WO2020017439A1 - Electrolyte sheet production method and secondary battery production method - Google Patents

Electrolyte sheet production method and secondary battery production method Download PDF

Info

Publication number
WO2020017439A1
WO2020017439A1 PCT/JP2019/027608 JP2019027608W WO2020017439A1 WO 2020017439 A1 WO2020017439 A1 WO 2020017439A1 JP 2019027608 W JP2019027608 W JP 2019027608W WO 2020017439 A1 WO2020017439 A1 WO 2020017439A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
positive electrode
negative electrode
electrolyte sheet
group
Prior art date
Application number
PCT/JP2019/027608
Other languages
French (fr)
Japanese (ja)
Inventor
紘揮 三國
みゆき 室町
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2020531281A priority Critical patent/JPWO2020017439A1/en
Publication of WO2020017439A1 publication Critical patent/WO2020017439A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing an electrolyte sheet and a method for manufacturing a secondary battery.
  • lithium secondary batteries have a high energy density, and thus have attracted attention as power sources for batteries for electric vehicles, batteries for power storage, and the like.
  • lithium secondary batteries as batteries for electric vehicles include zero-emission electric vehicles without engines, hybrid electric vehicles with both engines and secondary batteries, and plug-in hybrids that charge directly from the power system. Used in electric vehicles such as electric vehicles.
  • a lithium secondary battery as a power storage battery is used in a stationary power storage system or the like that supplies power stored in advance in an emergency when a power system is cut off.
  • lithium secondary battery with a higher energy density for use in such a wide range of applications, and its development is underway.
  • lithium secondary batteries for electric vehicles are required to have high safety in addition to high input / output characteristics and high energy density. Therefore, more advanced technology for ensuring safety is required.
  • a method of improving the safety of a lithium secondary battery a method of gelling a component used in an electrolytic solution to form a gel electrolyte is known (for example, see Patent Documents 1 and 2).
  • an electrolyte slurry composition containing an electrolyte component and a dispersion medium was applied on the base material, and the coating was performed.
  • an electrolyte layer is formed on a substrate by removing a dispersion medium from an electrolyte slurry composition.
  • it is important that the electrolyte layer does not change significantly in the coating and drying step.
  • it is required that the coating width when the electrolyte slurry composition is applied does not fluctuate significantly even after the dispersion medium is removed.
  • the first aspect of the present invention provides one or more polymers, oxide particles, and at least one electrolyte salt selected from the group consisting of lithium salts, sodium salts, calcium salts, and magnesium salts,
  • R A O- (CH 2 CH 2 O) y -R B (10) [In the formula (10), R A and R B each independently represent an alkyl group having 1 to 4 carbon atoms, and y represents an integer of 1 to 6. ]
  • the base material tends to have excellent adhesion to other members (for example, an adhesive tape or the like). Therefore, it is presumed that the use of such a base material provides excellent adhesion between the base material and the electrolyte layer provided on the base material.
  • the contact angle is preferably 40 ° or less.
  • the oxide particles are preferably at least one selected from the group consisting of SiO 2 , Al 2 O 3 , AlOOH, MgO, CaO, ZrO 2 , TiO 2 , Li 7 La 3 Zr 2 O 12 , and BaTiO 3 . Particles.
  • the ionic liquid preferably contains, as the cation component, at least one selected from the group consisting of a chain quaternary onium cation, a piperidinium cation, a pyrrolidinium cation, a pyridinium cation, and an imidazolium cation.
  • the ionic liquid preferably contains at least one anion component represented by the following general formula (A) as the anion component.
  • A (SO 2 C m F 2m + 1) (SO 2 C n F 2n + 1) - (A)
  • m and n each independently represent an integer of 0 to 5.
  • the polymer preferably has a first structural unit selected from the group consisting of ethylene tetrafluoride and vinylidene fluoride.
  • the polymer has a first structural unit and a second structural unit selected from the group consisting of hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate, among the structural units constituting the polymer. Is included.
  • the electrolyte salt is preferably an imide-based lithium salt.
  • the compound represented by the general formula (10) preferably contains tetraethylene glycol dimethyl ether.
  • the second aspect of the present invention includes a step of forming a positive electrode mixture layer on a positive electrode current collector to obtain a positive electrode, a step of forming a negative electrode mixture layer on a negative electrode current collector to obtain a negative electrode, Disposing the electrolyte layer of the electrolyte sheet obtained by the method of (1) between the positive electrode and the negative electrode.
  • a method for producing an electrolyte sheet in which a coating width when applying an electrolyte slurry composition is not easily changed even after removing a dispersion medium. It is presumed that the electrolyte sheet manufactured by such a manufacturing method is excellent also in the point of adhesion between the electrolyte layer and the substrate. Further, according to the present invention, there is provided a method for manufacturing a secondary battery using the electrolyte sheet obtained by such a manufacturing method.
  • FIG. 1 is a perspective view illustrating a secondary battery according to a first embodiment.
  • FIG. 2 is an exploded perspective view illustrating an embodiment of an electrode group in the secondary battery illustrated in FIG. 1.
  • FIG. 2 is a schematic cross-sectional view illustrating one embodiment of an electrode group in the secondary battery illustrated in FIG. 1.
  • A) is a schematic sectional view showing an electrolyte sheet according to one embodiment
  • (b) is a schematic sectional view showing an electrolyte sheet according to another embodiment.
  • It is a schematic cross section showing one embodiment of an electrode group in a secondary battery concerning a 2nd embodiment.
  • ⁇ ⁇ The numerical values and ranges in this specification do not limit the present invention.
  • a numerical range indicated by using “to” indicates a range including numerical values described before and after “to” as a minimum value and a maximum value, respectively.
  • the upper limit or the lower limit described in one numerical range may be replaced with the upper limit or the lower limit described in another step.
  • the upper limit or the lower limit of the numerical range may be replaced with the value shown in the embodiment.
  • FIG. 1 is a perspective view showing the secondary battery according to the first embodiment.
  • the secondary battery 1 includes an electrode group 2 including a positive electrode, a negative electrode, and an electrolyte layer, and a bag-shaped battery case 3 containing the electrode group 2.
  • the positive electrode and the negative electrode are provided with a positive electrode current collecting tab 4 and a negative electrode current collecting tab 5, respectively.
  • the positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 protrude from inside the battery exterior body 3 to the outside so that the positive electrode and the negative electrode can be electrically connected to the outside of the secondary battery 1 respectively.
  • the battery casing 3 may be formed of, for example, a laminate film.
  • the laminated film may be, for example, a laminated film in which a resin film such as a polyethylene terephthalate (PET) film, a metal foil such as aluminum, copper, and stainless steel, and a sealant layer such as polypropylene are laminated in this order.
  • PET polyethylene terephthalate
  • metal foil such as aluminum, copper, and stainless steel
  • a sealant layer such as polypropylene
  • FIG. 2 is an exploded perspective view showing one embodiment of the electrode group 2 in the secondary battery 1 shown in FIG.
  • FIG. 3 is a schematic sectional view showing one embodiment of the electrode group 2 in the secondary battery 1 shown in FIG.
  • the electrode group 2A according to the present embodiment includes a positive electrode 6, an electrolyte layer 7, and a negative electrode 8 in this order.
  • the positive electrode 6 includes a positive electrode current collector 9 and a positive electrode mixture layer 10 provided on the positive electrode current collector 9.
  • the positive electrode current collector 9 is provided with a positive electrode current collector tab 4.
  • the negative electrode 8 includes a negative electrode current collector 11 and a negative electrode mixture layer 12 provided on the negative electrode current collector 11.
  • the negative electrode current collector 11 is provided with a negative electrode current collection tab 5.
  • the positive electrode current collector 9 may be formed of aluminum, stainless steel, titanium, or the like. Specifically, the positive electrode current collector 9 may be, for example, an aluminum perforated foil having a hole diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate, or the like. In addition to the above, the positive electrode current collector 9 may be formed of any material as long as it does not cause a change such as dissolution and oxidation during use of the battery, and may be formed of any material. Not restricted.
  • the thickness of the positive electrode current collector 9 may be 10 ⁇ m or more and 100 ⁇ m or less, and is preferably 10 ⁇ m or more and 50 ⁇ m or less from the viewpoint of reducing the volume of the entire positive electrode. From the viewpoint of rotation, it is more preferably 10 ⁇ m or more and 20 ⁇ m or less.
  • the positive electrode mixture layer 10 contains a positive electrode active material, a conductive agent, and a binder.
  • the positive electrode active material may be a lithium transition metal compound such as a lithium transition metal oxide and a lithium transition metal phosphate.
  • the lithium transition metal oxide may be, for example, lithium manganate, lithium nickelate, lithium cobaltate, or the like.
  • Lithium transition metal oxide a part of transition metal such as Mn, Ni, Co contained in lithium manganate, lithium nickelate, lithium cobaltate or the like, one or more other transition metals, or A lithium transition metal oxide substituted with a metal element (typical element) such as Mg or Al may be used. That is, the lithium transition metal oxide may be a compound represented by LiM 1 O 2 or LiM 1 2 O 4 (M 1 comprises at least one transition metal).
  • Lithium transition metal oxides specifically, Li (Co 1/3 Ni 1/3 Mn 1/3) O 2, LiNi 1/2 Mn 1/2 O 2, LiNi 1/2 Mn 3/2 O 4 or the like.
  • the lithium transition metal oxide is preferably a compound represented by the following formula (1) from the viewpoint of further improving the energy density.
  • the positive electrode active material may be non-granulated primary particles or granulated secondary particles.
  • the particle size of the positive electrode active material is adjusted to be equal to or less than the thickness of the positive electrode mixture layer 10.
  • the positive electrode active material contains coarse particles having a particle size greater than the thickness of the positive electrode mixture layer 10
  • the coarse particles are removed in advance by sieving, airflow classification, or the like, and the particles having a thickness equal to or less than the thickness of the positive electrode mixture layer 10 are removed.
  • a positive electrode active material having a diameter is selected.
  • the average particle diameter of the positive electrode active material is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more. Further, it is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less.
  • the average particle diameter of the positive electrode active material is the particle diameter (D50) when the ratio (volume fraction) to the volume of the entire positive electrode active material is 50%.
  • the average particle diameter (D50) of the positive electrode active material is obtained by measuring a suspension of the positive electrode active material in water by a laser scattering method using a laser scattering type particle size measuring device (for example, Microtrack). Is obtained.
  • the content of the positive electrode active material may be 70% by mass or more, 80% by mass or more, or 85% by mass or more based on the total amount of the positive electrode mixture layer.
  • the content of the positive electrode active material may be 95% by mass or less, 92% by mass or less, or 90% by mass or less based on the total amount of the positive electrode mixture layer.
  • the conductive agent is not particularly limited, and may be a carbon material such as graphite, acetylene black, carbon black, carbon fiber, carbon nanotube, or the like.
  • the conductive agent may be a mixture of two or more of the above-described carbon materials.
  • the content of the conductive agent may be 0.1% by mass or more, 1% by mass or more, or 3% by mass or more based on the total amount of the positive electrode mixture layer.
  • the content of the conductive agent is preferably 15% by mass or less, more preferably not more than 15% by mass, based on the total amount of the positive electrode mixture layer, from the viewpoint of suppressing an increase in the volume of the positive electrode 6 and a decrease in the energy density of the secondary battery 1 accompanying the increase. It is at most 10% by mass, more preferably at most 8% by mass.
  • the binder is not limited as long as it does not decompose on the surface of the positive electrode 6, but is selected from the group consisting of ethylene tetrafluoride, vinylidene fluoride, hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate. Or a rubber such as styrene-butadiene rubber, isoprene rubber, acrylic rubber or the like containing at least one of the above as monomer units.
  • the binder is preferably a copolymer containing ethylene tetrafluoride and vinylidene fluoride as structural units.
  • the content of the binder may be 0.5% by mass or more, 1% by mass or more, or 3% by mass or more based on the total amount of the positive electrode mixture layer.
  • the content of the binder may be 20% by mass or less, 15% by mass or less, or 10% by mass or less based on the total amount of the positive electrode mixture layer.
  • the positive electrode mixture layer 10 may further contain an ionic liquid.
  • an ionic liquid used in an electrolyte slurry composition described later can be used.
  • the content of the ionic liquid contained in the positive electrode mixture layer 10 is preferably 3% by mass or more, more preferably 5% by mass or more, and still more preferably 10% by mass or more, based on the total amount of the positive electrode mixture layer.
  • the content of the ionic liquid contained in the positive electrode mixture layer 10 is preferably 30% by mass or less, more preferably 25% by mass or less, and still more preferably 20% by mass or less, based on the total amount of the positive electrode mixture layer.
  • the ionic liquid contained in the positive electrode mixture layer 10 may have an electrolyte salt dissolved therein.
  • an electrolyte salt used in an electrolyte slurry composition described later can be used.
  • the thickness of the positive electrode mixture layer 10 is a thickness equal to or more than the average particle diameter of the positive electrode active material, specifically, 10 ⁇ m or more, 15 ⁇ m or more, or 20 ⁇ m or more. Good.
  • the thickness of the positive electrode mixture layer 10 may be 100 ⁇ m or less, 80 ⁇ m or less, or 70 ⁇ m or less.
  • the negative electrode current collector 11 may be a metal such as aluminum, copper, nickel, and stainless steel, or an alloy thereof.
  • the negative electrode current collector 11 is preferably aluminum and its alloy because it is lightweight and has a high weight energy density.
  • the negative electrode current collector 11 is preferably made of copper from the viewpoint of ease of processing into a thin film and cost.
  • the thickness of the negative electrode current collector 11 may be 10 ⁇ m or more and 100 ⁇ m or less, and is preferably 10 ⁇ m or more and 50 ⁇ m or less from the viewpoint of reducing the volume of the entire negative electrode, and the negative electrode is wound with a small curvature when forming a battery. From the viewpoint of rotation, it is more preferably 10 ⁇ m or more and 20 ⁇ m or less.
  • the negative electrode mixture layer 12 contains a negative electrode active material and a binder.
  • the negative electrode active material those commonly used in the field of energy devices can be used.
  • the negative electrode active material include lithium metal, lithium titanate (Li 4 Ti 5 O 12 ), a lithium alloy or other metal compounds, a carbon material, a metal complex, and an organic polymer compound.
  • the negative electrode active material may be one of these alone or a mixture of two or more thereof.
  • the carbon material include natural graphite (flaky graphite, etc.), graphite such as artificial graphite (graphite), amorphous carbon, carbon fiber, acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black. And the like. From the viewpoint of obtaining a larger theoretical capacity (for example, 500 to 1500 Ah / kg), the negative electrode active material may be silicon, tin, or a compound containing these elements (oxide, nitride, alloy with another metal). Good.
  • the average particle size (D 50 ) of the negative electrode active material is preferably 1 ⁇ m or more from the viewpoint of obtaining a well-balanced negative electrode having an increased irreversible capacity with a decrease in particle size and an increased ability to retain an electrolyte salt. And more preferably 5 ⁇ m or more, further preferably 10 ⁇ m or more, and preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and still more preferably 30 ⁇ m or less.
  • the average particle size of the negative electrode active material (D 50) is measured in the same manner as the average particle diameter of the above-mentioned positive electrode active material (D 50).
  • the content of the negative electrode active material may be 60% by mass or more, 65% by mass or more, or 70% by mass or more based on the total amount of the negative electrode mixture layer.
  • the content of the negative electrode active material may be 99% by mass or less, 95% by mass or less, or 90% by mass or less based on the total amount of the negative electrode mixture layer.
  • the binder and the content thereof may be the same as the binder and the content thereof in the positive electrode mixture layer 10 described above.
  • the negative electrode mixture layer 12 may further contain a conductive agent from the viewpoint of further lowering the resistance of the negative electrode 8.
  • the conductive agent and the content thereof may be the same as the conductive agent and the content thereof in the positive electrode mixture layer 10 described above.
  • the negative electrode mixture layer 12 may further contain an ionic liquid.
  • an ionic liquid used in an electrolyte slurry composition described later can be used.
  • the content of the ionic liquid contained in the negative electrode mixture layer 12 is preferably 3% by mass or more, more preferably 5% by mass or more, and still more preferably 10% by mass or more, based on the total amount of the negative electrode mixture layer.
  • the content of the ionic liquid contained in the negative electrode mixture layer 12 is preferably 30% by mass or less, more preferably 25% by mass or less, and still more preferably 20% by mass or less, based on the total amount of the negative electrode mixture layer.
  • the ionic liquid contained in the negative electrode mixture layer 12 may contain an electrolyte salt similar to the electrolyte salt that can be used for the positive electrode mixture layer 10 described above.
  • the thickness of the negative electrode mixture layer 12 may be 10 ⁇ m or more, 15 ⁇ m or more, or 20 ⁇ m or more.
  • the thickness of the negative electrode mixture layer 12 may be 100 ⁇ m or less, 80 ⁇ m or less, or 70 ⁇ m or less.
  • the electrolyte layer 7 is formed by preparing an electrolyte sheet on a base material using an electrolyte slurry composition.
  • the electrolyte slurry composition comprises one or more polymers, oxide particles, at least one electrolyte salt selected from the group consisting of lithium salts, sodium salts, calcium salts, and magnesium salts; It contains at least one of the compound (glyme) represented by (10) and an ionic liquid, and a dispersion medium.
  • the contact angle of the substrate with the dispersion medium is 60 ° or less.
  • the electrolyte slurry composition contains one or more polymers.
  • the polymer preferably has a first structural unit selected from the group consisting of ethylene tetrafluoride and vinylidene fluoride.
  • the structural unit constituting the polymer includes the first structural unit and a second structural unit selected from the group consisting of hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate. May be. That is, the first structural unit and the second structural unit may be included in one kind of polymer to constitute a copolymer, and the first structural unit and the second structural unit may be included in different polymers and have the first structural unit having the first structural unit. And a second polymer having a second structural unit may be at least two types of polymers.
  • the polymer may be polytetrafluoroethylene, polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, or the like.
  • the content of the polymer is preferably 3% by mass or more based on the total amount of the components excluding the dispersion medium of the electrolyte slurry composition.
  • the content of the polymer is preferably 50% by mass or less, more preferably 40% by mass or less, based on the total amount of the components excluding the dispersion medium of the electrolyte slurry composition.
  • the content of the polymer is preferably 3 to 50% by mass, more preferably 3 to 40% by mass, based on the total amount of the components excluding the dispersion medium of the electrolyte slurry composition.
  • the polymer according to the present embodiment has excellent affinity for the ionic liquid contained in the electrolyte slurry composition, it retains glyme or the electrolyte in the ionic liquid when the electrolyte layer 7 is formed. Thus, leakage of glyme or ionic liquid when a load is applied to the electrolyte layer 7 is suppressed.
  • the electrolyte slurry composition contains oxide particles.
  • the oxide particles are, for example, particles of an inorganic oxide.
  • the inorganic oxide is, for example, an inorganic oxide containing Li, Mg, Al, Si, Ca, Ti, Zr, La, Na, K, Ba, Sr, V, Nb, B, Ge, or the like as a constituent element. Good.
  • the oxide particles are preferably at least one selected from the group consisting of SiO 2 , Al 2 O 3 , AlOOH, MgO, CaO, ZrO 2 , TiO 2 , Li 7 La 3 Zr 2 O 12 , and BaTiO 3 . Particles. Since the oxide particles have polarity, the dissociation of the electrolyte in the electrolyte layer 7 can be promoted, and the battery characteristics can be improved.
  • oxide particles generally include a primary particle (a particle that does not constitute a secondary particle) that integrally forms a single particle, and a plurality of primary particles. And secondary particles formed by assembling.
  • the specific surface area of the oxide particles 2 ⁇ 380m 2 / g, 5 ⁇ 100m 2 / g, 10 ⁇ 80m 2 / g, or from 15 ⁇ 60m 2 / g.
  • the specific surface area of the oxide particles may be 5 m 2 / g or more, 10 m 2 / g or more, or 15 m 2 / g or more, and 100 m 2 / g or less, 80 m 2 / g or less, or It may be 60 m 2 / g or less.
  • the specific surface area of the oxide particles means the specific surface area of the entire oxide particles including the primary particles and the secondary particles, and is measured by a BET method.
  • the average primary particle size of the oxide particles is preferably 0.005 ⁇ m (5 nm) or more, more preferably 0.01 ⁇ m (10 nm) or more, and still more preferably from the viewpoint of further improving the conductivity. Is 0.015 ⁇ m (15 nm) or more.
  • the average primary particle size of the oxide particles is preferably 1 ⁇ m or less, more preferably 0.1 ⁇ m or less, and still more preferably 0.05 ⁇ m or less, from the viewpoint of making the electrolyte layer 7 thin.
  • the average primary particle size of the oxide particles is preferably from 0.005 to 1 ⁇ m, from 0.01 to 0.01 from the viewpoint of reducing the thickness of the electrolyte layer 7 and suppressing the protrusion of the oxide particles from the surface of the electrolyte layer 7. It is 0.1 ⁇ m, or 0.015 to 0.05 ⁇ m.
  • the average primary particle size of the oxide particles can be measured by observing the oxide particles with a transmission electron microscope or the like.
  • the average particle size of the oxide particles is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, and further preferably 0.03 ⁇ m or more.
  • the average particle size of the oxide particles is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and still more preferably 1 ⁇ m or less.
  • the average particle size of the oxide particles is measured by a laser diffraction method, and corresponds to the particle size at which the volume accumulation becomes 50% when the volume accumulation particle size distribution curve is drawn from the small particle size side.
  • the shape of the oxide particles may be, for example, lump or substantially spherical.
  • the aspect ratio of the oxide particles is preferably 10 or less, more preferably 5 or less, and still more preferably 2 or less, from the viewpoint of facilitating the thinning of the electrolyte layer 7.
  • the aspect ratio was calculated from the scanning electron micrograph of the oxide particles, the length of the particles in the major axis direction (maximum length of the particles) and the length of the particles in the minor axis direction (minimum length of the particles). Is defined as the ratio of The length of the particles can be obtained by statistically calculating the photograph using a commercially available image processing software (for example, image analysis software A-kun (registered trademark) manufactured by Asahi Kasei Engineering Corporation).
  • the oxide particles may be surface-treated with a surface treatment agent.
  • the surface treatment agent include a silicon-containing compound.
  • Silicon-containing compounds include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethoxydiphenylsilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyl Alkoxysilanes such as diethoxysilane and n-propyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, Epoxy group-containing silanes such as 3-glycidoxypropylmethyldieth
  • oxide particles surface-treated with the surface treatment agent those produced by a known method may be used, or a commercially available product may be used as it is.
  • the content of the oxide particles is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass or more, and particularly preferably, based on the total amount of the components excluding the dispersion medium of the electrolyte slurry composition. It is 20% by mass or more, preferably 60% by mass or less, more preferably 50% by mass or less, and still more preferably 40% by mass or less.
  • the electrolyte slurry composition contains an electrolyte salt.
  • the electrolyte salt is at least one selected from the group consisting of a lithium salt, a sodium salt, a calcium salt, and a magnesium salt.
  • the electrolyte salt is a compound used to transfer cations between the positive electrode 6 and the negative electrode 8.
  • the above-mentioned electrolyte salt is preferable in that it has a low degree of dissociation at a low temperature, easily diffuses in glyme or ionic liquid, and does not thermally decompose at a high temperature.
  • the electrolyte salt may be an electrolyte salt used in a fluorine ion battery.
  • the anion components of the electrolyte salt include halide ions (I ⁇ , Cl ⁇ , Br ⁇ , etc.), SCN ⁇ , BF 4 ⁇ , BF 3 (CF 3 ) ⁇ , BF 3 (C 2 F 5 ) ⁇ , PF 6 ⁇ , ClO 4 ⁇ , SbF 6 ⁇ , N (SO 2 F) 2 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , N (SO 2 C 2 F 5 ) 2 ⁇ , B (C 6 H 5 ) 4 ⁇ , B (O 2 C 2 H 4 ) 2 ⁇ , C (SO 2 F) 3 ⁇ , C (SO 2 CF 3 ) 3 ⁇ , CF 3 COO ⁇ , CF 3 SO 2 O ⁇ , C 6 F 5 SO 2 O — , B (O 2 C 2 O 2 ) 2 — and the like.
  • halide ions I ⁇ , Cl ⁇ , Br
  • the anion component of the electrolyte salt is preferably an anion represented by the formula (A) exemplified by an anion component of an ionic liquid described below, such as N (SO 2 F) 2 ⁇ and N (SO 2 CF 3 ) 2 ⁇ .
  • [FSI] ⁇ N (SO 2 F) 2 ⁇ , bis (fluorosulfonyl) imide anion [TFSI] ⁇ : N (SO 2 CF 3 ) 2 ⁇ , bis (trifluoromethanesulfonyl) imide anion [BOB] ⁇ : B (O 2 C 2 O 2 ) 2 ⁇ , bisoxalate borate anion [f3C] ⁇ : C (SO 2 F) 3 ⁇ , tris (fluorosulfonyl) carbanion
  • Lithium salts include LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f3C], Li [BOB], LiClO 4 , LiBF 3 (CF 3 ), LiBF 3 (C 2 F 5 ), LiBF 3 (C 3 F 7 ), LiBF 3 (C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , CF 3 SO 2 OLi, CF 3 COOLi, and R′COOLi (R ′ have 1 to 4 carbon atoms) Or an alkyl group, a phenyl group, or a naphthyl group.).
  • Calcium salts include Ca (PF 6 ) 2 , Ca (BF 4 ) 2 , Ca [FSI] 2 , Ca [TFSI] 2 , Ca [f3C] 2 , Ca [BOB] 2 , Ca (ClO 4 ) 2 , Ca [BF 3 (CF 3 )] 2 , Ca [BF 3 (C 2 F 5 )] 2 , Ca [BF 3 (C 3 F 7 )] 2 , Ca [BF 3 (C 4 F 9 )] 2 , Ca [C (SO 2 CF 3 ) 3 ] 2 , (CF 3 SO 2 O) 2 Ca, (CF 3 COO) 2 Ca, and (R′COO) 2 Ca (R ′ is an alkyl having 1 to 4 carbon atoms) Or a phenyl group or a naphthyl group).
  • Magnesium salts include Mg (PF 6 ) 2 , Mg (BF 4 ) 2 , Mg [FSI] 2 , Mg [TFSI] 2 , Mg [f3C] 2 , Mg [BOB] 2 , Na (ClO 4 ) 2 , Mg [BF 3 (CF 3 )] 2 , Mg [BF 3 (C 2 F 5 )] 2 , Mg [BF 3 (C 3 F 7 )] 2 , Mg [BF 3 (C 4 F 9 )] 2 , Mg [C (SO 2 CF 3 ) 3 ] 2 , (CF 3 SO 3 ) 2 Mg, (CF 3 COO) 2 Mg, and (R′COO) 2 Mg (R ′ is an alkyl group having 1 to 4 carbon atoms) , A phenyl group, or a naphthyl group.).
  • the electrolyte salt is preferably one kind selected from the group consisting of an imide-based lithium salt, an imide-based sodium salt, an imide-based calcium salt, and an imide-based magnesium salt, and more preferably an imide-based lithium salt.
  • the imide-based lithium salt may be Li [TFSI], Li [FSI], or the like.
  • the imide-based sodium salt may be Na [TFSI], Na [FSI] or the like.
  • the imide-based calcium salt may be Ca [TFSI] 2 , Ca [FSI] 2 or the like.
  • the imide-based magnesium salt may be Mg [TFSI] 2 , Mg [FSI] 2 or the like.
  • the electrolyte slurry composition contains at least one of the compound (glyme) represented by the general formula (10) and an ionic liquid.
  • Grimes and ionic liquids are not included in the dispersion medium. It is preferable that the electrolyte slurry composition contains an ionic liquid from the viewpoint of discharge characteristics.
  • R A and R B each independently represent an alkyl group having 1 to 4 carbon atoms, and y represents an integer of 1 to 6.
  • the alkyl group as R A and R B may be a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, or the like.
  • the alkyl group is preferably a methyl group or an ethyl group.
  • glymes examples include triethylene glycol dimethyl ether (sometimes referred to as “triglyme” or “G3”), tetraethylene glycol dimethyl ether (sometimes referred to as “tetraglyme” or “G4”), and pentaethylene glycol dimethyl ether (“pentane”). Glyme “or” G5 “), hexaethylene glycol dimethyl ether (sometimes referred to as” hexaglyme “or” G6 “), and the like. These may be used alone or in combination of two or more. Among these, glyme is preferably triglyme or tetraglyme, more preferably tetraglyme.
  • the electrolyte slurry composition contains glyme
  • part or all of the glyme may form a complex with the electrolyte salt.
  • the complex formed between glyme and the electrolyte salt can have properties similar to the ionic liquid.
  • the ionic liquid contains the following anion component and cation component.
  • the ionic liquid in the present embodiment is a substance that is liquid at ⁇ 20 ° C. or higher. It is known that ionic liquids have almost no vapor pressure unlike molecular liquids such as water and a dispersion medium due to strong electrostatic interaction acting between constituent cations and anions.
  • the anionic component of the ionic liquid is not particularly limited, but anions of halogens such as Cl ⁇ , Br ⁇ , and I ⁇ , inorganic anions such as BF 4 ⁇ and N (SO 2 F) 2 — , and B (C 6 H 5 ) 4 -, CH 3 SO 2 O -, CF 3 SO 2 O -, N (SO 2 C 4 F 9) 2 -, N (SO 2 CF 3) 2 -, N (SO 2 C 2 F 5) 2 - And the like.
  • halogens such as Cl ⁇ , Br ⁇ , and I ⁇
  • inorganic anions such as BF 4 ⁇ and N (SO 2 F) 2 — , and B (C 6 H 5 ) 4 -, CH 3 SO 2 O -, CF 3 SO 2 O -, N (SO 2 C 4 F 9) 2 -, N (SO 2 CF 3) 2 -, N (SO 2 C 2 F 5) 2 - And the like
  • the anionic component of the ionic liquid preferably contains at least one anionic component represented by the following general formula (A). N (SO 2 C m F 2m + 1) (SO 2 C n F 2n + 1) - (A)
  • m and n each independently represent an integer of 0 to 5.
  • m and n may be the same or different from each other, and are preferably the same as each other.
  • the anion component represented by the formula (A) includes, for example, N (SO 2 C 4 F 9 ) 2 ⁇ , N (SO 2 F) 2 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , and N (SO 2 C 2 F 5 ) 2 — .
  • the anionic component of the ionic liquid is more preferably N (SO 2 C 4 F 9 ) 2 ⁇ , CF 3 SO from the viewpoint of further improving the ionic conductivity at a relatively low viscosity and further improving the charge / discharge characteristics. At least one selected from the group consisting of 2 O ⁇ , N (SO 2 F) 2 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , and N (SO 2 C 2 F 5 ) 2 ⁇ , and more preferably N (SO 2 F) 2 - containing.
  • the cation component of the ionic liquid is not particularly limited, but is preferably at least one selected from the group consisting of a chain quaternary onium cation, a piperidinium cation, a pyrrolidinium cation, a pyridinium cation, and an imidazolium cation.
  • the chain quaternary onium cation is, for example, a compound represented by the following general formula (2).
  • R 1 to R 4 each independently represent a chain alkyl group having 1 to 20 carbon atoms or a chain alkoxyalkyl group represented by RO— (CH 2 ) n — (R represents a methyl group or an ethyl group, n represents an integer of 1 to 4), and X represents a nitrogen atom or a phosphorus atom.
  • the carbon number of the alkyl group represented by R 1 to R 4 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • the piperidinium cation is, for example, a nitrogen-containing six-membered cyclic compound represented by the following general formula (3).
  • R 5 and R 6 are each independently an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group represented by RO— (CH 2 ) n — (R is methyl And n represents an integer of 1 to 4).
  • the alkyl group represented by R 5 and R 6 preferably has 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5 carbon atoms.
  • the pyrrolidinium cation is, for example, a five-membered cyclic compound represented by the following general formula (4).
  • R 7 and R 8 are each independently an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group represented by RO— (CH 2 ) n — (R is methyl And n represents an integer of 1 to 4).
  • the alkyl group represented by R 7 and R 8 preferably has 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5 carbon atoms.
  • the pyridinium cation is, for example, a compound represented by the general formula (5).
  • R 9 to R 13 are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxyalkyl group represented by RO— (CH 2 ) n — (R is a methyl group Or an ethyl group, and n represents an integer of 1 to 4), or a hydrogen atom.
  • the carbon number of the alkyl group represented by R 9 to R 13 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • the imidazolium cation is, for example, a compound represented by the general formula (6).
  • R 14 to R 18 each independently represent an alkyl group having 1 to 20 carbon atoms, an alkoxyalkyl group represented by RO— (CH 2 ) n — (R is a methyl group Or an ethyl group, and n represents an integer of 1 to 4), or a hydrogen atom.
  • the carbon number of the alkyl group represented by R 14 to R 18 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • the total content of glyme and ionic liquid may be 10% by mass or more and 80% by mass or more based on the total amount of components excluding the dispersion medium of the electrolyte slurry composition. It may be: From the viewpoint of enabling the lithium secondary battery to be charged and discharged at a high load rate, the total content of the glyme and the ionic liquid is preferably 20% based on the total amount of the components excluding the dispersion medium of the electrolyte slurry composition. % By mass or more, more preferably 30% by mass or more.
  • the concentration of the electrolyte salt per unit volume of the total of glyme and ionic liquid in the electrolyte layer 7 is preferably 0.5 mol / L or more, more preferably 0.7 mol / L or more, from the viewpoint of further improving the charge / discharge characteristics. It is more preferably at least 1.0 mol / L, preferably at most 3.0 mol / L, more preferably at most 2.5 mol / L, even more preferably at most 2.3 mol / L.
  • the electrolyte slurry composition contains a dispersion medium.
  • the above-mentioned glymes and ionic liquids are not included in the dispersion medium.
  • the dispersion medium is not particularly restricted but includes, for example, N-methyl-2-pyrrolidone, dimethylacetamide, acetone, ethyl methyl ketone, cyclohexanone, ⁇ -butyrolactone, 2-butanol, dimethylsulfoxide and the like. These may be used alone or in combination of two or more.
  • the electrolyte slurry composition may contain other components.
  • Other components include, for example, cellulose fiber, resin fiber, glass fiber and the like.
  • the content of the other components may be 0.1 to 20% by mass based on the total amount of the components excluding the dispersion medium of the electrolyte slurry composition.
  • the concentration of the components contained in the electrolyte slurry composition may be 5 to 70% by mass based on the total mass of the electrolyte slurry composition.
  • the electrolyte slurry composition includes at least one electrolyte salt selected from the group consisting of one or more polymers, oxide particles, lithium salts, sodium salts, calcium salts, and magnesium salts, represented by the general formula (10). It can be prepared by mixing and kneading at least one of the compound and the ionic liquid, a dispersion medium, and other components. Mixing and kneading can be performed by appropriately combining ordinary dispersers such as a stirrer, a mill, a three-roll mill, a ball mill, and a bead mill.
  • ordinary dispersers such as a stirrer, a mill, a three-roll mill, a ball mill, and a bead mill.
  • the electrolyte sheet used as the electrolyte layer 7 is a step of arranging the above-described electrolyte slurry composition on a substrate, and forming an electrolyte layer on the substrate by removing a dispersion medium from the arranged electrolyte slurry composition.
  • a manufacturing method comprising the steps of: FIG. 4A is a schematic cross-sectional view illustrating an electrolyte sheet according to one embodiment. As shown in FIG. 4A, the electrolyte sheet 13A has a base material 14 and an electrolyte layer 7 provided on the base material 14.
  • the electrolyte layer 7 can be composed of components obtained by removing the dispersion medium from the electrolyte slurry composition.
  • the method for disposing the electrolyte slurry composition on the substrate is not particularly limited, and examples thereof include application by a doctor blade method, a dipping method, a spray method and the like.
  • the method of removing the dispersion medium from the electrolyte slurry composition is not particularly limited, and examples thereof include a method of heating the electrolyte slurry composition to volatilize the dispersion medium.
  • the heating temperature can be set appropriately according to the dispersion medium used.
  • the base material 14 has a contact angle to the dispersion medium used in the electrolyte slurry composition of 60 ° or less, has heat resistance enough to withstand heating when the dispersion medium is volatilized, and does not swell with the electrolyte slurry composition. Is not limited.
  • the substrate 14 may be a film made of a resin, and more specifically, a resin such as polyethylene terephthalate (PET), polytetrafluoroethylene, polyimide, polyethersulfone, or polyetherketone (a general-purpose engineering plastic). ) May be used.
  • PET polyethylene terephthalate
  • polytetrafluoroethylene polyimide
  • polyethersulfone polyetherketone
  • the contact angle of the base material 14 with respect to the dispersion medium used in the electrolyte slurry composition is less likely to be small even after the dispersion medium is removed in the coating and drying step when the application of the electrolyte slurry composition is performed. , Since the fluctuation of the coating width is unlikely to occur, it is 60 ° or less, 50 ° or less, 45 ° or less, 40 ° or less, 35 ° or less, 30 ° or less, 25 ° or less, 20 ° or less, or 15 ° or less. It may be. When the contact angle with respect to the dispersion medium is 60 ° or less, the base material 14 tends to have excellent adhesion with other members (for example, an adhesive tape or the like).
  • the contact angle of the base material 14 with respect to the dispersion medium used in the electrolyte slurry composition is not particularly limited, but the coating width when the electrolyte slurry composition is applied is not likely to be large even after removing the dispersion medium,
  • the coating width may be 1 ° or more, 2 ° or more, 3 ° or more, 4 ° or more, 5 ° or more, 6 ° or more, 7 ° or more, or 8 ° or more because the coating width hardly changes.
  • the contact angle of the substrate 14 with respect to the dispersion medium used in the electrolyte slurry composition can be determined, for example, by the method described in Examples.
  • the base material 14 may or may not have been subjected to a release treatment with a surface treatment agent such as silicone.
  • a surface treatment agent such as silicone.
  • the release treatment with the surface treatment agent is not preferable. It is preferably not applied.
  • the base material 14 only needs to have a heat-resistant temperature that can withstand the processing temperature for volatilizing the dispersion medium in the process of manufacturing the electrolyte layer.
  • the heat-resistant temperature is a lower temperature among the softening point (the temperature at which plastic deformation starts) or the melting point of the base material 14.
  • the heat-resistant temperature of the substrate 14 is preferably 50 ° C. or higher, more preferably 100 ° C. or higher, and still more preferably 150 ° C. or higher, from the viewpoint of compatibility with the glyme and the ionic liquid used for the electrolyte layer 7. For example, it may be 400 ° C. or lower. If a substrate having the above heat-resistant temperature is used, the above-described dispersion medium can be suitably used.
  • the thickness of the base material 14 is as thin as possible while maintaining the strength that can withstand the tensile force in the coating device.
  • the thickness of the substrate 14 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, from the viewpoint of securing strength when applying the electrolyte slurry composition to the substrate 14 while reducing the volume of the entire electrolyte sheet 13A. It is more preferably at least 25 ⁇ m, preferably at most 100 ⁇ m, more preferably at most 50 ⁇ m, further preferably at most 40 ⁇ m.
  • the electrolyte sheet can be continuously manufactured while being wound up in a roll shape.
  • the surface of the electrolyte layer 7 contacts the back surface of the substrate 14 and a part of the electrolyte layer 7 sticks to the substrate 14, which may damage the electrolyte layer 7.
  • the electrolyte sheet may be provided with a protective material on the side opposite to the base material 14 of the electrolyte layer 7.
  • FIG. 4B is a schematic cross-sectional view illustrating an electrolyte sheet according to another embodiment. As shown in FIG. 4B, the electrolyte sheet 13B further includes a protective material 15 on the opposite side of the electrolyte layer 7 from the base material 14.
  • the protective material 15 may be any material that can be easily peeled off from the electrolyte layer 7, and is preferably a non-polar resin film such as polyethylene, polypropylene, and polytetrafluoroethylene. When a nonpolar resin film is used, the electrolyte layer 7 and the protective material 15 do not adhere to each other, and the protective material 15 can be easily peeled off.
  • a nonpolar resin film such as polyethylene, polypropylene, and polytetrafluoroethylene.
  • the thickness of the protective material 15 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m, and preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, from the viewpoint of securing strength while reducing the volume of the entire electrolyte sheet 13B. And more preferably 30 ⁇ m or less.
  • the heat resistant temperature of the protective material 15 is preferably ⁇ 30 ° C. or higher, more preferably 0 ° C. or higher, from the viewpoint of suppressing deterioration in a low temperature environment and suppressing softening in a high temperature environment. It is 100 ° C. or lower, more preferably 50 ° C. or lower.
  • the above-mentioned step of volatilizing the dispersion medium is not essential, so that it is not necessary to increase the heat-resistant temperature.
  • the thickness of the electrolyte layer 7 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, from the viewpoint of increasing the conductivity and improving the strength. From the viewpoint of suppressing the resistance of the electrolyte layer 7, the thickness of the electrolyte layer 7 is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, further preferably 100 ⁇ m or less, and particularly preferably 50 ⁇ m or less.
  • the method for manufacturing the secondary battery 1 includes a first step of forming the positive electrode mixture layer 10 on the positive electrode current collector 9 to obtain the positive electrode 6, and a step of forming the negative electrode mixture on the negative electrode current collector 11.
  • a second step of forming the layer 12 to obtain the negative electrode 8 and a third step of disposing the electrolyte layer 7 of the electrolyte sheet obtained by the above-described manufacturing method between the positive electrode 6 and the negative electrode 8 are provided.
  • the positive electrode 6 is obtained by dispersing the material used for the positive electrode mixture layer in a dispersion medium using a kneader, a disperser, or the like to obtain a slurry-type positive electrode mixture. Is applied on the positive electrode current collector 9 by a doctor blade method, a dipping method, a spray method, or the like, and then the dispersion medium is volatilized. After volatilizing the dispersion medium, a compression molding step by a roll press may be provided as necessary.
  • the positive electrode mixture layer 10 may be formed as a positive electrode mixture layer having a multilayer structure by performing the above-described steps from application of the positive electrode mixture to volatilization of the dispersion medium a plurality of times.
  • the dispersion medium used in the first step may be water, 1-methyl-2-pyrrolidone (hereinafter also referred to as NMP) or the like.
  • the method of forming the negative electrode mixture layer 12 on the negative electrode current collector 11 may be the same method as in the first step described above.
  • a method of disposing the electrolyte layer 7 between the positive electrode 6 and the negative electrode 8 using the electrolyte sheet 13A includes, for example, peeling the base material 14 from the electrolyte sheet 13A, and removing the positive electrode 6, the electrolyte layer 7,
  • the secondary battery 1 is obtained by laminating the negative electrode 8 with a laminate, for example.
  • the electrolyte layer 7 is positioned on the side of the positive electrode mixture layer 10 of the positive electrode 6 and on the side of the negative electrode mixture layer 12 of the negative electrode 8, that is, the positive electrode current collector 9, the positive electrode mixture layer 10, and the electrolyte layer 7. ,
  • the negative electrode mixture layer 12 and the negative electrode current collector 11 are stacked in this order.
  • FIG. 5 is a schematic cross-sectional view showing one embodiment of an electrode group in the secondary battery according to the second embodiment.
  • the secondary battery in the second embodiment is different from the secondary battery in the first embodiment in that the electrode group 2B includes the bipolar electrode 16. That is, the electrode group 2B includes the positive electrode 6, the first electrolyte layer 7, the bipolar electrode 16, the second electrolyte layer 7, and the negative electrode 8 in this order.
  • the bipolar electrode 16 includes a bipolar electrode current collector 17, a positive electrode mixture layer 10 provided on a surface (positive electrode surface) of the bipolar electrode current collector 17 on the negative electrode 8 side, and a positive electrode 6 side of the bipolar electrode current collector 17. (A negative electrode surface).
  • the positive electrode surface may be preferably formed of a material having excellent oxidation resistance, and may be formed of aluminum, stainless steel, titanium, or the like.
  • the negative electrode surface may be formed of a material that does not form an alloy with lithium, and specifically, may be formed of stainless steel, nickel, iron, titanium, or the like.
  • the bipolar electrode current collector 17 may be a clad material in which different metal foils are laminated.
  • the bipolar electrode current collector 17 may be a single metal foil.
  • the bipolar electrode current collector 17 as a single metal foil may be a perforated aluminum foil having a hole diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate, or the like.
  • the bipolar electrode current collector 17 may be formed of any material as long as it does not cause a change such as dissolution or oxidation during use of the battery. Is not limited.
  • the thickness of the bipolar electrode current collector 17 may be not less than 10 ⁇ m and not more than 100 ⁇ m, and is preferably not less than 10 ⁇ m and not more than 50 ⁇ m from the viewpoint of reducing the volume of the whole positive electrode. From the viewpoint of winding, the thickness is more preferably 10 ⁇ m or more and 20 ⁇ m or less.
  • the method for manufacturing a secondary battery according to the present embodiment includes a first step of forming a positive electrode mixture layer 10 on a positive electrode current collector 9 to obtain a positive electrode 6, and a negative electrode mixture layer on a negative electrode current collector 11.
  • a second step of forming the negative electrode 8 by forming the negative electrode mixture layer 12, forming the positive electrode mixture layer 10 on one surface of the bipolar electrode current collector 17, and forming the negative electrode mixture layer 12 on the other surface of the bipolar electrode current collector 17.
  • the first step and the second step may be the same method as the first step and the second step in the first embodiment.
  • the method of forming the positive electrode mixture layer 10 on one surface of the bipolar electrode current collector 17 may be the same as the first step in the first embodiment.
  • the method for forming the negative electrode mixture layer 12 on the other surface of the bipolar electrode current collector 17 may be the same as the second step in the first embodiment.
  • the method of arranging the electrolyte layer 7 of the obtained electrolyte sheet may be the same method as the third step in the first embodiment.
  • Base material A (manufactured by Tokyo Film Service Co., Ltd., PET film, release treatment: none)
  • Substrate B manufactured by Tokyo Film Service Co., Ltd., polyimide film, release treatment: none)
  • Substrate C (manufactured by Tokyo Film Service Co., Ltd., non-silicone release PET film heavy release product, release treatment: yes, presence or absence of silicone in release agent: none)
  • Substrate D (manufactured by Tokyo Film Service Co., Ltd., silicone release PET film heavy release product, release treatment: yes, presence or absence of silicone in release agent: yes)
  • Base material E manufactured by Tokyo Film Service Co., Ltd., silicone release PET film light release product, release treatment: yes, presence or absence of silicone in release treatment agent: yes)
  • Base material F (manufactured by Tokyo Film Service Co., Ltd., non-silicone release PET film light release product, release treatment: yes, presence or absence of silicone in release treatment: yes)
  • the contact angles of the substrates with respect to the dispersion medium were measured.
  • a contact angle meter (trade name: Drop Master300, manufactured by Kyowa Interface Chemical Co., Ltd.) was used for the measurement.
  • the measurement was performed by dropping N-methyl-2-pyrrolidone (NMP) used as a dispersion medium as a probe liquid on a substrate.
  • NMP N-methyl-2-pyrrolidone
  • the measurement conditions were as follows: the temperature was 25 ° C., the appropriate amount of the probe liquid was 1 ⁇ L, and the measurement timing was 1000 ms after the lowering of the probe liquid.
  • the number of trials for measurement was set to three, and the average value of the obtained numerical values was determined as the contact angle ⁇ . Table 1 shows the results.
  • the substrates A to G were evaluated for adhesion.
  • the evaluation of adhesion was performed by measuring a peeling force for peeling a polyester (PEs) adhesive tape (No. 31B tape, manufactured by Nitto Denko Corporation) from the substrate.
  • PEs polyester
  • a sample obtained by cutting the base material to a width of 25 mm and a length of 300 mm was bonded to the base material by reciprocating the polyester adhesive tape once with a 2 kg roller. After leaving still at room temperature (25 ° C.) for 30 minutes, it was pulled in the 180 ° direction at 300 mm / min using a tensile tester, and the peeling force was measured. Table 1 shows the results.
  • Example 1 (Preparation of electrolyte slurry composition) Lithium bis (trifluoromethanesulfonyl) imide (Li [TFSI]) dried under a dry argon atmosphere is used as an electrolyte salt, and the molar concentration of the electrolyte salt in tetraethylene glycol dimethyl ether (G4) is 2.3 mol / L. To prepare a G4 solution of Li [TFSI].
  • PVDF-HFP vinylidene fluoride and hexafluoropropylene
  • SiO 2 particles oxide particles
  • AEROSIL OX50 manufactured by Nippon Aerosil Co., Ltd., specific surface area: 50 m 2 / g, average primary particle size: about 40 nm
  • NMP N-methyl-2-pyrrolidone
  • a G4 solution of Li [TFSI] is further added and mixed.
  • NMP as a dispersion medium was added to the obtained slurry to adjust the viscosity, thereby obtaining an electrolyte slurry composition A.
  • the concentration of the contained components in the electrolyte slurry composition A was 28% by mass based on the total mass of the electrolyte slurry composition A.
  • the electrolyte slurry composition A was applied on the substrate A using an applicator.
  • the coated electrolyte slurry composition A was heated and dried at 100 ° C. for 1 hour to volatilize the dispersion medium and obtain an electrolyte sheet having an electrolyte layer on a substrate.
  • the width of the electrolyte layer (after volatilizing the dispersion medium of the electrolyte slurry composition A) of the electrolyte sheet prepared above was measured, and the width of the electrolyte layer of the electrolyte sheet relative to the coating width (220 mm) of the electrolyte slurry composition A was measured.
  • the width of the electrolyte layer of the electrolyte sheet / the coating width of the electrolyte slurry composition A was calculated as a coating width maintenance ratio in percentage. Table 1 shows the results.
  • the positive electrode mixture slurry was coated on a current collector (a 20 ⁇ m-thick aluminum foil) at a coating amount of 147 g / m 2 and dried at 80 ° C. to obtain a positive electrode having a mixture density of 2.9 g / cm 3 .
  • a mixture layer was formed. This was punched out to ⁇ 15 mm to obtain a positive electrode.
  • This negative electrode mixture slurry was coated on a current collector (10 ⁇ m thick copper foil) at a coating amount of 68 g / m 2 and dried at 80 ° C. to obtain a negative electrode having a mixture density of 1.9 g / cm 3 . A mixture layer was formed. This was punched out to ⁇ 16 mm to obtain a negative electrode.
  • a [Py13] [FSI] solution of Li [FSI] is added into a CR2016 type coin cell container, and a positive electrode, an electrolyte layer, and a negative electrode are stacked in this order, and the upper portion of the battery container is placed via an insulating gasket. It closed by caulking and the secondary battery was obtained.
  • Example 2 An electrolyte sheet and a secondary battery were prepared in the same manner as in Example 1 except that the substrate A was changed to the substrate B, and the same evaluation as in Example 1 was performed. Table 1 shows the results.
  • Example 3 An electrolyte sheet and a secondary battery were prepared in the same manner as in Example 1 except that the substrate A was changed to the substrate C, and the same evaluation as in Example 1 was performed. Table 1 shows the results.
  • Example 4 An electrolyte sheet and a secondary battery were prepared in the same manner as in Example 1 except that the substrate A was changed to the substrate D, and the same evaluation as in Example 1 was performed. Table 1 shows the results.
  • Example 5 Using lithium bis (fluorosulfonyl) imide (Li [FSI]) dried under a dry argon atmosphere as an electrolyte salt, N-methyl-N-propylpyrrolidinium bis (fluorosulfonyl) imide ([Py13] [FSI]) Then, the electrolyte salt was dissolved at a concentration of 1.5 mol / L to prepare a solution of [Py13] [FSI] of Li [FSI].
  • PVDF-HFP vinylidene fluoride and hexafluoropropylene
  • SiO 2 particles oxide particles
  • NMP N-methyl-2-pyrrolidone
  • NMP as a dispersion medium was added to the obtained slurry to adjust the viscosity, thereby obtaining an electrolyte slurry composition B.
  • the concentration of the component contained in the electrolyte slurry composition B was 28% by mass based on the total mass of the electrolyte slurry composition B.
  • An electrolyte sheet and a secondary battery were prepared in the same manner as in Example 1, except that the electrolyte slurry composition A was changed to the electrolyte slurry composition B, and the coating width maintenance ratio was calculated in the same manner as in Example 1. Then, the discharge rate characteristics of the battery were measured. Table 1 shows the results.
  • Example 6 Except that the base material A was changed to the base material B, an electrolyte sheet and a secondary battery were produced in the same manner as in Example 5, and the coating width maintenance ratio was calculated in the same manner as in Example 1, and the The discharge rate characteristics were measured. Table 1 shows the results.
  • Example 7 Except that the base material A was changed to the base material C, an electrolyte sheet and a secondary battery were prepared in the same manner as in Example 5, and the coating width maintenance ratio was calculated in the same manner as in Example 1, and the The discharge rate characteristics were measured. Table 1 shows the results.
  • Example 8 Except that the base material A was changed to the base material D, an electrolyte sheet and a secondary battery were produced in the same manner as in Example 5, and the coating width maintenance ratio was calculated in the same manner as in Example 1, and the The discharge rate characteristics were measured. Table 1 shows the results.
  • Comparative Example 1 An electrolyte sheet and a secondary battery were produced in the same manner as in Example 1 except that the substrate A was changed to the substrate E, and the coating width maintenance ratio was calculated in the same manner as in Example 1. Table 1 shows the results. In Comparative Example 1, the discharge rate characteristics of the battery were not measured because the coating width was insufficient.
  • Comparative Example 2 An electrolyte sheet and a secondary battery were produced in the same manner as in Example 1 except that the substrate A was changed to the substrate F, and the coating width maintenance ratio was calculated in the same manner as in Example 1. Table 1 shows the results. In Comparative Example 2, the discharge rate characteristics of the battery were not measured because the coating width was insufficient.
  • Comparative Example 3 An electrolyte sheet and a secondary battery were produced in the same manner as in Example 1 except that the substrate A was changed to the substrate G, and the coating width maintenance ratio was calculated in the same manner as in Example 1. Table 1 shows the results. In Comparative Example 3, the discharge rate characteristics of the battery were not measured because the coating width was insufficient.
  • Comparative Example 4 An electrolyte sheet and a secondary battery were prepared in the same manner as in Example 5, except that the substrate A was changed to the substrate E, and the coating width maintenance ratio was calculated in the same manner as in Example 1. Table 1 shows the results. In Comparative Example 4, the discharge rate characteristics of the battery were not measured because the coating width was insufficient.
  • Comparative Example 5 An electrolyte sheet and a secondary battery were prepared in the same manner as in Example 5 except that the substrate A was changed to the substrate F, and the coating width maintenance ratio was calculated in the same manner as in Example 1. Table 1 shows the results. In Comparative Example 5, the discharge rate characteristics of the battery were not measured because the coating width was insufficient.
  • Comparative Example 6 An electrolyte sheet and a secondary battery were produced in the same manner as in Example 5, except that the substrate A was changed to the substrate G, and the coating width maintenance ratio was calculated in the same manner as in Example 1. Table 1 shows the results. In Comparative Example 6, the discharge rate characteristics of the battery were not measured because the coating width was insufficient.
  • the manufacturing method of the electrolyte sheet of the present invention is that in the coating and drying step, the coating width when coating the electrolyte slurry composition is not easily changed even after the dispersion medium is removed. confirmed. It is presumed that the electrolyte sheet produced by the method for producing an electrolyte sheet of the present invention is also excellent in the point of adhesion between the electrolyte layer and the substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Disclosed is an electrolyte sheet production method comprising the steps of: applying, onto a substrate, an electrolyte slurry composition containing one or more polymers, oxide particles, at least one electrolyte salt selected from the group consisting of a lithium salt, a sodium salt, a calcium salt, and a magnesium salt, a compound represented by General Formula (10) and/or an ionic liquid, and a dispersion medium; and removing the dispersion medium from the electrolyte slurry composition coating, thereby forming an electrolyte layer on the substrate. The substrate has a contact angle with the dispersion medium of 60º or less. (10) RAO-(CH2CH2O)y-RB [In the formula (10), RA and RB independently represent a C1-4 alkyl group and y represents an integer of 1 to 6.]

Description

電解質シートの製造方法及び二次電池の製造方法Method for producing electrolyte sheet and method for producing secondary battery
 本発明は、電解質シートの製造方法及び二次電池の製造方法に関する。 The present invention relates to a method for manufacturing an electrolyte sheet and a method for manufacturing a secondary battery.
 近年、携帯型電子機器、電気自動車等の普及により、高性能な二次電池が必要とされている。中でもリチウム二次電池は、高いエネルギー密度を有するため、電気自動車用電池、電力貯蔵用電池等の電源として注目されている。具体的には、電気自動車用電池としてのリチウム二次電池は、エンジンを搭載しないゼロエミッション電気自動車、エンジン及び二次電池の両方を搭載したハイブリッド電気自動車、電力系統から直接充電させるプラグイン・ハイブリッド電気自動車等の電気自動車に採用されている。また、電力貯蔵用電池としてのリチウム二次電池は、電力系統が遮断された非常時に、予め貯蔵しておいた電力を供給する定置式電力貯蔵システム等に用いられている。 In recent years, with the spread of portable electronic devices, electric vehicles, and the like, high-performance secondary batteries are required. Among them, lithium secondary batteries have a high energy density, and thus have attracted attention as power sources for batteries for electric vehicles, batteries for power storage, and the like. Specifically, lithium secondary batteries as batteries for electric vehicles include zero-emission electric vehicles without engines, hybrid electric vehicles with both engines and secondary batteries, and plug-in hybrids that charge directly from the power system. Used in electric vehicles such as electric vehicles. A lithium secondary battery as a power storage battery is used in a stationary power storage system or the like that supplies power stored in advance in an emergency when a power system is cut off.
 このような広範な用途に使用するために、より高いエネルギー密度のリチウム二次電池が求められており、その開発が進められている。特に、電気自動車用のリチウム二次電池には、高い入出力特性及び高いエネルギー密度に加えて、高い安全性が要求されるため、安全性を確保するためのより高度な技術が求められる。従来、リチウム二次電池の安全性を向上させる方法として、電解液で使用される成分をゲル化して、ゲル電解質を形成する方法等が知られている(例えば、特許文献1、2参照)。 リ チ ウ ム There is a need for a lithium secondary battery with a higher energy density for use in such a wide range of applications, and its development is underway. In particular, lithium secondary batteries for electric vehicles are required to have high safety in addition to high input / output characteristics and high energy density. Therefore, more advanced technology for ensuring safety is required. Conventionally, as a method of improving the safety of a lithium secondary battery, a method of gelling a component used in an electrolytic solution to form a gel electrolyte is known (for example, see Patent Documents 1 and 2).
特開2000-164254号公報JP 2000-164254 A 特開2007-141467号公報JP 2007-141467 A
 ところで、基材と基材上に設けられた電解質層とを備える電解質シートを作製する場合、電解質成分と分散媒とを含有する電解質スラリー組成物を基材上に塗工し、塗工された電解質スラリー組成物から分散媒を除去して基材上に電解質層を形成することが一般的である。電解質シートを安定的に供給するためには、塗工乾燥工程において、電解質層が大きく変化しないことが重要となる。特に、電解質シートの製造においては、電解質スラリー組成物を塗工したときの塗工幅が分散媒を除去した後においても大きく変動しないことが求められる。 By the way, when preparing an electrolyte sheet including a base material and an electrolyte layer provided on the base material, an electrolyte slurry composition containing an electrolyte component and a dispersion medium was applied on the base material, and the coating was performed. Generally, an electrolyte layer is formed on a substrate by removing a dispersion medium from an electrolyte slurry composition. In order to stably supply the electrolyte sheet, it is important that the electrolyte layer does not change significantly in the coating and drying step. In particular, in the production of an electrolyte sheet, it is required that the coating width when the electrolyte slurry composition is applied does not fluctuate significantly even after the dispersion medium is removed.
 そこで、本発明は、電解質スラリー組成物を塗工したときの塗工幅が分散媒を除去した後においても変動し難い電解質シートの製造方法を提供することを主な目的とする。 Accordingly, it is a main object of the present invention to provide a method for manufacturing an electrolyte sheet in which a coating width when coating an electrolyte slurry composition is not easily changed even after removing a dispersion medium.
 本発明の第1の態様は、1種又は2種以上のポリマと、酸化物粒子と、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、下記一般式(10)で表される化合物及びイオン液体の少なくとも一方と、分散媒とを含有する電解質スラリー組成物を基材上に塗工する工程と、塗工された電解質スラリー組成物から分散媒を除去して基材上に電解質層を形成する工程とを備え、基材の分散媒に対する接触角が60°以下である、電解質シートの製造方法である。
 RO-(CHCHO)-R (10)
[式(10)中、R及びRはそれぞれ独立に炭素数1~4のアルキル基を示し、yは1~6の整数を示す。]
The first aspect of the present invention provides one or more polymers, oxide particles, and at least one electrolyte salt selected from the group consisting of lithium salts, sodium salts, calcium salts, and magnesium salts, A step of applying an electrolyte slurry composition containing at least one of the compound represented by the following general formula (10) and an ionic liquid, and a dispersion medium onto a substrate, and dispersing the electrolyte slurry composition from the applied electrolyte slurry composition. Removing the medium to form an electrolyte layer on the base material, wherein the contact angle of the base material with the dispersion medium is 60 ° or less.
R A O- (CH 2 CH 2 O) y -R B (10)
[In the formula (10), R A and R B each independently represent an alkyl group having 1 to 4 carbon atoms, and y represents an integer of 1 to 6. ]
 基材は、分散媒に対する接触角が60°以下であると、他の部材(例えば、粘着テープ等)との密着性に優れる傾向にある。そのため、このような基材を用いることによって、基材と基材上に設けられた電解質層との密着性に優れることが推測される。 (4) When the contact angle with the dispersion medium is 60 ° or less, the base material tends to have excellent adhesion to other members (for example, an adhesive tape or the like). Therefore, it is presumed that the use of such a base material provides excellent adhesion between the base material and the electrolyte layer provided on the base material.
 接触角は、好ましくは40°以下である。 The contact angle is preferably 40 ° or less.
 酸化物粒子は、好ましくは、SiO、Al、AlOOH、MgO、CaO、ZrO、TiO、LiLaZr12、及びBaTiOからなる群より選ばれる少なくとも1種の粒子である。 The oxide particles are preferably at least one selected from the group consisting of SiO 2 , Al 2 O 3 , AlOOH, MgO, CaO, ZrO 2 , TiO 2 , Li 7 La 3 Zr 2 O 12 , and BaTiO 3 . Particles.
 イオン液体は、好ましくは、カチオン成分として、鎖状四級オニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、ピリジニウムカチオン、及びイミダゾリウムカチオンからなる群より選ばれる少なくとも1種を含む。 The ionic liquid preferably contains, as the cation component, at least one selected from the group consisting of a chain quaternary onium cation, a piperidinium cation, a pyrrolidinium cation, a pyridinium cation, and an imidazolium cation.
 イオン液体は、好ましくは、アニオン成分として、下記一般式(A)で表されるアニオン成分の少なくとも1種を含む。
 N(SO2m+1)(SO2n+1 (A)
[式(A)中、m及びnは、それぞれ独立に0~5の整数を表す。]
The ionic liquid preferably contains at least one anion component represented by the following general formula (A) as the anion component.
N (SO 2 C m F 2m + 1) (SO 2 C n F 2n + 1) - (A)
[In the formula (A), m and n each independently represent an integer of 0 to 5. ]
 ポリマは、好ましくは四フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位を有する。 The polymer preferably has a first structural unit selected from the group consisting of ethylene tetrafluoride and vinylidene fluoride.
 ポリマは、好ましくはポリマを構成する構造単位の中に、第1の構造単位と、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる第2の構造単位とが含まれる。 Preferably, the polymer has a first structural unit and a second structural unit selected from the group consisting of hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate, among the structural units constituting the polymer. Is included.
 電解質塩は、好ましくはイミド系リチウム塩である。 The electrolyte salt is preferably an imide-based lithium salt.
 一般式(10)で表される化合物は、好ましくはテトラエチレングリコールジメチルエーテルを含む。 化合物 The compound represented by the general formula (10) preferably contains tetraethylene glycol dimethyl ether.
 本発明の第2の態様は、正極集電体上に正極合剤層を形成して正極を得る工程と、負極集電体上に負極合剤層を形成して負極を得る工程と、上述の製造方法によって得られた電解質シートの電解質層を正極と負極との間に配置する工程とを備える、二次電池の製造方法である。 The second aspect of the present invention includes a step of forming a positive electrode mixture layer on a positive electrode current collector to obtain a positive electrode, a step of forming a negative electrode mixture layer on a negative electrode current collector to obtain a negative electrode, Disposing the electrolyte layer of the electrolyte sheet obtained by the method of (1) between the positive electrode and the negative electrode.
 本発明によれば、電解質スラリー組成物を塗工したときの塗工幅が分散媒を除去した後においても変動し難い電解質シートの製造方法が提供される。このような製造方法で製造される電解質シートは、電解質層と基材との密着性の点においても優れることが推測される。また、本発明によれば、このような製造方法で得られた電解質シートを用いた二次電池の製造方法が提供される。 According to the present invention, there is provided a method for producing an electrolyte sheet, in which a coating width when applying an electrolyte slurry composition is not easily changed even after removing a dispersion medium. It is presumed that the electrolyte sheet manufactured by such a manufacturing method is excellent also in the point of adhesion between the electrolyte layer and the substrate. Further, according to the present invention, there is provided a method for manufacturing a secondary battery using the electrolyte sheet obtained by such a manufacturing method.
第1実施形態に係る二次電池を示す斜視図である。FIG. 1 is a perspective view illustrating a secondary battery according to a first embodiment. 図1に示した二次電池における電極群の一実施形態を示す分解斜視図である。FIG. 2 is an exploded perspective view illustrating an embodiment of an electrode group in the secondary battery illustrated in FIG. 1. 図1に示した二次電池における電極群の一実施形態を示す模式断面図である。FIG. 2 is a schematic cross-sectional view illustrating one embodiment of an electrode group in the secondary battery illustrated in FIG. 1. (a)は一実施形態に係る電解質シートを示す模式断面図であり、(b)は他の実施形態に係る電解質シートを示す模式断面図である。(A) is a schematic sectional view showing an electrolyte sheet according to one embodiment, and (b) is a schematic sectional view showing an electrolyte sheet according to another embodiment. 第2実施形態に係る二次電池における電極群の一実施形態を示す模式断面図である。It is a schematic cross section showing one embodiment of an electrode group in a secondary battery concerning a 2nd embodiment.
 以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(ステップ等も含む)は、特に明示した場合を除き、必須ではない。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including steps and the like) are not essential unless otherwise specified. The size of the components in each drawing is conceptual, and the relative relationship between the sizes of the components is not limited to that shown in each drawing.
 本明細書における数値及びその範囲は、本発明を制限するものではない。本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書において段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の上限値又は下限値に置き換えてもよい。また、本明細書中に記載される数値範囲において、その数値範囲の上限値又は下限値は、実施例中に示されている値に置き換えてもよい。 数 値 The numerical values and ranges in this specification do not limit the present invention. In the present specification, a numerical range indicated by using “to” indicates a range including numerical values described before and after “to” as a minimum value and a maximum value, respectively. In the numerical ranges described in stages in this specification, the upper limit or the lower limit described in one numerical range may be replaced with the upper limit or the lower limit described in another step. In the numerical ranges described in this specification, the upper limit or the lower limit of the numerical range may be replaced with the value shown in the embodiment.
[第1実施形態]
 図1は、第1実施形態に係る二次電池を示す斜視図である。図1に示すように、二次電池1は、正極、負極及び電解質層から構成される電極群2と、電極群2を収容する袋状の電池外装体3とを備えている。正極及び負極には、それぞれ正極集電タブ4及び負極集電タブ5が設けられている。正極集電タブ4及び負極集電タブ5は、それぞれ正極及び負極が二次電池1の外部と電気的に接続可能なように、電池外装体3の内部から外部へ突き出している。
[First Embodiment]
FIG. 1 is a perspective view showing the secondary battery according to the first embodiment. As shown in FIG. 1, the secondary battery 1 includes an electrode group 2 including a positive electrode, a negative electrode, and an electrolyte layer, and a bag-shaped battery case 3 containing the electrode group 2. The positive electrode and the negative electrode are provided with a positive electrode current collecting tab 4 and a negative electrode current collecting tab 5, respectively. The positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 protrude from inside the battery exterior body 3 to the outside so that the positive electrode and the negative electrode can be electrically connected to the outside of the secondary battery 1 respectively.
 電池外装体3は、例えばラミネートフィルムで形成されていてよい。ラミネートフィルムは、例えば、ポリエチレンテレフタレート(PET)フィルム等の樹脂フィルムと、アルミニウム、銅、ステンレス鋼等の金属箔と、ポリプロピレン等のシーラント層とがこの順で積層された積層フィルムであってよい。 The battery casing 3 may be formed of, for example, a laminate film. The laminated film may be, for example, a laminated film in which a resin film such as a polyethylene terephthalate (PET) film, a metal foil such as aluminum, copper, and stainless steel, and a sealant layer such as polypropylene are laminated in this order.
 図2は、図1に示した二次電池1における電極群2の一実施形態を示す分解斜視図である。図3は、図1に示した二次電池1における電極群2の一実施形態を示す模式断面図である。図2及び図3に示すように、本実施形態に係る電極群2Aは、正極6と、電解質層7と、負極8とをこの順に備えている。正極6は、正極集電体9と、正極集電体9上に設けられた正極合剤層10とを備えている。正極集電体9には、正極集電タブ4が設けられている。負極8は、負極集電体11と、負極集電体11上に設けられた負極合剤層12とを備えている。負極集電体11には、負極集電タブ5が設けられている。 FIG. 2 is an exploded perspective view showing one embodiment of the electrode group 2 in the secondary battery 1 shown in FIG. FIG. 3 is a schematic sectional view showing one embodiment of the electrode group 2 in the secondary battery 1 shown in FIG. As shown in FIGS. 2 and 3, the electrode group 2A according to the present embodiment includes a positive electrode 6, an electrolyte layer 7, and a negative electrode 8 in this order. The positive electrode 6 includes a positive electrode current collector 9 and a positive electrode mixture layer 10 provided on the positive electrode current collector 9. The positive electrode current collector 9 is provided with a positive electrode current collector tab 4. The negative electrode 8 includes a negative electrode current collector 11 and a negative electrode mixture layer 12 provided on the negative electrode current collector 11. The negative electrode current collector 11 is provided with a negative electrode current collection tab 5.
 正極集電体9は、アルミニウム、ステンレス鋼、チタン等で形成されていてよい。正極集電体9は、具体的には、例えば孔径0.1~10mmの孔を有するアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板等であってよい。正極集電体9は、上記以外にも、電池の使用中に溶解、酸化等の変化を生じないものであれば、任意の材料で形成されていてよく、また、その形状、製造方法等も制限されない。 The positive electrode current collector 9 may be formed of aluminum, stainless steel, titanium, or the like. Specifically, the positive electrode current collector 9 may be, for example, an aluminum perforated foil having a hole diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate, or the like. In addition to the above, the positive electrode current collector 9 may be formed of any material as long as it does not cause a change such as dissolution and oxidation during use of the battery, and may be formed of any material. Not restricted.
 正極集電体9の厚さは、10μm以上100μm以下であってよく、正極全体の体積を小さくする観点から、好ましくは10μm以上50μm以下であり、電池を形成する際に小さな曲率で正極を捲回する観点から、より好ましくは10μm以上20μm以下である。 The thickness of the positive electrode current collector 9 may be 10 μm or more and 100 μm or less, and is preferably 10 μm or more and 50 μm or less from the viewpoint of reducing the volume of the entire positive electrode. From the viewpoint of rotation, it is more preferably 10 μm or more and 20 μm or less.
 正極合剤層10は、一実施形態において、正極活物質と、導電剤と、結着剤とを含有する。 (4) In one embodiment, the positive electrode mixture layer 10 contains a positive electrode active material, a conductive agent, and a binder.
 正極活物質は、リチウム遷移金属酸化物、リチウム遷移金属リン酸塩等のリチウム遷移金属化合物であってよい。 (4) The positive electrode active material may be a lithium transition metal compound such as a lithium transition metal oxide and a lithium transition metal phosphate.
 リチウム遷移金属酸化物は、例えば、マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウム等であってよい。リチウム遷移金属酸化物は、マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウム等に含有されるMn、Ni、Co等の遷移金属の一部を、1種若しくは2種以上の他の遷移金属、又はMg、Al等の金属元素(典型元素)で置換したリチウム遷移金属酸化物であってもよい。すなわち、リチウム遷移金属酸化物は、LiM又はLiM (Mは少なくとも1種の遷移金属を含む)で表される化合物であってよい。リチウム遷移金属酸化物は、具体的には、Li(Co1/3Ni1/3Mn1/3)O、LiNi1/2Mn1/2、LiNi1/2Mn3/2等であってよい。 The lithium transition metal oxide may be, for example, lithium manganate, lithium nickelate, lithium cobaltate, or the like. Lithium transition metal oxide, a part of transition metal such as Mn, Ni, Co contained in lithium manganate, lithium nickelate, lithium cobaltate or the like, one or more other transition metals, or A lithium transition metal oxide substituted with a metal element (typical element) such as Mg or Al may be used. That is, the lithium transition metal oxide may be a compound represented by LiM 1 O 2 or LiM 1 2 O 4 (M 1 comprises at least one transition metal). Lithium transition metal oxides, specifically, Li (Co 1/3 Ni 1/3 Mn 1/3) O 2, LiNi 1/2 Mn 1/2 O 2, LiNi 1/2 Mn 3/2 O 4 or the like.
 リチウム遷移金属酸化物は、エネルギー密度を更に向上させる観点から、好ましくは下記式(1)で表される化合物である。
 LiNiCo 2+e (1)
[式(1)中、Mは、Al、Mn、Mg、及びCaからなる群より選ばれる少なくとも1種であり、a、b、c、d、及びeは、それぞれ0.2≦a≦1.2、0.5≦b≦0.9、0.1≦c≦0.4、0≦d≦0.2、-0.2≦e≦0.2、かつb+c+d=1を満たす数である。]
The lithium transition metal oxide is preferably a compound represented by the following formula (1) from the viewpoint of further improving the energy density.
Li a Ni b Co c M 2 d O 2 + e (1)
[In the formula (1), M 2 is at least one selected from the group consisting of Al, Mn, Mg, and Ca, and a, b, c, d, and e each represent 0.2 ≦ a ≦ 1.2, 0.5 ≦ b ≦ 0.9, 0.1 ≦ c ≦ 0.4, 0 ≦ d ≦ 0.2, −0.2 ≦ e ≦ 0.2, and a number satisfying b + c + d = 1 It is. ]
 リチウム遷移金属リン酸塩は、LiFePO、LiMnPO、LiMn 1-xPO(0.3≦x≦1、MはFe、Ni、Co、Ti、Cu、Zn、Mg、及びZrからなる群より選ばれる少なくとも1種の元素である)等であってよい。 Lithium transition metal phosphate, LiFePO 4, LiMnPO 4, LiMn x M 3 1-x PO 4 (0.3 ≦ x ≦ 1, M 3 is Fe, Ni, Co, Ti, Cu, Zn, Mg, and Or at least one element selected from the group consisting of Zr).
 正極活物質は、造粒されていない一次粒子であってもよく、造粒された二次粒子であってもよい。 (4) The positive electrode active material may be non-granulated primary particles or granulated secondary particles.
 正極活物質の粒径は、正極合剤層10の厚さ以下になるように調整される。正極活物質中に正極合剤層10の厚さ以上の粒径を有する粗粒子がある場合、ふるい分級、風流分級等により粗粒子を予め除去し、正極合剤層10の厚さ以下の粒径を有する正極活物質を選別する。 粒径 The particle size of the positive electrode active material is adjusted to be equal to or less than the thickness of the positive electrode mixture layer 10. When the positive electrode active material contains coarse particles having a particle size greater than the thickness of the positive electrode mixture layer 10, the coarse particles are removed in advance by sieving, airflow classification, or the like, and the particles having a thickness equal to or less than the thickness of the positive electrode mixture layer 10 are removed. A positive electrode active material having a diameter is selected.
 正極活物質の平均粒径は、好ましくは0.1μm以上、より好ましくは1μm以上である。また、好ましくは30μm以下、より好ましくは25μm以下である。正極活物質の平均粒径は、正極活物質全体の体積に対する比率(体積分率)が50%のときの粒径(D50)である。正極活物質の平均粒径(D50)は、レーザー散乱型粒径測定装置(例えば、マイクロトラック)を用いて、レーザー散乱法により水中に正極活物質を懸濁させた懸濁液を測定することで得られる。 (4) The average particle diameter of the positive electrode active material is preferably 0.1 μm or more, more preferably 1 μm or more. Further, it is preferably 30 μm or less, more preferably 25 μm or less. The average particle diameter of the positive electrode active material is the particle diameter (D50) when the ratio (volume fraction) to the volume of the entire positive electrode active material is 50%. The average particle diameter (D50) of the positive electrode active material is obtained by measuring a suspension of the positive electrode active material in water by a laser scattering method using a laser scattering type particle size measuring device (for example, Microtrack). Is obtained.
 正極活物質の含有量は、正極合剤層全量を基準として、70質量%以上、80質量%以上、又は85質量%以上であってよい。正極活物質の含有量は、正極合剤層全量を基準として、95質量%以下、92質量%以下、又は90質量%以下であってよい。 含有 The content of the positive electrode active material may be 70% by mass or more, 80% by mass or more, or 85% by mass or more based on the total amount of the positive electrode mixture layer. The content of the positive electrode active material may be 95% by mass or less, 92% by mass or less, or 90% by mass or less based on the total amount of the positive electrode mixture layer.
 導電剤は、特に限定されないが、黒鉛、アセチレンブラック、カーボンブラック、炭素繊維、カーボンナノチューブ等の炭素材料などであってよい。導電剤は、上述した炭素材料の2種以上の混合物であってもよい。 The conductive agent is not particularly limited, and may be a carbon material such as graphite, acetylene black, carbon black, carbon fiber, carbon nanotube, or the like. The conductive agent may be a mixture of two or more of the above-described carbon materials.
 導電剤の含有量は、正極合剤層全量を基準として、0.1質量%以上、1質量%以上、又は3質量%以上であってよい。導電剤の含有量は、正極6の体積の増加及びそれに伴う二次電池1のエネルギー密度の低下を抑制する観点から、正極合剤層全量を基準として、好ましくは15質量%以下、より好ましくは10質量%以下、更に好ましくは8質量%以下である。 含有 The content of the conductive agent may be 0.1% by mass or more, 1% by mass or more, or 3% by mass or more based on the total amount of the positive electrode mixture layer. The content of the conductive agent is preferably 15% by mass or less, more preferably not more than 15% by mass, based on the total amount of the positive electrode mixture layer, from the viewpoint of suppressing an increase in the volume of the positive electrode 6 and a decrease in the energy density of the secondary battery 1 accompanying the increase. It is at most 10% by mass, more preferably at most 8% by mass.
 結着剤は、正極6の表面で分解しないものであれば制限されないが、四フッ化エチレン、フッ化ビニリデン、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる少なくとも1種をモノマ単位として含むポリマ、スチレン-ブタジエンゴム、イソプレンゴム、アクリルゴム等のゴムなどであってよい。結着剤は、好ましくは四フッ化エチレンとフッ化ビニリデンとを構造単位として含むコポリマである。 The binder is not limited as long as it does not decompose on the surface of the positive electrode 6, but is selected from the group consisting of ethylene tetrafluoride, vinylidene fluoride, hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate. Or a rubber such as styrene-butadiene rubber, isoprene rubber, acrylic rubber or the like containing at least one of the above as monomer units. The binder is preferably a copolymer containing ethylene tetrafluoride and vinylidene fluoride as structural units.
 結着剤の含有量は、正極合剤層全量を基準として、0.5質量%以上、1質量%以上、又は3質量%以上であってよい。結着剤の含有量は、正極合剤層全量を基準として、20質量%以下、15質量%以下、又は10質量%以下であってよい。 含有 The content of the binder may be 0.5% by mass or more, 1% by mass or more, or 3% by mass or more based on the total amount of the positive electrode mixture layer. The content of the binder may be 20% by mass or less, 15% by mass or less, or 10% by mass or less based on the total amount of the positive electrode mixture layer.
 正極合剤層10は、イオン液体を更に含有していてもよい。 The positive electrode mixture layer 10 may further contain an ionic liquid.
 イオン液体は、後述の電解質スラリー組成物で使用されるイオン液体を用いることができる。正極合剤層10に含まれるイオン液体の含有量は、正極合剤層全量を基準として、好ましくは3質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上である。正極合剤層10に含まれるイオン液体の含有量は、正極合剤層全量を基準として、好ましくは30質量%以下、より好ましくは25質量%以下、更に好ましくは20質量%以下である。 イ オ ン As the ionic liquid, an ionic liquid used in an electrolyte slurry composition described later can be used. The content of the ionic liquid contained in the positive electrode mixture layer 10 is preferably 3% by mass or more, more preferably 5% by mass or more, and still more preferably 10% by mass or more, based on the total amount of the positive electrode mixture layer. The content of the ionic liquid contained in the positive electrode mixture layer 10 is preferably 30% by mass or less, more preferably 25% by mass or less, and still more preferably 20% by mass or less, based on the total amount of the positive electrode mixture layer.
 正極合剤層10に含まれるイオン液体には電解質塩が溶解されていてもよい。電解質塩は、後述の電解質スラリー組成物で使用される電解質塩を用いることができる。 イ オ ン The ionic liquid contained in the positive electrode mixture layer 10 may have an electrolyte salt dissolved therein. As the electrolyte salt, an electrolyte salt used in an electrolyte slurry composition described later can be used.
 正極合剤層10の厚さは、導電率を更に向上させる観点から、正極活物質の平均粒径以上の厚さであり、具体的には、10μm以上、15μm以上、又は20μm以上であってよい。正極合剤層10の厚さは、100μm以下、80μm以下、又は70μm以下であってよい。正極合剤層の厚さを100μm以下とすることにより、正極合剤層10の表面近傍及び正極集電体9の表面近傍の正極活物質の充電レベルのばらつきに起因する充放電の偏りを抑制できる。 From the viewpoint of further improving the conductivity, the thickness of the positive electrode mixture layer 10 is a thickness equal to or more than the average particle diameter of the positive electrode active material, specifically, 10 μm or more, 15 μm or more, or 20 μm or more. Good. The thickness of the positive electrode mixture layer 10 may be 100 μm or less, 80 μm or less, or 70 μm or less. By setting the thickness of the positive electrode mixture layer to 100 μm or less, the unevenness of charge and discharge due to the variation in the charge level of the positive electrode active material near the surface of the positive electrode mixture layer 10 and the surface of the positive electrode current collector 9 is suppressed. it can.
 負極集電体11は、アルミニウム、銅、ニッケル、ステンレス等の金属、それらの合金などであってよい。負極集電体11は、軽量で高い重量エネルギー密度を有するため、好ましくはアルミニウム及びその合金である。負極集電体11は、薄膜への加工のし易さ及びコストの観点から、好ましくは銅である。 The negative electrode current collector 11 may be a metal such as aluminum, copper, nickel, and stainless steel, or an alloy thereof. The negative electrode current collector 11 is preferably aluminum and its alloy because it is lightweight and has a high weight energy density. The negative electrode current collector 11 is preferably made of copper from the viewpoint of ease of processing into a thin film and cost.
 負極集電体11の厚さは、10μm以上100μm以下であってよく、負極全体の体積を小さくする観点から、好ましくは10μm以上50μm以下であり、電池を形成する際に小さな曲率で負極を捲回する観点から、より好ましくは10μm以上20μm以下である。 The thickness of the negative electrode current collector 11 may be 10 μm or more and 100 μm or less, and is preferably 10 μm or more and 50 μm or less from the viewpoint of reducing the volume of the entire negative electrode, and the negative electrode is wound with a small curvature when forming a battery. From the viewpoint of rotation, it is more preferably 10 μm or more and 20 μm or less.
 負極合剤層12は、一実施形態において、負極活物質と、結着剤とを含有する。 In one embodiment, the negative electrode mixture layer 12 contains a negative electrode active material and a binder.
 負極活物質は、エネルギーデバイスの分野で常用されるものを使用できる。負極活物質としては、具体的には、例えば、金属リチウム、チタン酸リチウム(LiTi12)、リチウム合金又はその他の金属化合物、炭素材料、金属錯体、有機高分子化合物等が挙げられる。負極活物質はこれらの1種単独、若しくは2種以上の混合物であってよい。炭素材料としては、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等の黒鉛(グラファイト)、非晶質炭素、炭素繊維、及びアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラックなどが挙げられる。負極活物質は、より大きな理論容量(例えば500~1500Ah/kg)を得る観点から、シリコン、スズ又はこれらの元素を含む化合物(酸化物、窒化物、他の金属との合金)であってもよい。 As the negative electrode active material, those commonly used in the field of energy devices can be used. Specific examples of the negative electrode active material include lithium metal, lithium titanate (Li 4 Ti 5 O 12 ), a lithium alloy or other metal compounds, a carbon material, a metal complex, and an organic polymer compound. . The negative electrode active material may be one of these alone or a mixture of two or more thereof. Examples of the carbon material include natural graphite (flaky graphite, etc.), graphite such as artificial graphite (graphite), amorphous carbon, carbon fiber, acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black. And the like. From the viewpoint of obtaining a larger theoretical capacity (for example, 500 to 1500 Ah / kg), the negative electrode active material may be silicon, tin, or a compound containing these elements (oxide, nitride, alloy with another metal). Good.
 負極活物質の平均粒径(D50)は、粒径減少に伴う不可逆容量の増加を抑制しつつ、かつ、電解質塩の保持能力を高めたバランスの良い負極を得る観点から、好ましくは1μm以上、より好ましくは5μm以上、更に好ましくは10μm以上であり、また、好ましくは50μm以下、より好ましくは40μm以下、更に好ましくは30μm以下である。負極活物質の平均粒径(D50)は、上述した正極活物質の平均粒径(D50)と同様の方法により測定される。 The average particle size (D 50 ) of the negative electrode active material is preferably 1 μm or more from the viewpoint of obtaining a well-balanced negative electrode having an increased irreversible capacity with a decrease in particle size and an increased ability to retain an electrolyte salt. And more preferably 5 μm or more, further preferably 10 μm or more, and preferably 50 μm or less, more preferably 40 μm or less, and still more preferably 30 μm or less. The average particle size of the negative electrode active material (D 50) is measured in the same manner as the average particle diameter of the above-mentioned positive electrode active material (D 50).
 負極活物質の含有量は、負極合剤層全量を基準として、60質量%以上、65質量%以上、又は70質量%以上であってよい。負極活物質の含有量は、負極合剤層全量を基準として、99質量%以下、95質量%以下、又は90質量%以下であってよい。 含有 The content of the negative electrode active material may be 60% by mass or more, 65% by mass or more, or 70% by mass or more based on the total amount of the negative electrode mixture layer. The content of the negative electrode active material may be 99% by mass or less, 95% by mass or less, or 90% by mass or less based on the total amount of the negative electrode mixture layer.
 結着剤及びその含有量は、上述した正極合剤層10における結着剤及びその含有量と同様であってよい。 The binder and the content thereof may be the same as the binder and the content thereof in the positive electrode mixture layer 10 described above.
 負極合剤層12は、負極8の抵抗を更に低くする観点から、導電剤を更に含有してもよい。導電剤及びその含有量は、上述した正極合剤層10における導電剤及びその含有量と同様であってよい。 The negative electrode mixture layer 12 may further contain a conductive agent from the viewpoint of further lowering the resistance of the negative electrode 8. The conductive agent and the content thereof may be the same as the conductive agent and the content thereof in the positive electrode mixture layer 10 described above.
 負極合剤層12は、イオン液体を更に含有していてもよい。 The negative electrode mixture layer 12 may further contain an ionic liquid.
 イオン液体は、後述の電解質スラリー組成物で使用されるイオン液体を用いることができる。負極合剤層12に含まれるイオン液体の含有量は、負極合剤層全量を基準として、好ましくは3質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上である。負極合剤層12に含まれるイオン液体の含有量は、負極合剤層全量を基準として、好ましくは30質量%以下、より好ましくは25質量%以下、更に好ましくは20質量%以下である。 イ オ ン As the ionic liquid, an ionic liquid used in an electrolyte slurry composition described later can be used. The content of the ionic liquid contained in the negative electrode mixture layer 12 is preferably 3% by mass or more, more preferably 5% by mass or more, and still more preferably 10% by mass or more, based on the total amount of the negative electrode mixture layer. The content of the ionic liquid contained in the negative electrode mixture layer 12 is preferably 30% by mass or less, more preferably 25% by mass or less, and still more preferably 20% by mass or less, based on the total amount of the negative electrode mixture layer.
 負極合剤層12に含まれるイオン液体には、上述した正極合剤層10に使用できる電解質塩と同様の電解質塩が溶解されていてもよい。 イ オ ン The ionic liquid contained in the negative electrode mixture layer 12 may contain an electrolyte salt similar to the electrolyte salt that can be used for the positive electrode mixture layer 10 described above.
 負極合剤層12の厚さは、10μm以上、15μm以上、又は20μm以上であってよい。負極合剤層12の厚さは、100μm以下、80μm以下、又は70μm以下であってよい。 The thickness of the negative electrode mixture layer 12 may be 10 μm or more, 15 μm or more, or 20 μm or more. The thickness of the negative electrode mixture layer 12 may be 100 μm or less, 80 μm or less, or 70 μm or less.
 電解質層7は、基材上に電解質スラリー組成物を用いて電解質シートを作製することによって形成される。電解質スラリー組成物は、1種又は2種以上のポリマと、酸化物粒子と、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、下記一般式(10)で表される化合物(グライム)及びイオン液体の少なくとも一方と、分散媒とを含有する。ここで、基材の分散媒に対する接触角は、60°以下である。 The electrolyte layer 7 is formed by preparing an electrolyte sheet on a base material using an electrolyte slurry composition. The electrolyte slurry composition comprises one or more polymers, oxide particles, at least one electrolyte salt selected from the group consisting of lithium salts, sodium salts, calcium salts, and magnesium salts; It contains at least one of the compound (glyme) represented by (10) and an ionic liquid, and a dispersion medium. Here, the contact angle of the substrate with the dispersion medium is 60 ° or less.
 電解質スラリー組成物は、1種又は2種以上のポリマを含有する。ポリマは、好ましくは、四フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位を有する。 The electrolyte slurry composition contains one or more polymers. The polymer preferably has a first structural unit selected from the group consisting of ethylene tetrafluoride and vinylidene fluoride.
 ポリマを構成する構造単位の中には、前記第1の構造単位と、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる第2の構造単位とが含まれていてもよい。すなわち、第1の構造単位及び第2の構造単位は、1種のポリマに含まれてコポリマを構成していてもよく、それぞれ別のポリマに含まれて、第1の構造単位を有する第1のポリマと、第2の構造単位を有する第2のポリマとの少なくとも2種のポリマを構成していてもよい。 The structural unit constituting the polymer includes the first structural unit and a second structural unit selected from the group consisting of hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate. May be. That is, the first structural unit and the second structural unit may be included in one kind of polymer to constitute a copolymer, and the first structural unit and the second structural unit may be included in different polymers and have the first structural unit having the first structural unit. And a second polymer having a second structural unit may be at least two types of polymers.
 ポリマは、具体的には、ポリ四フッ化エチレン、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ等であってよい。 Specifically, the polymer may be polytetrafluoroethylene, polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, or the like.
 ポリマの含有量は、電解質スラリー組成物の分散媒を除いた成分全量を基準として、好ましくは3質量%以上である。ポリマの含有量は、電解質スラリー組成物の分散媒を除いた成分全量を基準として、好ましくは50質量%以下、より好ましくは40質量%以下である。ポリマの含有量は、電解質スラリー組成物の分散媒を除いた成分全量を基準として、好ましくは3~50質量%、より好ましくは3~40質量%である。 The content of the polymer is preferably 3% by mass or more based on the total amount of the components excluding the dispersion medium of the electrolyte slurry composition. The content of the polymer is preferably 50% by mass or less, more preferably 40% by mass or less, based on the total amount of the components excluding the dispersion medium of the electrolyte slurry composition. The content of the polymer is preferably 3 to 50% by mass, more preferably 3 to 40% by mass, based on the total amount of the components excluding the dispersion medium of the electrolyte slurry composition.
 本実施形態に係るポリマは、電解質スラリー組成物に含まれるイオン液体との親和性に優れるため、電解質層7を形成したときにグライム又はイオン液体中の電解質を保持する。これにより、電解質層7に荷重が加えられた際のグライム又はイオン液体の液漏れが抑制される。 ポ リ Since the polymer according to the present embodiment has excellent affinity for the ionic liquid contained in the electrolyte slurry composition, it retains glyme or the electrolyte in the ionic liquid when the electrolyte layer 7 is formed. Thus, leakage of glyme or ionic liquid when a load is applied to the electrolyte layer 7 is suppressed.
 電解質スラリー組成物は、酸化物粒子を含有する。酸化物粒子は、例えば無機酸化物の粒子である。無機酸化物は、例えば、Li、Mg、Al、Si、Ca、Ti、Zr、La、Na、K、Ba、Sr、V、Nb、B、Ge等を構成元素として含む無機酸化物であってよい。酸化物粒子は、好ましくは、SiO、Al、AlOOH、MgO、CaO、ZrO、TiO、LiLaZr12、及びBaTiOからなる群より選ばれる少なくとも1種の粒子である。酸化物粒子は極性を有するため、電解質層7中の電解質の解離を促進し、電池特性を高めることができる。 The electrolyte slurry composition contains oxide particles. The oxide particles are, for example, particles of an inorganic oxide. The inorganic oxide is, for example, an inorganic oxide containing Li, Mg, Al, Si, Ca, Ti, Zr, La, Na, K, Ba, Sr, V, Nb, B, Ge, or the like as a constituent element. Good. The oxide particles are preferably at least one selected from the group consisting of SiO 2 , Al 2 O 3 , AlOOH, MgO, CaO, ZrO 2 , TiO 2 , Li 7 La 3 Zr 2 O 12 , and BaTiO 3 . Particles. Since the oxide particles have polarity, the dissociation of the electrolyte in the electrolyte layer 7 can be promoted, and the battery characteristics can be improved.
 酸化物粒子は、一般に、見かけ上の幾何学的形態から判断して、一体的に単一の粒子を形成している一次粒子(二次粒子を構成していない粒子)と、複数の一次粒子が集合することで形成される二次粒子とを含んでいてもよい。 Judging from the apparent geometrical form, oxide particles generally include a primary particle (a particle that does not constitute a secondary particle) that integrally forms a single particle, and a plurality of primary particles. And secondary particles formed by assembling.
 酸化物粒子の比表面積は、2~380m/g、5~100m/g、10~80m/g、又は15~60m/gであってよい。比表面積が2~380m/gであると、二次電池の放電特性により優れる傾向にある。同様の観点から、酸化物粒子の比表面積は、5m/g以上、10m/g以上、又は15m/g以上であってもよく、100m/g以下、80m/g以下、又は60m/g以下であってもよい。酸化物粒子の比表面積は、一次粒子及び二次粒子を含む酸化物粒子全体の比表面積を意味し、BET法によって測定される。 The specific surface area of the oxide particles, 2 ~ 380m 2 / g, 5 ~ 100m 2 / g, 10 ~ 80m 2 / g, or from 15 ~ 60m 2 / g. When the specific surface area is from 2 to 380 m 2 / g, the discharge characteristics of the secondary battery tend to be more excellent. From the same viewpoint, the specific surface area of the oxide particles may be 5 m 2 / g or more, 10 m 2 / g or more, or 15 m 2 / g or more, and 100 m 2 / g or less, 80 m 2 / g or less, or It may be 60 m 2 / g or less. The specific surface area of the oxide particles means the specific surface area of the entire oxide particles including the primary particles and the secondary particles, and is measured by a BET method.
 酸化物粒子の平均一次粒径(一次粒子の平均粒径)は、導電率を更に向上させる観点から、好ましくは0.005μm(5nm)以上、より好ましくは0.01μm(10nm)以上、更に好ましくは0.015μm(15nm)以上である。酸化物粒子の平均一次粒径は、電解質層7を薄くする観点から、好ましくは1μm以下、より好ましくは0.1μm以下、更に好ましくは0.05μm以下である。酸化物粒子の平均一次粒径は、電解質層7を薄層化する観点及び電解質層7の表面からの酸化物粒子の突出を抑制する観点から、好ましくは0.005~1μm、0.01~0.1μm、又は0.015~0.05μmである。酸化物粒子の平均一次粒径は、酸化物粒子を透過型電子顕微鏡等によって観察することによって測定できる。 The average primary particle size of the oxide particles (average particle size of the primary particles) is preferably 0.005 μm (5 nm) or more, more preferably 0.01 μm (10 nm) or more, and still more preferably from the viewpoint of further improving the conductivity. Is 0.015 μm (15 nm) or more. The average primary particle size of the oxide particles is preferably 1 μm or less, more preferably 0.1 μm or less, and still more preferably 0.05 μm or less, from the viewpoint of making the electrolyte layer 7 thin. The average primary particle size of the oxide particles is preferably from 0.005 to 1 μm, from 0.01 to 0.01 from the viewpoint of reducing the thickness of the electrolyte layer 7 and suppressing the protrusion of the oxide particles from the surface of the electrolyte layer 7. It is 0.1 μm, or 0.015 to 0.05 μm. The average primary particle size of the oxide particles can be measured by observing the oxide particles with a transmission electron microscope or the like.
 酸化物粒子の平均粒子径は、好ましくは0.005μm以上、より好ましくは0.01μm以上、更に好ましくは0.03μm以上である。酸化物粒子の平均粒子径は、好ましくは5μm以下、より好ましくは3μm以下、更に好ましくは1μm以下である。酸化物粒子の平均粒子径は、レーザー回折法により測定され、体積累積粒度分布曲線を小粒径側から描いた場合に、体積累積が50%となる粒子径に対応する。 平均 The average particle size of the oxide particles is preferably 0.005 μm or more, more preferably 0.01 μm or more, and further preferably 0.03 μm or more. The average particle size of the oxide particles is preferably 5 μm or less, more preferably 3 μm or less, and still more preferably 1 μm or less. The average particle size of the oxide particles is measured by a laser diffraction method, and corresponds to the particle size at which the volume accumulation becomes 50% when the volume accumulation particle size distribution curve is drawn from the small particle size side.
 酸化物粒子の形状は、例えば塊状又は略球状であってよい。酸化物粒子のアスペクト比は、電解質層7の薄層化を容易にする観点から、好ましくは10以下、より好ましくは5以下、更に好ましくは2以下である。アスペクト比は、酸化物粒子の走査型電子顕微鏡写真から算出した、粒子の長軸方向の長さ(粒子の最大長さ)と、粒子の短軸方向の長さ(粒子の最小長さ)との比として定義される。粒子の長さは、前記写真を、市販の画像処理フト(例えば、旭化成エンジニアリング株式会社製の画像解析ソフト、A像くん(登録商標))を用いて、統計的に計算して求められる。 The shape of the oxide particles may be, for example, lump or substantially spherical. The aspect ratio of the oxide particles is preferably 10 or less, more preferably 5 or less, and still more preferably 2 or less, from the viewpoint of facilitating the thinning of the electrolyte layer 7. The aspect ratio was calculated from the scanning electron micrograph of the oxide particles, the length of the particles in the major axis direction (maximum length of the particles) and the length of the particles in the minor axis direction (minimum length of the particles). Is defined as the ratio of The length of the particles can be obtained by statistically calculating the photograph using a commercially available image processing software (for example, image analysis software A-kun (registered trademark) manufactured by Asahi Kasei Engineering Corporation).
 酸化物粒子は、表面処理剤で表面処理されていてもよい。表面処理剤としては、例えば、ケイ素含有化合物等が挙げられる。ケイ素含有化合物は、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメトキシジフェニルシラン、n-プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、n-プロピルトリエトキシシラン等のアルコキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシ基含有シラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ基含有シラン、ヘキサメチルジシラザン等のシラザン、ジメチルシリコーンオイル等のシロキサンなどであってもよい。 The oxide particles may be surface-treated with a surface treatment agent. Examples of the surface treatment agent include a silicon-containing compound. Silicon-containing compounds include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethoxydiphenylsilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyl Alkoxysilanes such as diethoxysilane and n-propyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, Epoxy group-containing silanes such as 3-glycidoxypropylmethyldiethoxysilane and 3-glycidoxypropyltriethoxysilane; N-2- (aminoethyl) -3-aminopropylmethyldisilane Amino group-containing silanes such as toxoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, hexamethyldisilazane, etc. And siloxanes such as dimethyl silicone oil.
 表面処理剤で表面処理された酸化物粒子は、公知の方法によって製造したものを用いてもよく、市販品をそのまま用いてもよい。 酸化 物 As the oxide particles surface-treated with the surface treatment agent, those produced by a known method may be used, or a commercially available product may be used as it is.
 酸化物粒子の含有量は、電解質スラリー組成物の分散媒を除いた成分全量を基準として、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上、特に好ましくは20質量%以上であり、また、好ましくは60質量%以下、より好ましくは50質量%以下、更に好ましくは40質量%以下である。 The content of the oxide particles is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass or more, and particularly preferably, based on the total amount of the components excluding the dispersion medium of the electrolyte slurry composition. It is 20% by mass or more, preferably 60% by mass or less, more preferably 50% by mass or less, and still more preferably 40% by mass or less.
 電解質スラリー組成物は、電解質塩を含有する。電解質塩は、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選ばれる少なくとも1種である。電解質塩は、正極6と負極8との間でカチオンを授受させるために用いられる化合物である。上記の電解質塩は、低温では解離度が低く、グライム又はイオン液体中で拡散し易いことに加え、高温により熱分解しないため、二次電池が使用可能な環境温度が広範となる点で好ましい。電解質塩は、フッ素イオン電池において用いられる電解質塩であってもよい。 The electrolyte slurry composition contains an electrolyte salt. The electrolyte salt is at least one selected from the group consisting of a lithium salt, a sodium salt, a calcium salt, and a magnesium salt. The electrolyte salt is a compound used to transfer cations between the positive electrode 6 and the negative electrode 8. The above-mentioned electrolyte salt is preferable in that it has a low degree of dissociation at a low temperature, easily diffuses in glyme or ionic liquid, and does not thermally decompose at a high temperature. The electrolyte salt may be an electrolyte salt used in a fluorine ion battery.
 電解質塩のアニオン成分は、ハロゲン化物イオン(I、Cl、Br等)、SCN、BF 、BF(CF、BF(C、PF 、ClO 、SbF 、N(SOF) 、N(SOCF 、N(SO 、B(C 、B(O 、C(SOF) 、C(SOCF 、CFCOO、CFSO、CSO、B(O 等であってよい。電解質塩のアニオン成分は、好ましくは、N(SOF) 、N(SOCF 等の後述のイオン液体のアニオン成分で例示される式(A)で表されるアニオン成分、PF 、BF 、B(O 、又はClO である。 The anion components of the electrolyte salt include halide ions (I , Cl , Br −, etc.), SCN , BF 4 , BF 3 (CF 3 ) , BF 3 (C 2 F 5 ) , PF 6 , ClO 4 , SbF 6 , N (SO 2 F) 2 , N (SO 2 CF 3 ) 2 , N (SO 2 C 2 F 5 ) 2 , B (C 6 H 5 ) 4 , B (O 2 C 2 H 4 ) 2 , C (SO 2 F) 3 , C (SO 2 CF 3 ) 3 , CF 3 COO , CF 3 SO 2 O , C 6 F 5 SO 2 O , B (O 2 C 2 O 2 ) 2 — and the like. The anion component of the electrolyte salt is preferably an anion represented by the formula (A) exemplified by an anion component of an ionic liquid described below, such as N (SO 2 F) 2 and N (SO 2 CF 3 ) 2 −. Component PF 6 , BF 4 , B (O 2 C 2 O 2 ) 2 , or ClO 4 .
 なお、以下では下記の略称を用いる場合がある。
[FSI]:N(SOF) 、ビス(フルオロスルホニル)イミドアニオン
[TFSI]:N(SOCF 、ビス(トリフルオロメタンスルホニル)イミドアニオン
[BOB]:B(O 、ビスオキサレートボラートアニオン
[f3C]:C(SOF) 、トリス(フルオロスルホニル)カルボアニオン
In the following, the following abbreviations may be used.
[FSI] : N (SO 2 F) 2 , bis (fluorosulfonyl) imide anion [TFSI] : N (SO 2 CF 3 ) 2 , bis (trifluoromethanesulfonyl) imide anion [BOB] : B (O 2 C 2 O 2 ) 2 , bisoxalate borate anion [f3C] : C (SO 2 F) 3 , tris (fluorosulfonyl) carbanion
 リチウム塩は、LiPF、LiBF、Li[FSI]、Li[TFSI]、Li[f3C]、Li[BOB]、LiClO、LiBF(CF)、LiBF(C)、LiBF(C)、LiBF(C)、LiC(SOCF、CFSOOLi、CFCOOLi、及びR’COOLi(R’は、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。 Lithium salts include LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f3C], Li [BOB], LiClO 4 , LiBF 3 (CF 3 ), LiBF 3 (C 2 F 5 ), LiBF 3 (C 3 F 7 ), LiBF 3 (C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , CF 3 SO 2 OLi, CF 3 COOLi, and R′COOLi (R ′ have 1 to 4 carbon atoms) Or an alkyl group, a phenyl group, or a naphthyl group.).
 ナトリウム塩は、NaPF、NaBF、Na[FSI]、Na[TFSI]、Na[f3C]、Na[BOB]、NaClO、NaBF(CF)、NaBF(C)、NaBF(C)、NaBF(C)、NaC(SOCF、CFSOONa、CFCOONa、及びR’COONa(R’は、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。 Sodium salt, NaPF 6, NaBF 4, Na [FSI], Na [TFSI], Na [f3C], Na [BOB], NaClO 4, NaBF 3 (CF 3), NaBF 3 (C 2 F 5), NaBF 3 (C 3 F 7 ), NaBF 3 (C 4 F 9 ), NaC (SO 2 CF 3 ) 3 , CF 3 SO 2 ONa, CF 3 COONa, and R′COONa (R ′ has 1 to 4 carbon atoms) Or an alkyl group, a phenyl group, or a naphthyl group.).
 カルシウム塩は、Ca(PF、Ca(BF、Ca[FSI]、Ca[TFSI]、Ca[f3C]、Ca[BOB]、Ca(ClO、Ca[BF(CF)]、Ca[BF(C)]、Ca[BF(C)]、Ca[BF(C)]、Ca[C(SOCF、(CFSOO)Ca、(CFCOO)Ca、及び(R’COO)Ca(R’は、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。 Calcium salts include Ca (PF 6 ) 2 , Ca (BF 4 ) 2 , Ca [FSI] 2 , Ca [TFSI] 2 , Ca [f3C] 2 , Ca [BOB] 2 , Ca (ClO 4 ) 2 , Ca [BF 3 (CF 3 )] 2 , Ca [BF 3 (C 2 F 5 )] 2 , Ca [BF 3 (C 3 F 7 )] 2 , Ca [BF 3 (C 4 F 9 )] 2 , Ca [C (SO 2 CF 3 ) 3 ] 2 , (CF 3 SO 2 O) 2 Ca, (CF 3 COO) 2 Ca, and (R′COO) 2 Ca (R ′ is an alkyl having 1 to 4 carbon atoms) Or a phenyl group or a naphthyl group).
 マグネシウム塩は、Mg(PF、Mg(BF、Mg[FSI]、Mg[TFSI]、Mg[f3C]、Mg[BOB]、Na(ClO、Mg[BF(CF)]、Mg[BF(C)]、Mg[BF(C)]、Mg[BF(C)]、Mg[C(SOCF、(CFSOMg、(CFCOO)Mg、及び(R’COO)Mg(R’は、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。 Magnesium salts include Mg (PF 6 ) 2 , Mg (BF 4 ) 2 , Mg [FSI] 2 , Mg [TFSI] 2 , Mg [f3C] 2 , Mg [BOB] 2 , Na (ClO 4 ) 2 , Mg [BF 3 (CF 3 )] 2 , Mg [BF 3 (C 2 F 5 )] 2 , Mg [BF 3 (C 3 F 7 )] 2 , Mg [BF 3 (C 4 F 9 )] 2 , Mg [C (SO 2 CF 3 ) 3 ] 2 , (CF 3 SO 3 ) 2 Mg, (CF 3 COO) 2 Mg, and (R′COO) 2 Mg (R ′ is an alkyl group having 1 to 4 carbon atoms) , A phenyl group, or a naphthyl group.).
 電解質塩は、好ましくは、イミド系リチウム塩、イミド系ナトリウム塩、イミド系カルシウム塩、及びイミド系マグネシウム塩からなる群より選ばれる1種であり、より好ましくは、イミド系リチウム塩である。 The electrolyte salt is preferably one kind selected from the group consisting of an imide-based lithium salt, an imide-based sodium salt, an imide-based calcium salt, and an imide-based magnesium salt, and more preferably an imide-based lithium salt.
 イミド系リチウム塩は、Li[TFSI]、Li[FSI]等であってよい。イミド系ナトリウム塩は、Na[TFSI]、Na[FSI]等であってよい。イミド系カルシウム塩は、Ca[TFSI]、Ca[FSI]等であってよい。イミド系マグネシウム塩は、Mg[TFSI]、Mg[FSI]等であってよい。 The imide-based lithium salt may be Li [TFSI], Li [FSI], or the like. The imide-based sodium salt may be Na [TFSI], Na [FSI] or the like. The imide-based calcium salt may be Ca [TFSI] 2 , Ca [FSI] 2 or the like. The imide-based magnesium salt may be Mg [TFSI] 2 , Mg [FSI] 2 or the like.
 電解質スラリー組成物は、一般式(10)で表される化合物(グライム)及びイオン液体の少なくとも一方を含有する。グライム及びイオン液体は、分散媒に包含されない。電解質スラリー組成物は、放電特性の観点から、イオン液体を含有することが好ましい。 The electrolyte slurry composition contains at least one of the compound (glyme) represented by the general formula (10) and an ionic liquid. Grimes and ionic liquids are not included in the dispersion medium. It is preferable that the electrolyte slurry composition contains an ionic liquid from the viewpoint of discharge characteristics.
 グライムは、一般式(10)で表される化合物である。
 RO-(CHCHO)-R (10)
Grime is a compound represented by the general formula (10).
R A O- (CH 2 CH 2 O) y -R B (10)
 式(10)中、R及びRはそれぞれ独立に炭素数1~4のアルキル基を示し、yは1~6の整数を示す。R及びRとしてのアルキル基は、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等であってよい。これらの中でも、アルキル基は、メチル基又はエチル基であることが好ましい。 In the formula (10), R A and R B each independently represent an alkyl group having 1 to 4 carbon atoms, and y represents an integer of 1 to 6. The alkyl group as R A and R B may be a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, or the like. Among these, the alkyl group is preferably a methyl group or an ethyl group.
 グライムとしては、例えば、トリエチレングリコールジメチルエーテル(「トリグライム」又は「G3」という場合がある)、テトラエチレングリコールジメチルエーテル(「テトラグライム」又は「G4」という場合がある)、ペンタエチレングリコールジメチルエーテル(「ペンタグライム」又は「G5」という場合がある)、ヘキサエチレングリコールジメチルエーテル(「ヘキサグライム」又は「G6」という場合がある)等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、グライムは、好ましくはトリグライム又はテトラグライムであり、より好ましくはテトラグライムである。 Examples of glymes include triethylene glycol dimethyl ether (sometimes referred to as “triglyme” or “G3”), tetraethylene glycol dimethyl ether (sometimes referred to as “tetraglyme” or “G4”), and pentaethylene glycol dimethyl ether (“pentane”). Glyme "or" G5 "), hexaethylene glycol dimethyl ether (sometimes referred to as" hexaglyme "or" G6 "), and the like. These may be used alone or in combination of two or more. Among these, glyme is preferably triglyme or tetraglyme, more preferably tetraglyme.
 電解質スラリー組成物がグライムを含有する場合、グライムの一部又は全部は、電解質塩と錯体を形成していてもよい。グライムと電解質塩とで形成される錯体は、イオン液体と同様の性質を有し得る。 When the electrolyte slurry composition contains glyme, part or all of the glyme may form a complex with the electrolyte salt. The complex formed between glyme and the electrolyte salt can have properties similar to the ionic liquid.
 イオン液体は、以下のアニオン成分及びカチオン成分を含む。なお、本実施形態におけるイオン液体は、-20℃以上で液状の物質である。イオン液体は、構成するカチオンとアニオンの間に働く強い静電的な相互作用により水、分散媒等の分子性液体とは異なり、蒸気圧がほとんどないことが知られている。 The ionic liquid contains the following anion component and cation component. The ionic liquid in the present embodiment is a substance that is liquid at −20 ° C. or higher. It is known that ionic liquids have almost no vapor pressure unlike molecular liquids such as water and a dispersion medium due to strong electrostatic interaction acting between constituent cations and anions.
 イオン液体のアニオン成分は、特に限定されないが、Cl、Br、I等のハロゲンのアニオン、BF 、N(SOF) 等の無機アニオン、B(C 、CHSO、CFSO、N(SO 、N(SOCF 、N(SO 等の有機アニオンなどであってよい。 The anionic component of the ionic liquid is not particularly limited, but anions of halogens such as Cl , Br , and I , inorganic anions such as BF 4 and N (SO 2 F) 2 , and B (C 6 H 5 ) 4 -, CH 3 SO 2 O -, CF 3 SO 2 O -, N (SO 2 C 4 F 9) 2 -, N (SO 2 CF 3) 2 -, N (SO 2 C 2 F 5) 2 - And the like.
 イオン液体のアニオン成分は、好ましくは、下記一般式(A)で表されるアニオン成分の少なくとも1種を含む。
 N(SO2m+1)(SO2n+1 (A)
The anionic component of the ionic liquid preferably contains at least one anionic component represented by the following general formula (A).
N (SO 2 C m F 2m + 1) (SO 2 C n F 2n + 1) - (A)
 式(A)中、m及びnは、それぞれ独立に0~5の整数を表す。m及びnは、互いに同一でも異なっていてもよく、好ましくは互いに同一である。 中 In the formula (A), m and n each independently represent an integer of 0 to 5. m and n may be the same or different from each other, and are preferably the same as each other.
 式(A)で表されるアニオン成分は、例えば、N(SO 、N(SOF) 、N(SOCF 、及びN(SO である。 The anion component represented by the formula (A) includes, for example, N (SO 2 C 4 F 9 ) 2 , N (SO 2 F) 2 , N (SO 2 CF 3 ) 2 , and N (SO 2 C 2 F 5 ) 2 .
 イオン液体のアニオン成分は、比較的低粘度でイオン伝導度を更に向上させるとともに、充放電特性も更に向上させる観点から、より好ましくは、N(SO 、CFSO、N(SOF) 、N(SOCF 、及びN(SO からなる群より選ばれる少なくとも1種を含み、更に好ましくはN(SOF) を含む。 The anionic component of the ionic liquid is more preferably N (SO 2 C 4 F 9 ) 2 , CF 3 SO from the viewpoint of further improving the ionic conductivity at a relatively low viscosity and further improving the charge / discharge characteristics. At least one selected from the group consisting of 2 O , N (SO 2 F) 2 , N (SO 2 CF 3 ) 2 , and N (SO 2 C 2 F 5 ) 2 −, and more preferably N (SO 2 F) 2 - containing.
 イオン液体のカチオン成分は、特に限定されないが、好ましくは鎖状四級オニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、ピリジニウムカチオン、及びイミダゾリウムカチオンからなる群より選ばれる少なくとも1種である。 The cation component of the ionic liquid is not particularly limited, but is preferably at least one selected from the group consisting of a chain quaternary onium cation, a piperidinium cation, a pyrrolidinium cation, a pyridinium cation, and an imidazolium cation.
 鎖状四級オニウムカチオンは、例えば、下記一般式(2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000001
[式(2)中、R~Rは、それぞれ独立に、炭素数が1~20の鎖状アルキル基、又はR-O-(CH-で表される鎖状アルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表し、Xは、窒素原子又はリン原子を表す。R~Rで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The chain quaternary onium cation is, for example, a compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000001
[In the formula (2), R 1 to R 4 each independently represent a chain alkyl group having 1 to 20 carbon atoms or a chain alkoxyalkyl group represented by RO— (CH 2 ) n — (R represents a methyl group or an ethyl group, n represents an integer of 1 to 4), and X represents a nitrogen atom or a phosphorus atom. The carbon number of the alkyl group represented by R 1 to R 4 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. ]
 ピペリジニウムカチオンは、例えば、下記一般式(3)で表される、窒素を含む六員環環状化合物である。
Figure JPOXMLDOC01-appb-C000002
[式(3)中、R及びRは、それぞれ独立に、炭素数が1~20のアルキル基、又はR-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表す。R及びRで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The piperidinium cation is, for example, a nitrogen-containing six-membered cyclic compound represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000002
[In the formula (3), R 5 and R 6 are each independently an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group represented by RO— (CH 2 ) n — (R is methyl And n represents an integer of 1 to 4). The alkyl group represented by R 5 and R 6 preferably has 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5 carbon atoms. ]
 ピロリジニウムカチオンは、例えば、下記一般式(4)で表される五員環環状化合物である。
Figure JPOXMLDOC01-appb-C000003
[式(4)中、R及びRは、それぞれ独立に、炭素数が1~20のアルキル基、又はR-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表す。R及びRで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The pyrrolidinium cation is, for example, a five-membered cyclic compound represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000003
[In the formula (4), R 7 and R 8 are each independently an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group represented by RO— (CH 2 ) n — (R is methyl And n represents an integer of 1 to 4). The alkyl group represented by R 7 and R 8 preferably has 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5 carbon atoms. ]
 ピリジニウムカチオンは、例えば、一般式(5)で示される化合物である。
Figure JPOXMLDOC01-appb-C000004
[式(5)中、R~R13は、それぞれ独立に、炭素数が1~20のアルキル基、R-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)、又は水素原子を表す。R~R13で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The pyridinium cation is, for example, a compound represented by the general formula (5).
Figure JPOXMLDOC01-appb-C000004
[In the formula (5), R 9 to R 13 are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxyalkyl group represented by RO— (CH 2 ) n — (R is a methyl group Or an ethyl group, and n represents an integer of 1 to 4), or a hydrogen atom. The carbon number of the alkyl group represented by R 9 to R 13 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. ]
 イミダゾリウムカチオンは、例えば、一般式(6)で示される化合物である。
Figure JPOXMLDOC01-appb-C000005
[式(6)中、R14~R18は、それぞれ独立に、炭素数が1~20のアルキル基、R-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)、又は水素原子を表す。R14~R18で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The imidazolium cation is, for example, a compound represented by the general formula (6).
Figure JPOXMLDOC01-appb-C000005
[In the formula (6), R 14 to R 18 each independently represent an alkyl group having 1 to 20 carbon atoms, an alkoxyalkyl group represented by RO— (CH 2 ) n — (R is a methyl group Or an ethyl group, and n represents an integer of 1 to 4), or a hydrogen atom. The carbon number of the alkyl group represented by R 14 to R 18 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. ]
 グライム及びイオン液体の合計の含有量は、電解質層7を好適に作製する観点から、電解質スラリー組成物の分散媒を除いた成分全量を基準として、10質量%以上であってよく、80質量%以下であってよい。グライム及びイオン液体の合計の含有量は、リチウム二次電池を高い負荷率で充放電することを可能にする観点から、電解質スラリー組成物の分散媒を除いた成分全量を基準として、好ましくは20質量%以上、より好ましくは30質量%以上である。 From the viewpoint of suitably preparing the electrolyte layer 7, the total content of glyme and ionic liquid may be 10% by mass or more and 80% by mass or more based on the total amount of components excluding the dispersion medium of the electrolyte slurry composition. It may be: From the viewpoint of enabling the lithium secondary battery to be charged and discharged at a high load rate, the total content of the glyme and the ionic liquid is preferably 20% based on the total amount of the components excluding the dispersion medium of the electrolyte slurry composition. % By mass or more, more preferably 30% by mass or more.
 電解質層7におけるグライム及びイオン液体の合計の単位体積あたりの電解質塩の濃度は、充放電特性を更に向上させる観点から、好ましくは0.5mol/L以上、より好ましくは0.7mol/L以上、更に好ましくは1.0mol/L以上であり、また、好ましくは3.0mol/L以下、より好ましくは2.5mol/L以下、更に好ましくは2.3mol/L以下である。 The concentration of the electrolyte salt per unit volume of the total of glyme and ionic liquid in the electrolyte layer 7 is preferably 0.5 mol / L or more, more preferably 0.7 mol / L or more, from the viewpoint of further improving the charge / discharge characteristics. It is more preferably at least 1.0 mol / L, preferably at most 3.0 mol / L, more preferably at most 2.5 mol / L, even more preferably at most 2.3 mol / L.
 電解質スラリー組成物は、分散媒を含有する。ただし、上述のグライム及びイオン液体は、分散媒に包含されない。分散媒としては、特に制限されないが、例えば、N-メチル-2-ピロリドン、ジメチルアセトアミド、アセトン、エチルメチルケトン、シクロヘキサノン、γ-ブチロラクトン、2-ブタノール、ジメチルスルホキシド等が挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The electrolyte slurry composition contains a dispersion medium. However, the above-mentioned glymes and ionic liquids are not included in the dispersion medium. The dispersion medium is not particularly restricted but includes, for example, N-methyl-2-pyrrolidone, dimethylacetamide, acetone, ethyl methyl ketone, cyclohexanone, γ-butyrolactone, 2-butanol, dimethylsulfoxide and the like. These may be used alone or in combination of two or more.
 電解質スラリー組成物はその他の成分を含有していてもよい。その他の成分としては、例えば、セルロース繊維、樹脂繊維、ガラス繊維等が挙げられる。その他の成分の含有量は、電解質スラリー組成物の分散媒を除いた成分全量を基準として、0.1~20質量%であってよい。 The electrolyte slurry composition may contain other components. Other components include, for example, cellulose fiber, resin fiber, glass fiber and the like. The content of the other components may be 0.1 to 20% by mass based on the total amount of the components excluding the dispersion medium of the electrolyte slurry composition.
 電解質スラリー組成物中の含有成分濃度は、電解質スラリー組成物の全質量を基準として、5~70質量%であってよい。 濃度 The concentration of the components contained in the electrolyte slurry composition may be 5 to 70% by mass based on the total mass of the electrolyte slurry composition.
 電解質スラリー組成物は、1種又は2種以上のポリマ、酸化物粒子、リチウム塩、ナトリウム塩、カルシウム塩及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩、一般式(10)で表される化合物及びイオン液体の少なくとも一方、分散媒、並びにその他の成分を混合、混練することによって調製することができる。混合及び混練は、通常の撹拌機、らいかい機、三本ロール、ボールミル、ビーズミル等の分散機を適宜、組み合わせて行うことができる。 The electrolyte slurry composition includes at least one electrolyte salt selected from the group consisting of one or more polymers, oxide particles, lithium salts, sodium salts, calcium salts, and magnesium salts, represented by the general formula (10). It can be prepared by mixing and kneading at least one of the compound and the ionic liquid, a dispersion medium, and other components. Mixing and kneading can be performed by appropriately combining ordinary dispersers such as a stirrer, a mill, a three-roll mill, a ball mill, and a bead mill.
 電解質層7として使用される電解質シートは、上述の電解質スラリー組成物を基材上に配置する工程と、配置された電解質スラリー組成物から分散媒を除去して基材上に電解質層を形成する工程とを備える製造方法によって作製される。図4(a)は、一実施形態に係る電解質シートを示す模式断面図である。図4(a)に示すように、電解質シート13Aは、基材14と、基材14上に設けられた電解質層7とを有する。電解質層7は、電解質スラリー組成物から分散媒を除いた成分で構成され得る。 The electrolyte sheet used as the electrolyte layer 7 is a step of arranging the above-described electrolyte slurry composition on a substrate, and forming an electrolyte layer on the substrate by removing a dispersion medium from the arranged electrolyte slurry composition. And a manufacturing method comprising the steps of: FIG. 4A is a schematic cross-sectional view illustrating an electrolyte sheet according to one embodiment. As shown in FIG. 4A, the electrolyte sheet 13A has a base material 14 and an electrolyte layer 7 provided on the base material 14. The electrolyte layer 7 can be composed of components obtained by removing the dispersion medium from the electrolyte slurry composition.
 電解質スラリー組成物を基材上に配置する方法としては、特に制限されないが、例えば、ドクターブレード法、ディッピング法、スプレー法等による塗布などが挙げられる。 (4) The method for disposing the electrolyte slurry composition on the substrate is not particularly limited, and examples thereof include application by a doctor blade method, a dipping method, a spray method and the like.
 電解質スラリー組成物から分散媒を除去する方法としては、特に制限されないが、例えば、電解質スラリー組成物を加熱して分散媒を揮発させる方法等が挙げられる。加熱温度は、使用される分散媒に合わせて適宜設定することができる。 (4) The method of removing the dispersion medium from the electrolyte slurry composition is not particularly limited, and examples thereof include a method of heating the electrolyte slurry composition to volatilize the dispersion medium. The heating temperature can be set appropriately according to the dispersion medium used.
 基材14は、電解質スラリー組成物で使用される分散媒に対する接触角が60°以下であり、分散媒を揮発させる際の加熱に耐え得る耐熱性を有し、かつ電解質スラリー組成物によって膨潤しないものであれば制限されない。基材14は、樹脂からなるフィルムであってよく、より具体的には、ポリエチレンテレフタレート(PET)、ポリ四フッ化エチレン、ポリイミド、ポリエーテルサルフォン、ポリエーテルケトン等の樹脂(汎用のエンジニアプラスチック)からなるフィルムであってよい。基材14は、上記条件を満たす市販品を適宜選択して用いることができる。 The base material 14 has a contact angle to the dispersion medium used in the electrolyte slurry composition of 60 ° or less, has heat resistance enough to withstand heating when the dispersion medium is volatilized, and does not swell with the electrolyte slurry composition. Is not limited. The substrate 14 may be a film made of a resin, and more specifically, a resin such as polyethylene terephthalate (PET), polytetrafluoroethylene, polyimide, polyethersulfone, or polyetherketone (a general-purpose engineering plastic). ) May be used. As the base material 14, a commercially available product satisfying the above conditions can be appropriately selected and used.
 基材14の電解質スラリー組成物で使用される分散媒に対する接触角は、塗工乾燥工程において、電解質スラリー組成物を塗工したときの塗工幅が分散媒を除去した後においても小さくなり難く、塗工幅の変動が生じ難いことから、60°以下であり、50°以下、45°以下、40°以下、35°以下、30°以下、25°以下、20°以下、又は15°以下であってもよい。また、基材14は、分散媒に対する接触角が60°以下であると、他の部材(例えば、粘着テープ等)との密着性に優れる傾向にある。そのため、このような基材を用いることによって、基材と基材上に設けられた電解質層との密着性に優れることが推測される。基材14の電解質スラリー組成物で使用される分散媒に対する接触角は、特に制限されないが、電解質スラリー組成物を塗工したときの塗工幅が分散媒を除去した後においても大きくなり難く、塗工幅の変動が生じ難いことから、1°以上、2°以上、3°以上、4°以上、5°以上、6°以上、7°以上、又は8°以上であってよい。なお、本明細書において、基材14の電解質スラリー組成物で使用される分散媒に対する接触角は、例えば、実施例に記載の方法によって求めることができる。 The contact angle of the base material 14 with respect to the dispersion medium used in the electrolyte slurry composition is less likely to be small even after the dispersion medium is removed in the coating and drying step when the application of the electrolyte slurry composition is performed. , Since the fluctuation of the coating width is unlikely to occur, it is 60 ° or less, 50 ° or less, 45 ° or less, 40 ° or less, 35 ° or less, 30 ° or less, 25 ° or less, 20 ° or less, or 15 ° or less. It may be. When the contact angle with respect to the dispersion medium is 60 ° or less, the base material 14 tends to have excellent adhesion with other members (for example, an adhesive tape or the like). Therefore, it is presumed that the use of such a base material provides excellent adhesion between the base material and the electrolyte layer provided on the base material. The contact angle of the base material 14 with respect to the dispersion medium used in the electrolyte slurry composition is not particularly limited, but the coating width when the electrolyte slurry composition is applied is not likely to be large even after removing the dispersion medium, The coating width may be 1 ° or more, 2 ° or more, 3 ° or more, 4 ° or more, 5 ° or more, 6 ° or more, 7 ° or more, or 8 ° or more because the coating width hardly changes. In the present specification, the contact angle of the substrate 14 with respect to the dispersion medium used in the electrolyte slurry composition can be determined, for example, by the method described in Examples.
 基材14は、シリコーン等の表面処理剤で離型処理が施されていても施されていなくてもよいが、接触角をより小さくできる傾向にあることから、表面処理剤で離型処理が施されていないことが好ましい。 The base material 14 may or may not have been subjected to a release treatment with a surface treatment agent such as silicone. However, since the contact angle tends to be smaller, the release treatment with the surface treatment agent is not preferable. It is preferably not applied.
 基材14は、電解質層を製造する過程において分散媒を揮発させる処理温度に耐えられる耐熱温度を有していればよい。耐熱温度は、基材14が樹脂で形成されている場合、基材14の軟化点(塑性変形し始める温度)又は融点のうち、より低い温度である。基材14の耐熱温度は、電解質層7に用いられるグライム及びイオン液体との適応性の観点から、好ましくは50℃以上、より好ましくは100℃以上、更に好ましくは150℃以上であり、また、例えば400℃以下であってよい。上記の耐熱温度を有する基材を使用すれば、上述したような分散媒を好適に使用できる。 The base material 14 only needs to have a heat-resistant temperature that can withstand the processing temperature for volatilizing the dispersion medium in the process of manufacturing the electrolyte layer. When the base material 14 is formed of a resin, the heat-resistant temperature is a lower temperature among the softening point (the temperature at which plastic deformation starts) or the melting point of the base material 14. The heat-resistant temperature of the substrate 14 is preferably 50 ° C. or higher, more preferably 100 ° C. or higher, and still more preferably 150 ° C. or higher, from the viewpoint of compatibility with the glyme and the ionic liquid used for the electrolyte layer 7. For example, it may be 400 ° C. or lower. If a substrate having the above heat-resistant temperature is used, the above-described dispersion medium can be suitably used.
 基材14の厚さは、塗布装置での引張り力に耐え得る強度を維持しつつ、可能な限り薄いことが好ましい。基材14の厚さは、電解質シート13A全体の体積を小さくしつつ、電解質スラリー組成物を基材14に塗布する際に強度を確保する観点から、好ましくは5μm以上、より好ましくは10μm以上、更に好ましくは25μm以上であり、また、好ましくは100μm以下、より好ましくは50μm以下、更に好ましくは40μm以下である。 It is preferable that the thickness of the base material 14 is as thin as possible while maintaining the strength that can withstand the tensile force in the coating device. The thickness of the substrate 14 is preferably 5 μm or more, more preferably 10 μm or more, from the viewpoint of securing strength when applying the electrolyte slurry composition to the substrate 14 while reducing the volume of the entire electrolyte sheet 13A. It is more preferably at least 25 μm, preferably at most 100 μm, more preferably at most 50 μm, further preferably at most 40 μm.
 電解質シートは、ロール状に巻き取りながら連続的に製造することもできる。その場合には、電解質層7の表面が基材14の背面に接触して電解質層7の一部が基材14に貼りつくことにより、電解質層7が破損することがある。このような事態を防ぐために、電解質シートは他の実施形態として、電解質層7の基材14と反対側に保護材を設けたものであってもよい。図4(b)は、他の実施形態に係る電解質シートを示す模式断面図である。図4(b)に示すように、電解質シート13Bは、電解質層7の基材14と反対側に保護材15を更に備えている。 The electrolyte sheet can be continuously manufactured while being wound up in a roll shape. In this case, the surface of the electrolyte layer 7 contacts the back surface of the substrate 14 and a part of the electrolyte layer 7 sticks to the substrate 14, which may damage the electrolyte layer 7. In order to prevent such a situation, as another embodiment, the electrolyte sheet may be provided with a protective material on the side opposite to the base material 14 of the electrolyte layer 7. FIG. 4B is a schematic cross-sectional view illustrating an electrolyte sheet according to another embodiment. As shown in FIG. 4B, the electrolyte sheet 13B further includes a protective material 15 on the opposite side of the electrolyte layer 7 from the base material 14.
 保護材15は、電解質層7から容易に剥離可能なものであればよく、好ましくはポリエチレン、ポリプロピレン、ポリ四フッ化エチレン等の無極性の樹脂フィルムである。無極性の樹脂フィルムを用いると、電解質層7と保護材15とが互いに貼りつかず、保護材15を容易に剥離することができる。 The protective material 15 may be any material that can be easily peeled off from the electrolyte layer 7, and is preferably a non-polar resin film such as polyethylene, polypropylene, and polytetrafluoroethylene. When a nonpolar resin film is used, the electrolyte layer 7 and the protective material 15 do not adhere to each other, and the protective material 15 can be easily peeled off.
 保護材15の厚さは、電解質シート13B全体の体積を小さくしつつ、強度を確保する観点から、好ましくは5μm以上、より好ましくは10μmであり、また、好ましくは100μm以下、より好ましくは50μm以下、更に好ましくは30μm以下である。 The thickness of the protective material 15 is preferably 5 μm or more, more preferably 10 μm, and preferably 100 μm or less, more preferably 50 μm or less, from the viewpoint of securing strength while reducing the volume of the entire electrolyte sheet 13B. And more preferably 30 μm or less.
 保護材15の耐熱温度は、低温環境での劣化を抑制するとともに、高温環境下での軟化を抑制する観点から、好ましくは-30℃以上、より好ましくは0℃以上であり、また、好ましくは100℃以下、より好ましくは50℃以下である。保護材15を設ける場合、上述した分散媒の揮発工程を必須としないため、耐熱温度を高くする必要がない。 The heat resistant temperature of the protective material 15 is preferably −30 ° C. or higher, more preferably 0 ° C. or higher, from the viewpoint of suppressing deterioration in a low temperature environment and suppressing softening in a high temperature environment. It is 100 ° C. or lower, more preferably 50 ° C. or lower. When the protective material 15 is provided, the above-mentioned step of volatilizing the dispersion medium is not essential, so that it is not necessary to increase the heat-resistant temperature.
 電解質層7の厚さは、導電率を高め、強度を向上させる観点から、好ましくは5μm以上、より好ましくは10μm以上である。電解質層7の厚さは、電解質層7の抵抗を抑制する観点から、好ましくは200μm以下、より好ましくは150μm以下、更に好ましくは100μm以下、特に好ましくは50μm以下である。 厚 The thickness of the electrolyte layer 7 is preferably 5 µm or more, more preferably 10 µm or more, from the viewpoint of increasing the conductivity and improving the strength. From the viewpoint of suppressing the resistance of the electrolyte layer 7, the thickness of the electrolyte layer 7 is preferably 200 μm or less, more preferably 150 μm or less, further preferably 100 μm or less, and particularly preferably 50 μm or less.
 続いて、上述した二次電池1の製造方法について説明する。本実施形態に係る二次電池1の製造方法は、正極集電体9上に正極合剤層10を形成して正極6を得る第1の工程と、負極集電体11上に負極合剤層12を形成して負極8を得る第2の工程と、上述の製造方法によって得られた電解質シートの電解質層7を正極6と負極8との間に配置する第3の工程とを備える。 Next, a method for manufacturing the above-described secondary battery 1 will be described. The method for manufacturing the secondary battery 1 according to the present embodiment includes a first step of forming the positive electrode mixture layer 10 on the positive electrode current collector 9 to obtain the positive electrode 6, and a step of forming the negative electrode mixture on the negative electrode current collector 11. A second step of forming the layer 12 to obtain the negative electrode 8 and a third step of disposing the electrolyte layer 7 of the electrolyte sheet obtained by the above-described manufacturing method between the positive electrode 6 and the negative electrode 8 are provided.
 第1の工程において、正極6は、例えば、正極合剤層に用いる材料を混練機、分散機等を用いて分散媒に分散させてスラリー状の正極合剤を得た後、この正極合剤をドクターブレード法、ディッピング法、スプレー法等により正極集電体9上に塗布し、その後分散媒を揮発させることにより得られる。分散媒を揮発させた後、必要に応じて、ロールプレスによる圧縮成型工程が設けられてもよい。正極合剤層10は、上述した正極合剤の塗布から分散媒の揮発までの工程を複数回行うことにより、多層構造の正極合剤層として形成されてもよい。 In the first step, for example, the positive electrode 6 is obtained by dispersing the material used for the positive electrode mixture layer in a dispersion medium using a kneader, a disperser, or the like to obtain a slurry-type positive electrode mixture. Is applied on the positive electrode current collector 9 by a doctor blade method, a dipping method, a spray method, or the like, and then the dispersion medium is volatilized. After volatilizing the dispersion medium, a compression molding step by a roll press may be provided as necessary. The positive electrode mixture layer 10 may be formed as a positive electrode mixture layer having a multilayer structure by performing the above-described steps from application of the positive electrode mixture to volatilization of the dispersion medium a plurality of times.
 第1の工程において用いられる分散媒は、水、1-メチル-2-ピロリドン(以下、NMPともいう。)等であってよい。 分散 The dispersion medium used in the first step may be water, 1-methyl-2-pyrrolidone (hereinafter also referred to as NMP) or the like.
 第2の工程において、負極集電体11に負極合剤層12を形成する方法は、上述した第1の工程と同様の方法であってよい。 に お い て In the second step, the method of forming the negative electrode mixture layer 12 on the negative electrode current collector 11 may be the same method as in the first step described above.
 第3の工程において、電解質シート13Aを用いて正極6と負極8との間に電解質層7を配置する方法は、例えば、電解質シート13Aから基材14を剥離し、正極6、電解質層7、及び負極8を、例えば、ラミネートにより積層することで二次電池1が得られる。このとき、電解質層7が、正極6の正極合剤層10側かつ負極8の負極合剤層12側に位置するように、すなわち、正極集電体9、正極合剤層10、電解質層7、負極合剤層12、及び負極集電体11がこの順で配置されるように積層する。 In the third step, a method of disposing the electrolyte layer 7 between the positive electrode 6 and the negative electrode 8 using the electrolyte sheet 13A includes, for example, peeling the base material 14 from the electrolyte sheet 13A, and removing the positive electrode 6, the electrolyte layer 7, The secondary battery 1 is obtained by laminating the negative electrode 8 with a laminate, for example. At this time, the electrolyte layer 7 is positioned on the side of the positive electrode mixture layer 10 of the positive electrode 6 and on the side of the negative electrode mixture layer 12 of the negative electrode 8, that is, the positive electrode current collector 9, the positive electrode mixture layer 10, and the electrolyte layer 7. , The negative electrode mixture layer 12 and the negative electrode current collector 11 are stacked in this order.
[第2実施形態]
 次に、第2実施形態に係る二次電池について説明する。図5は、第2実施形態に係る二次電池における電極群の一実施形態を示す模式断面図である。図5に示すように、第2実施形態における二次電池が第1実施形態における二次電池と異なる点は、電極群2Bが、バイポーラ電極16を備えている点である。すなわち、電極群2Bは、正極6と、第1の電解質層7と、バイポーラ電極16と、第2の電解質層7と、負極8とをこの順に備えている。
[Second embodiment]
Next, a secondary battery according to a second embodiment will be described. FIG. 5 is a schematic cross-sectional view showing one embodiment of an electrode group in the secondary battery according to the second embodiment. As shown in FIG. 5, the secondary battery in the second embodiment is different from the secondary battery in the first embodiment in that the electrode group 2B includes the bipolar electrode 16. That is, the electrode group 2B includes the positive electrode 6, the first electrolyte layer 7, the bipolar electrode 16, the second electrolyte layer 7, and the negative electrode 8 in this order.
 バイポーラ電極16は、バイポーラ電極集電体17と、バイポーラ電極集電体17の負極8側の面(正極面)に設けられた正極合剤層10と、バイポーラ電極集電体17の正極6側の面(負極面)に設けられた負極合剤層12とを備えている。 The bipolar electrode 16 includes a bipolar electrode current collector 17, a positive electrode mixture layer 10 provided on a surface (positive electrode surface) of the bipolar electrode current collector 17 on the negative electrode 8 side, and a positive electrode 6 side of the bipolar electrode current collector 17. (A negative electrode surface).
 バイポーラ電極集電体17において、正極面は、好ましくは耐酸化性に優れた材料で形成されていてよく、アルミニウム、ステンレス鋼、チタン等で形成されていてよい。バイポーラ電極集電体17において、負極面は、リチウムと合金を形成しない材料で形成されていてよく、具体的には、ステンレス鋼、ニッケル、鉄、チタン等で形成されていてよい。正極面及び負極面に異種の金属を用いる場合、バイポーラ電極集電体17は、異種金属箔を積層させたクラッド材であってよい。ただし、チタン酸リチウムのように、リチウムと合金を形成しない電位で動作する負極8を用いる場合、上述の制限はなくなり、負極面は、正極集電体9と同様の材料であってよい。その場合、バイポーラ電極集電体17は、単一の金属箔であってよい。単一の金属箔としてのバイポーラ電極集電体17は、孔径0.1~10mmの孔を有するアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板等であってよい。バイポーラ電極集電体17は、上記以外にも、電池の使用中に溶解、酸化等の変化を生じないものであれば、任意の材料で形成されていてよく、また、その形状、製造方法等も制限されない。 In the bipolar electrode current collector 17, the positive electrode surface may be preferably formed of a material having excellent oxidation resistance, and may be formed of aluminum, stainless steel, titanium, or the like. In the bipolar electrode current collector 17, the negative electrode surface may be formed of a material that does not form an alloy with lithium, and specifically, may be formed of stainless steel, nickel, iron, titanium, or the like. When different metals are used for the positive electrode surface and the negative electrode surface, the bipolar electrode current collector 17 may be a clad material in which different metal foils are laminated. However, in the case of using the negative electrode 8 that operates at a potential that does not form an alloy with lithium, such as lithium titanate, the above-described limitation is removed and the negative electrode surface may be made of the same material as the positive electrode current collector 9. In that case, the bipolar electrode current collector 17 may be a single metal foil. The bipolar electrode current collector 17 as a single metal foil may be a perforated aluminum foil having a hole diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate, or the like. In addition to the above, the bipolar electrode current collector 17 may be formed of any material as long as it does not cause a change such as dissolution or oxidation during use of the battery. Is not limited.
 バイポーラ電極集電体17の厚さは、10μm以上100μm以下であってよく、正極全体の体積を小さくする観点から、好ましくは10μm以上50μm以下であり、電池を形成する際に小さな曲率でバイポーラ電極を捲回する観点から、より好ましくは10μm以上20μm以下である。 The thickness of the bipolar electrode current collector 17 may be not less than 10 μm and not more than 100 μm, and is preferably not less than 10 μm and not more than 50 μm from the viewpoint of reducing the volume of the whole positive electrode. From the viewpoint of winding, the thickness is more preferably 10 μm or more and 20 μm or less.
 続いて、第2実施形態に係る二次電池の製造方法について説明する。本実施形態に係る二次電池の製造方法は、正極集電体9上に正極合剤層10を形成して正極6を得る第1の工程と、負極集電体11上に負極合剤層12を形成して負極8を得る第2の工程と、バイポーラ電極集電体17の一方の面に正極合剤層10を形成し、他方の面に負極合剤層12を形成してバイポーラ電極16を得る第3の工程と、正極6とバイポーラ電極16との間及び負極8とバイポーラ電極16との間に上述の製造方法によって得られた電解質シートの電解質層7を配置する第4の工程とを有する。 Next, a method for manufacturing the secondary battery according to the second embodiment will be described. The method for manufacturing a secondary battery according to the present embodiment includes a first step of forming a positive electrode mixture layer 10 on a positive electrode current collector 9 to obtain a positive electrode 6, and a negative electrode mixture layer on a negative electrode current collector 11. A second step of forming the negative electrode 8 by forming the negative electrode mixture layer 12, forming the positive electrode mixture layer 10 on one surface of the bipolar electrode current collector 17, and forming the negative electrode mixture layer 12 on the other surface of the bipolar electrode current collector 17. And a fourth step of disposing the electrolyte layer 7 of the electrolyte sheet obtained by the above-described manufacturing method between the positive electrode 6 and the bipolar electrode 16 and between the negative electrode 8 and the bipolar electrode 16. And
 第1の工程及び第2の工程は、第1実施形態における第1の工程及び第2の工程と同様の方法であってよい。 The first step and the second step may be the same method as the first step and the second step in the first embodiment.
 第3の工程において、バイポーラ電極集電体17の一方の面に正極合剤層10を形成する方法は、第1実施形態における第1の工程と同様の方法であってよい。バイポーラ電極集電体17の他方の面に負極合剤層12を形成する方法は、第1実施形態における第2の工程と同様の方法であってよい。 方法 In the third step, the method of forming the positive electrode mixture layer 10 on one surface of the bipolar electrode current collector 17 may be the same as the first step in the first embodiment. The method for forming the negative electrode mixture layer 12 on the other surface of the bipolar electrode current collector 17 may be the same as the second step in the first embodiment.
 第4の工程における正極6とバイポーラ電極16との間に上述の製造方法によって得られた電解質シートの電解質層7を配置する方法及び負極8とバイポーラ電極16との間に上述の製造方法によって得られた電解質シートの電解質層7を配置する方法は、第1実施形態における第3の工程と同様の方法であってよい。 The method of arranging the electrolyte layer 7 of the electrolyte sheet obtained by the above-described manufacturing method between the positive electrode 6 and the bipolar electrode 16 in the fourth step, and the method of obtaining the above-mentioned manufacturing method between the negative electrode 8 and the bipolar electrode 16 The method of arranging the electrolyte layer 7 of the obtained electrolyte sheet may be the same method as the third step in the first embodiment.
 以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be specifically described below based on examples, but the present invention is not limited thereto.
(基材の準備)
 以下の基材を準備した。
 基材A(東京フィルムサービス株式会社製、PETフィルム、離型処理:無)
 基材B(東京フィルムサービス株式会社製、ポリイミドフィルム、離型処理:無)
 基材C(東京フィルムサービス株式会社製、非シリコーン離型PETフィルム重剥離品、離型処理:有、離型処理剤中のシリコーンの有無:無)
 基材D(東京フィルムサービス株式会社製、シリコーン離型PETフィルム重剥離品、離型処理:有、離型処理剤中のシリコーンの有無:有)
 基材E(東京フィルムサービス株式会社製、シリコーン離型PETフィルム軽剥離品、離型処理:有、離型処理剤中のシリコーンの有無:有)
 基材F(東京フィルムサービス株式会社製、非シリコーン離型PETフィルム軽剥離品、離型処理:有、離型処理剤中のシリコーンの有無:無)
 基材G(東京フィルムサービス株式会社製、非シリコーン離型PETフィルム軽剥離品、離型処理:有、離型処理剤中のシリコーンの有無:無)
(Preparation of base material)
The following base materials were prepared.
Base material A (manufactured by Tokyo Film Service Co., Ltd., PET film, release treatment: none)
Substrate B (manufactured by Tokyo Film Service Co., Ltd., polyimide film, release treatment: none)
Substrate C (manufactured by Tokyo Film Service Co., Ltd., non-silicone release PET film heavy release product, release treatment: yes, presence or absence of silicone in release agent: none)
Substrate D (manufactured by Tokyo Film Service Co., Ltd., silicone release PET film heavy release product, release treatment: yes, presence or absence of silicone in release agent: yes)
Base material E (manufactured by Tokyo Film Service Co., Ltd., silicone release PET film light release product, release treatment: yes, presence or absence of silicone in release treatment agent: yes)
Base material F (manufactured by Tokyo Film Service Co., Ltd., non-silicone release PET film light release product, release treatment: yes, presence or absence of silicone in release treatment agent: no)
Base material G (manufactured by Tokyo Film Service Co., Ltd., non-silicone release PET film light release product, release treatment: yes, presence or absence of silicone in release treatment agent: no)
(基材の分散媒に対する接触角の測定)
 基材A~Gについて、基材の分散媒に対する接触角を測定した。測定には、接触角計(協和界面化学株式会社製、商品名:Drop Master300)を用いた。測定は、基材にプローブ液体として分散媒として使用するN-メチル-2-ピロリドン(NMP)を滴下することによって行った。測定条件は、温度を25℃とし、プローブ液体の液適量を1μLとし、測定タイミングをプローブの液適下後1000m秒とした。測定の試行数を3回とし、得られた数値の平均値を接触角θとして求めた。結果を表1に示す。
(Measurement of contact angle of substrate to dispersion medium)
For the substrates A to G, the contact angles of the substrates with respect to the dispersion medium were measured. A contact angle meter (trade name: Drop Master300, manufactured by Kyowa Interface Chemical Co., Ltd.) was used for the measurement. The measurement was performed by dropping N-methyl-2-pyrrolidone (NMP) used as a dispersion medium as a probe liquid on a substrate. The measurement conditions were as follows: the temperature was 25 ° C., the appropriate amount of the probe liquid was 1 μL, and the measurement timing was 1000 ms after the lowering of the probe liquid. The number of trials for measurement was set to three, and the average value of the obtained numerical values was determined as the contact angle θ. Table 1 shows the results.
(基材とポリエステル粘着テープとの密着性評価)
 基材A~Gについて、密着性の評価を行った。密着性の評価は、基材からポリエステル(PEs)粘着テープ(No.31Bテープ、日東電工株式会社製)を剥離する剥離力を測定することによって行った。基材を幅25mm、長さ300mmにカットしたサンプルに対して、基材にポリエステル粘着テープを2kgローラーで1往復させて貼り合わせた。室温(25℃)にて30分間静置した後、引張試験機を用いて180°方向へ300mm/分で引っ張り、剥離力を測定した。結果を表1に示す。
(Evaluation of adhesion between base material and polyester adhesive tape)
The substrates A to G were evaluated for adhesion. The evaluation of adhesion was performed by measuring a peeling force for peeling a polyester (PEs) adhesive tape (No. 31B tape, manufactured by Nitto Denko Corporation) from the substrate. A sample obtained by cutting the base material to a width of 25 mm and a length of 300 mm was bonded to the base material by reciprocating the polyester adhesive tape once with a 2 kg roller. After leaving still at room temperature (25 ° C.) for 30 minutes, it was pulled in the 180 ° direction at 300 mm / min using a tensile tester, and the peeling force was measured. Table 1 shows the results.
[実施例1]
(電解質スラリー組成物の調製)
 乾燥アルゴン雰囲気下で乾燥したリチウムビス(トリフルオロメタンスルホニル)イミド(Li[TFSI])を電解質塩として用い、テトラエチレングリコールジメチルエーテル(G4)に、電解質塩のモル濃度が2.3mol/Lとなるように溶解させ、Li[TFSI]のG4溶液を調製した。次に、ポリマとしてのフッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ(PVDF-HFP)と、酸化物粒子としてのSiO粒子(製品名:AEROSIL OX50、日本アエロジル株式会社製、比表面積:50m/g、平均一次粒径:約40nm)とを混合した後、分散媒としてのN-メチル-2-ピロリドン(NMP)を添加し、更にLi[TFSI]のG4溶液を更に添加して混合することによって、スラリーを得た。このとき、ポリマと、酸化物粒子と、Li[TFSI]
のG4溶液との質量比は、ポリマ:酸化物粒子:Li[TFSI]のG4溶液=34:23:43であった。得られたスラリーに対して、分散媒であるNMPを加えて粘度を調節し、電解質スラリー組成物Aを得た。電解質スラリー組成物A中の含有成分濃度は、電解質スラリー組成物Aの全質量を基準として、28質量%であった。
[Example 1]
(Preparation of electrolyte slurry composition)
Lithium bis (trifluoromethanesulfonyl) imide (Li [TFSI]) dried under a dry argon atmosphere is used as an electrolyte salt, and the molar concentration of the electrolyte salt in tetraethylene glycol dimethyl ether (G4) is 2.3 mol / L. To prepare a G4 solution of Li [TFSI]. Next, a copolymer of vinylidene fluoride and hexafluoropropylene (PVDF-HFP) as polymers and SiO 2 particles as oxide particles (product name: AEROSIL OX50, manufactured by Nippon Aerosil Co., Ltd., specific surface area: 50 m 2 / g, average primary particle size: about 40 nm), N-methyl-2-pyrrolidone (NMP) as a dispersion medium is added, and a G4 solution of Li [TFSI] is further added and mixed. Thus, a slurry was obtained. At this time, the polymer, the oxide particles, and Li [TFSI]
The mass ratio with respect to the G4 solution of polymer: oxide particles: G4 solution of Li [TFSI] = 34: 23: 43. NMP as a dispersion medium was added to the obtained slurry to adjust the viscosity, thereby obtaining an electrolyte slurry composition A. The concentration of the contained components in the electrolyte slurry composition A was 28% by mass based on the total mass of the electrolyte slurry composition A.
(電解質シートの作製)
 電解質スラリー組成物Aを基材A上にアプリケータを用いて塗工した。塗工された電解質スラリー組成物Aを100℃で1時間加熱乾燥することによって、分散媒を揮発させ、基材上に電解質層を備える電解質シートを得た。
(Preparation of electrolyte sheet)
The electrolyte slurry composition A was applied on the substrate A using an applicator. The coated electrolyte slurry composition A was heated and dried at 100 ° C. for 1 hour to volatilize the dispersion medium and obtain an electrolyte sheet having an electrolyte layer on a substrate.
(塗工幅の測定)
 上記で作製した電解質シートの電解質層(電解質スラリー組成物Aの分散媒を揮発させた後のもの)の幅を測定し、電解質スラリー組成物Aの塗工幅(220mm)に対する電解質シートの電解質層の幅の比率(電解質シートの電解質層の幅/電解質スラリー組成物Aの塗工幅)を塗工幅維持率として百分率で算出した。結果を表1に示す。
(Measurement of coating width)
The width of the electrolyte layer (after volatilizing the dispersion medium of the electrolyte slurry composition A) of the electrolyte sheet prepared above was measured, and the width of the electrolyte layer of the electrolyte sheet relative to the coating width (220 mm) of the electrolyte slurry composition A was measured. (The width of the electrolyte layer of the electrolyte sheet / the coating width of the electrolyte slurry composition A) was calculated as a coating width maintenance ratio in percentage. Table 1 shows the results.
(正極の作製)
 層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(正極活物質)78.5質量部、アセチレンブラック(導電剤、平均粒径48nm、製品名:HS-100、デンカ株式会社)5質量部、フッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ溶液(結着剤、固形分12質量%)2.5質量部、電解質塩のイオン液体溶液(1.5M/Li[FSI]/[Py13][FSI])14質量部を混合して正極合剤スラリーを調製した。この正極合剤スラリーを集電体(厚さ20μmのアルミニウム箔)上に塗工量147g/mで塗工し、80℃で乾燥させることにより、合剤密度2.9g/cmの正極合剤層を形成した。これをφ15mmに打ち抜き、正極とした。
(Preparation of positive electrode)
78.5 parts by mass of layered lithium / nickel / manganese / cobalt composite oxide (positive electrode active material), 5 parts by mass of acetylene black (conductive agent, average particle size 48 nm, product name: HS-100, Denka Corporation), 2.5 parts by mass of a copolymer solution of vinylidene fluoride and hexafluoropropylene (binder, solid content: 12% by mass), ionic liquid solution of electrolyte salt (1.5 M / Li [FSI] / [Py13] [FSI]) 14 parts by mass were mixed to prepare a positive electrode mixture slurry. The positive electrode mixture slurry was coated on a current collector (a 20 μm-thick aluminum foil) at a coating amount of 147 g / m 2 and dried at 80 ° C. to obtain a positive electrode having a mixture density of 2.9 g / cm 3 . A mixture layer was formed. This was punched out to φ15 mm to obtain a positive electrode.
(負極の作製)
 黒鉛A(負極活物質、日立化成株式会社製)78質量部、黒鉛B(日本黒鉛工業株式会社製)2.4質量部、炭素繊維(導電剤、製品名:VGCF-H、昭和電工株式会社)0.6質量部、フッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ溶液(結着剤、固形分12質量%)5質量部、電解質塩を溶解させたイオン液体(1.5M/Li[FSI]/[Py13][FSI])14質量部を混合して負極合剤スラリーを調製した。この負極合剤スラリーを集電体(厚さ10μmの銅箔)上に塗工量68g/mで塗工し、80℃で乾燥させることにより、合剤密度1.9g/cmの負極合剤層を形成した。これをφ16mmに打ち抜き、負極とした。
(Preparation of negative electrode)
78 parts by mass of graphite A (anode active material, manufactured by Hitachi Chemical Co., Ltd.), 2.4 parts by mass of graphite B (manufactured by Nippon Graphite Industries, Ltd.), carbon fiber (conductive agent, product name: VGCF-H, Showa Denko KK) ) 0.6 parts by mass, 5 parts by mass of a copolymer solution of vinylidene fluoride and hexafluoropropylene (binder, solid content: 12% by mass), an ionic liquid in which an electrolyte salt is dissolved (1.5 M / Li [FSI]) / [Py13] [FSI]) to prepare a negative electrode mixture slurry. This negative electrode mixture slurry was coated on a current collector (10 μm thick copper foil) at a coating amount of 68 g / m 2 and dried at 80 ° C. to obtain a negative electrode having a mixture density of 1.9 g / cm 3 . A mixture layer was formed. This was punched out to φ16 mm to obtain a negative electrode.
(二次電池の作製)
 得られた電解質シートをφ16mmに打ち抜き、基材Aを剥がすことによって電解質層を得た。正極、電解質層、及び負極を用いて評価用二次電池を作製した。ここで、乾燥アルゴン雰囲気下で乾燥したリチウムビス(フルオロスルホニル)イミド(Li[FSI])を電解質塩として用い、N-メチル-N-プロピルピロリジニウムビス(フルオロスルホニル)イミド([Py13][FSI])に、電解質塩の濃度が1.5mol/Lとなるように溶解させてLi[FSI]の[Py13][FSI]溶液を調製した。CR2016型のコインセル容器内に、Li[FSI]の[Py13][FSI]溶液を加え、正極、電解質層、及び負極をこの順に重ねて配置した後、絶縁性のガスケットを介して電池容器上部をかしめて密閉し、二次電池を得た。
(Preparation of secondary battery)
The obtained electrolyte sheet was punched out to φ16 mm, and the substrate A was peeled off to obtain an electrolyte layer. A secondary battery for evaluation was manufactured using the positive electrode, the electrolyte layer, and the negative electrode. Here, lithium bis (fluorosulfonyl) imide (Li [FSI]) dried under a dry argon atmosphere was used as an electrolyte salt, and N-methyl-N-propylpyrrolidinium bis (fluorosulfonyl) imide ([Py13] [ FSI] to prepare a [Py13] [FSI] solution of Li [FSI] by dissolving the electrolyte salt in a concentration of 1.5 mol / L. A [Py13] [FSI] solution of Li [FSI] is added into a CR2016 type coin cell container, and a positive electrode, an electrolyte layer, and a negative electrode are stacked in this order, and the upper portion of the battery container is placed via an insulating gasket. It closed by caulking and the secondary battery was obtained.
(電池の放電レート特性の測定)
 得られた二次電池について、25℃での放電レート特性を、充放電装置(東洋システム株式会社製)を用いて以下の充放電条件の下で測定した。
(1)終止電圧4.2V、0.05Cで定電流定電圧(CCCV)充電を行った後、0.05Cで終止電圧2.7Vまで定電流(CC)放電するサイクルを2サイクル行った。なお、Cとは「電流値(A)/電池容量(Ah)」を意味する。
(2)次いで、終止電圧4.2V、0.05Cで定電流定電圧(CCCV)充電を行った後、0.1Cで終止電圧2.7Vまで定電流(CC)放電、するサイクルを1サイクル行った。さらに1サイクルごとに定電流(CC)放電のレートを0.2、0.3、0.5、1.0Cと変化させ、放電レート特性を評価した。結果を表1に示す。
(Measurement of battery discharge rate characteristics)
With respect to the obtained secondary battery, discharge rate characteristics at 25 ° C. were measured using a charge / discharge device (manufactured by Toyo System Co., Ltd.) under the following charge / discharge conditions.
(1) After performing constant current constant voltage (CCCV) charging at a final voltage of 4.2 V and 0.05 C, two cycles of constant current (CC) discharging at 0.05 C to a final voltage of 2.7 V were performed. C means “current value (A) / battery capacity (Ah)”.
(2) Next, a constant current constant voltage (CCCV) charge is performed at a final voltage of 4.2 V and 0.05 C, and then a constant current (CC) discharge is performed at 0.1 C to a final voltage of 2.7 V. went. Further, the constant current (CC) discharge rate was changed to 0.2, 0.3, 0.5, and 1.0 C every cycle, and the discharge rate characteristics were evaluated. Table 1 shows the results.
[実施例2]
 基材Aを基材Bに変更した以外は、実施例1と同様にして、電解質シート及び二次電池を作製し、実施例1と同様の評価を行った。結果を表1に示す。
[Example 2]
An electrolyte sheet and a secondary battery were prepared in the same manner as in Example 1 except that the substrate A was changed to the substrate B, and the same evaluation as in Example 1 was performed. Table 1 shows the results.
[実施例3]
 基材Aを基材Cに変更した以外は、実施例1と同様にして、電解質シート及び二次電池を作製し、実施例1と同様の評価を行った。結果を表1に示す。
[Example 3]
An electrolyte sheet and a secondary battery were prepared in the same manner as in Example 1 except that the substrate A was changed to the substrate C, and the same evaluation as in Example 1 was performed. Table 1 shows the results.
[実施例4]
 基材Aを基材Dに変更した以外は、実施例1と同様にして、電解質シート及び二次電池を作製し、実施例1と同様の評価を行った。結果を表1に示す。
[Example 4]
An electrolyte sheet and a secondary battery were prepared in the same manner as in Example 1 except that the substrate A was changed to the substrate D, and the same evaluation as in Example 1 was performed. Table 1 shows the results.
[実施例5]
 乾燥アルゴン雰囲気下で乾燥したリチウムビス(フルオロスルホニル)イミド(Li[FSI])を電解質塩として用い、N-メチル-N-プロピルピロリジニウムビス(フルオロスルホニル)イミド([Py13][FSI])に、電解質塩の濃度が1.5mol/Lとなるように溶解させてLi[FSI]の[Py13][FSI]溶液を調製した。次に、ポリマとしてのフッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ(PVDF-HFP)と、酸化物粒子としてのSiO粒子(製品名:AEROSIL OX50、日本アエロジル株式会社製、比表面積:50m/g、平均一次粒径:約40nm)とを混合した後、分散媒としてのN-メチル-2-ピロリドン(NMP)を添加し、更にLi[FSI]の[Py13][FSI]溶液を更に添加して混合することによって、スラリーを得た。このとき、ポリマと、酸化物粒子と、Li[FSI]の[Py13][FSI]溶液との質量比は、ポリマ:酸化物粒子:Li[FSI]の[Py13][FSI]溶液=30:20:50であった。得られたスラリーに対して、分散媒であるNMPを加えて粘度を調節し、電解質スラリー組成物Bを得た。電解質スラリー組成物B中の含有成分濃度は、電解質スラリー組成物Bの全質量を基準として、28質量%であった。電解質スラリー組成物Aを電解質スラリー組成物Bに変更した以外は、実施例1と同様にして、電解質シート及び二次電池を作製し、実施例1と同様にして、塗工幅維持率を算出し、電池の放電レート特性を測定した。結果を表1に示す。
[Example 5]
Using lithium bis (fluorosulfonyl) imide (Li [FSI]) dried under a dry argon atmosphere as an electrolyte salt, N-methyl-N-propylpyrrolidinium bis (fluorosulfonyl) imide ([Py13] [FSI]) Then, the electrolyte salt was dissolved at a concentration of 1.5 mol / L to prepare a solution of [Py13] [FSI] of Li [FSI]. Next, a copolymer of vinylidene fluoride and hexafluoropropylene (PVDF-HFP) as polymers and SiO 2 particles as oxide particles (product name: AEROSIL OX50, manufactured by Nippon Aerosil Co., Ltd., specific surface area: 50 m 2 / g, average primary particle size: about 40 nm), N-methyl-2-pyrrolidone (NMP) as a dispersion medium is added, and a [Py13] [FSI] solution of Li [FSI] is further added. And mixed to obtain a slurry. At this time, the mass ratio of the polymer, the oxide particles, and the [Py13] [FSI] solution of Li [FSI] is as follows: polymer: oxide particles: [Py13] [FSI] solution of Li [FSI] = 30: 20:50. NMP as a dispersion medium was added to the obtained slurry to adjust the viscosity, thereby obtaining an electrolyte slurry composition B. The concentration of the component contained in the electrolyte slurry composition B was 28% by mass based on the total mass of the electrolyte slurry composition B. An electrolyte sheet and a secondary battery were prepared in the same manner as in Example 1, except that the electrolyte slurry composition A was changed to the electrolyte slurry composition B, and the coating width maintenance ratio was calculated in the same manner as in Example 1. Then, the discharge rate characteristics of the battery were measured. Table 1 shows the results.
[実施例6]
 基材Aを基材Bに変更した以外は、実施例5と同様にして、電解質シート及び二次電池を作製し、実施例1と同様にして、塗工幅維持率を算出し、電池の放電レート特性を測定した。結果を表1に示す。
[Example 6]
Except that the base material A was changed to the base material B, an electrolyte sheet and a secondary battery were produced in the same manner as in Example 5, and the coating width maintenance ratio was calculated in the same manner as in Example 1, and the The discharge rate characteristics were measured. Table 1 shows the results.
[実施例7]
 基材Aを基材Cに変更した以外は、実施例5と同様にして、電解質シート及び二次電池を作製し、実施例1と同様にして、塗工幅維持率を算出し、電池の放電レート特性を測定した。結果を表1に示す。
[Example 7]
Except that the base material A was changed to the base material C, an electrolyte sheet and a secondary battery were prepared in the same manner as in Example 5, and the coating width maintenance ratio was calculated in the same manner as in Example 1, and the The discharge rate characteristics were measured. Table 1 shows the results.
[実施例8]
 基材Aを基材Dに変更した以外は、実施例5と同様にして、電解質シート及び二次電池を作製し、実施例1と同様にして、塗工幅維持率を算出し、電池の放電レート特性を測定した。結果を表1に示す。
Example 8
Except that the base material A was changed to the base material D, an electrolyte sheet and a secondary battery were produced in the same manner as in Example 5, and the coating width maintenance ratio was calculated in the same manner as in Example 1, and the The discharge rate characteristics were measured. Table 1 shows the results.
[比較例1]
 基材Aを基材Eに変更した以外は、実施例1と同様にして、電解質シート及び二次電池を作製し、実施例1と同様にして、塗工幅維持率を算出した。結果を表1に示す。なお、比較例1では、塗工幅が充分でなかったことから、電池の放電レート特性については測定しなかった。
[Comparative Example 1]
An electrolyte sheet and a secondary battery were produced in the same manner as in Example 1 except that the substrate A was changed to the substrate E, and the coating width maintenance ratio was calculated in the same manner as in Example 1. Table 1 shows the results. In Comparative Example 1, the discharge rate characteristics of the battery were not measured because the coating width was insufficient.
[比較例2]
 基材Aを基材Fに変更した以外は、実施例1と同様にして、電解質シート及び二次電池を作製し、実施例1と同様にして、塗工幅維持率を算出した。結果を表1に示す。なお、比較例2では、塗工幅が充分でなかったことから、電池の放電レート特性については測定しなかった。
[Comparative Example 2]
An electrolyte sheet and a secondary battery were produced in the same manner as in Example 1 except that the substrate A was changed to the substrate F, and the coating width maintenance ratio was calculated in the same manner as in Example 1. Table 1 shows the results. In Comparative Example 2, the discharge rate characteristics of the battery were not measured because the coating width was insufficient.
[比較例3]
 基材Aを基材Gに変更した以外は、実施例1と同様にして、電解質シート及び二次電池を作製し、実施例1と同様にして、塗工幅維持率を算出した。結果を表1に示す。なお、比較例3では、塗工幅が充分でなかったことから、電池の放電レート特性については測定しなかった。
[Comparative Example 3]
An electrolyte sheet and a secondary battery were produced in the same manner as in Example 1 except that the substrate A was changed to the substrate G, and the coating width maintenance ratio was calculated in the same manner as in Example 1. Table 1 shows the results. In Comparative Example 3, the discharge rate characteristics of the battery were not measured because the coating width was insufficient.
[比較例4]
 基材Aを基材Eに変更した以外は、実施例5と同様にして、電解質シート及び二次電池を作製し、実施例1と同様にして、塗工幅維持率を算出した。結果を表1に示す。なお、比較例4では、塗工幅が充分でなかったことから、電池の放電レート特性については測定しなかった。
[Comparative Example 4]
An electrolyte sheet and a secondary battery were prepared in the same manner as in Example 5, except that the substrate A was changed to the substrate E, and the coating width maintenance ratio was calculated in the same manner as in Example 1. Table 1 shows the results. In Comparative Example 4, the discharge rate characteristics of the battery were not measured because the coating width was insufficient.
[比較例5]
 基材Aを基材Fに変更した以外は、実施例5と同様にして、電解質シート及び二次電池を作製し、実施例1と同様にして、塗工幅維持率を算出した。結果を表1に示す。なお、比較例5では、塗工幅が充分でなかったことから、電池の放電レート特性については測定しなかった。
[Comparative Example 5]
An electrolyte sheet and a secondary battery were prepared in the same manner as in Example 5 except that the substrate A was changed to the substrate F, and the coating width maintenance ratio was calculated in the same manner as in Example 1. Table 1 shows the results. In Comparative Example 5, the discharge rate characteristics of the battery were not measured because the coating width was insufficient.
[比較例6]
 基材Aを基材Gに変更した以外は、実施例5と同様にして、電解質シート及び二次電池を作製し、実施例1と同様にして、塗工幅維持率を算出した。結果を表1に示す。なお、比較例6では、塗工幅が充分でなかったことから、電池の放電レート特性については測定しなかった。
[Comparative Example 6]
An electrolyte sheet and a secondary battery were produced in the same manner as in Example 5, except that the substrate A was changed to the substrate G, and the coating width maintenance ratio was calculated in the same manner as in Example 1. Table 1 shows the results. In Comparative Example 6, the discharge rate characteristics of the battery were not measured because the coating width was insufficient.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 これらの結果より、本発明の電解質シートの製造方法は、塗工乾燥工程において、電解質スラリー組成物を塗工したときの塗工幅が分散媒を除去した後においても変動し難いというこことが確認された。本発明の電解質シートの製造方法で製造される電解質シートは、電解質層と基材との密着性の点においても優れていることが推測される。 From these results, the manufacturing method of the electrolyte sheet of the present invention is that in the coating and drying step, the coating width when coating the electrolyte slurry composition is not easily changed even after the dispersion medium is removed. confirmed. It is presumed that the electrolyte sheet produced by the method for producing an electrolyte sheet of the present invention is also excellent in the point of adhesion between the electrolyte layer and the substrate.
 1…二次電池、2,2A,2B…電極群、3…電池外装体、4…正極集電タブ、5…負極集電タブ、6…正極、7…電解質層、8…負極、9…正極集電体、10…正極合剤層、11…負極集電体、12…負極合剤層、13A,13B…電解質シート、14…基材、15…保護材、16…バイポーラ電極、17…バイポーラ電極集電体。 DESCRIPTION OF SYMBOLS 1 ... Secondary battery, 2, 2A, 2B ... Electrode group, 3 ... Battery exterior body, 4 ... Positive electrode current collection tab, 5 ... Negative electrode current collection tab, 6 ... Positive electrode, 7 ... Electrolyte layer, 8 ... Negative electrode, 9 ... Positive electrode current collector, 10: positive electrode mixture layer, 11: negative electrode current collector, 12: negative electrode mixture layer, 13A, 13B: electrolyte sheet, 14: base material, 15: protective material, 16: bipolar electrode, 17 ... Bipolar electrode current collector.

Claims (10)

  1.  1種又は2種以上のポリマと、酸化物粒子と、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、下記一般式(10)で表される化合物及びイオン液体の少なくとも一方と、分散媒とを含有する電解質スラリー組成物を基材上に塗工する工程と、
     塗工された前記電解質スラリー組成物から前記分散媒を除去して前記基材上に電解質層を形成する工程と、
    を備え、
     前記基材の前記分散媒に対する接触角が60°以下である、電解質シートの製造方法。
     RO-(CHCHO)-R (10)
    [式(10)中、R及びRはそれぞれ独立に炭素数1~4のアルキル基を示し、yは1~6の整数を示す。]
    One or more polymers, oxide particles, at least one electrolyte salt selected from the group consisting of lithium salts, sodium salts, calcium salts, and magnesium salts, represented by the following general formula (10) Applying an electrolyte slurry composition containing at least one of a compound and an ionic liquid, and a dispersion medium, to a substrate,
    Removing the dispersion medium from the applied electrolyte slurry composition to form an electrolyte layer on the substrate,
    With
    A method for producing an electrolyte sheet, wherein a contact angle of the substrate with the dispersion medium is 60 ° or less.
    R A O- (CH 2 CH 2 O) y -R B (10)
    [In the formula (10), R A and R B each independently represent an alkyl group having 1 to 4 carbon atoms, and y represents an integer of 1 to 6. ]
  2.  前記接触角が40°以下である、請求項1に記載の電解質シートの製造方法。 方法 The method for producing an electrolyte sheet according to claim 1, wherein the contact angle is 40 ° or less.
  3.  前記酸化物粒子が、SiO、Al、AlOOH、MgO、CaO、ZrO、TiO、LiLaZr12、及びBaTiOからなる群より選ばれる少なくとも1種の粒子である、請求項1又は2に記載の電解質シートの製造方法。 The oxide particles are at least one particle selected from the group consisting of SiO 2 , Al 2 O 3 , AlOOH, MgO, CaO, ZrO 2 , TiO 2 , Li 7 La 3 Zr 2 O 12 , and BaTiO 3. The method for producing an electrolyte sheet according to claim 1.
  4.  前記イオン液体が、カチオン成分として、鎖状四級オニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、ピリジニウムカチオン、及びイミダゾリウムカチオンからなる群より選ばれる少なくとも1種を含む、請求項1~3のいずれか一項に記載の電解質シートの製造方法。 4. The ionic liquid according to claim 1, wherein the cation component contains at least one selected from the group consisting of a chain quaternary onium cation, a piperidinium cation, a pyrrolidinium cation, a pyridinium cation, and an imidazolium cation. The method for producing an electrolyte sheet according to any one of the above.
  5.  前記イオン液体が、アニオン成分として、下記一般式(A)で表されるアニオン成分の少なくとも1種を含む、請求項1~4のいずれか一項に記載の電解質シートの製造方法。
     N(SO2m+1)(SO2n+1 (A)
    [式(A)中、m及びnは、それぞれ独立に0~5の整数を表す。]
    The method for producing an electrolyte sheet according to any one of claims 1 to 4, wherein the ionic liquid includes at least one anion component represented by the following general formula (A) as an anion component.
    N (SO 2 C m F 2m + 1) (SO 2 C n F 2n + 1) - (A)
    [In the formula (A), m and n each independently represent an integer of 0 to 5. ]
  6.  前記ポリマが、四フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位を有する、請求項1~5のいずれか一項に記載の電解質シートの製造方法。 The method for producing an electrolyte sheet according to any one of claims 1 to 5, wherein the polymer has a first structural unit selected from the group consisting of ethylene tetrafluoride and vinylidene fluoride.
  7.  前記ポリマを構成する構造単位の中に、前記第1の構造単位と、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる第2の構造単位とが含まれる、請求項6に記載の電解質シートの製造方法。 Among the structural units constituting the polymer, the first structural unit and a second structural unit selected from the group consisting of hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate are included. The method for producing an electrolyte sheet according to claim 6.
  8.  前記電解質塩が、イミド系リチウム塩である、請求項1~7のいずれか一項に記載の電解質シートの製造方法。 方法 The method for producing an electrolyte sheet according to any one of claims 1 to 7, wherein the electrolyte salt is an imide-based lithium salt.
  9.  前記一般式(10)で表される化合物が、テトラエチレングリコールジメチルエーテルを含む、請求項1~8のいずれか一項に記載の電解質シートの製造方法。 方法 The method for producing an electrolyte sheet according to any one of claims 1 to 8, wherein the compound represented by the general formula (10) includes tetraethylene glycol dimethyl ether.
  10.  正極集電体上に正極合剤層を形成して正極を得る工程と、
     負極集電体上に負極合剤層を形成して負極を得る工程と、
     請求項1~9のいずれか一項に記載の製造方法によって得られた電解質シートの前記電解質層を前記正極と前記負極との間に配置する工程と、
    を備える、二次電池の製造方法。
    Forming a positive electrode mixture layer on the positive electrode current collector to obtain a positive electrode,
    Forming a negative electrode mixture layer on the negative electrode current collector to obtain a negative electrode,
    A step of disposing the electrolyte layer of the electrolyte sheet obtained by the production method according to any one of claims 1 to 9 between the positive electrode and the negative electrode;
    A method for manufacturing a secondary battery, comprising:
PCT/JP2019/027608 2018-07-19 2019-07-11 Electrolyte sheet production method and secondary battery production method WO2020017439A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020531281A JPWO2020017439A1 (en) 2018-07-19 2019-07-11 Electrolyte sheet manufacturing method and secondary battery manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-135936 2018-07-19
JP2018135936 2018-07-19

Publications (1)

Publication Number Publication Date
WO2020017439A1 true WO2020017439A1 (en) 2020-01-23

Family

ID=69164311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027608 WO2020017439A1 (en) 2018-07-19 2019-07-11 Electrolyte sheet production method and secondary battery production method

Country Status (3)

Country Link
JP (1) JPWO2020017439A1 (en)
TW (1) TW202013798A (en)
WO (1) WO2020017439A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205550A1 (en) * 2020-04-07 2021-10-14 昭和電工マテリアルズ株式会社 Electrolyte sheet and manufacturing method of secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164254A (en) * 1998-11-26 2000-06-16 Sony Corp Gel electrolyte and gel electrolyte battery
JP2003157719A (en) * 2001-11-22 2003-05-30 Hitachi Maxell Ltd Cold melted-salt type solid electrolyte and totally solid electrochemical element
WO2015133388A1 (en) * 2014-03-06 2015-09-11 リンテック株式会社 Solid electrolyte membrane with film and method for producing same
JP2017059432A (en) * 2015-09-17 2017-03-23 株式会社日立製作所 Pseudo solid electrolyte, and all-solid lithium secondary battery arranged by use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164254A (en) * 1998-11-26 2000-06-16 Sony Corp Gel electrolyte and gel electrolyte battery
JP2003157719A (en) * 2001-11-22 2003-05-30 Hitachi Maxell Ltd Cold melted-salt type solid electrolyte and totally solid electrochemical element
WO2015133388A1 (en) * 2014-03-06 2015-09-11 リンテック株式会社 Solid electrolyte membrane with film and method for producing same
JP2017059432A (en) * 2015-09-17 2017-03-23 株式会社日立製作所 Pseudo solid electrolyte, and all-solid lithium secondary battery arranged by use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205550A1 (en) * 2020-04-07 2021-10-14 昭和電工マテリアルズ株式会社 Electrolyte sheet and manufacturing method of secondary battery

Also Published As

Publication number Publication date
TW202013798A (en) 2020-04-01
JPWO2020017439A1 (en) 2021-08-02

Similar Documents

Publication Publication Date Title
TWI758486B (en) Electrolyte composition, secondary battery, and method for producing electrolyte sheet
WO2018194159A1 (en) Electrochemical device electrode and producing method therefor, electrochemical device and polymer electrolyte composition
JP7442911B2 (en) Electrolyte composition, secondary battery, and method for producing electrolyte sheet
WO2020145338A1 (en) Electrolytic solution, electrolyte slurry composition, and secondary cell
WO2018193630A1 (en) Electrochemical device electrode and electrochemical device
JP7423120B2 (en) Electrolyte slurry composition, electrolyte sheet manufacturing method, and secondary battery manufacturing method
JP7438207B2 (en) Slurry composition for batteries, and methods for producing electrodes, electrolyte sheets, and battery members
WO2018221668A1 (en) Electrolyte composition and rechargeable battery
WO2020017439A1 (en) Electrolyte sheet production method and secondary battery production method
JP7416426B2 (en) Method for manufacturing battery components for secondary batteries
JP7446657B2 (en) Electrodes for secondary batteries, electrolyte layers for secondary batteries, and secondary batteries
CN108735972B (en) Method for manufacturing battery member for secondary battery
JP2020113527A (en) Electrolyte slurry composition and manufacturing method thereof, and electrolyte sheet and manufacturing method thereof
JP7438605B2 (en) Method for manufacturing battery components for secondary batteries
WO2021001970A1 (en) Electrolyte sheet and secondary battery
JP2020136223A (en) Lithium secondary battery
JP2021153010A (en) Lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531281

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19837812

Country of ref document: EP

Kind code of ref document: A1