosure is illustrated in an NB-IoT system.
  • one DCI may schedule two PDSCH transport blocks.
  • each transport block is composed of a plurality of time domain resources (eg, subframes and / or slots and / or symbols), and the corresponding time domain resources are used for repetitive transmission
  • the terminal may transmit each transport block. It may be recognized / assumed or confirmed that the time domain resource constituting the subframe is composed of a plurality of subblocks.
  • the UE may recognize / assume or confirm that different HARQ process numbers are assigned to each of the plurality of sub blocks. That is, the terminal may recognize / assume or confirm the form in which sub-blocks associated with each HARQ process number are repeatedly received by being crossed. For example, the terminal may transmit ACK / NACK based on each HARQ process after the second transport block is received.
  • the UE has a first transport block divided into two subblocks, a first subblock is a PDSCH subblock corresponding to HARQ # 1, and a second subblock is a PDSCH subblock corresponding to HARQ # 2. Can be recognized or assumed.
  • the UE has a second transport block divided into two subblocks, a first subblock is a PDSCH subblock corresponding to HARQ # 1, and a second subblock is a PDSCH subblock corresponding to HARQ # 2. Can be recognized or assumed.
  • one DCI may schedule two PUSCH transport blocks.
  • each transport block is composed of a plurality of time domain resources (eg, subframes and / or slots and / or symbols), and the corresponding time domain resources are used for repetitive transmission
  • the terminal may transmit each transport block.
  • the time domain resource constituting the P may be configured by a plurality of subblocks, or may be recognized / assumed to be confirmed.
  • the UE may assign a different HARQ process number to each of a plurality of subblocks constituting each transport block, or may recognize / assume or confirm that it has been assigned.
  • the terminal may transmit the PUSCH to the base station in a form in which sub-blocks associated with each HARQ process number are crossed and repeatedly transmitted.
  • the base station may receive each PUSCH transport block composed of a plurality of time domain resources from the terminal and decode based on the combining.
  • the UE is configured or configured such that the first transport block is divided into two subblocks, the first subblock is a PUSCH subblock corresponding to HARQ # 1, and the second subblock is a PUSCH subblock corresponding to HARQ # 2.
  • the UE is configured or configured such that the second transport block is divided into two subblocks, the first subblock is a PUSCH subblock corresponding to HARQ # 1, and the second subblock is a PUSCH subblock corresponding to HARQ # 2. Cognitive / assumed to confirmed.
  • each subblock there may be a gap between each subblock.
  • a gap may exist between the second (or last) PDSCH subblock included in the first PDSCH transport block and the first PDSCH subblock included in the second PDSCH transport block.
  • a gap may exist between the second (or last) PUSCH subblock included in the first PDSCH transport block and the first PDSCH subblock included in the second PDSCH transport block.
  • the gaps between each subblock may have the same size and may have different sizes. That is, gaps may exist between transmissions of each subblock, and each gap may have the same size or may have a different size. For example, when an uplink compensation gap or a downlink gap for a specific use is required, the gap for this use may be set or configured to be larger than the gap between other subblocks.
  • the gap between the other subblocks described above may have a size 0, which may mean that the gap may not be set or configured between certain subblocks.
  • a gap is set or configured between the first PDSCH transport block and the second PDSCH transport block for the purpose of guaranteeing a time for transmission preparation or completion of transmission of each transport block in consideration of the processing time of the UE.
  • the gap may not be set or configured between the subblocks constituting the subblock, or may be set or configured to be smaller than the gap between the transport blocks.
  • a gap is set or configured between the first PUSCH transport block and the second PUSCH transport block in consideration of an uplink compensation gap, and no gap is set or configured between subblocks constituting each transport block, or a transport block. It can be set or configured smaller than the gap between.
  • FIG. 18 is a diagram illustrating a HARQ-ACK transmission and reception structure according to various embodiments of the present disclosure.
  • the user equipment in a downlink transmission / reception in which a base station transmits a plurality of transport blocks to a user equipment, when a gap is set or configured between transport blocks, the user equipment transmits a preceding transport block within a gap period configured between the transport blocks. That is, HARQ-ACK for the transport blocks configured before the gap period may be transmitted.
  • the information configured in the transport block after the gap period may vary according to HARQ-ACK reported in the gap period.
  • the terminal succeeds in receiving transport blocks configured before the gap period (ie, ACK):
  • the terminal may report ACK information to the base station based on the HARQ-ACK channel associated with the gap period.
  • the UE receives the transmission block corresponding to the HARQ process number next to the HARQ process number corresponding to the transport block configured before the gap period. You can expect.
  • the terminal may expect to receive a new transport block having the same HARQ process number as the previous transport block but having different data from the previous transport block.
  • This exemplary embodiment may be advantageous when the base station wants to schedule a larger number of transport block (s) than the number of HARQ processes that the terminal can manage with one DCI.
  • the terminal fails to receive the transport blocks configured before the gap period (ie, NACK):
  • the terminal may transmit or report NACK information to the base station based on (using) the HARQ-ACK channel associated with the gap period.
  • the NACK information may include information requesting to change the transmission parameter of the transport block.
  • the transmission parameter may include a redundancy version (RV), a modulation and coding scheme (MCS), and the like.
  • the UE does not explicitly transmit or report NACK information based on the HARQ-ACK channel associated with the gap period (eg, the corresponding HARQ-ACK channel). May not notify the base station of the NACK by transmitting certain information to the base station.
  • the UE receives a transmission block configured before the gap interval (ie, a transport block corresponding to NACK) or retransmits the information from the base station.
  • a transmission block configured before the gap interval ie, a transport block corresponding to NACK
  • retransmission may be based on the information.
  • the retransmitted transport block may be configured based on the information requesting to change the transmission parameter in the NACK information.
  • HARQ feedback in the above-described gap period may be performed when certain conditions related to the gap period are satisfied. For example, when the time length between the HARQ feedback completion time in the gap period and the transmission block (that is, start time of DCI scheduled for transmission after the gap period) is equal to or greater than a predetermined threshold value or more, HARQ feedback within the gap period may be allowed.
  • the predetermined threshold value to a specific value may be a value at which a time required for generating a next transport block by detecting the HARQ feedback received from the terminal and reflecting the same may be guaranteed.
  • HARQ feedback information may be reflected for the next transport block transmitted after a specific time after HARQ feedback in the above-described gap period. That is, in an exemplary embodiment, when the HARQ feedback end time in the gap period and the start time of the next transport block are longer than a specific time, the HARQ feedback information may be changed in the information of the corresponding transport block. For example, in case of NACK, a transport block configured before a gap period may be retransmitted, and in case of ACK, a transport block corresponding to a next HARQ process number may be transmitted.
  • FIG. 18 an example in which a HARQ-ACK feedback method is applied to an NB-IoT system in a multiple transport block transmission / reception structure using a HARQ process (2-HARQ process) according to various embodiments of the present disclosure is illustrated.
  • the multiple transport block transmit / receive structure is described in 3.1.1. It may be configured according to the transmission and reception structure based on the HARQ process according to various embodiments of the present disclosure described above in the section.
  • HARQ-ACK for HARQ # 1 may be transmitted within a gap configured between a PDSCH transport block corresponding to HARQ # 1 and a PDSCH transport block corresponding to HARQ # 2. That is, HARQ-ACK for HARQ # 1 may be transmitted at the position of A / N 1 in FIG. 18.
  • the base station when HARQ-ACK received from the UE at the position of A / N 1 is ACK, the base station assumes that transmission of the PDSCH transport block corresponding to HARQ # 1 is completed and corresponds to HARQ # 2. Transmission of the PDSCH transport block may begin.
  • the base station may retransmit the PDSCH corresponding to HARQ # 1 to the terminal at the next transport block transmission timing.
  • the HARQ-ACK associated with the HARQ process number associated with the immediately preceding PDSCH transport block may be reported at the location of A / N 2.
  • the base station may transmit a PDSCH corresponding to HARQ # 2 in the PDSCH transport block immediately before A / N 2, and the UE A HARQ-ACK for HARQ # 2 may be transmitted to the base station at the location of / N 2.
  • the base station may retransmit the PDSCH corresponding to HARQ # 1 to the UE in the PDSCH transport block immediately before A / N 2, and the UE May transmit HARQ-ACK for the HARQ # 1 associated with the retransmitted PDSCH to the base station at A / N 2 position.
  • the UE may receive a PDSCH corresponding to the NACK in a time interval after the gap without explicit signaling such as DCI. .
  • the terminal may assume that the operations described above in Section 3.1.3 are repeatedly performed until all HARQ processes are terminated.
  • the repetition may be stopped when one or more of the following conditions are satisfied.
  • the following conditions may be for guaranteeing downlink scheduling for changes in the wireless communication environment and / or other purposes of the terminal.
  • the base station may retransmit the PDSCH without explicit DCI transmission and reception, and the terminal may re-receive it.
  • FIG. 19 is a diagram illustrating a bundled HARQ-ACK transmission and reception structure according to various embodiments of the present disclosure.
  • a terminal may receive transport blocks (or sub-blocks) corresponding to all HARQ process numbers indicated from a DL grant in case of downlink. Thereafter, the bundled HARQ-ACK may be transmitted for the received transport blocks (or sub-blocks). For example, the terminal obtains 1-bit ACK / NACK information for each transport block (or sub-block), and bundles it based on an AND operation to 1-bit for all transport blocks (or sub-blocks) received. ACK / NACK information can be obtained.
  • the bundled HARQ-ACK is represented by an ACK.
  • the bundled HARQ-ACKs are NACKs. It can be expressed as.
  • the bundled HARQ-ACK may be transmitted within a gap established between transmissions of a transport block (or sub-block).
  • the bundled HARQ-ACK is bundled-NACK, that is, when the reception of a transport block (or sub-block) associated with the bundled HARQ-ACK is bundled-NACK, After the transmission time of the HARQ-ACK, it can be expected that the corresponding transport block (or sub-block) to be retransmitted without additional DCI monitoring.
  • the bundled HARQ-ACK when the bundled HARQ-ACK is bundled-ACK, that is, when the reception of a transport block (or sub-block) associated with the bundled HARQ-ACK is bundled-ACK, it may be configured to monitor the DCI to receive a new grant.
  • FIG. 19 an example of applying a bundled HARQ-ACK transmission / reception structure according to various embodiments of the present disclosure to an NB-IoT system is illustrated.
  • the corresponding multiple transport block transmit / receive structure is described in 3.1.1. It may be configured according to the transmission and reception structure based on the HARQ process according to various embodiments of the present disclosure described above in section 3.1.2 or 3.1.2.
  • bundled HARQ-ACK is in a gap configured between sub-blocks. Can be sent from.
  • the UE may expect that the preceding transport blocks (or sub-blocks) are retransmitted after the bundled HARQ-ACK transmission time point, without additional DCI monitoring. have. That is, in the exemplary embodiment, when the bundled HARQ-ACK is bundled-NACK, the UE is a transport block (or sub-block) corresponding to the bundled-NACK (scheduled by the previous DL grant), without additional DCI monitoring ) Can be expected to be retransmitted after the bundled HARQ-ACK transmission time.
  • the terminal may report HARQ-ACK to the base station.
  • the HARQ-ACK may be a HARQ-ACK multiplexed to be divided by HARQ processes.
  • the UE acquires 1-bit ACK / NACK information for N transport blocks (or sub-blocks), and multiplexes it, and includes an N-bit sequence of bits each representing ACK / NACK information for each N HARQ processes.
  • HARQ-ACK information can be obtained.
  • the UE when the UE reports a bundled-NACK within a gap configured between transport blocks (or sub-blocks), the UE may transmit a transport block (or sub-block associated with the bundled-NACK after the corresponding bundled-NACK transmission). You can expect to resend.
  • the terminal after retransmission of a transport block (or sub-block) is terminated, the terminal may report HARQ-ACK for the corresponding retransmitted transport block (or sub-block).
  • the HARQ-ACK may be multiplexed so that each HARQ process of the retransmitted transport block (or sub-block) is distinguished.
  • the UE when the bundled HARQ-ACK is bundled-ACK, the UE no longer performs monitoring for the remaining sub-blocks scheduled by the previous DCI, and may be configured / configured to monitor the new DCI. Can be.
  • the terminal may receive the next transport blocks (or sub-blocks) based on the DL grant of the new DCI, and after the end of transmission of the next transport blocks (or sub-blocks), bundled thereto.
  • the HARQ-ACK may be reported.
  • FIG. 20 is a diagram illustrating a transmission / reception structure based on a compact DCI / indication signal according to various embodiments of the present disclosure.
  • the compact DCI may mean a DCI having a smaller information size and a shorter repetition size in preparation for the DCI in which the terminal expects scheduling associated with multiple transport block transmission. Can be.
  • the compact DCI may include HARQ process number information and / or retransmission delay time information of the corresponding transport block (corresponding to NACK), and may be transmitted.
  • Information on a transport block size (TBS) may be omitted.
  • the compact DCI is configured to perform (N) PDCCH or MPDCCH format (eg, DCI format for scheduling a single transport block or multiple transport block scheduling).
  • N PDCCH or MPDCCH format
  • Information indicating a DCI format For example, if all of the transport blocks received by the UE are ACK, the compact DCI is configured to perform (N) PDCCH or MPDCCH format (eg, DCI format for scheduling a single transport block or multiple transport block scheduling).
  • N PDCCH or MPDCCH format
  • the indication signal may refer to a signal that provides information to the terminal to distinguish between the retransmission operation and the DCI monitoring operation.
  • WUS wake-up-signal
  • a terminal transmits transport blocks (or sub-blocks) corresponding to all HARQ process numbers indicated from a UL grant in the case of uplink. Afterwards, a compact DCI (or indication signal) can be expected.
  • the UE may transmit a preceding transport block (or sub-block) after a compact DCI (or indication signal) reception time without additional DCI monitoring. Can listen again.
  • the terminal when the compact DCI (or indication signal) indicates DCI monitoring, the terminal may be configured / configured to monitor the DCI for receiving a new grant.
  • FIG. 20 an example in which a transmit / receive structure based on compact DCI according to various embodiments of the present disclosure is applied to an NB-IoT system is illustrated.
  • the corresponding multiple transport block transmit / receive structure is described in 3.1.1. It may be configured according to the transmission and reception structure based on the HARQ process according to various embodiments of the present disclosure described above in section 3.1.2 or 3.1.2.
  • compact DCI (or indication signal) is inter-sub-block. Can be received within the configured gap.
  • the terminal may continue to expect transmission of the previous DL grant scheduled PDSCH.
  • the terminal when the compact DCI (or indication signal) instructs to monitor the next DCI, the terminal no longer performs monitoring for the remaining previously scheduled sub-blocks, and monitors the new DCI.
  • the various embodiments of the present disclosure described above are some of various implementation manners of the present disclosure, and it is clearly understood by those skilled in the art that the various embodiments of the present disclosure are not limited to the above-described embodiments. Can be.
  • the various embodiments of the present disclosure described above may be implemented independently, other various embodiments of the present disclosure may be configured in the form of a combination (or merge) of some embodiments.
  • the information on whether the various embodiments of the present disclosure described above are applied is a signal (eg, a physical layer signal or a higher layer signal) predefined by the base station to the terminal. Rules can be defined to inform via.
  • a terminal may perform a network access procedure to perform the above-described procedures and / or methods. For example, while accessing a network (eg, a base station), the terminal may receive and store system information and configuration information necessary to perform the above-described procedures and / or methods in a memory. Configuration information required for various embodiments of the present disclosure may be received through higher layer (eg, RRC layer; Medium Access Control, MAC, layer, etc.) signaling.
  • higher layer eg, RRC layer; Medium Access Control, MAC, layer, etc.
  • a physical channel and a reference signal may be transmitted using beam-forming.
  • a beam management process may be involved to align the beam between the base station and the terminal.
  • a signal proposed in various embodiments of the present disclosure may be transmitted / received using beam-forming.
  • RRC Radio Resource Control
  • beam alignment may be performed based on SSB (or SS / PBCH block).
  • beam alignment in the RRC CONNECTED mode may be performed based on CSI-RS (in DL) and SRS (in UL).
  • an operation related to a beam may be omitted in the following description.
  • the base station may periodically transmit the SSB (S2102).
  • SSB includes PSS / SSS / PBCH.
  • SSB may be transmitted using beam sweeping.
  • the base station can transmit the RMSI (Remaining Minimum System Information) and OSI (Other System Information) (S2104).
  • the RMSI may include information (eg, PRACH configuration information) necessary for the terminal to initially access the base station.
  • the terminal identifies the best SSB after performing SSB detection.
  • the terminal may transmit the RACH preamble (Message 1, Msg1) to the base station by using the PRACH resources linked / corresponding to the index (ie, beam) of the best SSB (S2106).
  • the beam direction of the RACH preamble is associated with a PRACH resource.
  • the association between the PRACH resource (and / or RACH preamble) and the SSB (index) may be established through system information (eg, RMSI).
  • the base station transmits a random access response (RAR) (Msg2) (R2108) in response to the RACH preamble (S2108), the terminal uses Msg3 (eg, RRC Connection Request) by using the UL grant in the RAR
  • Msg4 may include an RRC Connection Setup.
  • subsequent beam alignment may be performed based on SSB / CSI-RS (in DL) and SRS (in UL).
  • the terminal may receive the SSB / CSI-RS (S2114).
  • the SSB / CSI-RS may be used by the terminal to generate a beam / CSI report.
  • the base station may request the terminal to the beam / CSI report through the DCI (S2116).
  • the terminal may generate a beam / CSI report based on the SSB / CSI-RS and transmit the generated beam / CSI report to the base station through the PUSCH / PUCCH (S2418).
  • the beam / CSI report may include a beam measurement result, information on a preferred beam, and the like.
  • the base station and the terminal may switch the beam based on the beam / CSI report (S2120a, S2120b).
  • the terminal and the base station may perform the above-described procedures and / or methods.
  • the terminal and the base station process information in a memory according to various embodiments of the present disclosure based on configuration information obtained in a network access process (eg, system information acquisition process, RRC connection process through RACH, etc.).
  • the wireless signal may be transmitted, or the received wireless signal may be processed and stored in a memory.
  • the radio signal may include at least one of PDCCH, PDSCH, and RS (Reference Signal) in downlink, and at least one of PUCCH, PUSCH, and SRS in uplink.
  • the process of accessing an NB-IoT network is further described based on LTE. The following description may be extended to NR as well.
  • the PSS, SSS and PBCH of S702 are replaced with NPSS, NSSS and NPBCH in NB-IoT, respectively.
  • the NB-IoT RACH process is basically the same as the LTE RACH process and is different in the following matters.
  • the RACH preamble format is different.
  • the preamble is based on code / sequence (eg, zadoff-chu sequence), whereas in NB-IoT the preamble is a subcarrier.
  • the NB-IoT RACH process is performed based on the CE level. Therefore, PRACH resources are allocated differently for each CE level.
  • the uplink resource allocation request is performed using the RACH procedure in the NB-IoT.
  • 22 is a diagram illustrating preamble transmission in an NB-IoT RACH.
  • the NPRACH preamble may consist of four symbol groups, and each symbol group may be composed of a CP and a plurality of SC-FDMA symbols.
  • the SC-FDMA symbol may be replaced with an OFDM symbol or a DFT-s-OFDM symbol.
  • the NPRACH only supports single-tone transmissions with 3.75kHz subcarrier spacing, and offers 66.7 ⁇ s and 266.67 ⁇ s length CPs to support different cell radii.
  • Each symbol group performs frequency hopping and the hopping pattern is as follows. The subcarrier transmitting the first symbol group is determined in a pseudo-random manner.
  • the second symbol group is one subcarrier leap
  • the third symbol group is six subcarrier leaps
  • the fourth symbol group is one subcarrier leap.
  • the frequency hopping procedure is repeatedly applied, and the NPRACH preamble can perform ⁇ 1, 2, 4, 8, 16, 32, 64, 128 ⁇ repetitive transmission to improve coverage.
  • NPRACH resources may be configured for each CE level.
  • the UE may select the NPRACH resource based on the CE level determined according to the downlink measurement result (eg, RSRP) and transmit the RACH preamble using the selected NPRACH resource.
  • the NPRACH may be transmitted on an anchor carrier or on a non-anchor carrier with NPRACH resources configured.
  • FIG. 23 is a diagram illustrating a DRX operation according to various embodiments of the present disclosure.
  • a terminal may perform a DRX operation while performing the procedures and / or methods described above.
  • a terminal configured with DRX may lower power consumption by discontinuously receiving a DL signal.
  • DRX may be performed in a Radio Resource Control (RRC) _IDLE state, an RRC_INACTIVE state, and an RRC_CONNECTED state.
  • RRC Radio Resource Control
  • the DRX is used to discontinuously receive the paging signal.
  • DRX is used for discontinuous reception of PDCCH.
  • DRX performed in the RRC_CONNECTED state is referred to as RRC_CONNECTED DRX.
  • the DRX cycle includes On Duration and Opportunity for DRX.
  • the DRX cycle defines the time interval in which On Duration repeats periodically.
  • On Duration indicates a time interval that the UE monitors to receive the PDCCH.
  • the UE performs PDCCH monitoring for On Duration. If there is a PDCCH successfully detected during PDCCH monitoring, the UE operates an inactivity timer and maintains an awake state. On the other hand, if there is no PDCCH successfully detected during PDCCH monitoring, the UE enters a sleep state after the On Duration ends. Therefore, when DRX is configured, PDCCH monitoring / reception may be performed discontinuously in the time domain in performing the above-described / proposed procedures and / or methods.
  • a PDCCH reception opportunity (eg, a slot having a PDCCH search space) may be set discontinuously according to the DRX configuration.
  • PDCCH monitoring / reception may be continuously performed in the time domain in performing the above-described / proposed procedure and / or method.
  • a PDCCH reception opportunity (eg, a slot having a PDCCH search space) may be set continuously.
  • PDCCH monitoring may be limited in the time interval set as the measurement gap.
  • Table 13 shows a procedure of UE related to DRX (RRC_CONNECTED state).
  • DRX configuration information is received through higher layer (eg, RRC) signaling, and whether DRX ON / OFF is controlled by the DRX command of the MAC layer. If DRX is configured, the UE may discontinuously perform PDCCH monitoring in performing the procedure and / or method described / proposed in various embodiments of the present disclosure.
  • MAC-CellGroupConfig includes configuration information necessary to set a medium access control (MAC) parameter for a cell group.
  • the MAC-CellGroupConfig may also include configuration information regarding the DRX.
  • MAC-CellGroupConfig may include information as follows in defining DRX.
  • Value of drx-OnDurationTimer defines the length of the start section of the DRX cycle
  • Value of drx-InactivityTimer defines the length of time interval in which the UE wakes up after a PDCCH opportunity where a PDCCH indicating initial UL or DL data is detected.
  • Value of drx-HARQ-RTT-TimerDL Defines the length of the maximum time interval after DL initial transmission is received until DL retransmission is received.
  • Value of drx-HARQ-RTT-TimerDL Defines the length of the maximum time interval after a grant for UL initial transmission is received until a grant for UL retransmission is received.
  • drx-LongCycleStartOffset Defines the length of time and start time of the DRX cycle
  • drx-ShortCycle defines the length of time of the short DRX cycle
  • the UE maintains a wake-up state and performs PDCCH monitoring at every PDCCH opportunity.
  • the DRX is used to discontinuously receive the paging signal.
  • DRX performed in the RRC_IDLE (or RRC_INACTIVE) state is referred to as RRC_IDLE DRX.
  • PDCCH monitoring / reception may be performed discontinuously in the time domain in performing the above-described / proposed procedures and / or methods.
  • DRX may be configured for discontinuous reception of a paging signal.
  • the terminal may receive DRX configuration information from the base station through higher layer (eg, RRC) signaling.
  • the DRX configuration information may include configuration information about a DRX cycle, a DRX offset, a DRX timer, and the like.
  • the UE repeats the On Duration and the Sleep duration according to the DRX cycle.
  • the UE may operate in a wakeup mode at On duration and may operate in a sleep mode at Sleep duration. In the wake-up mode, the terminal may monitor a paging occasion (PO) to receive a paging message.
  • PO paging occasion
  • the PO means a time resource / interval (eg, subframe, slot) in which the terminal expects to receive a paging message.
  • PO monitoring includes monitoring a PDCCH (or MPDCCH, NPDCCH) (hereinafter, paging PDCCH) scrambled with P-RNTI in a PO.
  • the paging message may be included in the paging PDCCH or may be included in the PDSCH scheduled by the paging PDCCH.
  • One or a plurality of PO (s) is included in a paging frame (PF), and the PF may be periodically set based on the UE ID.
  • the PF corresponds to one radio frame, and the UE ID may be determined based on the International Mobile Subscriber Identity (IMSI) of the terminal.
  • IMSI International Mobile Subscriber Identity
  • the UE monitors only one PO per DRX cycle.
  • the terminal receives a paging message indicating a change of its ID and / or system information from the PO
  • the terminal performs a RACH process to initialize (or reset) the connection with the base station, or receives new system information from the base station ( Or acquisition).
  • PO monitoring may be performed discontinuously in the time domain to perform RACH for connection with a base station or to receive (or obtain) new system information from the base station. Can be.
  • the maximum cycle duration may be limited to 2.56 seconds.
  • a terminal in which data transmission and reception are intermittently performed such as an MTC terminal or an NB-IoT terminal
  • unnecessary power consumption may occur during a DRX cycle.
  • PSM power saving mode
  • PGW paging time window or a paging transmission window
  • PH Paging Hyper-frames
  • PTW is defined in the PH.
  • the UE may monitor a paging signal by performing a DRX cycle in a PTW duration to switch to a wake-up mode in its PO.
  • One or more DRX cycles (eg, wake-up mode and sleep mode) of FIG. 22C may be included in the PTW section.
  • the number of DRX cycles in the PTW interval may be configured by the base station through a higher layer (eg, RRC) signal.
  • FIG. 24 is a diagram schematically illustrating a method of operating a terminal and a base station according to various embodiments of the present disclosure
  • FIG. 25 is a flowchart illustrating a method of operating a terminal according to various embodiments of the present disclosure
  • FIG. 26 is a present disclosure
  • a base station may transmit downlink control information (DCI) for scheduling both a first transport block and a second transport block to a terminal. And, the terminal may receive this (S2401, S2501, S2601). That is, according to various embodiments of the present disclosure, a plurality of transport blocks may be scheduled by one DCI.
  • DCI downlink control information
  • the base station may transmit a first transport block associated with the above-described DCI (S2401, S2501, S2601) to the terminal, the terminal based on the above-described DCI (S2401, S2501, S2601)
  • the first transport block can be received in the first time resource (S2403, S2503, S2603).
  • the base station may transmit a second transport block associated with the above-described DCI (S2401, S2501, S2601) to the terminal, the terminal based on the above-described DCI (S2401, S2501, S2601)
  • the second transport block can be received in the second time resource (S2407, S2507, S2607).
  • each of the first time resource and the second time resource may be a time resource scheduled by the above-described DCI (S2401, S2501, S2601).
  • the first transport block can be transmitted and received repeatedly in a first time resource.
  • the second transport block can be repeatedly transmitted and received within a second time resource.
  • a gap may be established / configured between the first time resource and the second time resource.
  • the terminal may transmit a HARQ-ACK associated with the first transport block to the base station in response to the first transport block in the gap, the base station may receive it (S2405, S2505, S2605).
  • the HARQ process number associated with the second transport block may be determined based on the HARQ-ACKs S2405, S2505, S2605 associated with the first transport block described above.
  • the HARQ process number associated with the second transport block is equal to the HARQ process number associated with the first transport block. The same can be determined.
  • the HARQ process number associated with the second transport block is the HARQ process number associated with the first transport block.
  • Next HARQ process number may be determined.
  • FIG 27 illustrates an apparatus in which various embodiments of the present disclosure may be implemented.
  • the device illustrated in FIG. 27 may be a user equipment (UE) and / or a base station (eg, eNB or gNB) adapted to perform the above-described mechanism, or any device performing the same task.
  • UE user equipment
  • base station eg, eNB or gNB
  • the apparatus may include a digital signal processor (DSP) / microprocessor 210 and a radio frequency (RF) module (transceiver) 235.
  • the DSP / microprocessor 210 is electrically connected to the transceiver 235 to control the transceiver 235.
  • the device depending on the designer's choice, includes a power management module 205, a battery 255, a display 215, a keypad 220, a SIM card 225, a memory device 230, an antenna 240, and a speaker ( 245 and input device 250 may be further included.
  • FIG. 27 may represent a terminal that includes a receiver 235 configured to receive a request message from the network and a transmitter 235 configured to transmit timing transmit / receive timing information to the network. Such a receiver and a transmitter may configure the transceiver 235.
  • the terminal may further include a processor 210 connected to the transceiver 235.
  • 27 may also show a network device including a transmitter 235 configured to transmit a request message to a terminal and a receiver 235 configured to receive transmission and reception timing information from the terminal.
  • the transmitter and receiver may configure the transceiver 235.
  • the network further includes a processor 210 coupled to the transmitter and the receiver.
  • the processor 210 may calculate a latency based on the transmission and reception timing information.
  • a processor included in a terminal (or a communication device included in the terminal) and a base station (or a communication device included in the base station) may control a memory and operate as follows. .
  • a terminal or base station may include at least one transceiver; One or more memories; And one or more processors connected to the transceiver and the memory.
  • the memory may store instructions that enable one or more processors to perform the following operations.
  • the communication device included in the terminal or the base station may be configured to include the one or more processors and the one or more memories, and the communication device includes the one or more transceivers or does not include the one or more transceivers. It may be configured to be connected to the one or more transceivers without.
  • one or more processors may include downlink control information for scheduling both a first transport block and a second transport block.
  • downlink control information DCI downlink control information
  • one or more processors included in the terminal may receive the first transport block within the first time resource based on the above-described DCI.
  • one or more processors included in the terminal may receive a second transport block within a second time resource based on the above-described DCI.
  • a gap may be established between the first time resource and the second time resource, and one or more processors included in the terminal may include a first response in response to the first transport block within the gap.
  • the HARQ-ACK associated with the transport block may be transmitted.
  • one or more processors included in a base station may transmit a DCI scheduling both the first transport block and the second transport block. have.
  • one or more processors included in the base station may transmit the first transport block within the first time resource associated with the above-described DCI.
  • one or more processors included in the base station may transmit a second transport block within a second time resource associated with the above-described DCI.
  • a gap may be established between the first time resource and the second time resource, and one or more processors included in the base station may include a first response in response to the first transport block within the gap.
  • a HARQ-ACK associated with a transport block can be received.
  • a communication system 1 applied to various embodiments of the present disclosure includes a wireless device, a base station, and a network.
  • the wireless device refers to a device that performs communication using a radio access technology (eg, 5G New RAT (Long Term), Long Term Evolution (LTE)), and may be referred to as a communication / wireless / 5G device.
  • the wireless device may be a robot 100a, a vehicle 100b-1, 100b-2, an eXtended Reality (XR) device 100c, a hand-held device 100d, a home appliance 100e. ), IoT (Internet of Thing) device (100f), AI device / server 400 may be included.
  • the vehicle may include a vehicle having a wireless communication function, an autonomous vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include an unmanned aerial vehicle (UAV) (eg, a drone).
  • UAV unmanned aerial vehicle
  • XR devices include AR (Augmented Reality) / VR (Virtual Reality) / MR (Mixed Reality) devices, Head-Mounted Device (HMD), Head-Up Display (HUD), television, smartphone, It may be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • the portable device may include a smartphone, a smart pad, a wearable device (eg, smart watch, smart glasses), a computer (eg, a notebook, etc.).
  • the home appliance may include a TV, a refrigerator, a washing machine, and the like.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station / network node to other wireless devices.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg LTE) network or a 5G (eg NR) network.
  • the wireless devices 100a-100f may communicate with each other via the base station 200 / network 300, but may also communicate directly (e.g. sidelink communication) without going through the base station / network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. vehicle to vehicle (V2V) / vehicle to everything (V2X) communication).
  • the IoT device eg, sensor
  • the IoT device may directly communicate with another IoT device (eg, sensor) or another wireless device 100a to 100f.
  • Wireless communication / connection 150a, 150b, 150c may be performed between the wireless devices 100a-100f / base station 200 and base station 200 / base station 200.
  • the wireless communication / connection is various wireless connections such as uplink / downlink communication 150a, sidelink communication 150b (or D2D communication), inter-base station communication 150c (eg relay, integrated access backhaul), and the like.
  • Technology eg, 5G NR
  • wireless communication / connections 150a, 150b, 150c, the wireless device and the base station / wireless device, the base station and the base station may transmit / receive radio signals to each other.
  • wireless communication / connections 150a, 150b, 150c may transmit / receive signals over various physical channels.
  • various signal processing processes eg, channel encoding / decoding, modulation / demodulation, resource mapping / demapping, etc.
  • resource allocation processes may be performed.
  • 29 illustrates a wireless device that can be applied to various embodiments of the present disclosure.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • the ⁇ first wireless device 100 and the second wireless device 200 ⁇ may refer to the ⁇ wireless device 100x, the base station 200 ⁇ and / or the ⁇ wireless device 100x, the wireless device 100x of FIG. 28. ⁇ .
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and / or one or more antennas 108.
  • the processor 102 controls the memory 104 and / or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein.
  • the processor 102 may process the information in the memory 104 to generate the first information / signal, and then transmit the wireless signal including the first information / signal through the transceiver 106.
  • the processor 102 may receive the radio signal including the second information / signal through the transceiver 106 and store the information obtained from the signal processing of the second information / signal in the memory 104.
  • the memory 104 may be coupled to the processor 102 and may store various information related to the operation of the processor 102. For example, the memory 104 may perform instructions to perform some or all of the processes controlled by the processor 102 or to perform descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. Can store software code that includes them.
  • processor 102 and memory 104 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 106 may be coupled to the processor 102 and may transmit and / or receive wireless signals via one or more antennas 108.
  • the transceiver 106 may include a transmitter and / or a receiver.
  • the transceiver 106 may be mixed with a radio frequency (RF) unit.
  • RF radio frequency
  • a wireless device may mean a communication modem / circuit / chip.
  • the second wireless device 200 may include one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and / or one or more antennas 208.
  • the processor 202 controls the memory 204 and / or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein.
  • the processor 202 may process the information in the memory 204 to generate third information / signal, and then transmit the wireless signal including the third information / signal through the transceiver 206.
  • the processor 202 may receive the radio signal including the fourth information / signal through the transceiver 206 and then store information obtained from the signal processing of the fourth information / signal in the memory 204.
  • the memory 204 may be connected to the processor 202 and store various information related to the operation of the processor 202. For example, the memory 204 may perform instructions to perform some or all of the processes controlled by the processor 202 or to perform descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. Can store software code that includes them.
  • processor 202 and memory 204 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 206 may be coupled with the processor 202 and may transmit and / or receive wireless signals via one or more antennas 208.
  • the transceiver 206 may include a transmitter and / or a receiver.
  • the transceiver 206 may be mixed with an RF unit.
  • a wireless device may mean a communication modem / circuit / chip.
  • One or more protocol layers may be implemented by one or more processors 102, 202, although not limited thereto.
  • one or more processors 102 and 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • One or more processors 102, 202 may employ one or more Protocol Data Units (PDUs) and / or one or more Service Data Units (SDUs) in accordance with the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein. Can be generated.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data, or information in accordance with the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein.
  • One or more processors 102, 202 may generate signals (eg, baseband signals) including PDUs, SDUs, messages, control information, data or information in accordance with the functions, procedures, suggestions and / or methods disclosed herein.
  • signals eg, baseband signals
  • One or more processors 102, 202 may receive signals (eg, baseband signals) from one or more transceivers 106, 206, and include descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein.
  • a PDU, an SDU, a message, control information, data, or information can be obtained.
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein may be included in one or more processors (102, 202) or stored in one or more memories (104, 204) of It may be driven by the above-described processor (102, 202).
  • the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein may be implemented using firmware or software in the form of code, instructions, and / or a set of instructions.
  • One or more memories 104, 204 may be coupled to one or more processors 102, 202 and may store various forms of data, signals, messages, information, programs, codes, instructions, and / or instructions.
  • One or more memories 104, 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drive, registers, cache memory, computer readable storage medium, and / or combinations thereof.
  • One or more memories 104, 204 may be located inside and / or outside one or more processors 102, 202.
  • one or more memories 104, 204 may be coupled with one or more processors 102, 202 through various techniques, such as a wired or wireless connection.
  • One or more transceivers 106 and 206 may transmit user data, control information, wireless signals / channels, etc., as mentioned in the methods and / or operational flowcharts of this document, to one or more other devices.
  • One or more transceivers 106 and 206 may receive, from one or more other devices, user data, control information, wireless signals / channels, etc., as mentioned in the description, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. have.
  • one or more transceivers 106 and 206 may be coupled with one or more processors 102 and 202 and may transmit and receive wireless signals.
  • one or more processors 102 and 202 may control one or more transceivers 106 and 206 to transmit user data, control information or wireless signals to one or more other devices.
  • one or more processors 102 and 202 may control one or more transceivers 106 and 206 to receive user data, control information or wireless signals from one or more other devices.
  • one or more transceivers 106, 206 may be coupled with one or more antennas 108, 208, and one or more transceivers 106, 206 may be connected to one or more antennas 108, 208 through the description, functions, and features disclosed herein.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • One or more transceivers 106, 206 may process the received wireless signal / channel or the like in an RF band signal to process received user data, control information, wireless signals / channels, etc. using one or more processors 102,202.
  • the baseband signal can be converted.
  • One or more transceivers 106 and 206 may use the one or more processors 102 and 202 to convert processed user data, control information, wireless signals / channels, etc. from baseband signals to RF band signals.
  • one or more transceivers 106 and 206 may include (analog) oscillators and / or filters.
  • FIG. 30 illustrates another example of a wireless device applied to various embodiments of the present disclosure.
  • the wireless device may be implemented in various forms depending on the use-example / service (see FIG. 28).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 29, and various elements, components, units / units, and / or modules It can be composed of).
  • the wireless device 100, 200 may include a communication unit 110, a control unit 120, a memory unit 130, and additional elements 140.
  • the communication unit may include communication circuitry 112 and transceiver (s) 114.
  • communication circuitry 112 may include one or more processors 102, 202 and / or one or more memories 104, 204 of FIG. 29.
  • the transceiver (s) 114 may include one or more transceivers 106, 206 and / or one or more antennas 108, 208 of FIG. 29.
  • the controller 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140, and controls various operations of the wireless device. For example, the controller 120 may control the electrical / mechanical operation of the wireless device based on the program / code / command / information stored in the memory unit 130. In addition, the control unit 120 transmits the information stored in the memory unit 130 to the outside (eg, other communication devices) through the communication unit 110 through a wireless / wired interface, or externally (eg, through the communication unit 110). Information received through a wireless / wired interface from another communication device) may be stored in the memory unit 130.
  • the outside eg, other communication devices
  • Information received through a wireless / wired interface from another communication device may be stored in the memory unit 130.
  • the additional element 140 may be configured in various ways depending on the type of wireless device.
  • the additional element 140 may include at least one of a power unit / battery, an I / O unit, a driver, and a computing unit.
  • the wireless device may be a robot (FIGS. 28, 100 a), a vehicle (FIGS. 28, 100 b-1, 100 b-2), an XR device (FIGS. 28, 100 c), a portable device (FIGS. 28, 100 d), a home appliance. (FIGS. 28, 100e), IoT devices (FIGS.
  • the server may be implemented in the form of an AI server / device (FIGS. 28 and 400), a base station (FIGS. 28 and 200), a network node, or the like.
  • the wireless device may be used in a mobile or fixed location depending on the usage-example / service.
  • various elements, components, units / units, and / or modules in the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least a part of them may be wirelessly connected through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire in the wireless device 100 or 200, and the control unit 120 and the first unit (eg, 130 and 140) are connected through the communication unit 110. It can be connected wirelessly.
  • each element, component, unit / unit, and / or module in wireless device 100, 200 may further include one or more elements.
  • the controller 120 may be composed of one or more processor sets.
  • the controller 120 may be configured as a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphics processing processor, a memory control processor, and the like.
  • the memory unit 130 may include random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and / or combinations thereof.
  • the mobile device may include a smart phone, a smart pad, a wearable device (eg, smart watch, smart glasses), a portable computer (eg, a notebook, etc.).
  • the mobile device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS advanced mobile station
  • WT wireless terminal
  • the portable device 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a memory unit 130, a power supply unit 140a, an interface unit 140b, and an input / output unit 140c. ) May be included.
  • the antenna unit 108 may be configured as part of the communication unit 110.
  • Blocks 110 to 130 / 140a to 140c respectively correspond to blocks 110 to 130/140 of FIG. 30.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • the controller 120 may control various components of the mobile device 100 to perform various operations.
  • the control unit 120 may include an application processor (AP).
  • the memory unit 130 may store data / parameters / programs / codes / commands necessary for driving the portable device 100. In addition, the memory unit 130 may store input / output data / information and the like.
  • the power supply unit 140a supplies power to the portable device 100 and may include a wired / wireless charging circuit, a battery, and the like.
  • the interface unit 140b may support the connection of the mobile device 100 to another external device.
  • the interface unit 140b may include various ports (eg, audio input / output port and video input / output port) for connecting to an external device.
  • the input / output unit 140c may receive or output image information / signal, audio information / signal, data, and / or information input from a user.
  • the input / output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and / or a haptic module.
  • the input / output unit 140c obtains information / signals (eg, touch, text, voice, image, and video) input from the user, and the obtained information / signal is stored in the memory unit 130. Can be stored.
  • the communication unit 110 may convert the information / signal stored in the memory into a wireless signal, and directly transmit the converted wireless signal to another wireless device or to the base station.
  • the communication unit 110 may receive a radio signal from another wireless device or a base station, and then restore the received radio signal to original information / signal.
  • the restored information / signal may be stored in the memory unit 130 and then output in various forms (eg, text, voice, image, video, heptic) through the input / output unit 140c.
  • the vehicle or autonomous vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, or the like.
  • AV aerial vehicle
  • the vehicle or the autonomous vehicle 100 may include an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and autonomous driving. It may include a portion 140d.
  • the antenna unit 108 may be configured as part of the communication unit 110. Blocks 110/130 / 140a through 140d respectively correspond to blocks 110/130/140 in FIG.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other vehicles, a base station (e.g. base station, road side unit, etc.), a server, and other external devices.
  • the controller 120 may control various elements of the vehicle or the autonomous vehicle 100 to perform various operations.
  • the control unit 120 may include an electronic control unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground.
  • the driver 140a may include an engine, a motor, a power train, wheels, a brake, a steering device, and the like.
  • the power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100, and may include a wired / wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, a vehicle forward / Reverse sensors, battery sensors, fuel sensors, tire sensors, steering sensors, temperature sensors, humidity sensors, ultrasonic sensors, illuminance sensors, pedal position sensors, and the like.
  • the autonomous driving unit 140d is a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and automatically setting a route when a destination is set. Technology and the like.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the obtained data.
  • the controller 120 may control the driving unit 140a to move the vehicle or the autonomous vehicle 100 along the autonomous driving path according to the driving plan (eg, speed / direction adjustment).
  • the communication unit 110 may acquire the latest traffic information data aperiodically from an external server and may obtain the surrounding traffic information data from the surrounding vehicles.
  • the sensor unit 140c may acquire vehicle state and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and the driving plan based on the newly obtained data / information.
  • the communication unit 110 may transmit information regarding a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and provide the predicted traffic information data to the vehicle or autonomous vehicles.
  • the vehicle 33 illustrates a vehicle applied to various embodiments of the present disclosure.
  • the vehicle may also be implemented as a vehicle, train, vehicle, ship, or the like.
  • the vehicle 100 may include a communication unit 110, a control unit 120, a memory unit 130, an input / output unit 140a, and a position measuring unit 140b.
  • blocks 110 to 130 / 140a to 140b correspond to blocks 110 to 130/140 of FIG. 30, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other vehicles or external devices such as a base station.
  • the controller 120 may control various components of the vehicle 100 to perform various operations.
  • the memory unit 130 may store data / parameters / programs / codes / commands supporting various functions of the vehicle 100.
  • the input / output unit 140a may output an AR / VR object based on the information in the memory unit 130.
  • the input / output unit 140a may include a HUD.
  • the location measuring unit 140b may acquire location information of the vehicle 100.
  • the location information may include absolute location information of the vehicle 100, location information in a driving line, acceleration information, location information with surrounding vehicles, and the like.
  • the position measuring unit 140b may include a GPS and various sensors.
  • the communication unit 110 of the vehicle 100 may receive map information, traffic information, and the like from an external server and store the received map information in the memory unit 130.
  • the location measuring unit 140b may obtain vehicle location information through GPS and various sensors and store the location information in the memory unit 130.
  • the controller 120 may generate a virtual object based on map information, traffic information, and vehicle location information, and the input / output unit 140a may display the generated virtual object on a glass window in the vehicle (1410 and 1420).
  • the controller 120 may determine whether the vehicle 100 is normally driven in the driving line based on the vehicle position information. When the vehicle 100 deviates abnormally from the driving line, the controller 120 may display a warning on the glass window in the vehicle through the input / output unit 140a.
  • the controller 120 may broadcast a warning message regarding a driving abnormality to surrounding vehicles through the communication unit 110. According to a situation, the controller 120 may transmit the location information of the vehicle and the information regarding the driving / vehicle abnormality to the related organization through the communication unit 110.
  • various embodiments of the present disclosure may be implemented through a device and / or a terminal.
  • the scheduler includes a base station, a network node, a transmission terminal, a reception terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, a drone (Unmanned Aerial Vehicle, UAV), and AI (Artificial Intelligence). Module, robot, Augmented Reality (AR) device, Virtual Reality (VR) device or other device.
  • UAV Unmanned Aerial Vehicle
  • AI Artificial Intelligence
  • Module robot, Augmented Reality (AR) device, Virtual Reality (VR) device or other device.
  • the terminal may be a Personal Digital Assistant (PDA), a cellular phone, a Personal Communication Service (PCS) phone, a Global System for Mobile (GSM) phone, a Wideband CDMA (WCDMA) phone, an MBS ( It may be a Mobile Broadband System phone, a Smart phone, or a Multi Mode Multi Band (MM-MB) terminal.
  • PDA Personal Digital Assistant
  • PCS Personal Communication Service
  • GSM Global System for Mobile
  • WCDMA Wideband CDMA
  • MBS It may be a Mobile Broadband System phone, a Smart phone, or a Multi Mode Multi Band (MM-MB) terminal.
  • MBS Multi Mode Multi Band
  • a smart phone is a terminal that combines the advantages of a mobile communication terminal and a personal portable terminal, and may mean a terminal incorporating data communication functions such as schedule management, fax transmission and reception, etc. which are functions of a personal portable terminal.
  • a multimode multiband terminal can be equipped with a multi-modem chip to operate in both portable Internet systems and other mobile communication systems (e.g., code division multiple access (CDMA) 2000 systems, wideband CDMA (WCDMA) systems, etc.). Speak the terminal.
  • CDMA code division multiple access
  • WCDMA wideband CDMA
  • the terminal may be a notebook PC, a hand-held PC, a tablet PC, an ultrabook, a slate PC, a digital broadcasting terminal, a portable multimedia player (PMP), navigation,
  • a wearable device may be, for example, a smartwatch, a glass glass, a head mounted display, etc.
  • a drone may be burned by a radio control signal without a human being.
  • the HMD may be a display device in a form worn on the head, for example, the HMD may be used to implement VR or AR.
  • Various embodiments of the present disclosure may be implemented through various means.
  • various embodiments of the present disclosure may be implemented by hardware, firmware, software, or a combination thereof.
  • a method may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs). ), Field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to various embodiments of the present disclosure may be implemented in the form of a module, procedure, or function that performs the functions or operations described above.
  • software code may be stored in the memory units 50 and 150 and driven by the processors 40 and 140.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • Various embodiments of the present disclosure can be applied to various radio access systems.
  • Examples of various radio access systems include 3rd Generation Partnership Project (3GPP) or 3GPP2 systems.
  • 3GPP 3rd Generation Partnership Project
  • Various embodiments of the present disclosure may be applied to all technical fields that apply the various radio access systems as well as the various radio access systems.
  • the proposed method can be applied to mmWave communication system using ultra high frequency band.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

In various embodiments of the present disclosure, disclosed are a method for transmitting and receiving signals in a radio communication system and an apparatus supporting same. More particularly, in various embodiments of the present disclosure, disclosed are a method for transmitting and receiving signals on the basis of multiple transmission blocks in a system in which repeated transmission is applied with respect to physical signal/channel transmission, and an apparatus supporting same.

Description

무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치Method for transmitting / receiving signal in wireless communication system and apparatus supporting same
본 개시 (present disclosure)의 다양한 실시예들은 무선 통신 시스템에 대한 것으로, 구체적으로는 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치에 대한 것이다.Various embodiments of the present disclosure relate to a wireless communication system, and more particularly, to a method for transmitting and receiving a signal in a wireless communication system and an apparatus supporting the same.
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.Wireless access systems are widely deployed to provide various kinds of communication services such as voice and data. In general, a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.). Examples of multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
또한, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT (radio access technology) 에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (Machine Type Communications) 역시 차세대 통신에서 고려되고 있다. 뿐만 아니라 신뢰성 (reliability) 및 지연(latency) 에 민감한 서비스/UE 를 고려한 통신 시스템 디자인이 고려되고 있다.In addition, as more communication devices require larger communication capacities, there is a need for improved mobile broadband communication as compared to existing radio access technology (RAT). Massive Machine Type Communications (MTC), which connects multiple devices and objects to provide various services anytime and anywhere, is also being considered in next-generation communication. In addition, a communication system design considering a service / UE that is sensitive to reliability and latency is being considered.
이와 같이 향상된 모바일 브로드밴드 통신, 매시브 MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있다.The introduction of next generation RAT considering such improved mobile broadband communication, Massive MTC, and Ultra-Reliable and Low Latency Communication (URLLC) is being discussed.
본 개시의 다양한 실시예들은 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 제공하는 장치를 제공할 수 있다.Various embodiments of the present disclosure may provide a method for transmitting and receiving a signal in a wireless communication system and an apparatus for providing the same.
구체적으로, 본 개시의 다양한 실시예들은 물리 신호/채널 송신에 대하여 반복 송신이 적용되는 시스템에서, 다중 전송 블록에 기초하여 신호를 송수신 하는 방법 및 이를 지원하는 장치를 제공할 수 있다.In detail, various embodiments of the present disclosure may provide a method for transmitting and receiving a signal based on multiple transport blocks and an apparatus supporting the same in a system to which repetitive transmission is applied to physical signal / channel transmission.
본 개시의 다양한 실시예들에서 이루고자 하는 기술적 과제들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 개시의 다양한 실시예들로부터 당해 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.Technical problems to be achieved in the various embodiments of the present disclosure are not limited to the above-mentioned matters, and other technical problems not mentioned above are common knowledge in the art from various embodiments of the present disclosure which will be described below. Can be considered by those who have
본 개시의 다양한 실시예들은 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치를 제공할 수 있다.Various embodiments of the present disclosure may provide a method for transmitting and receiving a signal in a wireless communication system and an apparatus supporting the same.
본 개시의 다양한 실시예들에 따르면, 무선 통신 시스템에서 신호를 수신하는 방법이 제공될 수 있다. 상기 방법은: 제1 전송 블록 및 제2 전송 블록을 스케쥴링 하는 하향링크 제어 정보 (downlink control information, DCI) 를 수신하는 단계, 상기 DCI 에 기초하여, 제1 시간 자원 내에서 상기 제1 전송 블록을 수신하는 단계 및 상기 DCI 에 기초하여, 제2 시간 자원 내에서 상기 제2 전송 블록을 수신하는 단계를 포함할 수 있다. According to various embodiments of the present disclosure, a method for receiving a signal in a wireless communication system may be provided. The method includes: receiving downlink control information (DCI) for scheduling a first transport block and a second transport block, based on the DCI, the first transport block in a first time resource; And receiving the second transport block within a second time resource based on the receiving and the DCI.
예시적 실시예에서, 상기 제1 시간 자원 및 상기 제2 시간 자원 사이에는 갭 (gap) 이 설정될 수 있다. In an exemplary embodiment, a gap may be established between the first time resource and the second time resource.
예시적 실시예에서, 상기 제1 전송 블록을 수신하는 단계는, 상기 DCI 에 기초하여, 상기 제1 시간 자원 내에서 상기 제1 전송 블록을 반복 수신하는 것을 포함할 수 있다.In an exemplary embodiment, receiving the first transport block may include repeatedly receiving the first transport block within the first time resource based on the DCI.
예시적 실시예에서, 상기 제2 전송 블록을 수신하는 단계는, 상기 DCI 에 기초하여, 상기 제2 시간 자원 내에서 상기 제2 전송 블록을 반복 수신하는 것을 포함할 수 있다. In an exemplary embodiment, receiving the second transport block may include repeatedly receiving the second transport block within the second time resource based on the DCI.
예시적 실시예에서, 상기 갭의 크기는, 상기 장치가 상기 제1 시간 자원 내에서 반복 수신되는 상기 제1 전송 블록을 컴바이닝 (combining) 하여 디코딩 (decoding) 하는데 소요되는 시간에 기초하여 결정될 수 있다.In an exemplary embodiment, the size of the gap may be determined based on the time required for the device to combine and decode the first transport block repeatedly received within the first time resource. have.
예시적 실시예에서, 상기 제1 시간 자원의 길이가 특정 길이 미만임에 기초하여, 상기 갭의 크기는 제 1 크기로 결정될 수 있다. In an exemplary embodiment, based on the length of the first time resource is less than a specific length, the size of the gap may be determined as the first size.
예시적 실시예에서, 상기 제1 크기는 0 으로 결정될 수 있다. In an exemplary embodiment, the first size may be determined to be zero.
예시적 실시예에서, 상기 제1 시간 자원의 길이가 상기 특정 길이 이상임에 기초하여, 상기 갭의 크기는 제2 크기로 결정될 수 있다. In an exemplary embodiment, based on the length of the first time resource is greater than or equal to the specific length, the size of the gap may be determined as the second size.
예시적 실시예에서, 상기 방법은: 상기 갭 내에서, 상기 제1 전송 블록과 관련된 HARQ-ACK (hybrid automatic repeat and request acknowledgment) 을 송신하는 단계를 더 포함할 수 있다.In an exemplary embodiment, the method may further include transmitting, within the gap, a hybrid automatic repeat and request acknowledgment (HARQ-ACK) associated with the first transport block.
예시적 실시예에서, 상기 제2 전송 블록과 관련된 HARQ 프로세스 번호 (HARQ process number) 는, 상기 제1 전송 블록과 관련된 HARQ-ACK 에 기초하여 결정될 수 있다.In an exemplary embodiment, a HARQ process number associated with the second transport block may be determined based on an HARQ-ACK associated with the first transport block.
예시적 실시예에서, 상기 제1 전송 블록과 관련된 HARQ-ACK 이 ACK 임에 기초하여, 상기 제2 전송 블록과 관련된 HARQ 프로세스 번호 (HARQ process number) 는, 상기 제1 전송 블록과 관련된 HARQ 프로세스 번호의 다음 HARQ 프로세스 번호로 결정될 수 있다.In an exemplary embodiment, based on the HARQ-ACK associated with the first transport block is an ACK, the HARQ process number associated with the second transport block is a HARQ process number associated with the first transport block. Can be determined as the next HARQ process number.
예시적 실시예에서, 상기 제1 전송 블록과 관련된 HARQ-ACK 이 NACK (negative ACK) 임에 기초하여, 상기 제2 전송 블록과 관련된 HARQ 프로세스 번호는, 상기 제1 전송 블록과 관련된 HARQ 프로세스 번호와 동일하게 결정될 수 있다.In an exemplary embodiment, based on the HARQ-ACK associated with the first transport block is a negative ACK (NACK), the HARQ process number associated with the second transport block is equal to the HARQ process number associated with the first transport block. The same can be determined.
예시적 실시예에서, 상기 NACK 은, 상기 제2 전송 블록과 관련된 송신 파라미터를 변경할 것을 요청하는 정보를 포함할 수 있다. In an exemplary embodiment, the NACK may include information requesting to change a transmission parameter associated with the second transport block.
예시적 실시예에서, 상기 제2 전송 블록은 상기 송신 파라미터를 변경할 것을 요청하는 정보에 기초하여 구성될 수 있다. In an exemplary embodiment, the second transport block may be configured based on the information requesting to change the transmission parameter.
예시적 실시예에서, 상기 송신 파라미터는, 상기 제2 전송 블록과 관련된 중복 버전(redundancy version)에 대한 정보 또는 상기 제2 전송 블록과 관련된 변조 및 코딩 방식(modulation and coding scheme)에 대한 정보 중 하나 이상을 포함할 수 있다.In an exemplary embodiment, the transmission parameter is one of information about a redundancy version associated with the second transport block or information about a modulation and coding scheme associated with the second transport block. It may contain the above.
예시적 실시예에서, 상기 제1 전송 블록과 관련된 HARQ-ACK 을 송신하는 단계는, 상기 제1 전송 블록에 포함된 복수의 서브-블록(sub-block)들 각각과 관련된 HARQ-ACK 을 획득하는 것, 상기 복수의 서브-블록들 각각과 관련된 HARQ-ACK 을 번들링 (bundling) 하여, 상기 제1 전송 블록과 관련된 HARQ-ACK 을 획득하는 것 및 상기 갭 내에서, 상기 제1 전송 블록과 관련된 HARQ-ACK 을 송신하는 것을 포함할 수 있다.In an exemplary embodiment, transmitting the HARQ-ACK associated with the first transport block may include obtaining HARQ-ACK associated with each of a plurality of sub-blocks included in the first transport block. Bundling HARQ-ACK associated with each of the plurality of sub-blocks to obtain HARQ-ACK associated with the first transport block and within the gap, HARQ associated with the first transport block. May include transmitting an -ACK.
본 개시의 다양한 실시예들에 따르면, 무선 통신 시스템에서 신호를 수신하는 장치가 제공될 수 있다. 상기 장치는: 하나 이상의 메모리(at least one memory) 및 상기 하나 이상의 메모리와 연결된(coupled with) 하나 이상의 프로세서(at least one processor)를 포함할 수 있다. 상기 하나 이상의 프로세서는(the at least one processor is configured to): 제1 전송 블록 및 제2 전송 블록을 스케쥴링 하는 하향링크 제어 정보 (downlink control information, DCI) 를 수신하고, 상기 DCI 에 기초하여, 제1 시간 자원 내에서 상기 제1 전송 블록을 수신하고, 상기 DCI 에 기초하여, 제2 시간 자원 내에서 상기 제2 전송 블록을 수신할 수 있다.According to various embodiments of the present disclosure, an apparatus for receiving a signal in a wireless communication system may be provided. The apparatus may comprise at least one memory and at least one processor coupled with the at least one memory. The at least one processor is configured to: receive downlink control information (DCI) for scheduling a first transport block and a second transport block, and based on the DCI, The first transport block may be received in one time resource, and the second transport block may be received in a second time resource based on the DCI.
예시적 실시예에서, 상기 제1 시간 자원 및 상기 제2 시간 자원 사이에는 갭 (gap) 이 설정될 수 있다.In an exemplary embodiment, a gap may be established between the first time resource and the second time resource.
예시적 실시예에서, 상기 하나 이상의 프로세서는, 상기 갭 내에서, 상기 제1 전송 블록과 관련된 HARQ-ACK (hybrid automatic repeat and request acknowledgment) 을 송신할 수 있다. In an exemplary embodiment, the one or more processors may transmit a hybrid automatic repeat and request acknowledgment (HARQ-ACK) associated with the first transport block within the gap.
예시적 실시예에서, 상기 제2 전송 블록과 관련된 HARQ 프로세스 번호는, 상기 제1 전송 블록과 관련된 HARQ-ACK 에 기초하여 결정될 수 있다. In an exemplary embodiment, the HARQ process number associated with the second transport block may be determined based on the HARQ-ACK associated with the first transport block.
본 개시의 다양한 실시예들에 따르면, 무선 통신 시스템에서 신호를 송신하는 장치가 제공될 수 있다. 상기 장치는: 하나 이상의 메모리(at least one memory) 및 상기 하나 이상의 메모리와 연결된(coupled with) 하나 이상의 프로세서(at least one processor)를 포함할 수 있다. 상기 하나 이상의 프로세서는(the at least one processor is configured to): 제1 전송 블록 및 제2 전송 블록을 스케쥴링 하는 하향링크 제어 정보 (downlink control information, DCI) 를 송신하고, 제1 시간 자원 내에서 상기 제1 전송 블록을 송신하고, 제2 시간 자원 내에서 상기 제2 전송 블록을 송신할 수 있다.According to various embodiments of the present disclosure, an apparatus for transmitting a signal in a wireless communication system may be provided. The apparatus may comprise at least one memory and at least one processor coupled with the at least one memory. The at least one processor is configured to: transmit downlink control information (DCI) for scheduling a first transport block and a second transport block, and in the first time resource The first transport block can be transmitted, and the second transport block can be transmitted within a second time resource.
예시적 실시예에서, 상기 제1 시간 자원 및 상기 제2 시간 자원 사이에는 갭 (gap) 이 설정될 수 있다.In an exemplary embodiment, a gap may be established between the first time resource and the second time resource.
예시적 실시예에서, 상기 장치는, 이동 단말기, 네트워크 및 상기 장치가 포함된 차량 이외의 자율 주행 차량 중 하나 이상과 통신할 수 있다.In an exemplary embodiment, the device may communicate with one or more of a mobile terminal, a network, and an autonomous vehicle other than the vehicle that includes the device.
상술한 본 개시의 다양한 실시예들은 본 개시의 바람직한 실시예들 중 일부에 불과하며, 본 개시의 다양한 실시예들의 기술적 특징들이 반영된 여러 가지 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 상세한 설명을 기반으로 도출되고 이해될 수 있다.The various embodiments of the present disclosure described above are only some of the preferred embodiments of the present disclosure, and various embodiments reflecting the technical features of the various embodiments of the present disclosure can be made by those skilled in the art. It may be derived and understood based on the detailed description to be described below.
본 개시의 다양한 실시예들에 따르면 다음과 같은 효과가 있다.According to various embodiments of the present disclosure, the following effects are obtained.
본 개시의 다양한 실시예들에 따르면, 물리 신호/채널 송신에 대하여 반복 송신이 적용되는 시스템에서, 다중 전송 블록에 기초한 신호 송수신 방법 및 이를 지원하는 장치가 제공될 수 있다.According to various embodiments of the present disclosure, in a system in which repetitive transmission is applied to physical signal / channel transmission, a signal transmission / reception method based on multiple transport blocks and an apparatus supporting the same may be provided.
또한, 본 개시의 다양한 실시예들에 따르면, 다중 전송 블록에 기초한 신호 송수신에서 다중 송수신 블록 간에 일정 시간 갭(gap) 을 설정하여, 단말의 디코딩 시간을 충분히 보장해줄 수 있는 효과가 있다. In addition, according to various embodiments of the present disclosure, by setting a predetermined time gap (gap) between the multiple transmission and reception blocks in the signal transmission and reception based on the multiple transport block, there is an effect that can fully ensure the decoding time of the terminal.
또한, 본 개시의 다양한 실시예들에 따르면, 다중 전송 블록의 길이가 일정 길이 이하인 경우 상술한 갭을 설정하지 않거나 갭의 크기를 0 으로 설정함으로써, 시스템 내의 신호 송수신 효과를 증가시킬 수 있는 효과가 있다. In addition, according to various embodiments of the present disclosure, when the length of the multiple transport block is less than or equal to a certain length, by not setting the above-described gap or setting the size of the gap to 0, there is an effect of increasing the signal transmission / reception effect in the system. have.
뿐만 아니라, 본 개시의 다양한 실시예들에 따르면, 단말은 상술한 갭 구간 내에서 갭 이전에 수신된 전송 블록에 대한 HARQ-ACK 을 보고하고, 보고된 HARQ-ACK 의 값에 따라 갭 이후에 수신되는 전송 블록을 다르게 구성함으로써, HARQ-ACK 피드백을 보다 효과적으로 수행할 수 있으며, 네트워크 오버헤드를 감소시킬 수 있는 효과가 있다. In addition, according to various embodiments of the present disclosure, the terminal reports the HARQ-ACK for the transport block received before the gap in the above-described gap period, and receives after the gap according to the reported HARQ-ACK value. By configuring different transport blocks, HARQ-ACK feedback can be performed more effectively, and network overhead can be reduced.
본 개시의 다양한 실시예들로부터 얻을 수 있는 효과들은 이상에서 언급된 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 이하의 상세한 설명을 기반으로 당해 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. Effects obtained from various embodiments of the present disclosure are not limited to the above-mentioned effects, and other effects not mentioned above are clear to those skilled in the art based on the following detailed description. Can be derived and understood.
이하에 첨부되는 도면들은 본 개시의 다양한 실시예들에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 개시의 다양한 실시예들을 제공한다. 다만, 본 개시의 다양한 실시예들의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시예로 구성될 수 있다. 각 도면에서의 참조 번호 (reference numerals) 들은 구조적 구성요소 (structural elements) 를 의미한다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings are provided to facilitate understanding of various embodiments of the present disclosure, and provide various embodiments of the present disclosure with a detailed description. However, technical features of various embodiments of the present disclosure are not limited to the specific drawings, and the features disclosed in the drawings may be combined with each other to constitute a new embodiment. Reference numerals in each drawing refer to structural elements.
도 1은 본 개시의 다양한 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.1 is a diagram illustrating a physical channel that can be used in various embodiments of the present disclosure and a signal transmission method using the same.
도 2 는 본 개시의 다양한 실시예들이 적용 가능한 LTE 시스템에 기초한 무선 프레임 구조를 나타낸 도면이다.2 is a diagram illustrating a radio frame structure based on an LTE system to which various embodiments of the present disclosure are applicable.
도 3 은 본 개시의 다양한 실시예들이 적용 가능한 LTE 시스템에 기초한 슬롯 구조를 나타낸 도면이다.3 is a diagram illustrating a slot structure based on an LTE system to which various embodiments of the present disclosure are applicable.
도 4는 본 개시의 다양한 실시예들이 적용 가능한 LTE 시스템에 기초한 상향링크 서브프레임 구조를 나타낸 도면이다.4 is a diagram illustrating an uplink subframe structure based on an LTE system to which various embodiments of the present disclosure are applicable.
도 5는 본 개시의 다양한 실시예들이 적용 가능한 LTE 시스템에 기초한 하향링크 서브프레임 구조를 나타낸 도면이다.5 is a diagram illustrating a downlink subframe structure based on an LTE system to which various embodiments of the present disclosure are applicable.
도 6은 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 무선 프레임 구조를 나타낸 도면이다.6 is a diagram illustrating a radio frame structure based on an NR system to which various embodiments of the present disclosure are applicable.
도 7은 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 슬롯 구조를 나타낸 도면이다.7 illustrates a slot structure based on an NR system to which various embodiments of the present disclosure are applicable.
도 8 은 본 개시의 다양한 실시예들이 적용 가능한 자립적 슬롯 구조 (Self-contained slot structure)를 나타낸 도면이다.8 is a diagram illustrating a self-contained slot structure to which various embodiments of the present disclosure are applicable.
도 9 는 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 하나의 REG 구조를 나타낸 도면이다.9 is a diagram illustrating one REG structure based on an NR system to which various embodiments of the present disclosure are applicable.
도 10 은 본 개시의 다양한 실시예들이 적용 가능한 NB-IoT 시스템에 기초한 프레임 구조를 나타낸 도면이다.10 is a diagram illustrating a frame structure based on an NB-IoT system to which various embodiments of the present disclosure are applicable.
도 11 은 본 개시의 다양한 실시예들이 적용 가능한 FDD LTE 시스템에서 NB-IoT 하향링크 물리 채널/신호의 송신을 예시한 도면이다.FIG. 11 is a diagram illustrating transmission of an NB-IoT downlink physical channel / signal in an FDD LTE system to which various embodiments of the present disclosure are applicable.
도 12 는 본 개시의 다양한 실시예들이 적용 가능한 NPUSCH 포맷을 예시한 도면이다. 12 is a diagram illustrating an NPUSCH format to which various embodiments of the present disclosure are applicable.
도 13 은 본 개시의 다양한 실시예들이 적용 가능한 FDD NB-IoT에서 멀티-캐리어가 구성된 경우의 동작을 예시한 도면이다. FIG. 13 is a diagram illustrating an operation when a multi-carrier is configured in an FDD NB-IoT to which various embodiments of the present disclosure are applicable.
도 14 는 본 개시의 다양한 실시예들에 따른 WUS (Wake-Up Signal) 신호 송신을 예시한 도면이다.14 is a diagram illustrating a wake-up signal (WUS) signal transmission according to various embodiments of the present disclosure.
도 15 는 본 개시의 다양한 실시예들이 적용 가능한 무선 통신 시스템에서 단말 및 기지국의 동작을 간단히 나타낸 도면이다.FIG. 15 is a diagram illustrating operations of a terminal and a base station in a wireless communication system to which various embodiments of the present disclosure are applicable.
도 16 은 본 개시의 다양한 실시예들에 따른 다중 전송 블록에 기초한 송수신 구조를 도시한 도면이다.16 is a diagram illustrating a transmission / reception structure based on multiple transport blocks according to various embodiments of the present disclosure.
도 17 은 본 개시의 다양한 실시예들에 따른 다중 전송 블록 및 서브-블록에 기초한 송수신 구조를 도시한 도면이다.17 illustrates a transmission / reception structure based on multiple transport blocks and sub-blocks according to various embodiments of the present disclosure.
도 18 은 본 개시의 다양한 실시예들에 따른 HARQ-ACK 송수신 구조를 도시한 도면이다. 18 is a diagram illustrating a HARQ-ACK transmission and reception structure according to various embodiments of the present disclosure.
도 19 는 본 개시의 다양한 실시예들에 따른 bundled HARQ-ACK 송수신 구조를 도시한 도면이다. 19 is a diagram illustrating a bundled HARQ-ACK transmission and reception structure according to various embodiments of the present disclosure.
도 20 은 본 개시의 다양한 실시예들에 따른 compact DCI / indication signal 에 기초한 송수신 구조를 도시한 도면이다.20 is a diagram illustrating a transmission / reception structure based on a compact DCI / indication signal according to various embodiments of the present disclosure.
도 21 은 본 개시의 다양한 실시예들에 따른 네트워크 초기 접속 및 이후의 통신 과정을 간단히 나타낸 도면이다.21 is a diagram illustrating a network initial access and subsequent communication process according to various embodiments of the present disclosure.
도 22 는 본 개시의 다양한 실시예들에 따른 NB-IoT RACH 에서 프리앰블 송신의 예시를 나타낸 도면이다. 22 illustrates an example of preamble transmission in an NB-IoT RACH according to various embodiments of the present disclosure.
도 23 은 본 개시의 다양한 실시예들에 따른 DRX 동작의 예시를 나타낸 도면이다.23 is a diagram illustrating an example of a DRX operation according to various embodiments of the present disclosure.
도 24 는 본 개시의 다양한 실시예들에 따른 단말과 기지국의 동작 방법을 간단히 나타낸 도면이다. 24 is a diagram schematically illustrating a method of operating a terminal and a base station according to various embodiments of the present disclosure.
도 25는 본 개시의 다양한 실시예들에 따른 단말의 동작 방법을 나타낸 흐름도이다. 25 is a flowchart illustrating a method of operating a terminal according to various embodiments of the present disclosure.
도 26은 본 개시의 다양한 실시예들에 따른 기지국의 동작 방법을 나타낸 흐름도이다.26 is a flowchart illustrating a method of operating a base station according to various embodiments of the present disclosure.
도 27은 본 개시의 다양한 실시예들이 구현될 수 있는 장치를 나타낸 도면이다.27 illustrates an apparatus in which various embodiments of the present disclosure may be implemented.
도 28은 본 개시의 다양한 실시예들에 적용되는 통신 시스템을 예시한다.28 illustrates a communication system applied to various embodiments of the present disclosure.
도 29는 본 개시의 다양한 실시예들에 적용될 수 있는 무선 기기를 예시한다.29 illustrates a wireless device that can be applied to various embodiments of the present disclosure.
도 30은 본 개시의 다양한 실시예들에 적용되는 무선 기기의 다른 예를 나타낸다.30 illustrates another example of a wireless device applied to various embodiments of the present disclosure.
도 31는 본 개시의 다양한 실시예들에 적용되는 휴대 기기를 예시한다.31 illustrates a portable device applied to various embodiments of the present disclosure.
도 32는 본 개시의 다양한 실시예들에 적용되는 차량 또는 자율 주행 차량을 예시한다.32 illustrates a vehicle or autonomous driving vehicle applied to various embodiments of the present disclosure.
도 33은 본 개시의 다양한 실시예들에 적용되는 차량을 예시한다.33 illustrates a vehicle applied to various embodiments of the present disclosure.
이하의 실시예들은 본 개시의 다양한 실시예들의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 개시의 다양한 실시예들을 구성할 수도 있다. 본 개시의 다양한 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.The following embodiments combine the components and features of the various embodiments of the present disclosure in a predetermined form. Each component or feature may be considered to be optional unless otherwise stated. Each component or feature may be embodied in a form that is not combined with other components or features. In addition, some components and / or features may be combined to form the various embodiments of the present disclosure. The order of the operations described in the various embodiments of the present disclosure may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
도면에 대한 설명에서, 본 개시의 다양한 실시예들의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당해 기술분야에서 통상의 지식을 가진 자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.In the description of the drawings, procedures or steps that may obscure the gist of various embodiments of the present disclosure have not been described, and procedures or steps that can be understood by those skilled in the art may also be understood. It is not described.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 개시의 다양한 실시예들을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.Throughout the specification, when a portion is said to "comprising" (or including) a component, this means that it may further include other components, except to exclude other components unless otherwise stated. do. In addition, the terms "... unit", "... group", "module", etc. described in the specification mean a unit that processes at least one function or operation, which is hardware or software or a combination of hardware and software. It can be implemented as. Also, "a or an", "one", "the", and the like are used in the context of describing various embodiments of the present disclosure (particularly in the context of the following claims). Unless otherwise indicated herein or expressly contradicted by context, it may be used in the sense including both the singular and the plural.
본 명세서에서 본 개시의 다양한 실시예들은 기지국(Base Station)과 단말(Terminal) 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.In the present specification, various embodiments of the present disclosure have been described based on data transmission / reception relations between a base station and a terminal. Here, the base station has a meaning as a terminal node of the network that directly communicates with the terminal. Certain operations described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), gNode B(gNB), 발전된 기지국(ABS: Advanced Base Station) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.That is, various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station. In this case, the 'base station' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), a gNode B (gNB), an advanced base station (ABS), or an access point. Can be.
또한, 본 개시의 다양한 실시예들에서 단말(Terminal)은 사용자 기기(UE: User Equipment), 이동국(MS: Mobile Station), 가입자 단말(SS: Subscriber Station), 이동 가입자 단말(MSS: Mobile Subscriber Station), 이동 단말(Mobile Terminal) 또는 발전된 이동단말(AMS: Advanced Mobile Station) 등의 용어로 대체될 수 있다.Further, in various embodiments of the present disclosure, a terminal may be a user equipment (UE), a mobile station (MS), a subscriber station (SS), or a mobile subscriber station (MSS). ), A mobile terminal, or an advanced mobile station (AMS).
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미할 수 있다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.In addition, the transmitting end may refer to a fixed and / or mobile node that provides a data service or a voice service, and the receiving end may mean a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a mobile station may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
본 개시의 다양한 실시예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE 시스템, 3GPP 5G NR 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 개시의 다양한 실시예들은 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321, 3GPP TS 36.331, 3GPP TS 37.213, 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 및 3GPP TS 38.331 문서들에 의해 뒷받침 될 수 있다. 즉, 본 개시의 다양한 실시예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.Various embodiments of the present disclosure may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802.xx system, 3rd Generation Partnership Project (3GPP) system, 3GPP LTE system, 3GPP 5G NR system and 3GPP2 system. In particular, various embodiments of the present disclosure include 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321, 3GPP TS 36.331, 3GPP TS 37.213, 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 And 3GPP TS 38.331 documents. That is, obvious steps or portions not described among the various embodiments of the present disclosure may be described with reference to the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
이하, 본 개시의 다양한 실시예들에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 개시의 다양한 실시예들의 예시적인 실시형태를 설명하고자 하는 것이며, 유일한 실시형태를 나타내고자 하는 것이 아니다.Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. The detailed description set forth below in conjunction with the appended drawings is intended to explain exemplary embodiments of various embodiments of the present disclosure, rather than to represent the only embodiments.
또한, 본 개시의 다양한 실시예들에서 사용되는 특정(特定) 용어들은 본 개시의 다양한 실시예들의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 개시의 다양한 실시예들의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.In addition, specific terms used in various embodiments of the present disclosure are provided to assist in understanding various embodiments of the present disclosure, and the use of such specific terms does not depart from the spirit of the various embodiments of the present disclosure. It can be changed to other forms in the range.
이하에서는 본 개시의 다양한 실시예들이 사용될 수 있는 무선 접속 시스템의 일례로 3GPP LTE/LTE-A 시스템 뿐만 아니라 3GPP NR 시스템에 대해서 설명한다.Hereinafter, a 3GPP LTE / LTE-A system as well as a 3GPP NR system will be described as an example of a wireless access system in which various embodiments of the present disclosure can be used.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.The following techniques include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and the like. It can be applied to various radio access systems.
CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다.CDMA may be implemented by a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000. TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE). OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), or the like.
UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced) 시스템은 3GPP LTE 시스템이 개량된 시스템이다. UTRA is part of the Universal Mobile Telecommunications System (UMTS). 3GPP Long Term Evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink. The LTE-A (Advanced) system is an improved system of the 3GPP LTE system.
본 개시의 다양한 실시예들의 기술적 특징에 대한 설명을 명확하게 하기 위해, 본 개시의 다양한 실시예들을 3GPP LTE/LTE-A 시스템 뿐만 아니라 3GPP NR 시스템을 위주로 기술하지만 IEEE 802.16e/m 시스템 등에도 적용될 수 있다.In order to clarify the technical features of the various embodiments of the present disclosure, various embodiments of the present disclosure are described not only for the 3GPP LTE / LTE-A system but also for the 3GPP NR system, but also for the IEEE 802.16e / m system. Can be.
1. 3GPP 시스템 일반1. 3GPP System General
1.1. 물리 채널들 및 일반적인 신호 전송1.1. Physical channels and general signal transmission
무선 접속 시스템에서 단말은 하향링크(DL: Downlink)를 통해 기지국으로부터 정보를 수신하고, 상향링크(UL: Uplink)를 통해 기지국으로 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 일반 데이터 정보 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.In a wireless access system, a terminal receives information from a base station through downlink (DL) and transmits information to the base station through uplink (UL). The information transmitted and received by the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type / use of the information they transmit and receive.
도 1은 본 개시의 다양한 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.1 is a diagram illustrating a physical channel that can be used in various embodiments of the present disclosure and a signal transmission method using the same.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한다 (S11). 이를 위해 단말은 기지국으로부터 주동기 채널 (P-SCH: Primary Synchronization Channel) 및 부동기 채널 (S-SCH: Secondary Synchronization Channel)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다.When the power is turned off while the power is turned off, or a new terminal enters a cell, an initial cell search operation such as synchronization with a base station is performed (S11). To this end, the terminal receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID.
그 후, 단말은 기지국으로부터 물리방송채널 (PBCH: Physical Broadcast Channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다.Thereafter, the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain broadcast information in a cell.
한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호 (DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.On the other hand, the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to confirm the downlink channel state.
초기 셀 탐색을 마친 단말은 물리하향링크제어채널 (PDCCH: Physical Downlink Control Channel) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널 (PDSCH: Physical Downlink Control Channel)을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다 (S12).After the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the physical downlink control channel information to provide more detailed system information. It can be obtained (S12).
이후, 단말은 기지국에 접속을 완료하기 위해 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다 (S13 ~ S16). 이를 위해 단말은 물리임의접속채널 (PRACH: Physical Random Access Channel)을 통해 프리앰블 (preamble)을 전송하고(S13), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 RAR (Random Access Response)를 수신할 수 있다(S14). 단말은 RAR 내의 스케줄링 정보를 이용하여 PUSCH (Physical Uplink Shared Channel)을 전송하고 (S15), 물리하향링크제어채널 신호 및 이에 대응하는 물리하향링크공유 채널 신호의 수신과 같은 충돌해결절차 (Contention Resolution Procedure)를 수행할 수 있다(S16).Thereafter, the terminal may perform a random access procedure (S13 to S16) to complete the access to the base station. To this end, the UE transmits a preamble through a physical random access channel (PRACH) (S13), and a RAR (preamble) for the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Random Access Response) may be received (S14). The UE transmits a Physical Uplink Shared Channel (PUSCH) using scheduling information in the RAR (S15), and a contention resolution procedure such as receiving a physical downlink control channel signal and a corresponding physical downlink shared channel signal (S16).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널 신호 및/또는 물리하향링크공유채널 신호의 수신(S17) 및 물리상향링크공유채널 (PUSCH: Physical Uplink Shared Channel) 신호 및/또는 물리상향링크제어채널 (PUCCH: Physical Uplink Control Channel) 신호의 전송(S18)을 수행할 수 있다.After performing the above-described procedure, the UE subsequently receives a physical downlink control channel signal and / or a physical downlink shared channel signal (S17) and a physical uplink shared channel (PUSCH) as a general uplink / downlink signal transmission procedure. A transmission (Uplink Shared Channel) signal and / or a Physical Uplink Control Channel (PUCCH) signal may be transmitted (S18).
단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보(UCI: Uplink Control Information)라고 지칭한다. UCI는 HARQ-ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CQI (Channel Quality Indication), PMI (Precoding Matrix Indication), RI (Rank Indication) 정보 등을 포함한다. The control information transmitted from the terminal to the base station is collectively referred to as uplink control information (UCI). UCI includes Hybrid Automatic Repeat and reQuest Acknowledgement / Negative-ACK (HARQ-ACK / NACK), Scheduling Request (SR), Channel Quality Indication (CQI), Precoding Matrix Indication (PMI), and Rank Indication (RI). .
UCI는 일반적으로 PUCCH를 통해 주기적으로 전송되지만, 제어 정보와 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 따라 단말은 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.In general, UCI is periodically transmitted through PUCCH, but may be transmitted through PUSCH when control information and data should be transmitted at the same time. In addition, the UE may transmit the UCI aperiodically through the PUSCH according to the request / instruction of the network.
1.2. 무선 프레임 (Radio Frame) 구조1.2. Radio Frame Structure
도 2 는 본 개시의 다양한 실시예들이 적용 가능한 LTE 시스템에 기초한 무선 프레임 구조를 나타낸 도면이다.2 is a diagram illustrating a radio frame structure based on an LTE system to which various embodiments of the present disclosure are applicable.
LTE 시스템은 FDD(Frequency Division Duplex)용의 프레임 타입 1, TDD(Time Division Duplex)용의 프레임 타입 2와 UCell(Unlicensed Cell)용의 프레임 타입 3을 지원한다. LTE 시스템에서는, PCell(Primary Cell)에 부가하여, 최대 31개의 SCell(Secondary Cell)이 병합(aggregated) 될 수 있다. 특별히 기술하지 않는 한, 후술하는 동작은 셀마다 독립적으로 적용될 수 있다. The LTE system supports frame type 1 for frequency division duplex (FDD), frame type 2 for time division duplex (TDD), and frame type 3 for unlicensed cell (UCell). In LTE system, up to 31 secondary cells (SCells) may be aggregated in addition to a primary cell (PCell). Unless otherwise stated, the operations described below may be independently applied to each cell.
다중-셀 병합 시, 서로 다른 프레임 구조가 서로 다른 셀에 사용될 수 있다. 또한, 프레임 구조 내의 시간 자원(예, 서브프레임, 슬롯, 서브슬롯)은 TU(Time Unit)로 통칭될 수 있다.In multi-cell merging, different frame structures can be used for different cells. In addition, time resources (eg, subframes, slots, and subslots) in the frame structure may be collectively referred to as a time unit (TU).
도 2(a)는 타입 1 프레임 구조(frame structure type 1)를 나타낸다. 타입 1 프레임 구조는 전이중(full duplex) FDD(Frequency Division Duplex) 시스템과 반이중(half duplex) FDD 시스템 모두에 적용될 수 있다.2 (a) shows a frame structure type 1. The type 1 frame structure can be applied to both full duplex Frequency Division Duplex (FDD) systems and half duplex FDD systems.
하향링크 무선 프레임은 10개의 1ms 서브프레임(Subframe, SF)으로 정의된다. 서브프레임은 CP(cyclic prefix)에 따라 14개 또는 12개의 심볼을 포함한다. 보통(normal) CP가 사용되는 경우, 서브프레임은 14개의 심볼을 포함한다. 확장(extended) CP가 사용되는 경우, 서브프레임은 12개의 심볼을 포함한다. The downlink radio frame is defined as ten 1 ms subframes (SFs). The subframe includes 14 or 12 symbols according to a cyclic prefix (CP). If a normal CP is used, the subframe includes 14 symbols. If extended CP is used, the subframe includes 12 symbols.
심볼은 다중 접속 방식에 따라 OFDM(A) 심볼, SC-FDM(A) 심볼을 의미할 수 있다. 예를 들어, 심볼은 하향링크에서 OFDM(A) 심볼을 의미하고, 상향링크에서 SC-FDM(A) 심볼을 의미할 수 있다. OFDM(A) 심볼은 CP-OFDM(A)(Cyclic Prefix-OFDM(A)) 심볼로 지칭되고, SC-FDM(A) 심볼은 DFT-s-OFDM(A)(Discrete Fourier Transform-spread-OFDM(A)) 심볼로 지칭될 수 있다.The symbol may mean an OFDM (A) symbol or an SC-FDM (A) symbol according to a multiple access scheme. For example, the symbol may mean an OFDM (A) symbol in downlink and an SC-FDM (A) symbol in uplink. The OFDM (A) symbol is referred to as a Cyclic Prefix-OFDM (A) symbol, and the SC-FDM (A) symbol is a DFT-s-OFDM (A) (Discrete Fourier Transform-spread-OFDM) symbol. (A)) may be referred to as a symbol.
하나의 서브프레임은 SCS(Subcarrier Spacing)에 따라 다음과 같이 하나 이상의 슬롯으로 정의될 수 있다.One subframe may be defined as one or more slots according to SCS (Subcarrier Spacing) as follows.
- SCS = 7.5 kHz 또는 15 kHz인 경우, 서브프레임 #i는 2개의 0.5ms 슬롯 #2i, #2i+1로 정의된다(i = 0~9).For SCS = 7.5 kHz or 15 kHz, subframe #i is defined as two 0.5ms slots # 2i and # 2i + 1 (i = 0-9).
- SCS = 1.25 kHz인 경우, 서브프레임 #i는 1개의 1ms 슬롯 #2i로 정의된다.When SCS = 1.25 kHz, subframe #i is defined as one 1ms slot # 2i.
- SCS = 15 kHz인 경우, 서브프레임 #i는 표 A1에 예시된 바와 같이 6개의 서브슬롯으로 정의될 수 있다.When SCS = 15 kHz, subframe #i may be defined as six subslots as illustrated in Table A1.
표 1은 하나의 서브프레임 내의 서브슬롯 구성을 예시한다(보통 CP).Table 1 illustrates the subslot configuration in one subframe (usually CP).
Figure PCTKR2019010070-appb-img-000001
Figure PCTKR2019010070-appb-img-000001
도 2(b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다. 타입 2 프레임 구조는 TDD 시스템에 적용된다. 타입 2 프레임 구조는 2개의 하프 프레임 (half frame)으로 구성된다. 하프 프레임은 4 (또는 5)개의 일반 서브프레임과 1 (또는 0)개의 스페셜 서브프레임을 포함한다. 일반 서브프레임은 UL-DL 구성(Uplink-Downlink Configuration)에 따라 상향링크 또는 하향링크에 사용된다. 서브프레임은 2개의 슬롯으로 구성된다.2 (b) shows a frame structure type 2. Type 2 frame structure is applied to the TDD system. The type 2 frame structure consists of two half frames. The half frame includes 4 (or 5) general subframes and 1 (or 0) special subframes. The general subframe is used for uplink or downlink according to the UL-Downlink configuration. The subframe consists of two slots.
표 2는 UL-DL 구성에 따른 무선 프레임 내 서브프레임 구성을 예시한다.Table 2 illustrates a subframe configuration in a radio frame according to the UL-DL configuration.
Figure PCTKR2019010070-appb-img-000002
Figure PCTKR2019010070-appb-img-000002
여기서, D는 DL 서브프레임을 나타내고, U는 UL 서브프레임을 나타내며, S는 스페셜(special) 서브프레임을 나타낸다. 스페셜 서브프레임은 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot)를 포함한다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호 구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다. Here, D represents a DL subframe, U represents a UL subframe, and S represents a special subframe. The special subframe includes a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS). DwPTS is used for initial cell search, synchronization or channel estimation at the terminal. UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal. The guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
표 3은 스페셜 서브프레임의 구성을 예시한다.Table 3 illustrates the configuration of the special subframe.
Figure PCTKR2019010070-appb-img-000003
Figure PCTKR2019010070-appb-img-000003
여기서, X는 상위 계층 시그널링 (예: RRC (Radio Resource Control) 시그널링 등)에 의해 설정되거나, 0 으로 주어진다.Here, X is set by higher layer signaling (eg, RRC (Radio Resource Control) signaling, etc.) or is given as 0.
도 3 은 본 개시의 다양한 실시예들이 적용 가능한 LTE 시스템에 기초한 슬롯 구조를 나타낸 도면이다.3 is a diagram illustrating a slot structure based on an LTE system to which various embodiments of the present disclosure are applicable.
도 3을 참조하면, 하나의 슬롯은 시간 영역(domain)에서 복수의 OFDM 심볼을 포함하고, 주파수 영역(domain)에서 복수의 자원 블록 (resource block, RB)을 포함한다. 심볼은 심볼 구간을 의미하기도 한다. 슬롯의 구조는 N DL/UL RBХN RB sc개의 부반송파(subcarrier)와 N DL/UL symb개의 심볼로 구성되는 자원 격자(resource grid)로 표현될 수 있다. 여기서, N DL RB은 하향링크 슬롯에서의 RB의 개수를 나타내고, N UL RB은 UL 슬롯에서의 RB 의 개수를 나타낸다. N DL RB와 N UL RB은 DL 대역폭과 UL 대역폭에 각각 의존한다. N DL symb은 DL 슬롯 내 심볼의 개수를 나타내며, N UL symb은 UL 슬롯 내 심볼의 개수를 나타낸다. N RB sc는 RB를 구성하는 부반송파의 개수를 나타낸다. 슬롯 내 심볼의 개수는 SCS, CP 길이에 따라 다양하게 변경될 수 있다(표 1 참조). 예를 들어, 보통 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함한다.Referring to FIG. 3, one slot includes a plurality of OFDM symbols in a time domain and a plurality of resource blocks (RBs) in a frequency domain. The symbol may mean a symbol section. The slot structure may be represented by a resource grid composed of N DL / UL RB Х RB sc subcarriers and N DL / UL symb symbols. Here, N DL RB represents the number of RBs in the downlink slot, and N UL RB represents the number of RBs in the UL slot. N DL RB and N UL RB depend on the DL bandwidth and the UL bandwidth, respectively. N DL symb represents the number of symbols in the DL slot, and N UL symb represents the number of symbols in the UL slot. N RB sc represents the number of subcarriers constituting the RB. The number of symbols in the slot can be changed in various ways according to the length of the SCS, CP (see Table 1). For example, one slot includes 7 symbols in the case of a normal CP, but one slot includes 6 symbols in the case of an extended CP.
RB는 시간 도메인에서 N DL/UL symb개(예, 7개)의 연속적인(consecutive) 심볼로 정의되며, 주파수 도메인에서 N RB sc개(예, 12개)의 연속적인 부반송파로 정의된다. 여기서, RB는 PRB(Physical Resource Block) 또는 VRB(Virtual Resource Block)를 의미할 수 있으며, PRB와 VRB는 1대1로 매핑될 수 있다. 서브프레임의 2개의 슬롯 각각에 1개씩 위치하는 2개의 RB를 RB 쌍(RB pair)이라 명명할 수 있다. RB 쌍을 구성하는 2개의 RB는 동일한 RB 번호(혹은, RB 인덱스라고도 함)를 가질 수 있다. 하나의 심볼과 하나의 부반송파로 구성된 자원을 자원요소(resource element, RE) 혹은 톤(tone)이라고 한다. 자원격자 내 각 RE는 슬롯 내 인덱스 쌍 (k, l)에 의해 고유하게 정의될 수 있다. k는 주파수 도메인에서 0부터 N DL/UL RBХN RB sc-1까지 부여되는 인덱스이며, l은 시간 도메인에서 0부터 N DL/UL symb-1까지 부여되는 인덱스이다.RB is defined as N DL / UL symb (eg, 7) consecutive symbols in the time domain, and N RB sc (eg, 12) consecutive subcarriers in the frequency domain. Here, the RB may mean a physical resource block (PRB) or a virtual resource block (VRB), and the PRB and the VRB may be mapped one-to-one. Two RBs, one located in each of two slots of a subframe, may be referred to as an RB pair. Two RBs constituting the RB pair may have the same RB number (or also referred to as an RB index). A resource composed of one symbol and one subcarrier is called a resource element (RE) or tone. Each RE in a resource grid may be uniquely defined by an index pair (k, l) in a slot. k is an index given from 0 to N DL / UL RB NN RB sc −1 in the frequency domain, and l is an index given from 0 to N DL / UL symb −1 in the time domain.
도 4는 본 개시의 다양한 실시예들이 적용 가능한 LTE 시스템에 기초한 상향링크 서브프레임 구조를 나타낸 도면이다.4 is a diagram illustrating an uplink subframe structure based on an LTE system to which various embodiments of the present disclosure are applicable.
도 4를 참조하면, 하나의 서브프레임(400)은 두 개의 0.5ms 슬롯(401)으로 구성된다. 각 슬롯은 복수의 심볼(402)로 구성되며 하나의 심볼은 하나의 SC-FDMA 심볼에 대응된다. RB(543)는 주파수 영역에서 12개의 부반송파, 그리고 시간 영역에서 한 슬롯에 해당되는 자원 할당 단위이다. Referring to FIG. 4, one subframe 400 includes two 0.5 ms slots 401. Each slot is composed of a plurality of symbols 402 and one symbol corresponds to one SC-FDMA symbol. The RB 543 is a resource allocation unit corresponding to 12 subcarriers in the frequency domain and one slot in the time domain.
상향링크 서브프레임의 구조는 크게 데이터 영역(404)과 제어 영역(405)으로 구분된다. 데이터 영역은 각 단말로부터 전송되는 음성, 패킷 등의 데이터를 송신함에 있어 사용되는 통신 자원을 의미하며 PUSCH(Physical Uplink Shared Channel)을 포함한다. 제어 영역은 상향링크 제어 신호, 예를 들어 각 단말로부터의 하향링크 채널 품질보고, 하향링크 신호에 대한 수신 ACK/NACK, 상향링크 스케줄링 요청 등을 전송하는데 사용되는 통신 자원을 의미하며 PUCCH(Physical Uplink Control Channel)를 포함한다. The structure of an uplink subframe is largely divided into a data region 404 and a control region 405. The data area means a communication resource used in transmitting data such as voice and packet transmitted from each terminal, and includes a PUSCH (Physical Uplink Shared Channel). The control region means a communication resource used to transmit an uplink control signal, for example, a downlink channel quality report from each user equipment, a reception ACK / NACK for the downlink signal, an uplink scheduling request, and a PUCCH (Physical Uplink). Control Channel).
SRS (Sounding Reference Signal)는 하나의 서브프레임에서 시간 축 상에서 가장 마지막에 위치하는 SC-FDMA 심볼을 통하여 전송된다.The SRS (Sounding Reference Signal) is transmitted through the SC-FDMA symbol located last on the time axis in one subframe.
도 5는 본 개시의 다양한 실시예들이 적용 가능한 LTE 시스템에 기초한 하향링크 서브프레임 구조를 나타낸 도면이다.5 is a diagram illustrating a downlink subframe structure based on an LTE system to which various embodiments of the present disclosure are applicable.
도 5를 참조하면, 서브프레임 내 첫 번째 슬롯의 앞에 위치한 최대 3개 (또는 4개)의 OFDM(A) 심볼이 하향링크 제어 채널이 할당되는 제어 영역(control region)에 해당한다. 남은 OFDM(A) 심볼은 PDSCH가 할당되는 데이터 영역(data region)에 해당하며, 데이터 영역의 기본 자원 단위는 RB이다. 하향링크 제어 채널은 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등을 포함한다.Referring to FIG. 5, up to three (or four) OFDM (A) symbols located in front of the first slot in a subframe correspond to a control region to which a downlink control channel is allocated. The remaining OFDM (A) symbol corresponds to a data region to which a PDSCH is allocated, and the basic resource unit of the data region is RB. The downlink control channel includes a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and the like.
PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고, 서브프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크 전송에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request) ACK(Acknowledgement)/NACK(Negative-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보는 하향링크 제어정보(DCI: downlink control information)라고 지칭된다. DCI는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.The PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe. The PHICH is a response channel for uplink transmission and carries a HARQ (Hybrid Automatic Repeat Request) acknowledgment (ACK) / Negative-Acknowledgement (NACK) signal. Control information transmitted through the PDCCH is referred to as downlink control information (DCI). DCI includes uplink resource allocation information, downlink resource allocation information, or an uplink transmission (Tx) power control command for a certain terminal group.
도 6은 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 무선 프레임 구조를 나타낸 도면이다.6 is a diagram illustrating a radio frame structure based on an NR system to which various embodiments of the present disclosure are applicable.
NR 시스템은 다수의 뉴머롤로지(Numerology)들을 지원할 수 있다. 여기에서, 뉴머롤로지는 부반송파 간격(subcarrier spacing, SCS)과 순환 프리픽스(cyclic prefix, CP) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 부반송파 간격은 기본 부반송파 간격을 정수 N(또는, μ)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 부반송파 간격을 이용하지 않는다고 가정할지라도, 이용되는 뉴머롤로지는 셀의 주파수 대역과 독립적으로 선택될 수 있다. 또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.The NR system can support a number of numerologies. Here, the numerology may be defined by subcarrier spacing (SCS) and cyclic prefix (CP) overhead. In this case, the plurality of subcarrier spacings may be derived by scaling the basic subcarrier spacing to an integer N (or μ). Also, even if we assume that we do not use very low subcarrier spacing at very high carrier frequencies, the used numerology may be selected independently of the cell's frequency band. In addition, in the NR system, various frame structures according to a number of numerologies may be supported.
이하, NR 시스템에서 고려될 수 있는 직교 주파수 분할 다중화(orthogonal frequency division multiplexing, OFDM) 뉴머롤로지 및 프레임 구조를 살펴본다. NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 4와 같이 정의될 수 있다. 대역폭 파트에 대한 μ 및 순환 프리픽스는 BS에 의해 제공되는 RRC 파라미터들로부터 얻어진다.Hereinafter, orthogonal frequency division multiplexing (OFDM) pneumatics and frame structures that can be considered in an NR system will be described. Multiple OFDM numerologies supported in the NR system may be defined as shown in Table 4. Μ and cyclic prefix for the bandwidth part are obtained from the RRC parameters provided by the BS.
Figure PCTKR2019010070-appb-img-000004
Figure PCTKR2019010070-appb-img-000004
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 뉴머롤러지(예, 부반송파 간격(subcarrier spacing))를 지원한다. 예를 들어, 부반송파 간격이 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, 부반송파 간격이 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 레이턴시(lower latency) 및 더 넓은 반송파 대역폭(wider carrier bandwidth)를 지원하며, 부반송파 간격이 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다. NR supports a number of pneumatics (eg, subcarrier spacing) to support various 5G services. For example, if the subcarrier spacing is 15 kHz, it supports wide area in traditional cellular bands, and if the subcarrier spacing is 30 kHz / 60 kHz, it is dense-urban, lower latency. Latency and wider carrier carrier bandwidth are supported, and when the subcarrier spacing is 60 kHz or higher, it supports a bandwidth greater than 24.25 GHz to overcome phase noise.
NR 주파수 대역(frequency band)은 FR1과 FR2라는 2가지 타입의 주파수 범위(frequency range)로 정의된다. FR1은 sub 6GHz 범위이며, FR2는 above 6GHz 범위로 밀리미터 웨이브(millimiter wave, mmWave)를 의미할 수 있다.The NR frequency band is defined by two types of frequency ranges, FR1 and FR2. FR1 is in the sub 6 GHz range, and FR2 is in the above 6 GHz range, which can mean millimeter wave (mmWave).
아래 표 5는 NR 주파수 대역의 정의를 예시한다.Table 5 below illustrates the definition of the NR frequency band.
Figure PCTKR2019010070-appb-img-000005
Figure PCTKR2019010070-appb-img-000005
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 도메인의 다양한 필드들의 크기는 NR용 기본 시간 유닛(basic time unit)인 T c = 1/(△ f max* N f)의 배수로 표현된다. 여기서, △ f max = 480*10 3 Hz이고, 고속 푸리에 변환(fast Fourier transform, FFT) 혹은 역 고속 푸리에 변환(inverse fast Fourier transform, IFFT) 크기와 관련이 있는 값인 N f = 4096이다. T c는 LTE용 기반 시간 유닛이자 샘플링 시간인 T s = 1/((15kHz)*2048)와 다음의 관계를 갖는다: T s/ T c = 64. 하향링크 및 상향링크(uplink) 전송들은 T f = (△ f max* N f/100)* T c = 10ms 지속기간(duration)의 (무선) 프레임들로 조직화(organize)된다. 여기서, 각 무선 프레임은 각각이 T sf = (△ f max* N f/1000)* T c = 1ms 지속기간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다. 뉴머롤로지 μ에 대하여, 슬롯(slot)들은 서브프레임 내에서는 오름차순(increasing order)으로 n μ s ∈ {0,…, N slot,μ subframe-1}로 번호가 매겨지고, 무선 프레임 내에서는 오름차순으로 n μ s,f ∈ {0,…, N slot,μ frame-1}으로 번호가 매겨진다. 하나의 슬롯은 N μ symb개의 연속하는(consecutive) OFDM 심볼들로 구성되고, N μ symb는 순환 프리픽스(cyclic prefix, CP)에 의존한다. 서브프레임에서 슬롯 n μ s의 시작은 동일 서브프레임 내에서 OFDM 심볼 n μ s* N μ symb의 시작과 시간적으로 정렬된다.Regarding the frame structure in the NR system, the sizes of the various fields in the time domain are expressed in multiples of T c = 1 / (Δ f max * N f ), which is the basic time unit for NR. . Here, Δ f max = 480 * 10 3 Hz, and N f = 4096 which is a value related to a fast Fourier transform (FFT) or an inverse fast Fourier transform (IFFT) size. T c is the base time unit for LTE and the sampling time T s = 1 / ((15kHz) * 2048) and has the following relationship: T s / T c = 64. Downlink and uplink transmissions are T f = (△ f max * N f / 100) * T c = are organized (organize) in the wireless frame of 10ms duration (duration). Here, each radio frame is composed of ten subframes each having a duration of T sf = (Δ f max * N f / 1000) * T c = 1 ms. There may be a set of frames for uplink and a set of frames for downlink. For numerology μ , the slots are n μ s ∈ {0,... In increasing order within the subframe. , N slot, μ subframe -1}, and n μ s, f ∈ {0,… in ascending order within a radio frame. , N slot, μ frame -1}. One slot is composed of N μ symb consecutive OFDM symbols, and N μ symb depends on a cyclic prefix (CP). The start of slot n μ s in a subframe is aligned in time with the start of OFDM symbol n μ s * N μ symb within the same subframe.
표 6은 일반 CP가 사용되는 경우, SCS에 따른 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수 및 서브프레임 별 슬롯의 개수를 나타내고, 표 7은 확장된 CSP가 사용되는 경우, SCS에 따른 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수 및 서브프레임 별 슬롯의 개수를 나타낸다.Table 6 shows the number of symbols for each slot according to the SCS, the number of slots for each frame and the number of slots for each subframe when the general CP is used, and Table 7 shows the number of slots for each SCS when the extended CSP is used. It indicates the number of symbols, the number of slots per frame, and the number of slots per subframe.
Figure PCTKR2019010070-appb-img-000006
Figure PCTKR2019010070-appb-img-000006
Figure PCTKR2019010070-appb-img-000007
Figure PCTKR2019010070-appb-img-000007
상기 표에서, N slot symb 는 슬롯 내 심볼의 개수를 나타내고, N frame,μ slot는 프레임 내 슬롯의 개수를 나타내고, N subframe,μ slot는 서브프레임 내 슬롯의 개수를 나타낸다.In the table, N slot symb represents the number of symbols in a slot, N frame, μ slot represents the number of slots in a frame , and N subframe, μ slot represents the number of slots in a subframe .
본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴머롤로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다.In an NR system to which various embodiments of the present disclosure are applicable, OFDM (A) numerology (eg, SCS, CP length, etc.) may be set differently among a plurality of cells merged into one UE. Accordingly, the (absolute time) section of a time resource (eg, SF, slot, or TTI) (commonly referred to as a time unit (TU) for convenience) composed of the same number of symbols may be set differently between merged cells.
도 6은, μ=2인 경우(즉, 부반송파 간격이 60kHz)의 일례로서, 표 6을 참고하면 1개 서브프레임은 4개의 슬롯(slot)들을 포함할 수 있다. 도 7에 도시된 1개 서브프레임 = {1,2,4}개 슬롯들은 예시이며, 1개 서브프레임에 포함될 수 있는 슬롯(들)의 개수는 표 6 또는 표 7과 같이 정의된다.FIG. 6 is an example of the case where μ = 2 (ie, the subcarrier spacing is 60 kHz). Referring to Table 6, one subframe may include four slots. One subframe shown in FIG. 7 = {1,2,4} slots are exemplary, and the number of slot (s) that can be included in one subframe is defined as shown in Table 6 or Table 7.
또한, 미니-슬롯은 2, 4 또는 7개 심볼들을 포함할 수 있거나 그 보다 더 많은 또는 더 적은 심볼들을 포함할 수 있다.In addition, the mini-slot may include two, four or seven symbols or may include more or fewer symbols.
도 7은 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 슬롯 구조를 나타낸 도면이다.7 illustrates a slot structure based on an NR system to which various embodiments of the present disclosure are applicable.
도 7을 참조하면, 하나의 슬롯은 시간 도메인에서 복수의 심볼들을 포함할 수 있다. 예를 들어, 보통 CP(normal CP)의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP(extended CP)의 경우 하나의 슬롯이 6개의 심볼을 포함할 수 있다. Referring to FIG. 7, one slot may include a plurality of symbols in the time domain. For example, one slot may include seven symbols in the case of a normal CP, and one slot may include six symbols in the case of an extended CP.
반송파(carrier)는 주파수 도메인에서 복수의 부반송파(subcarrier)를 포함할 수 있다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. The carrier may include a plurality of subcarriers in the frequency domain. Resource block (RB) is defined as a plurality of consecutive subcarriers (eg, 12) in the frequency domain.
BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (P)RB로 정의되며, 하나의 뉴머롤로지(예, SCS, CP 길이 등)에 대응될 수 있다. The bandwidth part (BWP) is defined as a plurality of consecutive (P) RBs in the frequency domain, and may correspond to one numerology (eg, SCS, CP length, etc.).
반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.The carrier may include up to N (eg 5) BWPs. Data communication is performed through an activated BWP, and only one BWP may be activated by one UE. Each element in the resource grid is referred to as a resource element (RE), one complex symbol may be mapped.
도 8은 본 개시의 다양한 실시예들이 적용 가능한 자립적 슬롯 구조 (Self-contained slot structure)를 나타낸 도면이다.8 is a diagram illustrating a self-contained slot structure to which various embodiments of the present disclosure are applicable.
자립적 슬롯 구조란, 하나의 슬롯 내에 하향링크 제어 채널(downlink control channel), 하향링크/상향링크 데이터(downlink/uplink data), 그리고 상향링크 제어 채널(uplink control channel)이 모두 포함될 수 있는 슬롯 구조일 수 있다.The independent slot structure is a slot structure in which a downlink control channel, a downlink / uplink data, and an uplink control channel can be included in one slot. Can be.
도 8을 참조하면, 빗금 친 영역 (예: symbol index =0)은 하향링크 제어 (downlink control) 영역을 나타내고, 검정색 영역 (예: symbol index =13)은 상향링크 제어 (uplink control) 영역을 나타낸다. 이외 영역 (예: symbol index = 1 ~ 12)은 하향링크 데이터 전송을 위해 사용될 수도 있고, 상향링크 데이터 전송을 위해 사용될 수도 있다.Referring to FIG. 8, hatched areas (eg, symbol index = 0) represent downlink control areas, and black areas (eg, symbol index = 13) represent uplink control areas. . The other region (eg, symbol index = 1 to 12) may be used for downlink data transmission or may be used for uplink data transmission.
이러한 구조에 따라 기지국 및 UE는 한 개의 슬롯 내에서 DL 전송과 UL 전송을 순차적으로 진행할 수 있으며, 상기 하나의 슬롯 내에서 DL 데이터를 송수신하고 이에 대한 UL ACK/NACK도 송수신할 수 있다. 결과적으로 이러한 구조는 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 지연을 최소화할 수 있다.According to this structure, the base station and the UE may sequentially perform DL transmission and UL transmission in one slot, and may transmit and receive DL data and transmit and receive UL ACK / NACK for the DL data in the one slot. As a result, this structure reduces the time taken to retransmit data in the event of a data transmission error, thereby minimizing the delay of the final data transfer.
이와 같은 자립적 슬롯 구조에서 기지국과 UE가 송신 모드에서 수신 모드로 전환 또는 수신모드에서 송신 모드로 전환을 위해서는 일정 시간 길이의 타입 갭(time gap)이 필요하다. 이를 위하여 자립적 슬롯 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심볼은 가드 구간(guard period, GP)로 설정될 수 있다.In this independent slot structure, a time gap of a certain length is required for the base station and the UE to switch from the transmission mode to the reception mode or from the reception mode to the transmission mode. To this end, some OFDM symbols at the time of switching from DL to UL in the independent slot structure may be set to a guard period (GP).
앞서 상세한 설명에서는 자립적 슬롯 구조가 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우를 설명하였으나, 상기 제어 영역들은 상기 자립적 슬롯 구조에 선택적으로 포함될 수 있다. 다시 말해, 본 개시의 다양한 실시예들에 따른 자립적 슬롯 구조는 도 8과 같이 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우 뿐만 아니라 DL 제어 영역 또는 UL 제어 영역만을 포함하는 경우도 포함할 수 있다. In the above detailed description, the case in which the independent slot structure includes both the DL control region and the UL control region has been described. However, the control regions may be selectively included in the independent slot structure. In other words, the independent slot structure according to various embodiments of the present disclosure may include a case in which both the DL control region and the UL control region are included as well as the case in which both the DL control region and the UL control region are included as shown in FIG. 8. .
또한, 하나의 슬롯을 구성하는 상기 영역들의 순서는 실시예에 따라 달라질 수 있다. 일 예로, 하나의 슬롯은 DL 제어 영역 / DL 데이터 영역 / UL 제어 영역 / UL 데이터 영역 순서로 구성되거나, UL 제어 영역 / UL 데이터 영역 / DL 제어 영역 / DL 데이터 영역 순서 등으로 구성될 수 있다.In addition, the order of the regions constituting one slot may vary according to embodiments. For example, one slot may be configured in the order of a DL control area / DL data area / UL control area / UL data area, or may be configured in the order of a UL control area / UL data area / DL control area / DL data area.
DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. The PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region. PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
PDCCH에서는 DCI(Downlink Control Information), 예를 들어 DL 데이터 스케줄링 정보, UL 데이터 스케줄링 정보 등이 전송될 수 있다. PUCCH에서는 UCI(Uplink Control Information), 예를 들어 DL 데이터에 대한 ACK/NACK(Positive Acknowledgement/Negative Acknowledgement) 정보, CSI(Channel State Information) 정보, SR(Scheduling Request) 등이 전송될 수 있다. Downlink Control Information (DCI), for example, DL data scheduling information, UL data scheduling information, and the like may be transmitted in the PDCCH. In PUCCH, uplink control information (UCI), for example, positive acknowledgment / negative acknowledgment (ACK / NACK) information, channel state information (CSI) information, and scheduling request (SR) for DL data may be transmitted.
PDSCH는 하향링크 데이터(예, DL-shared channel transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드(codeword) 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑된다(Layer mapping). 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.The PDSCH carries downlink data (eg, DL-shared channel transport block, DL-SCH TB), and modulation methods such as Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude Modulation (QAM), 64 QAM, and 256 QAM are used. Apply. A codeword is generated by encoding the TB. The PDSCH can carry up to two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword are mapped to one or more layers. Each layer is mapped to a resource together with a DMRS (Demodulation Reference Signal) to generate an OFDM symbol signal, and is transmitted through a corresponding antenna port.
PDCCH는 하향링크 제어 정보(DCI)를 운반하고 QPSK 변조 방법이 적용된다. 하나의 PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16 개의 CCE(Control Channel Element)로 구성된다. 하나의 CCE는 6개의 REG(Resource Element Group)로 구성된다. 하나의 REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다. The PDCCH carries downlink control information (DCI) and a QPSK modulation method is applied. One PDCCH is composed of 1, 2, 4, 8, 16 CCEs (Control Channel Elements) according to an aggregation level (AL). One CCE consists of six Resource Element Groups (REGs). One REG is defined by one OFDM symbol and one (P) RB.
도 9는 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 하나의 REG 구조를 나타낸 도면이다.9 is a diagram illustrating one REG structure based on an NR system to which various embodiments of the present disclosure are applicable.
도 9를 참조하면, D는 DCI가 매핑되는 자원 요소 (RE)를 나타내고, R은 DMRS가 매핑되는 RE를 나타낸다. DMRS는 하나의 심볼 내 주파수 도메인 방향으로 1 번째, 5 번째, 9 번째 RE에 매핑된다.Referring to FIG. 9, D represents a resource element (RE) to which DCI is mapped, and R represents an RE to which DMRS is mapped. DMRS is mapped to the 1st, 5th, 9th RE in the frequency domain direction in one symbol.
PDCCH는 제어 자원 세트(Control Resource Set, CORESET)를 통해 전송된다. CORESET는 주어진 뉴머롤로지(예, SCS, CP 길이 등)를 갖는 REG 세트로 정의된다. 하나의 단말을 위한 복수의 OCRESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB의 개수 및 심볼의 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.The PDCCH is transmitted through a control resource set (CORESET). CORESET is defined as a set of REGs with a given neurology (eg, SCS, CP length, etc.). A plurality of OCRESET for one terminal may be overlapped in the time / frequency domain. CORESET may be set through system information (eg, MIB) or UE-specific higher layer (eg, Radio Resource Control, RRC, layer) signaling. In detail, the number of RBs and the number of symbols (up to three) constituting the CORESET may be set by higher layer signaling.
PUSCH는 상향링크 데이터(예, UL-shared channel transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM (Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM (Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled) 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나, 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.PUSCH carries uplink data (eg, UL-shared channel transport block, UL-SCH TB) and / or uplink control information (UCI), and uses a Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) waveform. Or based on a Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) waveform. When the PUSCH is transmitted based on the DFT-s-OFDM waveform, the terminal transmits the PUSCH by applying transform precoding. For example, when transform precoding is not possible (eg, transform precoding is disabled), the UE transmits a PUSCH based on a CP-OFDM waveform, and when conversion precoding is possible (eg, transform precoding is enabled), the UE is CP-OFDM. PUSCH may be transmitted based on the waveform or the DFT-s-OFDM waveform. PUSCH transmissions are dynamically scheduled by UL grants in DCI or semi-static based on higher layer (eg RRC) signaling (and / or Layer 1 (L1) signaling (eg PDCCH)). Can be scheduled (configured grant). PUSCH transmission may be performed based on codebook or non-codebook.
PUCCH는 상향링크 제어 정보, HARQ-ACK 및/또는 스케줄링 요청(SR)을 운반하고, PUCCH 전송 길이에 따라 Short PUCCH 및 Long PUCCH로 구분된다. 표 8은 PUCCH 포맷들을 예시한다.The PUCCH carries uplink control information, HARQ-ACK and / or scheduling request (SR), and is divided into Short PUCCH and Long PUCCH according to the PUCCH transmission length. Table 8 illustrates the PUCCH formats.
Figure PCTKR2019010070-appb-img-000008
Figure PCTKR2019010070-appb-img-000008
PUCCH format 0는 최대 2 비트 크기의 UCI를 운반하고, 시퀀스 기반으로 매핑되어 전송된다. 구체적으로, 단말은 복수 개의 시퀀스들 중 하나의 시퀀스를 PUCCH format 0인 PUCCH을 통해 전송하여 특정 UCI를 기지국으로 전송한다. 단말은 긍정 (positive) SR을 전송하는 경우에만 대응하는 SR 설정을 위한 PUCCH 자원 내에서 PUCCH format 0인 PUCCH를 전송한다. PUCCH format 0 carries a maximum of 2 bits of UCI, and is mapped and transmitted based on a sequence. Specifically, the terminal transmits one sequence of the plurality of sequences through the PUCCH of PUCCH format 0 to transmit a specific UCI to the base station. The UE transmits the PUCCH having PUCCH format 0 in the PUCCH resource for the SR configuration only when transmitting the positive SR.
PUCCH format 1은 최대 2 비트 크기의 UCI를 운반하고, 변조 심볼은 시간 영역에서 (주파수 호핑 여부에 따라 달리 설정되는) 직교 커버 코드(OCC)에 의해 확산된다. DMRS는 변조 심볼이 전송되지 않는 심볼에서 전송된다(즉, TDM(Time Division Multiplexing)되어 전송된다). PUCCH format 1 carries a UCI of up to two bits in size, and modulation symbols are spread by an orthogonal cover code (OCC) (set differently depending on whether frequency hopping) in the time domain. The DMRS is transmitted in a symbol in which a modulation symbol is not transmitted (that is, transmitted by time division multiplexing (TDM)).
PUCCH format 2는 2 비트보다 큰 비트 크기의 UCI를 운반하고, 변조 심볼은 DMRS와 FDM(Frequency Division Multiplexing)되어 전송된다. DM-RS는 1/3의 밀도로 주어진 자원 블록 내 심볼 인덱스 #1, #4, #7 및 #10에 위치한다. PN (Pseudo Noise) 시퀀스가 DM_RS 시퀀스를 위해 사용된다. 2 심볼 PUCCH format 2를 위해 주파수 호핑은 활성화될 수 있다. PUCCH format 2 carries a UCI having a bit size larger than 2 bits, and modulation symbols are transmitted by DMRS and Frequency Division Multiplexing (FDM). The DM-RS is located at symbol indexes # 1, # 4, # 7 and # 10 in a given resource block with a density of 1/3. PN (Pseudo Noise) sequence is used for the DM_RS sequence. Frequency hopping may be activated for two symbol PUCCH format 2.
PUCCH format 3은 동일 물리 자원 블록들 내 단말 다중화가 되지 않으며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH format 3의 PUCCH 자원은 직교 커버 코드를 포함하지 않는다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다. PUCCH format 3 is not UE multiplexed in the same physical resource blocks and carries a UCI of a bit size larger than 2 bits. In other words, the PUCCH resource of PUCCH format 3 does not include an orthogonal cover code. The modulation symbol is transmitted after being time division multiplexed (DMD) with DMRS.
PUCCH format 4는 동일 물리 자원 블록들 내에 최대 4개 단말까지 다중화가 지원되며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH format 3의 PUCCH 자원은 직교 커버 코드를 포함한다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다. PUCCH format 4 supports multiplexing up to 4 terminals in the same physical resource block, and carries UCI of a bit size larger than 2 bits. In other words, the PUCCH resource in PUCCH format 3 includes an orthogonal cover code. The modulation symbol is transmitted after being time division multiplexed (DMD) with DMRS.
2. NB-IoT (Narrowband Internet of Things) 시스템2. NB-IoT (Narrowband Internet of Things) system
2.1. NB-IoT 시스템 일반2.1. NB-IoT System General
NB-IoT는 기존 무선 통신 시스템(예, LTE, NR)을 통해 저전력 광역망을 지원하는 협대역 사물 인터넷 기술을 나타낸다. 또한, NB-IoT는 협대역(narrowband)을 통해 낮은 복잡도(complexity), 낮은 전력 소비를 지원하기 위한 시스템을 의미할 수 있다. NB-IoT 시스템은 SCS(subcarrier spacing) 등의 OFDM 파라미터들을 기존 시스템과 동일하게 사용함으로써, NB-IoT 시스템을 위해 추가 대역을 별도로 할당할 필요가 없다. 예를 들어, 기존 시스템 대역의 1개 PRB를 NB-IoT 용으로 할당할 수 있다. NB-IoT 단말은 단일 PRB(single PRB)를 각 캐리어(carrier)로 인식하므로, NB-IoT에 관한 설명에서 PRB 및 캐리어는 동일한 의미로 해석될 수 있다.NB-IoT represents a narrowband IoT technology that supports low-power wide area networks through existing wireless communication systems (eg, LTE, NR). In addition, NB-IoT may refer to a system for supporting low complexity and low power consumption through a narrowband. The NB-IoT system uses OFDM parameters such as subcarrier spacing (SCS) in the same manner as the existing system, and thus does not need to allocate an additional band separately for the NB-IoT system. For example, one PRB of the existing system band can be allocated for NB-IoT. Since the NB-IoT terminal recognizes a single PRB as each carrier, the PRB and the carrier may be interpreted to have the same meaning in the description of the NB-IoT.
이하에서, NB-IoT에 관한 설명은 기존 LTE 시스템에 적용되는 경우를 위주로 기재하지만, 이하의 설명은 차세대 시스템(예, NR 시스템 등)에도 확장 적용될 수 있다. 또한, 본 명세서에서 NB-IoT와 관련된 내용은 유사한 기술적 목적(예, 저-전력, 저-비용, 커버리지 향상 등)을 지향하는 MTC에 확장 적용될 수 있다. 또한, NB-IoT는 NB-LTE, NB-IoT enhancement, enhanced NB-IoT, further enhanced NB-IoT, NB-NR 등과 같이 등가의 다른 용어로 대체될 수 있다.In the following description, the description of the NB-IoT mainly describes the case that is applied to the existing LTE system, the following description can be extended to the next-generation system (eg, NR system, etc.). In addition, the content related to the NB-IoT herein may be extended to MTC for a similar technical purpose (eg, low-power, low-cost, improved coverage, etc.). In addition, NB-IoT may be replaced with other equivalent terms such as NB-LTE, NB-IoT enhancement, enhanced NB-IoT, further enhanced NB-IoT, NB-NR, and the like.
NB-IoT는 인-밴드, 가드-밴드, 스탠드-얼론의 세가지 운용 모드를 지원하며, 각 모드 별로 동일한 요구 사항이 적용된다. NB-IoT supports three modes of operation: in-band, guard-band, and stand-alone, with the same requirements for each mode.
(1) 인-밴드 모드: LTE 대역 내 자원 중 일부를 NB-IoT에 할당한다.(1) In-band mode: allocate some of the resources in the LTE band to the NB-IoT.
(2) 가드-밴드 모드: LTE의 보호 주파수 대역을 활용하며, NB-IoT 캐리어는 LTE의 가장자리 부반송파에 되도록 가깝게 배치된다. (2) Guard-band mode: utilizing the guard frequency band of LTE, the NB-IoT carrier is arranged as close as possible to the edge subcarrier of LTE.
(3) 스탠드-얼론 모드: GSM 대역 내 일부 캐리어를 NB-IoT에 할당한다.(3) Stand-alone mode: allocate some carriers in GSM band to NB-IoT.
NB-IoT 단말은 초기 동기화를 위해 100kHz 단위로 앵커(anchor) 캐리어를 탐색하며, 인-밴드 및 가드-밴드에서 앵커 캐리어의 중심 주파수는 100kHz 채널 래스터(channel raster)로부터 ±7.5kHz 이내에 위치해야 한다. 또한, LTE PRB들 중 가운데 6개 PRB는 NB-IoT에 할당되지 않는다. 따라서 앵커 캐리어는 특정 PRB에만 위치할 수 있다.NB-IoT UE searches for anchor carrier in 100kHz unit for initial synchronization, and the center frequency of anchor carrier in in-band and guard-band should be located within ± 7.5kHz from 100kHz channel raster. . In addition, six of the LTE PRBs are not assigned to the NB-IoT. Thus, the anchor carrier may be located only in a particular PRB.
NB-IoT는 멀티-캐리어를 지원하며, 인-밴드 + 인-밴드, 인-밴드 + 가드-밴드, guard band + 가드-밴드, 스탠드-얼론 + 스탠드-얼론의 조합이 사용될 수 있다.NB-IoT supports multi-carriers, and a combination of in-band + in-band, in-band + guard-band, guard band + guard-band, stand-alone + stand-alone can be used.
2.2. NB-IoT 을 위한 무선 프레임 구조2.2. Radio Frame Structure for NB-IoT
도 10 은 본 개시의 다양한 실시예들이 적용 가능한 NB-IoT 시스템에 기초한 프레임 구조를 나타낸 도면이다.10 is a diagram illustrating a frame structure based on an NB-IoT system to which various embodiments of the present disclosure are applicable.
NB-IoT 프레임 구조는 서브캐리어 간격(SCS)에 따라 다르게 설정될 수 있다. 도 10(a) 는 서브캐리어 간격이 15kHz인 경우의 프레임 구조를 예시하고, 도 10(b)은 서브캐리어 간격이 3.75kHz인 경우의 프레임 구조를 예시한다. 도 10(a)의 프레임 구조는 하향링크/상향링크에서 사용되고, 도 10(b)의 프레임 구조는 상향링크에만 사용될 수 있다.The NB-IoT frame structure may be set differently according to the subcarrier spacing (SCS). 10A illustrates a frame structure when the subcarrier interval is 15 kHz, and FIG. 10B illustrates a frame structure when the subcarrier interval is 3.75 kHz. The frame structure of FIG. 10 (a) may be used in downlink / uplink, and the frame structure of FIG. 10 (b) may be used only in uplink.
도 10(a) 를 참조하면, 15kHz 서브캐리어 간격에 대한 NB-IoT 프레임 구조는 레가시 시스템(즉, LTE 시스템s)(도 A2 참조)의 프레임 구조와 동일하게 설정될 수 있다. 즉, 10ms NB-IoT 프레임은 10개의 1ms NB-IoT 서브프레임을 포함하며, 1ms NB-IoT 서브프레임은 2개의 0.5ms NB-IoT 슬롯을 포함할 수 있다. 각 0.5ms NB-IoT 슬롯은 7개의 심볼을 포함할 수 있다. 15kHz 서브캐리어 간격은 하향링크 및 상향링크에 모두 적용될 수 있다. 심볼은 하향링크에서 OFDMA 심볼을 포함하고, 상향링크에서 SC-FDMA 심볼을 포함한다. 도 10(a) 의 프레임 구조에서 시스템 대역은 1.08MHz이며 12개의 서브캐리어로 정의된다. 15kHz 서브캐리어 간격은 하향링크 및 상향링크에 모두 적용되며, LTE 시스템과의 직교성이 보장되므로 LTE 시스템과의 공존을 원활할 수 있다.Referring to FIG. 10 (a), the NB-IoT frame structure for the 15 kHz subcarrier interval may be set to be the same as the frame structure of legacy systems (ie, LTE systems) (see FIG. A2). That is, a 10 ms NB-IoT frame may include ten 1 ms NB-IoT subframes, and the 1 ms NB-IoT subframe may include two 0.5 ms NB-IoT slots. Each 0.5ms NB-IoT slot may include seven symbols. The 15 kHz subcarrier interval can be applied to both downlink and uplink. The symbol includes an OFDMA symbol in downlink and an SC-FDMA symbol in uplink. In the frame structure of FIG. 10 (a), the system band is 1.08 MHz and is defined by 12 subcarriers. The 15kHz subcarrier interval is applied to both the downlink and the uplink, and since the orthogonality with the LTE system is guaranteed, coexistence with the LTE system can be smoothly performed.
한편, 도 10(b) 를 참조하면, 서브캐리어 간격이 3.75kHz인 경우, 10ms NB-IoT 프레임은 5개의 2ms NB-IoT 서브프레임을 포함하고, 2ms NB-IoT 서브프레임은 7개의 심볼과 하나의 GP(Guard Period) 심볼을 포함할 수 있다. 2ms NB-IoT 서브프레임은 NB-IoT 슬롯 또는 NB-IoT RU(Resource Unit) 등으로 표현될 수 있다. 여기서, 심볼은 SC-FDMA 심볼을 포함할 수 있다. 도 10(b) 의 프레임 구조에서 시스템 대역은 1.08MHz이며 48개의 서브캐리어로 정의된다. 3.75kHz 서브캐리어 간격은 상향링크에만 적용되며, LTE 시스템과의 직교성이 와해되어 간섭으로 인한 성능열화가 발생할 수 있다.Meanwhile, referring to FIG. 10 (b), when the subcarrier spacing is 3.75 kHz, the 10 ms NB-IoT frame includes five 2 ms NB-IoT subframes, and the 2 ms NB-IoT subframe includes seven symbols and one. Guard period (GP) symbol may include. The 2ms NB-IoT subframe may be represented by an NB-IoT slot or an NB-IoT resource unit (RU). Here, the symbol may include an SC-FDMA symbol. In the frame structure of FIG. 10 (b), the system band is 1.08 MHz and is defined by 48 subcarriers. The 3.75 kHz subcarrier spacing is applied only to the uplink, and the orthogonality with the LTE system may be degraded, resulting in performance degradation due to interference.
도 10은 LTE 시스템 프레임 구조에 기반한 NB-IoT 프레임 구조를 예시하고 있으며, 예시된 NB-IoT 프레임 구조는 차세대 시스템(예, NR 시스템)에도 확장 적용될 수 있다. 예를 들어, 도 10(a) 의 프레임 구조에서 서브프레임 간격은 표 6의 서브프레임 간격으로 대체될 수 있다.10 illustrates an NB-IoT frame structure based on an LTE system frame structure, and the illustrated NB-IoT frame structure may be extended to a next-generation system (eg, an NR system). For example, in the frame structure of FIG. 10 (a), the subframe interval may be replaced with the subframe interval of Table 6.
2.3. NB-IoT 물리 채널2.3. NB-IoT Physical Channel
2.3.1. 하향링크 물리 채널2.3.1. Downlink physical channel
도 11 은 본 개시의 다양한 실시예들이 적용 가능한 FDD LTE 시스템에서 NB-IoT 하향링크 물리 채널/신호의 송신을 예시한 도면이다. FIG. 11 is a diagram illustrating transmission of an NB-IoT downlink physical channel / signal in an FDD LTE system to which various embodiments of the present disclosure are applicable.
NB-IoT 하향링크는 15kHz 부반송파 간격을 갖는 OFDMA 방식을 사용한다. 이는 부반송파간 직교성을 제공하여 LTE 시스템과의 공존을 원활하게 한다. NB-IoT downlink uses an OFDMA scheme having a 15 kHz subcarrier spacing. This provides orthogonality between subcarriers to facilitate coexistence with LTE systems.
NB-IoT 하향링크에는 NPBCH(Narrowband Physical Broadcast Channel), NPDSCH(Narrowband Physical Downlink Shared Channel), NPDCCH(Narrowband Physical Downlink Control Channel)와 같은 물리 채널이 제공되며, NPSS(Narrowband Primary Synchronization Signal), NSSS(Narrowband Primary Synchronization Signal), NRS(Narrowband Reference Signal)와 같은 물리 신호가 제공된다.NB-IoT downlink is provided with physical channels such as narrowband physical broadcast channel (NPBCH), narrowband physical downlink shared channel (NPDSCH), narrowband physical downlink control channel (NPDCCH), narrowband primary synchronization signal (NPSS), narrowband (NSSS) Physical signals such as Primary Synchronization Signal (NRS) and Narrowband Reference Signal (NRS) are provided.
NPBCH는 NB-IoT 단말이 시스템 접속에 필요한 최소한의 시스템 정보인 MIB-NB(Master Information Block-Narrowband)를 단말에게 전달한다. NPBCH 신호는 커버리지 향상을 위해 총 8번의 반복 전송이 가능하다. MIB-NB의 TBS(Transport Block Size)는 34 비트이고, 640ms TTI 주기마다 새로 업데이트 된다. MIB-NB는 운용 모드, SFN(System Frame Number), Hyper-SFN, CRS(Cell-specific Reference Signal) 포트 개수, 채널 래스터 오프셋 등의 정보를 포함한다.The NPBCH delivers MIB-NB (Master Information Block-Narrowband), which is the minimum system information necessary for the NB-IoT terminal to access the system, to the terminal. The NPBCH signal can be transmitted eight times in total to improve coverage. The transport block size (TBS) of the MIB-NB is 34 bits and is newly updated every 640ms TTI period. The MIB-NB includes information such as an operation mode, a system frame number (SFN), a hyper-SFN, a number of cell-specific reference signal (CRS) ports, a channel raster offset, and the like.
NRS는 하향링크 물리채널 복조에 필요한 채널추정을 위한 기준 신호로 제공되며 LTE와 동일한 방식으로 생성된다. 다만, 초기화를 위한 초기값으로 NB-PCID(Narrowband-Physical Cell ID)(또는 NCell ID, NB-IoT 기지국 ID)를 사용한다. NRS는 하나 또는 두 개의 안테나 포트를 통해 전송된다(p = 2000, 2001).The NRS is provided as a reference signal for channel estimation required for downlink physical channel demodulation and is generated in the same manner as in LTE. However, NB-PCID (Narrowband-Physical Cell ID) (or NCell ID, NB-IoT base station ID) is used as an initial value for initialization. NRS is transmitted through one or two antenna ports (p = 2000, 2001).
NPDCCH는 NPBCH와 동일한 송신 안테나 구성을 가지며 DCI를 나른다. 3종류의 DCI 포맷을 지원한다. DCI 포맷 N0는 NPUSCH(Narrowband Physical Uplink Shared Channel) 스케줄링 정보를 포함하며, DCI 포맷 N1과 N2는 NPDSCH 스케줄링 정보를 포함한다. NPDCCH는 커버리지 향상을 위해 최대 2048번의 반복 전송이 가능하다.NPDCCH has the same transmit antenna configuration as NPBCH and carries DCI. Three DCI formats are supported. DCI format N0 includes narrowband physical uplink shared channel (NPUSCH) scheduling information, and DCI formats N1 and N2 include NPDSCH scheduling information. NPDCCH can be repeated up to 2048 times to improve coverage.
NPDSCH는 DL-SCH(Downlink-Shared Channel), PCH(Paging Channel)와 같은 전송 채널의 데이터(예, TB)를 전송하는데 사용된다. 최대 TBS는 680비트이고, 커버리지 향상을 위해 최대 2048번 반복 전송이 가능하다.The NPDSCH is used to transmit data (eg, TB) of a transport channel such as a downlink-shared channel (DL-SCH) and a paging channel (PCH). The maximum TBS is 680 bits, and up to 2048 repetitive transmissions can be used to improve coverage.
하향링크 물리 채널/신호는 1개 PRB를 통해 전송되며 15kHz 서브캐리어 간격/멀티-톤 전송을 지원한다. 도 12를 참조하면, NPSS는 매 프레임의 6번째 서브프레임, NSSS는 매 짝수 프레임의 마지막(예, 10번째) 서브프레임에서 전송된다. 단말은 동기 신호(NPSS, NSSS)를 이용해 주파수, 심볼, 프레임 동기를 획득하고 504개의 PCID(Physical Cell ID)(즉, 기지국 ID)를 탐색할 수 있다. NPBCH는 매 프레임의 1번째 서브프레임에서 전송되고 NB-MIB를 나른다. NRS는 하향링크 물리 채널 복조를 위한 기준 신호로 제공되며 LTE와 동일한 방식으로 생성된다. 다만, NRS 시퀀스 생성을 위한 초기화 값으로 NB-PCID(Physical Cell ID)(또는 NCell ID, NB-IoT 기지국 ID)가 사용된다. NRS는 하나 또는 두 개의 안테나 포트를 통해 전송된다. NPDCCH와 NPDSCH는 NPSS/NSSS/NPBCH를 제외하고 남은 서브프레임에서 전송될 수 있다. NPDCCH와 NPDSCH는 동일 서브프레임에서 함께 전송될 수 없다. NPDCCH는 DCI를 나르며 DCI는 3종류의 DCI 포맷을 지원한다. DCI 포맷 N0는 NPUSCH(Narrowband Physical Uplink Shared Channel) 스케줄링 정보를 포함하며, DCI 포맷 N1과 N2는 NPDSCH 스케줄링 정보를 포함한다. NPDCCH는 커버리지 향상을 위해 최대 2048번의 반복 전송이 가능하다. NPDSCH는 DL-SCH(Downlink-Shared Channel), PCH(Paging Channel)와 같은 전송 채널의 데이터(예, TB)를 전송하는데 사용된다. 최대 TBS는 680비트이고, 커버리지 향상을 위해 최대 2048번 반복 전송이 가능하다. The downlink physical channel / signal is transmitted through one PRB and supports 15kHz subcarrier spacing / multi-tone transmission. Referring to FIG. 12, NPSS is transmitted in the sixth subframe of every frame and NSSS is transmitted in the last (eg, tenth) subframe of every even frame. The terminal may acquire frequency, symbol, and frame synchronization using the sync signals NPSS and NSSS, and search for 504 physical cell IDs (ie, base station IDs). NPBCH is transmitted in the first subframe of every frame and carries the NB-MIB. The NRS is provided as a reference signal for downlink physical channel demodulation and is generated in the same manner as in LTE. However, NB-PCID (Physical Cell ID) (or NCell ID, NB-IoT base station ID) is used as an initialization value for generating an NRS sequence. NRS is transmitted through one or two antenna ports. NPDCCH and NPDSCH may be transmitted in the remaining subframes except NPSS / NSSS / NPBCH. NPDCCH and NPDSCH cannot be transmitted together in the same subframe. NPDCCH carries DCI and DCI supports three types of DCI formats. DCI format N0 includes narrowband physical uplink shared channel (NPUSCH) scheduling information, and DCI formats N1 and N2 include NPDSCH scheduling information. NPDCCH can be repeated up to 2048 times to improve coverage. The NPDSCH is used to transmit data (eg, TB) of a transport channel such as a downlink-shared channel (DL-SCH) and a paging channel (PCH). The maximum TBS is 680 bits, and up to 2048 repetitive transmissions can be used to improve coverage.
2.3.2. 상향링크 물리 채널2.3.2. Uplink physical channel
상향링크 물리 채널은 NPRACH(Narrowband Physical Random Access Channel)과 NPUSCH를 포함하며, 싱글-톤 전송과 멀티-톤 전송을 지원한다. 싱글-톤 전송은 3.5kHz와 15kHz의 서브캐리어 간격에 대해서 지원되며, 멀티-톤 전송은 15kHz 서브캐리어 간격에 대해서만 지원된다.The uplink physical channel includes a narrowband physical random access channel (NPRACH) and an NPUSCH, and supports single-tone transmission and multi-tone transmission. Single-tone transmissions are supported for subcarrier spacings of 3.5 kHz and 15 kHz, and multi-tone transmissions are only supported for 15 kHz subcarrier intervals.
도 12는 본 개시의 다양한 실시예들이 적용 가능한 NPUSCH 포맷을 예시한 도면이다. 12 is a diagram illustrating an NPUSCH format to which various embodiments of the present disclosure are applicable.
NPUSCH는 두 가지 포맷을 지원한다. NPUSCH 포맷 1은 UL-SCH 전송에 사용되며 최대 TBS는 1000비트이다. NPUSCH 포맷 2는 HARQ ACK 시그널링과 같은 상향링크 제어정보 전송에 사용된다. NPUSCH 포맷 1은 싱글-/멀티-톤 전송을 지원하며, NPUSCH 포맷 2는 싱글-톤 전송만 지원된다. 싱글-톤 전송의 경우, PAPR(Peat-to-Average Power Ratio)을 줄이기 위해 pi/2-BPSK(Binary Phase Shift Keying), pi/4-QPSK(Quadrature Phase Shift Keying)를 사용한다. NPUSCH는 자원 할당에 따라 하나의 RU(Resource Unit)가 점유하는 슬롯 수가 다를 수 있다. RU는 TB가 매핑되는 가장 작은 자원 단위를 나타내며, 시간 영역에서 N UL symb * N UL slots개의 연속된 SC-FDMA 심볼과 주파수 영역에서 N RU sc개의 연속된 서브캐리어로 구성된다. 여기서, N UL symb은 슬롯 내의 SC-FDMA 심볼 개수를 나타내고, N UL slots은 슬롯 개수를 나타내며, N RU sc는 RU를 구성하는 서브캐리어의 개수를 나타낸다.NPUSCH supports two formats. NPUSCH format 1 is used for UL-SCH transmission and the maximum TBS is 1000 bits. NPUSCH format 2 is used for uplink control information transmission such as HARQ ACK signaling. NPUSCH format 1 supports single- / multi-tone transmissions, and NPUSCH format 2 supports only single-tone transmissions. For single-tone transmission, pi / 2-BPSK (Binary Phase Shift Keying) and pi / 4-QPSK (Quadrature Phase Shift Keying) are used to reduce the Peer-to-Average Power Ratio (PAPR). The NPUSCH may have a different number of slots occupied by one resource unit (RU) according to resource allocation. The RU represents the smallest resource unit to which a TB is mapped, and consists of N UL symb * N UL slots contiguous SC-FDMA symbols in the time domain and N RU sc contiguous subcarriers in the frequency domain. Here, N UL symb represents the number of SC-FDMA symbols in the slot, N UL slots represents the number of slots, and N RU sc represents the number of subcarriers constituting the RU.
표 9 는 NPUSCH 포맷과 서브캐리어 스페이싱에 따른 RU의 구성을 예시한다. TDD의 경우 uplink-downlink configuration에 따라 지원되는 NPUSCH 포맷 및 SCS가 달라진다. Uplink-downlink configuration은 표 9를 참조할 수 있다.Table 9 illustrates the configuration of an RU according to NPUSCH format and subcarrier spacing. In the case of TDD, the NPUSCH format and SCS supported depend on the uplink-downlink configuration. See Table 9 for uplink-downlink configuration.
Figure PCTKR2019010070-appb-img-000009
Figure PCTKR2019010070-appb-img-000009
UL-SCH 데이터(예, UL-SCH TB) 전송을 위한 스케줄링 정보는 DCI 포맷 NO에 포함되며, DCI 포맷 NO는 NPDCCH를 통해 전송된다. DCI 포맷 NO은 NPUSCH의 시작 시점, 반복 횟수, TB 전송에 사용되는 RU 개수, 서브캐리어의 개수 및 주파수 영역에서의 자원 위치, MCS 등에 관한 정보를 포함한다.Scheduling information for transmitting UL-SCH data (eg, UL-SCH TB) is included in DCI format NO, and DCI format NO is transmitted through NPDCCH. The DCI format NO includes information about the start time of the NPUSCH, the number of repetitions, the number of RUs used for TB transmission, the number of subcarriers and resource positions in the frequency domain, MCS, and the like.
도 12를 참조하면, NPUSCH 포맷에 따라 DMRS가 슬롯 당 하나 또는 세 개의 SC-FDMA 심볼에서 전송된다. DMRS는 데이터(예, TB, UCI)와 다중화되며, 데이터 전송을 포함하는 RU에서만 전송된다.Referring to FIG. 12, DMRSs are transmitted in one or three SC-FDMA symbols per slot according to the NPUSCH format. DMRS is multiplexed with data (e.g. TB, UCI) and is only transmitted in the RU that contains the data transmission.
2.4. NB-IoT 멀티-캐리어 구성2.4. NB-IoT multi-carrier configuration
도 13은 본 개시의 다양한 실시예들이 적용 가능한 FDD NB-IoT에서 멀티-캐리어가 구성된 경우의 동작을 예시한다. FIG. 13 illustrates an operation when a multi-carrier is configured in an FDD NB-IoT to which various embodiments of the present disclosure are applicable.
FDD NB-IoT에서는 DL/UL 앵커-캐리어가 기본적으로 구성되며, DL (및 UL) 논-앵커 캐리어가 추가로 구성될 수 있다. RRCConnectionReconfiguration에 논-앵커 캐리어에 관한 정보가 포함될 수 있다. DL 논-앵커 캐리어가 구성되면, 단말은 데이터를 DL 논-앵커 캐리어에서만 수신한다. 반면, 동기 신호(NPSS, NSSS), 방송 신호(MIB, SIB) 및 페이징 신호는 앵커-캐리어에서만 제공된다. DL 논-앵커 캐리어가 구성되면, 단말은 RRC_CONNECTED 상태에 있는 동안은 DL 논-앵커 캐리어만을 청취한다(listen). 유사하게, UL 논-앵커 캐리어가 구성되면, 단말은 데이터를 UL 논-앵커 캐리어에서만 전송하며, UL 논-앵커 캐리어와 UL 앵커-캐리어에서 동시 전송은 허용되지 않는다. RRC_IDLE 상태로 천이되면, 단말은 앵커-캐리어로 돌아간다.In FDD NB-IoT, DL / UL anchor-carrier is basically configured, and DL (and UL) non-anchor carrier may be further configured. The RRCConnectionReconfiguration may include information about the non-anchor carrier. If a DL non-anchor carrier is configured, the terminal receives data only from the DL non-anchor carrier. On the other hand, synchronization signals NPSS and NSSS, broadcast signals MIB and SIB, and paging signals are provided only at anchor-carriers. If the DL non-anchor carrier is configured, the terminal listens to only the DL non-anchor carrier while in the RRC_CONNECTED state. Similarly, if a UL non-anchor carrier is configured, the terminal transmits data only on the UL non-anchor carrier, and simultaneous transmission on the UL non-anchor carrier and the UL anchor-carrier is not allowed. When the transition to the RRC_IDLE state, the terminal returns to the anchor-carrier.
도 13에서 UE1은 앵커-캐리어만 구성되고, UE2는 DL/UL 논-앵커 캐리어가 추가로 구성되고, UE3은 DL 논-앵커 캐리어가 추가로 구성된 경우를 나타낸다. 이에 따라, 각 UE에서 데이터가 송신/수신되는 캐리어는 다음과 같다.In FIG. 13, UE1 is configured only with an anchor-carrier, UE2 is additionally configured with a DL / UL non-anchor carrier, and UE3 is configured with an additional DL non-anchor carrier. Accordingly, carriers to which data is transmitted / received in each UE are as follows.
- UE1: 데이터 수신 (DL 앵커-캐리어), 데이터 송신 (UL 앵커-캐리어)UE1: data reception (DL anchor-carrier), data transmission (UL anchor-carrier)
- UE2: 데이터 수신 (DL 논-앵커-캐리어), 데이터 송신 (UL 논-앵커-캐리어)UE2: data reception (DL non-anchor-carrier), data transmission (UL non-anchor-carrier)
- UE3: 데이터 수신 (DL 논-앵커-캐리어), 데이터 송신 (UL 앵커-캐리어)UE3: data reception (DL non-anchor-carrier), data transmission (UL anchor-carrier)
NB-IoT 단말은 송신과 수신을 동시에 수행하지 못하며, 송신/수신 동작은 각각 하나의 밴드로 제한된다. 따라서, 멀티-캐리어가 구성되더라도, 단말은 180 kHz 대역의 송신/수신 체인을 하나만 요구한다.The NB-IoT terminal cannot simultaneously perform transmission and reception, and transmission / reception operations are limited to one band each. Therefore, even if the multi-carrier is configured, the terminal requires only one transmit / receive chain in the 180 kHz band.
2.5. NB-IoT 시스템 정보2.5. NB-IoT System Information
표 10은 NB-IoT에 정의된 시스템 정보를 예시한다. 시스템 정보 획득/변경 과정은 RRC_IDLE 상태에서만 수행된다. 단말은 RRC_CONNECTED 상태에서는 SIB 정보의 수신을 기대하지 않는다. 시스템 정보가 변경되면, 단말은 페이징 또는 직접 지시를 통해 통지 받을 수 있다. 변경된 시스템 정보의 제공을 목적으로, 기지국은 단말을 RRC_IDLE 상태로 변경시킬 수 있다. Table 10 illustrates system information defined in the NB-IoT. The system information acquisition / modification process is performed only in the RRC_IDLE state. The UE does not expect to receive the SIB information in the RRC_CONNECTED state. If the system information is changed, the terminal may be notified through paging or direct indication. For the purpose of providing changed system information, the base station may change the terminal to the RRC_IDLE state.
Figure PCTKR2019010070-appb-img-000010
Figure PCTKR2019010070-appb-img-000010
MIB-NB는 NPBCH를 통해 전송되며, 640ms 주기마다 업데이트 된다. MIB-NB는 SFN mod 0을 만족하는 무선 프레임의 서브프레임 #0에서 첫 번째 전송이 이뤄지며, 매 무선 프레임의 서브프레임 #0에서 전송된다. MIB-NB는 8개의 독립적으로 복호 가능한 블록을 통해 전송되며, 각각의 블록은 8번 반복 전송된다.The MIB-NB is transmitted through the NPBCH and updated every 640ms period. MIB-NB is first transmitted in subframe # 0 of a radio frame satisfying SFN mod 0, and is transmitted in subframe # 0 of every radio frame. The MIB-NB is transmitted through eight independently decodable blocks, and each block is repeatedly transmitted eight times.
표 11은 MIB-NB의 필드 구성을 예시한다.Table 11 illustrates the field configuration of the MIB-NB.
Figure PCTKR2019010070-appb-img-000011
Figure PCTKR2019010070-appb-img-000011
SIB1-NB는 NPDSCH를 통해 전송되며 2056ms의 주기를 갖는다. SIB1-NB는 16개의 연속된 무선 프레임 내에서 짝수 번 무선 프레임(즉, 8개 무선 프레임)의 서브프레임 #4에서 전송된다. SIB1-NB가 전송되는 첫 번째 무선 프레임의 인덱스는 NPDSCH 반복 횟수(Nrep) 및 PCID에 따라 도출된다. 구체적으로, Nrep이 16 이고, PCID가 2n, 2n+1인 경우, 첫 번째 무선 프레임의 인덱스는 {0, 1}이고, Nrep이 8이고, PCID가 2n, 2n+1인 경우, 짝수 번호의 PCID와 홀수의 PCID에 대응하는 첫 번째 무선 프레임의 인덱스는 {0, 16}이다. 또한, Nrep이 4이고, PCID가 4n, 4n+1, 4n+2 및 4n+3인 경우, 첫 번째 무선 프레임의 인덱스는 {0, 16, 32, 48}이다. SIB1-NB는 2560ms 내에서 Nrep번 반복되며 2560ms 내에서 균등하게 분포된다. SIB1-NB의 TBS와 Nrep는 MIB-NB 내 SystemInformationBlockType1-NB에 의해 지시된다. SIB1-NB is transmitted through NPDSCH and has a period of 2056 ms. SIB1-NB is transmitted in subframe # 4 of even-numbered radio frames (ie, eight radio frames) within 16 consecutive radio frames. The index of the first radio frame in which SIB1-NB is transmitted is derived according to the NPDSCH repetition number (Nrep) and PCID. Specifically, when Nrep is 16 and PCID is 2n, 2n + 1, the index of the first radio frame is {0, 1}, Nrep is 8, and PCID is 2n, 2n + 1. The index of the first radio frame corresponding to the PCID and the odd PCID is {0, 16}. In addition, when Nrep is 4 and PCIDs are 4n, 4n + 1, 4n + 2, and 4n + 3, the index of the first radio frame is {0, 16, 32, 48}. SIB1-NB repeats Nrep times within 2560ms and is evenly distributed within 2560ms. TBS and Nrep of SIB1-NB are indicated by SystemInformationBlockType1-NB in MIB-NB.
표 12는 SystemInformationBlockType1-NB에 따른 반복 횟수를 나타낸다.Table 12 shows the number of repetitions according to SystemInformationBlockType1-NB.
Figure PCTKR2019010070-appb-img-000012
Figure PCTKR2019010070-appb-img-000012
SI 메세지(즉, SIB2-NB 이후의 정보)는 주기적으로 발생하는 시간 도메인 윈도우(즉, SI-윈도우) 내에서 전송된다. SI 메세지의 스케줄링 정보는 SIB1-NB에 의해 제공된다. 각각의 SI 메세지는 하나의 SI-윈도우와 연관되며, 서로 다른 SI 메세지의 SI-윈도우는 서로 겹치지 않는다. 즉, 하나의 SI-윈도우 내에서는 대응하는 SI만 전송된다. SI-윈도우의 길이는 모두 동일하며 설정 가능하다.SI messages (ie, information after the SIB2-NB) are transmitted within a periodically occurring time domain window (ie, an SI-window). Scheduling information of the SI message is provided by the SIB1-NB. Each SI message is associated with one SI-window, and the SI-windows of different SI messages do not overlap each other. That is, only a corresponding SI is transmitted in one SI-window. The lengths of all SI windows are the same and can be set.
2.6. WUS (Wake-Up Signal)2.6. WUS (Wake-Up Signal)
도 14 는 본 개시의 다양한 실시예들에 따른 WUS (Wake-Up Signal) 신호 송신을 예시한 도면이다.14 is a diagram illustrating a wake-up signal (WUS) signal transmission according to various embodiments of the present disclosure.
NB-IoT 단말, BL/CE(Bandwidth reduced Low complexity/Coverage Enhancement) 단말은 셀 구성에 따라 페이징 모니터링과 관련된 전력 소비를 줄이기 위해 WUS를 사용할 수 있다. WUS 구성 시, 아이들(idle) 모드에서 다음 동작을 고려할 수 있다.The NB-IoT terminal and the bandwidth reduced low complexity / coverage enhancement (BL / CE) terminal may use WUS to reduce power consumption associated with paging monitoring according to cell configuration. When configuring the WUS, the following operation may be considered in the idle mode.
- WUS는 단말에게 MPDCCH 또는 NPDCCH를 모니터링 하여 해당 셀에서 페이징을 수신하도록 지시할 수 있다.-The WUS may instruct the terminal to receive the paging in the cell by monitoring the MPDCCH or NPDCCH.
- eDRX(extended Discontinuous Reception)이 구성되지 않은 단말의 경우, WUS는 하나의 페이징 기회(Paging Occasion, PO)(N = 1)와 연관될 수 있다. PO는 페이징을 위해 P-RNTI로 스크램블된 PDCCH가 전송될 수 있는 시간 자원/구간(예, 서브프레임, 슬롯)을 의미한다. PF(Paging Frame) 내에 하나 혹은 복수의 PO(들)이 포함되며, PF는 UE ID에 기반하여 주기적으로 설정될 수 있다. 여기서, UE ID는 단말의 IMSI(International Mobile Subscriber Identity)에 기반하여 결정될 수 있다.In the case of a terminal for which eDRX (extended Discontinuous Reception) is not configured, the WUS may be associated with one paging opportunity (PO) (N = 1). PO means a time resource / interval (eg, subframe, slot) in which a PDCCH scrambled with P-RNTI can be transmitted for paging. One or a plurality of PO (s) is included in a paging frame (PF), and the PF may be periodically set based on the UE ID. Here, the UE ID may be determined based on the International Mobile Subscriber Identity (IMSI) of the terminal.
- eDRX이 구성된 단말의 경우, WUS는 PTW(Paging Transmission Window) 내의 하나 이상의 페이징 기회(N=1)와 연관될 수 있다. eDRX가 구성된 경우, UE ID에 기반하여 PH(Paging Hyper-frames)가 주기적으로 구성될 수 있다. PH 내에 PTW가 정의되며, 단말은 PTW 내의 PF에서 PO(들)을 모니터링한이다.For a terminal configured with eDRX, the WUS may be associated with one or more paging opportunities (N = 1) in a paging transmission window (PTW). If eDRX is configured, paging hyper-frames (PH) may be periodically configured based on the UE ID. The PTW is defined in the PH, and the UE monitors the PO (s) in the PF in the PTW.
- WUS를 검출한 경우, 단말은 페이징 메시지 수신을 위해 이후 N개의 페이징 기회를 모니터링 할 수 있다.If the WUS is detected, the UE may monitor N paging occasions later to receive a paging message.
- MME(Mobility Management Entity)의 페이징 동작은 기지국이 WUS를 사용하는 것을 알지 못한다.The paging operation of the mobility management entity (MME) does not know that the base station uses WUS.
도 14를 참조하면, WUS는 PO 이전의 "Configured maximum WUS duration" (이하, WUS 윈도우)에서 전송될 수 있다. 단말은 WUS 윈도우 내에서 WUS 반복 전송을 기대할 수 있지만, 실제 WUS 전송 횟수는 WUS 윈도우 내 최대 WUS 전송 횟수보다 적을 수 있다. 예를 들어, 좋은 커버리지 내의 단말에 대해서는 WUS 반복 횟수가 적을 수 있다. 편의상, WUS 윈도우 내에서 WUS가 전송될 수 있는 자원/기회를 WUS 자원이라고 지칭한다. WUS 자원은 복수의 연속된 OFDM 심볼과 복수의 연속된 부반송파로 정의될 수 있다. WUS 자원은 서브프레임 또는 슬롯 내의 복수의 연속된 OFDM 심볼과 복수의 연속된 부반송파로 정의될 수 있다. 예를 들어, WUS 자원은 14개의 연속된 OFDM 심볼과 12개의 연속된 부반송파로 정의될 수 있다. WUS 윈도우와 PO간에는 갭이 존재하며, 단말은 갭에서는 WUS를 모니터링 하지 않는다. WUS 윈도우에서 WUS가 검출되면, 단말은 WUS (윈도우)와 관련된 하나 이상의 PO에서 페이징 관련 신호를 모니터링 할 수 있다. NB-IoT의 경우, RRC_IDLE 상태의 단말은 시스템 정보에 기초하여 앵커 캐리어 또는 논-앵커 캐리어에서 페이징을 수신할 수 있다. Referring to FIG. 14, the WUS may be transmitted in a "Configured maximum WUS duration" (hereinafter, referred to as a WUS window) before the PO. The UE may expect to repeat WUS transmission in the WUS window, but the actual number of WUS transmissions may be less than the maximum number of WUS transmissions in the WUS window. For example, the number of WUS repetitions may be small for a terminal in good coverage. For convenience, the resource / chance to which a WUS can be transmitted in the WUS window is referred to as a WUS resource. The WUS resource may be defined as a plurality of consecutive OFDM symbols and a plurality of consecutive subcarriers. The WUS resource may be defined as a plurality of consecutive OFDM symbols and a plurality of consecutive subcarriers in a subframe or slot. For example, the WUS resource may be defined as 14 consecutive OFDM symbols and 12 consecutive subcarriers. A gap exists between the WUS window and the PO, and the terminal does not monitor the WUS in the gap. When the WUS is detected in the WUS window, the terminal may monitor a paging related signal in one or more POs associated with the WUS (window). In the case of NB-IoT, the UE in the RRC_IDLE state may receive paging in the anchor carrier or the non-anchor carrier based on the system information.
3. 본 개시의 다양한 실시예들3. Various embodiments of the present disclosure
이하에서는, 상기와 같은 기술적 사상에 기반하여 본 개시의 다양한 실시예들에 대해 보다 상세히 설명한다. 이하에서 설명되는 본 개시의 다양한 실시예들에 대해서는 앞서 설명한 제1절 내지 제2절의 내용들이 적용될 수 있다. 예를 들어, 이하에서 설명되는 본 개시의 다양한 실시예들에서 정의되지 않은 동작, 기능, 용어 등은 제1절 내지 제2절의 내용들에 기반하여 수행되고 설명될 수 있다.Hereinafter, various embodiments of the present disclosure will be described in more detail based on the technical spirit described above. For the various embodiments of the present disclosure described below, the contents of the first to second sections described above may be applied. For example, operations, functions, terms, and the like, which are not defined in various embodiments of the present disclosure described below, may be performed and described based on the contents of Sections 1 to 2.
본 개시의 다양한 실시예들은 특히 물리 신호/채널(physical signal/channel) 송신에 있어 반복 송신(repetition)이 적용되는 시스템에서, 다중 전송 블록 (multiple transmission/transport blocks, multiple-TB) 을 스케쥴링 하는 방법 및 이를 지원하는 장치들과 관련될 수 있다.Various embodiments of the present disclosure provide a method of scheduling multiple transmission / transport blocks (multi-TB), particularly in a system in which repetition is applied in physical signal / channel transmission. And devices that support it.
예를 들어, 협대역 사물 인터넷 (narrowband-internet of things, NB-IoT) 시스템, 기계 타입 통신 (machine type communication, MTC) 시스템이나 향상된 기계 타입 통신 (enhanced machine type communication, eMTC) 시스템에서는 주파수 대역이 좁아(narrowband radio frequency or bandwidth reduced) 커버리지 측면에서 문제가 있을 수 있다. 동 시스템에서는 커버리지 증가를 위하여 반복 송신 방법이 도입되었다. 반복 송신 방법은 동일한 물리 신호/채널을 심볼 및/또는 슬롯 및/또는 서브프레임 등의 일정 시간 단위로 반복하여 송신하는 방법을 의미할 수 있다. 예를 들어, eMTC 에서는 커버리지를 증가시키기 위한 방법으로 multi-subframe repetition 을 이용한 데이터 반복 송신 방법이 도입된 바 있다. For example, in narrowband-internet of things (NB-IoT) systems, machine type communication (MTC) systems, or enhanced machine type communication (EMTC) systems, Narrowband radio frequency or bandwidth reduced may cause problems in terms of coverage. In this system, an iterative transmission method is introduced to increase coverage. The repetitive transmission method may mean a method of repeatedly transmitting the same physical signal / channel by a predetermined time unit such as a symbol and / or a slot and / or a subframe. For example, in eMTC, a data repetitive transmission method using multi-subframe repetition has been introduced as a method for increasing coverage.
단말/기지국은 연속하여 송신된 물리 신호/채널을 컴바이닝 (combining) 하여 발견/디코딩(detection/decoding)할 수 있다. 예를 들어, 단말/기지국은 연속하여 송신된 물리 신호/채널에 대하여 심볼 레벨 컴바이닝 (symbol level combining) 등의 방법을 적용함으로써, 발견/디코딩 성능을 향상시킬 수 있다.The terminal / base station may combine and detect / decode physical signals / channels transmitted in succession. For example, the terminal / base station can improve discovery / decoding performance by applying a method such as symbol level combining to a physical signal / channel transmitted continuously.
상술한 심볼 레벨 컴바이닝 등와 같은 방법을 통한 이득은 특히 단말의 이동성(mobility) 가 없거나 매우 낮으며, 이로 인하여 반복 송신이 수행되는 심볼이나 서브프레임 간의 무선 환경이 거의 일정한 경우에 획득될 수 있다. 반대로, 예를 들어 깊은 페이딩(deep fading) 등의 현상이 발생하는 경우, 반복 송신되는 물리 신호/채널의 수신 성능이 장시간 영향을 받을 수 있는 단점이 있다.The gain through the above-described method such as symbol level combining may be obtained when the mobility of the terminal is very low or very low, and thus the radio environment between symbols or subframes in which repeated transmission is performed is almost constant. On the contrary, when a phenomenon such as deep fading occurs, for example, the reception performance of a physical signal / channel repeatedly transmitted may be affected for a long time.
또한, 물리 신호/채널을 반복 송신하면 시간 도메인 자원 소모가 증가되므로, 기지국 관점에서 자원 코스트 (cost) 문제 및 서로 다른 단말 간의 스케쥴링 제한(scheduling restriction) 문제 등이 발생할 수 있다. 예를 들어, 반복 송신 횟수가 커지면 커버리지 증가 (coverage enhancement) 효과 또한 커지지만, 반대로 소모되는 시간 도메인 자원 또한 커지므로, 자원 효율이 감소하며 서로 다른 단말 간의 스케쥴링 기회를 방해하는 문제가 발생할 수 있다.In addition, since the time domain resource consumption is increased by repeatedly transmitting the physical signal / channel, a resource cost problem and a scheduling restriction problem between different terminals may occur from a base station perspective. For example, as the number of repetitive transmissions increases, the coverage enhancement effect also increases, but conversely, since time domain resources consumed also increase, resource efficiency decreases and a problem of scheduling between different terminals may occur.
본 개시의 다양한 실시예들은 특히 물리 신호/채널 송신에 반복 송신이 적용되는 시스템에서, 다중 전송 블록 구조의 송신이 사용되는 경우에 적용될 수 있는 다양한 방법들과 관련될 수 있다.Various embodiments of the present disclosure may relate to various methods that may be applied when transmission of multiple transport block structures is used, particularly in systems where repetitive transmission is applied to physical signal / channel transmission.
본 개시의 다양한 실시예들은 하나의 하향링크 제어정보(downlink control information, DCI)를 통하여 하나 이상의 전송 블록이 지시될 수 있는 경우에 적용될 수 있는 다양한 방법들과 관련될 수 있다.Various embodiments of the present disclosure may relate to various methods that may be applied when one or more transport blocks may be indicated through one downlink control information (DCI).
본 개시의 다양한 실시예들은 다중 전송 블록 송신을 위하여 다중 하향링크 제어정보 (multiple DCI) 가 사용되거나, 하향링크 제어정보 없이 미리 설정된(pre-configured) 된 자원을 통하여 송신이 수행되는 경우에도 적용될 수 있다.Various embodiments of the present disclosure may be applied even when multiple downlink control information (multiple DCI) is used for multiple transport block transmission or when transmission is performed through a pre-configured resource without downlink control information. have.
이하, 편의상 NB-IoT 시스템 및 MTC 시스템을 예로 들어 본 개시의 다양한 실시예들에 대하여 설명하나, 본 개시의 다양한 실시예들은 다른 통신 시스템에도 쉽게 적용될 수 있으며, 이는 당해 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있다.Hereinafter, various embodiments of the present disclosure will be described with reference to an NB-IoT system and an MTC system for convenience, but various embodiments of the present disclosure can be easily applied to other communication systems, which is commonly used in the art. It can be clearly understood by those who have it.
한편, NB-IoT 시스템 및 MTC 시스템 등에서 지원되는 각 물리 채널들의 명칭에는 레가시 시스템의 물리 채널의 명칭 앞에 "N-" 또는 "M-" 등과 같은 접두사가 붙을 수 있다. 다르게 정의되지 않는 한, 이러한 접두사가 붙은 채널은 레가시 시스템의 물리 채널들과 유사하게 이용되는 채널로 당해 기술분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있다. Meanwhile, the names of the respective physical channels supported by the NB-IoT system and the MTC system may be prefixed with "N-" or "M-" in front of the names of the physical channels of the legacy system. Unless defined otherwise, such prefixed channels are channels that are used similarly to the physical channels of legacy systems and can be clearly understood by those of ordinary skill in the art.
한편, 이러한 접두사는 생략될 수도 있으며, 레가시 시스템의 물리 채널들의 명칭과 혼용될 수 있다. 이하에서는 레가시 시스템의 물리 채널들의 명칭에 기초하여 본 개시의 다양한 실시예들을 설명하였으며, 상술한 바는 당해 기술분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있다. On the other hand, this prefix may be omitted, and may be mixed with the names of the physical channels of the legacy system. In the following description, various embodiments of the present disclosure have been described based on names of physical channels of a legacy system, and the above description will be clearly understood by those skilled in the art.
도 15 는 본 개시의 다양한 실시예들이 적용 가능한 무선 통신 시스템에서 단말 및 기지국의 동작을 간단히 나타낸 도면이다.FIG. 15 is a diagram illustrating operations of a terminal and a base station in a wireless communication system to which various embodiments of the present disclosure are applicable.
도 15 를 참조하면, 본 개시의 다양한 실시예들에 따르면, 기지국은 단말에게 다중 전송 블록 (multi-transport block, TB) 를 스케쥴링 하는 하향링크 제어 정보 (DCI) 를 송신할 수 있으며, 단말은 이를 수신할 수 있다(S1501). Referring to FIG. 15, according to various embodiments of the present disclosure, a base station may transmit downlink control information (DCI) for scheduling a multi-transport block (TB) to a terminal, and the terminal may transmit the same. Can be received (S1501).
본 개시의 다양한 실시예들에 따르면, 기지국은 단말에게 DCI 에 의하여 스케쥴링된 다중 전송 블록을 송신할 수 있으며, 단말은 DCI 에 기초하여 이를 수신할 수 있다(S1503). According to various embodiments of the present disclosure, the base station may transmit a multiple transport block scheduled by the DCI to the terminal, and the terminal may receive it based on the DCI (S1503).
또는, 본 개시의 다양한 실시예들에 따르면, 단말은 기지국에게 DCI 에 의하여 스케쥴링된 다중 전송 블록을 송신할 수 있으며, 기지국은 이를 수신할 수 있다(S1503). Alternatively, according to various embodiments of the present disclosure, the terminal may transmit a multiple transport block scheduled by DCI to the base station, and the base station may receive it (S1503).
즉, 본 개시의 다양한 실시예들에 따르면, 하나의 DCI 는 하향링크로 송신될 복수의 전송 블록들을 스케쥴링하는 DL 그랜트 (DL grant 또는 DL assignment) 를 포함할 수 있으며, 단말은 하나의 DCI 에 포함된 DL 그랜트에 기초하여 복수의 전송 블록들을 기지국으로부터 수신할 수 있다.That is, according to various embodiments of the present disclosure, one DCI may include a DL grant (DL grant or DL assignment) for scheduling a plurality of transport blocks to be transmitted in downlink, and the terminal is included in one DCI. The plurality of transport blocks may be received from the base station based on the received DL grant.
또는, 본 개시의 다양한 실시예들에 따르면, 하나의 DCI 는 상향링크로 송신될 복수의 전송 블록들을 스케쥴링하는 UL 그랜트 (UL grant) 를 포함할 수 있으며, 단말은 하나의 DCI 에 포함된 UL 그랜트에 기초하여 복수의 전송 블록들을 기지국으로 송신할 수 있다.Alternatively, according to various embodiments of the present disclosure, one DCI may include a UL grant for scheduling a plurality of transport blocks to be transmitted in uplink, and the terminal includes a UL grant included in one DCI. The plurality of transport blocks can be transmitted to the base station based on.
예시적 실시예에서, 다중 전송 블록에 포함된 각 전송 블록이 매핑된 시간 자원 사이에는 갭(gap)이 설정될 수 있다. In an exemplary embodiment, a gap may be set between time resources to which each transport block included in the multiple transport blocks is mapped.
이하에서는 본 개시의 다양한 실시예들은 상기 동작들 각각에 대해 상세히 설명한다. 이하에서 설명되는 본 개시의 다양한 실시예들은 상호 배척되지 않는 한 전부 또는 일부가 결합되어 본 개시의 또 다른 다양한 실시예들을 구성할 수도 있으며, 이는 당해 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있다.Hereinafter, various embodiments of the present disclosure will be described in detail for each of the above operations. The various embodiments of the present disclosure described below may be combined in whole or in part to constitute other various embodiments of the present disclosure unless mutually excluded, which will be apparent to those skilled in the art. Can be understood.
3.1. Multiple-TB transmission with HARQ process3.1. Multiple-TB transmission with HARQ process
본 개시의 다양한 실시예들은 다중 전송 블록 송신이 HARQ 프로세스를 이용한 송수신 구조에 사용되는 방법과 관련될 수 있다. Various embodiments of the present disclosure may relate to a method in which multiple transport block transmissions are used for a transmit / receive structure using a HARQ process.
예시적 실시예에서, HARQ (Hybrid Automatic Repeat and request) 프로세스에 기초한 (내지 HARQ process 를 이용한) 송수신 구조란, 단말과 기지국이 각 전송 블록에 HARQ 프로세스 번호 (HARQ process number) 를 부여하고, 이에 기초한 (내지 이용한) 재송신이 가능한 송수신 구조를 의미할 수 있다.In an exemplary embodiment, a transmit / receive structure (using a HARQ process) based on a HARQ (Hybrid Automatic Repeat and request) process means that a terminal and a base station assign a HARQ process number to each transport block, It may refer to a transmission / reception structure capable of retransmission (to used).
예시적 실시예에서, 갭(gap)은 각 전송 블록 및/또는 전송 블록을 구성하는 서브 블록이 매핑되는 시간 도메인 자원 간의 시간 축 상 간격을 의미할 수 있으며, 그 크기는 시간 단위(unit)(예를 들어, 서브프레임/슬롯/심볼 등)를 가질 수 있다. 예를 들어, 순차적으로 송신되는 PDSCH 전송 블록들을 가정하면, 갭은 각 PDSCH 전송 블록이 매핑된 시간 구간 (자원) 간 간격으로 정의될 수 있다. In an exemplary embodiment, a gap may mean a time axis interval between each transport block and / or time domain resources to which sub blocks constituting the transport block are mapped, and the size thereof may be a time unit ( For example, subframes / slots / symbols, etc.). For example, assuming PDSCH transport blocks transmitted sequentially, a gap may be defined as an interval between time intervals (resources) to which each PDSCH transport block is mapped.
예시적 실시예에서, 갭은 간격, 구간, 공백 등 당해 기술분야의 통상의 지식을 가진 자에게 유사한 의미를 갖는 것으로 이해될 수 있는 용어로 대체될 수 있다. In an exemplary embodiment, gaps may be replaced with terms that may be understood to have similar meanings to one of ordinary skill in the art, such as intervals, intervals, gaps, and the like.
예시적 실시예에서, 갭의 크기는, 갭 이전에 구성된 전송 블록이 송신되는 시간 구간의 종료 시점과 갭 이후에 구성된 전송 블록이 송신되는 시간 구간의 시작 시점 간의 시간 축 상 거리와 관련될 수 있다. In an example embodiment, the size of the gap may be related to a time axis distance between the end of the time interval in which the transport block configured before the gap is transmitted and the start of the time interval in which the transport block configured after the gap is transmitted. .
예시적 실시예에서, 갭은 일정 (시간 단위) 크기를 가질 수 있으며, 온/오프(on/off)를 지시하는 일정 시그널링에 의하여 설정될 수 있다. 또는, 갭의 크기를 지시하는 일정 시그널링이 정의될 수도 있다. 예를 들어, 시그널링은 SIB 시그널링 및/또는 RRC 시그널링 및/또는 DCI 시그널링 등일 수 있다. 또는, 갭의 크기(또는 갭의 유무)는 명시적 시그널링 없이 미리 정해진 조건에 따라 설정될 수도 있다. In an exemplary embodiment, the gap may have a constant (time unit) size and may be set by constant signaling indicating on / off. Alternatively, constant signaling may be defined indicating the size of the gap. For example, the signaling may be SIB signaling and / or RRC signaling and / or DCI signaling and the like. Alternatively, the size of the gap (or the presence or absence of the gap) may be set according to a predetermined condition without explicit signaling.
3.1.1. (방법 1-1) HARQ 프로세스에 기초한 송수신 구조3.1.1. (Method 1-1) Transmission / Reception Structure Based on HARQ Process
도 16 은 본 개시의 다양한 실시예들에 따른 다중 전송 블록에 기초한 송수신 구조를 도시한 도면이다.16 is a diagram illustrating a transmission / reception structure based on multiple transport blocks according to various embodiments of the present disclosure.
본 개시의 다양한 실시예들에 따르면, 단말이 다중 HARQ 프로세스를 스케쥴링 하는 DCI 를 검출한 경우, 단말은 각 HARQ 프로세스 번호에 해당되는 전송 블록이 순차적으로 송신되는 구조를 가정할 수 있다. 여기서, 각 전송 블록이 복수의 시간 도메인 자원 (예를 들어, 서브프레임 및/또는 슬롯 및/또는 심볼) 으로 구성된 경우, 단말은 하나의 전송 블록을 구성하는 모든 시간 도메인 자원이 송신된 이후 다음 전송 블록이 송신되는 구조를 기대할 수 있다.According to various embodiments of the present disclosure, when the terminal detects a DCI scheduling a multiple HARQ process, the terminal may assume a structure in which a transport block corresponding to each HARQ process number is sequentially transmitted. Here, when each transport block is composed of a plurality of time domain resources (eg, subframes and / or slots and / or symbols), the terminal transmits the next transmission after all time domain resources constituting one transport block are transmitted. One can expect a structure in which a block is transmitted.
- 예시적 실시예에서, 상향링크의 경우, 전송 블록은 PUSCH (또는 (N)PUSCH format 1) 에 기초하여 단말로부터 송신될 수 있다.In an exemplary embodiment, in case of uplink, a transport block may be transmitted from a terminal based on a PUSCH (or (N) PUSCH format 1).
- 예시적 실시예에서, 하향링크의 경우, 전송 블록은 PDSCH 에 기초하여 기지국으로부터 송신될 수 있다.In an exemplary embodiment, for downlink, a transport block may be transmitted from a base station based on the PDSCH.
- 예시적 실시예에서, 각 전송 블록의 송신 간에는 일정 크기의 갭 (gap) 이 존재할 수 있다.In an exemplary embodiment, there may be a gap of a certain size between transmissions of each transport block.
도 16 을 참조하면, 본 개시의 다양한 실시예들에 따른 HARQ 프로세스(2-HARQ 프로세스) 를 이용한 다중 전송 블록 송수신 구조가 NB-IoT 시스템에 적용된 예시가 도시되었다.Referring to FIG. 16, an example in which a multiple transport block transmission / reception structure using a HARQ process (2-HARQ process) according to various embodiments of the present disclosure is applied to an NB-IoT system is illustrated.
예를 들어, 도 16 의 하향링크의 예시를 참조하면, 하나의 DCI 는 각 HARQ 프로세스와 관련된 두 개의 PDSCH 전송 블록을 스케쥴링할 수 있다. DCI 를 수신한 단말은 각 전송 블록에 각 HARQ 프로세스 번호에 해당하는 번호가 순차적으로 부여되었음을 인지/가정 내지 확인할 수 있다. 예를 들어, 단말은 첫번째 전송 블록은 HARQ #1 에 해당하는 PDSCH 전송 블록이고, 두번째 전송 블록은 HARQ #2 에 해당하는 PDSCH 전송 블록임을 인지/가정 내지 확인할 수 있다. 예를 들어, HARQ #1 에 해당하는 PDSCH 전송 블록 및/또는 HARQ #2 에 해당하는 PDSCH 전송 블록은 하나 이상의 (또는 복수의) 시간 도메인 자원, 예를 들어 서브프레임 및/또는 슬롯 및/또는 심볼로 구성될 수 있다. 예를 들어, 단말은 각각 복수의 시간 도메인 자원으로 구성된 각 PDSCH 전송 블록에 시간 도메인 자원을 이용한 반복 전송이 적용된 경우, 각 PDSCH를 컴바이닝에 기초하여 디코딩할 수 있다. 예를 들어, 단말은 DCI에 의하여 스케쥴링된 모든 전송 블록의 전송이 완료된 이후 (예를 들어, HARQ #2 에 해당하는 PDSCH 전송 블록이 수신된 이후), 각 HARQ 프로세스에 기초한 ACK/NACK 을 송신할 수 있다.For example, referring to the downlink example of FIG. 16, one DCI may schedule two PDSCH transport blocks associated with each HARQ process. The terminal receiving the DCI may recognize / assume or confirm that numbers corresponding to the HARQ process numbers are sequentially assigned to each transport block. For example, the UE may recognize / assume or confirm that the first transport block is a PDSCH transport block corresponding to HARQ # 1 and the second transport block is a PDSCH transport block corresponding to HARQ # 2. For example, a PDSCH transport block corresponding to HARQ # 1 and / or a PDSCH transport block corresponding to HARQ # 2 may include one or more (or plural) time domain resources, eg, subframes and / or slots and / or symbols. It can be configured as. For example, when repetitive transmission using time domain resources is applied to each PDSCH transport block including a plurality of time domain resources, the terminal may decode each PDSCH based on combining. For example, after the transmission of all the transport blocks scheduled by the DCI is completed (for example, after the PDSCH transport block corresponding to HARQ # 2 is received), the UE transmits an ACK / NACK based on each HARQ process. Can be.
예를 들어, 도 16의 상향링크의 예시를 참조하면, 하나의 DCI 는 각 HARQ 프로세스와 관련된 두 개의 PUSCH 전송 블록을 스케쥴링할 수 있다. DCI 를 수신한 단말은 스케쥴링 되는 각 전송 블록에 각 HARQ 프로세스 번호에 해당하는 번호를 순차적으로 부여하거나, 부여되었음을 인지/가정 내지 확인할 수 있다. 예를 들어, 단말은 첫번째 전송 블록은 HARQ #1 에 해당하는 PUSCH 전송 블록, 두번째 전송 블록은 HARQ #2 에 해당하는 PUSCH 전송 블록이 되도록 HARQ 프로세스 번호를 순차적으로 부여하거나, 부여되었음을 인지/가정 내지 확인할 수 있다. 예를 들어, HARQ #1 에 해당하는 PUSCH 전송 블록 및/또는 HARQ #2 에 해당하는 PUSCH 전송 블록은 하나 이상의 (또는 복수의) 시간 도메인 자원, 예를 들어 서브프레임 및/또는 슬롯 및/또는 심볼로 구성될 수 있다. 예를 들어, 기지국은 각각 복수의 시간 도메인 자원으로 구성된 각 PUSCH 전송 블록에 시간 도메인 자원을 이용한 반복 전송이 적용된 경우, 단말로부터 수신한 각 PUSCH를 컴바이닝에 기초하여 디코딩할 수 있다. For example, referring to the uplink example of FIG. 16, one DCI may schedule two PUSCH transport blocks associated with each HARQ process. The terminal receiving the DCI may sequentially assign a number corresponding to each HARQ process number to each scheduled transmission block, or may recognize / assume or confirm that the terminal is assigned. For example, the UE sequentially assigns HARQ process numbers such that the first transport block is a PUSCH transport block corresponding to HARQ # 1, and the second transport block is a PUSCH transport block corresponding to HARQ # 2, or recognizes or assumes that it has been assigned. You can check it. For example, a PUSCH transport block corresponding to HARQ # 1 and / or a PUSCH transport block corresponding to HARQ # 2 may include one or more (or plural) time domain resources, eg, subframes and / or slots and / or symbols. It can be configured as. For example, when repeated transmission using time domain resources is applied to each PUSCH transport block composed of a plurality of time domain resources, the base station may decode each PUSCH received from the terminal based on combining.
예시적 실시예에서, HARQ #1 에 해당하는 첫번째 PDSCH 전송 블록과 HARQ #2 에 해당하는 두번째 PDSCH 전송 블록 사이에는 일정 크기의 갭이 존재할 수 있다. 다시 말하면, 기지국은 단말에게 첫번째 PDSCH 전송 블록을 송신한 이후, 갭을 두고, 두번째 PDSCH 전송 블록을 송신할 수 있다. In an exemplary embodiment, a gap of a predetermined size may exist between a first PDSCH transport block corresponding to HARQ # 1 and a second PDSCH transport block corresponding to HARQ # 2. In other words, after transmitting the first PDSCH transport block to the UE, the base station may transmit the second PDSCH transport block with a gap.
본 개시의 다양한 실시예들에 따르면, 전송 블록 사이에 일정 크기의 갭을 두어, 단말의 프로세싱 시간(processing time)을 보장할 수 있다. 예를 들어 BL/CE (bandwidth limited/coverage enhanced) 단말의 경우, 상술한 바와 같이 각 PDSCH 전송 블록을 디코딩 하기 위하여 복수의 시간 도메인 자원들에 대하여 컴바이닝을 적용하므로, 그에 따른 시간이 소요될 수 있다. 상술한 바와 같이 본 개시의 다양한 실시예들에 따르면, 복수의 PDSCH 전송 블록들이 송신되는 경우 각 전송 블록 사이에 일정 크기의 갭을 두어, 단말이 컴바이닝을 수행하는데 필요한 시간을 보장할 수 있다. According to various embodiments of the present disclosure, a gap of a predetermined size may be provided between transport blocks to ensure a processing time of a terminal. For example, in the case of a bandwidth limited / coverage enhanced (BL / CE) terminal, since combining is applied to a plurality of time domain resources to decode each PDSCH transport block as described above, it may take time accordingly. . As described above, according to various embodiments of the present disclosure, when a plurality of PDSCH transport blocks are transmitted, a gap of a certain size may be provided between each transport block to ensure a time required for the UE to perform combining.
다시 말하면, 본 개시의 다양한 실시예들에 따르면, 다중 전송 블록에 기초한 송신의 경우 각 전송 블록 간에는 일정 크기의 갭이 존재할 수 있으며, 여기서 일정 크기는 BL/CE 단말의 프로세싱 시간을 고려하여 각 전송 블록의 송신을 준비하거나, 각 전송 블록의 수신을 완료하기 위한 시간을 보장할 수 있는 크기로 설정될 수 있다. 본 개시의 다양한 실시예들에 따르면, 이러한 갭은 단말이 수신하는 PDSCH 뿐만 아니라 단말이 송신하는 PUSCH 의 경우에도 동일하게 적용될 수 있다. 즉, 도 16 의 예시에서, 단말은 HARQ #1 에 해당하는 PUSCH 전송 블록 및 HARQ #2 에 해당하는 PUSCH 전송 블록 간에 갭을 설정하거나 전송 블록 간 일정 갭을 두도록 설정될 수 있다.In other words, according to various embodiments of the present disclosure, in the case of transmission based on multiple transport blocks, a gap of a certain size may exist between each transport block, and the predetermined size may be determined by considering each processing time of the BL / CE terminal. It may be set to a size that can guarantee the time to prepare for the transmission of the block, or complete the reception of each transport block. According to various embodiments of the present disclosure, such a gap may be equally applied to the case of the PUSCH transmitted by the terminal as well as the PDSCH received by the terminal. That is, in the example of FIG. 16, the UE may be configured to set a gap between a PUSCH transport block corresponding to HARQ # 1 and a PUSCH transport block corresponding to HARQ # 2 or to leave a predetermined gap between transport blocks.
3.1.1.1. (방법 1-1-1) 전송 블록의 송신 길이에 기초한 갭 설정3.1.1.1. (Method 1-1-1) Gap Setting Based on Transmission Length of Transport Block
상술한 바와 같이, 본 개시의 다양한 실시예들에 따르면, 다중 전송 블록에 기초한 물리 신호/채널 송수신에 있어서, 각 전송 블록 간에 갭이 설정될 수 있다. 여기서, 본 개시의 다양한 실시예들에 따르면, 전송 블록 사이의 갭은 각 전송 블록의 송신길이 또는 전체 전송 블록들의 송신길이의 합에 기초하여 결정될 수 있다.As described above, according to various embodiments of the present disclosure, in transmitting / receiving a physical signal / channel based on multiple transport blocks, a gap may be set between each transport block. Here, according to various embodiments of the present disclosure, a gap between transport blocks may be determined based on the transmission length of each transport block or the sum of the transmission lengths of all transport blocks.
예를 들어, 하향링크의 경우 하나의 DCI 로 스케쥴링된 복수의 PDSCH 들의 송신 길이가 일정 길이 이상인 경우 다른 하향링크 송신을 보장하기 위한 하향링크 갭을 보장하기 위한 것일 수 있다. For example, in case of downlink, when a transmission length of a plurality of PDSCHs scheduled by one DCI is greater than or equal to a predetermined length, it may be to guarantee a downlink gap for guaranteeing another downlink transmission.
예를 들어, 상향링크의 경우 하나의 DCI 로 스케쥴링된 복수의 PUSCH 의 송신 길이가 일정 길이 이상인 경우 시간/주파수 오류(time/frequency error) 를 보상하기 위한 상향링크 보상 갭(uplink compensation gap)을 보장하기 위한 것일 수 있다.For example, in the case of uplink, when the transmission length of a plurality of PUSCHs scheduled by one DCI is more than a predetermined length, an uplink compensation gap for compensating time / frequency error is guaranteed. It may be to.
예시적 실시예에서, 하나의 DCI 로 스케쥴링된 복수의 PDSCH (또는 PUSCH) 각 전송 블록들 각각의 송신 길이가 일정 길이 (또는 일정 임계치) 이상인 경우에 각 전송 블록 사이에 갭이 설정 내지 구성되는 것으로 조건이 설정될 수 있다. 또는, 하나의 DCI 로 스케쥴링된 복수의 PDSCH (또는 PUSCH) 각 전송 블록들의 송신 길이의 합이 일정 길이 (또는 일정 임계치) 이상인 경우에 각 전송 블록 사이에 갭이 설정 내지 구성되는 것으로 조건이 설정될 수 있다.In an exemplary embodiment, a gap is established or configured between each transport block when the transmission length of each of the plurality of PDSCH (or PUSCH) transport blocks scheduled with one DCI is greater than or equal to a certain length (or a certain threshold). Conditions can be set. Alternatively, a condition may be set such that a gap is set or configured between each transport block when the sum of transmission lengths of the plurality of PDSCHs (or PUSCHs) transport blocks scheduled with one DCI is equal to or greater than a certain length (or a certain threshold). Can be.
본 개시의 다양한 실시예들에 따르면, 예를 들어, 2-HARQ 프로세스가 운용되는 하향링크 또는 상향링크 송신에서, 전체 전송 블록의 송신 길이가 하향링크 또는 상향링크 갭이 발생하는 조건을 만족시키지 못하는 경우, 단말은 일정 크기(g1)의 갭을 두 전송 블록 사이에 설정/구성하거나, 설정/구성된다고 가정할 수 있다. 여기서 g1 은 단말의 최소 프로세싱 시간 (minimum processing time) 을 보장하기 위하여 설정 내지 구성될 수 있다. 한편, 최소 프로세싱 시간이 불필요한 경우, g1 = 0 으로 설정될 수 있다. According to various embodiments of the present disclosure, for example, in downlink or uplink transmission in which a 2-HARQ process is operated, a transmission length of an entire transport block does not satisfy a condition in which a downlink or uplink gap occurs. In this case, the terminal may set / configure or set / configure a gap of a predetermined size g1 between two transport blocks. Here, g1 may be configured or configured to ensure a minimum processing time of the terminal. On the other hand, when the minimum processing time is unnecessary, g1 = 0 may be set.
본 개시의 다양한 실시예들에 따르면, 예를 들어, 2-HARQ 프로세스가 운용되는 하향링크 또는 상향링크 송신에서, 전체 전송 블록의 송신 길이가 하향링크 또는 상향링크 갭이 발생하는 조건을 만족시키는 경우, 단말은 일정 크기(g2)의 갭을 두 전송 블록 사이에 설정/구성하거나, 설정/구성된다고 가정할 수 있다. 여기서, 예를 들어 하향링크의 경우, g2 는 기지국의 다른 하향링크 송신을 보장하기 위하여 설정 내지 구성될 수 있다. 또는, 예를 들어 상향링크의 경우, g2 는 단말이 시간/주파수 오류를 보상하기 위하여 설정 내지 구성될 수 있다. According to various embodiments of the present disclosure, for example, in downlink or uplink transmission in which a 2-HARQ process is operated, a transmission length of an entire transport block satisfies a condition in which a downlink or uplink gap occurs. The UE may assume that a gap of a predetermined size g2 is set / configured or set / configured between two transport blocks. Here, for example, in the case of downlink, g2 may be configured or configured to ensure another downlink transmission of the base station. Or, for example, in the case of uplink, g2 may be configured or configured for the terminal to compensate for time / frequency error.
한편, 본 개시의 다양한 실시예들에 따르면, 다중 전송 블록에 기반한 송신에 있어서, 기지국은 단말에게 전송 블록 간의 갭의 온오프(on/off)를 지시할 수 있다. 즉, 기지국은 단말에게 전송 블록 간에 갭이 설정 내지 구성되는 지 여부를 일정 시그널링에 기초하여 지시할 수 있다. 단말은 기지국으로부터 수신된 시그널링에 기초하여 전송 블록 사이에 갭이 설정 내지 구성되었음을 식별 내지 확인할 수 있다. 예를 들어, 시그널링으로 SIB 시그널링 및/또는 RRC 시그널링 및/또는 DCI 시그널링 등이 사용될 수 있다.Meanwhile, according to various embodiments of the present disclosure, in transmission based on multiple transport blocks, the base station may instruct the terminal to turn on / off gaps between transport blocks. That is, the base station may instruct the terminal on the basis of constant signaling whether a gap is set or configured between transport blocks. The terminal may identify or confirm that a gap is set or configured between transport blocks based on the signaling received from the base station. For example, SIB signaling and / or RRC signaling and / or DCI signaling may be used as the signaling.
예시적 실시예에서, 하향링크의 경우, 기지국으로부터 전송 블록 간 갭이 설정됨을 지시 받은 단말은 (또는 기지국으로부터 전송 블록 간 갭을 설정 받은 단말은) 수신되는 하향링크 신호의 두 전송 블록 간에 일정 크기의 갭이 설정/구성된다고 가정할 수 있다. In an exemplary embodiment, in the case of downlink, a terminal that is instructed to set a gap between transport blocks from a base station (or a terminal that is configured to set a gap between transport blocks from a base station) has a predetermined size between two transport blocks of a received downlink signal. It can be assumed that the gap of is set / configured.
예시적 실시예에서, 상향링크의 경우, 기지국으로부터 전송 블록 간 갭이 설정됨을 지시 받은 단말은 (또는 기지국으로부터 전송 블록 간 갭을 설정 받은 단말은) 송신할 상향링크 신호의 두 전송 블록 간에 일정 크기의 갭을 설정/구성하거나, 설정/구성된다고 가정할 수 있다. In an exemplary embodiment, in the case of uplink, a terminal that is instructed to set a gap between transport blocks from a base station (or a terminal that has set a gap between transport blocks from a base station) may have a predetermined size between two transport blocks of an uplink signal to transmit. It can be assumed that the gap of is set / configured, or set / configured.
본 개시의 다양한 실시예들에 따르면, 기지국으로부터 전송 블록 간 갭이 설정됨을 단말이 지시 받았더라도, 각 전송 블록 또는 전체 전송 블록의 송신 길이가 갭이 발생하는 조건을 만족시키지 않는 경우, 즉, 각 전송 블록의 길이 또는 각 전송 블록의 길이의 합이 일정 임계치 이하/미만인 경우, 다중 전송 블록 간에 갭이 존재하지 않을 수도 있다. 달리 말하면, 갭이 설정됨이 지시되었더라도, 각 전송 블록 또는 전체 전송 블록의 길이가 일정 조건을 만족시키지 않는 경우, 갭의 크기가 0 으로 설정될 수도 있다. According to various embodiments of the present disclosure, even if the UE is instructed that the gap between transport blocks is set by the base station, the transmission length of each transport block or the entire transport block does not satisfy the condition that the gap occurs, that is, each If the length of a transport block or the sum of the lengths of each transport block is less than / less than a predetermined threshold, there may be no gap between multiple transport blocks. In other words, even if it is indicated that the gap is set, the size of the gap may be set to 0 when the length of each transport block or the entire transport block does not satisfy a predetermined condition.
예시적 실시예에서, 기지국이 단말에게 전송 블록 사이에 갭이 설정 내지 구성됨을 지시 (예를 들어, 갭이 On 되었음을 지시) 한 경우를 가정한다. 이러한 경우라도, 기지국으로부터 수신되는 하향링크 신호의 다중 전송 블록의 각 길이 또는 다중 전송 블록의 길이의 합이 일정 임계치 이하인 경우, 또는, 단말이 송신할 상향링크 신호의 다중 전송 블록의 각 길이 또는 다중 전송 블록의 길이의 합이 일정 임계치 이하인 경우, 다중 전송 블록 사이에는 갭이 설정/구성되지 않거나, 갭의 크기가 0 으로 설정될 수 있다. 이는 다중 전송 블록의 각 길이 또는 다중 전송 블록의 길이의 합이 일정 임계치 이하인 경우에는 단말이 해당 전송 블록들을 디코딩하는데 걸리는 시간이 길지 않기 때문에, 이러한 경우에는 다중 전송 블록 간에 갭이 존재하지 않는 것이 더 유리하기 때문이다. In an exemplary embodiment, it is assumed that the base station instructed the terminal that the gap is set or configured between the transport block (for example, indicating that the gap is On). Even in this case, when the sum of the lengths of the multiple transport blocks or the lengths of the multiple transport blocks of the downlink signal received from the base station is equal to or less than a predetermined threshold, or the length or multiple of the multiple transport blocks of the uplink signal to be transmitted by the terminal When the sum of the lengths of the transport blocks is equal to or less than a predetermined threshold, a gap may not be set / configured between multiple transport blocks, or the size of the gap may be set to zero. This is because when the sum of the lengths of the multiple transport blocks or the length of the multiple transport blocks is equal to or less than a certain threshold, the time required for the UE to decode the corresponding transport blocks is not long. In this case, there is no gap between the multiple transport blocks. Because it is advantageous.
3.1.2. (방법 1-2) HARQ 프로세스 및 서브 블록(sub-block)에 기초한 송수신 구조3.1.2. (Method 1-2) Transmission / Reception Structure Based on HARQ Process and Sub-block
도 17 은 본 개시의 다양한 실시예들에 따른 다중 전송 블록 및 서브-블록에 기초한 송수신 구조를 도시한 도면이다.17 illustrates a transmission / reception structure based on multiple transport blocks and sub-blocks according to various embodiments of the present disclosure.
본 개시의 다양한 실시예들에 따르면, 단말이 다중 HARQ 프로세스를 스케쥴링 하는 DCI 를 검출한 경우, 단말은 각 HARQ 프로세스 번호에 해당되는 전송 블록이 순차적으로 송신되는 구조를 가정할 수 있다. 여기서, 각 전송 블록이 복수의 시간 도메인 자원 (예를 들어, 서브프레임 및/또는 슬롯 및/또는 심볼) 으로 구성되고, 시간 도메인 자원이 반복 송신에 사용되는 경우, 단말은 각 전송 블록을 구성하는 시간 도메인 자원을 나누어 서브 블록을 구성하고, HARQ 프로세스 번호가 교차 반복되는 형태로 서브 블록이 송신되는 구조를 기대할 수 있다.According to various embodiments of the present disclosure, when the terminal detects a DCI scheduling a multiple HARQ process, the terminal may assume a structure in which a transport block corresponding to each HARQ process number is sequentially transmitted. Here, when each transport block is composed of a plurality of time domain resources (eg, subframes and / or slots and / or symbols), and the time domain resources are used for repetitive transmission, the terminal configures each transport block. A subblock may be formed by dividing time domain resources, and a structure in which subblocks are transmitted in a form in which HARQ process numbers are repeatedly repeated may be expected.
- 예시적 실시예에서, 상향링크의 경우, 전송 블록은 PUSCH (또는 (N)PUSCH format 1) 에 기초하여 단말로부터 송신될 수 있다.In an exemplary embodiment, in case of uplink, a transport block may be transmitted from a terminal based on a PUSCH (or (N) PUSCH format 1).
- 예시적 실시예에서, 하향링크의 경우, 전송 블록은 PDSCH 에 기초하여 기지국으로부터 송신될 수 있다.In an exemplary embodiment, for downlink, a transport block may be transmitted from a base station based on the PDSCH.
- 예시적 실시예에서, 각 서브 블록의 송신 간에는 갭(gap) 이 존재할 수 있다. 모든 서브 블록 사이의 갭은 동일한 크기가 아닐 수도 있다. 즉, 각 서브 블록의 송신 간에는 갭이 존재할 수 있고, 각 갭은 각각 동일한 크기를 가질 수도 있고, 다른 크기를 가질 수도 있다. 예를 들어, 상향링크 보상 갭(uplink compensation gap) 또는 특수한 용도의 하향링크 갭(downlink gap)이 필요한 경우, 이러한 용도의 갭은 다른 서브 블록 사이의 갭보다 크게 설정 내지 구성될 수 있다.In an exemplary embodiment, there may be a gap between transmissions of each subblock. The gap between all subblocks may not be the same size. That is, gaps may exist between transmissions of each subblock, and each gap may have the same size or may have a different size. For example, when an uplink compensation gap or a downlink gap for a specific use is required, the gap for this use may be set or configured to be larger than the gap between other subblocks.
도 17 을 참조하면, 본 개시의 다양한 실시예들에 따른 HARQ 프로세스(2-HARQ 프로세스) 및 서브 블록을 이용한 다중 전송 블록 송수신 구조가 NB-IoT 시스템에 적용된 예시가 도시되었다. Referring to FIG. 17, an example of applying a multiple transport block transmission / reception structure using a HARQ process (2-HARQ process) and a sub block according to various embodiments of the present disclosure is illustrated in an NB-IoT system.
예를 들어, 도 17 의 하향링크의 예시를 참조하면, 하나의 DCI 는 두 개의 PDSCH 전송 블록을 스케쥴링할 수 있다. 예를 들어, 각 전송 블록이 복수의 시간 도메인 자원 (예를 들어, 서브프레임 및/또는 슬롯 및/또는 심볼) 로 구성되고, 해당 시간 도메인 자원이 반복 송신에 사용되는 경우, 단말은 각 전송 블록을 구성하는 시간 도메인 자원이 복수의 서브 블록들로 구성되었다고 인지/가정 내지 확인할 수 있다. 또한, 단말은 복수의 서브 블록 각각에 서로 다른 HARQ 프로세스 번호가 부여된다고 인지/가정 내지 확인할 수 있다. 즉, 단말은 각 HARQ 프로세스 번호와 관련된 서브 블록이 교차되어 반복 수신되는 형태를 인지/가정 내지 확인할 수 있다. 예를 들어, 단말은 두번째 전송 블록이 수신된 이후, 각 HARQ 프로세스에 기초한 ACK/NACK 을 송신할 수 있다.For example, referring to the downlink example of FIG. 17, one DCI may schedule two PDSCH transport blocks. For example, if each transport block is composed of a plurality of time domain resources (eg, subframes and / or slots and / or symbols), and the corresponding time domain resources are used for repetitive transmission, the terminal may transmit each transport block. It may be recognized / assumed or confirmed that the time domain resource constituting the subframe is composed of a plurality of subblocks. In addition, the UE may recognize / assume or confirm that different HARQ process numbers are assigned to each of the plurality of sub blocks. That is, the terminal may recognize / assume or confirm the form in which sub-blocks associated with each HARQ process number are repeatedly received by being crossed. For example, the terminal may transmit ACK / NACK based on each HARQ process after the second transport block is received.
즉, 도 17 의 예시에서, 단말은 첫번째 전송 블록이 두 개의 서브 블록으로 나누어지고, 첫번째 서브 블록은 HARQ #1 에 해당하는 PDSCH 서브 블록이고, 두번째 서브 블록은 HARQ#2 에 해당하는 PDSCH 서브 블록임을 인지/가정 내지 확인할 수 있다.That is, in the example of FIG. 17, the UE has a first transport block divided into two subblocks, a first subblock is a PDSCH subblock corresponding to HARQ # 1, and a second subblock is a PDSCH subblock corresponding to HARQ # 2. Can be recognized or assumed.
또한, 도 17 의 예시에서, 단말은 두번째 전송 블록이 두 개의 서브 블록으로 나누어지고, 첫번째 서브 블록은 HARQ #1 에 해당하는 PDSCH 서브 블록이고, 두번째 서브 블록은 HARQ#2 에 해당하는 PDSCH 서브 블록임을 인지/가정 내지 확인할 수 있다.In addition, in the example of FIG. 17, the UE has a second transport block divided into two subblocks, a first subblock is a PDSCH subblock corresponding to HARQ # 1, and a second subblock is a PDSCH subblock corresponding to HARQ # 2. Can be recognized or assumed.
예를 들어, 도 17 의 상향링크의 예시를 참조하면, 하나의 DCI 는 두 개의 PUSCH 전송 블록을 스케쥴링할 수 있다. 예를 들어, 각 전송 블록이 복수의 시간 도메인 자원 (예를 들어, 서브프레임 및/또는 슬롯 및/또는 심볼) 로 구성되고, 해당 시간 도메인 자원이 반복 송신에 사용되는 경우, 단말은 각 전송 블록을 구성하는 시간 도메인 자원을 복수의 서브 블록들로 구성하거나, 구성되었다고 인지/가정 내지 확인할 수 있다. 또한, 단말은 각 전송 블록을 구성하는 복수의 서브 블록들 각각에 서로 다른 HARQ 프로세스 번호를 부여하거나, 부여되었다고 인지/가정 내지 확인할 수 있다. 즉, 단말은 각 HARQ 프로세스 번호와 관련된 서브 블록이 교차되어 반복 송신되는 형태로 PUSCH 를 기지국으로 송신할 수 있다. 예를 들어, 기지국은 각각 복수의 시간 도메인 자원으로 구성된 각 PUSCH 전송 블록을 단말로부터 수신하고, 컴바이닝에 기초하여 디코딩할 수 있다. For example, referring to the uplink example of FIG. 17, one DCI may schedule two PUSCH transport blocks. For example, if each transport block is composed of a plurality of time domain resources (eg, subframes and / or slots and / or symbols), and the corresponding time domain resources are used for repetitive transmission, the terminal may transmit each transport block. The time domain resource constituting the P may be configured by a plurality of subblocks, or may be recognized / assumed to be confirmed. In addition, the UE may assign a different HARQ process number to each of a plurality of subblocks constituting each transport block, or may recognize / assume or confirm that it has been assigned. That is, the terminal may transmit the PUSCH to the base station in a form in which sub-blocks associated with each HARQ process number are crossed and repeatedly transmitted. For example, the base station may receive each PUSCH transport block composed of a plurality of time domain resources from the terminal and decode based on the combining.
즉, 단말은 첫번째 전송 블록이 두 개의 서브 블록으로 나누어지고, 첫번째 서브 블록은 HARQ #1 에 해당하는 PUSCH 서브 블록, 두번째 서브 블록은 HARQ#2 에 해당하는 PUSCH 서브 블록이 되도록 구성하거나, 구성되었음을 인지/가정 내지 확인할 수 있다.That is, the UE is configured or configured such that the first transport block is divided into two subblocks, the first subblock is a PUSCH subblock corresponding to HARQ # 1, and the second subblock is a PUSCH subblock corresponding to HARQ # 2. Cognitive / assumed to confirmed.
또한, 단말은 두번째 전송 블록이 두 개의 서브 블록으로 나누어지고, 첫번째 서브 블록은 HARQ #1 에 해당하는 PUSCH 서브 블록, 두번째 서브 블록은 HARQ#2 에 해당하는 PUSCH 서브 블록이 되도록 구성하거나, 구성되었음을 인지/가정 내지 확인할 수 있다.In addition, the UE is configured or configured such that the second transport block is divided into two subblocks, the first subblock is a PUSCH subblock corresponding to HARQ # 1, and the second subblock is a PUSCH subblock corresponding to HARQ # 2. Cognitive / assumed to confirmed.
예시적 실시예에서, 도 17 을 참조하면, 각 서브 블록 간에는 갭이 존재할 수 있다. In an exemplary embodiment, referring to FIG. 17, there may be a gap between each subblock.
예시적 실시예에서, 첫번째 PDSCH 전송 블록을 구성하는 (HARQ #1 에 해당하는) 첫번째 PDSCH 서브 블록과 (HARQ #2 에 해당하는) 두번째 PDSCH 서브 블록 사이에는 갭이 존재할 수 있다. In an exemplary embodiment, there may be a gap between the first PDSCH subblock (corresponding to HARQ # 1) and the second PDSCH subblock (corresponding to HARQ # 2) constituting the first PDSCH transport block.
예시적 실시예에서, 두번째 PDSCH 전송 블록을 구성하는 (HARQ #1 에 해당하는) 첫번째 PDSCH 서브 블록과 (HARQ #2 에 해당하는) 두번째 PDSCH 서브 블록 사이에는 갭이 존재할 수 있다. In an exemplary embodiment, there may be a gap between the first PDSCH subblock (corresponding to HARQ # 1) and the second PDSCH subblock (corresponding to HARQ # 2) constituting the second PDSCH transport block.
예시적 실시예에서, 첫번째 PDSCH 전송 블록과 두번째 PDSCH 전송 블록 사이에는 갭이 존재할 수 있다. 다르게 표현하면, 첫번째 PDSCH 전송 블록에 포함된 두번째 (또는 마지막) PDSCH 서브 블록과 두번째 PDSCH 전송 블록에 포함된 첫번째 PDSCH 서브 블록 사이에는 갭이 존재할 수 있다.In an exemplary embodiment, there may be a gap between the first PDSCH transport block and the second PDSCH transport block. In other words, a gap may exist between the second (or last) PDSCH subblock included in the first PDSCH transport block and the first PDSCH subblock included in the second PDSCH transport block.
예시적 실시예에서, 첫번째 PUSCH 전송 블록을 구성하는 (HARQ #1 에 해당하는) 첫번째 PDSCH 서브 블록과 (HARQ #2 에 해당하는) 두번째 PDSCH 서브 블록 사이에는 갭이 존재할 수 있다. In an exemplary embodiment, there may be a gap between the first PDSCH subblock (corresponding to HARQ # 1) and the second PDSCH subblock (corresponding to HARQ # 2) constituting the first PUSCH transport block.
예시적 실시예에서, 두번째 PUSCH 전송 블록을 구성하는 (HARQ #1 에 해당하는) 첫번째 PDSCH 서브 블록과 (HARQ #2 에 해당하는) 두번째 PDSCH 서브 블록 사이에는 갭이 존재할 수 있다. In an exemplary embodiment, there may be a gap between the first PDSCH subblock (corresponding to HARQ # 1) and the second PDSCH subblock (corresponding to HARQ # 2) constituting the second PUSCH transport block.
예시적 실시예에서, 첫번째 PUSCH 전송 블록과 두번째 PDSCH 전송 블록 사이에는 갭이 존재할 수 있다. 다르게 표현하면, 첫번째 PDSCH 전송 블록에 포함된 두번째 (또는 마지막) PUSCH 서브 블록과 두번째 PDSCH 전송 블록에 포함된 첫번째 PDSCH 서브 블록 사이에는 갭이 존재할 수 있다.In an exemplary embodiment, there may be a gap between the first PUSCH transport block and the second PDSCH transport block. In other words, a gap may exist between the second (or last) PUSCH subblock included in the first PDSCH transport block and the first PDSCH subblock included in the second PDSCH transport block.
예시적 실시예에서, 각 서브 블록 사이의 갭은 동일한 크기를 가질 수도 있으며, 상이한 크기를 가질 수도 있다. 즉, 각 서브 블록의 송신 간에는 갭이 존재할 수 있고, 각 갭은 각각 동일한 크기를 가질 수도 있고, 다른 크기를 가질 수도 있다. 예를 들어, 상향링크 보상 갭(uplink compensation gap) 또는 특수한 용도의 하향링크 갭(downlink gap)이 필요한 경우, 이러한 용도의 갭은 다른 서브 블록 사이의 갭보다 크게 설정 내지 구성될 수 있다. In an exemplary embodiment, the gaps between each subblock may have the same size and may have different sizes. That is, gaps may exist between transmissions of each subblock, and each gap may have the same size or may have a different size. For example, when an uplink compensation gap or a downlink gap for a specific use is required, the gap for this use may be set or configured to be larger than the gap between other subblocks.
예시적 실시예에서, 상술한 다른 서브 블록 사이의 갭은 크기 0 을 가질 수도 있으며, 이 경우 일정 서브 블록 간에는 갭이 설정 내지 구성되지 않을 수도 있다는 것을 의미할 수 있다. In an exemplary embodiment, the gap between the other subblocks described above may have a size 0, which may mean that the gap may not be set or configured between certain subblocks.
예를 들어, 첫번째 PDSCH 전송 블록과 두번째 PDSCH 전송 블록 사이에는 단말의 프로세싱 시간을 고려하여 각 전송 블록의 송신 준비 내지 수신 완료하기 위한 시간을 보장하기 위한 목적으로 갭이 설정 내지 구성되되, 각 전송 블록을 구성하는 서브 블록들 사이에는 갭이 설정 내지 구성되지 않거나, 전송 블록 사이의 갭보다 작게 설정 내지 구성될 수 있다. For example, a gap is set or configured between the first PDSCH transport block and the second PDSCH transport block for the purpose of guaranteeing a time for transmission preparation or completion of transmission of each transport block in consideration of the processing time of the UE. The gap may not be set or configured between the subblocks constituting the subblock, or may be set or configured to be smaller than the gap between the transport blocks.
예를 들어, 첫번째 PUSCH 전송 블록과 두번째 PUSCH 전송 블록 사이에는 상향링크 보상 갭을 고려하여 갭이 설정 내지 구성되되, 각 전송 블록을 구성하는 서브 블록들 사이에는 갭이 설정 내지 구성되지 않거나, 전송 블록 사이의 갭보다 작게 설정 내지 구성될 수 있다.For example, a gap is set or configured between the first PUSCH transport block and the second PUSCH transport block in consideration of an uplink compensation gap, and no gap is set or configured between subblocks constituting each transport block, or a transport block. It can be set or configured smaller than the gap between.
3.1.3. (방법 1-3) 갭 구간 내에서의 HARQ-ACK 송수신3.1.3. (Method 1-3) HARQ-ACK transmission and reception in the gap section
도 18 은 본 개시의 다양한 실시예들에 따른 HARQ-ACK 송수신 구조를 도시한 도면이다. 18 is a diagram illustrating a HARQ-ACK transmission and reception structure according to various embodiments of the present disclosure.
본 개시의 다양한 실시예들에 따르면, 기지국이 단말에 복수의 전송 블록을 송신하는 하향 링크의 송수신에서 전송 블록 간에 갭이 설정 내지 구성된 경우, 단말이 전송 블록 간에 구성된 갭 구간 내에서 앞선 전송 블록(즉 갭 구간 이전에 구성된 전송 블록)들에 대한 HARQ-ACK 을 송신할 수 있다. 본 개시의 다양한 실시예들에 따르면, 갭 구간 이후 전송 블록에 구성되는 정보는 갭 구간 내에서 보고된 HARQ-ACK 에 따라 달라질 수 있다.According to various embodiments of the present disclosure, in a downlink transmission / reception in which a base station transmits a plurality of transport blocks to a user equipment, when a gap is set or configured between transport blocks, the user equipment transmits a preceding transport block within a gap period configured between the transport blocks. That is, HARQ-ACK for the transport blocks configured before the gap period may be transmitted. According to various embodiments of the present disclosure, the information configured in the transport block after the gap period may vary according to HARQ-ACK reported in the gap period.
예시적 실시예에서, 단말이 갭 구간 이전에 구성된 전송 블록들을 수신하는데 성공한 경우 (즉, ACK):In an exemplary embodiment, if the terminal succeeds in receiving transport blocks configured before the gap period (ie, ACK):
- 단말은 갭 구간과 관련된 HARQ-ACK 채널에 기초하여(이용하여) ACK 정보를 기지국으로 리포팅 할 수 있다.The terminal may report ACK information to the base station based on the HARQ-ACK channel associated with the gap period.
- 단말은 다음 PDSCH 수신 구간(즉 갭 구간 이후에 구성된 전송 블록에 대응하는 시간 구간)에서, 갭 구간 이전에 구성된 전송 블록에 해당하는 HARQ 프로세스 번호 다음 차례의 HARQ 프로세스 번호에 해당하는 전송 블록의 수신을 기대할 수 있다.In the next PDSCH reception interval (that is, a time interval corresponding to a transport block configured after the gap period), the UE receives the transmission block corresponding to the HARQ process number next to the HARQ process number corresponding to the transport block configured before the gap period. You can expect.
- 또는, 단말은 이전 전송 블록과 동일한 HARQ 프로세스 번호를 갖지만, 이전 전송 블록과 다른 데이터를 갖는 새로운 전송 블록의 수신을 기대할 수도 있다. 이러한 예시적 실시예는 기지국이 하나의 DCI 로 단말이 관리할 수 있는 HARQ 프로세스의 개수보다 더 많은 개수의 전송 블록(들)을 스케쥴링 하고자 하는 경우에 유리할 수 있다.Or, the terminal may expect to receive a new transport block having the same HARQ process number as the previous transport block but having different data from the previous transport block. This exemplary embodiment may be advantageous when the base station wants to schedule a larger number of transport block (s) than the number of HARQ processes that the terminal can manage with one DCI.
예시적 실시예에서, 단말이 갭 구간 이전에 구성된 전송 블록들을 수신하는데 실패한 경우 (즉, NACK):In an exemplary embodiment, if the terminal fails to receive the transport blocks configured before the gap period (ie, NACK):
- 단말은 갭 구간과 관련된 HARQ-ACK 채널에 기초하여(이용하여) NACK 정보를 기지국으로 송신 내지 보고할 수 있다. 예시적 실시예에서, NACK 정보는 전송 블록의 송신 파라미터를 변경할 것을 요청하는 정보를 포함할 수 있다. 예를 들어, 송신 파라미터는 중복 버전(redundancy version, RV), 변조 및 코딩 방식(modulation and coding scheme, MCS) 등을 포함할 수 있다. The terminal may transmit or report NACK information to the base station based on (using) the HARQ-ACK channel associated with the gap period. In an example embodiment, the NACK information may include information requesting to change the transmission parameter of the transport block. For example, the transmission parameter may include a redundancy version (RV), a modulation and coding scheme (MCS), and the like.
- 또는 단말이 갭 구간과 관련된 HARQ-ACK 채널에 기초하여 NACK 정보를 명시적으로(explicitly) 송신 내지 보고하지 않더라도, 해당 HARQ-ACK 채널을 이용하지 않음으로써 (예를 들어, 해당 HARQ-ACK 채널에서 일정 정보를 기지국으로 송신하지 않음으로써) 기지국에게 NACK 을 알려줄 수도 있다. Or by not using the corresponding HARQ-ACK channel even if the UE does not explicitly transmit or report NACK information based on the HARQ-ACK channel associated with the gap period (eg, the corresponding HARQ-ACK channel). May not notify the base station of the NACK by transmitting certain information to the base station.
- 단말은 다음 PDSCH 수신 구간(즉 갭 구간 이후에 구성된 전송 블록에 대응하는 시간 구간)에서, 갭 구간 이전에 구성된 전송 블록(즉, NACK 에 해당하는 전송 블록)을 다시 수신하거나, 기지국으로부터 재송신을 기대할 수 있다. 예시적 실시예에서, NACK 정보에 송신 파라미터를 변경할 것을 요청하는 정보가 포함된 경우, 재송신은 해당 정보에 기초할 수 있다. 달리 말하면, 재송신되는 전송 블록은 NACK 정보 내의 송신 파라미터를 변경할 것을 요청하는 정보에 기초하여 구성될 수 있다. In the next PDSCH reception interval (that is, a time interval corresponding to a transport block configured after the gap interval), the UE receives a transmission block configured before the gap interval (ie, a transport block corresponding to NACK) or retransmits the information from the base station. You can expect In an exemplary embodiment, if the NACK information includes information requesting to change the transmission parameter, retransmission may be based on the information. In other words, the retransmitted transport block may be configured based on the information requesting to change the transmission parameter in the NACK information.
예시적 실시예에서, 상술한 갭 구간 내에서의 HARQ 피드백은, 갭 구간과 관련된 일정 조건이 만족되는 경우에 수행될 수 있다. 예를 들어, 갭 구간 내에서의 HARQ 피드백 완료 시점과 갭 구간 이후 송신 예약된 (즉, DCI 로 스케쥴링된) 전송 블록(의 시작 시점) 간의 시간 길이가 일정 임계값 내지 특정값 이상인 경우, 상술한 갭 구간 내에서의 HARQ 피드백이 허용될 수 있다. 일정 임계값 내지 특정값은, 기지국이 단말로부터 수신한 HARQ 피드백을 검출 및 이를 반영하여 다음 전송 블록을 생성하기에 필요한 시간이 보장될 수 있는 값일 수 있다. In an exemplary embodiment, HARQ feedback in the above-described gap period may be performed when certain conditions related to the gap period are satisfied. For example, when the time length between the HARQ feedback completion time in the gap period and the transmission block (that is, start time of DCI scheduled for transmission after the gap period) is equal to or greater than a predetermined threshold value or more, HARQ feedback within the gap period may be allowed. The predetermined threshold value to a specific value may be a value at which a time required for generating a next transport block by detecting the HARQ feedback received from the terminal and reflecting the same may be guaranteed.
예시적 실시예에서, 상술한 갭 구간 내에서의 HARQ 피드백 이후 특정 시간 이후 송신되는 다음 전송 블록에 대하여, HARQ 피드백 정보가 반영될 수도 있다. 즉, 예시적 실시예에서, 갭 구간 내의 HARQ 피드백 종료 시점과 다음 전송 블록의 시작 시점이 특정 시간 이상인 경우에, 해당 전송 블록의 정보가 HARQ 피드백 정보가 변경될 수 있다. 예를 들어, NACK 인 경우 갭 구간 이전에 구성된 전송 블록이 재송신될 수 있으며, ACK 인 경우에는 다음 차례의 HARQ 프로세스 번호에 해당하는 전송 블록이 송신될 수 있다.In an exemplary embodiment, HARQ feedback information may be reflected for the next transport block transmitted after a specific time after HARQ feedback in the above-described gap period. That is, in an exemplary embodiment, when the HARQ feedback end time in the gap period and the start time of the next transport block are longer than a specific time, the HARQ feedback information may be changed in the information of the corresponding transport block. For example, in case of NACK, a transport block configured before a gap period may be retransmitted, and in case of ACK, a transport block corresponding to a next HARQ process number may be transmitted.
도 18 을 참조하면, 본 개시의 다양한 실시예들에 따른 HARQ 프로세스(2-HARQ 프로세스) 를 이용한 다중 전송 블록 송수신 구조에서 HARQ-ACK 피드백 방법이 NB-IoT 시스템에 적용된 예시가 도시되었다. Referring to FIG. 18, an example in which a HARQ-ACK feedback method is applied to an NB-IoT system in a multiple transport block transmission / reception structure using a HARQ process (2-HARQ process) according to various embodiments of the present disclosure is illustrated.
예시적 실시예에서, 해당 다중 전송 블록 송수신 구조는 제3.1.1. 절에서 상술한 본 개시의 다양한 실시예들에 따른 HARQ 프로세스에 기초한 송수신 구조에 따라 구성된 것일 수 있다.In an exemplary embodiment, the multiple transport block transmit / receive structure is described in 3.1.1. It may be configured according to the transmission and reception structure based on the HARQ process according to various embodiments of the present disclosure described above in the section.
예시적 실시예에서, HARQ #1 에 해당하는 PDSCH 전송 블록과 HARQ #2 에 해당하는 PDSCH 전송 블록 사이에 구성된 갭 내에서는 HARQ #1 에 대한 HARQ-ACK 이 송신될 수 있다. 즉, 도 18 에서 A/N 1 의 위치에서는 HARQ #1 에 대한 HARQ-ACK 이 송신될 수 있다. In an exemplary embodiment, HARQ-ACK for HARQ # 1 may be transmitted within a gap configured between a PDSCH transport block corresponding to HARQ # 1 and a PDSCH transport block corresponding to HARQ # 2. That is, HARQ-ACK for HARQ # 1 may be transmitted at the position of A / N 1 in FIG. 18.
예시적 실시예에서, A/N 1 의 위치에서 단말로부터 수신된 HARQ-ACK이 ACK 인 경우, 기지국은 HARQ #1 에 해당하는 PDSCH 전송 블록의 송신이 마무리되었음을 가정하고, HARQ #2 에 해당하는 PDSCH 전송 블록의 송신을 시작할 수 있다. In an exemplary embodiment, when HARQ-ACK received from the UE at the position of A / N 1 is ACK, the base station assumes that transmission of the PDSCH transport block corresponding to HARQ # 1 is completed and corresponds to HARQ # 2. Transmission of the PDSCH transport block may begin.
예시적 실시예에서, A/N 1 의 위치에서 단말로부터 수신된 HARQ-ACK 이 NACK 인 경우, 기지국은 다음 전송 블록 송신 타이밍에서 HARQ #1 에 해당하는 PDSCH 를 단말에게 재송신할 수 있다.In an exemplary embodiment, if the HARQ-ACK received from the terminal at the position of A / N 1 is NACK, the base station may retransmit the PDSCH corresponding to HARQ # 1 to the terminal at the next transport block transmission timing.
예시적 실시예에서, A/N 2 의 위치에서는 직전 PDSCH 전송 블록과 관련된 HARQ 프로세스 번호와 관련된 HARQ-ACK 이 보고될 수 있다. In an exemplary embodiment, the HARQ-ACK associated with the HARQ process number associated with the immediately preceding PDSCH transport block may be reported at the location of A / N 2.
예를 들어, A/N 1 의 위치에서 단말로부터 수신된 HARQ-ACK이 ACK 인 경우, 기지국은 A/N 2 직전 PDSCH 전송 블록에서 HARQ #2 에 해당하는 PDSCH 를 송신할 수 있으며, 단말은 A/N 2 의 위치에서 HARQ #2 에 대한 HARQ-ACK 을 기지국으로 송신할 수 있다.For example, when the HARQ-ACK received from the UE at the position of A / N 1 is ACK, the base station may transmit a PDSCH corresponding to HARQ # 2 in the PDSCH transport block immediately before A / N 2, and the UE A HARQ-ACK for HARQ # 2 may be transmitted to the base station at the location of / N 2.
예를 들어, A/N 1 의 위치에서 단말로부터 수신된 HARQ-ACK이 NACK 인 경우, 기지국은 A/N 2 직전 PDSCH 전송 블록에서 HARQ #1 에 해당하는 PDSCH 를 단말에게 재송신할 수 있으며, 단말은 A/N 2 의 위치에서는 재송신된 PDSCH 와 관련된 HARQ #1 에 대한 HARQ-ACK 을 기지국으로 송신할 수 있다.For example, when the HARQ-ACK received from the UE at the location of A / N 1 is NACK, the base station may retransmit the PDSCH corresponding to HARQ # 1 to the UE in the PDSCH transport block immediately before A / N 2, and the UE May transmit HARQ-ACK for the HARQ # 1 associated with the retransmitted PDSCH to the base station at A / N 2 position.
본 개시의 다양한 실시예들에 따르면, 예를 들어, 갭에서 송신되는 HARQ-ACK 이 NACK 인 경우, 단말은 DCI 등의 명시적인 시그널링 없이도 NACK 에 해당하는 PDSCH 를 갭 다음 시간 구간에서 수신할 수 있다. According to various embodiments of the present disclosure, for example, when HARQ-ACK transmitted in a gap is NACK, the UE may receive a PDSCH corresponding to the NACK in a time interval after the gap without explicit signaling such as DCI. .
3.1.3.1. (방법 1-3-1) 반복 수행 및 중단 조건3.1.3.1. (Method 1-3-1) Repeat Execution and Interrupt Condition
본 개시의 다양한 실시예들에 따르면, 단말은 모든 HARQ 프로세스가 종료될 때까지 제 3.1.3 절에서 상술한 동작이 반복 수행된다고 가정할 수 있다.According to various embodiments of the present disclosure, the terminal may assume that the operations described above in Section 3.1.3 are repeatedly performed until all HARQ processes are terminated.
예시적 실시예에서, 단말이 위와 같은 반복 수행을 가정하더라도, 아래 조건 중 하나 이상이 만족되는 경우에는 반복 수행이 중단될 수 있다. 아래 조건은 단말의 무선 통신 환경 변화 및/또는 다른 목적의 하향링크 스케쥴링을 보장하기 위한 것일 수 있다. In an exemplary embodiment, even if the terminal assumes the above repetition, the repetition may be stopped when one or more of the following conditions are satisfied. The following conditions may be for guaranteeing downlink scheduling for changes in the wireless communication environment and / or other purposes of the terminal.
- 이전 DL 그랜트(DL grant, DL assignment) 획득 (수신) 이후, 전송 블록의 송신이 일정 횟수 이상 반복된 경우-When transmission (transmission) of a transport block is repeated a certain number of times after acquiring (receiving) a previous DL grant (DL grant)
- 이전 DL 그랜트 획득 (수신) 이후, 일정 시간이 지난 경우-If a certain time has passed since the previous DL grant acquisition (reception)
- 이전 DL 그랜트 획득 (수신) 이후, 전송 블록의 수신에 실패 및 NACK의 송신 또는 보고가 일정 횟수 이상 발생된 경우After the previous DL grant acquisition (reception), the reception of the transmission block failed and the transmission or report of the NACK occurs more than a certain number of times.
본 개시의 다양한 실시예들에 따르면, 위와 같은 반복 수행 도중 PDSCH 의 재송신이 필요한 경우, 기지국은 명시적인 DCI 송수신이 없이도 PDSCH 을 재송신 할 수 있으며, 단말은 이를 재수신할 수 있다.According to various embodiments of the present disclosure, when retransmission of the PDSCH is required during the above repetition, the base station may retransmit the PDSCH without explicit DCI transmission and reception, and the terminal may re-receive it.
3.1.4. (방법 1-4) bundled HARQ-ACK 송수신 구조3.1.4. (Method 1-4) bundled HARQ-ACK transmission and reception structure
도 19 는 본 개시의 다양한 실시예들에 따른 bundled HARQ-ACK 송수신 구조를 도시한 도면이다. 19 is a diagram illustrating a bundled HARQ-ACK transmission and reception structure according to various embodiments of the present disclosure.
본 개시의 다양한 실시예들에 따른 다중 HARQ 프로세스를 이용한 다중 송수신 블록 송수신 구조에서, 단말은 하향링크의 경우 DL 그랜트로부터 지시된 모든 HARQ 프로세스 번호에 대응하는 전송 블록 (또는 서브-블록) 들을 수신한 이후, 수신된 전송 블록 (또는 서브-블록) 들에 대한 번들링된 HARQ-ACK (bundled HARQ-ACK) 을 송신할 수 있다. 예를 들어, 단말은 각 전송 블록 (또는 서브-블록) 에 대한 1비트 ACK/NACK 정보를 획득하고, 이를 AND 연산에 기초하여 번들링 하여 수신된 모든 전송 블록 (또는 서브-블록) 에 대한 1 비트 ACK/NACK 정보를 획득할 수 있다. 예를 들어, 수신된 모든 전송 블록 (또는 서브-블록) 에 대한 모든 HARQ 프로세스가 ACK 인 경우 번들링된 HARQ-ACK 은 ACK 으로 표현되며, 하나 이상의 HARQ 프로세스가 NACK 인 경우 번들링된 HARQ-ACK 은 NACK 으로 표현될 수 있다.In a multiple transmit / receive block transmission / reception structure using a multiple HARQ process according to various embodiments of the present disclosure, a terminal may receive transport blocks (or sub-blocks) corresponding to all HARQ process numbers indicated from a DL grant in case of downlink. Thereafter, the bundled HARQ-ACK may be transmitted for the received transport blocks (or sub-blocks). For example, the terminal obtains 1-bit ACK / NACK information for each transport block (or sub-block), and bundles it based on an AND operation to 1-bit for all transport blocks (or sub-blocks) received. ACK / NACK information can be obtained. For example, when all HARQ processes for all received transport blocks (or sub-blocks) are ACKs, the bundled HARQ-ACK is represented by an ACK. When one or more HARQ processes are NACKs, the bundled HARQ-ACKs are NACKs. It can be expressed as.
본 개시의 다양한 실시예들에 따르면, 번들링된 HARQ-ACK 은 전송 블록 (또는 서브-블록)의 송신 간에 설정된 갭 내에서 송신될 수 있다. According to various embodiments of the present disclosure, the bundled HARQ-ACK may be transmitted within a gap established between transmissions of a transport block (or sub-block).
본 개시의 다양한 실시예들에 따르면, 번들링된 HARQ-ACK 이 bundled-NACK 인 경우, 즉, 번들링된 HARQ-ACK 과 관련된 전송 블록 (또는 서브-블록) 의 수신이 bundled-NACK 인 경우, 단말은 HARQ-ACK 의 송신 시점 이후, 별도의 DCI 모니터링 없이도, 해당 전송 블록 (또는 서브-블록) 이 재송신될 것을 기대할 수 있다.According to various embodiments of the present disclosure, when the bundled HARQ-ACK is bundled-NACK, that is, when the reception of a transport block (or sub-block) associated with the bundled HARQ-ACK is bundled-NACK, After the transmission time of the HARQ-ACK, it can be expected that the corresponding transport block (or sub-block) to be retransmitted without additional DCI monitoring.
본 개시의 다양한 실시예들에 따르면, 번들링된 HARQ-ACK 이 bundled-ACK 인 경우, 즉, 번들링된 HARQ-ACK 과 관련된 전송 블록 (또는 서브-블록) 의 수신이 bundled-ACK 인 경우, 단말은 HARQ-ACK 의 송신 시점 이후, 새로운 그랜트를 수신하기 위하여 DCI 를 모니터링 하도록 구성될 수 있다. According to various embodiments of the present disclosure, when the bundled HARQ-ACK is bundled-ACK, that is, when the reception of a transport block (or sub-block) associated with the bundled HARQ-ACK is bundled-ACK, After the time of transmission of the HARQ-ACK, it may be configured to monitor the DCI to receive a new grant.
도 19 를 참조하면, 본 개시의 다양한 실시예들에 따른 bundled HARQ-ACK 송수신 구조가 NB-IoT 시스템에 적용된 예시가 도시되었다.Referring to FIG. 19, an example of applying a bundled HARQ-ACK transmission / reception structure according to various embodiments of the present disclosure to an NB-IoT system is illustrated.
예시적 실시예에서, 해당 다중 전송 블록 송수신 구조는 제 3.1.1. 절 또는 제 3.1.2 절에서 상술한 본 개시의 다양한 실시예들에 따른 HARQ 프로세스에 기초한 송수신 구조에 따라 구성된 것일 수 있다.In an exemplary embodiment, the corresponding multiple transport block transmit / receive structure is described in 3.1.1. It may be configured according to the transmission and reception structure based on the HARQ process according to various embodiments of the present disclosure described above in section 3.1.2 or 3.1.2.
예시적 실시예에서, 해당 다중 전송 블록 송수신 구조가 제 3.1.2 절에서 상술한 본 개시의 다양한 실시예들에 따른 HARQ 프로세스에 기초하여 구성된 경우, bundled HARQ-ACK 은 서브-블록 간에 구성된 갭 내에서 송신될 수 있다.In an exemplary embodiment, when the corresponding multiple transport block transmit / receive structure is configured based on a HARQ process according to various embodiments of the present disclosure described above in section 3.1.2, bundled HARQ-ACK is in a gap configured between sub-blocks. Can be sent from.
예시적 실시예에서, 번들링된 HARQ-ACK 이 bundled-NACK 인 경우, 단말은 별도의 DCI 모니터링 없이, 번들링된 HARQ-ACK 송신 시점 이후, 앞선 전송 블록 (또는 서브-블록) 들이 재송신 될 것을 기대할 수 있다. 즉, 예시적 실시예에서, 번들링된 HARQ-ACK 이 bundled-NACK 인 경우, 단말은 별도의 DCI 모니터링 없이도, (이전 DL 그랜트에 의하여 스케쥴링된) bundled-NACK 에 해당하는 전송 블록 (또는 서브-블록) 들이 번들링된HARQ-ACK 송신 시점 이후 재송신될 것을 기대할 수 있다. In an exemplary embodiment, when the bundled HARQ-ACK is bundled-NACK, the UE may expect that the preceding transport blocks (or sub-blocks) are retransmitted after the bundled HARQ-ACK transmission time point, without additional DCI monitoring. have. That is, in the exemplary embodiment, when the bundled HARQ-ACK is bundled-NACK, the UE is a transport block (or sub-block) corresponding to the bundled-NACK (scheduled by the previous DL grant), without additional DCI monitoring ) Can be expected to be retransmitted after the bundled HARQ-ACK transmission time.
예시적 실시예에서, 단말은 DL 그랜트에 의하여 스케쥴링된 모든 서브-블록들의 송신이 마무리된 이후, 단말은 기지국으로 HARQ-ACK 을 보고할 수 있다. 여기서, HARQ-ACK 은 HARQ 프로세스 별로 구분되도록 멀티플렉싱된 HARQ-ACK 일 수 있다. 예를 들어, 단말은 N 개 전송 블록 (또는 서브-블록) 에 대한 1비트 ACK/NACK 정보를 획득하고, 이를 멀티플렉싱 하여, N 개 HARQ 프로세스 별로 ACK/NACK 정보를 각각 나타내는 N 비트 비트 시퀀스를 포함하는 HARQ-ACK 정보를 획득할 수 있다. 예시적 실시예에서, 단말이 전송 블록 (또는 서브-블록) 간에 구성된 갭 내에서 bundled-NACK 을 보고한 경우, 단말은 해당 bundled-NACK 송신 이후 해당 bundled-NACK 과 관련된 전송 블록 (또는 서브-블록)의 재송신을 기대할 수 있다. 예시적 실시예에서, 전송 블록 (또는 서브-블록)의 재송신이 종료된 이후, 단말은 해당 재송신된 전송 블록 (또는 서브-블록) 에 대한 HARQ-ACK 을 보고할 수 있다. 여기서, 해당 HARQ-ACK 은 재송신된 전송 블록 (또는 서브-블록) 의 각 HARQ 프로세스가 구별되도록, 멀티플렉싱 된 것일 수 있다.In an exemplary embodiment, after the terminal finishes transmitting all sub-blocks scheduled by the DL grant, the terminal may report HARQ-ACK to the base station. Here, the HARQ-ACK may be a HARQ-ACK multiplexed to be divided by HARQ processes. For example, the UE acquires 1-bit ACK / NACK information for N transport blocks (or sub-blocks), and multiplexes it, and includes an N-bit sequence of bits each representing ACK / NACK information for each N HARQ processes. HARQ-ACK information can be obtained. In an exemplary embodiment, when the UE reports a bundled-NACK within a gap configured between transport blocks (or sub-blocks), the UE may transmit a transport block (or sub-block associated with the bundled-NACK after the corresponding bundled-NACK transmission). You can expect to resend. In an exemplary embodiment, after retransmission of a transport block (or sub-block) is terminated, the terminal may report HARQ-ACK for the corresponding retransmitted transport block (or sub-block). Here, the HARQ-ACK may be multiplexed so that each HARQ process of the retransmitted transport block (or sub-block) is distinguished.
예시적 실시예에서, 번들링된 HARQ-ACK 이 bundled-ACK 인 경우, 단말은 이전 DCI 에 의하여 스케쥴링된 나머지 서브-블록들에 대한 모니터링을 더 이상 수행하지 않고, 새로운 DCI 를 모니터링 하도록 설정/구성될 수 있다. 예시적 실시예에서, 단말은 새로운 DCI 의 DL 그랜트에 기초하여 다음 전송 블록 (또는 서브-블록) 들을 수신할 수 있으며, 다음 전송 블록 (또는 서브-블록) 들의 송신 종료 시점 이후, 그에 대한 번들링된 HARQ-ACK 을 보고할 수도 있다.In an exemplary embodiment, when the bundled HARQ-ACK is bundled-ACK, the UE no longer performs monitoring for the remaining sub-blocks scheduled by the previous DCI, and may be configured / configured to monitor the new DCI. Can be. In an exemplary embodiment, the terminal may receive the next transport blocks (or sub-blocks) based on the DL grant of the new DCI, and after the end of transmission of the next transport blocks (or sub-blocks), bundled thereto. The HARQ-ACK may be reported.
3.1.5. (방법 1-5) compact DCI / indication signal 에 기초한 송수신 구조3.1.5. (Method 1-5) Transmission and reception structure based on compact DCI / indication signal
도 20 은 본 개시의 다양한 실시예들에 따른 compact DCI / indication signal 에 기초한 송수신 구조를 도시한 도면이다.20 is a diagram illustrating a transmission / reception structure based on a compact DCI / indication signal according to various embodiments of the present disclosure.
본 개시의 다양한 실시예들에 따르면, compact DCI 는, 단말이 다중 전송 블록 송신과 관련된 스케쥴링을 기대하는 DCI 에 대비하여 보다 작은 정보 (information) 크기와 짧은 반복 (repetition) 크기를 갖는 DCI 를 의미할 수 있다. According to various embodiments of the present disclosure, the compact DCI may mean a DCI having a smaller information size and a shorter repetition size in preparation for the DCI in which the terminal expects scheduling associated with multiple transport block transmission. Can be.
예를 들어, 단말이 수신한 전송 블록에 NACK 이 포함된 경우, compact DCI 는 (NACK에 대응하는) 해당 전송 블록의 HARQ 프로세스 번호 정보 및/또는 재송신 지연 시간에 대한 정보를 포함할 수 있으며, 전송 블록 크기(transport block size, TBS)에 대한 정보 등은 생략될 수 있다.For example, when the NACK is included in the transport block received by the UE, the compact DCI may include HARQ process number information and / or retransmission delay time information of the corresponding transport block (corresponding to NACK), and may be transmitted. Information on a transport block size (TBS) may be omitted.
예를 들어, 단말이 수신한 전송 블록이 모두 ACK 인 경우, compact DCI 는 단말이 뒤이어 모니터링할 (N)PDCCH 또는 MPDCCH format (예를 들어, 단일 전송 블록 스케쥴링을 위한 DCI 포맷 또는 다중 전송 블록 스케쥴링을 위한 DCI 포맷) 을 지시하는 정보만 포함할 수 있다.For example, if all of the transport blocks received by the UE are ACK, the compact DCI is configured to perform (N) PDCCH or MPDCCH format (eg, DCI format for scheduling a single transport block or multiple transport block scheduling). Information indicating a DCI format).
본 개시의 다양한 실시예들에 따르면, indication signal (지시 신호) 은 재송신 동작과 DCI 모니터링 동작을 구분하여 지시할 수 있는 정보를 단말에게 제공하는 신호를 의미할 수 있다. 예시적 실시예에서, indication signal 로 WUS (wake-up-signal) 이 사용될 수 있다.According to various embodiments of the present disclosure, the indication signal (indication signal) may refer to a signal that provides information to the terminal to distinguish between the retransmission operation and the DCI monitoring operation. In an exemplary embodiment, wake-up-signal (WUS) may be used as the indication signal.
본 개시의 다양한 실시예들에 따른 다중 HARQ 프로세스를 이용한 다중 송수신 블록 송수신 구조에서, 단말은 상향링크의 경우 UL 그랜트로부터 지시된 모든 HARQ 프로세스 번호에 대응하는 전송 블록 (또는 서브-블록) 들을 송신한 이후, compact DCI (또는 indication signal) 를 기대할 수 있다. In a multiple transmit / receive block transmission / reception structure using a multiple HARQ process according to various embodiments of the present disclosure, a terminal transmits transport blocks (or sub-blocks) corresponding to all HARQ process numbers indicated from a UL grant in the case of uplink. Afterwards, a compact DCI (or indication signal) can be expected.
본 개시의 다양한 실시예들에 따르면, compact DCI (또는 indication signal) 가 재송신을 지시하는 경우, 단말은 별도의 DCI 모니터링 없이도 compact DCI (또는 indication signal) 수신 시점 이후 앞선 전송 블록 (또는 서브-블록) 들을 재수신할 수 있다. According to various embodiments of the present disclosure, when a compact DCI (or indication signal) indicates retransmission, the UE may transmit a preceding transport block (or sub-block) after a compact DCI (or indication signal) reception time without additional DCI monitoring. Can listen again.
본 개시의 다양한 실시예들에 따르면, compact DCI (또는 indication signal) 가 DCI 모니터링을 지시하는 경우, 단말은 새로운 그랜트를 수신하기 위한 DCI 를 모니터링 하도록 설정/구성될 수 있다. According to various embodiments of the present disclosure, when the compact DCI (or indication signal) indicates DCI monitoring, the terminal may be configured / configured to monitor the DCI for receiving a new grant.
도 20 을 참조하면, 본 개시의 다양한 실시예들에 따른 compact DCI 에 기초한 송수신 구조가 NB-IoT 시스템에 적용된 예시가 도시되었다.Referring to FIG. 20, an example in which a transmit / receive structure based on compact DCI according to various embodiments of the present disclosure is applied to an NB-IoT system is illustrated.
예시적 실시예에서, 해당 다중 전송 블록 송수신 구조는 제 3.1.1. 절 또는 제 3.1.2 절에서 상술한 본 개시의 다양한 실시예들에 따른 HARQ 프로세스에 기초한 송수신 구조에 따라 구성된 것일 수 있다.In an exemplary embodiment, the corresponding multiple transport block transmit / receive structure is described in 3.1.1. It may be configured according to the transmission and reception structure based on the HARQ process according to various embodiments of the present disclosure described above in section 3.1.2 or 3.1.2.
예시적 실시예에서, 해당 다중 전송 블록 송수신 구조가 제 3.1.2 절에서 상술한 본 개시의 다양한 실시예들에 따른 HARQ 프로세스에 기초하여 구성된 경우, compact DCI (또는 indication signal) 은 서브-블록 간에 구성된 갭 내에서 수신될 수 있다.In an exemplary embodiment, if the corresponding multiple transport block transmit / receive structure is configured based on the HARQ process according to various embodiments of the present disclosure described above in section 3.1.2, compact DCI (or indication signal) is inter-sub-block. Can be received within the configured gap.
예시적 실시예에서, compact DCI (또는 indication signal) 이 재송신을 지시하는 경우, 단말은 이전 DL 그랜트 스케쥴링된 PDSCH 의 송신을 계속해서 기대할 수 있다.In an exemplary embodiment, when the compact DCI (or indication signal) indicates retransmission, the terminal may continue to expect transmission of the previous DL grant scheduled PDSCH.
예시적 실시예에서, compact DCI (또는 indication signal) 가 다음 DCI 를 모니터링 할 것을 지시하는 경우, 단말은 이전에 스케쥴링된 나머지 서브-블록들에 대한 모니터링을 더 이상 수행하지 않고, 새로운 DCI 를 모니터링을 시작하도록 설정/구성될 수 있다.In an exemplary embodiment, when the compact DCI (or indication signal) instructs to monitor the next DCI, the terminal no longer performs monitoring for the remaining previously scheduled sub-blocks, and monitors the new DCI. Can be set / configured to start
상기 설명한 본 개시의 다양한 실시예들은 본 개시의 다양한 구현 방식들 중 일부이며, 본 개시의 다양한 실시예들이 상술한 실시예들에 한정되지 않는다는 것은 당해 기술 분야에서 통상의 지식을 가진 자에게 명백하게 이해될 수 있다. 또한, 상기 설명한 본 개시의 다양한 실시예들은 독립적으로 구현될 수도 있지만, 일부 실시예들의 조합 (또는 병합) 형태로 본 개시의 또 다른 다양한 실시예들을 구성할 수도 있다. 상기 설명한 본 개시의 다양한 실시예들의 적용 여부 정보 (또는 상기 설명한 본 개시의 다양한 실시예들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예: 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.The various embodiments of the present disclosure described above are some of various implementation manners of the present disclosure, and it is clearly understood by those skilled in the art that the various embodiments of the present disclosure are not limited to the above-described embodiments. Can be. In addition, while the various embodiments of the present disclosure described above may be implemented independently, other various embodiments of the present disclosure may be configured in the form of a combination (or merge) of some embodiments. The information on whether the various embodiments of the present disclosure described above are applied (or information on the rules of the various embodiments of the present disclosure described above) is a signal (eg, a physical layer signal or a higher layer signal) predefined by the base station to the terminal. Rules can be defined to inform via.
3.2. 네트워크 초기 접속 및 통신 과정3.2. Network initial access and communication process
3.2.1. 레가시 네트워크 초기 접속 및 통신 과정3.2.1. Legacy Network Initial Access and Communication Process
본 개시의 다양한 실시예들에 따른 단말은 앞에서 설명/제안한 절차 및/또는 방법들을 수행하기 위해 네트워크 접속 과정을 수행할 수 있다. 예를 들어, 단말은 네트워크(예, 기지국)에 접속을 수행하면서, 앞에서 설명/제안한 절차 및/또는 방법들을 수행하는데 필요한 시스템 정보와 구성 정보들을 수신하여 메모리에 저장할 수 있다. 본 개시의 다양한 실시예들에 필요한 구성 정보들은 상위 계층(예, RRC layer; Medium Access Control, MAC, layer 등) 시그널링을 통해 수신될 수 있다.A terminal according to various embodiments of the present disclosure may perform a network access procedure to perform the above-described procedures and / or methods. For example, while accessing a network (eg, a base station), the terminal may receive and store system information and configuration information necessary to perform the above-described procedures and / or methods in a memory. Configuration information required for various embodiments of the present disclosure may be received through higher layer (eg, RRC layer; Medium Access Control, MAC, layer, etc.) signaling.
도 21은 본 개시의 다양한 실시예들에 따른 네트워크 초기 접속 및 이후의 통신 과정을 간단히 나타낸 도면이다. 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에서 물리 채널, 참조 신호는 빔-포밍을 이용하여 전송될 수 있다. 빔-포밍 기반의 신호 전송이 지원되는 경우, 기지국과 단말 간에 빔을 정렬하기 위해 빔-관리(beam management) 과정이 수반될 수 있다. 또한, 본 개시의 다양한 실시예들에서 제안하는 신호는 빔-포밍을 이용하여 전송/수신될 수 있다. RRC(Radio Resource Control) IDLE 모드에서 빔 정렬은 SSB(또는 SS/PBCH 블록)를 기반하여 수행될 수 있다. 반면, RRC CONNECTED 모드에서 빔 정렬은 CSI-RS (in DL) 및 SRS (in UL)에 기반하여 수행될 수 있다. 한편, 빔-포밍 기반의 신호 전송이 지원되지 않는 경우, 이하의 설명에서 빔과 관련된 동작은 생략될 수 있다.21 is a diagram illustrating a network initial access and subsequent communication process according to various embodiments of the present disclosure. In an NR system to which various embodiments of the present disclosure are applicable, a physical channel and a reference signal may be transmitted using beam-forming. When beam-forming based signal transmission is supported, a beam management process may be involved to align the beam between the base station and the terminal. In addition, a signal proposed in various embodiments of the present disclosure may be transmitted / received using beam-forming. In RRC (Radio Resource Control) IDLE mode, beam alignment may be performed based on SSB (or SS / PBCH block). On the other hand, beam alignment in the RRC CONNECTED mode may be performed based on CSI-RS (in DL) and SRS (in UL). Meanwhile, when beam-forming based signal transmission is not supported, an operation related to a beam may be omitted in the following description.
도 21에 도시된 바와 같이, 기지국(예, BS)는 SSB를 주기적으로 전송할 수 있다(S2102). 여기서, SSB는 PSS/SSS/PBCH를 포함한다. SSB는 빔 스위핑을 이용하여 전송될 수 있다. 이후, 기지국은 RMSI(Remaining Minimum System Information)와 OSI(Other System Information)를 전송할 수 있다(S2104). RMSI는 단말이 기지국에 초기 접속하는데 필요한 정보(예, PRACH 구성 정보)를 포함할 수 있다. 한편, 단말은 SSB 검출을 수행한 뒤, 베스트 SSB를 식별한다. 이후, 단말은 베스트 SSB의 인덱스(즉, 빔)에 링크된/대응되는 PRACH 자원을 이용하여 RACH 프리앰블(Message 1, Msg1)을 기지국에게 전송할 수 있다(S2106). RACH 프리앰블의 빔 방향은 PRACH 자원과 연관된다. PRACH 자원 (및/또는 RACH 프리앰블)과 SSB (인덱스)간 연관성(association)은 시스템 정보(예, RMSI)를 통해 설정될 수 있다. 이후, RACH 과정의 일환으로, 기지국은 RACH 프리앰블에 대한 응답으로 RAR(Random Access Response)(Msg2)를 전송하고(S2108), 단말은 RAR 내 UL 그랜트를 이용하여 Msg3(예, RRC Connection Request)을 전송하고(S2110), 기지국은 충돌 해결(contention resolution) 메세지(Msg4)를 전송할 수 있다(S2112). Msg4는 RRC Connection Setup을 포함할 수 있다.As shown in FIG. 21, the base station (eg, BS) may periodically transmit the SSB (S2102). Here, SSB includes PSS / SSS / PBCH. SSB may be transmitted using beam sweeping. Thereafter, the base station can transmit the RMSI (Remaining Minimum System Information) and OSI (Other System Information) (S2104). The RMSI may include information (eg, PRACH configuration information) necessary for the terminal to initially access the base station. Meanwhile, the terminal identifies the best SSB after performing SSB detection. Thereafter, the terminal may transmit the RACH preamble (Message 1, Msg1) to the base station by using the PRACH resources linked / corresponding to the index (ie, beam) of the best SSB (S2106). The beam direction of the RACH preamble is associated with a PRACH resource. The association between the PRACH resource (and / or RACH preamble) and the SSB (index) may be established through system information (eg, RMSI). Then, as part of the RACH process, the base station transmits a random access response (RAR) (Msg2) (R2108) in response to the RACH preamble (S2108), the terminal uses Msg3 (eg, RRC Connection Request) by using the UL grant in the RAR In operation S2110, the base station may transmit a contention resolution message Msg4 in operation S2112. Msg4 may include an RRC Connection Setup.
RACH 과정을 통해 기지국과 단말간에 RRC 연결이 설정되면, 그 이후의 빔 정렬은 SSB/CSI-RS (in DL) 및 SRS (in UL)에 기반하여 수행될 수 있다. 예를 들어, 단말은 SSB/CSI-RS를 수신할 수 있다(S2114). SSB/CSI-RS는 단말이 빔/CSI 보고를 생성하는데 사용될 수 있다. 한편, 기지국은 DCI를 통해 빔/CSI 보고를 단말에게 요청할 수 있다(S2116). 이 경우, 단말은 SSB/CSI-RS에 기반하여 빔/CSI 보고를 생성하고, 생성된 빔/CSI 보고를 PUSCH/PUCCH를 통해 기지국에게 전송할 수 있다(S2418). 빔/CSI 보고는 빔 측정 결과, 선호하는 빔에 관한 정보 등을 포함할 수 있다. 기지국과 단말은 빔/CSI 보고에 기반하여 빔을 스위칭 할 수 있다(S2120a, S2120b).If the RRC connection is established between the base station and the terminal through the RACH process, subsequent beam alignment may be performed based on SSB / CSI-RS (in DL) and SRS (in UL). For example, the terminal may receive the SSB / CSI-RS (S2114). The SSB / CSI-RS may be used by the terminal to generate a beam / CSI report. On the other hand, the base station may request the terminal to the beam / CSI report through the DCI (S2116). In this case, the terminal may generate a beam / CSI report based on the SSB / CSI-RS and transmit the generated beam / CSI report to the base station through the PUSCH / PUCCH (S2418). The beam / CSI report may include a beam measurement result, information on a preferred beam, and the like. The base station and the terminal may switch the beam based on the beam / CSI report (S2120a, S2120b).
이후, 단말과 기지국은 앞에서 설명/제안한 절차 및/또는 방법들을 수행할 수 있다. 예를 들어, 단말과 기지국은 네트워크 접속 과정(예, 시스템 정보 획득 과정, RACH를 통한 RRC 연결 과정 등)에서 얻은 구성 정보에 기반하여, 본 개시의 다양한 실시예들에 따라 메모리에 있는 정보를 처리하여 무선 신호를 전송하거나, 수신된 무선 신호를 처리하여 메모리에 저장할 수 있다. 여기서, 무선 신호는 하향링크의 경우 PDCCH, PDSCH, RS(Reference Signal) 중 적어도 하나를 포함하고, 상향링크의 경우 PUCCH, PUSCH, SRS 중 적어도 하나를 포함할 수 있다.Thereafter, the terminal and the base station may perform the above-described procedures and / or methods. For example, the terminal and the base station process information in a memory according to various embodiments of the present disclosure based on configuration information obtained in a network access process (eg, system information acquisition process, RRC connection process through RACH, etc.). The wireless signal may be transmitted, or the received wireless signal may be processed and stored in a memory. Here, the radio signal may include at least one of PDCCH, PDSCH, and RS (Reference Signal) in downlink, and at least one of PUCCH, PUSCH, and SRS in uplink.
상술한 내용은 MTC 시스템, NB-IoT 시스템 등에 공통적으로 적용될 수 있다. NB-IoT 시스템에서 달라질 수 있는 부분에 대해서는 아래에서 추가로 설명한다.The above description may be commonly applied to an MTC system, an NB-IoT system, and the like. The parts that can vary in the NB-IoT system are described further below.
3.2.2. NB-IoT 네트워크 초기 접속 및 통신 과정3.2.2. NB-IoT network initial access and communication process
LTE를 기준으로 NB-IoT 네트워크 접속 과정에 대해 추가로 설명한다. 이하의 설명은 NR에도 확장 적용될 수 있다. 도 21(a)에서 S702의 PSS, SSS 및 PBCH는 각각 NB-IoT에서 NPSS, NSSS 및 NPBCH로 대체된다.The process of accessing an NB-IoT network is further described based on LTE. The following description may be extended to NR as well. In FIG. 21 (a), the PSS, SSS and PBCH of S702 are replaced with NPSS, NSSS and NPBCH in NB-IoT, respectively.
NB-IoT RACH 과정은 기본적으로 LTE RACH 과정과 동일하며 다음 사항에서 차이가 있다. 첫째, RACH 프리앰블 포맷이 상이하다. LTE에서 프리앰블은 코드/시퀀스(예, zadoff-chu 시퀀스)에 기반하는 반면, NB-IoT에서 프리앰블은 서브캐리어이다. 둘째, NB-IoT RACH 과정은 CE 레벨에 기반하여 수행된다. 따라서, CE 레벨 별로 PRACH 자원이 서로 다르게 할당된다. 셋째, NB-IoT에는 SR 자원이 구성되지 않으므로, NB-IoT에서 상향링크 자원 할당 요청은 RACH 과정을 이용하여 수행된다.The NB-IoT RACH process is basically the same as the LTE RACH process and is different in the following matters. First, the RACH preamble format is different. In LTE, the preamble is based on code / sequence (eg, zadoff-chu sequence), whereas in NB-IoT the preamble is a subcarrier. Secondly, the NB-IoT RACH process is performed based on the CE level. Therefore, PRACH resources are allocated differently for each CE level. Third, since the SR resource is not configured in the NB-IoT, the uplink resource allocation request is performed using the RACH procedure in the NB-IoT.
도 22 는 NB-IoT RACH 에서 프리앰블 송신을 예시한 도면이다.22 is a diagram illustrating preamble transmission in an NB-IoT RACH.
도 22를 참조하면, NPRACH 프리앰블은 4개 심볼 그룹으로 구성되며, 각 심볼 그룹은 CP와 복수(예, 5)의 SC-FDMA 심볼로 구성될 수 있다. NR에서 SC-FDMA 심볼은 OFDM 심볼 또는 DFT-s-OFDM 심볼로 대체될 수 있다. NPRACH는 3.75kHz 서브캐리어 간격의 싱글-톤 전송만 지원하며, 서로 다른 셀 반경을 지원하기 위해 66.7μs과 266.67μs 길이의 CP를 제공한다. 각 심볼 그룹은 주파수 호핑을 수행하며 호핑 패턴은 다음과 같다. 첫 번째 심볼 그룹을 전송하는 서브캐리어는 의사 랜덤(pseudo-random) 방식으로 결정된다. 두 번째 심볼 그룹은 1 서브캐리어 도약, 세 번째 심볼 그룹은 6 서브캐리어 도약, 그리고 네 번째 심볼 그룹은 1 서브캐리어 도약을 한다. 반복 전송의 경우에는 주파수 호핑 절차를 반복 적용하며, NPRACH 프리앰블은 커버리지 개선을 위해 {1, 2, 4, 8, 16, 32, 64, 128}번 반복 전송이 가능하다. NPRACH 자원은 CE 레벨 별로 구성될 수 있다. 단말은 하향링크 측정 결과(예, RSRP)에 따라 결정된 CE 레벨에 기반하여 NPRACH 자원을 선택하고, 선택된 NPRACH 자원을 이용하여 RACH 프리앰블을 전송할 수 있다. NPRACH는 앵커 캐리어에서 전송되거나, NPRACH 자원이 설정된 논-앵커 캐리어에서 전송될 수 있다.Referring to FIG. 22, the NPRACH preamble may consist of four symbol groups, and each symbol group may be composed of a CP and a plurality of SC-FDMA symbols. In NR, the SC-FDMA symbol may be replaced with an OFDM symbol or a DFT-s-OFDM symbol. The NPRACH only supports single-tone transmissions with 3.75kHz subcarrier spacing, and offers 66.7μs and 266.67μs length CPs to support different cell radii. Each symbol group performs frequency hopping and the hopping pattern is as follows. The subcarrier transmitting the first symbol group is determined in a pseudo-random manner. The second symbol group is one subcarrier leap, the third symbol group is six subcarrier leaps, and the fourth symbol group is one subcarrier leap. In the case of repetitive transmission, the frequency hopping procedure is repeatedly applied, and the NPRACH preamble can perform {1, 2, 4, 8, 16, 32, 64, 128} repetitive transmission to improve coverage. NPRACH resources may be configured for each CE level. The UE may select the NPRACH resource based on the CE level determined according to the downlink measurement result (eg, RSRP) and transmit the RACH preamble using the selected NPRACH resource. The NPRACH may be transmitted on an anchor carrier or on a non-anchor carrier with NPRACH resources configured.
3.3. DRX (Discontinuous Reception) 동작3.3. DRX (Discontinuous Reception) Operation
도 23 은 본 개시의 다양한 실시예들에 따른 DRX 동작을 예시한 도면이다.23 is a diagram illustrating a DRX operation according to various embodiments of the present disclosure.
본 개시의 다양한 실시예들에 따른 단말은 앞에서 설명/제안한 절차 및/또는 방법들을 수행하면서 DRX 동작을 수행할 수 있다. DRX가 설정된 단말은 DL 신호를 불연속적으로 수신함으로써 전력 소비를 낮출 수 있다. DRX는 RRC(Radio Resource Control)_IDLE 상태, RRC_INACTIVE 상태, RRC_CONNECTED 상태에서 수행될 수 있다. RRC_IDLE 상태와 RRC_INACTIVE 상태에서 DRX는 페이징 신호를 불연속 수신하는데 사용된다. A terminal according to various embodiments of the present disclosure may perform a DRX operation while performing the procedures and / or methods described above. A terminal configured with DRX may lower power consumption by discontinuously receiving a DL signal. DRX may be performed in a Radio Resource Control (RRC) _IDLE state, an RRC_INACTIVE state, and an RRC_CONNECTED state. In the RRC_IDLE and RRC_INACTIVE states, the DRX is used to discontinuously receive the paging signal.
3.3.1. RRC_CONNECTED DRX3.3.1. RRC_CONNECTED DRX
RRC_CONNECTED 상태에서 DRX는 PDCCH의 불연속 수신에 사용된다. 편의상, RRC_CONNECTED 상태에서 수행되는 DRX를 RRC_CONNECTED DRX라고 지칭한다.In the RRC_CONNECTED state, DRX is used for discontinuous reception of PDCCH. For convenience, DRX performed in the RRC_CONNECTED state is referred to as RRC_CONNECTED DRX.
도 23(a)를 참조하면, DRX 사이클은 On Duration과 Opportunity for DRX로 구성된다. DRX 사이클은 On Duration이 주기적으로 반복되는 시간 간격을 정의한다. On Duration은 단말이 PDCCH를 수신하기 위해 모니터링 하는 시간 구간을 나타낸다. DRX가 설정되면, 단말은 On Duration 동안 PDCCH 모니터링을 수행한다. PDCCH 모니터링 동안에 성공적으로 검출된 PDCCH가 있는 경우, 단말은 inactivity 타이머를 동작시키고 깬(awake) 상태를 유지한다. 반면, PDCCH 모니터링 동안에 성공적으로 검출된 PDCCH가 없는 경우, 단말은 On Duration이 끝난 뒤 슬립(sleep) 상태로 들어간다. 따라서, DRX가 설정된 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 불연속적으로 수행될 수 있다. 예를 들어, DRX가 설정된 경우, 본 개시의 다양한 실시예들에서 PDCCH 수신 기회(occasion)(예, PDCCH 탐색 공간을 갖는 슬롯)는 DRX 설정에 따라 불연속적으로 설정될 수 있다. 반면, DRX가 설정되지 않은 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 연속적으로 수행될 수 있다. 예를 들어, DRX가 설정되지 않은 경우, 본 개시의 다양한 실시예들에서 PDCCH 수신 기회(예, PDCCH 탐색 공간을 갖는 슬롯)는 연속적으로 설정될 수 있다. 한편, DRX 설정 여부와 관계 없이, 측정 갭으로 설정된 시간 구간에서는 PDCCH 모니터링이 제한될 수 있다.Referring to FIG. 23A, the DRX cycle includes On Duration and Opportunity for DRX. The DRX cycle defines the time interval in which On Duration repeats periodically. On Duration indicates a time interval that the UE monitors to receive the PDCCH. If DRX is configured, the UE performs PDCCH monitoring for On Duration. If there is a PDCCH successfully detected during PDCCH monitoring, the UE operates an inactivity timer and maintains an awake state. On the other hand, if there is no PDCCH successfully detected during PDCCH monitoring, the UE enters a sleep state after the On Duration ends. Therefore, when DRX is configured, PDCCH monitoring / reception may be performed discontinuously in the time domain in performing the above-described / proposed procedures and / or methods. For example, when DRX is set, in various embodiments of the present disclosure, a PDCCH reception opportunity (eg, a slot having a PDCCH search space) may be set discontinuously according to the DRX configuration. On the other hand, when DRX is not configured, PDCCH monitoring / reception may be continuously performed in the time domain in performing the above-described / proposed procedure and / or method. For example, when DRX is not set, in various embodiments of the present disclosure, a PDCCH reception opportunity (eg, a slot having a PDCCH search space) may be set continuously. On the other hand, regardless of whether DRX is set, PDCCH monitoring may be limited in the time interval set as the measurement gap.
표 13은 DRX와 관련된 단말의 과정을 나타낸다(RRC_CONNECTED 상태). 표 13을 참조하면, DRX 구성 정보는 상위 계층(예, RRC) 시그널링을 통해 수신되고, DRX ON/OFF 여부는 MAC 계층의 DRX 커맨드에 의해 제어된다. DRX가 설정되면, 단말은 본 개시의 다양한 실시예들에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링을 불연속적으로 수행할 수 있다. Table 13 shows a procedure of UE related to DRX (RRC_CONNECTED state). Referring to Table 13, DRX configuration information is received through higher layer (eg, RRC) signaling, and whether DRX ON / OFF is controlled by the DRX command of the MAC layer. If DRX is configured, the UE may discontinuously perform PDCCH monitoring in performing the procedure and / or method described / proposed in various embodiments of the present disclosure.
Figure PCTKR2019010070-appb-img-000013
Figure PCTKR2019010070-appb-img-000013
여기서, MAC-CellGroupConfig는 셀 그룹을 위한 MAC(Medium Access Control) 파라미터를 설정하는데 필요한 구성 정보를 포함한다. MAC-CellGroupConfig는 DRX에 관한 구성 정보도 포함할 수 있다. 예를 들어, MAC-CellGroupConfig는 DRX를 정의하는데 정보를 다음과 같이 포함할 수 있다.Here, MAC-CellGroupConfig includes configuration information necessary to set a medium access control (MAC) parameter for a cell group. The MAC-CellGroupConfig may also include configuration information regarding the DRX. For example, MAC-CellGroupConfig may include information as follows in defining DRX.
- Value of drx-OnDurationTimer: DRX 사이클의 시작 구간의 길이를 정의Value of drx-OnDurationTimer: defines the length of the start section of the DRX cycle
- Value of drx-InactivityTimer: 초기 UL 또는 DL 데이터를 지시하는 PDCCH가 검출된 PDCCH 기회 이후에 단말이 깬 상태로 있는 시간 구간의 길이를 정의Value of drx-InactivityTimer: defines the length of time interval in which the UE wakes up after a PDCCH opportunity where a PDCCH indicating initial UL or DL data is detected.
- Value of drx-HARQ-RTT-TimerDL: DL 초기 전송이 수신된 후, DL 재전송이 수신될 때까지의 최대 시간 구간의 길이를 정의.Value of drx-HARQ-RTT-TimerDL: Defines the length of the maximum time interval after DL initial transmission is received until DL retransmission is received.
- Value of drx-HARQ-RTT-TimerDL: UL 초기 전송에 대한 그랜트가 수신된 후, UL 재전송에 대한 그랜트가 수신될 때까지의 최대 시간 구간의 길이를 정의.Value of drx-HARQ-RTT-TimerDL: Defines the length of the maximum time interval after a grant for UL initial transmission is received until a grant for UL retransmission is received.
- drx-LongCycleStartOffset: DRX 사이클의 시간 길이와 시작 시점을 정의drx-LongCycleStartOffset: Defines the length of time and start time of the DRX cycle
- drx-ShortCycle (optional): short DRX 사이클의 시간 길이를 정의drx-ShortCycle (optional): defines the length of time of the short DRX cycle
여기서, drx-OnDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerDL 중 어느 하나라도 동작 중이면 단말은 깬 상태를 유지하면서 매 PDCCH 기회마다 PDCCH 모니터링을 수행한다.Here, if any one of drx-OnDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerDL, and drx-HARQ-RTT-TimerDL is in operation, the UE maintains a wake-up state and performs PDCCH monitoring at every PDCCH opportunity.
3.3.2. RRC_IDLE DRX3.3.2. RRC_IDLE DRX
RRC_IDLE 상태와 RRC_INACTIVE 상태에서 DRX는 페이징 신호를 불연속 수신하는데 사용된다. 편의상, RRC_IDLE (또는 RRC_INACTIVE) 상태에서 수행되는 DRX를 RRC_IDLE DRX라고 지칭한다. In the RRC_IDLE and RRC_INACTIVE states, the DRX is used to discontinuously receive the paging signal. For convenience, DRX performed in the RRC_IDLE (or RRC_INACTIVE) state is referred to as RRC_IDLE DRX.
따라서, DRX가 설정된 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 불연속적으로 수행될 수 있다.Therefore, when DRX is configured, PDCCH monitoring / reception may be performed discontinuously in the time domain in performing the above-described / proposed procedures and / or methods.
도 23(b)를 참조하면, 페이징 신호의 불연속 수신을 위해 DRX가 구성될 수 있다. 단말은 상위 계층(예, RRC) 시그널링을 통해 기지국으로부터 DRX 구성 정보(DRX configuration information)를 수신할 수 있다. DRX 구성 정보는 DRX 사이클, DRX 오프셋, DRX 타이머에 대한 구성 정보 등을 포함할 수 있다. 단말은 DRX 사이클에 따라 On Duration과 Sleep duration을 반복한다. 단말은 On duration에서 웨이크업(wakeup) 모드로 동작하고, Sleep duration에서 슬립 모드로 동작할 수 있다. 웨이크업 모드에서 단말은 페이징 메시지를 수신하기 위해 PO(Paging Occasion)를 모니터링 할 수 있다. PO는 단말이 페이징 메시지의 수신을 기대하는 시간 자원/구간(예, 서브프레임, 슬롯)을 의미한다. PO 모니터링은 PO에서 P-RNTI로 스크램블링된 PDCCH (또는, MPDCCH, NPDCCH)(이하, 페이징 PDCCH)를 모니터링 하는 것을 포함한다. 페이징 메시지는 페이징 PDCCH에 포함되거나, 페이징 PDCCH에 의해 스케줄링 되는 PDSCH에 포함될 수 있다. PF(Paging Frame) 내에 하나 혹은 복수의 PO(들)이 포함되며, PF는 UE ID에 기반하여 주기적으로 설정될 수 있다. 여기서, PF는 하나의 무선 프레임에 해당하고, UE ID는 단말의 IMSI(International Mobile Subscriber Identity)에 기반하여 결정될 수 있다. DRX가 설정된 경우, 단말은 DRX 사이클 당 하나의 PO만을 모니터링 한다. 단말은 PO에서 자신의 ID 및/또는 시스템 정보의 변경을 지시하는 페이징 메시지를 수신한 경우, 기지국과의 연결을 초기화(또는 재설정) 하기 위해 RACH 과정을 수행하거나, 새로운 시스템 정보를 기지국으로부터 수신(또는 획득)할 수 있다. 따라서, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 기지국과의 연결을 위해 RACH를 수행하거나, 새로운 시스템 정보를 기지국으로부터 수신(또는 획득)하기 위해 PO 모니터링이 시간 도메인에서 불연속적으로 수행될 수 있다.Referring to FIG. 23B, DRX may be configured for discontinuous reception of a paging signal. The terminal may receive DRX configuration information from the base station through higher layer (eg, RRC) signaling. The DRX configuration information may include configuration information about a DRX cycle, a DRX offset, a DRX timer, and the like. The UE repeats the On Duration and the Sleep duration according to the DRX cycle. The UE may operate in a wakeup mode at On duration and may operate in a sleep mode at Sleep duration. In the wake-up mode, the terminal may monitor a paging occasion (PO) to receive a paging message. The PO means a time resource / interval (eg, subframe, slot) in which the terminal expects to receive a paging message. PO monitoring includes monitoring a PDCCH (or MPDCCH, NPDCCH) (hereinafter, paging PDCCH) scrambled with P-RNTI in a PO. The paging message may be included in the paging PDCCH or may be included in the PDSCH scheduled by the paging PDCCH. One or a plurality of PO (s) is included in a paging frame (PF), and the PF may be periodically set based on the UE ID. Here, the PF corresponds to one radio frame, and the UE ID may be determined based on the International Mobile Subscriber Identity (IMSI) of the terminal. If DRX is configured, the UE monitors only one PO per DRX cycle. When the terminal receives a paging message indicating a change of its ID and / or system information from the PO, the terminal performs a RACH process to initialize (or reset) the connection with the base station, or receives new system information from the base station ( Or acquisition). Accordingly, in performing the above described / proposed procedures and / or methods, PO monitoring may be performed discontinuously in the time domain to perform RACH for connection with a base station or to receive (or obtain) new system information from the base station. Can be.
3.3.3. extended DRX (eDRX)3.3.3. extended DRX (eDRX)
도 23(c) 를 참조하면, DRX 사이클 구성에 따르면 최대 사이클 구간(cycle duration)은 2.56초로 제한될 수 있다. 하지만, MTC 단말이나 NB-IoT 단말과 같이 데이터 송수신이 간헐적으로 수행되는 단말의 경우 DRX 사이클 동안 불필요한 전력 소모가 발생할 수 있다. 단말의 전력 소모를 더 줄이기 위해 PSM(power saving mode)과 PTW(paging time window 또는 paging transmission window)에 기초하여 DRX 사이클을 대폭 확장시키는 방안이 도입되었으며, 확장된 DRX 사이클을 간략히 eDRX 사이클이라고 지칭한다. 구체적으로, UE ID에 기반하여 PH(Paging Hyper-frames)가 주기적으로 구성되며, PH 내에 PTW가 정의된다. 단말은 PTW 구간(duration)에서 DRX 사이클을 수행하여 자신의 PO에서 웨이크업 모드로 전환하여 페이징 신호를 모니터링 할 수 있다. PTW 구간 내에는 도 22(c)의 DRX 사이클(예, 웨이크업 모드와 슬립 모드)이 하나 이상 포함될 수 있다. PTW 구간 내의 DRX 사이클 횟수는 기지국에 의해 상위 계층(예, RRC) 신호를 통해 구성될 수 있다.Referring to FIG. 23C, according to the DRX cycle configuration, the maximum cycle duration may be limited to 2.56 seconds. However, in the case of a terminal in which data transmission and reception are intermittently performed, such as an MTC terminal or an NB-IoT terminal, unnecessary power consumption may occur during a DRX cycle. In order to further reduce the power consumption of the UE, a method of greatly extending the DRX cycle based on a power saving mode (PSM) and a paging time window or a paging transmission window (PTW) has been introduced, and the extended DRX cycle is referred to simply as an eDRX cycle. . Specifically, PH (Paging Hyper-frames) is periodically configured based on the UE ID, PTW is defined in the PH. The UE may monitor a paging signal by performing a DRX cycle in a PTW duration to switch to a wake-up mode in its PO. One or more DRX cycles (eg, wake-up mode and sleep mode) of FIG. 22C may be included in the PTW section. The number of DRX cycles in the PTW interval may be configured by the base station through a higher layer (eg, RRC) signal.
도 24 는 본 개시의 다양한 실시예들에 따른 단말과 기지국의 동작 방법을 간단히 나타낸 도면이고, 도 25는 본 개시의 다양한 실시예들에 따른 단말의 동작 방법을 나타낸 흐름도이고, 도 26은 본 개시의 다양한 실시예들에 따른 기지국의 동작 방법을 나타낸 흐름도이다.24 is a diagram schematically illustrating a method of operating a terminal and a base station according to various embodiments of the present disclosure, FIG. 25 is a flowchart illustrating a method of operating a terminal according to various embodiments of the present disclosure, and FIG. 26 is a present disclosure A flowchart illustrating a method of operating a base station according to various embodiments of the present disclosure.
도 24내지 도 26 을 참조하면, 본 개시의 다양한 실시예들에 따르면, 기지국은 단말에게 제1 전송 블록 및 제2 전송 블록을 모두 스케쥴링 하는 하향링크 제어 정보(downlink control information DCI) 를 송신할 수 있으며, 단말은 이를 수신할 수 있다(S2401, S2501, S2601). 즉, 본 개시의 다양한 실시예들에 따르면, 복수의 전송 블록들이 하나의 DCI 에 의하여 스케쥴링될 수 있다.24 to 26, according to various embodiments of the present disclosure, a base station may transmit downlink control information (DCI) for scheduling both a first transport block and a second transport block to a terminal. And, the terminal may receive this (S2401, S2501, S2601). That is, according to various embodiments of the present disclosure, a plurality of transport blocks may be scheduled by one DCI.
본 개시의 다양한 실시예들에 따르면, 기지국은 상술한 DCI (S2401, S2501, S2601) 와 관련된 제1 전송 블록을 단말에게 송신할 수 있으며, 단말은 상술한 DCI (S2401, S2501, S2601) 에 기초하여 제1시간 자원 내에서 제1 전송 블록을 수신할 수 있다(S2403, S2503, S2603). According to various embodiments of the present disclosure, the base station may transmit a first transport block associated with the above-described DCI (S2401, S2501, S2601) to the terminal, the terminal based on the above-described DCI (S2401, S2501, S2601) The first transport block can be received in the first time resource (S2403, S2503, S2603).
본 개시의 다양한 실시예들에 따르면, 기지국은 상술한 DCI (S2401, S2501, S2601) 와 관련된 제2 전송 블록을 단말에게 송신할 수 있으며, 단말은 상술한 DCI (S2401, S2501, S2601) 에 기초하여 제2 시간 자원 내에서 제2 전송 블록을 수신할 수 있다(S2407, S2507, S2607).According to various embodiments of the present disclosure, the base station may transmit a second transport block associated with the above-described DCI (S2401, S2501, S2601) to the terminal, the terminal based on the above-described DCI (S2401, S2501, S2601) The second transport block can be received in the second time resource (S2407, S2507, S2607).
예시적 실시예에서, 제1 시간 자원 및 제2 시간 자원 각각은 상술한 DCI (S2401, S2501, S2601) 에 의하여 스케쥴링된 시간 자원일 수 있다. In an exemplary embodiment, each of the first time resource and the second time resource may be a time resource scheduled by the above-described DCI (S2401, S2501, S2601).
예시적 실시예에서, 제1 전송 블록은 제1 시간 자원 내에서 반복 (repetition) 되어 송수신될 수 있다.In an exemplary embodiment, the first transport block can be transmitted and received repeatedly in a first time resource.
예시적 실시예에서, 제2 전송 블록은 제2 시간 자원 내에서 반복되어 송수신될 수 있다.In an exemplary embodiment, the second transport block can be repeatedly transmitted and received within a second time resource.
예시적 실시예에서, 제1 시간 자원 및 제2 시간 자원 사이에는 갭이 설정/구성될 수 있다.In an example embodiment, a gap may be established / configured between the first time resource and the second time resource.
예시적 실시예에서, 단말은 갭 내에서 제1 전송 블록에 대한 응답으로 제1 전송 블록과 관련된 HARQ-ACK 을 기지국으로 송신할 수 있으며, 기지국은 이를 수신할 수 있다(S2405, S2505, S2605). In an exemplary embodiment, the terminal may transmit a HARQ-ACK associated with the first transport block to the base station in response to the first transport block in the gap, the base station may receive it (S2405, S2505, S2605). .
예시적 실시예에서, 제2 전송 블록과 관련된 HARQ 프로세스 번호 (HARQ process number) 는 상술한 제1 전송 블록과 관련된 HARQ-ACK (S2405, S2505, S2605) 에 기초하여 결정될 수 있다.In an exemplary embodiment, the HARQ process number associated with the second transport block may be determined based on the HARQ-ACKs S2405, S2505, S2605 associated with the first transport block described above.
예시적 실시예에서, 상술한 제1 전송 블록과 관련된 HARQ-ACK (S2405, S2505, S2605) 이 NACK 인 경우, 제2 전송 블록과 관련된 HARQ 프로세스 번호는, 제1 전송 블록과 관련된 HARQ 프로세스 번호와 동일하게 결정될 수 있다. In an exemplary embodiment, when the HARQ-ACK (S2405, S2505, S2605) associated with the first transport block described above is NACK, the HARQ process number associated with the second transport block is equal to the HARQ process number associated with the first transport block. The same can be determined.
예시적 실시예에서, 상술한 제1 전송 블록과 관련된 HARQ-ACK (S2405, S2505, S2605) 이 ACK 인 경우, 제2 전송 블록과 관련된 HARQ 프로세스 번호는, 제1 전송 블록과 관련된 HARQ 프로세스 번호의 다음 HARQ 프로세스 번호로 결정될 수 있다. In an exemplary embodiment, when the HARQ-ACK (S2405, S2505, S2605) associated with the first transport block described above is an ACK, the HARQ process number associated with the second transport block is the HARQ process number associated with the first transport block. Next HARQ process number may be determined.
상술한 본 개시의 다양한 실시예들에 따른 기지국 및/또는 단말의 보다 구체적인 동작은 앞서 설명한 제1 절 내지 제3 절의 내용에 기반하여 설명되고 수행될 수 있다.More specific operations of the base station and / or the terminal according to the various embodiments of the present disclosure described above may be described and performed based on the contents of the above-described sections 1 to 3.
상기 설명한 제안 방식에 대한 일례들 또한 본 개시의 다양한 실시예들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (또는 병합) 형태로 구현될 수 도 있다. 상기 제안 방법들의 적용 여부 정보 (또는 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예: 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수가 있다.It is obvious that examples of the proposed scheme described above may also be regarded as a kind of proposed schemes, as they may be included in one of various embodiments of the present disclosure. In addition, although the above-described proposed schemes may be independently implemented, some proposed schemes may be implemented in a combination (or merge) form. Information on whether the proposed methods are applied (or information on rules of the proposed methods) may be defined so that the base station notifies the terminal through a predefined signal (eg, a physical layer signal or a higher layer signal). .
4. 장치 구성4. Device Configuration
도 27은 본 개시의 다양한 실시예들이 구현될 수 있는 장치를 나타낸 도면이다.27 illustrates an apparatus in which various embodiments of the present disclosure may be implemented.
도 27에 도시된 장치는 상술한 매커니즘을 수행하도록 적응된 사용자 장치(User Equipment, UE) 및/또는 기지국 (예: eNB 또는 gNB)이거나, 동일한 작업을 수행하는 임의의 장치일 수 있다.The device illustrated in FIG. 27 may be a user equipment (UE) and / or a base station (eg, eNB or gNB) adapted to perform the above-described mechanism, or any device performing the same task.
도 27을 참조하면, 장치는 DSP(Digital Signal Processor)/마이크로프로세서(210) 및 RF(Radio Frequency) 모듈(송수신기, Transceiver)(235)을 포함할 수도 있다. DSP/마이크로프로세서(210)는 송수신기(235)에 전기적으로 연결되어 송수신기(235)를 제어한다. 장치는, 설계자의 선택에 따라서, 전력 관리 모듈(205), 베터리(255), 디스플레이(215), 키패드(220), SIM 카드(225), 메모리 디바이스(230), 안테나(240), 스피커(245) 및 입력 디바이스(250)을 더 포함할 수도 있다.Referring to FIG. 27, the apparatus may include a digital signal processor (DSP) / microprocessor 210 and a radio frequency (RF) module (transceiver) 235. The DSP / microprocessor 210 is electrically connected to the transceiver 235 to control the transceiver 235. The device, depending on the designer's choice, includes a power management module 205, a battery 255, a display 215, a keypad 220, a SIM card 225, a memory device 230, an antenna 240, and a speaker ( 245 and input device 250 may be further included.
특히, 도 27은 네트워크로부터 요청 메시지를 수신하도록 구성된 수신기(235) 및 네트워크로 타이밍 송/수신 타이밍 정보를 송신하도록 구성된 송신기(235)를 포함하는 단말을 나타낼 수도 있다. 이러한 수신기와 송신기는 송수신기(235)를 구성할 수 있다. 단말은 송수신기(235)에 연결된 프로세서(210)를 더 포함할 수도 있다.In particular, FIG. 27 may represent a terminal that includes a receiver 235 configured to receive a request message from the network and a transmitter 235 configured to transmit timing transmit / receive timing information to the network. Such a receiver and a transmitter may configure the transceiver 235. The terminal may further include a processor 210 connected to the transceiver 235.
또한, 도 27은 단말로 요청 메시지를 송신하도록 구성된 송신기(235) 및 단말로부터 송수신 타이밍 정보를 수신하도록 구성된 수신기(235)를 포함하는 네트워크 장치를 나타낼 수도 있다. 송신기 및 수신기는 송수신기(235)를 구성할 수도 있다. 네트워크는 송신기 및 수신기에 연결된 프로세서(210)를 더 포함한다. 이 프로세서(210)는 송수신 타이밍 정보에 기초하여 지연(latency)을 계산할 수도 있다.27 may also show a network device including a transmitter 235 configured to transmit a request message to a terminal and a receiver 235 configured to receive transmission and reception timing information from the terminal. The transmitter and receiver may configure the transceiver 235. The network further includes a processor 210 coupled to the transmitter and the receiver. The processor 210 may calculate a latency based on the transmission and reception timing information.
이에, 본 개시의 다양한 실시예들에 따른 단말 (또는 상기 단말에 포함된 통신 장치) 및 기지국 (또는 상기 기지국에 포함된 통신 장치)에 포함된 프로세서는 메모리를 제어하며 다음과 같이 동작할 수 있다.Accordingly, a processor included in a terminal (or a communication device included in the terminal) and a base station (or a communication device included in the base station) according to various embodiments of the present disclosure may control a memory and operate as follows. .
본 개시의 다양한 실시예들에 있어, 단말 또는 기지국은, 하나 이상(at least one)의 송수신기(Transceiver); 하나 이상의 메모리(Memory); 및 송수신기 및 메모리와 연결된 하나 이상의 프로세서(Processor)를 포함할 수 있다. 메모리는 하나 이상의 프로세서가 하기 동작을 수행할 수 있도록 하는 명령들(instructions)을 저장할 수 있다.In various embodiments of the present disclosure, a terminal or base station may include at least one transceiver; One or more memories; And one or more processors connected to the transceiver and the memory. The memory may store instructions that enable one or more processors to perform the following operations.
이때, 상기 단말 또는 기지국에 포함된 통신 장치라 함은, 상기 하나 이상의 프로세서 및 상기 하나 이상의 메모리를 포함하도록 구성될 수 있고, 상기 통신 장치는 상기 하나 이상의 송수신기를 포함하거나 상기 하나 이상의 송수신기를 포함하지 않고 상기 하나 이상의 송수신기와 연결되도록 구성될 수 있다.In this case, the communication device included in the terminal or the base station may be configured to include the one or more processors and the one or more memories, and the communication device includes the one or more transceivers or does not include the one or more transceivers. It may be configured to be connected to the one or more transceivers without.
본 개시의 다양한 실시예들에 따르면, 단말에 포함된 하나 이상의 프로세서 (또는 단말에 포함된 통신 장치의 하나 이상의 프로세서)는, 제1 전송 블록 및 제2 전송 블록을 모두 스케쥴링 하는 하향링크 제어 정보(downlink control information DCI) 를 수신할 수 있다. According to various embodiments of the present disclosure, one or more processors (or one or more processors of a communication device included in a terminal) may include downlink control information for scheduling both a first transport block and a second transport block. downlink control information DCI).
본 개시의 다양한 실시예들에 따르면, 단말에 포함된 하나 이상의 프로세서는, 상술한 DCI 에 기초하여 제1 시간 자원 내에서 제1 전송 블록을 수신할 수 있다. According to various embodiments of the present disclosure, one or more processors included in the terminal may receive the first transport block within the first time resource based on the above-described DCI.
본 개시에 다양한 실시예들에 따르면, 단말에 포함된 하나 이상의 프로세서는, 상술한 DCI 에 기초하여 제2 시간 자원 내에서 제2 전송 블록을 수신할 수 있다.According to various embodiments of the present disclosure, one or more processors included in the terminal may receive a second transport block within a second time resource based on the above-described DCI.
본 개시의 다양한 실시예들에 따르면, 제1 시간 자원 및 제2 시간 자원 사이에는 갭이 설정될 수 있으며, 단말에 포함된 하나 이상의 프로세서는, 갭 내에서 제1 전송 블록에 대한 응답으로 제1 전송 블록과 관련된 HARQ-ACK 을 송신할 수 있다. According to various embodiments of the present disclosure, a gap may be established between the first time resource and the second time resource, and one or more processors included in the terminal may include a first response in response to the first transport block within the gap. The HARQ-ACK associated with the transport block may be transmitted.
본 개시에 다양한 실시예들에 따르면, 기지국에 포함된 하나 이상의 프로세서 (또는 기지국에 포함된 통신 장치의 하나 이상의 프로세서)는, 제1 전송 블록 및 제2 전송 블록을 모두 스케쥴링 하는 DCI 를 송신할 수 있다.According to various embodiments of the present disclosure, one or more processors (or one or more processors of a communication device included in a base station) included in a base station may transmit a DCI scheduling both the first transport block and the second transport block. have.
본 개시에 다양한 실시예들에 따르면, 기지국에 포함된 하나 이상의 프로세서는, 상술한 DCI 와 관련된 제1 시간 자원 내에서 제1 전송 블록을 송신할 수 있다.According to various embodiments of the present disclosure, one or more processors included in the base station may transmit the first transport block within the first time resource associated with the above-described DCI.
본 개시의 다양한 실시예들에 따르면, 기지국에 포함된 하나 이상의 프로세서는, 상술한 DCI 와 관련된 제2 시간 자원 내에서 제2 전송 블록을 송신할 수 있다. According to various embodiments of the present disclosure, one or more processors included in the base station may transmit a second transport block within a second time resource associated with the above-described DCI.
본 개시의 다양한 실시예들에 따르면, 제1 시간 자원 및 제2 시간 자원 사이에는 갭이 설정될 수 있으며, 기지국에 포함된 하나 이상의 프로세서는, 갭 내에서 제1 전송 블록에 대한 응답으로 제1 전송 블록과 관련된 HARQ-ACK 을 수신할 수 있다. According to various embodiments of the present disclosure, a gap may be established between the first time resource and the second time resource, and one or more processors included in the base station may include a first response in response to the first transport block within the gap. A HARQ-ACK associated with a transport block can be received.
상술한 본 개시의 다양한 실시예들에 따른 기지국 및/또는 단말에 포함된 하나 이상의 프로세서의 보다 구체적인 동작은 앞서 설명한 제1 절 내지 제3 절의 내용에 기반하여 설명되고 수행될 수 있다.More specific operations of the one or more processors included in the base station and / or the terminal according to the various embodiments of the present disclosure described above may be described and performed based on the contents of the above-described sections 1 to 3.
본 명세서에서 본 개시의 다양한 실시예들은 무선 통신 시스템에서 기지국과 단말 간의 데이터 송수신 관계를 중심으로 설명되었다. 다만 본 개시의 다양한 실시예들이 이에 한정되는 것은 아니다. 예를 들어, 본 개시의 다양한 실시예들은 다음의 기술 구성들과도 관련될 수 있다. Various embodiments of the present disclosure have been described with reference to data transmission / reception relations between a base station and a terminal in a wireless communication system. However, various embodiments of the present disclosure are not limited thereto. For example, various embodiments of the present disclosure may also relate to the following technical configurations.
본 개시의 다양한 실시예들이 적용되는 통신 시스템 예Communication system example to which various embodiments of the present disclosure apply
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 개시의 실시예들에 대한 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.While not limited to this, the various descriptions, functions, procedures, suggestions, methods and / or operational flow diagrams of embodiments of the present disclosure disclosed herein require wireless communication / connections (eg, 5G) between devices. It can be applied to various fields.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다. Hereinafter, with reference to the drawings to illustrate in more detail. The same reference numerals in the following drawings / descriptions may illustrate the same or corresponding hardware blocks, software blocks, or functional blocks unless otherwise indicated.
도 28은 본 개시의 다양한 실시예들에 적용되는 통신 시스템을 예시한다.28 illustrates a communication system applied to various embodiments of the present disclosure.
도 28을 참조하면, 본 개시의 다양한 실시예들에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.Referring to FIG. 28, a communication system 1 applied to various embodiments of the present disclosure includes a wireless device, a base station, and a network. Here, the wireless device refers to a device that performs communication using a radio access technology (eg, 5G New RAT (Long Term), Long Term Evolution (LTE)), and may be referred to as a communication / wireless / 5G device. Although not limited thereto, the wireless device may be a robot 100a, a vehicle 100b-1, 100b-2, an eXtended Reality (XR) device 100c, a hand-held device 100d, a home appliance 100e. ), IoT (Internet of Thing) device (100f), AI device / server 400 may be included. For example, the vehicle may include a vehicle having a wireless communication function, an autonomous vehicle, a vehicle capable of performing inter-vehicle communication, and the like. Here, the vehicle may include an unmanned aerial vehicle (UAV) (eg, a drone). XR devices include AR (Augmented Reality) / VR (Virtual Reality) / MR (Mixed Reality) devices, Head-Mounted Device (HMD), Head-Up Display (HUD), television, smartphone, It may be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like. The portable device may include a smartphone, a smart pad, a wearable device (eg, smart watch, smart glasses), a computer (eg, a notebook, etc.). The home appliance may include a TV, a refrigerator, a washing machine, and the like. IoT devices may include sensors, smart meters, and the like. For example, the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station / network node to other wireless devices.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.The wireless devices 100a to 100f may be connected to the network 300 through the base station 200. AI (Artificial Intelligence) technology may be applied to the wireless devices 100a to 100f, and the wireless devices 100a to 100f may be connected to the AI server 400 through the network 300. The network 300 may be configured using a 3G network, a 4G (eg LTE) network or a 5G (eg NR) network. The wireless devices 100a-100f may communicate with each other via the base station 200 / network 300, but may also communicate directly (e.g. sidelink communication) without going through the base station / network. For example, the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. vehicle to vehicle (V2V) / vehicle to everything (V2X) communication). In addition, the IoT device (eg, sensor) may directly communicate with another IoT device (eg, sensor) or another wireless device 100a to 100f.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.Wireless communication / connection 150a, 150b, 150c may be performed between the wireless devices 100a-100f / base station 200 and base station 200 / base station 200. Here, the wireless communication / connection is various wireless connections such as uplink / downlink communication 150a, sidelink communication 150b (or D2D communication), inter-base station communication 150c (eg relay, integrated access backhaul), and the like. Technology (eg, 5G NR) via wireless communication / connections 150a, 150b, 150c, the wireless device and the base station / wireless device, the base station and the base station may transmit / receive radio signals to each other. For example, wireless communication / connections 150a, 150b, 150c may transmit / receive signals over various physical channels.To this end, based on various suggestions of the present disclosure, At least some of various configuration information setting processes, various signal processing processes (eg, channel encoding / decoding, modulation / demodulation, resource mapping / demapping, etc.) and resource allocation processes may be performed.
본 개시의 다양한 실시예들이 적용되는 무선 기기 예Example wireless device to which various embodiments of the present disclosure apply
도 29는 본 개시의 다양한 실시예들에 적용될 수 있는 무선 기기를 예시한다.29 illustrates a wireless device that can be applied to various embodiments of the present disclosure.
도 29를 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 28의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.Referring to FIG. 29, the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR). Here, the {first wireless device 100 and the second wireless device 200} may refer to the {wireless device 100x, the base station 200} and / or the {wireless device 100x, the wireless device 100x of FIG. 28. }.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시의 다양한 실시예들에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.The first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and / or one or more antennas 108. The processor 102 controls the memory 104 and / or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. For example, the processor 102 may process the information in the memory 104 to generate the first information / signal, and then transmit the wireless signal including the first information / signal through the transceiver 106. In addition, the processor 102 may receive the radio signal including the second information / signal through the transceiver 106 and store the information obtained from the signal processing of the second information / signal in the memory 104. The memory 104 may be coupled to the processor 102 and may store various information related to the operation of the processor 102. For example, the memory 104 may perform instructions to perform some or all of the processes controlled by the processor 102 or to perform descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. Can store software code that includes them. Here, processor 102 and memory 104 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR). The transceiver 106 may be coupled to the processor 102 and may transmit and / or receive wireless signals via one or more antennas 108. The transceiver 106 may include a transmitter and / or a receiver. The transceiver 106 may be mixed with a radio frequency (RF) unit. In various embodiments of the present disclosure, a wireless device may mean a communication modem / circuit / chip.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시의 다양한 실시예들에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.The second wireless device 200 may include one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and / or one or more antennas 208. The processor 202 controls the memory 204 and / or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. For example, the processor 202 may process the information in the memory 204 to generate third information / signal, and then transmit the wireless signal including the third information / signal through the transceiver 206. In addition, the processor 202 may receive the radio signal including the fourth information / signal through the transceiver 206 and then store information obtained from the signal processing of the fourth information / signal in the memory 204. The memory 204 may be connected to the processor 202 and store various information related to the operation of the processor 202. For example, the memory 204 may perform instructions to perform some or all of the processes controlled by the processor 202 or to perform descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. Can store software code that includes them. Here, processor 202 and memory 204 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR). The transceiver 206 may be coupled with the processor 202 and may transmit and / or receive wireless signals via one or more antennas 208. The transceiver 206 may include a transmitter and / or a receiver. The transceiver 206 may be mixed with an RF unit. In various embodiments of the present disclosure, a wireless device may mean a communication modem / circuit / chip.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.Hereinafter, hardware elements of the wireless devices 100 and 200 will be described in more detail. One or more protocol layers may be implemented by one or more processors 102, 202, although not limited thereto. For example, one or more processors 102 and 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP). One or more processors 102, 202 may employ one or more Protocol Data Units (PDUs) and / or one or more Service Data Units (SDUs) in accordance with the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein. Can be generated. One or more processors 102, 202 may generate messages, control information, data, or information in accordance with the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein. One or more processors 102, 202 may generate signals (eg, baseband signals) including PDUs, SDUs, messages, control information, data or information in accordance with the functions, procedures, suggestions and / or methods disclosed herein. And one or more transceivers 106 and 206. One or more processors 102, 202 may receive signals (eg, baseband signals) from one or more transceivers 106, 206, and include descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein. In accordance with the above, a PDU, an SDU, a message, control information, data, or information can be obtained.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다. One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer. One or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof. For example, one or more Application Specific Integrated Circuits (ASICs), one or more Digital Signal Processors (DSPs), one or more Digital Signal Processing Devices (DSPDs), one or more Programmable Logic Devices (PLDs), or one or more Field Programmable Gate Arrays (FPGAs) May be included in one or more processors 102, 202. The descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like. The descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein may be included in one or more processors (102, 202) or stored in one or more memories (104, 204) of It may be driven by the above-described processor (102, 202). The descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein may be implemented using firmware or software in the form of code, instructions, and / or a set of instructions.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.One or more memories 104, 204 may be coupled to one or more processors 102, 202 and may store various forms of data, signals, messages, information, programs, codes, instructions, and / or instructions. One or more memories 104, 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drive, registers, cache memory, computer readable storage medium, and / or combinations thereof. One or more memories 104, 204 may be located inside and / or outside one or more processors 102, 202. In addition, one or more memories 104, 204 may be coupled with one or more processors 102, 202 through various techniques, such as a wired or wireless connection.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.One or more transceivers 106 and 206 may transmit user data, control information, wireless signals / channels, etc., as mentioned in the methods and / or operational flowcharts of this document, to one or more other devices. One or more transceivers 106 and 206 may receive, from one or more other devices, user data, control information, wireless signals / channels, etc., as mentioned in the description, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. have. For example, one or more transceivers 106 and 206 may be coupled with one or more processors 102 and 202 and may transmit and receive wireless signals. For example, one or more processors 102 and 202 may control one or more transceivers 106 and 206 to transmit user data, control information or wireless signals to one or more other devices. In addition, one or more processors 102 and 202 may control one or more transceivers 106 and 206 to receive user data, control information or wireless signals from one or more other devices. In addition, one or more transceivers 106, 206 may be coupled with one or more antennas 108, 208, and one or more transceivers 106, 206 may be connected to one or more antennas 108, 208 through the description, functions, and features disclosed herein. Can be set to transmit and receive user data, control information, wireless signals / channels, etc., which are mentioned in the procedures, procedures, suggestions, methods and / or operational flowcharts, and the like. In this document, one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports). One or more transceivers 106, 206 may process the received wireless signal / channel or the like in an RF band signal to process received user data, control information, wireless signals / channels, etc. using one or more processors 102,202. The baseband signal can be converted. One or more transceivers 106 and 206 may use the one or more processors 102 and 202 to convert processed user data, control information, wireless signals / channels, etc. from baseband signals to RF band signals. To this end, one or more transceivers 106 and 206 may include (analog) oscillators and / or filters.
본 개시의 다양한 실시예들이 적용되는 무선 기기 활용 예Example of using a wireless device to which various embodiments of the present disclosure are applied
도 30은 본 개시의 다양한 실시예들에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 28 참조).30 illustrates another example of a wireless device applied to various embodiments of the present disclosure. The wireless device may be implemented in various forms depending on the use-example / service (see FIG. 28).
도 30을 참조하면, 무선 기기(100, 200)는 도 29의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 29의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 29의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.Referring to FIG. 30, the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 29, and various elements, components, units / units, and / or modules It can be composed of). For example, the wireless device 100, 200 may include a communication unit 110, a control unit 120, a memory unit 130, and additional elements 140. The communication unit may include communication circuitry 112 and transceiver (s) 114. For example, communication circuitry 112 may include one or more processors 102, 202 and / or one or more memories 104, 204 of FIG. 29. For example, the transceiver (s) 114 may include one or more transceivers 106, 206 and / or one or more antennas 108, 208 of FIG. 29. The controller 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140, and controls various operations of the wireless device. For example, the controller 120 may control the electrical / mechanical operation of the wireless device based on the program / code / command / information stored in the memory unit 130. In addition, the control unit 120 transmits the information stored in the memory unit 130 to the outside (eg, other communication devices) through the communication unit 110 through a wireless / wired interface, or externally (eg, through the communication unit 110). Information received through a wireless / wired interface from another communication device) may be stored in the memory unit 130.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 28, 100a), 차량(도 28, 100b-1, 100b-2), XR 기기(도 28, 100c), 휴대 기기(도 28, 100d), 가전(도 28, 100e), IoT 기기(도 28, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 28, 400), 기지국(도 28, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.The additional element 140 may be configured in various ways depending on the type of wireless device. For example, the additional element 140 may include at least one of a power unit / battery, an I / O unit, a driver, and a computing unit. Although not limited to this, the wireless device may be a robot (FIGS. 28, 100 a), a vehicle (FIGS. 28, 100 b-1, 100 b-2), an XR device (FIGS. 28, 100 c), a portable device (FIGS. 28, 100 d), a home appliance. (FIGS. 28, 100e), IoT devices (FIGS. 28, 100f), terminals for digital broadcasting, hologram devices, public safety devices, MTC devices, medical devices, fintech devices (or financial devices), security devices, climate / environment devices, The server may be implemented in the form of an AI server / device (FIGS. 28 and 400), a base station (FIGS. 28 and 200), a network node, or the like. The wireless device may be used in a mobile or fixed location depending on the usage-example / service.
도 30에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.In FIG. 30, various elements, components, units / units, and / or modules in the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least a part of them may be wirelessly connected through the communication unit 110. For example, the control unit 120 and the communication unit 110 are connected by wire in the wireless device 100 or 200, and the control unit 120 and the first unit (eg, 130 and 140) are connected through the communication unit 110. It can be connected wirelessly. In addition, each element, component, unit / unit, and / or module in wireless device 100, 200 may further include one or more elements. For example, the controller 120 may be composed of one or more processor sets. For example, the controller 120 may be configured as a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphics processing processor, a memory control processor, and the like. As another example, the memory unit 130 may include random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and / or combinations thereof.
이하, 도 30의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.Hereinafter, the implementation example of FIG. 30 will be described in more detail with reference to the accompanying drawings.
본 개시의 다양한 실시예들이 적용되는 휴대기기 예Example of a mobile device to which various embodiments of the present disclosure are applied
도 31는 본 개시의 다양한 실시예들에 적용되는 휴대 기기를 예시한다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.31 illustrates a portable device applied to various embodiments of the present disclosure. The mobile device may include a smart phone, a smart pad, a wearable device (eg, smart watch, smart glasses), a portable computer (eg, a notebook, etc.). The mobile device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
도 31를 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 30의 블록 110~130/140에 대응한다.Referring to FIG. 31, the portable device 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a memory unit 130, a power supply unit 140a, an interface unit 140b, and an input / output unit 140c. ) May be included. The antenna unit 108 may be configured as part of the communication unit 110. Blocks 110 to 130 / 140a to 140c respectively correspond to blocks 110 to 130/140 of FIG. 30.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.The communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations. The controller 120 may control various components of the mobile device 100 to perform various operations. The control unit 120 may include an application processor (AP). The memory unit 130 may store data / parameters / programs / codes / commands necessary for driving the portable device 100. In addition, the memory unit 130 may store input / output data / information and the like. The power supply unit 140a supplies power to the portable device 100 and may include a wired / wireless charging circuit, a battery, and the like. The interface unit 140b may support the connection of the mobile device 100 to another external device. The interface unit 140b may include various ports (eg, audio input / output port and video input / output port) for connecting to an external device. The input / output unit 140c may receive or output image information / signal, audio information / signal, data, and / or information input from a user. The input / output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and / or a haptic module.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다. For example, in the case of data communication, the input / output unit 140c obtains information / signals (eg, touch, text, voice, image, and video) input from the user, and the obtained information / signal is stored in the memory unit 130. Can be stored. The communication unit 110 may convert the information / signal stored in the memory into a wireless signal, and directly transmit the converted wireless signal to another wireless device or to the base station. In addition, the communication unit 110 may receive a radio signal from another wireless device or a base station, and then restore the received radio signal to original information / signal. The restored information / signal may be stored in the memory unit 130 and then output in various forms (eg, text, voice, image, video, heptic) through the input / output unit 140c.
본 개시의 다양한 실시예들이 적용되는 차량 또는 자율 주행 차량 예Example of a vehicle or autonomous vehicle to which various embodiments of the present disclosure are applied
도 32는 본 개시의 다양한 실시예들에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.32 illustrates a vehicle or autonomous driving vehicle applied to various embodiments of the present disclosure. The vehicle or autonomous vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, or the like.
도 32를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 30의 블록 110/130/140에 대응한다.Referring to FIG. 32, the vehicle or the autonomous vehicle 100 may include an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and autonomous driving. It may include a portion 140d. The antenna unit 108 may be configured as part of the communication unit 110. Blocks 110/130 / 140a through 140d respectively correspond to blocks 110/130/140 in FIG.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.The communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other vehicles, a base station (e.g. base station, road side unit, etc.), a server, and other external devices. The controller 120 may control various elements of the vehicle or the autonomous vehicle 100 to perform various operations. The control unit 120 may include an electronic control unit (ECU). The driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground. The driver 140a may include an engine, a motor, a power train, wheels, a brake, a steering device, and the like. The power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100, and may include a wired / wireless charging circuit, a battery, and the like. The sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like. The sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, a vehicle forward / Reverse sensors, battery sensors, fuel sensors, tire sensors, steering sensors, temperature sensors, humidity sensors, ultrasonic sensors, illuminance sensors, pedal position sensors, and the like. The autonomous driving unit 140d is a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and automatically setting a route when a destination is set. Technology and the like.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.For example, the communication unit 110 may receive map data, traffic information data, and the like from an external server. The autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the obtained data. The controller 120 may control the driving unit 140a to move the vehicle or the autonomous vehicle 100 along the autonomous driving path according to the driving plan (eg, speed / direction adjustment). During autonomous driving, the communication unit 110 may acquire the latest traffic information data aperiodically from an external server and may obtain the surrounding traffic information data from the surrounding vehicles. In addition, during autonomous driving, the sensor unit 140c may acquire vehicle state and surrounding environment information. The autonomous driving unit 140d may update the autonomous driving route and the driving plan based on the newly obtained data / information. The communication unit 110 may transmit information regarding a vehicle location, an autonomous driving route, a driving plan, and the like to an external server. The external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and provide the predicted traffic information data to the vehicle or autonomous vehicles.
본 개시의 다양한 실시예들이 적용되는 AR/VR 및 차량 예AR / VR and vehicle example to which various embodiments of the present disclosure apply
도 33은 본 개시의 다양한 실시예들에 적용되는 차량을 예시한다. 차량은 운송수단, 기차, 비행체, 선박 등으로도 구현될 수 있다.33 illustrates a vehicle applied to various embodiments of the present disclosure. The vehicle may also be implemented as a vehicle, train, vehicle, ship, or the like.
도 33을 참조하면, 차량(100)은 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a) 및 위치 측정부(140b)를 포함할 수 있다. 여기서, 블록 110~130/140a~140b는 각각 도 30의 블록 110~130/140에 대응한다.Referring to FIG. 33, the vehicle 100 may include a communication unit 110, a control unit 120, a memory unit 130, an input / output unit 140a, and a position measuring unit 140b. Here, blocks 110 to 130 / 140a to 140b correspond to blocks 110 to 130/140 of FIG. 30, respectively.
통신부(110)는 다른 차량, 또는 기지국 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(130)는 차량(100)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 메모리부(130) 내의 정보에 기반하여 AR/VR 오브젝트를 출력할 수 있다. 입출력부(140a)는 HUD를 포함할 수 있다. 위치 측정부(140b)는 차량(100)의 위치 정보를 획득할 수 있다. 위치 정보는 차량(100)의 절대 위치 정보, 주행선 내에서의 위치 정보, 가속도 정보, 주변 차량과의 위치 정보 등을 포함할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서들을 포함할 수 있다.The communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other vehicles or external devices such as a base station. The controller 120 may control various components of the vehicle 100 to perform various operations. The memory unit 130 may store data / parameters / programs / codes / commands supporting various functions of the vehicle 100. The input / output unit 140a may output an AR / VR object based on the information in the memory unit 130. The input / output unit 140a may include a HUD. The location measuring unit 140b may acquire location information of the vehicle 100. The location information may include absolute location information of the vehicle 100, location information in a driving line, acceleration information, location information with surrounding vehicles, and the like. The position measuring unit 140b may include a GPS and various sensors.
일 예로, 차량(100)의 통신부(110)는 외부 서버로부터 지도 정보, 교통 정보 등을 수신하여 메모리부(130)에 저장할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서를 통하여 차량 위치 정보를 획득하여 메모리부(130)에 저장할 수 있다. 제어부(120)는 지도 정보, 교통 정보 및 차량 위치 정보 등에 기반하여 가상 오브젝트를 생성하고, 입출력부(140a)는 생성된 가상 오브젝트를 차량 내 유리창에 표시할 수 있다(1410, 1420). 또한, 제어부(120)는 차량 위치 정보에 기반하여 차량(100)이 주행선 내에서 정상적으로 운행되고 있는지 판단할 수 있다. 차량(100)이 주행선을 비정상적으로 벗어나는 경우, 제어부(120)는 입출력부(140a)를 통해 차량 내 유리창에 경고를 표시할 수 있다. 또한, 제어부(120)는 통신부(110)를 통해 주변 차량들에게 주행 이상에 관한 경고 메세지를 방송할 수 있다. 상황에 따라, 제어부(120)는 통신부(110)를 통해 관계 기관에게 차량의 위치 정보와, 주행/차량 이상에 관한 정보를 전송할 수 있다.For example, the communication unit 110 of the vehicle 100 may receive map information, traffic information, and the like from an external server and store the received map information in the memory unit 130. The location measuring unit 140b may obtain vehicle location information through GPS and various sensors and store the location information in the memory unit 130. The controller 120 may generate a virtual object based on map information, traffic information, and vehicle location information, and the input / output unit 140a may display the generated virtual object on a glass window in the vehicle (1410 and 1420). In addition, the controller 120 may determine whether the vehicle 100 is normally driven in the driving line based on the vehicle position information. When the vehicle 100 deviates abnormally from the driving line, the controller 120 may display a warning on the glass window in the vehicle through the input / output unit 140a. In addition, the controller 120 may broadcast a warning message regarding a driving abnormality to surrounding vehicles through the communication unit 110. According to a situation, the controller 120 may transmit the location information of the vehicle and the information regarding the driving / vehicle abnormality to the related organization through the communication unit 110.
요약하면, 본 개시의 다양한 실시예들은 일정 장치 및/또는 단말을 통해 구현될 수 있다.In summary, various embodiments of the present disclosure may be implemented through a device and / or a terminal.
예를 들어, 일정 장치는, 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 차량, 자율주행 기능을 탑재한 차량, 드론 (Unmanned Aerial Vehicle, UAV), AI (Artificial Intelligence) 모듈, 로봇, AR (Augmented Reality) 장치, VR (Virtual Reality) 장치 또는 그 이외의 장치일 수 있다.For example, the scheduler includes a base station, a network node, a transmission terminal, a reception terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, a drone (Unmanned Aerial Vehicle, UAV), and AI (Artificial Intelligence). Module, robot, Augmented Reality (AR) device, Virtual Reality (VR) device or other device.
예를 들어, 단말은 개인 휴대 단말기 (PDA: Personal Digital Assistant), 셀룰러 폰, 개인 통신 서비스 (PCS: Personal Communication Service) 폰, GSM(Global System for Mobile) 폰, WCDMA (Wideband CDMA) 폰, MBS (Mobile Broadband System) 폰, 스마트 (Smart) 폰 또는 멀티모드 멀티밴드 (MM-MB: Multi Mode-Multi Band) 단말기 등일 수 있다. For example, the terminal may be a Personal Digital Assistant (PDA), a cellular phone, a Personal Communication Service (PCS) phone, a Global System for Mobile (GSM) phone, a Wideband CDMA (WCDMA) phone, an MBS ( It may be a Mobile Broadband System phone, a Smart phone, or a Multi Mode Multi Band (MM-MB) terminal.
여기서, 스마트 폰이란 이동통신 단말기와 개인 휴대 단말기의 장점을 혼합한 단말기로서, 이동통신 단말기에 개인 휴대 단말기의 기능인 일정 관리, 팩스 송수신 및 인터넷 접속 등의 데이터 통신 기능을 통합한 단말기를 의미할 수 있다. 또한, 멀티모드 멀티밴드 단말기란 멀티 모뎀칩을 내장하여 휴대 인터넷시스템 및 다른 이동통신 시스템(예를 들어, CDMA(Code Division Multiple Access) 2000 시스템, WCDMA(Wideband CDMA) 시스템 등)에서 모두 작동할 수 있는 단말기를 말한다.Here, a smart phone is a terminal that combines the advantages of a mobile communication terminal and a personal portable terminal, and may mean a terminal incorporating data communication functions such as schedule management, fax transmission and reception, etc. which are functions of a personal portable terminal. have. In addition, a multimode multiband terminal can be equipped with a multi-modem chip to operate in both portable Internet systems and other mobile communication systems (e.g., code division multiple access (CDMA) 2000 systems, wideband CDMA (WCDMA) systems, etc.). Speak the terminal.
또는, 단말은 노트북 PC, 핸드헬드 PC (Hand-Held PC), 태블릿 PC (tablet PC), 울트라북 (ultrabook), 슬레이트 PC (slate PC), 디지털 방송용 단말기, PMP (portable multimedia player), 네비게이션, 웨어러블 디바이스 (wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD (head mounted display) 등일 수 있다. 예를 들어, 드론은 사람이 타지 않고 무선 컨트롤 신호에 의해 비행하는 비행체일 수 있다. 예를 들어, HMD는 머리에 착용하는 형태의 디스플레이 장치일 수 있다. 예를 들어, HMD는 VR 또는 AR을 구현하기 위해 사용될 수 있다.Alternatively, the terminal may be a notebook PC, a hand-held PC, a tablet PC, an ultrabook, a slate PC, a digital broadcasting terminal, a portable multimedia player (PMP), navigation, A wearable device may be, for example, a smartwatch, a glass glass, a head mounted display, etc. For example, a drone may be burned by a radio control signal without a human being. For example, the HMD may be a display device in a form worn on the head, for example, the HMD may be used to implement VR or AR.
본 개시의 다양한 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 개시의 다양한 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.Various embodiments of the present disclosure may be implemented through various means. For example, various embodiments of the present disclosure may be implemented by hardware, firmware, software, or a combination thereof.
하드웨어에 의한 구현의 경우, 본 개시의 다양한 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.For implementation in hardware, a method according to various embodiments of the present disclosure may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs). ), Field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 개시의 다양한 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 예를 들어, 소프트웨어 코드는 메모리 유닛(50, 150)에 저장되어 프로세서(40, 140)에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치할 수 있으며, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of an implementation by firmware or software, the method according to various embodiments of the present disclosure may be implemented in the form of a module, procedure, or function that performs the functions or operations described above. For example, software code may be stored in the memory units 50 and 150 and driven by the processors 40 and 140. The memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
본 개시의 다양한 실시예들은 그 기술적 아이디어 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 개시의 다양한 실시예들의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 개시의 다양한 실시예들의 등가적 범위 내에서의 모든 변경은 본 개시의 다양한 실시예들의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.Various embodiments of the present disclosure may be embodied in other specific forms without departing from the technical idea and essential features thereof. Accordingly, the above detailed description should not be construed as limiting in all aspects and should be considered as illustrative. The scope of various embodiments of the present disclosure should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the various embodiments of the present disclosure are included in the scope of the various embodiments of the present disclosure. In addition, the claims may be combined to form embodiments by combining claims that do not have an explicit citation relationship or may be incorporated as new claims by post-application correction.
본 개시의 다양한 실시예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project) 또는 3GPP2 시스템 등이 있다. 본 개시의 다양한 실시예들은 상기 다양한 무선접속 시스템 뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave 통신 시스템에도 적용될 수 있다. Various embodiments of the present disclosure can be applied to various radio access systems. Examples of various radio access systems include 3rd Generation Partnership Project (3GPP) or 3GPP2 systems. Various embodiments of the present disclosure may be applied to all technical fields that apply the various radio access systems as well as the various radio access systems. Furthermore, the proposed method can be applied to mmWave communication system using ultra high frequency band.

Claims (15)

  1. 무선 통신 시스템에서 장치가 신호를 수신하는 방법에 있어서, A method in which a device receives a signal in a wireless communication system,
    제1 전송 블록 및 제2 전송 블록을 스케쥴링 하는 하향링크 제어 정보 (downlink control information, DCI) 를 수신하는 단계; Receiving downlink control information (DCI) for scheduling a first transport block and a second transport block;
    상기 DCI 에 기초하여, 제1 시간 자원 내에서 상기 제1 전송 블록을 수신하는 단계; 및Based on the DCI, receiving the first transport block within a first time resource; And
    상기 DCI 에 기초하여, 제2 시간 자원 내에서 상기 제2 전송 블록을 수신하는 단계를 포함하고, Based on the DCI, receiving the second transport block within a second time resource,
    상기 제1 시간 자원 및 상기 제2 시간 자원 사이에는 갭 (gap) 이 설정되는, 방법.And a gap is established between the first time resource and the second time resource.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 제1 전송 블록을 수신하는 단계는:Receiving the first transport block includes:
    상기 DCI 에 기초하여, 상기 제1 시간 자원 내에서 상기 제1 전송 블록을 반복 수신하는 것을 포함하고,Based on the DCI, repeatedly receiving the first transport block within the first time resource,
    상기 제2 전송 블록을 수신하는 단계는:Receiving the second transport block includes:
    상기 DCI 에 기초하여, 상기 제2 시간 자원 내에서 상기 제2 전송 블록을 반복 수신하는 것을 포함하는, 방법.Based on the DCI, repeatedly receiving the second transport block within the second time resource.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 제1 전송 블록을 수신하는 단계는:Receiving the first transport block includes:
    상기 DCI 에 기초하여, 상기 제1 시간 자원 내에서 상기 제1 전송 블록을 반복 수신하는 것을 포함하고,Based on the DCI, repeatedly receiving the first transport block within the first time resource,
    상기 갭의 크기는, 상기 장치가 상기 제1 시간 자원 내에서 반복 수신되는 상기 제1 전송 블록을 컴바이닝 (combining) 하여 디코딩 (decoding) 하는데 소요되는 시간에 기초하여 결정되는, 방법.The size of the gap is determined based on the time it takes for the device to combine and decode the first transport block that is repeatedly received in the first time resource.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 제1 시간 자원의 길이가 특정 길이 미만임에 기초하여, 상기 갭의 크기는 제 1 크기로 결정되고, Based on the length of the first time resource being less than a certain length, the size of the gap is determined as the first size,
    상기 제1 시간 자원의 길이가 상기 특정 길이 이상임에 기초하여, 상기 갭의 크기는 제2 크기로 결정되는, 방법.Based on the length of the first time resource being greater than or equal to the specific length, the size of the gap is determined to be a second size.
  5. 제 4 항에 있어서, The method of claim 4, wherein
    상기 제1 크기는 0 으로 결정되는, 방법.And the first size is determined to be zero.
  6. 제 1 항에 있어서, The method of claim 1,
    상기 갭 내에서, 상기 제1 전송 블록과 관련된 HARQ-ACK (hybrid automatic repeat and request acknowledgment) 을 송신하는 단계를 더 포함하는, 방법. In the gap, transmitting a hybrid automatic repeat and request acknowledgment (HARQ-ACK) associated with the first transport block.
  7. 제 6 항에 있어서, The method of claim 6,
    상기 제2 전송 블록과 관련된 HARQ 프로세스 번호 (HARQ process number) 는, 상기 제1 전송 블록과 관련된 HARQ-ACK 에 기초하여 결정되는, 방법.HARQ process number associated with the second transport block is determined based on HARQ-ACK associated with the first transport block.
  8. 제 6 항에 있어서, The method of claim 6,
    상기 제1 전송 블록과 관련된 HARQ-ACK 이 ACK 임에 기초하여, Based on the HARQ-ACK associated with the first transport block is ACK,
    상기 제2 전송 블록과 관련된 HARQ 프로세스 번호 (HARQ process number) 는, 상기 제1 전송 블록과 관련된 HARQ 프로세스 번호의 다음 HARQ 프로세스 번호로 결정되고, HARQ process number (HARQ process number) associated with the second transport block is determined as the next HARQ process number of the HARQ process number associated with the first transport block,
    상기 제1 전송 블록과 관련된 HARQ-ACK 이 NACK (negative ACK) 임에 기초하여, Based on the HARQ-ACK associated with the first transport block is a negative ACK (NACK),
    상기 제2 전송 블록과 관련된 HARQ 프로세스 번호는, 상기 제1 전송 블록과 관련된 HARQ 프로세스 번호와 동일하게 결정되는, 방법.The HARQ process number associated with the second transport block is determined to be the same as the HARQ process number associated with the first transport block.
  9. 제 8 항에 있어서, The method of claim 8,
    상기 NACK 은, 상기 제2 전송 블록과 관련된 송신 파라미터를 변경할 것을 요청하는 정보를 포함하고,The NACK includes information requesting to change a transmission parameter associated with the second transport block,
    상기 제2 전송 블록은 상기 송신 파라미터를 변경할 것을 요청하는 정보에 기초하여 구성되고,The second transport block is configured based on the information requesting to change the transmission parameter,
    상기 송신 파라미터는, 상기 제2 전송 블록과 관련된 중복 버전(redundancy version)에 대한 정보 또는 상기 제2 전송 블록과 관련된 변조 및 코딩 방식(modulation and coding scheme)에 대한 정보 중 하나 이상을 포함하는, 방법.The transmission parameter includes one or more of information about a redundancy version associated with the second transport block or information about a modulation and coding scheme associated with the second transport block. .
  10. 제 6 항에 있어서, The method of claim 6,
    상기 제1 전송 블록과 관련된 HARQ-ACK 을 송신하는 단계는:Transmitting HARQ-ACK associated with the first transport block includes:
    상기 제1 전송 블록에 포함된 복수의 서브-블록(sub-block)들 각각과 관련된 HARQ-ACK 을 획득하는 것; Obtaining HARQ-ACK associated with each of a plurality of sub-blocks included in the first transport block;
    상기 복수의 서브-블록들 각각과 관련된 HARQ-ACK 을 번들링 (bundling) 하여, 상기 제1 전송 블록과 관련된 HARQ-ACK 을 획득하는 것; 및Bundling HARQ-ACK associated with each of the plurality of sub-blocks to obtain HARQ-ACK associated with the first transport block; And
    상기 갭 내에서, 상기 제1 전송 블록과 관련된 HARQ-ACK 을 송신하는 것을 포함하는, 방법.Within the gap, transmitting a HARQ-ACK associated with the first transport block.
  11. 무선 통신 시스템에서 신호를 수신하는 장치에 있어서,An apparatus for receiving a signal in a wireless communication system,
    메모리 (memory); 및Memory; And
    상기 메모리와 연결된 하나 이상의 프로세서 (processor) 를 포함하고, One or more processors coupled to the memory,
    상기 하나 이상의 프로세서는:The one or more processors are:
    제1 전송 블록 및 제2 전송 블록을 스케쥴링 하는 하향링크 제어 정보 (downlink control information, DCI) 를 수신하고, Receive downlink control information (DCI) for scheduling the first transport block and the second transport block,
    상기 DCI 에 기초하여, 제1 시간 자원 내에서 상기 제1 전송 블록을 수신하고, Based on the DCI, receive the first transport block within a first time resource,
    상기 DCI 에 기초하여, 제2 시간 자원 내에서 상기 제2 전송 블록을 수신하고, Based on the DCI, receive the second transport block within a second time resource,
    상기 제1 시간 자원 및 상기 제2 시간 자원 사이에는 갭 (gap) 이 설정되는, 장치.And a gap is established between the first time resource and the second time resource.
  12. 제 11 항에 있어서, The method of claim 11,
    상기 하나 이상의 프로세서는: The one or more processors are:
    상기 갭 내에서, 상기 제1 전송 블록과 관련된 HARQ-ACK (hybrid automatic repeat and request acknowledgment) 을 송신하는, 장치.Within the gap, transmitting a hybrid automatic repeat and request acknowledgment (HARQ-ACK) associated with the first transport block.
  13. 제 12 항에 있어서, The method of claim 12,
    상기 제2 전송 블록과 관련된 HARQ 프로세스 번호는, 상기 제1 전송 블록과 관련된 HARQ-ACK 에 기초하여 결정되는, 장치.And an HARQ process number associated with the second transport block is determined based on an HARQ-ACK associated with the first transport block.
  14. 제 11 항에 있어서, The method of claim 11,
    상기 장치는, 이동 단말기, 네트워크 및 상기 장치가 포함된 차량 이외의 자율 주행 차량 중 하나 이상과 통신하는, 장치.And the device communicates with one or more of a mobile terminal, a network, and an autonomous vehicle other than the vehicle in which the device is included.
  15. 무선 통신 시스템에서 신호를 송신하는 장치에 있어서,An apparatus for transmitting a signal in a wireless communication system,
    메모리 (memory); 및Memory; And
    상기 메모리와 연결된 하나 이상의 프로세서 (processor) 를 포함하고, One or more processors coupled to the memory,
    상기 하나 이상의 프로세서는:The one or more processors are:
    제1 전송 블록 및 제2 전송 블록을 스케쥴링 하는 하향링크 제어 정보 (downlink control information, DCI) 를 송신하고, Transmit downlink control information (DCI) for scheduling the first transport block and the second transport block,
    제1 시간 자원 내에서 상기 제1 전송 블록을 송신하고, Transmit the first transport block within a first time resource,
    제2 시간 자원 내에서 상기 제2 전송 블록을 송신하고, Transmit the second transport block within a second time resource,
    상기 제1 시간 자원 및 상기 제2 시간 자원 사이에는 갭 (gap) 이 설정되는, 장치.And a gap is established between the first time resource and the second time resource.
PCT/KR2019/010070 2018-08-09 2019-08-09 Method for transmitting and receiving signals in radio communication system and apparatus supporting same WO2020032681A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862716940P 2018-08-09 2018-08-09
US62/716,940 2018-08-09

Publications (1)

Publication Number Publication Date
WO2020032681A1 true WO2020032681A1 (en) 2020-02-13

Family

ID=69415059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010070 WO2020032681A1 (en) 2018-08-09 2019-08-09 Method for transmitting and receiving signals in radio communication system and apparatus supporting same

Country Status (1)

Country Link
WO (1) WO2020032681A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210219330A1 (en) * 2018-08-13 2021-07-15 Nokia Technologies Oy Apparatus, method and computer program
US11729790B2 (en) 2020-08-06 2023-08-15 Samsung Electronics Co., Ltd. Mobile communications methods for monitoring and scheduling

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150189624A1 (en) * 2012-08-22 2015-07-02 Nokia Solutions And Networks Oy Deciding transmission parameters
US20170026297A1 (en) * 2015-07-24 2017-01-26 Qualcomm Incorporated Code block segmentation and rate matching for multiple transport block transmissions
US20170117992A1 (en) * 2014-04-04 2017-04-27 Nokia Solutions And Networks Oy Hybrid automatic repeat request timing in communications
KR20180045070A (en) * 2010-12-21 2018-05-03 엘지전자 주식회사 Method and Apparatus for transceiving a signal in a wireless communication system
KR20180059758A (en) * 2015-08-25 2018-06-05 아이디에이씨 홀딩스, 인크. Framing, scheduling, and synchronization of wireless systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180045070A (en) * 2010-12-21 2018-05-03 엘지전자 주식회사 Method and Apparatus for transceiving a signal in a wireless communication system
US20150189624A1 (en) * 2012-08-22 2015-07-02 Nokia Solutions And Networks Oy Deciding transmission parameters
US20170117992A1 (en) * 2014-04-04 2017-04-27 Nokia Solutions And Networks Oy Hybrid automatic repeat request timing in communications
US20170026297A1 (en) * 2015-07-24 2017-01-26 Qualcomm Incorporated Code block segmentation and rate matching for multiple transport block transmissions
KR20180059758A (en) * 2015-08-25 2018-06-05 아이디에이씨 홀딩스, 인크. Framing, scheduling, and synchronization of wireless systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210219330A1 (en) * 2018-08-13 2021-07-15 Nokia Technologies Oy Apparatus, method and computer program
US11968683B2 (en) * 2018-08-13 2024-04-23 Nokia Technologies Oy Apparatus, method and computer program
US11729790B2 (en) 2020-08-06 2023-08-15 Samsung Electronics Co., Ltd. Mobile communications methods for monitoring and scheduling

Similar Documents

Publication Publication Date Title
WO2020032740A1 (en) Method for transmitting/receiving signal in wireless communication system, and device therefor
WO2020032750A1 (en) Method for transmitting and receiving signals in wireless communication system and device therefor
WO2020145773A1 (en) Method, user equipment, device, and storage medium for transmitting uplink, and method and base station for receiving uplink
WO2020204322A1 (en) Method for performing beam management by terminal in wireless communication system, and terminal and base station supporting same
WO2019212224A1 (en) Method for transmitting and receiving channel state information between terminal and base station in wireless communication system and apparatus supporting same
WO2020130755A1 (en) Operating method of terminal and base station in wireless communication system, and device for supporting same
WO2020032726A1 (en) Method and device for communication device to sense or transmit wus signal in wireless communication system
WO2020050682A1 (en) Operation method of terminal in wireless communication system and terminal supporting same
WO2020184836A1 (en) Method for transmitting beam information by user equipment in wireless communication system, and user equipment and base station supporting same
WO2020166844A1 (en) Method whereby user equipment receives data signal in wireless communication system, and user equipment and base station which support same
WO2020032751A1 (en) Method for transmitting wus in wireless communication system, and device therefor
WO2020190117A1 (en) Method for transmitting and receiving signal in wireless communication system and device supporting same
WO2020171405A1 (en) Method for performing beam management by ue in wireless communication system, and ue and base station supporting same
WO2020159172A1 (en) Beam failure reporting method of terminal in wireless communication system, and terminal and base station supporting same
WO2020159189A1 (en) Method by which terminal reports state information in wireless communication system, and terminal and base station for supporting same
WO2020204497A1 (en) Method and device for transmission or reception of signal for multiple transport block scheduling
WO2020032643A1 (en) Method for transmitting and receiving signal in wireless communication system and apparatus therefor
WO2021066602A1 (en) Method for transmitting and receiving signals in wireless communication system, and device supporting same
WO2020166848A1 (en) Method for transmitting uplink feedback information related to beam of user equipment in wireless communication system, and user equipment and base station for supporting same
WO2020032756A1 (en) Method for transmitting and receiving signals in wireless communication system, and device therefor
WO2020091498A1 (en) Method for operating terminal and base station in wireless communication system, and apparatus for supporting same
WO2020091557A1 (en) Method for transmitting and receiving signal in wireless communication system, and apparatus therefor
WO2020122580A1 (en) Method for operating terminal and base station in wireless communication system, and device supporting same
WO2020122658A1 (en) Operating methods of user equipment and base station in wireless communication system, and device supporting same
WO2021066605A1 (en) Method for transmitting and receiving signal in wireless communication system, and device supporting same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847064

Country of ref document: EP

Kind code of ref document: A1