WO2020031711A1 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
WO2020031711A1
WO2020031711A1 PCT/JP2019/029152 JP2019029152W WO2020031711A1 WO 2020031711 A1 WO2020031711 A1 WO 2020031711A1 JP 2019029152 W JP2019029152 W JP 2019029152W WO 2020031711 A1 WO2020031711 A1 WO 2020031711A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
temperature characteristic
sensor
temperature
characteristic parameter
Prior art date
Application number
PCT/JP2019/029152
Other languages
French (fr)
Japanese (ja)
Inventor
昭弘 川端
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2020536450A priority Critical patent/JP7064001B2/en
Publication of WO2020031711A1 publication Critical patent/WO2020031711A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments

Definitions

  • the present invention relates to a vehicle control device.
  • route information to which a vehicle (own vehicle) should travel is generated with high accuracy including its traveling lane and the like, and the vehicle is automatically driven to a destination according to the route information (for example, Patent Document 1). reference).
  • route information for example, Patent Document 1.
  • highly accurate route information can be generated by receiving rough route information from a navigation system and performing data matching on the rough route information with high-precision map data.
  • the own vehicle position of the vehicle is estimated based on sensor information such as a gyro sensor, and the estimated own vehicle position is provided to the automatic driving ECU together with the route information to be used for automatic driving control.
  • a gyro sensor generally has an offset, and a certain amount of output voltage is output from the sensor even when the angular velocity is zero.
  • the amount of the offset is a unique value for each sensor, and its magnitude varies depending on the temperature.
  • the object of the present invention is to provide a vehicle control device capable of reducing the time and cost required for an inspection process.
  • a vehicle control device includes a GNSS receiver that acquires information on a position of a vehicle, a sensor that detects a speed, an angular velocity, and an acceleration of the vehicle, and stores unique information, The GNSS receiver and a host vehicle position estimating unit that estimates the position of the vehicle based on the output of the sensor, the host vehicle position estimating unit acquires the unique information from the sensor and obtains the unique information unique to the sensor.
  • a temperature characteristic learning unit that acquires a temperature characteristic parameter and learns a temperature characteristic based on the temperature characteristic parameter, and is configured to correct the position based on the learned temperature characteristic. .
  • FIG. 1 is a block diagram illustrating a configuration of a vehicle control device according to a first embodiment.
  • FIG. 4 is a schematic diagram illustrating an effect of the first embodiment. It is a schematic diagram explaining operation of a vehicle control device concerning a 2nd embodiment.
  • 9 is a flowchart illustrating an operation of the vehicle control device according to the second embodiment.
  • FIG. 9 is a block diagram illustrating a configuration of a vehicle control device according to a third embodiment. It is a schematic diagram explaining operation of a vehicle control device concerning a 3rd embodiment.
  • 13 is a flowchart illustrating an operation of the vehicle control device according to the fourth embodiment.
  • FIG. 1 is a block diagram illustrating the configuration of the vehicle control device according to the first embodiment.
  • This vehicle control device includes a high-precision map ECU 10, an automatic driving ECU 20 that performs various controls related to automatic driving, and a communication module 30.
  • the high-accuracy map ECU 10 is an arithmetic control unit that is mounted on a vehicle (not shown) to be automatically driven and functions as a route generation device that generates information on the route.
  • the high-precision map ECU 10 and the automatic driving ECU 20 can be connected to each other by, for example, Ethernet (registered trademark) which is a well-known communication standard.
  • the automatic driving ECU 20 and the communication module 30 can be connected to an external device (not shown) according to a communication standard such as CAN, LIN, MOST, and FlexRay, or a combination thereof.
  • a communication standard such as CAN, LIN, MOST, and FlexRay, or a combination thereof.
  • the communication standards listed are merely examples, and the present invention is not limited to these.
  • the automatic driving ECU 20 outputs IVI (In-Vehicle Infotainment) route information for automatic driving to the high-accuracy map ECU 10 and is generated by the high-accuracy map ECU 10 based on the IVI route information and the high-accuracy map data. It is a control unit that executes automatic driving control using more detailed route information.
  • the IVI route information is generated by a navigation system (not shown) mounted on the vehicle, and includes information on the latitude and longitude of a plurality of points along a route between the current position and the destination.
  • the high-accuracy map ECU 10 includes, for example, a gyro / acceleration sensor 11, a GNSS receiver 12, a wheel speed sensor 13, a map update unit 14, a high-accuracy map data storage unit 15, a vehicle position estimating unit 16, It includes a map information output unit 17 and a route information conversion unit 18.
  • the gyro / acceleration sensor 11, the GNSS receiver 12, and the wheel speed sensor 13 may be provided outside the high-accuracy map ECU 10.
  • the gyro / acceleration sensor 11 is a detector that measures the angular velocity and acceleration of the vehicle.
  • the gyro / acceleration sensor 11 includes therein a temperature sensor 11A and a characteristic parameter storage unit 11B for storing a temperature characteristic parameter.
  • the gyro / acceleration sensor 11 can output an output signal related to angular velocity, an output signal related to acceleration, and an output signal from the temperature sensor 11A.
  • the temperature characteristic parameter is, for example, a parameter relating to the offset of the gyro / acceleration sensor 11.
  • the offset has a temperature-dependent characteristic, and the parameter relating to the offset stored here also includes data indicating the relationship between the temperature and the offset value.
  • the temperature sensor 11A may be mounted inside the gyro / acceleration sensor 11, or may be mounted outside the gyro / acceleration sensor 11 as long as the operating temperature of the gyro / acceleration sensor 11 can be read. Is also good.
  • the GNSS receiver 12 is a receiver that acquires the absolute position coordinates of the vehicle from the GNSS system.
  • the wheel speed sensor 13 is a sensor that detects the rotation speed of the vehicle wheels and / or the speed of the vehicle.
  • the map update unit 14 receives high-precision map update data from the outside via the communication module 30 and updates the high-precision map data.
  • the high-accuracy map data storage unit 15 is a data holding unit that stores updated high-accuracy map data.
  • the own vehicle position estimating unit 16 estimates the current absolute position of the vehicle based on the absolute position coordinates of the vehicle acquired by the GNSS receiver 12, and also acquires the angular velocity and acceleration acquired by the gyro / acceleration sensor 11, and the wheels. Using the information on the vehicle speed acquired by the speed sensor 13, the relative position of the vehicle is estimated based on the absolute position coordinates. Then, the vehicle position estimating unit 16 executes a map matching process of correcting the calculated vehicle position using the high-precision map data stored in the high-precision map data storage unit 15, and calculates the corrected vehicle position. The information is output to the map information output unit 17 and the automatic driving ECU 20 together with the vehicle direction and the detection information of the sensor. The own vehicle position estimating unit 16 also receives, from the automatic driving ECU 20, vehicle information on the vehicle to be automatically driven and imaging information (camera recognition result) captured by a camera mounted on the vehicle, and estimates the relative position. Can also be used.
  • the vehicle position estimating unit 16 includes a position / azimuth estimating unit 161, a temperature characteristic learning unit 162, a traveling road specifying unit 163, and a lane determining unit 164 therein.
  • the position and orientation estimating unit 161 estimates the relative position and orientation of the vehicle based on the output of the gyro / acceleration sensor 11 based on the absolute position coordinates calculated based on the GNSS receiver 12.
  • the temperature characteristic learning unit 162 has a function of taking in the temperature characteristic parameters stored in the gyro / acceleration sensor 11 and learning the temperature characteristics. Based on the learned temperature characteristics, the position and orientation estimation unit 161 corrects the position of the vehicle.
  • the traveling road identification unit 163 determines whether the vehicle is based on the relative position and orientation data of the vehicle estimated by the position and orientation estimation unit 161, high-precision map data, and the recognition results of the camera, radar sonar, beacon, and the like mounted on the vehicle. It has the function of specifying the road on which it is traveling.
  • the lane determination unit 164 has a function of specifying which of a plurality of lanes on the specified road the vehicle is traveling.
  • the map information output unit 17 includes the high-accuracy map data read from the high-accuracy map data storage unit 15, the relative position of the vehicle estimated by the vehicle position estimation unit 16, and the details obtained by the route information conversion unit 18. According to the route information, high-precision map information for automatic driving is generated and output to the automatic driving ECU 20.
  • the high-precision map information for automatic driving includes, for example, a vehicle position (own vehicle position), lane information, signboard and sign information, curve information, gradient information, and the like.
  • the route information converter 18 converts the IVI route information (first route information) obtained from the automatic driving ECU 20 and the link / node data included in the high-accuracy map data obtained from the high-accuracy map data storage 15. , And generates detailed route information (second route information), which is route information more accurate than the IVI route information, according to the result, and outputs it to the automatic driving ECU 20.
  • the route information conversion unit 18 further obtains information on the position of the vehicle from the vehicle position estimation unit 16 and reflects the information on the position of the vehicle in the detailed route information.
  • the effect of the first embodiment will be described with reference to FIG.
  • the manufacturing process of the conventional vehicle control device is shown in the upper part, and the manufacturing process of the first embodiment is shown in the lower part.
  • a gyro / acceleration sensor 11 is manufactured by a sensor vendor, and a screening process for checking whether or not the sensor has a certain temperature characteristic is executed. Discarded.
  • the gyro / acceleration sensor 11 is shipped to the ECU vendor.
  • the gyro / acceleration sensor 11 is mounted on the high-precision map ECU 10.
  • the high-accuracy map ECU 10 is put into a thermostat.
  • the temperature of the thermostat is controlled over the entire range of the usage environment temperature of the vehicle (for example, ⁇ 40 ° C. to 85 ° C.), and output signals of the gyro / acceleration sensor 11 at a plurality of temperatures are detected. Based on this detection result, the temperature characteristics of the gyro / acceleration sensor 11 are specified and written to the high-accuracy map ECU 10.
  • the temperature characteristic parameters are stored in advance in the characteristic parameter storage unit of the gyro / acceleration sensor 11 (at the stage of the sensor vendor's manufacturing process).
  • This temperature characteristic parameter is, for example, information relating to the offset of the sensor, and is a parameter indicating the relationship between the temperature and the offset value.
  • This temperature characteristic parameter is obtained as data over the entire range of the usage environment temperature of the vehicle.
  • the vehicle position estimating unit 16 in the high-accuracy map ECU 10 has a temperature characteristic learning unit 162. After manufacturing (assembly) of the high-precision map ECU 10, the temperature characteristic learning unit 162 reads a temperature characteristic parameter from the gyro / acceleration sensor 11, applies predetermined data conversion to the temperature characteristic parameter, and learns the temperature characteristic.
  • the temperature characteristics can be reflected by incorporating the temperature characteristics parameters of the gyro / acceleration sensor 11 into the high-accuracy map ECU 10, so that a long-term inspection using a constant-temperature bath is unnecessary. As a result, the time and cost required for the inspection process can be reduced.
  • the second embodiment has the same overall configuration and basic operation (FIGS. 1 and 2) as the first embodiment, but takes in the characteristic parameters of the gyro / acceleration sensor 11 and sets the temperature based on it. The procedure for learning the characteristics is different from that of the first embodiment.
  • the difference ⁇ V (Ti) between the temperature characteristic parameter C1 stored in the gyro / acceleration sensor 11 and the actual offset is determined, and based on the difference, It is determined whether the temperature characteristic parameter needs to be corrected. Based on the difference, the necessity of replacement of the gyro / acceleration sensor 11 is also determined. In this determination, the high-precision map ECU 10 (gyro / acceleration sensor 11) sets a plurality of temperatures in a simple constant temperature bath and acquires temperature characteristics at the plurality of temperatures. Although temperature setting is required, the number of set temperatures can be reduced as compared with the conventional case, so that the measurement time can be shortened and the cost can be reduced.
  • the number of the set temperatures may be a number sufficient for performing the correction, and may be, for example, 3 to 4 points. If it is determined that correction is necessary, the temperature characteristic parameter is corrected based on the difference ⁇ V (Ti) or another value calculated based on the difference ⁇ V (Ti), and according to the corrected parameter, Temperature characteristic learning section 162 learns temperature characteristics. If the difference ⁇ V (Ti) is larger than the predetermined value, it is determined that the gyro / acceleration sensor 11 is defective, and it is determined that the gyro / acceleration sensor 11 needs to be replaced.
  • the temperature characteristic is learned by the temperature characteristic learning unit 162 based on the corrected temperature characteristic parameter.
  • the temperature characteristics are reflected by taking the temperature characteristic parameters of the gyro / acceleration sensor 11 into the high-accuracy map ECU 10. be able to.
  • the temperature characteristic parameter can be corrected and taken in.
  • a temperature setting means such as a simple thermostat is required, the temperature characteristic parameter of the gyro / acceleration sensor 11 can be corrected instead. Therefore, according to the second embodiment, similarly to the first embodiment, it is possible to reduce the time and cost required for the inspection process, and to more accurately adjust the temperature than the first embodiment. Correction based on the characteristic parameters can be performed.
  • the gyro / acceleration sensor 11 stores the temperature characteristic parameter in the characteristic parameter storage unit, and the temperature characteristic parameter is used for learning the temperature characteristic in the temperature characteristic learning unit 162 of the high accuracy map ECU 10.
  • the gyro / acceleration sensor 11 does not have the characteristic parameter storage unit 11B, but instead is information unique to the sensor. It has a unique information storage unit 11C for storing unique information (for example, a serial number (identification number)).
  • the gyro / acceleration sensor 11 stores a temperature characteristic parameter as unique information, whereas in the third embodiment, information (serial number) specifying the sensor is used. Etc.), and stores unique information associated with the temperature characteristic parameter.
  • the temperature characteristic parameters are supplied from the sensor vendor to the ECU vendor by the system shown in FIG.
  • the server installed on the ECU vendor side receives the serial number information from the transmission / reception unit 19 (FIG. 5) of the gyro / acceleration sensor 11 mounted on the high-precision map ECU 10 and transmits this information via the network NW to the sensor vendor. And sends a request for the temperature characteristic parameter obtained for the gyro / acceleration sensor 11 of the serial number.
  • the server on the sensor vendor side has, as a database, data on pairs of the serial number of the shipped gyro / acceleration sensor 11 and the temperature characteristic parameter of the sensor.
  • the server on the sensor vendor side refers to the database based on the serial number received from the server on the ECU vendor side, and transmits the value of the corresponding temperature characteristic parameter to the server on the ECU vendor side.
  • the server on the ECU vendor side inputs the received temperature characteristic parameters to the temperature characteristic learning unit 162 in the high-accuracy map ECU 10.
  • the temperature characteristic parameter of the gyro / acceleration sensor 11 can be obtained based on the unique information (such as a serial number) stored in the gyro / acceleration sensor 11.
  • the temperature characteristic parameter is highly confidential information, and is desirably strictly managed.
  • only the serial number is stored in the gyro / acceleration sensor 11, and the temperature characteristic parameter is not stored in the gyro / acceleration sensor 11, but instead is stored in the sensor vendor based on the serial number. Is provided from the server on the ECU side to the server on the ECU vendor side via the network. Therefore, according to the third embodiment, the same effect as that of the above-described embodiment can be obtained while securing the confidentiality of the temperature characteristic parameter.
  • the fourth embodiment has the same overall configuration and basic operation as the above-described embodiment, but differs from the above-described embodiment in the following points.
  • the temperature characteristic parameters stored in the gyro / acceleration sensor 11 or other locations are taken into the temperature characteristic learning unit 162, and the temperature characteristics are learned.
  • the learning of the temperature characteristic is performed not only after the manufacturing of the high-precision map ECU 10 but also periodically, irregularly, or by the user in response to the temporal change of the characteristic of the gyro / acceleration sensor 11. Executable according to the instruction.
  • the fourth embodiment correction of temperature characteristic parameters corresponding to aging
  • the temperature characteristic parameters are fetched from the gyro / acceleration sensor 11 into the temperature characteristic learning unit 162, and the temperature characteristic learning unit 162 learns the temperature characteristics.
  • the high-precision map ECU 10 is mounted on the vehicle to be used together with the automatic driving ECU 20 and the like. Thereafter, the procedure shown in FIG. 7 is executed periodically, irregularly, or in response to a user's command in response to a temporal change in the characteristics of the gyro / acceleration sensor 11.
  • the vehicle When correcting the temperature characteristic parameters after the high-precision map ECU 10 is mounted on the vehicle, first, it is determined whether the vehicle is in a stopped state or in an operating state where no acceleration is applied (for example, a straight-line running at a constant speed). Confirmed (S21).
  • the stopped state of the vehicle can be confirmed, for example, by detecting whether or not the shift lever of the vehicle is in a “P” (parking) state.
  • the stop of the vehicle can be confirmed based on the output of the wheel speed sensor 13, the recognition result of the camera mounted on the vehicle, and the output of other detection means.
  • an output signal Sg is received from the gyro / acceleration sensor 11 (S22), and a difference ⁇ V between the output signal Sg and the temperature characteristic parameter is obtained (S23). Then, the absolute value
  • the correction method may be the same as the correction of the temperature characteristic parameter after the high-precision map ECU 10 is mounted on the vehicle.
  • the correction of the temperature characteristic parameter is performed not only immediately after the assembling of the high-accuracy map ECU 10 but also periodically, irregularly, or in response to a change with time. It can be appropriately executed according to the instruction. For this reason, it is possible to take in more accurate temperature characteristic parameters corresponding to changes with time.
  • the present invention is not limited to the above embodiment, and includes various modifications.
  • the above embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the described configurations.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment.
  • the above-described configurations, functions, processing units, processing means, and the like may be partially or entirely realized by hardware, for example, by designing an integrated circuit.
  • the above-described configurations, functions, and the like may be realized by software by a processor interpreting and executing a program that realizes each function.
  • Information such as a program, a table, and a file for realizing each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card or an SD card.
  • control lines and information lines are shown as necessary for the description, and do not necessarily indicate all control lines and information lines on a product. In fact, it can be considered that almost all components are connected to each other.
  • SYMBOLS 10 High precision map ECU, 20 ... Automatic driving ECU, 30 ... Communication module, 11 ... Gyro / acceleration sensor, 11A ... Temperature sensor, 11B ... Characteristic parameter storage part, 11C ... Unique information storage part, 12 ... GNSS receiver, 13 ... wheel speed sensor, 14 ... map update unit, 15 ... high-accuracy map data storage unit, 16 ... own vehicle position estimation unit, 17 ... map information output unit, 18 ... route information conversion unit, 161 ... position and orientation estimation unit, 162 ... Temperature characteristic learning unit, 163, travel road identification unit, 164, lane determination unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

The present invention provides a vehicle control device which makes it possible to reduce the time and cost needed for an inspection process. This vehicle control device comprises a GNSS receiver which acquires information pertaining the position of a vehicle, sensors which detect the speed, angular velocity, and acceleration of the vehicle and which each store unique information, and a vehicle position estimation unit which estimates the position of the vehicle on the basis of output from the GNSS receiver and the sensors. The vehicle position estimation unit is also provided with a temperature characteristic learning unit which acquires the unique information from each sensor to acquire a temperature characteristic parameter unique to said sensor and learns temperature characteristics on the basis of the temperature characteristic parameters, and the vehicle position estimation unit corrects the aforementioned position on the basis of the learned temperature characteristics.

Description

車両制御装置Vehicle control device
 本発明は、車両制御装置に関する。 The present invention relates to a vehicle control device.
 現在、車両を自動運転する技術が盛んに開発されている。自動運転制御においては、車両(自車)が進むべき経路情報を、その走行レーン等も含めて高精度に生成し、その経路情報に従い、車両を目的地まで自動運転する(例えば、特許文献1参照)。一例としては、ナビゲーションシステムから概略的な経路情報を受信し、この概略的な経路情報を高精度地図データとデータマッチングすることで高精度な経路情報が生成され得る。また、ジャイロセンサなどのセンサ情報に従い、車両の自車位置が推定され、その推定された自車位置が経路情報とともに自動運転ECUに提供され、自動運転の制御に供される。 Currently, the technology to automatically drive vehicles is being actively developed. In the automatic driving control, route information to which a vehicle (own vehicle) should travel is generated with high accuracy including its traveling lane and the like, and the vehicle is automatically driven to a destination according to the route information (for example, Patent Document 1). reference). As an example, highly accurate route information can be generated by receiving rough route information from a navigation system and performing data matching on the rough route information with high-precision map data. In addition, the own vehicle position of the vehicle is estimated based on sensor information such as a gyro sensor, and the estimated own vehicle position is provided to the automatic driving ECU together with the route information to be used for automatic driving control.
 しかし、ジャイロセンサは、一般的にオフセットも持っており、角速度が零のときであっても、センサからある大きさの出力電圧が出力されてしまう。そのオフセットの量は、センサ毎に固有の値であり、しかも温度によってその大きさは異なる。 However, a gyro sensor generally has an offset, and a certain amount of output voltage is output from the sensor even when the angular velocity is zero. The amount of the offset is a unique value for each sensor, and its magnitude varies depending on the temperature.
 特に高精度な自車位置推定が必要である場合には、角速度を積分して車両の方位を算出する必要がある。このため、オフセットの大きさを高い精度で特定する必要がある。しかし、車両の使用環境の全温度範囲に亘ってオフセットの情報を取得するには、恒温槽を用意して環境温度を広範囲に設定したうえで、センサを搭載したECUにおいて、センサのオフセットを計測し、そのデータを取得する必要がある。このような工程は、非常に時間が掛かり、また高コストでもある。 Especially when highly accurate estimation of the position of the vehicle is required, it is necessary to calculate the direction of the vehicle by integrating the angular velocity. Therefore, it is necessary to specify the magnitude of the offset with high accuracy. However, in order to acquire offset information over the entire temperature range of the vehicle's operating environment, a temperature chamber is prepared, the environmental temperature is set over a wide range, and the sensor offset is measured by an ECU equipped with a sensor. And you need to get that data. Such a process is very time consuming and expensive.
国際公開第2016/042978号International Publication No. WO 2016/042978
 本発明は、検査工程に要する時間とコストを低減することを可能にした車両制御装置を提供することを目的とするものである。 The object of the present invention is to provide a vehicle control device capable of reducing the time and cost required for an inspection process.
 上記の課題を解決するため、本発明に係る車両制御装置は、車両の位置に関する情報を取得するGNSSレシーバと、前記車両の速度、角速度及び加速度を検出するとともに、固有情報を記憶するセンサと、前記GNSSレシーバと前記センサの出力に基づいて前記車両の位置を推定する自車位置推定部とを備え、前記自車位置推定部は、前記固有情報を前記センサから取得して前記センサに固有の温度特性パラメータを取得し、前記温度特性パラメータに基づいて温度特性を学習する温度特性学習部を更に備え、学習された前記温度特性に基づいて前記位置を補正するよう構成されたことを特徴とする。 In order to solve the above problems, a vehicle control device according to the present invention includes a GNSS receiver that acquires information on a position of a vehicle, a sensor that detects a speed, an angular velocity, and an acceleration of the vehicle, and stores unique information, The GNSS receiver and a host vehicle position estimating unit that estimates the position of the vehicle based on the output of the sensor, the host vehicle position estimating unit acquires the unique information from the sensor and obtains the unique information unique to the sensor. A temperature characteristic learning unit that acquires a temperature characteristic parameter and learns a temperature characteristic based on the temperature characteristic parameter, and is configured to correct the position based on the learned temperature characteristic. .
 本発明によれば、検査工程に要する時間とコストを低減することを可能にした車両制御装置を提供することができる。 According to the present invention, it is possible to provide a vehicle control device capable of reducing time and cost required for an inspection process.
第1の実施の形態に係る車両制御装置の構成を説明するブロック図である。1 is a block diagram illustrating a configuration of a vehicle control device according to a first embodiment. 第1の実施の形態の効果を説明する概略図である。FIG. 4 is a schematic diagram illustrating an effect of the first embodiment. 第2の実施の形態に係る車両制御装置の動作を説明する概略図である。It is a schematic diagram explaining operation of a vehicle control device concerning a 2nd embodiment. 第2の実施の形態に係る車両制御装置の動作を説明するフローチャートである。9 is a flowchart illustrating an operation of the vehicle control device according to the second embodiment. 第3の実施の形態に係る車両制御装置の構成を説明するブロック図である。FIG. 9 is a block diagram illustrating a configuration of a vehicle control device according to a third embodiment. 第3の実施の形態に係る車両制御装置の動作を説明する概略図である。It is a schematic diagram explaining operation of a vehicle control device concerning a 3rd embodiment. 第4の実施の形態に係る車両制御装置の動作を説明するフローチャートである。13 is a flowchart illustrating an operation of the vehicle control device according to the fourth embodiment.
 以下、添付図面を参照して本実施形態について説明する。添付図面では、機能的に同じ要素は同じ番号で表示される場合もある。なお、添付図面は本開示の原理に則った実施形態と実装例を示しているが、これらは本開示の理解のためのものであり、決して本開示を限定的に解釈するために用いられるものではない。本明細書の記述は典型的な例示に過ぎず、本開示の特許請求の範囲又は適用例を如何なる意味においても限定するものではない。 Hereinafter, the present embodiment will be described with reference to the accompanying drawings. In the accompanying drawings, functionally the same elements may be represented by the same numbers. Although the attached drawings show an embodiment and an implementation example in accordance with the principle of the present disclosure, they are for understanding of the present disclosure, and are used for limiting interpretation of the present disclosure. is not. The description in this specification is merely exemplary, and is not intended to limit the scope of the claims or the application of the disclosure in any way.
 本実施形態では、当業者が本開示を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本開示の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。 Although the present embodiment has been described in sufficient detail for those skilled in the art to implement the present disclosure, other implementations and forms are also possible without departing from the scope and spirit of the technical idea of the present disclosure. It is necessary to understand that the configuration / structure can be changed and various elements can be replaced. Therefore, the following description should not be construed as being limited thereto.
[第1の実施の形態]
 図1は、第1の実施の形態に係る車両制御装置の構成を説明するブロック図である。この車両制御装置は、高精度マップECU10と、自動運転に関する各種制御を司る自動運転ECU20と、通信モジュール30とを備えて構成される。高精度マップECU10は、自動運転の対象とされる車両(図示せず)に搭載され、その経路に関する情報を生成する経路生成装置として機能する演算制御部である。
[First Embodiment]
FIG. 1 is a block diagram illustrating the configuration of the vehicle control device according to the first embodiment. This vehicle control device includes a high-precision map ECU 10, an automatic driving ECU 20 that performs various controls related to automatic driving, and a communication module 30. The high-accuracy map ECU 10 is an arithmetic control unit that is mounted on a vehicle (not shown) to be automatically driven and functions as a route generation device that generates information on the route.
 高精度マップECU10と自動運転ECU20とは、例えば周知の通信規格であるイーサネット(Ethernet。登録商標。)により接続され得る。また、自動運転ECU20及び通信モジュール30は、図示しない外部機器と、例えばCAN、LIN、MOST、FlexRay等の通信規格、又はこれらの組合せにより接続可能とされている。列記された通信規格は一例であり、これに限定されるものではない。 The high-precision map ECU 10 and the automatic driving ECU 20 can be connected to each other by, for example, Ethernet (registered trademark) which is a well-known communication standard. The automatic driving ECU 20 and the communication module 30 can be connected to an external device (not shown) according to a communication standard such as CAN, LIN, MOST, and FlexRay, or a combination thereof. The communication standards listed are merely examples, and the present invention is not limited to these.
 自動運転ECU20は、自動運転のためのIVI(In-Vehicle Infotainment)経路情報を高精度マップECU10に向けて出力するともに、IVI経路情報及び高精度地図データに基づいて高精度マップECU10において生成されるより詳細な経路情報を利用して自動運転制御を実行する制御部である。IVI経路情報は、車両に搭載されたナビゲーションシステム(図示せず)において生成され、現在地と目的地との間の経路に沿った複数の地点の緯度及び経度に関する情報等を含む。 The automatic driving ECU 20 outputs IVI (In-Vehicle Infotainment) route information for automatic driving to the high-accuracy map ECU 10 and is generated by the high-accuracy map ECU 10 based on the IVI route information and the high-accuracy map data. It is a control unit that executes automatic driving control using more detailed route information. The IVI route information is generated by a navigation system (not shown) mounted on the vehicle, and includes information on the latitude and longitude of a plurality of points along a route between the current position and the destination.
 高精度マップECU10は、一例として、ジャイロ/加速度センサ11と、GNSSレシーバ12と、車輪速センサ13と、地図更新部14と、高精度地図データ記憶部15と、自車位置推定部16と、地図情報出力部17と、経路情報変換部18とを含む。なお、ジャイロ/加速度センサ11、GNSSレシーバ12、車輪速センサ13は、高精度マップECU10の外に設けてもよい。 The high-accuracy map ECU 10 includes, for example, a gyro / acceleration sensor 11, a GNSS receiver 12, a wheel speed sensor 13, a map update unit 14, a high-accuracy map data storage unit 15, a vehicle position estimating unit 16, It includes a map information output unit 17 and a route information conversion unit 18. The gyro / acceleration sensor 11, the GNSS receiver 12, and the wheel speed sensor 13 may be provided outside the high-accuracy map ECU 10.
 ジャイロ/加速度センサ11は、車両の角速度及び加速度を計測する検知器である。ジャイロ/加速度センサ11は、その内部に、温度センサ11Aと、温度特性パラメータを記憶する特性パラメータ記憶部11Bを含む。ジャイロ/加速度センサ11は、角速度に関する出力信号と、加速度に関する出力信号と、温度センサ11Aの出力信号とを出力することができる。温度特性パラメータは、一例として、ジャイロ/加速度センサ11のオフセットに関するパラメータである。オフセットは、温度依存特性を有しており、ここで記憶されているオフセットに関するパラメータも、温度とオフセット値との関係を示すデータを含んでいる。なお、温度センサ11Aは、ジャイロ/加速度センサ11の内部に搭載されていてもよいし、ジャイロ/加速度センサ11の動作温度を読み取れる範囲であれば、ジャイロ/加速度センサ11の外部に搭載されていてもよい。 The gyro / acceleration sensor 11 is a detector that measures the angular velocity and acceleration of the vehicle. The gyro / acceleration sensor 11 includes therein a temperature sensor 11A and a characteristic parameter storage unit 11B for storing a temperature characteristic parameter. The gyro / acceleration sensor 11 can output an output signal related to angular velocity, an output signal related to acceleration, and an output signal from the temperature sensor 11A. The temperature characteristic parameter is, for example, a parameter relating to the offset of the gyro / acceleration sensor 11. The offset has a temperature-dependent characteristic, and the parameter relating to the offset stored here also includes data indicating the relationship between the temperature and the offset value. Note that the temperature sensor 11A may be mounted inside the gyro / acceleration sensor 11, or may be mounted outside the gyro / acceleration sensor 11 as long as the operating temperature of the gyro / acceleration sensor 11 can be read. Is also good.
 GNSSレシーバ12は、GNSSシステムから車両の絶対位置座標を取得する受信機である。車輪速センサ13は、車両の車輪の回転速度、及び/又は車両の速度を検出するセンサである。
 地図更新部14は、外部から通信モジュール30を介して高精度地図の更新データを受信して、高精度地図データを更新する。高精度地図データ記憶部15は、更新された高精度地図データを記憶するデータ保持部である。
The GNSS receiver 12 is a receiver that acquires the absolute position coordinates of the vehicle from the GNSS system. The wheel speed sensor 13 is a sensor that detects the rotation speed of the vehicle wheels and / or the speed of the vehicle.
The map update unit 14 receives high-precision map update data from the outside via the communication module 30 and updates the high-precision map data. The high-accuracy map data storage unit 15 is a data holding unit that stores updated high-accuracy map data.
 自車位置推定部16(ロケータ)は、GNSSレシーバ12が取得した車両の絶対位置座標に基づき、車両の現在の絶対位置を推定するとともに、ジャイロ/加速度センサ11が取得した角速度及び加速度、並びに車輪速センサ13が取得した車速の情報等を用いて、絶対位置座標を基準として車両の相対位置を推定する。そして、自車位置推定部16は、算出した車両の位置を高精度地図データ記憶部15に記憶された高精度地図データを用いて補正するマップマッチング処理を実行し、補正した車両の位置を、車両の方位、及びセンサの検知情報とともに地図情報出力部17及び自動運転ECU20に出力する。なお、自車位置推定部16は、自動運転ECU20から、自動運転対象の車両に関する車両情報や、車両に搭載されたカメラで撮影された撮像情報(カメラ認識結果)も受信し、相対位置の推定に用いることもできる。 The own vehicle position estimating unit 16 (locator) estimates the current absolute position of the vehicle based on the absolute position coordinates of the vehicle acquired by the GNSS receiver 12, and also acquires the angular velocity and acceleration acquired by the gyro / acceleration sensor 11, and the wheels. Using the information on the vehicle speed acquired by the speed sensor 13, the relative position of the vehicle is estimated based on the absolute position coordinates. Then, the vehicle position estimating unit 16 executes a map matching process of correcting the calculated vehicle position using the high-precision map data stored in the high-precision map data storage unit 15, and calculates the corrected vehicle position. The information is output to the map information output unit 17 and the automatic driving ECU 20 together with the vehicle direction and the detection information of the sensor. The own vehicle position estimating unit 16 also receives, from the automatic driving ECU 20, vehicle information on the vehicle to be automatically driven and imaging information (camera recognition result) captured by a camera mounted on the vehicle, and estimates the relative position. Can also be used.
 自車位置推定部16は、その内部において、位置方位推定部161、温度特性学習部162、走行道路特定部163、及びレーン判定部164を有する。 The vehicle position estimating unit 16 includes a position / azimuth estimating unit 161, a temperature characteristic learning unit 162, a traveling road specifying unit 163, and a lane determining unit 164 therein.
 位置方位推定部161は、GNSSレシーバ12に基づいて算出された絶対位置座標を基準として、ジャイロ/加速度センサ11の出力に基づき、車両の相対位置と方位を推定する。温度特性学習部162は、ジャイロ/加速度センサ11に記憶された温度特性パラメータを取り込み、温度特性を学習する機能を有する。学習された温度特性に基づいて、位置方位推定部161において車両の位置が補正される。 The position and orientation estimating unit 161 estimates the relative position and orientation of the vehicle based on the output of the gyro / acceleration sensor 11 based on the absolute position coordinates calculated based on the GNSS receiver 12. The temperature characteristic learning unit 162 has a function of taking in the temperature characteristic parameters stored in the gyro / acceleration sensor 11 and learning the temperature characteristics. Based on the learned temperature characteristics, the position and orientation estimation unit 161 corrects the position of the vehicle.
 走行道路特定部163は、位置方位推定部161で推定された車両の相対位置及び方位のデータ、高精度地図データ、車両に搭載されたカメラ、レーダソナー、ビーコンなどの認識結果に基づいて、車両が走行中の道路を特定する機能を有する。レーン判定部164は、特定された道路の中の複数のレーンのうちいずれを車両が走行しているのかを特定する機能を有する。 The traveling road identification unit 163 determines whether the vehicle is based on the relative position and orientation data of the vehicle estimated by the position and orientation estimation unit 161, high-precision map data, and the recognition results of the camera, radar sonar, beacon, and the like mounted on the vehicle. It has the function of specifying the road on which it is traveling. The lane determination unit 164 has a function of specifying which of a plurality of lanes on the specified road the vehicle is traveling.
 地図情報出力部17は、高精度地図データ記憶部15から読み出された高精度地図データ、自車位置推定部16で推定された車両の相対位置、及び経路情報変換部18で得られた詳細経路情報に従い、自動運転用の高精度地図情報を生成し、自動運転ECU20に向けて出力する。自動運転用の高精度地図情報は、例えば車両の位置(自車位置)、レーン情報、看板や標識の情報、カーブ情報、勾配情報等を含む。 The map information output unit 17 includes the high-accuracy map data read from the high-accuracy map data storage unit 15, the relative position of the vehicle estimated by the vehicle position estimation unit 16, and the details obtained by the route information conversion unit 18. According to the route information, high-precision map information for automatic driving is generated and output to the automatic driving ECU 20. The high-precision map information for automatic driving includes, for example, a vehicle position (own vehicle position), lane information, signboard and sign information, curve information, gradient information, and the like.
 経路情報変換部18は、自動運転ECU20から取得されたIVI経路情報(第1経路情報)と、高精度地図データ記憶部15から得られた高精度地図データに含まれるリンク/ノードデータとの間でデータマッチングを行い、その結果に従って、IVI経路情報よりも高精度な経路情報である詳細経路情報(第2経路情報)を生成し、自動運転ECU20に出力する。経路情報変換部18は、更に自車位置推定部16から車両の位置に関する情報も取得し、詳細経路情報に車両の位置に関する情報を反映させる。 The route information converter 18 converts the IVI route information (first route information) obtained from the automatic driving ECU 20 and the link / node data included in the high-accuracy map data obtained from the high-accuracy map data storage 15. , And generates detailed route information (second route information), which is route information more accurate than the IVI route information, according to the result, and outputs it to the automatic driving ECU 20. The route information conversion unit 18 further obtains information on the position of the vehicle from the vehicle position estimation unit 16 and reflects the information on the position of the vehicle in the detailed route information.
 図2を参照して、この第1の実施の形態の効果を説明する。従来の車両制御装置の製造工程が上段に示され、第1の実施の形態の製造工程が下段に示されている。
 従来の車両制御装置は、センサベンダにおいてジャイロ/加速度センサ11が製造され、一定の温度特性を有しているか否かを検査するスクリーニング工程が実行され、基準を満たさないセンサは不適合品として除外・廃棄される。
The effect of the first embodiment will be described with reference to FIG. The manufacturing process of the conventional vehicle control device is shown in the upper part, and the manufacturing process of the first embodiment is shown in the lower part.
In the conventional vehicle control device, a gyro / acceleration sensor 11 is manufactured by a sensor vendor, and a screening process for checking whether or not the sensor has a certain temperature characteristic is executed. Discarded.
 その後、ジャイロ/加速度センサ11はECUベンダに向けて出荷される。ジャイロ/加速度センサ11は高精度マップECU10に搭載される。高精度マップECU10の組立の完了後、高精度マップECU10は恒温槽に投入される。恒温槽の温度は、車両の使用環境温度の全範囲(例えば-40℃~85℃)に亘って制御され、複数の温度におけるジャイロ/加速度センサ11の出力信号が検出される。この検出結果に基づき、ジャイロ/加速度センサ11の温度特性が特定され、高精度マップECU10に書き込まれる。 After that, the gyro / acceleration sensor 11 is shipped to the ECU vendor. The gyro / acceleration sensor 11 is mounted on the high-precision map ECU 10. After the assembly of the high-accuracy map ECU 10 is completed, the high-accuracy map ECU 10 is put into a thermostat. The temperature of the thermostat is controlled over the entire range of the usage environment temperature of the vehicle (for example, −40 ° C. to 85 ° C.), and output signals of the gyro / acceleration sensor 11 at a plurality of temperatures are detected. Based on this detection result, the temperature characteristics of the gyro / acceleration sensor 11 are specified and written to the high-accuracy map ECU 10.
 このように、従来の車両制御装置の製造工程では、組立後の高精度マップECU10を恒温槽に投入して様々な温度に設定した状況で温度特性を計測する必要があるため、測定時間が長くなり、検査コストも高くなるという問題がある。 As described above, in the manufacturing process of the conventional vehicle control device, it is necessary to put the assembled high-precision map ECU 10 into a constant temperature bath and measure the temperature characteristics under various temperature settings. In addition, there is a problem that the inspection cost increases.
 これに対し、第1の実施の形態では、ジャイロ/加速度センサ11の特性パラメータ記憶部において、温度特性パラメータが予め(センサベンダにおけるセンサの製造工程の段階で)記憶されている。この温度特性パラメータは、例えばセンサのオフセットに関する情報であって、温度とオフセット値との関係を示すパラメータである。この温度特性パラメータは、車両の使用環境温度の全範囲に亘るデータとして取得されている。
 高精度マップECU10中の自車位置推定部16は、温度特性学習部162を有している。この温度特性学習部162は、高精度マップECU10の製造(組立)後、ジャイロ/加速度センサ11から温度特性パラメータを読み出して、この温度特性パラメータに所定のデータ変換を加え、温度特性として学習する。
On the other hand, in the first embodiment, the temperature characteristic parameters are stored in advance in the characteristic parameter storage unit of the gyro / acceleration sensor 11 (at the stage of the sensor vendor's manufacturing process). This temperature characteristic parameter is, for example, information relating to the offset of the sensor, and is a parameter indicating the relationship between the temperature and the offset value. This temperature characteristic parameter is obtained as data over the entire range of the usage environment temperature of the vehicle.
The vehicle position estimating unit 16 in the high-accuracy map ECU 10 has a temperature characteristic learning unit 162. After manufacturing (assembly) of the high-precision map ECU 10, the temperature characteristic learning unit 162 reads a temperature characteristic parameter from the gyro / acceleration sensor 11, applies predetermined data conversion to the temperature characteristic parameter, and learns the temperature characteristic.
 このように、第1の実施の形態では、ジャイロ/加速度センサ11の温度特性パラメータを高精度マップECU10側に取り込むことで温度特性を反映させることができるので、恒温槽による長時間の検査を不要とすることができ、その結果、検査工程に要する時間とコストを低減することができる。 As described above, in the first embodiment, the temperature characteristics can be reflected by incorporating the temperature characteristics parameters of the gyro / acceleration sensor 11 into the high-accuracy map ECU 10, so that a long-term inspection using a constant-temperature bath is unnecessary. As a result, the time and cost required for the inspection process can be reduced.
[第2の実施の形態]
 次に、第2の実施の形態に係る車両制御装置を、図3を参照して説明する。第2の実施の形態は、全体構成や基本的な動作(図1、図2)は第1の実施の形態と同一であるが、ジャイロ/加速度センサ11の特性パラメータの取り込みや、それに基づく温度特性の学習の手順が、第1の実施の形態と異なっている。
[Second embodiment]
Next, a vehicle control device according to a second embodiment will be described with reference to FIG. The second embodiment has the same overall configuration and basic operation (FIGS. 1 and 2) as the first embodiment, but takes in the characteristic parameters of the gyro / acceleration sensor 11 and sets the temperature based on it. The procedure for learning the characteristics is different from that of the first embodiment.
 第2の実施の形態では、図3に示すように、ジャイロ/加速度センサ11に記憶されている温度特性パラメータC1と、実際のオフセットとの差分ΔV(Ti)を判定し、その差分に基づいて、温度特性パラメータの補正の要否が判定される。当該差分に基づいて、ジャイロ/加速度センサ11の交換の要否も判定される。この判定において、高精度マップECU10(ジャイロ/加速度センサ11)は簡易的な恒温槽において複数の温度を設定され、その複数の温度における温度特性が取得される。温度設定は必要となるが、従来の場合に比べると、設定温度の個数を少なくすることができるので、測定時間を短くすることができ、且つコストも低減することができる。設定温度の数は、補正を行うのに十分な数であればよく、一例として3~4点とすることが可能である。
 補正が必要と判断された場合には、差分ΔV(Ti)や、差分ΔV(Ti)に基づいて算出された他の値に基づいて温度特性パラメータを補正して、その補正後のパラメータに従って、温度特性学習部162は温度特性を学習する。また、差分ΔV(Ti)が所定値よりも大きい場合には、ジャイロ/加速度センサ11に不良があると判断し、ジャイロ/加速度センサ11の交換が必要と判断する。
In the second embodiment, as shown in FIG. 3, the difference ΔV (Ti) between the temperature characteristic parameter C1 stored in the gyro / acceleration sensor 11 and the actual offset is determined, and based on the difference, It is determined whether the temperature characteristic parameter needs to be corrected. Based on the difference, the necessity of replacement of the gyro / acceleration sensor 11 is also determined. In this determination, the high-precision map ECU 10 (gyro / acceleration sensor 11) sets a plurality of temperatures in a simple constant temperature bath and acquires temperature characteristics at the plurality of temperatures. Although temperature setting is required, the number of set temperatures can be reduced as compared with the conventional case, so that the measurement time can be shortened and the cost can be reduced. The number of the set temperatures may be a number sufficient for performing the correction, and may be, for example, 3 to 4 points.
If it is determined that correction is necessary, the temperature characteristic parameter is corrected based on the difference ΔV (Ti) or another value calculated based on the difference ΔV (Ti), and according to the corrected parameter, Temperature characteristic learning section 162 learns temperature characteristics. If the difference ΔV (Ti) is larger than the predetermined value, it is determined that the gyro / acceleration sensor 11 is defective, and it is determined that the gyro / acceleration sensor 11 needs to be replaced.
 図4のフローチャートを参照して、第2の実施の形態の動作の一例を説明する。
 ジャイロ/加速度センサ11の搭載を含む、高精度マップECU10の組立が完了すると、ジャイロ/加速度センサ11に記憶されている温度特性パラメータが、自車位置推定部16において取り込まれ、取得される(S11)。そして、恒温槽の温度Tを、所定の温度Tiに設定した後(S12)、その温度Tiの状態でのジャイロ/加速度センサ11の出力信号Sg(Ti)を受信する(S13)。そして、得られた出力信号Sg(Ti)と温度特性パラメータC1との差分ΔV(Ti)を取得する(S14)。このステップS12~S14の工程が、複数の温度Tiについて繰り返し実行される(S15、S16)。
An example of the operation of the second embodiment will be described with reference to the flowchart of FIG.
When the assembly of the high-accuracy map ECU 10 including the mounting of the gyro / acceleration sensor 11 is completed, the temperature characteristic parameters stored in the gyro / acceleration sensor 11 are fetched and acquired by the vehicle position estimating unit 16 (S11). ). Then, after setting the temperature T of the thermostat to a predetermined temperature Ti (S12), the output signal Sg (Ti) of the gyro / acceleration sensor 11 at the temperature Ti is received (S13). Then, a difference ΔV (Ti) between the obtained output signal Sg (Ti) and the temperature characteristic parameter C1 is obtained (S14). Steps S12 to S14 are repeatedly performed for a plurality of temperatures Ti (S15, S16).
 こうして複数の差分ΔV(Ti)(i=1~n)が得られると、その絶対値の平均値Σ|ΔV(Ti)|/nが算出され、この絶対値の平均値と閾値Th1(但し、Th1>0)との大小が判定される(S17)。当該絶対値の平均値が閾値Th1以上であると判定された場合には、ジャイロ/加速度センサ11は不良であるとして、その交換を促される(S19)。一方、当該絶対値の平均値が閾値Th1未満であると判定された場合には、差分ΔV(Ti)(i=1~n)の平均値に基づいて温度特性パラメータの補正が行われ(S18)、この補正後の温度特性パラメータに基づいて、温度特性学習部162において温度特性の学習が行われる。 When a plurality of differences ΔV (Ti) (i = 1 to n) are obtained in this way, the average value of the absolute values Σ | ΔV (Ti) | / n is calculated, and the average value of the absolute values and the threshold value Th1 (however, , Th1> 0) is determined (S17). When it is determined that the average of the absolute values is equal to or greater than the threshold Th1, the gyro / acceleration sensor 11 is determined to be defective and replacement of the gyro / acceleration sensor 11 is prompted (S19). On the other hand, when it is determined that the average of the absolute values is less than the threshold Th1, the temperature characteristic parameter is corrected based on the average of the difference ΔV (Ti) (i = 1 to n) (S18). The temperature characteristic is learned by the temperature characteristic learning unit 162 based on the corrected temperature characteristic parameter.
 以上説明したように、第2の実施の形態によれば、第1の実施の形態と同様に、ジャイロ/加速度センサ11の温度特性パラメータを高精度マップECU10側に取り込むことで温度特性を反映させることができる。温度特性パラメータと、簡易的な恒温槽の中で温度を設定して得られたジャイロ/加速度センサ11の出力信号とを比較することで、温度特性パラメータを補正した上で取り込むことができる。簡易的な恒温槽のような温度設定手段は必要となるが、その代わりに、ジャイロ/加速度センサ11の温度特性パラメータを補正することが可能になる。従って、第2の実施の形態によれば、第1の実施の形態と同様に、検査工程に要する時間とコストを低減することが可能であり、第1の実施の形態よりも高精度に温度特性パラメータに基づく補正を行うことが可能になる。 As described above, according to the second embodiment, similarly to the first embodiment, the temperature characteristics are reflected by taking the temperature characteristic parameters of the gyro / acceleration sensor 11 into the high-accuracy map ECU 10. be able to. By comparing the temperature characteristic parameter with the output signal of the gyro / acceleration sensor 11 obtained by setting the temperature in a simple thermostat, the temperature characteristic parameter can be corrected and taken in. Although a temperature setting means such as a simple thermostat is required, the temperature characteristic parameter of the gyro / acceleration sensor 11 can be corrected instead. Therefore, according to the second embodiment, similarly to the first embodiment, it is possible to reduce the time and cost required for the inspection process, and to more accurately adjust the temperature than the first embodiment. Correction based on the characteristic parameters can be performed.
[第3の実施の形態]
 次に、第3の実施の形態に係る車両制御装置を、図5~図6を参照して説明する。前述の実施の形態において、ジャイロ/加速度センサ11は、特性パラメータ記憶部において温度特性パラメータを記憶しており、温度特性パラメータは、高精度マップECU10の温度特性学習部162における温度特性の学習に用いられる。これに対し、第3の実施の形態の車両制御装置では、図5に示すように、ジャイロ/加速度センサ11は、特性パラメータ記憶部11Bは有しておらず、代わりにセンサ固有の情報である固有情報(例えばシリアルナンバー(識別番号)等)を記憶する固有情報記憶部11Cを有している。換言すれば、前述の実施の形態では、ジャイロ/加速度センサ11が、固有情報として温度特性パラメータを記憶しているのに対し、第3の実施の形態では、当該センサを特定する情報(シリアルナンバー等)であって、温度特性パラメータと関連付けられている固有情報を記憶している。
[Third Embodiment]
Next, a vehicle control device according to a third embodiment will be described with reference to FIGS. In the above-described embodiment, the gyro / acceleration sensor 11 stores the temperature characteristic parameter in the characteristic parameter storage unit, and the temperature characteristic parameter is used for learning the temperature characteristic in the temperature characteristic learning unit 162 of the high accuracy map ECU 10. Can be On the other hand, in the vehicle control device according to the third embodiment, as shown in FIG. 5, the gyro / acceleration sensor 11 does not have the characteristic parameter storage unit 11B, but instead is information unique to the sensor. It has a unique information storage unit 11C for storing unique information (for example, a serial number (identification number)). In other words, in the above-described embodiment, the gyro / acceleration sensor 11 stores a temperature characteristic parameter as unique information, whereas in the third embodiment, information (serial number) specifying the sensor is used. Etc.), and stores unique information associated with the temperature characteristic parameter.
 この第3の実施の形態の場合、温度特性パラメータは、図6に示されるシステムによりセンサベンダからECUベンダに供給される。ECUベンダ側に設置されたサーバは、高精度マップECU10に搭載されたジャイロ/加速度センサ11の送受信部19(図5)からシリアルナンバーの情報を受信し、これをネットワークNWを介して、センサベンダ側に設置されたサーバに送信し、そのシリアルナンバーのジャイロ/加速度センサ11について得られている温度特性パラメータの送信を要求する。 In the case of the third embodiment, the temperature characteristic parameters are supplied from the sensor vendor to the ECU vendor by the system shown in FIG. The server installed on the ECU vendor side receives the serial number information from the transmission / reception unit 19 (FIG. 5) of the gyro / acceleration sensor 11 mounted on the high-precision map ECU 10 and transmits this information via the network NW to the sensor vendor. And sends a request for the temperature characteristic parameter obtained for the gyro / acceleration sensor 11 of the serial number.
 センサベンダ側のサーバは、出荷したジャイロ/加速度センサ11のシリアルナンバーと、当該センサの温度特性パラメータとの対のデータをデータベースとして有している。センサベンダ側のサーバは、ECUベンダ側のサーバから受信したシリアルナンバーに基づいてデータベースを参照し、対応する温度特性パラメータの値をECUベンダ側のサーバに送信する。ECUベンダ側のサーバは、受領した温度特性パラメータを、高精度マップECU10中の温度特性学習部162に入力する。 The server on the sensor vendor side has, as a database, data on pairs of the serial number of the shipped gyro / acceleration sensor 11 and the temperature characteristic parameter of the sensor. The server on the sensor vendor side refers to the database based on the serial number received from the server on the ECU vendor side, and transmits the value of the corresponding temperature characteristic parameter to the server on the ECU vendor side. The server on the ECU vendor side inputs the received temperature characteristic parameters to the temperature characteristic learning unit 162 in the high-accuracy map ECU 10.
 このように、第3の実施の形態によれば、ジャイロ/加速度センサ11に記憶された固有情報(シリアルナンバー等)に基づいてジャイロ/加速度センサ11の温度特性パラメータの情報を取得することができ、これにより、前述の実施の形態と同一の効果を得ることができる。温度特性パラメータは情報としての機密性が高い情報であり、厳密に管理されるのが望ましい。第3の実施の形態の場合、ジャイロ/加速度センサ11に記憶させるのはシリアルナンバーだけであり、温度特性パラメータはジャイロ/加速度センサ11には記憶されず、代わりにシリアルナンバーに基づいて、センサベンダ側のサーバからネットワーク経由でECUベンダ側のサーバに提供される。従って、この第3の実施の形態によれば、温度特性パラメータの機密性を担保しつつ、前述の実施の形態と同一の効果を奏することができる。 As described above, according to the third embodiment, information on the temperature characteristic parameter of the gyro / acceleration sensor 11 can be obtained based on the unique information (such as a serial number) stored in the gyro / acceleration sensor 11. Thus, the same effect as in the above-described embodiment can be obtained. The temperature characteristic parameter is highly confidential information, and is desirably strictly managed. In the case of the third embodiment, only the serial number is stored in the gyro / acceleration sensor 11, and the temperature characteristic parameter is not stored in the gyro / acceleration sensor 11, but instead is stored in the sensor vendor based on the serial number. Is provided from the server on the ECU side to the server on the ECU vendor side via the network. Therefore, according to the third embodiment, the same effect as that of the above-described embodiment can be obtained while securing the confidentiality of the temperature characteristic parameter.
[第4の実施の形態]
 次に、第4の実施の形態に係る車両制御装置を、図7を参照して説明する。第4の実施の形態は、全体構成や基本的な動作は前述の実施の形態と同一であるが、以下の点で前述の形態と異なっている。
 上述の実施の形態では、ジャイロ/加速度センサ11又は他の箇所に記憶された温度特性パラメータを温度特性学習部162に取り込み、温度特性を学習させている。第4の実施の形態では、温度特性の学習を、高精度マップECU10の製造後に限らず、ジャイロ/加速度センサ11の特性の経時変化に対応して、定期的に、不定期に、又はユーザの命令に応じて実行可能とされている。
[Fourth Embodiment]
Next, a vehicle control device according to a fourth embodiment will be described with reference to FIG. The fourth embodiment has the same overall configuration and basic operation as the above-described embodiment, but differs from the above-described embodiment in the following points.
In the above-described embodiment, the temperature characteristic parameters stored in the gyro / acceleration sensor 11 or other locations are taken into the temperature characteristic learning unit 162, and the temperature characteristics are learned. In the fourth embodiment, the learning of the temperature characteristic is performed not only after the manufacturing of the high-precision map ECU 10 but also periodically, irregularly, or by the user in response to the temporal change of the characteristic of the gyro / acceleration sensor 11. Executable according to the instruction.
 図7のフローチャートを参照して、第4の実施の形態の動作(経時変化に対応した温度特性パラメータの補正)を説明する。
 前述の実施の形態と同様に、高精度マップECU10の製造後において温度特性パラメータをジャイロ/加速度センサ11から温度特性学習部162に取り込んで、温度特性学習部162に温度特性を学習させる。その後、高精度マップECU10は、自動運転ECU20等とともに、使用される車両に搭載される。その後、ジャイロ/加速度センサ11の特性の経時変化に対応して、定期的に、不定期に、又はユーザの命令に応じて図7の手順が実行される。
The operation of the fourth embodiment (correction of temperature characteristic parameters corresponding to aging) will be described with reference to the flowchart of FIG.
As in the above-described embodiment, after the high-precision map ECU 10 is manufactured, the temperature characteristic parameters are fetched from the gyro / acceleration sensor 11 into the temperature characteristic learning unit 162, and the temperature characteristic learning unit 162 learns the temperature characteristics. Thereafter, the high-precision map ECU 10 is mounted on the vehicle to be used together with the automatic driving ECU 20 and the like. Thereafter, the procedure shown in FIG. 7 is executed periodically, irregularly, or in response to a user's command in response to a temporal change in the characteristics of the gyro / acceleration sensor 11.
 車両への高精度マップECU10の搭載後における温度特性パラメータの補正をする場合には、まず、車両が停止状態、その他加速度が加わらない動作状態(例えば定速の直線走行)にあるか否かが確認される(S21)。車両の停止状態は、例えば車両のシフトレバーが「P」(パーキング)の状態にあるか否かを検出することにより確認することができる。その他、車輪速センサ13の出力、車両に搭載されるカメラの認識結果、その他の検出手段の出力に基づいて、車両の停止を確認することもできる。 When correcting the temperature characteristic parameters after the high-precision map ECU 10 is mounted on the vehicle, first, it is determined whether the vehicle is in a stopped state or in an operating state where no acceleration is applied (for example, a straight-line running at a constant speed). Confirmed (S21). The stopped state of the vehicle can be confirmed, for example, by detecting whether or not the shift lever of the vehicle is in a “P” (parking) state. In addition, the stop of the vehicle can be confirmed based on the output of the wheel speed sensor 13, the recognition result of the camera mounted on the vehicle, and the output of other detection means.
 車両の停止等が確認されたら、ジャイロ/加速度センサ11から出力信号Sgを受信し(S22)、この出力信号Sgと温度特性パラメータの差分ΔVを得る(S23)。そして、この差分の絶対値|ΔV|と閾値Th2とを比較し(S24)、前者が後者以上(Th2≦|ΔV|)であれば、温度特性パラメータを補正する(S25)。差分の絶対値|ΔV|が閾値Th2未満であれば、補正は行わない。補正の方法は、高精度マップECU10の車両への搭載後における温度特性パラメータの補正と同様でよい。 (4) When the stop of the vehicle or the like is confirmed, an output signal Sg is received from the gyro / acceleration sensor 11 (S22), and a difference ΔV between the output signal Sg and the temperature characteristic parameter is obtained (S23). Then, the absolute value | ΔV | of the difference is compared with the threshold Th2 (S24), and if the former is equal to or greater than the latter (Th2 ≦ | ΔV |), the temperature characteristic parameter is corrected (S25). If the absolute value | ΔV | of the difference is less than the threshold Th2, no correction is performed. The correction method may be the same as the correction of the temperature characteristic parameter after the high-precision map ECU 10 is mounted on the vehicle.
 このように、第4の実施の形態によれば、温度特性パラメータの補正が、高精度マップECU10の組立直後に行われるだけでなく、経時変化に対応して定期的、不定期、又はユーザの命令に応じて適宜実行され得る。このため、経時変化に対応した一層正確な温度特性パラメータを取り込むことが可能になる。 As described above, according to the fourth embodiment, the correction of the temperature characteristic parameter is performed not only immediately after the assembling of the high-accuracy map ECU 10 but also periodically, irregularly, or in response to a change with time. It can be appropriately executed according to the instruction. For this reason, it is possible to take in more accurate temperature characteristic parameters corresponding to changes with time.
 本発明は上記実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above embodiment, and includes various modifications. For example, the above embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the described configurations. In addition, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment. Further, for a part of the configuration of each embodiment, it is possible to add, delete, or replace another configuration.
 上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード等の記録媒体に置くことができる。また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 The above-described configurations, functions, processing units, processing means, and the like may be partially or entirely realized by hardware, for example, by designing an integrated circuit. In addition, the above-described configurations, functions, and the like may be realized by software by a processor interpreting and executing a program that realizes each function. Information such as a program, a table, and a file for realizing each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card or an SD card. In addition, control lines and information lines are shown as necessary for the description, and do not necessarily indicate all control lines and information lines on a product. In fact, it can be considered that almost all components are connected to each other.
10…高精度マップECU、20…自動運転ECU、30…通信モジュール、11…ジャイロ/加速度センサ、11A…温度センサ、11B…特性パラメータ記憶部、11C…固有情報記憶部、12…GNSSレシーバ、13…車輪速センサ、14…地図更新部、15…高精度地図データ記憶部、16…自車位置推定部、17…地図情報出力部、18…経路情報変換部、161…位置方位推定部、162…温度特性学習部、163…走行道路特定部、164…レーン判定部。 DESCRIPTION OF SYMBOLS 10 ... High precision map ECU, 20 ... Automatic driving ECU, 30 ... Communication module, 11 ... Gyro / acceleration sensor, 11A ... Temperature sensor, 11B ... Characteristic parameter storage part, 11C ... Unique information storage part, 12 ... GNSS receiver, 13 ... wheel speed sensor, 14 ... map update unit, 15 ... high-accuracy map data storage unit, 16 ... own vehicle position estimation unit, 17 ... map information output unit, 18 ... route information conversion unit, 161 ... position and orientation estimation unit, 162 ... Temperature characteristic learning unit, 163, travel road identification unit, 164, lane determination unit.

Claims (7)

  1.  車両の位置に関する情報を取得するGNSSレシーバと、
     前記車両の速度、角速度及び加速度を検出するとともに、固有情報を記憶するセンサと、
     前記GNSSレシーバと前記センサの出力に基づいて前記車両の位置を推定する自車位置推定部と
     を備え、
     前記自車位置推定部は、前記固有情報を前記センサから取得して前記センサに固有の温度特性パラメータを取得し、前記温度特性パラメータに基づいて温度特性を学習する温度特性学習部を更に備え、学習された前記温度特性に基づいて前記位置を補正するよう構成されたことを特徴とする車両制御装置。
    A GNSS receiver that obtains information about the position of the vehicle,
    A sensor that detects the speed, angular velocity, and acceleration of the vehicle, and stores unique information.
    A vehicle position estimating unit that estimates the position of the vehicle based on the output of the sensor and the GNSS receiver,
    The vehicle position estimating unit further obtains the unique information from the sensor, acquires a temperature characteristic parameter unique to the sensor, and further includes a temperature characteristic learning unit that learns a temperature characteristic based on the temperature characteristic parameter, A vehicle control device configured to correct the position based on the learned temperature characteristics.
  2.  前記固有情報は、前記温度特性パラメータである、請求項1に記載の車両制御装置。 The vehicle control device according to claim 1, wherein the unique information is the temperature characteristic parameter.
  3.  前記温度特性パラメータは、前記センサのオフセットの温度特性に関するパラメータを含み、
     前記温度特性は、前記車両の使用環境温度の全範囲を含む、請求項1に記載の車両制御装置。
    The temperature characteristic parameter includes a parameter relating to a temperature characteristic of an offset of the sensor,
    The vehicle control device according to claim 1, wherein the temperature characteristic includes an entire range of a use environment temperature of the vehicle.
  4.  前記自車位置推定部は、前記センサの温度を所定値に設定した状態で前記センサの出力信号を取得し、この出力信号と前記温度特性パラメータとの比較結果に従い、前記温度特性パラメータを補正するよう構成された、請求項1に記載の車両制御装置。 The vehicle position estimating unit acquires an output signal of the sensor with the temperature of the sensor set to a predetermined value, and corrects the temperature characteristic parameter according to a comparison result between the output signal and the temperature characteristic parameter. The vehicle control device according to claim 1, configured as described above.
  5.  前記固有情報は、前記センサ毎に固有の識別番号である、請求項1に記載の車両制御装置。 The vehicle control device according to claim 1, wherein the unique information is an identification number unique to each sensor.
  6.  前記固有情報を外部に送信するとともに、前記固有情報に対応する前記温度特性パラメータを外部から受信する送受信部を更に備えた、請求項5に記載の車両制御装置。 The vehicle control device according to claim 5, further comprising: a transmission / reception unit that transmits the unique information to the outside and receives the temperature characteristic parameter corresponding to the unique information from the outside.
  7.  前記自車位置推定部は、前記車両が停止している状態において前記センサの出力を取り込み、前記センサの出力と前記温度特性パラメータとの差分に基づいて前記温度特性パラメータを補正する、請求項1に記載の車両制御装置。 The said vehicle position estimation part takes in the output of the said sensor in the state where the said vehicle is stopped, and correct | amends the said temperature characteristic parameter based on the difference between the output of the said sensor and the said temperature characteristic parameter. The vehicle control device according to claim 1.
PCT/JP2019/029152 2018-08-07 2019-07-25 Vehicle control device WO2020031711A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020536450A JP7064001B2 (en) 2018-08-07 2019-07-25 Vehicle control unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018148508 2018-08-07
JP2018-148508 2018-08-07

Publications (1)

Publication Number Publication Date
WO2020031711A1 true WO2020031711A1 (en) 2020-02-13

Family

ID=69413552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029152 WO2020031711A1 (en) 2018-08-07 2019-07-25 Vehicle control device

Country Status (2)

Country Link
JP (1) JP7064001B2 (en)
WO (1) WO2020031711A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536505U (en) * 1991-10-14 1993-05-18 株式会社明電舎 Automatic guided vehicle position detection device
JPH05187879A (en) * 1992-01-16 1993-07-27 Pioneer Electron Corp Navigation device
JP2014106206A (en) * 2012-11-29 2014-06-09 Tamagawa Seiki Co Ltd Inertial sensor and method for reducing its calculation error
JP2015152521A (en) * 2014-02-18 2015-08-24 株式会社デンソー gyro sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536505U (en) * 1991-10-14 1993-05-18 株式会社明電舎 Automatic guided vehicle position detection device
JPH05187879A (en) * 1992-01-16 1993-07-27 Pioneer Electron Corp Navigation device
JP2014106206A (en) * 2012-11-29 2014-06-09 Tamagawa Seiki Co Ltd Inertial sensor and method for reducing its calculation error
JP2015152521A (en) * 2014-02-18 2015-08-24 株式会社デンソー gyro sensor

Also Published As

Publication number Publication date
JPWO2020031711A1 (en) 2021-04-30
JP7064001B2 (en) 2022-05-09

Similar Documents

Publication Publication Date Title
US10877059B2 (en) Positioning apparatus comprising an inertial sensor and inertial sensor temperature compensation method
EP2519803B1 (en) Technique for calibrating dead reckoning positioning data
US7831389B2 (en) Map evaluation system and map evaluation method
US20180224285A1 (en) Apparatus and associated method for use in updating map data
JP2016156973A (en) Map data storage device, control method, program and recording medium
US6766247B2 (en) Position determination method and navigation device
JP2009192495A (en) Navigation system
WO2020184013A1 (en) Vehicle control device
US11280917B2 (en) Information processing system, storage medium storing information processing program, and control method
CN113091770B (en) Zero offset compensation method of inertial measurement sensor
US11577736B2 (en) Method and device for ascertaining a highly accurate estimated value of a yaw rate for controlling a vehicle
JP6248559B2 (en) Vehicle trajectory calculation device
WO2016185659A1 (en) Mobile-body position detecting apparatus, mobile-body position detecting method
EP0806632B1 (en) Vehicle navigation system with automatic calibration of on-board sensors
JPH10206177A (en) Position-measuring apparatus, method for correcting output of angular velocity sensor and recording medium
EP3141866B1 (en) Angular speed sensor correction device and angular speed sensor correction method for correcting outputs from angular speed sensor
WO2020031711A1 (en) Vehicle control device
KR20220025585A (en) Method and apparatus for estimating position
WO2021033312A1 (en) Information output device, automated driving device, and method for information output
JP2021070341A (en) Wear amount estimation system and arithmetic model generation system
CN113566834A (en) Positioning method, positioning device, vehicle, and storage medium
JP2017215153A (en) Angular velocity sensor correction device and angular velocity sensor correction method
KR100340209B1 (en) The vehicle navigation device including temperature-compensation function and the method thereof
WO2017026108A1 (en) Correction method and correction device using same
JP6929492B2 (en) Locator device and its accuracy evaluation system and positioning method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020536450

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846154

Country of ref document: EP

Kind code of ref document: A1