WO2020031396A1 - Tool, communication device, tool system and communication method - Google Patents

Tool, communication device, tool system and communication method Download PDF

Info

Publication number
WO2020031396A1
WO2020031396A1 PCT/JP2018/035689 JP2018035689W WO2020031396A1 WO 2020031396 A1 WO2020031396 A1 WO 2020031396A1 JP 2018035689 W JP2018035689 W JP 2018035689W WO 2020031396 A1 WO2020031396 A1 WO 2020031396A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
data
control unit
communication
unit
Prior art date
Application number
PCT/JP2018/035689
Other languages
French (fr)
Japanese (ja)
Inventor
田中 奈緒
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2020031396A1 publication Critical patent/WO2020031396A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for

Definitions

  • the present invention relates to a tool, a communication device, a tool system, and a communication method.
  • the tool transmits operation data of the tool or remaining data of the battery to another device.
  • the operation data is used for determining a tool abnormality (for example, Patent Document 1).
  • the tool according to the first aspect is a communication unit that transmits data relating to the tool, a control unit that controls at least the communication unit, and a storage unit that stores a history including the number of times of operation history of the tool for each unit time. And.
  • the control unit performs an allocation process of allocating at least one of the number of transmissions and the transmission amount of the data per unit time such that the transmission of the data does not satisfy an upper limit condition in a target period based on the operation history. Then, the control unit controls the communication unit to transmit the data based on a result of the allocation process.
  • the communication device is connected to the tool.
  • the communication device stores a communication unit that transmits data relating to the tool acquired from the tool, a control unit that controls at least the communication unit, and an operation history including the number of operation histories of the tool for each unit time. And a storage unit.
  • the at least one control unit allocates at least one of the number of transmissions and the transmission amount of the data for each unit time based on the operation history so that the transmission of the data does not satisfy an upper limit condition in a target period.
  • An assignment process is performed, and the at least one control unit controls the communication unit to transmit the data based on a result of the assignment process.
  • the tool system includes at least a tool.
  • the tool includes a communication unit that transmits data related to the tool, and a control unit that controls at least the communication unit.
  • the system includes a storage unit that stores an operation history including the number of operation histories of the tool per unit time, based on the operation history, the data transmission so that transmission of the data does not satisfy an upper limit condition in a target period.
  • an allocating unit that performs an allocation process of allocating at least one of the number of transmissions and the amount of transmission for each unit time.
  • the control unit controls the communication unit to transmit the data based on a result of the allocation processing.
  • a communication method is characterized in that a step A of transmitting data relating to a tool from the tool, a step B of storing an operation history including the number of operation histories of the tool per unit time, And C) performing an allocation process of allocating at least one of the number of times of transmission and the amount of transmission of the data for each unit time so that the transmission of the data does not satisfy the upper limit condition in a target period.
  • the step A includes a step of transmitting the data based on a result of the allocation processing.
  • FIG. 1 is a diagram illustrating an example of a tool system according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of a tool according to an embodiment.
  • FIG. 3 is a diagram illustrating an example of the communication control unit according to the embodiment.
  • FIG. 4 is a diagram illustrating an example of an operation history stored in the storage unit according to the embodiment.
  • FIG. 5 is a diagram illustrating an example of the communication method according to the embodiment.
  • FIG. 6 is a diagram illustrating an example of a tool according to a modification.
  • FIG. 7 is a diagram illustrating an example of a tool according to a modification.
  • FIG. 8 is a diagram illustrating an example of a processing method according to a modification.
  • FIG. 9 is a diagram illustrating an example of a processing method according to a modification.
  • drawings are schematic and ratios of dimensions may be different from actual ones. Therefore, specific dimensions and the like should be determined in consideration of the following description. Further, it is needless to say that the drawings may include portions having different dimensional relationships or ratios.
  • an upper limit condition (maximum number of times of transmission or maximum amount of data to be transmitted) is set for the transmission of data permitted for a tool during a predetermined period.
  • an upper limit condition is set by a contract of a network used by a tool for transmitting data
  • a case where a user or a maker sets an upper limit condition for the purpose of power saving or the like are assumed.
  • the data transmission may be restricted irrespective of whether there is a high probability that the tool will operate.
  • the upper limit condition in a case where an upper limit condition is set for data transmission, under a situation where a tool is likely to operate, the upper limit condition is satisfied and data transmission is performed.
  • the following describes a tool, a communication device, a tool system, and a communication method that can suppress a situation in which the communication is restricted.
  • the tool system 1 includes a tool 100, a communication network 200, and a management server 300.
  • the tool 100 and the management server 300 are connected via the communication network 200.
  • the tool 100 is a tool used for various processing and construction.
  • the tool 100 may be a tool that uses electricity as power (for example, an electric drill, an electric screwdriver, an electric saw, a grinder or a grinder), or may be a tool that uses pneumatic power as power, A tool using hydraulic pressure as power may be used.
  • the tool 100 may be a cordless type tool.
  • the tool 100 is a binding machine (for example, a reinforcing bar binding machine)
  • the tool 100 is driven by electric power supplied from the driving battery 110.
  • the driving battery 110 is configured to be detachable from the tool 100.
  • the driving battery 110 stores electric power for driving the tool 100.
  • the driving battery 110 may be a rechargeable secondary battery.
  • a lithium ion battery can be used.
  • the driving battery 110 may be charged by the charger while being removed from the tool 100.
  • the tool 100 has a binding portion 11, a main body portion 12, and a grip portion 13.
  • the binding unit 11 has an arm sandwiching the rebar, and winds a wire around the rebar sandwiched between the arms.
  • the main body 12 accommodates a reel around which a wire is wound.
  • the main body 12 incorporates the motor 150 shown in FIG.
  • the main body 12 has a power switch 15 for turning on / off the power of the tool 100.
  • the grip 13 is a member that is gripped by the user, and extends downward from the main body 12.
  • the upper end portion of the grip 13 has a trigger 14.
  • the grip part 13 may have a trigger lock 16 for locking (fixing) the trigger 14.
  • the trigger 14 is locked by the trigger lock 16, pressing of the trigger 14 is restricted.
  • the lower end of the grip 13 has a latch mechanism for attaching and detaching the driving battery 110.
  • the tool 100 has a communication function.
  • the tool 100 has a wireless communication function using LPWA (Low Power Wide Area) technology.
  • the tool 100 performs wireless communication with a base station 210 included in the communication network 200.
  • the tool 100 may be configured to perform one-way communication only in the upward direction.
  • the tool 100 transmits data to the management server 300 via the communication network 200.
  • the communication network 200 includes a base station 210 that performs wireless communication with the tool 100.
  • the communication network 200 includes at least one of a local area communication network (LAN: Local Area Network), a high area communication network (WAN: Wide Area Network), and the Internet.
  • LAN Local Area Network
  • WAN Wide Area Network
  • the management server 300 is a server that manages the tool 100.
  • the management server 300 receives data from the tool 100 via the communication network 200.
  • the management server 300 may determine the error of the tool 100 based on the data received from the tool 100, or may determine the theft of the tool 100.
  • the tool 100 includes a battery connection unit 120, a tool control unit 130, a motor drive unit 140, a temperature sensor 141, a motor 150, a communication unit 160, a communication battery 170, A data acquisition unit 180.
  • the battery connection section 120 is a connector that is electrically connected to the driving battery 110.
  • the battery connection unit 120 transmits the power supplied from the driving battery 110 to the tool control unit 130.
  • the tool control unit 130 controls the operation of the tool 100.
  • the tool control unit 130 includes a power control unit 131 and a drive control unit 132.
  • Each of the power control unit 131 and the drive control unit 132 includes at least one processor and at least one memory.
  • the tool control unit 130 may include at least one processor and at least one memory, and the functions of the power control unit 131 and the drive control unit 132 may be executed by the at least one processor and at least one memory.
  • the power control unit 131 converts the voltage of the power supplied from the driving battery 110 via the battery connection unit 120, and supplies the power having the converted voltage to the drive control unit 132 and the motor drive unit 140.
  • the power control unit 131 supplies power to the motor driving unit 140 when the driving battery 110 is attached to the tool 100 and the power switch 15 is on.
  • the power control unit 131 does not supply power to the motor drive unit 140 when the power switch 15 is in the off state.
  • the power control unit 131 may always supply power to the drive control unit 132 while the drive battery 110 is attached to the tool 100 (sleep state).
  • the power control unit 131 may charge the communication battery 170 with electric power supplied from the driving battery 110 in a state where the driving battery 110 is attached to the tool 100.
  • the power control unit 131 may manage the remaining battery level of the driving battery 110.
  • the drive control unit 132 controls the drive of the motor 150.
  • the drive control unit 132 controls the motor drive unit 140 to drive the motor 150 in response to the depression of the trigger 14. Thereby, a binding operation is performed.
  • the drive control unit 132 may manage the number of times the binding operation is performed, or may manage whether or not the tool 100 has an error.
  • the drive control unit 132 may manage the temperature detected by the temperature sensor 141.
  • the motor drive unit 140 drives the motor 150 by supplying drive power to the motor 150 under the control of the drive control unit 132.
  • the temperature sensor 141 may be a sensor that detects the temperature of the tool 100 (for example, the temperature of the motor driving unit 140 or the motor 150).
  • the motor 150 generates a driving force for supplying the wire to the binding unit 11 and winding the wire around the reinforcing bar.
  • the communication unit 160 transmits data relating to the tool 100 to the management server 300.
  • the communication unit 160 includes a communication control unit 161 and a wireless communication unit 162.
  • the communication control unit 161 includes at least one processor and at least one memory. At least one processor and at least one memory included in the communication control unit 161 may share part or all of at least one processor and at least one memory included in the tool control unit 130.
  • the communication control unit 161 controls the wireless communication unit 162. For example, the communication control unit 161 receives data from the tool control unit 130 periodically. The communication control unit 161 may manage the remaining battery level of the communication battery 170. The communication control unit 161 may periodically receive data from a position data acquisition unit 180 described below.
  • the wireless communication unit 162 communicates with the base station 200 provided in the network 200.
  • the wireless communication unit 162 performs wireless communication using the LPWA technology.
  • the communication battery 170 stores power for driving the communication unit 160.
  • the communication battery 170 may be a rechargeable secondary battery.
  • a lithium ion battery can be used as the secondary battery.
  • the position data acquisition unit 180 acquires position data indicating the geographical position of the tool 100.
  • the position data acquisition unit 180 includes a GNSS (Global Navigation Satellite Network System) receiver.
  • a GNSS receiver is a GPS receiver.
  • the position data acquisition unit 180 outputs the acquired position data to the communication control unit 161 under the control of the communication control unit 161.
  • the position data acquisition unit 180 includes, for example, GLONASS (Global Navigation Satellite System), IRNSS (Indian Regional Navigational Satellite Satellite System), COMPASS, Galileo, or quasi-Zelite Satellite system as a GNSS receiver. May be included.
  • the position data acquisition unit 180 may be configured by a plurality of GNSS receivers.
  • data transmitted from the tool 100 to the management server 300 may include first data in a use state in which the tool 100 is used, and second data in a non-use state in which the tool 100 is not used.
  • the first data and the second data include common data common to the first data and the second data.
  • the first data may include individual data that is not included in the second data.
  • the first data may be transmitted according to the operation of the tool 100.
  • the common data includes at least one of the position data of the tool 100 and the remaining battery data.
  • the position data of the tool 100 is data (for example, latitude and longitude data) acquired by the position data acquisition unit 180 described above.
  • the battery remaining amount data may include data indicating the remaining battery amount of the driving battery 110, or may include data indicating the remaining battery amount of the communication battery 170.
  • the individual data includes at least one of the operation data of the tool 100 and the error data of the tool 100.
  • the operation data of the tool 100 may include data indicating the number of operations of the tool 100, and may include data indicating the temperature of the tool 100.
  • the error data of the tool 100 is data indicating an error that can be detected by the tool 100.
  • the error data may be data indicating that the rebar sandwiched by the arms of the binding unit 11 is higher than a threshold, or may be data indicating that the temperature of the tool 100 is higher than the threshold.
  • data may not be transmitted from the tool 100 to the management server 300 in the non-use state.
  • an upper limit condition here, the maximum number of transmissions
  • the above-described upper limit condition is set in wireless communication using the LPWA technology.
  • the communication control unit 161 has a storage unit 161A and a control unit 161B.
  • the storage unit 161A is an example of a storage unit that stores an operation history including the number of operation histories of the tool 100 (hereinafter, also referred to as the number of operation histories) for each unit time.
  • the storage unit 161B stores the operation history shown in FIG.
  • the operation history includes information that associates a unit time with the number of operation histories.
  • the operation history may include information that associates the unit time with the number of communication histories (hereinafter, also referred to as the number of communication histories).
  • the time zone from 09:00 to 18:00 is the work time at the work site. Since the time zone from 00:00 to 09:00 is a time zone outside the working time, the number of operation histories is zero. Similarly, since the time zone from 18:00 to 00:00 is a time zone outside the working time, the number of operation histories is zero. However, when the above-described second data is transmitted, the number of communication histories may be one. On the other hand, the time zone from 09:00 to 18:00 is a time zone within the working time, and therefore the number of operation histories varies according to the operation of the tool 100. Furthermore, since it is assumed that data transmission is performed in accordance with the operation of the tool 100, the number of communication histories also changes with the change of the number of operation histories.
  • the storage unit 161A may store the operation history every two or more periods that can be compared with the target period.
  • the target period is a period to be subjected to an allocation process described later.
  • the target period may be the same as the predetermined period in which the upper limit condition (here, the maximum number of data transmissions) is set.
  • the predetermined period in which the upper limit condition is set may be, for example, one day. More specifically, one day is a period from the reference time to a time 24 hours after the reference time, and may be, for example, a period from 0:00 to 0:00 the next day.
  • the target period may be shorter than the predetermined period.
  • the target period may be a time zone of the working time.
  • the operation history is stored in a period that can be compared with the target period.
  • the operation history stored in the storage unit 161A may be totaled for each predetermined period.
  • the storage unit 161A may manage the operation history for each of two or more conditions.
  • the two or more conditions may include an operation content using the tool 100 for a predetermined period.
  • the work content includes foundation work, demolition work, exterior work, and interior work.
  • the two or more conditions may include an operation time using the tool 100 in a predetermined period.
  • the work time may be represented by a time length such as 8 hours, or may be represented by a time zone such as 09:00 to 18:00.
  • the two or more conditions may include a work site using the tool 100 for a predetermined period.
  • the work site is an identifier for identifying the work site (for example, the address of the work site, the name of the work site, the geographical coordinates of the work site, the category name for specifying the geographical division within the work site, or the management number of the work site). Or may be represented by the area of the work site.
  • the two or more conditions may include an operator using the tool 100 for a predetermined period.
  • the worker may be represented by a name or ID that identifies the worker.
  • the two or more conditions may include a day of the week for a predetermined period.
  • the two or more conditions may include a season to which the predetermined period belongs.
  • these conditions may be managed in a format in which the operation history is tagged.
  • the conditions for tagging the operation history may be different for each operation history. That is, there may be an operation history in which some conditions are not tagged.
  • the control unit 161B is an example of a control unit that controls at least the wireless communication unit 162.
  • the control unit 161B executes an allocation process of allocating the number of data transmissions per unit time based on the operation history so that the data transmission does not satisfy the upper limit condition in the target period.
  • the control unit 161B controls the wireless communication unit 162 so as to transmit data based on the result of the allocation process.
  • control unit 161B can estimate the number of data transmissions assumed for each unit time in the target period based on the operation history, the control unit 161B allocates the allowable number of data transmissions for each unit time. be able to.
  • the control unit 161B may select a reference period to be compared with the target period from two or more periods, and execute the allocation process based on the operation history of the reference period.
  • the control unit 161B selects a reference period that matches a condition associated with the target period.
  • Such conditions include the work content using the tool 100 in the target period, the work time using the tool 100 in the target period, the work site using the tool 100 in the target period, the worker using the tool 100 in the target period, the day of the week in the target period. And at least one of the season to which the target period belongs.
  • the control unit 161B may execute the allocation process before the start of the target period.
  • the control unit 161B may execute a correction process for correcting the number of times of transmission of the data allocated in the allocation process during the target period.
  • the correction process may be performed two or more times during the target period.
  • the control unit 161B transmits the data allocated by the allocation process after time N.
  • the correction process may be executed so as to reduce the number of times. According to such a correction process, unnecessary communication is suppressed, and the remaining amount of the communication battery 170 tends to be hard to decrease. According to such correction processing, it can be said that there is a tendency that the processing load for managing the tool 100 in the management server 300 can be reduced.
  • the tool 100 decreases the number of times of transmission of the data allocated by the allocation process after time N. May be executed. That is, the tool 100 may execute the correction process based on the operation history so as to reduce the number of data transmissions regardless of the upper limit condition described above.
  • the tool 100 having such a configuration tends to be able to reduce the consumption of the remaining battery power of the communication battery 170 irrespective of whether the upper limit condition is set for data transmission.
  • the control unit 161B transmits the data allocated by the allocation process after time N.
  • the correction process may be performed so as to increase the number of times. According to such a correction process, the number of data transmissions does not exceed the maximum number of transmissions, and it is possible to prepare for an increase in the number of future communication.
  • control unit 161B transmits the data allocated by the allocation process after time N.
  • the correction process may be performed so as to increase the number of times.
  • the control unit 161B temporarily increases the number of data transmissions and then decreases the number of data transmissions. Correction processing may be performed.
  • step S11 the tool 100 executes an allocation process of allocating the number of data transmissions per unit time based on the operation history so that the data transmission does not satisfy the upper limit condition in the target period. . Details of the allocation process are as described above.
  • step S12 the tool 100 transmits data to the management server 300 based on the result of the assignment processing.
  • step S13 the tool 100 executes a correction process for correcting the number of times of transmission of the data allocated in the allocation process during the target period. Details of the correction processing are as described above.
  • step S14 the tool 100 transmits data to the management server 300 based on the result of the correction processing.
  • FIG. 5 illustrates a case where one correction process is performed, but the correction process may be performed two or more times as described above.
  • the tool 100 executes the correction process without depending on the value of the battery remaining amount, if the communication battery 170 has a sufficient remaining battery level to execute the above-described correction process. May be.
  • the tool 100 performs an assignment process of allocating the number of data transmissions per unit time based on the operation history so that the data transmission does not satisfy the upper limit condition in the target period.
  • the upper limit condition is set for data transmission
  • data transmitted from the tool 100 is not easily limited.
  • the tool 100 suppresses a situation in which the upper limit condition is satisfied and the data transmission is restricted under a situation where the tool is likely to operate. Can be.
  • the communication device 400 including the communication unit 160 and the communication battery 170 is configured to be detachable from the tool 100.
  • the communication device 400 has a connection portion 191 for electrically connecting to the tool 100 driven by power supplied from the detachable drive battery 110.
  • the tool 100 has a connecting portion 192 for electrically connecting to the connecting portion 191 of the communication device 400.
  • the communication device 400 has at least the communication unit 160 described above.
  • the communication device 400 may include the communication battery 170 described above. Since the communication unit 160 and the communication battery 170 have the same configuration and function as those of the above-described embodiment, the details are omitted. In such a case, the communication device 400 may acquire, from the tool 100, data necessary for transmitting the first data and the second data.
  • the communication device 400 including the communication unit 160 and the communication battery 170 is configured to be detachable from the tool 100, the communication function is provided to the tool 100 as necessary after the user purchases the tool 100. Can be added. Further, even when the communication unit 160 or the communication battery 170 has failed or deteriorated over time, the communication device 400 can be easily replaced.
  • the power control unit 131 is provided in the tool 100, but a part or all of the functions of the power control unit 131 may be realized by the communication device 400.
  • the communication device 400 may execute the function of the power control unit 131 by itself, or may execute the function of the power control unit 131 in cooperation with the tool control unit 130 of the tool 100.
  • the upper limit condition defined for data transmission is the maximum number of data transmissions in a predetermined period.
  • the upper limit condition set for data transmission is the maximum transmission data amount in a predetermined period.
  • the details of the allocation process and the correction process are the same as those in the above-described embodiment, and the above-mentioned “number of transmissions” may be read as “the amount of transmission data”.
  • control unit 161B executes the assignment process based on the learning result of the operation history.
  • the learning of the operation history may be performed by the tool 100, or may be performed by a server such as the management server 300.
  • the server learns the operation history of the tool 100
  • the tool 100 and the server may share the operation history of the tool 100 and the learning result by the server through communication.
  • the learning may be a process of calculating an average value of the number of operation histories for each condition.
  • the condition may be two or more conditions selected from the content of work, work time, work site, worker, day of the target period, season to which the target period belongs, and the like.
  • the learning may be a process realized by artificial intelligence.
  • the execution intelligence specifies the operation history using the above-described conditions as input conditions, and the artificial intelligence estimates the number of operations of the tool 100 per unit time in the target period based on the specified operation history. It may be processing.
  • the tool 100 may feed back the evaluation of the estimation result to the artificial intelligence.
  • the evaluation of the estimation result may be such that the number of operations estimated by artificial intelligence is smaller than the actual number, or the number of operations estimated by artificial intelligence is larger than the actual number.
  • the tool 100 may include a notification interface 17 for notifying the progress of learning of the operation history (hereinafter, also simply referred to as the progress of learning), as shown in FIG.
  • the tool 100 may determine the progress of the learning using a known technique.
  • the notification interface 17 may be a display provided on the tool 100 or a light emitting element such as an LED.
  • the tool 100 may display, on a display, a character, graphic, or symbol indicating that the progress of learning the operation history has satisfied a predetermined condition.
  • the tool 100 may issue an LED of a color indicating that the progress of learning has satisfied a predetermined condition.
  • the tool 100 may cause the LED to blink in a blinking pattern indicating that the progress of learning of the operation history satisfies a predetermined condition.
  • the notification interface 17 may be a sound output device such as a speaker provided on the tool 100.
  • the tool 100 may output a sound or a buzzer sound from a speaker indicating that the learning progress condition has satisfied a predetermined condition.
  • the notification interface 17 may be a communication interface that transmits data indicating the progress to an external device (for example, the user terminal or the management server 300). In such a case, the communication unit 160 described above may be used as the notification interface 17.
  • the tool 100 may have a learning control unit 133 as shown in FIG.
  • the learning control unit 133 may notify the progress of learning the operation history when the learning progress satisfies a predetermined condition.
  • the predetermined condition may be that a predetermined learning result is accumulated.
  • the tool 100 may include a reset interface 18 for resetting the learning result of the operation history, as shown in FIG.
  • the reset interface 18 may be a button or a switch provided on the tool 100.
  • the reset interface 18 may be a communication interface that receives data instructing a reset. In such a case, the communication unit 160 described above may be used as the reset interface 18.
  • the tool 100 may have a learning control unit 133 as shown in FIG.
  • the learning control unit 133 may reset the learning result of the operation history in response to the detection of the reset using the reset interface 18.
  • step S21 the tool 10 acquires the progress of learning the operation history.
  • step S22 the tool 10 determines whether the progress of learning satisfies a predetermined condition. If the result of the determination is YES, the tool 10 performs the process of step S23. If the determination result is NO, the tool 10 waits for a certain waiting time, and then returns to the process of step S21. In step S23, the tool 10 notifies the progress of learning.
  • step S31 the tool 10 determines whether a reset using the reset interface 18 has been detected.
  • the tool 10 performs the process of Step S32 when the determination result is YES. If the determination result is NO, the tool 10 waits for a predetermined waiting time, and then returns to the process of step S31. In step S32, the tool 10 resets the learning result of the operation history.
  • the storage unit that stores the operation history is provided in the communication control unit 161 .
  • the storage unit may be provided other than the communication control unit 161.
  • the storage unit may be provided in the tool control unit 130.
  • the storage unit may be provided in the management server 300.
  • control unit (which may be referred to as an allocation unit or a correction unit) that executes the allocation process and the correction process is provided in the communication control unit 161 has been illustrated.
  • the control unit may be provided other than the communication control unit 161.
  • the control unit may be provided in the tool control unit 130.
  • the control unit may be provided in the management server 300.
  • the function of the control unit may be realized by cooperation of one or more processors provided in the tool 100 and one or more processors provided in the management server 300.
  • the destination of the data transmitted from the tool 100 (hereinafter, the destination device) is the management server 300 provided on the communication network 200 has been illustrated.
  • the destination device has a wireless communication function
  • data may be directly transmitted from the tool 100 to the destination device without passing through the communication network 200.
  • a program that causes a computer to execute each process performed by the tool 100 or the communication device 400 may be provided.
  • the program may be recorded on a computer-readable medium.
  • a computer readable medium it is possible to install the program on a computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as a CD-ROM or a DVD-ROM.
  • the tool 100 including the communication battery 170 different from the drive battery 110 is illustrated.
  • the tool 100 may include the communication battery 170 having the function of the drive battery 110.
  • the tool 100 may not include the communication battery 170, and may control the communication unit 160 using power supplied from the driving battery 110.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Portable Power Tools In General (AREA)

Abstract

This tool is provided with a communication unit which transmits data relating to the tool, a control unit which controls at least the communication unit, and a storage unit which stores history including, for each unit time, the history count of operations of the tool. On the basis of the aforementioned operation history, the control unit performs assignment processing for assigning, per unit time, the transmission count and/or the transmission amount of aforementioned data such that transmission of the data does not meet an upper limit condition in a target period. The control unit controls the communication unit so as to transmit the aforementioned data on the basis of the results of the assignment processing.

Description

工具、通信装置、工具システム及び通信方法Tool, communication device, tool system and communication method
 本発明は、工具、通信装置、工具システム及び通信方法に関する。 The present invention relates to a tool, a communication device, a tool system, and a communication method.
 近年、結束機などの工具として、通信機能を有する工具が提案されている。例えば、工具は、工具の稼働データ又はバッテリの残量データなどを他の装置に送信する。稼働データは、工具の異常判定に用いられる(例えば、特許文献1)。 In recent years, tools having a communication function have been proposed as tools for binding machines and the like. For example, the tool transmits operation data of the tool or remaining data of the battery to another device. The operation data is used for determining a tool abnormality (for example, Patent Document 1).
特開2017-193051号公報JP 2017-193051 A
 第1の特徴に係る工具は、前記工具に関するデータを送信する通信部と、前記通信部を少なくとも制御する制御部と、前記工具の動作の履歴回数を単位時間毎に含む履歴を格納する格納部と、を備える。前記制御部は、前記動作履歴に基づいて、前記データの送信が対象期間において上限条件を満たさないように前記データの送信回数及び送信量の少なくともいずれか1つを単位時間毎に割り当てる割当処理を実行し、前記制御部は、前記割当処理の結果に基づいて前記データを送信するように前記通信部を制御する。 The tool according to the first aspect is a communication unit that transmits data relating to the tool, a control unit that controls at least the communication unit, and a storage unit that stores a history including the number of times of operation history of the tool for each unit time. And. The control unit performs an allocation process of allocating at least one of the number of transmissions and the transmission amount of the data per unit time such that the transmission of the data does not satisfy an upper limit condition in a target period based on the operation history. Then, the control unit controls the communication unit to transmit the data based on a result of the allocation process.
 第2の特徴に係る通信装置は、工具と接続される。前記通信装置は、前記工具から取得される前記工具に関するデータを送信する通信部と、前記通信部を少なくとも制御する制御部と、前記工具の動作の履歴回数を単位時間毎に含む動作履歴を格納する格納部と、を備える。前記少なくとも一つの制御部は、前記動作履歴に基づいて、前記データの送信が対象期間において上限条件を満たさないように前記データの送信回数及び送信量の少なくともいずれか1つを単位時間毎に割り当てる割当処理を実行し、前記少なくとも一つの制御部は、前記割当処理の結果に基づいて前記データを送信するように前記通信部を制御する。 通信 The communication device according to the second aspect is connected to the tool. The communication device stores a communication unit that transmits data relating to the tool acquired from the tool, a control unit that controls at least the communication unit, and an operation history including the number of operation histories of the tool for each unit time. And a storage unit. The at least one control unit allocates at least one of the number of transmissions and the transmission amount of the data for each unit time based on the operation history so that the transmission of the data does not satisfy an upper limit condition in a target period. An assignment process is performed, and the at least one control unit controls the communication unit to transmit the data based on a result of the assignment process.
 第3の特徴に係る工具システムは、工具を少なくとも含む。前記工具は、前記工具に関するデータを送信する通信部と、前記通信部を少なくとも制御する制御部と、を備える。前記システムは、前記工具の動作の履歴回数を単位時間毎に含む動作履歴を格納する格納部と、前記動作履歴に基づいて、前記データの送信が対象期間において上限条件を満たさないように前記データの送信回数及び送信量の少なくともいずれか1つを単位時間毎に割り当てる割当処理を実行する割当部と、を備える。前記制御部は、前記割当処理の結果に基づいて前記データを送信するように前記通信部を制御する。 工具 The tool system according to the third aspect includes at least a tool. The tool includes a communication unit that transmits data related to the tool, and a control unit that controls at least the communication unit. The system includes a storage unit that stores an operation history including the number of operation histories of the tool per unit time, based on the operation history, the data transmission so that transmission of the data does not satisfy an upper limit condition in a target period. And an allocating unit that performs an allocation process of allocating at least one of the number of transmissions and the amount of transmission for each unit time. The control unit controls the communication unit to transmit the data based on a result of the allocation processing.
 第4の特徴に係る通信方法は、工具に関するデータを前記工具から送信するステップAと、前記工具の動作の履歴回数を単位時間毎に含む動作履歴を格納するステップBと、前記動作履歴に基づいて、前記データの送信が対象期間において上限条件を満たさないように前記データの送信回数及び送信量の少なくともいずれか1つを単位時間毎に割り当てる割当処理を実行するステップCと、を備える。前記ステップAは、前記割当処理の結果に基づいて前記データを送信するステップを含む。 A communication method according to a fourth aspect is characterized in that a step A of transmitting data relating to a tool from the tool, a step B of storing an operation history including the number of operation histories of the tool per unit time, And C) performing an allocation process of allocating at least one of the number of times of transmission and the amount of transmission of the data for each unit time so that the transmission of the data does not satisfy the upper limit condition in a target period. The step A includes a step of transmitting the data based on a result of the allocation processing.
図1は、一実施形態に係る工具システムの一例を示す図である。FIG. 1 is a diagram illustrating an example of a tool system according to an embodiment. 図2は、一実施形態に係る工具の一例を示す図である。FIG. 2 is a diagram illustrating an example of a tool according to an embodiment. 図3は、一実施形態に係る通信制御部の一例を示す図である。FIG. 3 is a diagram illustrating an example of the communication control unit according to the embodiment. 図4は、一実施形態に係る格納部が格納する動作履歴の一例を示す図である。FIG. 4 is a diagram illustrating an example of an operation history stored in the storage unit according to the embodiment. 図5は、一実施形態に係る通信方法の一例を示す図である。FIG. 5 is a diagram illustrating an example of the communication method according to the embodiment. 図6は、変更例に係る工具の一例を示す図である。FIG. 6 is a diagram illustrating an example of a tool according to a modification. 図7は、変更例に係る工具の一例を示す図である。FIG. 7 is a diagram illustrating an example of a tool according to a modification. 図8は、変更例に係る処理方法の一例を示す図である。FIG. 8 is a diagram illustrating an example of a processing method according to a modification. 図9は、変更例に係る処理方法の一例を示す図である。FIG. 9 is a diagram illustrating an example of a processing method according to a modification.
 以下において、実施形態について図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。 Hereinafter, embodiments will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals.
 但し、図面は模式的なものであり、各寸法の比率などは現実のものとは異なる場合があることに留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係又は比率が異なる部分が含まれている場合があることは勿論である。 However, it should be noted that the drawings are schematic and ratios of dimensions may be different from actual ones. Therefore, specific dimensions and the like should be determined in consideration of the following description. Further, it is needless to say that the drawings may include portions having different dimensional relationships or ratios.
 [開示の概要]
 ところで、所定期間において工具に許容されるデータの送信には上限条件(最大送信回数又は最大送信データ量)が設定されているケースが想定される。例えば、工具がデータの送信に用いるネットワークの契約によって上限条件が設定されるケースや、省電力化等を目的にユーザやメーカが上限条件を設定するケースなどが想定される。
[Overview of disclosure]
By the way, it is assumed that an upper limit condition (maximum number of times of transmission or maximum amount of data to be transmitted) is set for the transmission of data permitted for a tool during a predetermined period. For example, a case where an upper limit condition is set by a contract of a network used by a tool for transmitting data, a case where a user or a maker sets an upper limit condition for the purpose of power saving or the like are assumed.
 しかしながら、データの送信が上限条件を満たすと、工具が稼動する蓋然性が高い状況下であるか否かに関わらず、データの送信が制限される可能性がある。 However, if the data transmission satisfies the upper limit condition, the data transmission may be restricted irrespective of whether there is a high probability that the tool will operate.
 以下に示す開示においては、上述した課題を解決するために、データの送信に上限条件が設定されているケースにおいて、工具が稼動する蓋然性が高い状況下で、上限条件が満たされてデータの送信が制限される事態を抑制することを可能とする工具、通信装置、工具システム及び通信方法について説明する。 In the disclosure described below, in order to solve the above-described problem, in a case where an upper limit condition is set for data transmission, under a situation where a tool is likely to operate, the upper limit condition is satisfied and data transmission is performed. The following describes a tool, a communication device, a tool system, and a communication method that can suppress a situation in which the communication is restricted.
 [実施形態]
 (工具システム)
 以下において、一実施形態に係る工具システムの一例について説明する。図1に示すように、工具システム1は、工具100と、通信ネットワーク200と、管理サーバ300とを有する。工具100及び管理サーバ300は、通信ネットワーク200を介して接続される。
[Embodiment]
(Tool system)
Hereinafter, an example of a tool system according to an embodiment will be described. As shown in FIG. 1, the tool system 1 includes a tool 100, a communication network 200, and a management server 300. The tool 100 and the management server 300 are connected via the communication network 200.
 工具100は、様々な加工及び工事に用いる道具である。例えば、工具100は、電気を動力として用いる工具(例えば、電動ドリル、電動ドライバー、電動のこぎり、研削機又は研磨機など)であってもよく、空圧を動力として用いる工具であってもよく、油圧を動力として用いる工具であってもよい。工具100は、コードレス型の工具であってもよい。 The tool 100 is a tool used for various processing and construction. For example, the tool 100 may be a tool that uses electricity as power (for example, an electric drill, an electric screwdriver, an electric saw, a grinder or a grinder), or may be a tool that uses pneumatic power as power, A tool using hydraulic pressure as power may be used. The tool 100 may be a cordless type tool.
 一実施形態では、工具100が結束機(例えば、鉄筋結束機)であるケースについて説明する。例えば、工具100は、駆動用バッテリ110から供給される電力によって駆動する。駆動用バッテリ110は、工具100に着脱可能に構成される。駆動用バッテリ110は、工具100を駆動する電力を蓄積する。例えば、駆動用バッテリ110は、充電可能な二次電池であってもよい。二次電池としては、リチウムイオンバッテリを用いることができる。駆動用バッテリ110は、工具100から取り外された状態で充電器によって充電されてもよい。 In one embodiment, a case where the tool 100 is a binding machine (for example, a reinforcing bar binding machine) will be described. For example, the tool 100 is driven by electric power supplied from the driving battery 110. The driving battery 110 is configured to be detachable from the tool 100. The driving battery 110 stores electric power for driving the tool 100. For example, the driving battery 110 may be a rechargeable secondary battery. As the secondary battery, a lithium ion battery can be used. The driving battery 110 may be charged by the charger while being removed from the tool 100.
 具体的には、工具100は、結束部11と、本体部12と、グリップ部13とを有する。結束部11は、鉄筋を挟むアームを有し、アームに挟まれた鉄筋にワイヤを巻き付ける。本体部12は、ワイヤが巻き付けられたリールを収容する。本体部12は、図2に示すモータ150を内蔵する。本体部12は、工具100の電源オン/オフを行うための電源スイッチ15を有する。 Specifically, the tool 100 has a binding portion 11, a main body portion 12, and a grip portion 13. The binding unit 11 has an arm sandwiching the rebar, and winds a wire around the rebar sandwiched between the arms. The main body 12 accommodates a reel around which a wire is wound. The main body 12 incorporates the motor 150 shown in FIG. The main body 12 has a power switch 15 for turning on / off the power of the tool 100.
 グリップ部13は、ユーザによって把持される部材であり、本体部12から下方に向けて延びている。グリップ部13の上端部分は、トリガ14を有する。トリガ14の押下によって結束部11及び本体部12の結束動作が行われる。グリップ部13は、トリガ14をロック(固定)するためのトリガロック16を有していてもよい。トリガロック16によってトリガ14がロックされると、トリガ14の押下が制限される。グリップ部13の下端部分は、駆動用バッテリ110を着脱するためのラッチ機構を有する。 The grip 13 is a member that is gripped by the user, and extends downward from the main body 12. The upper end portion of the grip 13 has a trigger 14. When the trigger 14 is pressed, the binding operation of the binding unit 11 and the main unit 12 is performed. The grip part 13 may have a trigger lock 16 for locking (fixing) the trigger 14. When the trigger 14 is locked by the trigger lock 16, pressing of the trigger 14 is restricted. The lower end of the grip 13 has a latch mechanism for attaching and detaching the driving battery 110.
 一実施形態では、工具100は、通信機能を有する。例えば、工具100は、LPWA(Low Power Wide Area)技術を用いた無線通信機能を有する。工具100は、通信ネットワーク200に含まれる基地局210と無線通信を行う。工具100は、上り方向のみの単方向通信を行うように構成されていてもよい。工具100は、通信ネットワーク200を介して、管理サーバ300にデータを送信する。 工具 In one embodiment, the tool 100 has a communication function. For example, the tool 100 has a wireless communication function using LPWA (Low Power Wide Area) technology. The tool 100 performs wireless communication with a base station 210 included in the communication network 200. The tool 100 may be configured to perform one-way communication only in the upward direction. The tool 100 transmits data to the management server 300 via the communication network 200.
 通信ネットワーク200は、工具100との無線通信を行う基地局210を有する。通信ネットワーク200は、狭域通信網(LAN:Local Area Network)、高域通信網(WAN:Wide Area Network)、及びインターネットのうち少なくとも1つを含む。 The communication network 200 includes a base station 210 that performs wireless communication with the tool 100. The communication network 200 includes at least one of a local area communication network (LAN: Local Area Network), a high area communication network (WAN: Wide Area Network), and the Internet.
 管理サーバ300は、工具100を管理するサーバである。管理サーバ300は、通信ネットワーク200を介して工具100からデータを受信する。管理サーバ300は、工具100から受信するデータに基づいて、工具100のエラーを判断してもよく、工具100の盗難を判断してもよい。 The management server 300 is a server that manages the tool 100. The management server 300 receives data from the tool 100 via the communication network 200. The management server 300 may determine the error of the tool 100 based on the data received from the tool 100, or may determine the theft of the tool 100.
 (工具)
 以下において、一実施形態に係る工具の一例について説明する。
(tool)
Hereinafter, an example of a tool according to an embodiment will be described.
 図2に示すように、工具100は、バッテリ接続部120と、工具制御部130と、モータ駆動部140と、温度センサ141と、モータ150と、通信部160と、通信用バッテリ170と、位置データ取得部180とを有する。 As shown in FIG. 2, the tool 100 includes a battery connection unit 120, a tool control unit 130, a motor drive unit 140, a temperature sensor 141, a motor 150, a communication unit 160, a communication battery 170, A data acquisition unit 180.
 バッテリ接続部120は、駆動用バッテリ110と電気的に接続されるコネクタである。バッテリ接続部120は、駆動用バッテリ110が工具100に取り付けられた場合に、駆動用バッテリ110から供給される電力を工具制御部130に伝達する。 The battery connection section 120 is a connector that is electrically connected to the driving battery 110. When the driving battery 110 is attached to the tool 100, the battery connection unit 120 transmits the power supplied from the driving battery 110 to the tool control unit 130.
 工具制御部130は、工具100の動作を制御する。工具制御部130は、電力制御部131と、駆動制御部132とを備える。電力制御部131及び駆動制御部132のそれぞれは、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含んで構成される。工具制御部130は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含んで構成され、少なくとも1つのプロセッサ及び少なくとも1つのメモリにより電力制御部131及び駆動制御部132の機能が実行されてもよい。 The tool control unit 130 controls the operation of the tool 100. The tool control unit 130 includes a power control unit 131 and a drive control unit 132. Each of the power control unit 131 and the drive control unit 132 includes at least one processor and at least one memory. The tool control unit 130 may include at least one processor and at least one memory, and the functions of the power control unit 131 and the drive control unit 132 may be executed by the at least one processor and at least one memory.
 電力制御部131は、駆動用バッテリ110からバッテリ接続部120を介して供給される電力の電圧を変換し、変換された電圧を有する電力を駆動制御部132及びモータ駆動部140に供給する。電力制御部131は、駆動用バッテリ110が工具100に取り付けられており、かつ、電源スイッチ15がオン状態である場合にモータ駆動部140に電力を供給する。電力制御部131は、電源スイッチ15がオフ状態である場合にモータ駆動部140に電力を供給しない。電力制御部131は、駆動用バッテリ110が工具100に取り付けられている状態で駆動制御部132に電力を常に供給してもよい(スリープ状態)。電力制御部131は、駆動用バッテリ110が工具100に取り付けられている状態で駆動用バッテリ110から供給される電力によって通信用バッテリ170を充電してもよい。電力制御部131は、駆動用バッテリ110のバッテリ残量を管理してもよい。 The power control unit 131 converts the voltage of the power supplied from the driving battery 110 via the battery connection unit 120, and supplies the power having the converted voltage to the drive control unit 132 and the motor drive unit 140. The power control unit 131 supplies power to the motor driving unit 140 when the driving battery 110 is attached to the tool 100 and the power switch 15 is on. The power control unit 131 does not supply power to the motor drive unit 140 when the power switch 15 is in the off state. The power control unit 131 may always supply power to the drive control unit 132 while the drive battery 110 is attached to the tool 100 (sleep state). The power control unit 131 may charge the communication battery 170 with electric power supplied from the driving battery 110 in a state where the driving battery 110 is attached to the tool 100. The power control unit 131 may manage the remaining battery level of the driving battery 110.
 駆動制御部132は、モータ150の駆動を制御する。駆動制御部132は、トリガ14の押下に応じてモータ150を駆動するようにモータ駆動部140を制御する。これによって結束動作が行われる。駆動制御部132は、結束動作を行った回数を管理してもよく、工具100のエラーの有無を管理してもよい。駆動制御部132は、温度センサ141によって検出される温度を管理してもよい。 The drive control unit 132 controls the drive of the motor 150. The drive control unit 132 controls the motor drive unit 140 to drive the motor 150 in response to the depression of the trigger 14. Thereby, a binding operation is performed. The drive control unit 132 may manage the number of times the binding operation is performed, or may manage whether or not the tool 100 has an error. The drive control unit 132 may manage the temperature detected by the temperature sensor 141.
 モータ駆動部140は、駆動制御部132の制御下でモータ150に駆動電力を供給することによってモータ150を駆動する。 The motor drive unit 140 drives the motor 150 by supplying drive power to the motor 150 under the control of the drive control unit 132.
 温度センサ141は、工具100における温度(例えば、モータ駆動部140又はモータ150)の温度を検出するセンサであってもよい。 The temperature sensor 141 may be a sensor that detects the temperature of the tool 100 (for example, the temperature of the motor driving unit 140 or the motor 150).
 モータ150は、ワイヤを結束部11に供給するとともにワイヤを鉄筋に巻き付けるための駆動力を発生する。 (4) The motor 150 generates a driving force for supplying the wire to the binding unit 11 and winding the wire around the reinforcing bar.
 通信部160は、工具100に関するデータを管理サーバ300に送信する。通信部160は、通信制御部161と、無線通信部162とを有する。通信制御部161は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含んで構成される。通信制御部161を構成する少なくとも1つのプロセッサ及び少なくとも1つのメモリは、工具制御部130を構成する少なくとも1つのプロセッサ及び少なくとも1つのメモリの一部又は全部を共有してもよい。 The communication unit 160 transmits data relating to the tool 100 to the management server 300. The communication unit 160 includes a communication control unit 161 and a wireless communication unit 162. The communication control unit 161 includes at least one processor and at least one memory. At least one processor and at least one memory included in the communication control unit 161 may share part or all of at least one processor and at least one memory included in the tool control unit 130.
 通信制御部161は、無線通信部162を制御する。例えば、通信制御部161は、工具制御部130から周期的にデータを受信する。通信制御部161は、通信用バッテリ170のバッテリ残量を管理してもよい。通信制御部161は、後述する位置データ取得部180からデータを周期的に受信してもよい。 The communication control unit 161 controls the wireless communication unit 162. For example, the communication control unit 161 receives data from the tool control unit 130 periodically. The communication control unit 161 may manage the remaining battery level of the communication battery 170. The communication control unit 161 may periodically receive data from a position data acquisition unit 180 described below.
 無線通信部162は、ネットワーク200に設けられる基地局200と通信を行う。例えば、無線通信部162は、LPWA技術を用いた無線通信を行う。 The wireless communication unit 162 communicates with the base station 200 provided in the network 200. For example, the wireless communication unit 162 performs wireless communication using the LPWA technology.
 通信用バッテリ170は、通信部160を駆動する電力を蓄積する。例えば、通信用バッテリ170は、充電可能な二次電池であってもよい。二次電池としては、リチウムイオンバッテリを用いることができる。 (4) The communication battery 170 stores power for driving the communication unit 160. For example, the communication battery 170 may be a rechargeable secondary battery. As the secondary battery, a lithium ion battery can be used.
 位置データ取得部180は、工具100の地理的な位置を示す位置データを取得する。位置データ取得部180は、GNSS(Global Navigation Satellite System)受信機を含んで構成される。例えば、GNSS受信機は、GPS受信機である。位置データ取得部180は、通信制御部161の制御下で、取得した位置データを通信制御部161に出力する。位置データ取得部180は、例えば、GNSS受信機として、GLONASS(Global Navigation Satellite System)、IRNSS(Indian Regional Navigational Satellite System)、COMPASS、Galileo、或いは準天頂衛星システム(QZSS:Quasi-Zenith Satellites System)等の受信機を含んで構成されてよい。また位置データ取得部180は、複数のGNSS受信機により構成されてよい。 The position data acquisition unit 180 acquires position data indicating the geographical position of the tool 100. The position data acquisition unit 180 includes a GNSS (Global Navigation Satellite Network System) receiver. For example, a GNSS receiver is a GPS receiver. The position data acquisition unit 180 outputs the acquired position data to the communication control unit 161 under the control of the communication control unit 161. The position data acquisition unit 180 includes, for example, GLONASS (Global Navigation Satellite System), IRNSS (Indian Regional Navigational Satellite Satellite System), COMPASS, Galileo, or quasi-Zelite Satellite system as a GNSS receiver. May be included. Further, the position data acquisition unit 180 may be configured by a plurality of GNSS receivers.
 (送信データ)
 以下において、一実施形態に係る送信データ(以下、単にデータと称する)の一例について説明する。
(Sending data)
Hereinafter, an example of transmission data (hereinafter, simply referred to as data) according to an embodiment will be described.
 例えば、工具100から管理サーバ300に送信されるデータは、工具100が使用されている使用状態において第1データと、工具100が使用されていない非使用状態において第2データと、を含んでもよい。第1データ及び第2データは、第1データ及び第2データに共通する共通データを含む。第1データは、第2データに含まれない個別データを含んでもよい。第1データは、工具100の動作に応じて送信されてもよい。 For example, data transmitted from the tool 100 to the management server 300 may include first data in a use state in which the tool 100 is used, and second data in a non-use state in which the tool 100 is not used. . The first data and the second data include common data common to the first data and the second data. The first data may include individual data that is not included in the second data. The first data may be transmitted according to the operation of the tool 100.
 例えば、共通データは、工具100の位置データ及びバッテリの残量データの少なくともいずれか1つを含む。工具100の位置データは、上述した位置データ取得部180によって取得されるデータ(例えば、緯度経度データ)である。バッテリの残量データは、駆動用バッテリ110のバッテリ残量を示すデータを含んでもよく、通信用バッテリ170のバッテリ残量を示すデータを含んでもよい。 For example, the common data includes at least one of the position data of the tool 100 and the remaining battery data. The position data of the tool 100 is data (for example, latitude and longitude data) acquired by the position data acquisition unit 180 described above. The battery remaining amount data may include data indicating the remaining battery amount of the driving battery 110, or may include data indicating the remaining battery amount of the communication battery 170.
 個別データは、工具100の稼働データ及び工具100のエラーデータの少なくともいずれか1つを含む。工具100の稼働データは、工具100の動作回数を示すデータを含んでもよく、工具100の温度を示すデータを含んでもよい。工具100のエラーデータは、工具100によって検出可能なエラーを示すデータである。例えば、エラーデータは、結束部11のアームによって挟まれる鉄筋が閾値よりも大きいことを示すデータであってもよく、工具100の温度が閾値よりも高いことを示すデータであってもよい。 The individual data includes at least one of the operation data of the tool 100 and the error data of the tool 100. The operation data of the tool 100 may include data indicating the number of operations of the tool 100, and may include data indicating the temperature of the tool 100. The error data of the tool 100 is data indicating an error that can be detected by the tool 100. For example, the error data may be data indicating that the rebar sandwiched by the arms of the binding unit 11 is higher than a threshold, or may be data indicating that the temperature of the tool 100 is higher than the threshold.
 但し、実施形態はこれに限定されるものではなく、非使用状態において工具100から管理サーバ300にデータが送信されなくてもよい。 However, the embodiment is not limited to this, and data may not be transmitted from the tool 100 to the management server 300 in the non-use state.
 一実施形態では、所定期間において工具100に許容されるデータの送信には上限条件(ここでは、最大送信回数)が設定されているケースについて説明する。言い換えると、一実施形態では、LPWA技術を用いた無線通信において、上述した上限条件が設定されることが想定されている。 In one embodiment, a case will be described in which an upper limit condition (here, the maximum number of transmissions) is set for transmission of data permitted to the tool 100 in a predetermined period. In other words, in one embodiment, it is assumed that the above-described upper limit condition is set in wireless communication using the LPWA technology.
 (通信制御部)
 以下において、上述した通信制御部161の詳細について説明する。図3に示すように、通信制御部161は、格納部161A及び制御部161Bを有する。
(Communication control unit)
Hereinafter, details of the above-described communication control unit 161 will be described. As shown in FIG. 3, the communication control unit 161 has a storage unit 161A and a control unit 161B.
 格納部161Aは、工具100の動作の履歴回数(以下、動作履歴回数とも称する)を単位時間毎に含む動作履歴を格納する格納部の一例である。例えば、格納部161Bは、図4に示す動作履歴を格納する。 The storage unit 161A is an example of a storage unit that stores an operation history including the number of operation histories of the tool 100 (hereinafter, also referred to as the number of operation histories) for each unit time. For example, the storage unit 161B stores the operation history shown in FIG.
 図4に示すように、動作履歴は、単位時間及び動作履歴回数を対応付ける情報を含む。動作履歴は、単位時間及び通信の履歴回数(以下、通信履歴回数とも称する)を対応付ける情報を含んでもよい。 動作 As shown in FIG. 4, the operation history includes information that associates a unit time with the number of operation histories. The operation history may include information that associates the unit time with the number of communication histories (hereinafter, also referred to as the number of communication histories).
 ここでは、09:00~18:00までの時間帯が作業現場における作業時間であるケースについて例示する。00:00~09:00までの時間帯は、作業時間外の時間帯であるため、動作履歴回数は0である。同様に、18:00~00:00までの時間帯は、作業時間外の時間帯であるため、動作履歴回数は0である。但し、上述した第2データの送信が行われる場合には、通信履歴回数は1であってもよい。一方で、09:00~18:00までの時間帯は、作業時間内の時間帯であるため、工具100の動作に応じて動作履歴回数が変動する。さらに、工具100の動作に応じてデータの送信が行われることを想定しているため、動作履歴回数の変動に伴って通信履歴回数も変動する。 Here, a case where the time zone from 09:00 to 18:00 is the work time at the work site will be exemplified. Since the time zone from 00:00 to 09:00 is a time zone outside the working time, the number of operation histories is zero. Similarly, since the time zone from 18:00 to 00:00 is a time zone outside the working time, the number of operation histories is zero. However, when the above-described second data is transmitted, the number of communication histories may be one. On the other hand, the time zone from 09:00 to 18:00 is a time zone within the working time, and therefore the number of operation histories varies according to the operation of the tool 100. Furthermore, since it is assumed that data transmission is performed in accordance with the operation of the tool 100, the number of communication histories also changes with the change of the number of operation histories.
 格納部161Aは、対象期間と比較可能な2以上の期間毎に動作履歴を格納してもよい。ここで、対象期間とは、後述する割当処理の対象とされる期間である。対象期間は、上限条件(ここでは、データの最大送信回数)が設定される所定期間と同じであってもよい。上限条件が設定される所定期間は、例えば、1日としてよい。より具体的に、1日は、基準となる時刻から、当該基準となる時刻の24時間後の時刻までの期間であり、例えば0:00~翌日0:00の期間としてよい。対象期間は、所定期間よりも短くてもよい。例えば、対象期間は、作業時間の時間帯であってもよい。このような場合であっても、対象期間が所定期間の少なくとも一部であるため、動作履歴は対象期間と比較可能な期間で格納される。格納部161Aに格納される動作履歴は、所定期間毎に集計されてもよい。 The storage unit 161A may store the operation history every two or more periods that can be compared with the target period. Here, the target period is a period to be subjected to an allocation process described later. The target period may be the same as the predetermined period in which the upper limit condition (here, the maximum number of data transmissions) is set. The predetermined period in which the upper limit condition is set may be, for example, one day. More specifically, one day is a period from the reference time to a time 24 hours after the reference time, and may be, for example, a period from 0:00 to 0:00 the next day. The target period may be shorter than the predetermined period. For example, the target period may be a time zone of the working time. Even in such a case, since the target period is at least a part of the predetermined period, the operation history is stored in a period that can be compared with the target period. The operation history stored in the storage unit 161A may be totaled for each predetermined period.
 例えば、格納部161Aは、2以上の条件毎に動作履歴を管理してもよい。2以上の条件は、所定期間において工具100を用いる作業内容を含んでもよい。例えば、作業内容は、基礎工事、解体工事、外装工事、内装工事などである。2以上の条件は、所定期間において工具100を用いる作業時間を含んでもよい。例えば、作業時間は、8時間などの時間長で表されてもよく、09:00~18:00などの時間帯で表されてもよい。2以上の条件は、所定期間において工具100を用いる作業現場を含んでもよい。作業現場は、作業現場を特定する識別子(例えば、作業現場の住所、作業現場の名称、作業現場の地理座標、作業現場内の地理的区分を特定する区分名、或いは作業現場の管理番号等)で表されてもよく、作業現場の面積で表されてもよい。2以上の条件は、所定期間において工具100を用いる作業業者を含んでもよい。作業業者は、作業業者を特定する名称又はIDで表されてもよい。2以上の条件は、所定期間の曜日を含んでもよい。2以上の条件は、所定期間の属する季節を含んでもよい。 For example, the storage unit 161A may manage the operation history for each of two or more conditions. The two or more conditions may include an operation content using the tool 100 for a predetermined period. For example, the work content includes foundation work, demolition work, exterior work, and interior work. The two or more conditions may include an operation time using the tool 100 in a predetermined period. For example, the work time may be represented by a time length such as 8 hours, or may be represented by a time zone such as 09:00 to 18:00. The two or more conditions may include a work site using the tool 100 for a predetermined period. The work site is an identifier for identifying the work site (for example, the address of the work site, the name of the work site, the geographical coordinates of the work site, the category name for specifying the geographical division within the work site, or the management number of the work site). Or may be represented by the area of the work site. The two or more conditions may include an operator using the tool 100 for a predetermined period. The worker may be represented by a name or ID that identifies the worker. The two or more conditions may include a day of the week for a predetermined period. The two or more conditions may include a season to which the predetermined period belongs.
 ここで、これらの条件は、動作履歴にタグ付けされる形式で管理されてもよい。動作履歴にタグ付けされる条件は動作履歴毎に異なっていてもよい。すなわち、一部の条件がタグ付けされていない動作履歴が存在してもよい。 Here, these conditions may be managed in a format in which the operation history is tagged. The conditions for tagging the operation history may be different for each operation history. That is, there may be an operation history in which some conditions are not tagged.
 制御部161Bは、無線通信部162を少なくとも制御する制御部の一例である。制御部161Bは、動作履歴に基づいて、データの送信が対象期間において上限条件を満たさないようにデータの送信回数を単位時間毎に割り当てる割当処理を実行する。制御部161Bは、割当処理の結果に基づいてデータを送信するように無線通信部162を制御する。 The control unit 161B is an example of a control unit that controls at least the wireless communication unit 162. The control unit 161B executes an allocation process of allocating the number of data transmissions per unit time based on the operation history so that the data transmission does not satisfy the upper limit condition in the target period. The control unit 161B controls the wireless communication unit 162 so as to transmit data based on the result of the allocation process.
 具体的には、制御部161Bは、動作履歴に基づいて対象期間において単位時間毎に想定されるデータの送信回数を推定することができるため、許容可能なデータの送信回数を単位時間毎に割り当てることができる。 Specifically, since the control unit 161B can estimate the number of data transmissions assumed for each unit time in the target period based on the operation history, the control unit 161B allocates the allowable number of data transmissions for each unit time. be able to.
 さらに、制御部161Bは、2以上の期間の中から対象期間と比較すべき参照期間を選択し、参照期間の動作履歴に基づいて割当処理を実行してもよい。制御部161Bは、対象期間と対応付けられる条件と合致する参照期間を選択する。このような条件は、対象期間において工具100を用いる作業内容、対象期間において工具100を用いる作業時間、対象期間において工具100を用いる作業現場、対象期間において工具100を用いる作業業者、対象期間の曜日及び対象期間の属する季節の少なくともいずれか1つであってもよい。 The control unit 161B may select a reference period to be compared with the target period from two or more periods, and execute the allocation process based on the operation history of the reference period. The control unit 161B selects a reference period that matches a condition associated with the target period. Such conditions include the work content using the tool 100 in the target period, the work time using the tool 100 in the target period, the work site using the tool 100 in the target period, the worker using the tool 100 in the target period, the day of the week in the target period. And at least one of the season to which the target period belongs.
 制御部161Bは、対象期間の開始前に割当処理を実行してもよい。制御部161Bは、対象期間における工具100の動作の実際回数が履歴回数と異なる場合に、割当処理で割り当てられたデータの送信回数を対象期間中に補正する補正処理を実行してもよい。補正処理は、対象期間中に2回以上実行されてもよい。 The control unit 161B may execute the allocation process before the start of the target period. When the actual number of operations of the tool 100 in the target period is different from the history number, the control unit 161B may execute a correction process for correcting the number of times of transmission of the data allocated in the allocation process during the target period. The correction process may be performed two or more times during the target period.
 ここでは、現在の時刻が対象期間中の時刻Nであるケースについて考える。例えば、時刻Nよりも前において実際回数が履歴回数よりも少ない場合には、通信履歴回数が想定よりも少ないため、制御部161Bは、時刻Nよりも後において割当処理で割り当てられたデータの送信回数を減少するように補正処理を実行してもよい。このような補正処理によれば、不要な通信が抑制され、通信用バッテリ170の残量が減りにくくなる傾向がある。このような補正処理によれば、管理サーバ300において、工具100を管理するための処理負荷を軽減できる傾向があるともいえる。ここで、工具100は、上限条件に関わらず時刻Nよりも前において実際回数が履歴回数よりも少ない場合には、時刻Nよりも後において割当処理で割り当てられたデータの送信回数を減少するように補正処理を実行してもよい。すなわち、上述の上限条件に関わらず、工具100は、動作履歴に基づいて、データの送信回数を減少するように補正処理を実行してもよい。このような構成の工具100は、データの送信に上限条件が設定されているケースであるか否かに関わらず、通信用バッテリ170のバッテリ残量の消費を軽減できる傾向がある。 Here, consider a case where the current time is time N during the target period. For example, if the actual number is less than the history number before time N, the communication history number is smaller than expected, so that the control unit 161B transmits the data allocated by the allocation process after time N. The correction process may be executed so as to reduce the number of times. According to such a correction process, unnecessary communication is suppressed, and the remaining amount of the communication battery 170 tends to be hard to decrease. According to such correction processing, it can be said that there is a tendency that the processing load for managing the tool 100 in the management server 300 can be reduced. Here, if the actual number is less than the history number before time N regardless of the upper limit condition, the tool 100 decreases the number of times of transmission of the data allocated by the allocation process after time N. May be executed. That is, the tool 100 may execute the correction process based on the operation history so as to reduce the number of data transmissions regardless of the upper limit condition described above. The tool 100 having such a configuration tends to be able to reduce the consumption of the remaining battery power of the communication battery 170 irrespective of whether the upper limit condition is set for data transmission.
 或いは、時刻Nよりも前において実際回数が履歴回数よりも少ない場合には、通信履歴回数が想定よりも少ないため、制御部161Bは、時刻Nよりも後において割当処理で割り当てられたデータの送信回数を増大するように補正処理を実行してもよい。このような補正処理によれば、データの送信回数が最大送信回数を超えずに、将来的な通信回数の増大に備えることができる。 Alternatively, if the actual number is less than the history number before time N, the communication history number is smaller than expected, so the control unit 161B transmits the data allocated by the allocation process after time N. The correction process may be performed so as to increase the number of times. According to such a correction process, the number of data transmissions does not exceed the maximum number of transmissions, and it is possible to prepare for an increase in the number of future communication.
 或いは、時刻Nよりも前において実際回数が履歴回数よりも多い場合には、通信回数の不足が想定されるため、制御部161Bは、時刻Nよりも後において割当処理で割り当てられたデータの送信回数を増大するように補正処理を実行してもよい。但し、このような補正処理を実行すると、データの送信回数が最大送信回数を超える可能性が高いため、制御部161Bは、データの送信回数を一時的に増大した後にデータの送信回数を減少する補正処理を実行してよい。 Alternatively, if the actual number is greater than the history number before time N, it is assumed that the number of communication times is insufficient. Therefore, control unit 161B transmits the data allocated by the allocation process after time N. The correction process may be performed so as to increase the number of times. However, when such a correction process is performed, the number of data transmissions is likely to exceed the maximum number of transmissions. Therefore, the control unit 161B temporarily increases the number of data transmissions and then decreases the number of data transmissions. Correction processing may be performed.
 (通信方法)
 以下において、一実施形態に係る通信方法の一例について説明する。ここでは、対象期間の開始前に割当処理が実行され、対象期間中に補正処理が実行されるケースを例示する。
(Communication method)
Hereinafter, an example of a communication method according to an embodiment will be described. Here, an example is shown in which the assignment process is executed before the start of the target period and the correction process is executed during the target period.
 図5に示すように、ステップS11において、工具100は、動作履歴に基づいて、データの送信が対象期間において上限条件を満たさないようにデータの送信回数を単位時間毎に割り当てる割当処理を実行する。割当処理の詳細については上述した通りである。 As shown in FIG. 5, in step S11, the tool 100 executes an allocation process of allocating the number of data transmissions per unit time based on the operation history so that the data transmission does not satisfy the upper limit condition in the target period. . Details of the allocation process are as described above.
 ステップS12において、工具100は、割当処理の結果に基づいてデータを管理サーバ300に送信する。 In step S12, the tool 100 transmits data to the management server 300 based on the result of the assignment processing.
 ステップS13において、工具100は、割当処理で割り当てられたデータの送信回数を対象期間中に補正する補正処理を実行する。補正処理の詳細については上述した通りである。 In step S13, the tool 100 executes a correction process for correcting the number of times of transmission of the data allocated in the allocation process during the target period. Details of the correction processing are as described above.
 ステップS14において、工具100は、補正処理の結果に基づいてデータを管理サーバ300に送信する。 In step S14, the tool 100 transmits data to the management server 300 based on the result of the correction processing.
 図5では、1回の補正処理が実行されるケースを例示しているが、上述したように、補正処理は2回以上実行されてもよい。 FIG. 5 illustrates a case where one correction process is performed, but the correction process may be performed two or more times as described above.
 一実施形態の工具100は、上述の補正処理を実行可能な程度に通信用バッテリ170のバッテリ残量があるのであれば、当該バッテリ残量の値に依存せずに、当該補正処理を実行してよい。 The tool 100 according to one embodiment executes the correction process without depending on the value of the battery remaining amount, if the communication battery 170 has a sufficient remaining battery level to execute the above-described correction process. May be.
 (作用及び効果)
 一実施形態では、工具100は、動作履歴に基づいて、データの送信が対象期間において上限条件を満たさないようにデータの送信回数を単位時間毎に割り当てる割当処理を実行する。このような構成によれば、データの送信に上限条件が設定されているケースにおいて、工具100から送信されるデータが制限されにくい。言い換えると、工具100は、データの送信に上限条件が設定されているケースにおいて、工具が稼動する蓋然性が高い状況下で、上限条件が満たされてデータの送信が制限される事態を抑制することができる。
(Action and effect)
In one embodiment, the tool 100 performs an assignment process of allocating the number of data transmissions per unit time based on the operation history so that the data transmission does not satisfy the upper limit condition in the target period. According to such a configuration, in a case where the upper limit condition is set for data transmission, data transmitted from the tool 100 is not easily limited. In other words, in the case where the upper limit condition is set for data transmission, the tool 100 suppresses a situation in which the upper limit condition is satisfied and the data transmission is restricted under a situation where the tool is likely to operate. Can be.
 [変更例]
 以下において、実施形態の一変更例について説明する。以下においては、上述した実施形態に対する相違点について説明する。
[Example of change]
Hereinafter, a modification of the embodiment will be described. Hereinafter, differences from the above-described embodiment will be described.
 具体的には、上述した実施形態では、通信部160及び通信用バッテリ170が工具100に内蔵されるケースについて説明した。これに対して、変更例では、図6に示すように、通信部160及び通信用バッテリ170を含む通信装置400は、工具100に対して着脱可能に構成される。 Specifically, in the above-described embodiment, the case where the communication unit 160 and the communication battery 170 are built in the tool 100 has been described. On the other hand, in the modified example, as shown in FIG. 6, the communication device 400 including the communication unit 160 and the communication battery 170 is configured to be detachable from the tool 100.
 図6に示すように、通信装置400は、着脱可能な駆動用バッテリ110から供給される電力によって駆動する工具100と電気的に接続するための接続部191を有する。一方、工具100は、通信装置400の接続部191と電気的に接続するための接続部192を有する。 As shown in FIG. 6, the communication device 400 has a connection portion 191 for electrically connecting to the tool 100 driven by power supplied from the detachable drive battery 110. On the other hand, the tool 100 has a connecting portion 192 for electrically connecting to the connecting portion 191 of the communication device 400.
 通信装置400は、上述した通信部160を少なくとも有する。通信装置400は、上述した通信用バッテリ170を有していてもよい。通信部160及び通信用バッテリ170は、上述した実施形態と同様の構成及び機能を有するため、その詳細については省略する。このようなケースにおいて、通信装置400は、第1データ及び第2データの送信に必要なデータを工具100から取得してもよい。 The communication device 400 has at least the communication unit 160 described above. The communication device 400 may include the communication battery 170 described above. Since the communication unit 160 and the communication battery 170 have the same configuration and function as those of the above-described embodiment, the details are omitted. In such a case, the communication device 400 may acquire, from the tool 100, data necessary for transmitting the first data and the second data.
 このように、通信部160及び通信用バッテリ170を有する通信装置400が工具100に対して着脱可能に構成されるため、ユーザが工具100を購入した後、必要に応じて工具100に通信機能を付加することができる。また、通信部160又は通信用バッテリ170の故障又は経年劣化が生じた場合であっても通信装置400を交換しやすい。 As described above, since the communication device 400 including the communication unit 160 and the communication battery 170 is configured to be detachable from the tool 100, the communication function is provided to the tool 100 as necessary after the user purchases the tool 100. Can be added. Further, even when the communication unit 160 or the communication battery 170 has failed or deteriorated over time, the communication device 400 can be easily replaced.
 図6では、電力制御部131が工具100に設けられているが、電力制御部131の機能の一部又は全部は通信装置400によって実現されてもよい。言い換えると、通信装置400は、単体で電力制御部131の機能を実行してもよく、工具100の工具制御部130と協働して電力制御部131の機能を実行してもよい。 In FIG. 6, the power control unit 131 is provided in the tool 100, but a part or all of the functions of the power control unit 131 may be realized by the communication device 400. In other words, the communication device 400 may execute the function of the power control unit 131 by itself, or may execute the function of the power control unit 131 in cooperation with the tool control unit 130 of the tool 100.
 [変更例]
 以下において、実施形態の一変更例について説明する。以下においては、上述した実施形態に対する相違点について説明する。
[Example of change]
Hereinafter, a modification of the embodiment will be described. Hereinafter, differences from the above-described embodiment will be described.
 具体的には、上述した実施形態では、データの送信に定められた上限条件が所定期間におけるデータの最大送信回数であるケースを例示した。これに対して、変更例では、データの送信に定められた上限条件は、所定期間における最大送信データ量である。 Specifically, in the above-described embodiment, the case where the upper limit condition defined for data transmission is the maximum number of data transmissions in a predetermined period has been exemplified. On the other hand, in the modified example, the upper limit condition set for data transmission is the maximum transmission data amount in a predetermined period.
 変更例においては、割当処理及び補正処理の詳細については上述した実施形態と同様であり、上述した「送信回数」を「送信データ量」と読み替えればよい。 In the modification, the details of the allocation process and the correction process are the same as those in the above-described embodiment, and the above-mentioned “number of transmissions” may be read as “the amount of transmission data”.
 [変更例]
 以下において、実施形態の一変更例について説明する。以下においては、上述した実施形態に対する相違点について説明する。
[Example of change]
Hereinafter, a modification of the embodiment will be described. Hereinafter, differences from the above-described embodiment will be described.
 変更例において、制御部161Bは、動作履歴の学習結果に基づいて割当処理を実行する。動作履歴の学習は、工具100が実施してもよいし、管理サーバ300等のサーバが実施してもよい。サーバが工具100の動作履歴を学習する場合には、工具100とサーバとは、工具100の動作履歴及びサーバによる学習結果を通信により共有してもよい。 In the modified example, the control unit 161B executes the assignment process based on the learning result of the operation history. The learning of the operation history may be performed by the tool 100, or may be performed by a server such as the management server 300. When the server learns the operation history of the tool 100, the tool 100 and the server may share the operation history of the tool 100 and the learning result by the server through communication.
 例えば、学習は、条件毎に動作履歴回数の平均値を算出する処理であってもよい。条件は、作業内容、作業時間、作業現場、作業業者、対象期間の曜日及び対象期間の属する季節などの中から選択された2以上の条件であってもよい。 For example, the learning may be a process of calculating an average value of the number of operation histories for each condition. The condition may be two or more conditions selected from the content of work, work time, work site, worker, day of the target period, season to which the target period belongs, and the like.
 或いは、学習は、人工知能によって実現される処理であってもよい。具体的には、学習は、上述した条件を入力条件として実行知能が動作履歴を特定し、特定された動作履歴に基づいて対象期間における単位時間毎の工具100の動作回数を人工知能が推定する処理であってもよい。工具100は、推定結果の評価を人工知能にフィードバックしてもよい。推定結果の評価は、人工知能によって推定された動作回数が実際回数よりも少ない、人工知能によって推定された動作回数が実際回数よりも多いといった評価であってもよい。 学習 Alternatively, the learning may be a process realized by artificial intelligence. Specifically, in the learning, the execution intelligence specifies the operation history using the above-described conditions as input conditions, and the artificial intelligence estimates the number of operations of the tool 100 per unit time in the target period based on the specified operation history. It may be processing. The tool 100 may feed back the evaluation of the estimation result to the artificial intelligence. The evaluation of the estimation result may be such that the number of operations estimated by artificial intelligence is smaller than the actual number, or the number of operations estimated by artificial intelligence is larger than the actual number.
 このようなケースにおいて、工具100は、図7に示すように、動作履歴の学習の進捗状況(以下、単に学習の進捗状況ともいう)を通知する通知インタフェース17を備えてもよい。なお工具100は、学習の進捗状況を、公知技術を用いて決定してもよい。 In such a case, the tool 100 may include a notification interface 17 for notifying the progress of learning of the operation history (hereinafter, also simply referred to as the progress of learning), as shown in FIG. The tool 100 may determine the progress of the learning using a known technique.
 通知インタフェース17は、工具100に設けられるディスプレイ又はLEDなどの発光素子であってもよい。例えば、工具100は、動作履歴の学習の進捗状況が所定条件を満たしたことを示す文字、図形又は記号をディスプレイに表示してよい。例えば、工具100は、学習の進捗状況が所定条件を満たしたことを示す色のLEDを発行させてよい。例えば、工具100は、動作履歴の学習の進捗状況が所定条件を満たしたことを示す点滅パターンでLEDを点滅させてよい。通知インタフェース17は、工具100に設けられるスピーカ等の音出力装置であってもよい。例えば、工具100は、学習の進捗状況が所定条件を満たしたことを示す音声又はブザー音をスピーカから出力してよい。通知インタフェース17は、進捗状況を示すデータを外部装置(例えば、ユーザ端末又は管理サーバ300)に送信する通信インタフェースであってもよい。このようなケースにおいて、通知インタフェース17として、上述した通信部160を用いてもよい。 The notification interface 17 may be a display provided on the tool 100 or a light emitting element such as an LED. For example, the tool 100 may display, on a display, a character, graphic, or symbol indicating that the progress of learning the operation history has satisfied a predetermined condition. For example, the tool 100 may issue an LED of a color indicating that the progress of learning has satisfied a predetermined condition. For example, the tool 100 may cause the LED to blink in a blinking pattern indicating that the progress of learning of the operation history satisfies a predetermined condition. The notification interface 17 may be a sound output device such as a speaker provided on the tool 100. For example, the tool 100 may output a sound or a buzzer sound from a speaker indicating that the learning progress condition has satisfied a predetermined condition. The notification interface 17 may be a communication interface that transmits data indicating the progress to an external device (for example, the user terminal or the management server 300). In such a case, the communication unit 160 described above may be used as the notification interface 17.
 ここで、工具100は、図7に示すように、学習制御部133を有していてもよい。学習制御部133は、学習の進捗状況が所定条件を満たす場合に、動作履歴の学習の進捗状況を通知してもよい。例えば、所定条件は、予め定められた学習結果が蓄積されることであってもよい。 工具 Here, the tool 100 may have a learning control unit 133 as shown in FIG. The learning control unit 133 may notify the progress of learning the operation history when the learning progress satisfies a predetermined condition. For example, the predetermined condition may be that a predetermined learning result is accumulated.
 工具100は、図7に示すように、動作履歴の学習結果をリセットするリセットインタフェース18を備えてもよい。リセットインタフェース18は、工具100に設けられるボタン又はスイッチであってもよい。リセットインタフェース18は、リセットを指示するデータを受信する通信インタフェースであってもよい。このようなケースにおいて、リセットインタフェース18として、上述した通信部160を用いてもよい。 The tool 100 may include a reset interface 18 for resetting the learning result of the operation history, as shown in FIG. The reset interface 18 may be a button or a switch provided on the tool 100. The reset interface 18 may be a communication interface that receives data instructing a reset. In such a case, the communication unit 160 described above may be used as the reset interface 18.
 ここで、工具100は、図7に示すように、学習制御部133を有していてもよい。学習制御部133は、リセットインタフェース18を用いたリセットの検知に応じて、動作履歴の学習結果をリセットしてもよい。 工具 Here, the tool 100 may have a learning control unit 133 as shown in FIG. The learning control unit 133 may reset the learning result of the operation history in response to the detection of the reset using the reset interface 18.
 (処理方法)
 第1に、動作履歴の学習の進捗状況を通知するフローについて説明する。図8に示すように、ステップS21において、工具10は、動作履歴の学習の進捗状況を取得する。ステップS22において、工具10は、学習の進捗状況が所定条件を満たす否かを判定する。工具10は、判定結果がYESである場合に、ステップS23の処理を行う。工具10は、判定結果がNOである場合に、一定の待ち時間の待機を行った上で、ステップS21の処理に戻る。ステップS23において、工具10は、学習の進捗状況を通知する。
(Processing method)
First, a flow for notifying the progress of learning of the operation history will be described. As shown in FIG. 8, in step S21, the tool 10 acquires the progress of learning the operation history. In step S22, the tool 10 determines whether the progress of learning satisfies a predetermined condition. If the result of the determination is YES, the tool 10 performs the process of step S23. If the determination result is NO, the tool 10 waits for a certain waiting time, and then returns to the process of step S21. In step S23, the tool 10 notifies the progress of learning.
 第2に、学習結果をリセットするフローについて説明する。図9に示すように、ステップS31において、工具10は、リセットインタフェース18を用いたリセットが検知された否かを判定する。工具10は、判定結果がYESである場合に、ステップS32の処理を行う。工具10は、判定結果がNOである場合に、一定の待ち時間の待機を行った上で、ステップS31の処理に戻る。ステップS32において、工具10は、動作履歴の学習結果をリセットする。 Secondly, a flow of resetting the learning result will be described. As shown in FIG. 9, in step S31, the tool 10 determines whether a reset using the reset interface 18 has been detected. The tool 10 performs the process of Step S32 when the determination result is YES. If the determination result is NO, the tool 10 waits for a predetermined waiting time, and then returns to the process of step S31. In step S32, the tool 10 resets the learning result of the operation history.
 [その他の実施形態]
 本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
[Other Embodiments]
Although the present invention has been described with reference to the above-described embodiments, it should not be understood that the description and drawings forming part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples, and operation techniques will be apparent to those skilled in the art.
 上述した実施形態では、動作履歴を格納する格納部が通信制御部161に設けられるケースを例示した。しかしながら、実施形態はこれに限定されるものではない。格納部は、通信制御部161以外に設けられてもよい。例えば、格納部は、工具制御部130に設けられてもよい。さらには、格納部は、管理サーバ300に設けられてもよい。 In the above-described embodiment, the case where the storage unit that stores the operation history is provided in the communication control unit 161 has been illustrated. However, embodiments are not limited to this. The storage unit may be provided other than the communication control unit 161. For example, the storage unit may be provided in the tool control unit 130. Further, the storage unit may be provided in the management server 300.
 上述した実施形態では、割当処理及び補正処理を実行する制御部(割当部又は補正部と称してもよい)が通信制御部161に設けられるケースを例示した。しかしながら、実施形態はこれに限定されるものではない。制御部は、通信制御部161以外に設けられてもよい。例えば、制御部は、工具制御部130に設けられてもよい。さらには、制御部は、管理サーバ300に設けられてもよい。制御部の機能は、工具100に設けられる1以上のプロセッサ及び管理サーバ300に設けられる1以上のプロセッサの協働によって実現されてもよい。 In the above-described embodiment, the case where the control unit (which may be referred to as an allocation unit or a correction unit) that executes the allocation process and the correction process is provided in the communication control unit 161 has been illustrated. However, embodiments are not limited to this. The control unit may be provided other than the communication control unit 161. For example, the control unit may be provided in the tool control unit 130. Furthermore, the control unit may be provided in the management server 300. The function of the control unit may be realized by cooperation of one or more processors provided in the tool 100 and one or more processors provided in the management server 300.
 上述した実施形態において、工具100から送信されるデータの宛先(以下、宛先装置)が通信ネットワーク200上に設けられた管理サーバ300であるケースについて例示した。しかしながら、実施形態はこれに限定されるものではない。宛先装置が無線通信機能を有する場合には、通信ネットワーク200を介さずに直接的に工具100から宛先装置にデータが送信されてもよい。 In the above-described embodiment, the case where the destination of the data transmitted from the tool 100 (hereinafter, the destination device) is the management server 300 provided on the communication network 200 has been illustrated. However, embodiments are not limited to this. When the destination device has a wireless communication function, data may be directly transmitted from the tool 100 to the destination device without passing through the communication network 200.
 工具100又は通信装置400が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。 プ ロ グ ラ ム A program that causes a computer to execute each process performed by the tool 100 or the communication device 400 may be provided. The program may be recorded on a computer-readable medium. With a computer readable medium, it is possible to install the program on a computer. Here, the computer-readable medium on which the program is recorded may be a non-transitory recording medium. The non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as a CD-ROM or a DVD-ROM.
 上述した実施形態において、駆動用バッテリ110と異なる通信用バッテリ170を備える工具100を例示したが、工具100は、駆動用バッテリ110の機能を有する通信用バッテリ170を備えてもよい。工具100は、通信用バッテリ170を備えず、駆動用バッテリ110から供給される電力を用いて通信部160を制御してもよい。 In the above-described embodiment, the tool 100 including the communication battery 170 different from the drive battery 110 is illustrated. However, the tool 100 may include the communication battery 170 having the function of the drive battery 110. The tool 100 may not include the communication battery 170, and may control the communication unit 160 using power supplied from the driving battery 110.
 なお、日本国特許出願第2018-149138号(2018年8月8日出願)の全内容が、参照により、本願明細書に組み込まれている。 Note that the entire contents of Japanese Patent Application No. 2018-149138 (filed on August 8, 2018) are incorporated herein by reference.

Claims (11)

  1.  工具であって、
     前記工具に関するデータを送信する通信部と、
     前記通信部を少なくとも制御する制御部と、
     前記工具の動作の履歴回数を単位時間毎に含む履歴を格納する格納部と、を備え、
     前記制御部は、前記動作履歴に基づいて、前記データの送信が対象期間において上限条件を満たさないように前記データの送信回数及び送信量の少なくともいずれか1つを単位時間毎に割り当てる割当処理を実行し、
     前記制御部は、前記割当処理の結果に基づいて前記データを送信するように前記通信部を制御する、工具。
    A tool,
    A communication unit for transmitting data on the tool,
    A control unit that controls at least the communication unit;
    A storage unit that stores a history including the number of histories of the operation of the tool per unit time,
    The control unit performs an allocation process of allocating at least one of the number of transmissions and the transmission amount of the data per unit time such that transmission of the data does not satisfy an upper limit condition in a target period based on the operation history. Run,
    The tool, wherein the control unit controls the communication unit to transmit the data based on a result of the allocation process.
  2.  前記格納部は、前記対象期間と比較可能な2以上の期間毎に前記動作履歴を格納し、
     前記制御部は、前記2以上の期間の中から前記対象期間と比較すべき参照期間を選択し、前記参照期間の前記動作履歴に基づいて前記割当処理を実行する、請求項1に記載の工具。
    The storage unit stores the operation history for each of two or more periods that can be compared with the target period,
    The tool according to claim 1, wherein the control unit selects a reference period to be compared with the target period from the two or more periods, and executes the allocation process based on the operation history of the reference period. .
  3.  前記制御部は、前記対象期間において前記工具を用いる作業内容、前記対象期間において前記工具を用いる作業時間、前記対象期間において前記工具を用いる作業現場、前記対象期間において前記工具を用いる作業業者、前記対象期間の曜日及び前記対象期間の属する季節の少なくともいずれか1つに基づいて前記参照期間を選択する、請求項2に記載の工具。 The control unit, the work content using the tool in the target period, the work time using the tool in the target period, a work site using the tool in the target period, a worker using the tool in the target period, The tool according to claim 2, wherein the reference period is selected based on at least one of a day of the target period and a season to which the target period belongs.
  4.  前記制御部は、前記対象期間の開始前に前記割当処理を実行する、請求項1乃至請求項3のいずれか1項に記載の工具。 4. The tool according to claim 1, wherein the control unit executes the assignment processing before the start of the target period. 5.
  5.  前記制御部は、前記対象期間における前記工具の動作の実際回数が前記履歴回数と異なる場合に、前記割当処理で割り当てられた前記データの送信回数及び送信量の少なくともいずれか1つを前記対象期間中に補正する補正処理を実行する、請求項4に記載の工具。 The control unit, when the actual number of operations of the tool in the target period is different from the history number, determines at least one of the number of transmissions and the transmission amount of the data allocated in the allocation process in the target period. The tool according to claim 4, wherein the tool performs a correction process during the correction.
  6.  前記制御部は、前記動作履歴の学習結果に基づいて前記割当処理を実行する、請求項1乃至請求項5のいずれか1項に記載の工具。 6. The tool according to claim 1, wherein the control unit executes the assignment processing based on a result of learning the operation history. 7.
  7.  前記動作履歴の学習の進捗状況を通知する通知インタフェースを備える、請求項6に記載の工具。 7. The tool according to claim 6, further comprising a notification interface for notifying a progress of learning of the operation history.
  8.  前記動作履歴の学習結果をリセットするリセットインタフェースを備える、請求項6及び請求項7のいずれか1項に記載の工具。 The tool according to any one of claims 6 and 7, further comprising a reset interface for resetting a learning result of the operation history.
  9.  工具と接続される通信装置であって、
     前記工具から取得される前記工具に関するデータを送信する通信部と、
     前記通信部を少なくとも制御する制御部と、
     前記工具の動作の履歴回数を単位時間毎に含む動作履歴を格納する格納部と、を備え、
     前記少なくとも一つの制御部は、前記動作履歴に基づいて、前記データの送信が対象期間において上限条件を満たさないように前記データの送信回数及び送信量の少なくともいずれか1つを単位時間毎に割り当てる割当処理を実行し、
     前記少なくとも一つの制御部は、前記割当処理の結果に基づいて前記データを送信するように前記通信部を制御する、通信装置。
    A communication device connected to the tool,
    A communication unit that transmits data related to the tool obtained from the tool,
    A control unit that controls at least the communication unit;
    A storage unit that stores an operation history including the number of operation histories of the tool per unit time,
    The at least one control unit allocates at least one of the number of transmissions and the transmission amount of the data for each unit time based on the operation history so that the transmission of the data does not satisfy an upper limit condition in a target period. Execute the assignment process,
    The communication device, wherein the at least one control unit controls the communication unit to transmit the data based on a result of the allocation process.
  10.  工具を少なくとも含む工具システムであって、
     前記工具は、
      前記工具に関するデータを送信する通信部と、
      前記通信部を少なくとも制御する制御部と、を備え、
     前記システムは、
      前記工具の動作の履歴回数を単位時間毎に含む動作履歴を格納する格納部と、
      前記動作履歴に基づいて、前記データの送信が対象期間において上限条件を満たさないように前記データの送信回数及び送信量の少なくともいずれか1つを単位時間毎に割り当てる割当処理を実行する割当部と、を備え、
     前記制御部は、前記割当処理の結果に基づいて前記データを送信するように前記通信部を制御する、工具システム。
    A tool system including at least a tool,
    The tool is
    A communication unit for transmitting data on the tool,
    A control unit that controls at least the communication unit,
    The system comprises:
    A storage unit that stores an operation history including the number of operation histories of the tool per unit time,
    An allocating unit that performs an allocating process of allocating at least one of the number of transmissions and the transmission amount of the data per unit time such that the transmission of the data does not satisfy an upper limit condition in a target period based on the operation history; ,
    The tool system, wherein the control unit controls the communication unit to transmit the data based on a result of the assignment processing.
  11.  工具に関するデータを前記工具から送信するステップAと、
     前記工具の動作の履歴回数を単位時間毎に含む動作履歴を格納するステップBと、
     前記動作履歴に基づいて、前記データの送信が対象期間において上限条件を満たさないように前記データの送信回数及び送信量の少なくともいずれか1つを単位時間毎に割り当てる割当処理を実行するステップCと、を備え、
     前記ステップAは、前記割当処理の結果に基づいて前記データを送信するステップを含む、通信方法。
    A step A of transmitting data on the tool from the tool;
    Step B of storing an operation history including the number of operation histories of the tool per unit time;
    A step C of executing an allocation process of allocating at least one of the number of transmissions and the transmission amount of the data per unit time such that the transmission of the data does not satisfy an upper limit condition in a target period based on the operation history; ,
    The communication method, wherein the step A includes transmitting the data based on a result of the assignment processing.
PCT/JP2018/035689 2018-08-08 2018-09-26 Tool, communication device, tool system and communication method WO2020031396A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018149138A JP2020023026A (en) 2018-08-08 2018-08-08 Tool, communication device, tool system and communication method
JP2018-149138 2018-08-08

Publications (1)

Publication Number Publication Date
WO2020031396A1 true WO2020031396A1 (en) 2020-02-13

Family

ID=69414651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035689 WO2020031396A1 (en) 2018-08-08 2018-09-26 Tool, communication device, tool system and communication method

Country Status (2)

Country Link
JP (1) JP2020023026A (en)
WO (1) WO2020031396A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4116037A4 (en) * 2021-05-14 2023-03-08 Sanyo Machine Works, Ltd. Fastening machine
WO2024079974A1 (en) * 2022-10-12 2024-04-18 株式会社マキタ Reinforcing bar binding machine
WO2024079973A1 (en) * 2022-10-12 2024-04-18 株式会社マキタ Reinforcing bar binding machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113351A (en) * 1995-08-15 1997-05-02 Omron Corp Vibration monitor and apparatus for determining vibration monitoring condition
JP2008205695A (en) * 2007-02-19 2008-09-04 Alaxala Networks Corp Relay device
JP2011155464A (en) * 2010-01-27 2011-08-11 Kyocera Corp Portable electronic apparatus
JP2017064858A (en) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 Work management system and management apparatus
JP2018049604A (en) * 2016-09-20 2018-03-29 富士電機株式会社 Sensor network terminal, sensor network system, collection device and communication method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113351A (en) * 1995-08-15 1997-05-02 Omron Corp Vibration monitor and apparatus for determining vibration monitoring condition
JP2008205695A (en) * 2007-02-19 2008-09-04 Alaxala Networks Corp Relay device
JP2011155464A (en) * 2010-01-27 2011-08-11 Kyocera Corp Portable electronic apparatus
JP2017064858A (en) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 Work management system and management apparatus
JP2018049604A (en) * 2016-09-20 2018-03-29 富士電機株式会社 Sensor network terminal, sensor network system, collection device and communication method

Also Published As

Publication number Publication date
JP2020023026A (en) 2020-02-13

Similar Documents

Publication Publication Date Title
WO2020031396A1 (en) Tool, communication device, tool system and communication method
US7595642B2 (en) Battery management system for determining battery charge sufficiency for a task
CN101959718B (en) Vehicle condition management system and vehicle
JP2011132020A (en) Management system for exchange electric storage devices and management method for exchange electric storage devices
CN111038335B (en) Battery charging management method, battery charging management device and computer equipment
US9438057B2 (en) Drive control device, drive control method and drive control program
US20090284071A1 (en) Feed intermediate apparatus, feeding system, and feed intermediate method
CN107639940B (en) The control method and chip of chip serial number in a kind of imaging system
CN108289295B (en) Bluetooth device, broadcast period adjusting method thereof and computer storage medium
JP2009017621A (en) Portable terminal device and charge guidance method
JP2019149855A (en) Information processor
US8769325B2 (en) Method and apparatus for controlling power mode shifting of an image processing apparatus by monitoring online status of a plurality of client devices extracted to be monitored based on its position information and its usage history
US20140339922A1 (en) Data Transmission Using an Electrical Machine
WO2020070823A1 (en) Tool management device, tool management system, tool management method, and tool
KR20210075048A (en) System and method for managing exchangeable battery of electric vehicle
WO2020075231A1 (en) Tool management device, tool management system, tool management method, and tool
WO2020031395A1 (en) Tool communication device
CN112181120B (en) Server device, machine, battery device, and method of managing use of battery device
JP2019080369A (en) Power supply system
JP6910902B2 (en) Mobile device and power supply system
JP2020015125A (en) Electric power tool and communication apparatus
JP2017010018A (en) Wireless display system
TW201618367A (en) Battery monitoring system
WO2020044463A1 (en) Tool, communication device, management server, tool system, and communication method
WO2020217364A1 (en) Information processing device, information processing method, and information processing program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929594

Country of ref document: EP

Kind code of ref document: A1