WO2020017017A1 - Light measurement device and sample observation method - Google Patents

Light measurement device and sample observation method Download PDF

Info

Publication number
WO2020017017A1
WO2020017017A1 PCT/JP2018/027268 JP2018027268W WO2020017017A1 WO 2020017017 A1 WO2020017017 A1 WO 2020017017A1 JP 2018027268 W JP2018027268 W JP 2018027268W WO 2020017017 A1 WO2020017017 A1 WO 2020017017A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measurement
optical
signal
interference
Prior art date
Application number
PCT/JP2018/027268
Other languages
French (fr)
Japanese (ja)
Inventor
隆之 小原
賢太郎 大澤
智也 桜井
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to PCT/JP2018/027268 priority Critical patent/WO2020017017A1/en
Priority to JP2020530835A priority patent/JP7175982B2/en
Publication of WO2020017017A1 publication Critical patent/WO2020017017A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated

Definitions

  • the present disclosure relates to an optical measurement device and a sample observation method using the same.
  • Optical measurement devices are devices that can non-destructively acquire information reflecting the surface structure and internal structure of a measurement target, and are used in a wide range of fields.
  • OCT optical coherence tomography
  • OCT Since OCT has no invasiveness to the human body, it is expected to be applied particularly to the medical field and the biological field.
  • an apparatus for forming an image of a fundus, a cornea, or the like is used.
  • light from a light source is split into two parts, a signal light that irradiates the measurement target and a reference light that is reflected by a reference light mirror without irradiating the measurement target, and the signal light reflected from the measurement target is combined with the reference light.
  • a signal is obtained by wave and interference.
  • An angiographic OCT is an example of an optical measurement device that uses the acquisition of aging information.
  • scanning is performed while simultaneously irradiating light emitted from a light source into two independent polarized beams and simultaneously irradiating the two polarized beams to two different portions on a line along a scanning direction by a galvanometer mirror.
  • the reflected light is separated into a vertical component and a horizontal component, detected by two detectors at the same time, and two tomographic images of the same part at different times are acquired by one scan, and the two tomographic images are obtained.
  • a scanning OCT apparatus that measures the time change amount of the phase of the same region from an image is disclosed. According to this device, it is possible to visualize a blood vessel, which is a portion of a human body tissue having a large amount of temporal change.
  • the predetermined portion is measured a plurality of times at a time ⁇ t, and the obtained plurality of times are measured.
  • the temporal change amount ⁇ S is obtained from the measurement result, and the temporal change information of the predetermined portion is obtained using ⁇ t and ⁇ S.
  • the measurement interval ⁇ t becomes the time resolution of the temporal change information.
  • a scanning optical measurement device including a scanning OCT it is necessary to increase the time resolution in order to obtain a large amount of time-dependent change information.
  • the time resolution depends on the scanning cycle, it is difficult to obtain a time resolution shorter than the scanning cycle. If an expensive scanning mechanism with a short scanning cycle is used, the apparatus becomes expensive and complicated.
  • the angiographic OCT of Patent Document 1 describes an OCT that irradiates a measurement object with two signal light beams in order to obtain temporal change information with a time resolution shorter than a beam scanning cycle.
  • two polarized beams having different polarization states are irradiated to two different parts, and the two beams are separated according to the polarization state in order to separately detect information of the two different parts.
  • the OCT described in Patent Literature 1 requires a beam separation mechanism, and further requires an independent detection mechanism for each beam, which increases the device size.
  • two beams having different polarization states are used to separate beams. Therefore, there is a possibility that a difference occurs due to a difference in the polarization state between the information acquired by the two beams, resulting in a measurement error of the temporal change information.
  • the present disclosure has been made in view of the above points, and provides a technique capable of measuring temporal change information at a low cost and with a temporal resolution shorter than a scanning cycle.
  • a light source for example, a light source, a light branching unit that branches light emitted from the light source into reference light and signal light, and scans the measurement target by irradiating the signal light
  • a scanning unit that combines the signal light and the reference light reflected or scattered by the object to be measured, an optical system that generates interference light, and receives the interference light generated by the optical system.
  • An optical measurement device comprising: a light detection unit that converts an electric signal, and a signal processing unit that calculates the intensity of the signal light based on the electric signal converted by the light detection unit, wherein the light detection unit Detecting the signal light by a plurality of light detection elements associated with each of a plurality of measurement areas overlapping the irradiation area of the signal light, wherein the signal processing unit detects each of the plurality of light detection elements Calculated signal light intensity Then, the scanning unit may be configured to irradiate the irradiation area of the signal light irradiating the measurement object with a part of the plurality of measurement areas at a first time different from the plurality of measurement areas at a second time.
  • an optical measurement device that scans the measurement object by moving the measurement object so as to partially overlap the measurement object.
  • the measurement object is irradiated with signal light, and the reflected or scattered signal light and reference light are combined to generate interference light.
  • temporal change information can be measured at low cost and with a temporal resolution shorter than the scanning period.
  • FIG. 1 is a schematic diagram illustrating a basic embodiment of an optical measurement device according to the present disclosure.
  • FIG. 3 is a schematic diagram illustrating a correspondence relationship between a beam spot and an arrangement of a differential detection circuit in an operation state of the optical measurement device according to the first embodiment. It is a schematic diagram which shows a mode that the beam spot irradiated on the measurement object moves.
  • FIG. 4 is a schematic diagram illustrating a relationship between a temporal change in a position of a measurement region and a time resolution.
  • FIG. 3 is a schematic diagram illustrating a configuration of a reference optical system for expanding a beam diameter described above.
  • FIG. 9 is a diagram illustrating a basic configuration example of an optical measurement device according to a second embodiment.
  • FIG. 3 is a schematic diagram illustrating a correspondence relationship between a beam spot and an arrangement of a differential detection circuit in an operation state of the optical measurement device according to the first embodiment. It is a schematic diagram which shows a mode that the beam spot irradi
  • FIG. 9 is a schematic diagram illustrating a configuration of an optical measurement device according to a third embodiment.
  • FIG. 13 is a schematic diagram illustrating a configuration of an optical measurement device according to a fourth embodiment.
  • FIG. 3 is a schematic diagram illustrating a state of movement of a beam spot on a measurement object.
  • FIG. 9 is a diagram illustrating a scanning method in which a plurality of measurement regions are defined in both the x direction and the y direction.
  • FIG. 1 is a schematic diagram illustrating a basic embodiment of an optical measurement device 1 according to the present disclosure.
  • the vertical direction in the figure is the z direction
  • the horizontal direction is the x direction
  • the direction perpendicular to the paper is the y direction.
  • the optical measurement device 1 includes a light source unit 190, a polarization beam splitter 106, a reference optical system 191, a scanning unit 159, a sample stage 139, a cover glass 114, an interference optical system 132, a photodiode array (124, 125, 130, and 131), It includes a differential detection circuit (134 and 135), a signal processing unit 136, and a control unit 116.
  • the light source unit 190 includes a light source 101, a collimating lens 102, a beam shaping prism 103, an ND (Neutral Density) filter 104, and a ⁇ / 2 plate 105 whose optical axis direction can be adjusted.
  • Laser light having a single wavelength component emitted from the light source 101 is converted into parallel light by the collimating lens 102.
  • the laser beam converted into parallel light is shaped into an elliptical beam cross-sectional shape by the beam shaping prism 103 so that the y direction is longer than the x direction.
  • the intensity of the laser light is reduced by the ND filter 104, the polarization direction is rotated by the ⁇ / 2 plate 105 whose optical axis direction is adjustable, and then the polarization beam splitter 106 converts the laser light into a signal light and a reference light. Branched.
  • the scanning unit 159 includes the two-dimensional scanner 107, the ⁇ / 4 plate 112, the lens 113, and the lens actuator 117.
  • the signal light enters the optical system provided in the scanning unit 159, passes through the two-dimensional scanner 107, and passes through the ⁇ / 4 plate 112 whose optical axis direction is set to about 22.5 degrees with respect to the xz plane.
  • the transmitted light is converted from s-polarized light to circularly polarized light. After that, the signal light is transmitted through the cover glass 114 while being converged by the lens 113 having a numerical aperture of 0.3 or more, and irradiates the measurement object 115 to form a beam spot 140 at the condensing position.
  • the cross-sectional shape of the beam incident on the lens 113 is an ellipse in the y direction longer than the x direction
  • the numerical aperture at the time of focusing is larger in the y direction than in the x direction. Therefore, the shape of the beam spot 140 on the xy plane is an ellipse in which the x direction is longer than the y direction.
  • the position of the beam spot 140 is moved by the scanning unit 159 in any of the x, y, and z directions.
  • the lens 113 is moved at least in the z direction by the control of the lens actuator 117 by the control unit 116, whereby the focus position (measurement position) of the signal light by the lens 113 is moved.
  • the movement of the condensing position of the signal light in the xy directions is performed by two galvanometer mirrors 108 and 109 and a two-dimensional scanner 107 including lenses 110 and 111 provided in the optical path of the signal light.
  • the scanning of the object to be measured is performed based on the condensing position of the signal light.
  • the signal light reflected or scattered from the measurement object is converted by the lens 113 into parallel light (beam). After that, the polarization state of the signal light is changed from circularly polarized light to p-polarized light by the ⁇ / 4 plate 112, and the polarized light enters the polarization beam splitter 106.
  • the measurement target 115 By moving the measurement target 115 by moving the sample stage 139, the position of the signal light focusing position in the measurement target 115 is roughly moved.
  • the reference light is transmitted through the ⁇ / 4 plate 118, and the polarization state is converted from p-polarized light to circularly-polarized light. After that, the reference light is incident on the mirror 119 whose position is fixed, is reflected, and then passes through the ⁇ / 4 plate 118 again, where the polarization state is changed from circularly polarized light to s-polarized light, and is incident on the polarization beam splitter 106. I do.
  • the signal light and the reference light are multiplexed by the polarization beam splitter 106 to generate a combined light.
  • the combined light is guided to an interference optical system 132 including a half beam splitter 120, a ⁇ / 2 plate (121 and 127), a ⁇ / 4 plate 126, a condenser lens (122 and 128), and a polarizing beam splitter (123 and 129).
  • the combined light that has entered the interference optical system 132 is split into two by the half beam splitter 120 into transmitted light and reflected light.
  • the transmitted light passes through the ⁇ / 2 plate 121 whose optical axis is set to about 22.5 degrees with respect to the xz plane, and is then condensed by the condenser lens 122. After that, the transmitted light is split into two by the polarization beam splitter 123, and a first interference light 144 and a second interference light 145 having a phase relationship different from each other by 180 degrees are generated.
  • the first interference light 144 is condensed by the condenser lens 122 and forms an image 153 of the beam spot 140 at the position of the photodiode array 124.
  • the photodiode array 124 is arranged such that a plurality of photodetectors (photodiodes) 148 overlap the image 153 of the beam spot 140.
  • the second interference light 145 is condensed by the condenser lens 122 and forms an image 154 of the beam spot 140 at the position of the photodiode array 125.
  • the photodiode array 125 includes a plurality of light detection elements 149 each functioning as a light detector, and the plurality of light detection elements 149 are arranged so as to overlap the image 154 of the beam spot 140.
  • Each of the first interference light 144 and the second interference light 145 is converted by the photodiode arrays 124 and 125 and the differential detection circuit 134 into a corresponding one of the plurality of light detection elements 148 and the plurality of light detection elements 149.
  • the outputs are combined and current differential detection is performed, and a signal 137 proportional to the difference between the intensities of the two interference lights is output.
  • the mutually corresponding elements of the plurality of light detection elements 148 and the plurality of light detection elements 149 are, for example, in the example shown in FIG. And the leftmost light detection element of the plurality of light detection elements 149 correspond to each other.
  • the reflected light reflected by the half beam splitter 120 passes through the ⁇ / 4 plate 126 whose optical axis is set at about 45 degrees with respect to the xz plane, and then has an optical axis of about 22.5 with respect to the xz plane.
  • the light is transmitted through the ⁇ / 2 plate 127 set at each time, and is condensed by the condenser lens 128. Thereafter, the reflected light is split into two by the polarizing beam splitter 129, and a third interference light and a fourth interference light having a phase relationship different from each other by 180 degrees are generated.
  • Each of the third interference light and the fourth interference light is subjected to current differential detection by the photodiode arrays 131 and 130 and the differential detection circuit 135, and a signal 138 proportional to the difference between the intensities of the two interference lights is output. Is done.
  • the third interference light 146 is condensed by the condenser lens 128 and forms an image 155 of the beam spot 140 at the position of the photodiode array 131.
  • the photodiode array 131 is arranged such that a plurality of photodetectors (photodiodes) 150 overlap the image 155 of the beam spot 140.
  • the fourth interference light 147 is condensed by the condenser lens 128 to form an image 156 of the beam spot 140 at the position of the photodiode array 130.
  • the photodiode array 130 includes a plurality of light detecting elements 151 each functioning as a light detector, and the plurality of light detecting elements 151 are arranged so as to overlap the image 156 of the beam spot 140.
  • Each of the third interference light 146 and the fourth interference light 147 is, by the photodiode arrays 130 and 131 and the differential detection circuit 135, an output of a corresponding one of the plurality of light detection elements 150 and the plurality of light detection elements 151.
  • the outputs are combined and current differential detection is performed, and a signal 138 proportional to the difference between the intensities of the two interference lights is output.
  • the meaning of “elements corresponding to each other” is as described above.
  • the signals 137 and 138 generated as described above are input to the signal processing unit 136 and operated to obtain a signal proportional to the amplitude of the signal light.
  • the amplitude of the signal light component at the time when the combined light enters the interference optical system 132 is E sig
  • the amplitude of the reference light component is E ref
  • the intensity of the signal 137 is I
  • the intensity of the signal 138 is Q.
  • the signal processing unit 136 performs the operation of the following equation 1, thereby obtaining a signal that does not depend on the phase and is proportional to the absolute value of the amplitude of the signal light.
  • ⁇ I 2 + Q 2 ⁇ 1/2 (Equation 1)
  • the signals 137 and 138 are output by the number of photodetectors 148, 149, 150, and 151 of each of the photodiode arrays 124, 125, 130, and 131. Is performed, and a signal proportional to the amplitude of the signal light corresponding to the number is obtained (four in the example shown in FIG. 1). In the present embodiment, since three or more interference light beams having different phase relationships are detected, a stable signal independent of the interference phase can be obtained by performing an operation on these detection signals.
  • FIG. 2 is a schematic diagram illustrating the correspondence between the beam spot 140 and the differential detection circuit 134 in the operation state of the optical measurement device 1 according to the first embodiment.
  • the shape of the beam spot 140 on the measurement object 115 on the xy plane is an ellipse whose x direction is longer than the y direction, as described above.
  • the signal light reflected by the measurement object 115 is multiplexed with the reference light to become interference lights 144, 145, 146, and 147, and the light receiving surfaces of the photodiode arrays 124, 125, 130, and 131 via the optical system of the apparatus.
  • FIG. 2 shows the positional relationship between the photodiode arrays 124 and 125 and the images 153 and 154 corresponding to the first interference light and the second interference light.
  • the positional relationship between the photodiode arrays 130 and 131 corresponding to the third interference light and the fourth interference light and the images 155 and 156 is the same as that of the first interference light and the second interference light.
  • the image 153 formed by the interference light 144 has an elliptical shape that is long in the direction 301 in which the four light detection elements 148 (D 11 , D 12 , D 13 , and D 14 ) of the photodiode array 124 are arranged.
  • the image 153 extends over the four photodetectors 148, and each photodetector outputs a current proportional to the intensity of the component of the interference light 144 applied to each detector.
  • the direction 301 in which the four photodetectors 148 are arranged is drawn on the image 153 so as to match the direction corresponding to the x direction on the measurement target 115.
  • the image 154 formed by the interference light 145 has an elliptical shape that is long in the direction 302 in which the four light detection elements 149 (D 21 , D 22 , D 23 , and D 24 ) of the photodiode array 125 are arranged.
  • the image 154 extends over the four light detection elements 149, and each light detection element outputs a current proportional to the intensity of the component of the interference light 145 irradiated to each detection element.
  • the direction 302 in which the four light detection elements 149 are arranged is drawn on the image 154 so as to match the direction corresponding to the x direction on the measurement target 115.
  • the relative positional relationship between the image 153 and the four light detecting elements 148 matches the relative positional relationship between the image 154 and the four light detecting elements 149, and the four light detecting elements 148 (D 11 , D 12 , D 13 , and D 14 ) and the four photodetectors 149 (D 21 , D 22 , D 23 , and D 24 ) together form four measurement regions 303 (A 1 , A 2 ) on the measurement target 115. , A 3 , A 4 ).
  • the interval between the respective photodetectors is ⁇ x and the magnification of the optical system is M
  • the current outputs of the four light detecting elements 148 (D 11 , D 12 , D 13 , D 14 ) and the four light detecting elements 149 (D 21 , D 22 , D 23 , D 24 ) correspond to the corresponding light detecting elements.
  • (D 11 and D 21 , D 12 and D 22 , D 13 and D 23 , and D 14 and D 24 ) are input to the differential detection circuits 304, 305, 306, and 307, respectively.
  • the signals are differentially detected and input to the signal processing unit 136 as a signal 137 as a set of four signals.
  • the four light detection elements 150 and the four light detection elements 151 are both measured objects 115.
  • the position is optically conjugate with the upper four measurement regions 303 (A 1 , A 2 , A 3 , A 4 ).
  • the outputs of the corresponding photodetectors are combined, and four sets of signals are respectively input to four differential detection circuits and differentially detected.
  • a signal 138 that is a set of four signals is input to the signal processing unit 136.
  • the signal processing unit 136 performs the calculation of the above equation 1 four times with the signal 137 and the signal 138 as inputs, and the signal light reflected by the four measurement areas 303 (A 1 , A 2 , A 3 , A 4 ).
  • Four signals (S 1 , S 2 , S 3 , S 4 ) proportional to the amplitude of each component are calculated.
  • the measurement of signals for the four measurement areas 303 can be performed simultaneously.
  • FIG. 3 is a schematic diagram showing a state in which the beam spots 140, 157, and 158 irradiated on the measurement target 115 move.
  • Figure 3 is the position at time t 1 of the beam spot 140 moving at a uniform scanning speed v in a scanning direction 152, the time of the four measurement regions 303 (A 1, A 2, A 3, A 4) The position of is shown.
  • the distance between the four measurement areas 303 (A 1 , A 2 , A 3 , A 4 ) is a value ( ⁇ x ′) determined by the distance between the photodetectors and the characteristics of the optical system as described above.
  • FIG. 4 is a schematic diagram showing the relationship between the temporal change in the position of the measurement area and the time resolution (that is, the sampling interval).
  • the horizontal axis indicates time t
  • the vertical axis indicates the position of the measurement region 303 in the x direction.
  • the positions of the four measurement areas 303 (A 1 , A 2 , A 3 , A 4 ) are shown as traces 401, 402, 403, and 404, respectively.
  • the solid line portion of each trace indicates a measurement period, and the broken line portion indicates a period in which the trace is simply moving without measurement.
  • measurement is performed only while the measurement area 303 is moving in the positive x direction
  • measurement is performed while the measurement area 303 is moving in the negative x direction (returning to the scan start position).
  • the horizontal axis indicates time t
  • the vertical axis indicates the position of the measurement region 303 in the x direction.
  • the positions of the four measurement areas 303 (A 1 , A 2 , A 3 ,
  • Position of one A 1 of the measurement region 303 at time t 1 is x 1, each of the other position of the three A 2, A 3, A 4 , x 1 - ⁇ x ', x 1 -2 ⁇ x', x 1 ⁇ 3 ⁇ x ′. Thereafter, since the measurement region 303 to move at a speed v, the time each measurement region 303 reaches the position x 1 is made as follows, respectively.
  • a 3 t 1 + 2 ⁇ t
  • a 4 t 1 + 3 ⁇ t
  • the four signals obtained by the four measurement regions 303 (S 1, S 2, S 3, S 4), the signal value at time t of the n-th measurement region when put out and S n (t), S 1 (t 1 ), S 2 (t 1 + ⁇ t), S 3 (t 1 + 2 ⁇ t), and S 4 (t 1 + 3 ⁇ t) are time-series measured values of the position x 1 obtained at time ⁇ t from time t 1.
  • a time-series measurement value Y (x 0 , n) at a position x 0 at which the m-th measurement area passes at a certain time t 0 is obtained as S m + n (t 0 + n ⁇ ⁇ t).
  • the position x 0 from the positive direction to the 'time series measurements of position apart Y (x 0+ x' x, n) is obtained as S m + n (t 0 + x '/ v + n ⁇ ⁇ t).
  • the measured value at the intended time can be obtained.
  • the time resolution AD conversion frequency or response frequency
  • the time resolution it is possible to satisfy the sampling theorem and obtain information at the intended time resolution.
  • the time resolution it becomes possible to perform measurement without being affected by the state of the measurement object 115 at the time point adjacent to the measurement, and it is possible to accurately detect temporal change information.
  • a plurality of detectors provided in a direction corresponding to a scanning direction can measure a predetermined portion of a measurement target at different times, and the plurality of measurement results can be used to determine the predetermined portion.
  • Time-dependent change information of the site can be obtained. That is, the optical measurement device 1 of the present disclosure can measure temporal change information with a time resolution shorter than the scanning period without using two signal light beams.
  • the number of photodetectors on each array is two or more, thereby acquiring a signal between two or more time points. Then, the amount of change with time can be calculated. More preferably, the number of photodetectors on each photodiode array is three or more.
  • the time resolution can be made variable, or information with a plurality of time resolutions can be obtained at once. Specifically, among the three signals S 1 , S 2 , and S 3 obtained using a photodiode array having three photodetectors, information on the time resolution ⁇ t can be obtained by using S 1 and S 2. Then, if S 1 and S 3 are used, information with a time resolution of 2 ⁇ t can be obtained.
  • the minimum value ⁇ x min for the photodiode arrays 148, 149, 150, and 151, the minimum value ⁇ x min , the maximum value ⁇ x max of the interval between arbitrary photodetectors on each photodiode array, and the optical system Assuming that the magnification is M and the scanning speed of the beam spot 140 is v, time-dependent change information can be acquired with a time resolution ⁇ t in the range of ( ⁇ x min / M) / v ⁇ ⁇ t ⁇ ( ⁇ x max / M) / v. It is possible.
  • the minimum value ⁇ x min is, for example, an interval between adjacent light detection elements
  • the maximum value ⁇ x max is, for example, (the number of light detection elements ⁇ 1) ⁇ ⁇ x min .
  • the shape of the beam spot 140 has been described as being large enough to fit in the plurality of measurement areas 303.
  • the shape (irradiation area) of the beam spot 140 may be a shape including the measurement area 303. By doing so, the intensity of the signal light applied to each of the measurement areas (A 1 , A 2 , A 3 , A 4 ) can be made uniform, and the accuracy of the temporal change information can be improved.
  • the signal light irradiation amount may differ between both ends and the center of the plurality of measurement regions 303.
  • the difference in the irradiation amount (difference in signal intensity) between both ends and the center of the plurality of measurement regions 303 is measured in advance, and the signal processing unit 136 determines the intensity of the signal light corresponding to each of the plurality of measurement regions 303. It may be calculated by calibration. By doing so, the measurement accuracy of the temporal change information of the measurement object 115 is improved.
  • a scanning method for obtaining a two-dimensional image and a three-dimensional image of the measurement target 115 will be described.
  • a two-dimensional image (zx image) of the measurement target 115 is obtained by scanning the two-dimensional region of the measurement target 115 with the beam spot 140.
  • the two-dimensional scanner 107 constituting the scanning unit 159 is controlled by the control unit 116, and the galvanomirror 108 (first scanning unit) is moved to scan repeatedly in the x direction, and the galvanomirror 108 reaches the turn-back position.
  • the lens actuator 117 is operated by the control unit 116 to move the lens 113 (second scanning unit) by a predetermined amount (about the diameter of the focused beam spot 140 in the z direction) in the z direction.
  • a two-dimensional image can be obtained. Note that, for example, scanning in the x direction moves the beam spot 140 (irradiation area) faster than scanning in the z direction.
  • the three-dimensional image of the measurement target is obtained by repeating a procedure of moving the lens 113 by a predetermined amount (about the spot diameter of the condensed signal light) in the y direction after obtaining the zx image by the above-described scanning method.
  • a procedure of acquiring the zx image by scanning the galvanometer mirror 108 and the lens 113 and then moving the measurement object 115 or the entire optical measurement device 1 in the y direction by using an electric stage or the like may be repeated.
  • the z-scan is performed by scanning the lens 113.
  • at least one lens is further inserted in front of the lens 113, and the condensing position is scanned by scanning the lens.
  • the movement in the y-direction may be performed by the two-dimensional scanner 107.
  • the optical measurement device 1 of the present disclosure can scan a two-dimensional region or a three-dimensional region, and acquire temporal change information of the region. It is also possible to output a two-dimensional or three-dimensional image having the acquired temporal change amount as the luminance value of each pixel.
  • the numerical aperture of the lens 113 that condenses the signal light and forms the beam spot 140 in the measurement object 115 is preferably 0.3.
  • a high Z-direction resolution can be obtained.
  • the numerical aperture of the lens 113 is set to 0.3 to 0.4, the depth of focus of the lens can be made deep, so that the range of the measurable depth in the measurement object 115 can be widened.
  • a laser light source in which the coherence length of the emitted laser light is longer than the change in the optical path length of the signal light generated by scanning the lens 113 in the optical axis direction.
  • the shape of the beam spot 140 may be circular, elliptical, linear, rectangular, or the like.
  • a normal optical system configuration can be used, so that the configuration of the optical measurement device 1 can be simply constructed.
  • a linear or rectangular beam spot can be realized using a cylindrical lens or the like, and the signal light intensity in the beam spot 140 hardly changes in the x direction, so that a stable signal can be easily obtained during scanning.
  • the size of the beam spot 140 in the x direction is such that, in an image formed on the photodiode arrays 148, 149, 150, and 151 by the optical system, the size in the direction corresponding to the x direction is at least two or more. And a size including the photodetector of FIG. That is, the magnification of the optical system M, the distance L max between the farthest element of the light detecting element used for the detection, in the x-direction of the beam spot 140 magnitude as D x in each photodiode array, D x ⁇ L max / M.
  • the size of the beam spot 140 in the y direction may be smaller than the size in the x direction.
  • the size in the y direction is such that, in an image formed on the photodiode arrays 148, 149, 150, and 151 by the optical system, the size in the direction corresponding to the y direction fits on the light receiving surface of the photodetector. It is size. That is, the magnification of the optical system M, the direction of the width corresponding to the y-direction of the light detecting element L y, in the y direction of the beam spot 140 magnitude as D y, a D y ⁇ L y / M. In this case, since the information on the intensity of the signal light contributes to the detected signal, the signal having a high SN ratio can be obtained.
  • Such an elliptical beam spot 140 is obtained by irradiating a signal light into the lens 113 as a beam having an elliptical cross section. If the cross-sectional shape of the beam incident on the lens 113 is an elliptical shape in which the y direction is longer than the x direction, the numerical aperture at the time of condensing is larger in the y direction than in the x direction, and the shape of the beam spot 140 on the xy plane is The ellipse is longer in the x direction than in the y direction.
  • the diameter in the x direction and the diameter in the y direction of the elliptical shape of the beam spot 140 can also be changed.
  • the adjustment of the elliptical beam shape is made possible by the beam shaping prism 103 inserted in the optical path of the signal light.
  • the beam shaping prism 103 can be omitted.
  • the elliptical beam spot 140 is formed by this method, even if the x direction of the beam spot 140 is increased, the defocus of the beam spot in the z direction can be suppressed, and the beam spot can be enlarged. The deterioration of the spatial resolution at the time of measurement caused by this can be minimized.
  • the signal light incident on and reflected by the measurement target 115 ideally becomes a beam having the same diameter as the signal light at the time of the incidence, but actually, due to optical nonuniformity of the measurement target 115, etc.
  • the beam will have a larger diameter than that at the time of incidence.
  • FIG. 5 is a schematic diagram showing the configuration of the reference optical system 500 for expanding the beam diameter described above.
  • the vertical direction is the z direction
  • the horizontal direction is the x direction
  • the direction perpendicular to the paper is the y direction.
  • the laser light emitted from the light source 101 is split into two by the polarization beam splitter 501 into s-polarized signal light and p-polarized reference light.
  • the reference light is expanded in beam diameter by a beam expander 506 including two lenses 502 and 503, is reflected by mirrors 504 and 505, changes its direction, and is converted from p-polarized light to s-polarized light by a ⁇ / 2 plate 507.
  • the signal light After passing through the polarization beam splitter 106, the signal light returns through the same optical system as in FIG. 1 and is combined with the reference light by the polarization beam splitter 106 to generate a combined light. Subsequent operations are the same as those in FIG.
  • FIG. 6 is a diagram illustrating a basic configuration example of the optical measurement device 2 according to the second embodiment.
  • the vertical direction in the figure is the z direction
  • the horizontal direction is the x direction
  • the direction perpendicular to the paper is the y direction.
  • the optical measurement device 2 according to the second embodiment is different from the optical measurement device 1 according to the first embodiment in that a current that is proportional to the intensity of the interference light is output using a photodiode array 607 in which a plurality of light detection elements are arranged in a line. different.
  • the generated combined light is first branched into ⁇ 1st-order diffracted light by the diffraction grating 602, and a first branched combined light and a second branched combined light are generated. .
  • These combined lights are arranged such that the phase difference between the s-polarized light component and the p-polarized light component of the first branched combined light differs from the phase difference between the s-polarized light component and the p-polarized light component of the second branched combined light by 90 degrees.
  • the polarization directions of the first split combined light and the second split combined light are rotated by the ⁇ / 2 plate 604 set at about 22.5 degrees with respect to the xz plane, and are polarized by the Wollaston prism 605.
  • the condensing lens 606 By being separated, four interference light beams whose interference phases are different from each other by approximately 90 degrees are generated.
  • These interference lights are condensed by the condensing lens 606, and form an image of the beam spot 140 on four regions 608, 609, 610, and 611 on the photodiode array 607, each of which includes a plurality of photodetectors.
  • each of the interference lights is converted into a current by each photodetector, and a pair of currents from the regions corresponding to the interference lights having a phase relationship different by 180 degrees are differentially detected by the differential detection circuits 134 and 135.
  • the detection signal is calculated by the signal processing unit 136, and a signal independent of the phase and proportional to the absolute value of the amplitude of the signal light is obtained. Since the function of the interference optical system 601 is the same as that of the interference optical system 132 of the first embodiment, the description is omitted here. As described above, by employing a configuration in which a plurality of interference light beams having different interference phases are received and detected by one photodiode array 607, the number of components can be reduced.
  • the optical measurement device 2 of the second embodiment since the optical measurement device 2 of the second embodiment has a smaller number of components of the interference optical system and is smaller than the optical measurement device 1 of the first embodiment, the entire device is smaller than the optical measurement device 1 of the first embodiment. Become.
  • FIG. 7 is a schematic diagram illustrating a configuration of the optical measurement device 3 according to the third embodiment.
  • the vertical direction is the z direction
  • the horizontal direction is the x direction
  • the direction perpendicular to the paper is the y direction.
  • the same members as those shown in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted.
  • the optical measurement device 3 of the third embodiment is different from the OCT device of the first embodiment in that the technology of the present disclosure is applied to an OCT device of a type using a low coherence light source.
  • a light source 701 which is a low coherence light source such as SLD (Super Luminescence Diode)
  • SLD Super Luminescence Diode
  • the beam shaping prism 703 changes the beam cross-sectional shape to an elliptical shape in which the y direction is longer than the x direction.
  • the beam is split into a signal light and a reference light by a beam splitter 706.
  • the signal light is condensed by the lens 713 and forms an elliptical beam spot 740 at a condensing position on the measurement object 115 held by the sample stage 739.
  • the cross-sectional shape of the beam incident on the lens 713 is an elliptical shape in which the y direction is longer than the x direction
  • the numerical aperture at the time of condensing becomes larger in the y direction than in the x direction.
  • the signal light reflected or diffused by the measurement object 715 is converted into a beam by the lens 713 and returns to the beam splitter 706.
  • the reference light is reflected by the mirror 719 and returns to the beam splitter 706, and is combined with the signal light and interferes to generate a combined light.
  • the combined light is condensed by the condenser lens 722 and forms an image 753 of the beam spot 740 on the photodiode array 724.
  • the image 753 is detected by the plurality of light detection elements 748 of the photodiode array 724, and the detected signals 737 are sent to the signal processing unit 736.
  • a low coherence light source is used, and among components included in the signal light, only a component having the same optical path length as the reference light interferes to give the signal 737, so that the measurement target 715 is specified. Can be obtained using the z position of the measurement point as a measurement point.
  • the optical measurement device 3 scans the mirror 719 by driving the actuator 760 by the control unit 716 during measurement, thereby performing z scanning of the measurement point.
  • the optical measurement device 3 performs xy scanning by the two-dimensional scanner 759 controlled by the control unit 716.
  • the scanning in the x direction is performed by the two-dimensional scanner 759 at the time of measurement, and signals from a plurality of photodetectors are compared as in the first embodiment.
  • Temporal change information can be acquired with a temporal resolution shorter than the period.
  • the optical measurement device 3 of the third embodiment can achieve the same function as that of the first embodiment with a smaller number of components than the optical measurement device 1 of the first embodiment, and can provide a smaller device. .
  • FIG. 8 is a schematic diagram illustrating a configuration of the optical measurement device 4 according to the fourth embodiment. 8, the vertical direction in the figure is the z direction, the horizontal direction is the x direction, and the direction perpendicular to the paper is the y direction.
  • the same members as those shown in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted.
  • the optical measurement device 4 of the fourth embodiment is different from the first embodiment in that the light observation unit 801 and the light detection unit 804 are connected by a polarization-maintaining optical fiber bundle 803. Different from the measuring device 1.
  • the polarization maintaining optical fiber bundle 803 is detachably fixed to a fiber connection part 807 of the light observation unit 801 and a fiber connection part 808 of the light detection unit 804.
  • the optical measuring device 4 has the same configuration and functions as the first embodiment in which the laser light emitted from the light source 101 is branched into two and then combined again to generate a combined light.
  • the generated combined light forms an image 809 at the incident end of the polarization maintaining optical fiber bundle 803 by the condenser lens 802, and is coupled to the polarization maintaining optical fiber bundle 803.
  • the spatial distribution information of the image 809 of the combined light is transmitted to the light detection unit 804 by the polarization maintaining optical fiber bundle 803, and is presented as an image 810 at the emission end of the polarization maintaining optical fiber bundle 803.
  • the combined light emitted from the image 810 is converted into parallel light by the collimator lens 805 and then enters the interference optical system 132. Subsequent configurations and functions are the same as those in the first embodiment, and a description thereof will not be repeated.
  • the light detection unit 804 and the light observation unit 801 are connected by the polarization maintaining fiber bundle 803. Therefore, when measuring a large measurement target such as a human body, the measurement is facilitated by bringing only the light observation unit 801 close to the measurement target 115. Further, the polarization maintaining optical fiber bundle 803 is easily detachable. Therefore, for example, when the light detection unit 804 fails, only the light detection unit 804 can be replaced, and there is no need to replace the entire device. Therefore, the running cost of the optical measurement device 4 decreases.
  • FIG. 9 is a schematic diagram showing the movement of the beam spots 940, 957, 958 on the measurement object.
  • the same components as those shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
  • the optical measurement device of the fifth embodiment is realized with the same member configuration as the optical measurement device 1 of the first embodiment, but differs from the first embodiment in that the installation angle of the beam shaping prism 103 is rotated by 90 degrees.
  • the cross-sectional shape of the beam incident on the lens 113 is an ellipse in which the x direction is longer than the y direction. Therefore, the numerical aperture at the time of light collection is larger in the x direction than in the y direction, and as shown in FIG. 9, the shape of the beam spot 940 in the measurement object 115 on the xy plane is such that the y direction is the x direction. It becomes a longer ellipse.
  • the beam spot 940 scans a two-dimensional area of the measurement target 115, and acquires a two-dimensional image (xy image) of the measurement target 115.
  • Uniform scanning speed v in a scanning direction 152 while repeatedly scanned with a scanning period T x, and reaches the return position 901 in the scanning direction 152, the sub-scanning direction 952, wherein the scanning line width ⁇ y a beam spot 940 in the y-direction Just move.
  • the beam spot 940 follows the trajectory 902.
  • a solid line portion of the trajectory 902 indicates a section for scanning while measuring, and a broken line indicates a section for scanning without measuring.
  • Beam spot 940 at time t 1 is in the position of the hatched portion, the time t 1 + T x scheduled position 957, at time t 1 + 2T x located predetermined position 958.
  • the scanning method of Example 5 returns to the same x-position for each scanning period T x (x 1 in this case).
  • scanning is performed so that the scanning line width ⁇ y and the interval ⁇ x ′ between the four measurement regions 903 match.
  • the position where A 1 is measured in the measurement region at a time t 1, the time t 1 + T x A 2 of the measurement region in the, the time t 1 + 2T x A 3 of the measurement region in, measuring respectively next, time resolution can be obtained changes with time information equal to the scanning period T x.
  • the measurement result of A 1 in the measurement area at time t 1 the measurement results of A 3 in the measurement region at time t 1 + 2T x, equal time to n times the scan period T x Change information can also be obtained.
  • ⁇ y can be increased to m times, the time required to scan and measure a predetermined area can be shortened.
  • the scanning cycle T Information with a time resolution longer than x can be obtained.
  • FIG. 10 is a diagram illustrating a scanning method in which a plurality of measurement regions are defined in both the x direction and the y direction.
  • FIG. 10 shows a measurement area 1003 (A 11 , A 12 , A 13 , A 14 , A 21 , and A 21 ) when a plurality of detectors are provided in directions corresponding to both the x direction and the y direction of the beam spot 1040.
  • a 22 , A 23 , A 24 are shown.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

This light measurement device comprises: a light source; a light splitting part for splitting light emitted from the light source into reference light and signal light; a scanning unit for irradiating the signal light so as to scan an object of measurement; an optical system for generating interference light by combining signal light that has been reflected or scattered by the object of measurement and the reference light; a photodetection unit for receiving the interference light generated by the optical system and converting the same into an electrical signal; and a signal processing unit for calculating the intensity of the signal light on the basis of the electrical signal produced from the conversion by the photodetection unit. The photodetection unit detects the signal light using a plurality of photodetection elements associated with a plurality of measurement areas overlapping a signal light irradiation area. The signal processing unit calculates the intensities of the signal light detected by each of the plurality of photodetection elements. The scanning unit scans the object of measurement by moving the irradiation area of the signal light irradiated onto the object of measurement such that some of the plurality of measurement areas at a first point in time overlap with other measurement areas from among the plurality of measurement areas at a second point in time.

Description

光計測装置および試料観察方法Optical measurement device and sample observation method
 本開示は、光計測装置およびそれを用いた試料観察方法に関する。 The present disclosure relates to an optical measurement device and a sample observation method using the same.
 光計測装置は非破壊的に測定対象の表面構造や内部構造を反映した情報を取得しうる装置であり、幅広い分野で用いられている。このような光計測装置の一種として、光コヒーレンストモグラフィー(OCT:Optical Coherence Tomography)がある。 Optical measurement devices are devices that can non-destructively acquire information reflecting the surface structure and internal structure of a measurement target, and are used in a wide range of fields. As one type of such an optical measurement device, there is optical coherence tomography (OCT: Optical Coherence Tomography).
 OCTは人体に対する侵襲性を持たないことから、特に医療分野や生物学分野への応用が期待されており、眼科分野においては眼底や角膜等の画像を形成する装置が用いられている。OCTでは光源からの光を、測定対象に照射する信号光と測定対象に照射せずに参照光ミラーで反射させる参照光とに二分岐し、測定対象から反射された信号光を参照光と合波させ干渉させることにより信号を得る。 Since OCT has no invasiveness to the human body, it is expected to be applied particularly to the medical field and the biological field. In the ophthalmic field, an apparatus for forming an image of a fundus, a cornea, or the like is used. In OCT, light from a light source is split into two parts, a signal light that irradiates the measurement target and a reference light that is reflected by a reference light mirror without irradiating the measurement target, and the signal light reflected from the measurement target is combined with the reference light. A signal is obtained by wave and interference.
 また、最近では、OCTを応用して測定対象の経時変化情報を取得する技術が注目されている。経時変化情報の取得を利用した光計測装置の一例として血管造影OCTがある。特許文献1には、光源から出射された光を独立な二つの偏光ビームに分け、該二つの偏光ビームをガルバノ鏡により、走査方向に沿ったライン上の異なる二部位に同時に照射しながら走査を行い、反射光を垂直成分と水平成分に分離し、二つの検出器で同時に検出し、時間の異なる同じ部位の二枚の断層画像を、一回の上記走査によって取得し、該二枚の断層画像により、上記同じ部位についての位相の時間変化量を計測する、走査型のOCT装置が開示されている。この装置によれば、人体の組織中の時間変化量の大きい部位である、血管を可視化することができる。 技術 In recent years, a technique of applying OCT to obtain time-dependent change information of a measurement target has attracted attention. An angiographic OCT is an example of an optical measurement device that uses the acquisition of aging information. In Patent Document 1, scanning is performed while simultaneously irradiating light emitted from a light source into two independent polarized beams and simultaneously irradiating the two polarized beams to two different portions on a line along a scanning direction by a galvanometer mirror. The reflected light is separated into a vertical component and a horizontal component, detected by two detectors at the same time, and two tomographic images of the same part at different times are acquired by one scan, and the two tomographic images are obtained. A scanning OCT apparatus that measures the time change amount of the phase of the same region from an image is disclosed. According to this device, it is possible to visualize a blood vessel, which is a portion of a human body tissue having a large amount of temporal change.
 上に述べたような走査型の光計測装置では、測定対象物の所定部位の経時変化情報を取得するために、当該所定部位を時間δtをおいて複数回測定し、得られた複数回の測定結果から時間変化量δSを得て、δtとδSを用いて当該所定部位の経時変化情報を取得する。このとき測定の間隔δtが、経時変化情報の時間分解能となる。より高い時間分解能で測定することで、より多くの情報を取得することができる。 In the scanning optical measurement device as described above, in order to obtain time-dependent change information of a predetermined portion of the measurement target, the predetermined portion is measured a plurality of times at a time δt, and the obtained plurality of times are measured. The temporal change amount δS is obtained from the measurement result, and the temporal change information of the predetermined portion is obtained using δt and δS. At this time, the measurement interval δt becomes the time resolution of the temporal change information. By measuring with higher time resolution, more information can be obtained.
国際公開第2010/143601号WO 2010/143601
 走査型のOCTを含めた走査型の光計測装置において、多くの経時変化情報を得るためには時間分解能を高める必要がある。しかしながら、時間分解能は走査周期に依存するため、走査周期より短い時間分解能を得ることが難しい。また、走査周期の短い高価な走査機構を用いると装置が高価で複雑になる。 走 査 In a scanning optical measurement device including a scanning OCT, it is necessary to increase the time resolution in order to obtain a large amount of time-dependent change information. However, since the time resolution depends on the scanning cycle, it is difficult to obtain a time resolution shorter than the scanning cycle. If an expensive scanning mechanism with a short scanning cycle is used, the apparatus becomes expensive and complicated.
 特許文献1の血管造影OCTでは、ビームの走査周期よりも短い時間分解能で経時変化情報を得るため、測定対象物に二つの信号光ビームを照射するOCTが記載されている。上記のOCTでは、偏光状態の異なる二つの偏光ビームを異なる二部位に照射し、異なる二部位の情報を別々に検出するために、偏光状態に応じて二つのビームを分離する。このため、特許文献1に記載されたOCTはビーム分離機構が必要である他、さらに各ビームに対して独立した検出機構が必要であり、装置サイズが大きくなる。また、特許文献1に記載されたOCTでは、ビームを分離するために偏光状態の異なる二つのビームを利用する。それ故、二つのビームで取得した情報の間に偏光状態の違いによる差異が生じ、経時変化情報の測定誤差となる可能性がある。 The angiographic OCT of Patent Document 1 describes an OCT that irradiates a measurement object with two signal light beams in order to obtain temporal change information with a time resolution shorter than a beam scanning cycle. In the above-mentioned OCT, two polarized beams having different polarization states are irradiated to two different parts, and the two beams are separated according to the polarization state in order to separately detect information of the two different parts. For this reason, the OCT described in Patent Literature 1 requires a beam separation mechanism, and further requires an independent detection mechanism for each beam, which increases the device size. In the OCT described in Patent Document 1, two beams having different polarization states are used to separate beams. Therefore, there is a possibility that a difference occurs due to a difference in the polarization state between the information acquired by the two beams, resulting in a measurement error of the temporal change information.
 本開示は、上記の点に鑑みてなされたものであり、低コストで走査周期よりも短い時間分解能で経時変化情報を測定できる技術を提供する。 The present disclosure has been made in view of the above points, and provides a technique capable of measuring temporal change information at a low cost and with a temporal resolution shorter than a scanning cycle.
 本開示は上記課題を解決する手段として、例えば、光源と、前記光源から出射された光を参照光と信号光とに分岐する光分岐部と、前記信号光を照射して測定対象物を走査する走査部と、前記測定対象物によって反射または散乱された信号光と前記参照光とを合波し、干渉光を生成する光学系と、前記光学系で生成された前記干渉光を受光して電気信号に変換する光検出部と、前記光検出部によって変換された前記電気信号に基づいて前記信号光の強度を算出する信号処理部と、を備える光計測装置であって、前記光検出部は、前記信号光の照射領域と重なる複数の測定領域のそれぞれと対応づけられた複数の光検出素子によって前記信号光を検出し、前記信号処理部は、前記複数の光検出素子のそれぞれが検出した前記信号光の強度を算出し、前記走査部は、前記測定対象物に照射する前記信号光の前記照射領域を、第1の時点における前記複数の測定領域の一部が第2の時点における前記複数の測定領域の別の一部と重なるように移動させて前記測定対象物を走査する、光計測装置を提供する。 As means for solving the above-described problems, for example, a light source, a light branching unit that branches light emitted from the light source into reference light and signal light, and scans the measurement target by irradiating the signal light A scanning unit that combines the signal light and the reference light reflected or scattered by the object to be measured, an optical system that generates interference light, and receives the interference light generated by the optical system. An optical measurement device comprising: a light detection unit that converts an electric signal, and a signal processing unit that calculates the intensity of the signal light based on the electric signal converted by the light detection unit, wherein the light detection unit Detecting the signal light by a plurality of light detection elements associated with each of a plurality of measurement areas overlapping the irradiation area of the signal light, wherein the signal processing unit detects each of the plurality of light detection elements Calculated signal light intensity Then, the scanning unit may be configured to irradiate the irradiation area of the signal light irradiating the measurement object with a part of the plurality of measurement areas at a first time different from the plurality of measurement areas at a second time. Provided is an optical measurement device that scans the measurement object by moving the measurement object so as to partially overlap the measurement object.
 また、例えば、光干渉断層像を取得する光計測装置を用いる試料観察方法であって、測定対象物に信号光を照射し、反射または散乱された信号光と参照光とを合成して干渉光を生成するステップと、前記信号光の照射領域と重なる複数の測定領域のそれぞれに対応した複数の光検出素子によって第1の時点における前記干渉光の信号強度を検出するステップと、前記第1の時点における前記複数の測定領域の一部と第2の時点における前記複数の測定領域の別の一部とが重なるように前記照射領域を移動させるステップと、前記複数の測定領域のそれぞれに対応した前記複数の光検出素子によって前記第2の時点における前記干渉光の信号強度を検出するステップと、を含む試料観察方法を提供する。 Also, for example, in a sample observation method using an optical measurement device that acquires an optical coherence tomographic image, the measurement object is irradiated with signal light, and the reflected or scattered signal light and reference light are combined to generate interference light. And detecting a signal intensity of the interference light at a first time by a plurality of photodetectors corresponding to a plurality of measurement regions overlapping with the irradiation region of the signal light; and Moving the irradiation area so that a part of the plurality of measurement areas at a time point and another part of the plurality of measurement areas at a second time point overlap with each of the plurality of measurement areas. Detecting the signal intensity of the interference light at the second point in time with the plurality of light detection elements.
 本開示によれば、低コストで走査周期よりも短い時間分解能で経時変化情報を測定できる。上記以外の課題、構成および効果は、以下の実施の形態の説明により明らかにされる。 According to the present disclosure, temporal change information can be measured at low cost and with a temporal resolution shorter than the scanning period. Problems, configurations, and effects other than those described above will be apparent from the following description of the embodiments.
本開示による光計測装置の基本的な実施形態を示す模式図である。1 is a schematic diagram illustrating a basic embodiment of an optical measurement device according to the present disclosure. 実施例1の光計測装置の動作状態における、ビームスポットと差動検出回路の配置との対応関係を示す模式図である。FIG. 3 is a schematic diagram illustrating a correspondence relationship between a beam spot and an arrangement of a differential detection circuit in an operation state of the optical measurement device according to the first embodiment. 測定対象物上に照射されたビームスポットが移動する様子を示す模式図である。It is a schematic diagram which shows a mode that the beam spot irradiated on the measurement object moves. 測定領域の位置の経時的変化と時間分解能との関係を示した模式図である。FIG. 4 is a schematic diagram illustrating a relationship between a temporal change in a position of a measurement region and a time resolution. 上で述べたビーム径を拡大する参照光学系の構成を示す模式図である。FIG. 3 is a schematic diagram illustrating a configuration of a reference optical system for expanding a beam diameter described above. 実施例2に係る光計測装置の基本的な構成例を示す図である。FIG. 9 is a diagram illustrating a basic configuration example of an optical measurement device according to a second embodiment. 実施例3の光計測装置の構成を示す模式図である。FIG. 9 is a schematic diagram illustrating a configuration of an optical measurement device according to a third embodiment. 実施例4の光計測装置の構成を示す模式図である。FIG. 13 is a schematic diagram illustrating a configuration of an optical measurement device according to a fourth embodiment. 測定対象物上のビームスポットの移動の様子を示す模式図であるFIG. 3 is a schematic diagram illustrating a state of movement of a beam spot on a measurement object. 測定領域がx方向およびy方向の両方向に複数の測定領域が定義された走査方法を示す図である。FIG. 9 is a diagram illustrating a scanning method in which a plurality of measurement regions are defined in both the x direction and the y direction.
 以下、添付図面を参照して本開示の種々の実施例について説明する。ただし、これらの実施例は本開示を実現するための一例に過ぎず、本開示の技術的範囲を限定するものではない。また、各図において共通の構成については同一の参照番号が付されている。 Hereinafter, various embodiments of the present disclosure will be described with reference to the accompanying drawings. However, these embodiments are merely examples for realizing the present disclosure, and do not limit the technical scope of the present disclosure. Further, in each of the drawings, the same reference numerals are given to the common components.
<実施例1>
 以下、実施例1の光計測装置を図1~5を参照しながら説明する。
 図1は、本開示による光計測装置1の基本的な実施形態を示す模式図である。図1において、図の上下方向がz方向、左右方向がx方向、紙面に垂直な方向がy方向である。
<Example 1>
Hereinafter, an optical measurement device according to a first embodiment will be described with reference to FIGS.
FIG. 1 is a schematic diagram illustrating a basic embodiment of an optical measurement device 1 according to the present disclosure. In FIG. 1, the vertical direction in the figure is the z direction, the horizontal direction is the x direction, and the direction perpendicular to the paper is the y direction.
 光計測装置1は、光源部190、偏光ビームスプリッタ106、参照光学系191、走査部159、試料ステージ139、カバーガラス114、干渉光学系132、フォトダイオードアレイ(124、125、130および131)、差動検出回路(134および135)、信号処理部136および制御部116を備える。 The optical measurement device 1 includes a light source unit 190, a polarization beam splitter 106, a reference optical system 191, a scanning unit 159, a sample stage 139, a cover glass 114, an interference optical system 132, a photodiode array (124, 125, 130, and 131), It includes a differential detection circuit (134 and 135), a signal processing unit 136, and a control unit 116.
 光源部190は、光源101、コリメートレンズ102、ビーム整形プリズム103、ND(Neutral Density)フィルタ104および光学軸方向を調整可能なλ/2板105を備える。光源101から出射された単一の波長成分からなるレーザ光は、コリメートレンズ102によって平行光に変換される。続いて、平行光に変換されたレーザ光は、ビーム整形プリズム103によってビーム断面形状が、y方向がx方向よりも長い楕円形に整形される。その後、レーザ光は、NDフィルタ104によって強度が減少され、光学軸方向を調整可能なλ/2板105によって偏光方向を回転させられた後、偏光ビームスプリッタ106によって信号光と参照光とに二分岐される。 The light source unit 190 includes a light source 101, a collimating lens 102, a beam shaping prism 103, an ND (Neutral Density) filter 104, and a λ / 2 plate 105 whose optical axis direction can be adjusted. Laser light having a single wavelength component emitted from the light source 101 is converted into parallel light by the collimating lens 102. Subsequently, the laser beam converted into parallel light is shaped into an elliptical beam cross-sectional shape by the beam shaping prism 103 so that the y direction is longer than the x direction. After that, the intensity of the laser light is reduced by the ND filter 104, the polarization direction is rotated by the λ / 2 plate 105 whose optical axis direction is adjustable, and then the polarization beam splitter 106 converts the laser light into a signal light and a reference light. Branched.
 走査部159は、2次元スキャナ107、λ/4板112、レンズ113およびレンズアクチュエータ117を備える。信号光は、走査部159内に設けられた光学系に進入し、2次元スキャナ107を通過し、光学軸方向がxz平面に対して約22.5度に設定されたλ/4板112を透過して偏光状態がs偏光から円偏光に変換される。その後、信号光は、開口数が0.3以上のレンズ113によって集光されつつカバーガラス114を透過して測定対象物115に照射され、集光位置にビームスポット140を形成する。 The scanning unit 159 includes the two-dimensional scanner 107, the λ / 4 plate 112, the lens 113, and the lens actuator 117. The signal light enters the optical system provided in the scanning unit 159, passes through the two-dimensional scanner 107, and passes through the λ / 4 plate 112 whose optical axis direction is set to about 22.5 degrees with respect to the xz plane. The transmitted light is converted from s-polarized light to circularly polarized light. After that, the signal light is transmitted through the cover glass 114 while being converged by the lens 113 having a numerical aperture of 0.3 or more, and irradiates the measurement object 115 to form a beam spot 140 at the condensing position.
 ここで、レンズ113に入射するビームの断面形状はy方向がx方向より長い楕円形であるため、集光時の開口数はy方向がx方向より大きくなる。そのため、ビームスポット140のxy平面上における形状は、x方向がy方向より長い楕円形となる。 Here, since the cross-sectional shape of the beam incident on the lens 113 is an ellipse in the y direction longer than the x direction, the numerical aperture at the time of focusing is larger in the y direction than in the x direction. Therefore, the shape of the beam spot 140 on the xy plane is an ellipse in which the x direction is longer than the y direction.
 ビームスポット140は、走査部159によってその位置をx、y、z方向の何れかの方向に移動される。レンズ113は、制御部116がレンズアクチュエータ117を制御することにより、少なくともz方向へ移動され、それにより、レンズ113による信号光の集光位置(測定位置)の移動がなされる。 The position of the beam spot 140 is moved by the scanning unit 159 in any of the x, y, and z directions. The lens 113 is moved at least in the z direction by the control of the lens actuator 117 by the control unit 116, whereby the focus position (measurement position) of the signal light by the lens 113 is moved.
 また、信号光の集光位置のxy方向への移動は、信号光の光路中に設けられた、二つのガルバノミラー108および109とレンズ110および111を含む2次元スキャナ107とによってなされ、それにより、信号光の集光位置による測定対象物の走査がなされる。 Further, the movement of the condensing position of the signal light in the xy directions is performed by two galvanometer mirrors 108 and 109 and a two-dimensional scanner 107 including lenses 110 and 111 provided in the optical path of the signal light. The scanning of the object to be measured is performed based on the condensing position of the signal light.
 測定対象物から反射または散乱された信号光は、レンズ113によって平行光(ビーム)に変換される。その後、信号光は、λ/4板112によって偏光状態を円偏光からp偏光に変換され、偏光ビームスプリッタ106へ入射する。試料ステージ139の移動によって測定対象物115を移動させることによって、信号光の集光位置の測定対象物115中での位置のおおまかな移動がなされる。 信号 The signal light reflected or scattered from the measurement object is converted by the lens 113 into parallel light (beam). After that, the polarization state of the signal light is changed from circularly polarized light to p-polarized light by the λ / 4 plate 112, and the polarized light enters the polarization beam splitter 106. By moving the measurement target 115 by moving the sample stage 139, the position of the signal light focusing position in the measurement target 115 is roughly moved.
 一方、参照光はλ/4板118を透過して、偏光状態がp偏光から円偏光に変換される。その後、参照光は、位置が固定されたミラー119に入射して反射された後、再度λ/4板118を透過して偏光状態が円偏光からs偏光へ変換され、偏光ビームスプリッタ106へ入射する。 On the other hand, the reference light is transmitted through the λ / 4 plate 118, and the polarization state is converted from p-polarized light to circularly-polarized light. After that, the reference light is incident on the mirror 119 whose position is fixed, is reflected, and then passes through the λ / 4 plate 118 again, where the polarization state is changed from circularly polarized light to s-polarized light, and is incident on the polarization beam splitter 106. I do.
 信号光と参照光とは、偏光ビームスプリッタ106で合波され、合成光が生成される。合成光は、ハーフビームスプリッタ120、λ/2板(121および127)、λ/4板126、集光レンズ(122および128)、偏光ビームスプリッタ(123および129)から成る干渉光学系132へ導かれる。 The signal light and the reference light are multiplexed by the polarization beam splitter 106 to generate a combined light. The combined light is guided to an interference optical system 132 including a half beam splitter 120, a λ / 2 plate (121 and 127), a λ / 4 plate 126, a condenser lens (122 and 128), and a polarizing beam splitter (123 and 129). I will
 干渉光学系132へ入射した合成光は、ハーフビームスプリッタ120によって透過光と反射光とに二分岐される。透過光は、光学軸がxz平面に対して約22.5度に設定されたλ/2板121を透過した後、集光レンズ122によって集光される。その後、透過光は、偏光ビームスプリッタ123によって二分岐されて、互いに位相関係が180度異なる第1の干渉光144と第2の干渉光145とが生成される。 合成 The combined light that has entered the interference optical system 132 is split into two by the half beam splitter 120 into transmitted light and reflected light. The transmitted light passes through the λ / 2 plate 121 whose optical axis is set to about 22.5 degrees with respect to the xz plane, and is then condensed by the condenser lens 122. After that, the transmitted light is split into two by the polarization beam splitter 123, and a first interference light 144 and a second interference light 145 having a phase relationship different from each other by 180 degrees are generated.
 第1の干渉光144は、集光レンズ122によって集光されて、フォトダイオードアレイ124の位置にビームスポット140の像153を結ぶ。フォトダイオードアレイ124は、ビームスポット140の像153に複数の光検出素子(フォトダイオード)148が重なるように配置される。 The first interference light 144 is condensed by the condenser lens 122 and forms an image 153 of the beam spot 140 at the position of the photodiode array 124. The photodiode array 124 is arranged such that a plurality of photodetectors (photodiodes) 148 overlap the image 153 of the beam spot 140.
 同様に、第2の干渉光145は、集光レンズ122によって集光されて、フォトダイオードアレイ125の位置にビームスポット140の像154を結ぶ。フォトダイオードアレイ125は、それぞれが光検出器として機能する複数の光検出素子149からなっており、ビームスポット140の像154に複数の光検出素子149が重なるように配置される。 Similarly, the second interference light 145 is condensed by the condenser lens 122 and forms an image 154 of the beam spot 140 at the position of the photodiode array 125. The photodiode array 125 includes a plurality of light detection elements 149 each functioning as a light detector, and the plurality of light detection elements 149 are arranged so as to overlap the image 154 of the beam spot 140.
 第1の干渉光144および第2の干渉光145のそれぞれは、フォトダイオードアレイ124、125および差動検出回路134によって、複数の光検出素子148および複数の光検出素子149の互いに対応する素子の出力同士が組み合わされて電流差動検出され、二つの干渉光の強度の差に比例した信号137が出力される。ここで、複数の光検出素子148および複数の光検出素子149の互いに対応する素子とは、例えば、図1に示された例では、複数の光検出素子148の最も下方に位置する光検出素子と複数の光検出素子149の最も左側に位置する光検出素子とが互いに対応する素子となる。 Each of the first interference light 144 and the second interference light 145 is converted by the photodiode arrays 124 and 125 and the differential detection circuit 134 into a corresponding one of the plurality of light detection elements 148 and the plurality of light detection elements 149. The outputs are combined and current differential detection is performed, and a signal 137 proportional to the difference between the intensities of the two interference lights is output. Here, the mutually corresponding elements of the plurality of light detection elements 148 and the plurality of light detection elements 149 are, for example, in the example shown in FIG. And the leftmost light detection element of the plurality of light detection elements 149 correspond to each other.
 一方、ハーフビームスプリッタ120において反射した反射光は、光学軸がxz平面に対して約45度に設定されたλ/4板126を透過した後、光学軸がxz平面に対して約22.5度に設定されたλ/2板127を透過し、集光レンズ128によって集光される。その後、反射光は、偏光ビームスプリッタ129によって二分岐され、互いに位相関係が180度異なる第三の干渉光と第四の干渉光とが生成される。第三の干渉光および第四の干渉光のそれぞれは、フォトダイオードアレイ131、130および差動検出回路135によって、電流差動検出され、二つの干渉光の強度の差に比例した信号138が出力される。 On the other hand, the reflected light reflected by the half beam splitter 120 passes through the λ / 4 plate 126 whose optical axis is set at about 45 degrees with respect to the xz plane, and then has an optical axis of about 22.5 with respect to the xz plane. The light is transmitted through the λ / 2 plate 127 set at each time, and is condensed by the condenser lens 128. Thereafter, the reflected light is split into two by the polarizing beam splitter 129, and a third interference light and a fourth interference light having a phase relationship different from each other by 180 degrees are generated. Each of the third interference light and the fourth interference light is subjected to current differential detection by the photodiode arrays 131 and 130 and the differential detection circuit 135, and a signal 138 proportional to the difference between the intensities of the two interference lights is output. Is done.
 第三の干渉光146は、集光レンズ128によって集光されて、フォトダイオードアレイ131の位置にビームスポット140の像155を結ぶ。フォトダイオードアレイ131は、ビームスポット140の像155に複数の光検出素子(フォトダイオード)150が重なるように配置される。 The third interference light 146 is condensed by the condenser lens 128 and forms an image 155 of the beam spot 140 at the position of the photodiode array 131. The photodiode array 131 is arranged such that a plurality of photodetectors (photodiodes) 150 overlap the image 155 of the beam spot 140.
 同様に、第四の干渉光147は、集光レンズ128によって集光されて、フォトダイオードアレイ130の位置にビームスポット140の像156を結ぶ。フォトダイオードアレイ130は、それぞれが光検出器として機能する複数の光検出素子151からなっており、ビームスポット140の像156に複数の光検出素子151が重なるように配置される。 Similarly, the fourth interference light 147 is condensed by the condenser lens 128 to form an image 156 of the beam spot 140 at the position of the photodiode array 130. The photodiode array 130 includes a plurality of light detecting elements 151 each functioning as a light detector, and the plurality of light detecting elements 151 are arranged so as to overlap the image 156 of the beam spot 140.
 第三の干渉光146および第四の干渉光147のそれぞれは、フォトダイオードアレイ130、131および差動検出回路135によって、複数の光検出素子150および複数の光検出素子151の互いに対応する素子の出力同士が組み合わされて電流差動検出され、二つの干渉光の強度の差に比例した信号138が出力される。“互いに対応する素子”の意味については、上で説明したとおりである。 Each of the third interference light 146 and the fourth interference light 147 is, by the photodiode arrays 130 and 131 and the differential detection circuit 135, an output of a corresponding one of the plurality of light detection elements 150 and the plurality of light detection elements 151. The outputs are combined and current differential detection is performed, and a signal 138 proportional to the difference between the intensities of the two interference lights is output. The meaning of “elements corresponding to each other” is as described above.
 上記のようにして生成された信号137および信号138が、信号処理部136に入力されて演算されることにより信号光の振幅に比例した信号が得られる。具体的には、合成光が干渉光学系132へ入射する時点での信号光成分の振幅をEsig、参照光成分の振幅をEref、信号137の強度をI、信号138の強度をQとして、信号処理部136にて以下の式1の演算を行うことにより、位相に依存しない、信号光の振幅の絶対値に比例した信号が得られる。
 |Esig|・|Eref|={I+Q1/2      ・・・(式1)
The signals 137 and 138 generated as described above are input to the signal processing unit 136 and operated to obtain a signal proportional to the amplitude of the signal light. Specifically, the amplitude of the signal light component at the time when the combined light enters the interference optical system 132 is E sig , the amplitude of the reference light component is E ref , the intensity of the signal 137 is I, and the intensity of the signal 138 is Q. The signal processing unit 136 performs the operation of the following equation 1, thereby obtaining a signal that does not depend on the phase and is proportional to the absolute value of the amplitude of the signal light.
| E sig | · | E ref | = {I 2 + Q 2 } 1/2 (Equation 1)
 ここで信号137および信号138は、各フォトダイオードアレイ124、125、130、131の複数の光検出素子148、149、150、151の素子数だけ出力されているので、式1の演算もその数だけ行われ、それに応じた数の信号光の振幅に比例した信号が得られる(図1に示された例では四つ)。本実施例では位相関係が異なる三つ以上の干渉光を検出するため、これらの検出信号に対して演算を行うことで、干渉位相に依存しない安定した信号を取得することができる。 Here, the signals 137 and 138 are output by the number of photodetectors 148, 149, 150, and 151 of each of the photodiode arrays 124, 125, 130, and 131. Is performed, and a signal proportional to the amplitude of the signal light corresponding to the number is obtained (four in the example shown in FIG. 1). In the present embodiment, since three or more interference light beams having different phase relationships are detected, a stable signal independent of the interference phase can be obtained by performing an operation on these detection signals.
 図2は、実施例1の光計測装置1の動作状態における、ビームスポット140と差動検出回路134との対応関係を示す模式図である。 FIG. 2 is a schematic diagram illustrating the correspondence between the beam spot 140 and the differential detection circuit 134 in the operation state of the optical measurement device 1 according to the first embodiment.
 測定対象物115上のビームスポット140のxy平面上での形状は、先述のとおり、x方向がy方向より長い楕円形である。測定対象物115において反射された信号光は、参照光と合波されて干渉光144、145、146、147となり、装置の光学系を介してフォトダイオードアレイ124、125、130、131の受光面上に、像153、154、155、156としてそれぞれ結ばれる。 形状 The shape of the beam spot 140 on the measurement object 115 on the xy plane is an ellipse whose x direction is longer than the y direction, as described above. The signal light reflected by the measurement object 115 is multiplexed with the reference light to become interference lights 144, 145, 146, and 147, and the light receiving surfaces of the photodiode arrays 124, 125, 130, and 131 via the optical system of the apparatus. Above are formed images 153, 154, 155, and 156, respectively.
 図2には、第1の干渉光および第2の干渉光に対応するフォトダイオードアレイ124、125と像153、154の位置関係が示されている。第3の干渉光および第4の干渉光に対応するフォトダイオードアレイ130、131と像155、156の位置関係も第1の干渉光および第2の干渉光の場合と同様である。 FIG. 2 shows the positional relationship between the photodiode arrays 124 and 125 and the images 153 and 154 corresponding to the first interference light and the second interference light. The positional relationship between the photodiode arrays 130 and 131 corresponding to the third interference light and the fourth interference light and the images 155 and 156 is the same as that of the first interference light and the second interference light.
 干渉光144の形成する像153は、フォトダイオードアレイ124の4つの光検出素子148(D11、D12、D13、D14)の並ぶ方向301に長い楕円形である。像153は、四つの光検出素子148にまたがっており、各光検出素子は干渉光144のうち各検出素子に照射される成分の強度に比例した電流を出力する。図2では、四つの光検出素子148の並ぶ方向301は、像153上において測定対象物115上でのx方向に対応する方向と一致させて描かれている。 The image 153 formed by the interference light 144 has an elliptical shape that is long in the direction 301 in which the four light detection elements 148 (D 11 , D 12 , D 13 , and D 14 ) of the photodiode array 124 are arranged. The image 153 extends over the four photodetectors 148, and each photodetector outputs a current proportional to the intensity of the component of the interference light 144 applied to each detector. In FIG. 2, the direction 301 in which the four photodetectors 148 are arranged is drawn on the image 153 so as to match the direction corresponding to the x direction on the measurement target 115.
 干渉光145の形成する像154は、フォトダイオードアレイ125の4つの光検出素子149(D21、D22、D23、D24)の並ぶ方向302に長い楕円形である。像154は、四つの光検出素子149にまたがっており、各光検出素子は干渉光145のうち各検出素子に照射される成分の強度に比例した電流を出力する。図2では、四つの光検出素子149の並ぶ方向302は、像154上において測定対象物115上でのx方向に対応する方向と一致させて描かれている。 The image 154 formed by the interference light 145 has an elliptical shape that is long in the direction 302 in which the four light detection elements 149 (D 21 , D 22 , D 23 , and D 24 ) of the photodiode array 125 are arranged. The image 154 extends over the four light detection elements 149, and each light detection element outputs a current proportional to the intensity of the component of the interference light 145 irradiated to each detection element. In FIG. 2, the direction 302 in which the four light detection elements 149 are arranged is drawn on the image 154 so as to match the direction corresponding to the x direction on the measurement target 115.
 像153と四つの光検出素子148との相対的な位置関係は、像154と四つ光検出素子149との相対的な位置関係と一致させてあり、四つの光検出素子148(D11、D12、D13、D14)と四つの光検出素子149(D21、D22、D23、D24)は、ともに、測定対象物115上の四つの測定領域303(A、A、A、A)と光学的に共役な位置となっている。ここで、各光検出素子の間隔をδx、光学系の倍率をMとすると、四つの測定領域303の間隔δx’は、δx’=M×δxとなっている。 The relative positional relationship between the image 153 and the four light detecting elements 148 matches the relative positional relationship between the image 154 and the four light detecting elements 149, and the four light detecting elements 148 (D 11 , D 12 , D 13 , and D 14 ) and the four photodetectors 149 (D 21 , D 22 , D 23 , and D 24 ) together form four measurement regions 303 (A 1 , A 2 ) on the measurement target 115. , A 3 , A 4 ). Here, assuming that the interval between the respective photodetectors is δx and the magnification of the optical system is M, the interval δx ′ between the four measurement areas 303 is δx ′ = M × δx.
 四つの光検出素子148(D11、D12、D13、D14)と四つの光検出素子149(D21、D22、D23、D24)の電流出力は、対応する光検出素子同士(D11とD21、D12とD22、D13とD23、D14とD24)の出力が組み合わされた四組の信号がそれぞれ差動検出回路304、305、306、307に入力されて差動検出され、四つの信号の集合である信号137として信号処理部136に入力される。 The current outputs of the four light detecting elements 148 (D 11 , D 12 , D 13 , D 14 ) and the four light detecting elements 149 (D 21 , D 22 , D 23 , D 24 ) correspond to the corresponding light detecting elements. (D 11 and D 21 , D 12 and D 22 , D 13 and D 23 , and D 14 and D 24 ) are input to the differential detection circuits 304, 305, 306, and 307, respectively. Then, the signals are differentially detected and input to the signal processing unit 136 as a signal 137 as a set of four signals.
 第3の干渉光および第4の干渉光についても、第1の干渉光および第2の干渉光と同様に、四つの光検出素子150および四つの光検出素子151は、ともに、測定対象物115上の四つの測定領域303(A、A、A、A)と光学的に共役な位置となっている。対応する光検出素子同士の出力は組み合わされ、四組の信号がそれぞれ四つの差動検出回路に入力されて差動検出される。その結果、四つの信号の集合である信号138が、信号処理部136に入力される。 As for the third interference light and the fourth interference light, similarly to the first interference light and the second interference light, the four light detection elements 150 and the four light detection elements 151 are both measured objects 115. The position is optically conjugate with the upper four measurement regions 303 (A 1 , A 2 , A 3 , A 4 ). The outputs of the corresponding photodetectors are combined, and four sets of signals are respectively input to four differential detection circuits and differentially detected. As a result, a signal 138 that is a set of four signals is input to the signal processing unit 136.
 信号処理部136は、信号137および信号138を入力とした上記式1の演算を四回実行し、四つの測定領域303(A、A、A、A)で反射された信号光の各成分の振幅に比例した四つの信号(S、S、S、S)が算出される。上記のとおり、四つの測定領域303(A、A、A、A)についての信号の測定は同時に実施可能である。 The signal processing unit 136 performs the calculation of the above equation 1 four times with the signal 137 and the signal 138 as inputs, and the signal light reflected by the four measurement areas 303 (A 1 , A 2 , A 3 , A 4 ). Four signals (S 1 , S 2 , S 3 , S 4 ) proportional to the amplitude of each component are calculated. As described above, the measurement of signals for the four measurement areas 303 (A 1 , A 2 , A 3 , A 4 ) can be performed simultaneously.
 以下、本実施例の光計測装置1がビームスポット140で測定対象物115を走査しながら経時変化情報を取得する際の動作を、図3および図4を参照しながら説明する。 Hereinafter, an operation when the optical measurement device 1 of the present embodiment acquires the time-dependent change information while scanning the measurement target 115 with the beam spot 140 will be described with reference to FIGS. 3 and 4.
 図3は、測定対象物115上に照射されたビームスポット140、157、158が移動する様子を示す模式図である。 FIG. 3 is a schematic diagram showing a state in which the beam spots 140, 157, and 158 irradiated on the measurement target 115 move.
 ビームスポット140で測定対象物115を走査する際、測定対象物115上のビームスポット140は、x方向に一定の速度で移動する。図3は走査方向152に一定の走査速さvで移動しているビームスポット140の時刻tにおける位置と、同時刻の四つの測定領域303(A、A、A、A)の位置を示している。四つの測定領域303(A、A、A、A)の間隔は、上で述べたように光検出素子の間隔と光学系の特性で決まる値(δx’)で、ここでは時刻によらず一定である。図1中には、時刻tよりδt後と、2×δt後の時刻における、ビームスポット140の予定位置をそれぞれ符号157および符号158で示した。ここで、時間δtは次式で与えられる値である。
          δt=δx’/v・・・(式2)
 言い換えると、時間δtでのビームスポット140の移動距離はv・δt=δx’であり、測定領域同士の間隔に等しい。
When scanning the measurement object 115 with the beam spot 140, the beam spot 140 on the measurement object 115 moves at a constant speed in the x direction. Figure 3 is the position at time t 1 of the beam spot 140 moving at a uniform scanning speed v in a scanning direction 152, the time of the four measurement regions 303 (A 1, A 2, A 3, A 4) The position of is shown. The distance between the four measurement areas 303 (A 1 , A 2 , A 3 , A 4 ) is a value (δx ′) determined by the distance between the photodetectors and the characteristics of the optical system as described above. It is constant regardless of In the drawing 1, and after .DELTA.t from the time t 1, at time after 2 × .DELTA.t, respectively predetermined position of the beam spot 140 indicated by reference numeral 157 and reference numeral 158. Here, the time δt is a value given by the following equation.
δt = δx ′ / v (Equation 2)
In other words, the moving distance of the beam spot 140 at the time δt is v · δt = δx ′, which is equal to the interval between the measurement areas.
 図4は、測定領域の位置の経時的変化と時間分解能(即ち、サンプリング間隔)との関係を示した模式図である。図4のグラフにおいて、横軸が時間tを示し、縦軸が測定領域303のx方向の位置を示す。図4には、四つの測定領域303(A、A、A、A)の位置が、それぞれ、トレース401、402、403、404として示されている。各トレースの実線部分は測定期間、破線部分は測定せずに単に移動している期間を表す。図4に示された例では、測定領域303がxの正の方向に移動している間のみ測定し、xの負の方向に移動している(走査の開始位置に戻る)間は測定していない。 FIG. 4 is a schematic diagram showing the relationship between the temporal change in the position of the measurement area and the time resolution (that is, the sampling interval). In the graph of FIG. 4, the horizontal axis indicates time t, and the vertical axis indicates the position of the measurement region 303 in the x direction. In FIG. 4, the positions of the four measurement areas 303 (A 1 , A 2 , A 3 , A 4 ) are shown as traces 401, 402, 403, and 404, respectively. The solid line portion of each trace indicates a measurement period, and the broken line portion indicates a period in which the trace is simply moving without measurement. In the example shown in FIG. 4, measurement is performed only while the measurement area 303 is moving in the positive x direction, and measurement is performed while the measurement area 303 is moving in the negative x direction (returning to the scan start position). Not.
 時刻tにおいて測定領域303の1つAの位置はxであり、他の三つA、A、Aの位置はそれぞれ、x-δx’、x-2δx’、x-3δx’、である。この後、測定領域303は速さvで移動するため、各測定領域303が位置xに到達する時刻は、それぞれ以下のとおりとなる。
 A: t+δt
 A: t+2δt
 A: t+3δt
Position of one A 1 of the measurement region 303 at time t 1 is x 1, each of the other position of the three A 2, A 3, A 4 , x 1 -δx ', x 1 -2δx', x 1 −3δx ′. Thereafter, since the measurement region 303 to move at a speed v, the time each measurement region 303 reaches the position x 1 is made as follows, respectively.
A 2 : t 1 + δt
A 3 : t 1 + 2δt
A 4 : t 1 + 3δt
 よって、四つの測定領域303で得られた四つの信号(S、S、S、S)について、n番目の測定領域の時刻tにおける信号値をS(t)と書き表すと、S(t)、S(t+δt)、S(t+2δt)、S(t+3δt)は、時刻tから時間δt毎に取得した位置xの時系列測定値となる。 Thus, the four signals obtained by the four measurement regions 303 (S 1, S 2, S 3, S 4), the signal value at time t of the n-th measurement region when put out and S n (t), S 1 (t 1 ), S 2 (t 1 + δt), S 3 (t 1 + 2δt), and S 4 (t 1 + 3δt) are time-series measured values of the position x 1 obtained at time δt from time t 1. Becomes
 より一般的には、ある時刻tにm番目の測定領域が通過する位置xの時系列測定値Y(x,n)は、Sm+n(t+n・δt)として得られ、この時系列測定値を用いて位置xの経時変化情報を取得できる。さらに、位置xから正方向にx’だけ離れた位置の時系列測定値Y(x0+x’,n)は、Sm+n(t+x’/v+n・δt)として得られる。このように、四つの測定領域303で測定対象115上の一つの走査線上を一度走査しただけで、当該走査線上の各点で時間δt毎の時系列測定値を取得することができる。 More generally, a time-series measurement value Y (x 0 , n) at a position x 0 at which the m-th measurement area passes at a certain time t 0 is obtained as S m + n (t 0 + n · δt). when you acquire the temporal change information of the position x 0 by using a sequence measurements. Furthermore, the position x 0 from the positive direction to the 'time series measurements of position apart Y (x 0+ x' x, n) is obtained as S m + n (t 0 + x '/ v + n · δt). In this way, by scanning only once on one scan line on the measurement target 115 in the four measurement regions 303, it is possible to acquire a time-series measurement value for each time δt at each point on the scan line.
 ここで、測定領域303のx方向の走査振幅をX、走査周期405をTとすると、走査時の移動は一定速度なのでX=v・Tとなる。また測定領域同士の間隔に対して走査振幅は十分大きい(δx’<<X)ため、δt=δx’/v=(δx’/X)・T<<Tとなる。つまり、本実施例の光計測装置1は、上記の動作を実行することにより、測定対象物115上のある位置の経時変化情報を取得可能であり、その時間分解能δtは走査周期405Tより十分に短くすることができる。 Here, x direction of the scanning amplitude X A of the measurement region 303 and the scan period 405 and T x, the movement at the time of scanning becomes so constant speed X A = v · T x. Further, since the scanning amplitude is sufficiently large (δx ′ << X A ) with respect to the interval between the measurement regions, δt = δx ′ / v = (δx ′ / X A ) · T x << T x . That is, the light measuring device 1 of the present embodiment, by executing the above operation, a change with time information of the upper measuring object 115 located obtainable, the time resolution δt is sufficiently than the scanning period 405T x Can be shortened.
 また、差動検出回路134、135やフォトダイオードアレイ124、125、130、131の時間分解能(AD変換周波数や応答周波数)を上記δtと同程度以下とすることで、意図した時点での測定値を得ることができる。さらに、望ましくは上記時間分解能をδt/2以下とすることで、サンプリング定理を満足して意図した時間分解能での情報を得ることができる。また、上記時間分解能をδt/10以下とすることで、測定の隣り合う時点における測定対象物115の状態に影響を受けない測定が可能となり、経時変化情報を精度よく検出することができる。 Further, by setting the time resolution (AD conversion frequency or response frequency) of the differential detection circuits 134 and 135 and the photodiode arrays 124, 125, 130 and 131 to about the same or less than the above δt, the measured value at the intended time Can be obtained. Further, by desirably setting the time resolution to δt / 2 or less, it is possible to satisfy the sampling theorem and obtain information at the intended time resolution. Further, by setting the time resolution to δt / 10 or less, it becomes possible to perform measurement without being affected by the state of the measurement object 115 at the time point adjacent to the measurement, and it is possible to accurately detect temporal change information.
 以上のように、本開示によれば、走査方向に対応する方向に設けられた複数の検出器によって、測定対象物の所定部位を異なる時刻に測定でき、得られた複数の測定結果によって当該所定部位の経時変化情報を取得することができる。つまり、本開示の光計測装置1は、二つの信号光ビームを用いることなく、走査周期よりも短い時間分解能で経時変化情報を測定できる。 As described above, according to the present disclosure, a plurality of detectors provided in a direction corresponding to a scanning direction can measure a predetermined portion of a measurement target at different times, and the plurality of measurement results can be used to determine the predetermined portion. Time-dependent change information of the site can be obtained. That is, the optical measurement device 1 of the present disclosure can measure temporal change information with a time resolution shorter than the scanning period without using two signal light beams.
 実施例1の光計測装置1では、フォトダイオードアレイ148、149、150、151について、各アレイ上の光検出素子の数は二個以上であり、これによって二つ以上の時点間の信号を取得し、経時変化量を算出することができる。また、より好ましくは各フォトダイオードアレイ上の光検出素子の数は三個以上である。この場合には、時間分解能を可変にするか、複数の時間分解能での情報を一度に取得することができる。具体的には、三つの光検出素子を持つフォトダイオードアレイを用いて取得した三つの信号S、S、Sのうち、S、Sを用いれば時間分解能δtの情報を取得可能で、S、Sを用いれば時間分解能2δtの情報を取得可能となる。 In the optical measurement device 1 according to the first embodiment, for the photodiode arrays 148, 149, 150, and 151, the number of photodetectors on each array is two or more, thereby acquiring a signal between two or more time points. Then, the amount of change with time can be calculated. More preferably, the number of photodetectors on each photodiode array is three or more. In this case, the time resolution can be made variable, or information with a plurality of time resolutions can be obtained at once. Specifically, among the three signals S 1 , S 2 , and S 3 obtained using a photodiode array having three photodetectors, information on the time resolution δt can be obtained by using S 1 and S 2. Then, if S 1 and S 3 are used, information with a time resolution of 2δt can be obtained.
 本実施例の光計測装置1では、フォトダイオードアレイ148、149、150、151について、各フォトダイオードアレイ上の任意の光検出素子間の間隔の最小値δxmin、最大値δxmax、光学系の倍率をM、ビームスポット140の走査速さをvとすると、(δxmin/M)/v≦δt≦(δxmax/M)/vの範囲の時間分解能δtで経時変化情報を取得することが可能である。ここで、最小値δxminは、例えば、隣り合う光検出素子同士の間隔であり、最大値δxmaxは、例えば、(光検出素子の個数-1)×δxminである。 In the optical measurement device 1 according to the present embodiment, for the photodiode arrays 148, 149, 150, and 151, the minimum value δx min , the maximum value δx max of the interval between arbitrary photodetectors on each photodiode array, and the optical system Assuming that the magnification is M and the scanning speed of the beam spot 140 is v, time-dependent change information can be acquired with a time resolution δt in the range of (δx min / M) / v ≦ δt ≦ (δx max / M) / v. It is possible. Here, the minimum value δx min is, for example, an interval between adjacent light detection elements, and the maximum value δx max is, for example, (the number of light detection elements−1) × δx min .
 また、図3において、ビームスポット140の形状は、複数の測定領域303に収まるような大きさとして説明した。ビームスポット140の形状(照射領域)は、測定領域303を含む形状であってもよい。そのようにすると、各測定領域(A、A、A、A)に照射される信号光の強度を均一にすることができ、経時変化情報の精度を向上させることができる。 Also, in FIG. 3, the shape of the beam spot 140 has been described as being large enough to fit in the plurality of measurement areas 303. The shape (irradiation area) of the beam spot 140 may be a shape including the measurement area 303. By doing so, the intensity of the signal light applied to each of the measurement areas (A 1 , A 2 , A 3 , A 4 ) can be made uniform, and the accuracy of the temporal change information can be improved.
 また、図3に示されているように、ビームスポット140の形状を楕円形状とした場合、複数の測定領域303の両端と中央とで信号光の照射量に差がでる可能性がある。その場合、複数の測定領域303の両端と中央との照射量の差(信号強度の差)を予め計測し、信号処理部136は、複数の測定領域303のそれぞれに対応する信号光の強度をキャリブレーションして算出してもよい。このようにすると、測定対象物115の経時変化情報の測定精度が向上する。 As shown in FIG. 3, when the beam spot 140 has an elliptical shape, there is a possibility that the signal light irradiation amount may differ between both ends and the center of the plurality of measurement regions 303. In that case, the difference in the irradiation amount (difference in signal intensity) between both ends and the center of the plurality of measurement regions 303 is measured in advance, and the signal processing unit 136 determines the intensity of the signal light corresponding to each of the plurality of measurement regions 303. It may be calculated by calibration. By doing so, the measurement accuracy of the temporal change information of the measurement object 115 is improved.
 続いて、測定対象物115の2次元像および3次元像を取得するための走査方法について述べる。測定対象物115の2次元像(zx像)は、ビームスポット140で測定対象物115の2次元領域を走査することで得られる。例えば、制御部116によって走査部159を構成する2次元スキャナ107を制御し、ガルバノミラー108(第1の走査部)を動かしてx方向に繰り返し走査しつつ、ガルバノミラー108が折り返し位置に到達する度に、制御部116によってレンズアクチュエータ117を作動させてz方向に所定の量(集光されたビームスポット140のz方向径程度)だけレンズ113(第2の走査部)を移動させることによって、2次元像(zx像)を得ることができる。なお、例えば、x方向への走査は、z方向への走査よりも高速にビームスポット140(照射領域)を移動させる。 Next, a scanning method for obtaining a two-dimensional image and a three-dimensional image of the measurement target 115 will be described. A two-dimensional image (zx image) of the measurement target 115 is obtained by scanning the two-dimensional region of the measurement target 115 with the beam spot 140. For example, the two-dimensional scanner 107 constituting the scanning unit 159 is controlled by the control unit 116, and the galvanomirror 108 (first scanning unit) is moved to scan repeatedly in the x direction, and the galvanomirror 108 reaches the turn-back position. Each time, the lens actuator 117 is operated by the control unit 116 to move the lens 113 (second scanning unit) by a predetermined amount (about the diameter of the focused beam spot 140 in the z direction) in the z direction. A two-dimensional image (zx image) can be obtained. Note that, for example, scanning in the x direction moves the beam spot 140 (irradiation area) faster than scanning in the z direction.
 測定対象の3次元像は、上記の走査方法でzx像を取得した後にレンズ113をy方向に所定量(集光された信号光のスポット径程度)移動させるという手順を繰り返すことにより取得することができる。または、ガルバノミラー108およびレンズ113の走査によりzx像を取得した後に、測定対象物115もしくは光計測装置1全体を電動ステージ等によりy方向へ移動させるという手順を繰り返してもよい。なお、本実施例においてはレンズ113を走査することによりzスキャンを行っているが、例えばレンズ113の手前に少なくとも1枚レンズをさらに挿入し、当該レンズを走査することにより集光位置を走査することとしてもよく、また2次元スキャナ107によってy方向への移動を行っても良い。 The three-dimensional image of the measurement target is obtained by repeating a procedure of moving the lens 113 by a predetermined amount (about the spot diameter of the condensed signal light) in the y direction after obtaining the zx image by the above-described scanning method. Can be. Alternatively, a procedure of acquiring the zx image by scanning the galvanometer mirror 108 and the lens 113 and then moving the measurement object 115 or the entire optical measurement device 1 in the y direction by using an electric stage or the like may be repeated. In this embodiment, the z-scan is performed by scanning the lens 113. For example, at least one lens is further inserted in front of the lens 113, and the condensing position is scanned by scanning the lens. The movement in the y-direction may be performed by the two-dimensional scanner 107.
 上記のとおり、本開示の光計測装置1は、レンズアクチュエータ117と2次元スキャナ107を用いることで、2次元領域または3次元領域を走査して、当該領域の経時変化情報を取得することができ、取得した経時変化量を各ピクセルの輝度値に持つ2次元または3次元の画像として出力することもできる。 As described above, by using the lens actuator 117 and the two-dimensional scanner 107, the optical measurement device 1 of the present disclosure can scan a two-dimensional region or a three-dimensional region, and acquire temporal change information of the region. It is also possible to output a two-dimensional or three-dimensional image having the acquired temporal change amount as the luminance value of each pixel.
 なお、信号光を集光して測定対象物115中にビームスポット140を形成するレンズ113の開口数は0.3が望ましい。また、レンズ113の開口数を0.4以上と大きくした場合、高いZ方向分解能が得られる。また、レンズ113の開口数を0.3~0.4とした場合、レンズの焦点深度を深く取ることができるため、測定対象物115中の測定可能な深さの範囲を広げることができる。 The numerical aperture of the lens 113 that condenses the signal light and forms the beam spot 140 in the measurement object 115 is preferably 0.3. When the numerical aperture of the lens 113 is increased to 0.4 or more, a high Z-direction resolution can be obtained. Further, when the numerical aperture of the lens 113 is set to 0.3 to 0.4, the depth of focus of the lens can be made deep, so that the range of the measurable depth in the measurement object 115 can be widened.
 また、光源101には、出射されるレーザ光のコヒーレンス長が、レンズ113の光軸方向の走査により発生する信号光の光路長変化よりも長いレーザ光源を用いる。こうすると、レンズ113を光軸方向に走査した場合に信号光と参照光とで光路長差が発生しても、干渉振幅の低下を抑制することができる。そのため、レンズ113をz方向に駆動することでビームスポット140の位置をz方向に移動することが可能となり、参照ミラー119を駆動する方式に比べて簡素でコンパクトな装置を実現できる。 (4) As the light source 101, a laser light source in which the coherence length of the emitted laser light is longer than the change in the optical path length of the signal light generated by scanning the lens 113 in the optical axis direction. With this configuration, even when the optical path length difference occurs between the signal light and the reference light when the lens 113 is scanned in the optical axis direction, it is possible to suppress a decrease in the interference amplitude. Therefore, the position of the beam spot 140 can be moved in the z direction by driving the lens 113 in the z direction, and a simpler and more compact device can be realized as compared with a method in which the reference mirror 119 is driven.
 ビームスポット140の形状は、円形、楕円形、線状、矩形などでよい。円形のビームスポット140を用いる場合は、通常の光学系構成を用いることができるため、光計測装置1の装置構成を簡素に構築できる。線状または矩形のビームスポットは、シリンドリカルレンズ等を用いて実現でき、ビームスポット140中の信号光強度が、x方向についてほぼ変化しないため、走査時に安定した信号が得やすい。 The shape of the beam spot 140 may be circular, elliptical, linear, rectangular, or the like. When the circular beam spot 140 is used, a normal optical system configuration can be used, so that the configuration of the optical measurement device 1 can be simply constructed. A linear or rectangular beam spot can be realized using a cylindrical lens or the like, and the signal light intensity in the beam spot 140 hardly changes in the x direction, so that a stable signal can be easily obtained during scanning.
 また、ビームスポット140のx方向の大きさは、フォトダイオードアレイ148、149、150、151上に光学系によって結ばれた像において、x方向に対応する方向の大きさが、それぞれ少なくとも二つ以上の光検出素子を含む大きさである。すなわち、光学系の倍率をM、各フォトダイオードアレイにおいて検出に使用する光検出素子のうち最も離れた素子間の距離をLmax、ビームスポット140のx方向の大きさをDとして、D≧Lmax/Mである。 Further, the size of the beam spot 140 in the x direction is such that, in an image formed on the photodiode arrays 148, 149, 150, and 151 by the optical system, the size in the direction corresponding to the x direction is at least two or more. And a size including the photodetector of FIG. That is, the magnification of the optical system M, the distance L max between the farthest element of the light detecting element used for the detection, in the x-direction of the beam spot 140 magnitude as D x in each photodiode array, D x ≧ L max / M.
 また、ビームスポット140のy方向の大きさは、x方向の大きさより小さくてよい。望ましくは、y方向の大きさは、フォトダイオードアレイ148、149、150、151上に光学系によって結ばれた像において、y方向に対応する方向の大きさが、光検出素子の受光面に収まる大きさである。すなわち、光学系の倍率をM、光検出素子のy方向に対応する方向の幅をL、ビームスポット140のy方向の大きさをDとして、D≦L/Mである。この場合、信号光の強度に関する情報はあますところなく検出される信号に寄与するため、SN比の高い信号が得られる。 Further, the size of the beam spot 140 in the y direction may be smaller than the size in the x direction. Desirably, the size in the y direction is such that, in an image formed on the photodiode arrays 148, 149, 150, and 151 by the optical system, the size in the direction corresponding to the y direction fits on the light receiving surface of the photodetector. It is size. That is, the magnification of the optical system M, the direction of the width corresponding to the y-direction of the light detecting element L y, in the y direction of the beam spot 140 magnitude as D y, a D yL y / M. In this case, since the information on the intensity of the signal light contributes to the detected signal, the signal having a high SN ratio can be obtained.
 このような楕円形のビームスポット140は、断面形状が楕円形のビームとして信号光をレンズ113に入射することで得られる。レンズ113に入射するビームの断面形状はy方向がx方向より長い楕円形であれば、集光時の開口数はy方向がx方向より大きくなり、ビームスポット140のxy平面上での形状はx方向がy方向より長い楕円形となる。信号光の楕円ビームのy方向の径およびx方向の径を変更することで、ビームスポット140の楕円形のx方向の径およびy方向の径を変更することもできる。楕円ビーム形状の調整は、信号光の光路に挿入されたビーム整形プリズム103によって可能となる。 Such an elliptical beam spot 140 is obtained by irradiating a signal light into the lens 113 as a beam having an elliptical cross section. If the cross-sectional shape of the beam incident on the lens 113 is an elliptical shape in which the y direction is longer than the x direction, the numerical aperture at the time of condensing is larger in the y direction than in the x direction, and the shape of the beam spot 140 on the xy plane is The ellipse is longer in the x direction than in the y direction. By changing the diameter in the y direction and the diameter in the x direction of the elliptical beam of the signal light, the diameter in the x direction and the diameter in the y direction of the elliptical shape of the beam spot 140 can also be changed. The adjustment of the elliptical beam shape is made possible by the beam shaping prism 103 inserted in the optical path of the signal light.
 また、光源101として半導体レーザなど、楕円形ビームを出力する素子を用いれば、ビーム整形プリズム103を省略することも可能である。また、この方式によって楕円形のビームスポット140を形成した場合、ビームスポット140のx方向を大きくしても、ビームスポットのz方向へのデフォーカスを抑制することができ、ビームスポットを大きくすることによって生じる測定時の空間分解能の劣化を最低限に抑えることができる。 If an element that outputs an elliptical beam, such as a semiconductor laser, is used as the light source 101, the beam shaping prism 103 can be omitted. When the elliptical beam spot 140 is formed by this method, even if the x direction of the beam spot 140 is increased, the defocus of the beam spot in the z direction can be suppressed, and the beam spot can be enlarged. The deterioration of the spatial resolution at the time of measurement caused by this can be minimized.
 測定対象物115に入射して反射された信号光は、理想的には入射時の信号光と同じ径を持つビームになるが、実際には測定対象物115の光学的な不均一性などにより、入射時より大きな径のビームとなる可能性がある。参照光のビーム径を信号光のビーム径より大きくしておくことで、このような場合にも反射された信号光の全成分が干渉および信号の生成に寄与するようにできる。その結果、信号光量の増加によるSN比向上と実効開口数の増大による分解能向上が達成される。 The signal light incident on and reflected by the measurement target 115 ideally becomes a beam having the same diameter as the signal light at the time of the incidence, but actually, due to optical nonuniformity of the measurement target 115, etc. However, there is a possibility that the beam will have a larger diameter than that at the time of incidence. By making the beam diameter of the reference light larger than the beam diameter of the signal light, even in such a case, all components of the reflected signal light can contribute to interference and signal generation. As a result, an improvement in the SN ratio due to an increase in the signal light amount and an improvement in the resolution due to an increase in the effective numerical aperture are achieved.
<実施例1の変形例>
 図5は、上で述べたビーム径を拡大する参照光学系500の構成を示す模式図である。図5において、上下方向をz方向、左右方向をx方向、紙面に垂直な方向をy方向としている。光源101から出射されたレーザ光は、偏光ビームスプリッタ501でs偏光の信号光とp偏光の参照光とに二分岐される。参照光は、二枚のレンズ502、503からなるビームエクスパンダ506によってビーム径が拡大され、ミラー504、505で反射されて向きを変え、λ/2板507によってp偏光からs偏光へ変換され、偏光ビームスプリッタ106へ入射する。信号光は偏光ビームスプリッタ106を透過した後は、図1と同様の光学系を経て戻り、偏光ビームスプリッタ106にて参照光と合波され、合成光を生じる。以降の動作は図1と同様であるので説明を省略する。
<Modification of First Embodiment>
FIG. 5 is a schematic diagram showing the configuration of the reference optical system 500 for expanding the beam diameter described above. In FIG. 5, the vertical direction is the z direction, the horizontal direction is the x direction, and the direction perpendicular to the paper is the y direction. The laser light emitted from the light source 101 is split into two by the polarization beam splitter 501 into s-polarized signal light and p-polarized reference light. The reference light is expanded in beam diameter by a beam expander 506 including two lenses 502 and 503, is reflected by mirrors 504 and 505, changes its direction, and is converted from p-polarized light to s-polarized light by a λ / 2 plate 507. , Into the polarization beam splitter 106. After passing through the polarization beam splitter 106, the signal light returns through the same optical system as in FIG. 1 and is combined with the reference light by the polarization beam splitter 106 to generate a combined light. Subsequent operations are the same as those in FIG.
<実施例2>
 図6は、実施例2に係る光計測装置2の基本的な構成例を示す図である。図6において、図の上下方向をz方向、左右方向をx方向、紙面に垂直な方向をy方向としている。
<Example 2>
FIG. 6 is a diagram illustrating a basic configuration example of the optical measurement device 2 according to the second embodiment. In FIG. 6, the vertical direction in the figure is the z direction, the horizontal direction is the x direction, and the direction perpendicular to the paper is the y direction.
 実施例2の光計測装置2は、光源101から出射されたレーザ光が、信号光と参照光とに二分岐され、再び合波されることにより合成光が生成されるまでの構成は実施例1と同様である。実施例2の光計測装置2では、複数の光検出素子が一列に並んだフォトダイオードアレイ607を用いて干渉光の強度に比例した電流を出力する点が実施例1の光計測装置1とは異なる。 The configuration of the optical measurement device 2 according to the second embodiment until the laser light emitted from the light source 101 is split into two, a signal light and a reference light, and then combined again to generate a combined light. Same as 1. The optical measurement device 2 according to the second embodiment is different from the optical measurement device 1 according to the first embodiment in that a current that is proportional to the intensity of the interference light is output using a photodiode array 607 in which a plurality of light detection elements are arranged in a line. different.
 実施例2の光計測装置2では、生成された合成光は、まず回折格子602によって±1次の回折光に分岐され、第1の分岐合成光と第2の分岐合成光とが生成される。これらの合成光は、第1の分岐合成光のs偏光成分およびp偏光成分の位相差と、第2の分岐合成光のs偏光成分およびp偏光成分の位相差が90度異なるように配置された位相板603を通過する。 In the optical measurement device 2 according to the second embodiment, the generated combined light is first branched into ± 1st-order diffracted light by the diffraction grating 602, and a first branched combined light and a second branched combined light are generated. . These combined lights are arranged such that the phase difference between the s-polarized light component and the p-polarized light component of the first branched combined light differs from the phase difference between the s-polarized light component and the p-polarized light component of the second branched combined light by 90 degrees. Through the phase plate 603.
 その後、第1の分岐合成光および第2の分岐合成光は、xz平面に対して約22.5度に設定されたλ/2板604にて偏光方向が回転され、ウォラストンプリズム605によって偏光分離されることにより、互いに干渉の位相がほぼ90度ずつ異なる四つの干渉光が生成される。これらの干渉光は集光レンズ606によって集光され、フォトダイオードアレイ607上のそれぞれ複数の光検出素子からなる四つの領域608、609、610、611にビームスポット140の像を結ぶ。その結果、干渉光のそれぞれは各光検出素子により電流に変換され、位相関係が180度異なる干渉光に対応する領域からの電流の対が差動検出回路134、135によって差動検出される。 After that, the polarization directions of the first split combined light and the second split combined light are rotated by the λ / 2 plate 604 set at about 22.5 degrees with respect to the xz plane, and are polarized by the Wollaston prism 605. By being separated, four interference light beams whose interference phases are different from each other by approximately 90 degrees are generated. These interference lights are condensed by the condensing lens 606, and form an image of the beam spot 140 on four regions 608, 609, 610, and 611 on the photodiode array 607, each of which includes a plurality of photodetectors. As a result, each of the interference lights is converted into a current by each photodetector, and a pair of currents from the regions corresponding to the interference lights having a phase relationship different by 180 degrees are differentially detected by the differential detection circuits 134 and 135.
 検出信号は信号処理部136で演算され、位相に依存しない、信号光の振幅の絶対値に比例した信号が得られる。干渉光学系601の機能は実施例1の干渉光学系132と同様であるため、ここでは説明を省略する。以上のように、干渉位相の異なる四つの干渉光のうち複数を、1つのフォトダイオードアレイ607で受光して検出する構成とすることにより、部品点数を少なくすることができる。 The detection signal is calculated by the signal processing unit 136, and a signal independent of the phase and proportional to the absolute value of the amplitude of the signal light is obtained. Since the function of the interference optical system 601 is the same as that of the interference optical system 132 of the first embodiment, the description is omitted here. As described above, by employing a configuration in which a plurality of interference light beams having different interference phases are received and detected by one photodiode array 607, the number of components can be reduced.
 つまり、実施例2の光計測装置2は、実施例1の光計測装置1に比べて干渉光学系の部品点数が少なく小型であるため、実施例1の光計測装置1よりも装置全体が小さくなる。 That is, since the optical measurement device 2 of the second embodiment has a smaller number of components of the interference optical system and is smaller than the optical measurement device 1 of the first embodiment, the entire device is smaller than the optical measurement device 1 of the first embodiment. Become.
<実施例3>
 図7は、実施例3の光計測装置3の構成を示す模式図である。図7において、図の上下方向をz方向、左右方向をx方向、紙面に垂直な方向をy方向としている。なお、図2に示した部材と同じ部材には同じ符号を付し、説明を省略する。
<Example 3>
FIG. 7 is a schematic diagram illustrating a configuration of the optical measurement device 3 according to the third embodiment. In FIG. 7, the vertical direction is the z direction, the horizontal direction is the x direction, and the direction perpendicular to the paper is the y direction. The same members as those shown in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted.
 実施例3の光計測装置3は、実施例1のOCT装置とは種類が異なり、低コヒーレンス光源を用いるタイプのOCT装置に本開示の技術を適用したものである。SLD(Super Luminescence Diode)等の低コヒーレンス光源である光源701から出射された光は、コリメートレンズ702によって平行光に変換され、ビーム整形プリズム703によってビーム断面形状をy方向がx方向より長い楕円形に整形され、ビームスプリッタ706で信号光と参照光とに二分岐される。 The optical measurement device 3 of the third embodiment is different from the OCT device of the first embodiment in that the technology of the present disclosure is applied to an OCT device of a type using a low coherence light source. Light emitted from a light source 701, which is a low coherence light source such as SLD (Super Luminescence Diode), is converted into parallel light by a collimating lens 702, and the beam shaping prism 703 changes the beam cross-sectional shape to an elliptical shape in which the y direction is longer than the x direction. The beam is split into a signal light and a reference light by a beam splitter 706.
 信号光は、レンズ713で集光され、試料ステージ739に保持された測定対象物115上の集光位置に楕円形のビームスポット740を形成する。ここで、レンズ713に入射するビームの断面形状はy方向がx方向より長い楕円形であるため、集光時の開口数はy方向がx方向より大きくなり、ビームスポット740のxy平面上での形状はx方向がy方向より長い楕円形となる。 The signal light is condensed by the lens 713 and forms an elliptical beam spot 740 at a condensing position on the measurement object 115 held by the sample stage 739. Here, since the cross-sectional shape of the beam incident on the lens 713 is an elliptical shape in which the y direction is longer than the x direction, the numerical aperture at the time of condensing becomes larger in the y direction than in the x direction. Has an elliptical shape in which the x direction is longer than the y direction.
 測定対象物715で反射または拡散された信号光は、レンズ713でビームにされてビームスプリッタ706に戻る。参照光はミラー719で反射されて同じくビームスプリッタ706に戻り、信号光と合波されて干渉し、合成光を生成する。合成光は集光レンズ722で集光され、フォトダイオードアレイ724上にビームスポット740の像753を結ぶ。像753はフォトダイオードアレイ724の複数の光検出素子748で検出され、検出された複数の信号737は信号処理部736に送られる。 信号 The signal light reflected or diffused by the measurement object 715 is converted into a beam by the lens 713 and returns to the beam splitter 706. The reference light is reflected by the mirror 719 and returns to the beam splitter 706, and is combined with the signal light and interferes to generate a combined light. The combined light is condensed by the condenser lens 722 and forms an image 753 of the beam spot 740 on the photodiode array 724. The image 753 is detected by the plurality of light detection elements 748 of the photodiode array 724, and the detected signals 737 are sent to the signal processing unit 736.
 実施例3の光計測装置3では、低コヒーレンス光源を用い、信号光に含まれる成分のうち参照光と光路長が一致する成分のみが干渉して信号737を与えるため、測定対象物715の特定のz位置を測定点とした情報を取得できる。光計測装置3は、測定時に制御部716によりアクチュエータ760を駆動してミラー719を走査することにより、測定点のz走査を行う。また、光計測装置3は、制御部716によって制御された2次元スキャナ759によってxy走査を行う。上記の操作を組み合わせて測定対象物715の2次元像や3次元像を取得できる。 In the optical measurement device 3 according to the third embodiment, a low coherence light source is used, and among components included in the signal light, only a component having the same optical path length as the reference light interferes to give the signal 737, so that the measurement target 715 is specified. Can be obtained using the z position of the measurement point as a measurement point. The optical measurement device 3 scans the mirror 719 by driving the actuator 760 by the control unit 716 during measurement, thereby performing z scanning of the measurement point. The optical measurement device 3 performs xy scanning by the two-dimensional scanner 759 controlled by the control unit 716. By combining the above operations, a two-dimensional image or a three-dimensional image of the measurement object 715 can be obtained.
 実施例3の光計測装置3では、測定時に2次元スキャナ759によってx方向の走査を行い、実施例1と同様に複数の光検出素子からの信号を比較することで、x方向の走査の走査周期より短い時間分解能で経時変化情報を取得することができる。また、実施例3の光計測装置3は、実施例1の光計測装置1と比較してより少ない部品点数で実施例1と同様の機能を達成でき、より小型の装置を提供することができる。 In the optical measurement device 3 according to the third embodiment, the scanning in the x direction is performed by the two-dimensional scanner 759 at the time of measurement, and signals from a plurality of photodetectors are compared as in the first embodiment. Temporal change information can be acquired with a temporal resolution shorter than the period. Further, the optical measurement device 3 of the third embodiment can achieve the same function as that of the first embodiment with a smaller number of components than the optical measurement device 1 of the first embodiment, and can provide a smaller device. .
<実施例4>
 図8は、実施例4の光計測装置4の構成を示す模式図である。図8において、図の上下方向をz方向、左右方向をx方向、紙面に垂直な方向をy方向とする。なお、図2に示した部材と同じ部材には同じ符号を付し、説明を省略する。
<Example 4>
FIG. 8 is a schematic diagram illustrating a configuration of the optical measurement device 4 according to the fourth embodiment. 8, the vertical direction in the figure is the z direction, the horizontal direction is the x direction, and the direction perpendicular to the paper is the y direction. The same members as those shown in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted.
 図8に示されているように、実施例4の光計測装置4は、光観察ユニット801と光検出ユニット804とが偏波保持光ファイババンドル803によって接続されている点が実施例1の光計測装置1とは異なる。偏波保持光ファイババンドル803は、光観察ユニット801のファイバ接続部807と、光検出ユニット804のファイバ接続部808に着脱自在に固定されている。 As shown in FIG. 8, the optical measurement device 4 of the fourth embodiment is different from the first embodiment in that the light observation unit 801 and the light detection unit 804 are connected by a polarization-maintaining optical fiber bundle 803. Different from the measuring device 1. The polarization maintaining optical fiber bundle 803 is detachably fixed to a fiber connection part 807 of the light observation unit 801 and a fiber connection part 808 of the light detection unit 804.
 実施例4の光計測装置4は、光源101から出射されたレーザ光が二分岐され、再び合波されることにより合成光が生成されるまでの構成および機能が実施例1と同様である。生成された合成光は、集光レンズ802によって偏波保持光ファイババンドル803の入射端で像809を結び、偏波保持光ファイババンドル803に結合される。合成光の像809の空間分布情報は、偏波保持光ファイババンドル803によって光検出ユニット804へ伝送され、偏波保持光ファイババンドル803の出射端に像810として提示される。像810から発せられた合成光はコリメートレンズ805によって平行光に変換された後、干渉光学系132へ入射する。その後の構成および機能は実施例1と同じであるため説明を省略する。 The optical measuring device 4 according to the fourth embodiment has the same configuration and functions as the first embodiment in which the laser light emitted from the light source 101 is branched into two and then combined again to generate a combined light. The generated combined light forms an image 809 at the incident end of the polarization maintaining optical fiber bundle 803 by the condenser lens 802, and is coupled to the polarization maintaining optical fiber bundle 803. The spatial distribution information of the image 809 of the combined light is transmitted to the light detection unit 804 by the polarization maintaining optical fiber bundle 803, and is presented as an image 810 at the emission end of the polarization maintaining optical fiber bundle 803. The combined light emitted from the image 810 is converted into parallel light by the collimator lens 805 and then enters the interference optical system 132. Subsequent configurations and functions are the same as those in the first embodiment, and a description thereof will not be repeated.
 上記のとおり、実施例4の光計測装置4では、光検出ユニット804と光観察ユニット801とが偏波保持ファイババンドル803によって接続されている。そのため、人体などの大きな測定対象を測定する場合に、光観察ユニット801だけを測定対象115に近づけることで測定が容易になる。また、偏波保持光ファイババンドル803は容易に着脱可能である。そのため、例えば光検出ユニット804が故障した際には光検出ユニット804だけを交換することが可能であり、装置全体を交換する必要がない。したがって、光計測装置4のランニングコストが減少する。 As described above, in the optical measurement device 4 according to the fourth embodiment, the light detection unit 804 and the light observation unit 801 are connected by the polarization maintaining fiber bundle 803. Therefore, when measuring a large measurement target such as a human body, the measurement is facilitated by bringing only the light observation unit 801 close to the measurement target 115. Further, the polarization maintaining optical fiber bundle 803 is easily detachable. Therefore, for example, when the light detection unit 804 fails, only the light detection unit 804 can be replaced, and there is no need to replace the entire device. Therefore, the running cost of the optical measurement device 4 decreases.
<実施例5>
 図9は、測定対象物上のビームスポット940、957、958の移動の様子を示す模式図である。図1に示した部材と同じ要素には同じ符号を付し、説明を省略する。
<Example 5>
FIG. 9 is a schematic diagram showing the movement of the beam spots 940, 957, 958 on the measurement object. The same components as those shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
 実施例5の光計測装置は、実施例1の光計測装置1と同じ部材構成で実現されるが、ビーム整形プリズム103の設置角度を90度回転させて用いる点が実施例1とは異なる。この場合、レンズ113に入射するビームの断面形状はx方向がy方向より長い楕円形となる。そのため、集光時の開口数はx方向がy方向より大きくなり、図9に示されているように測定対象物115中でのビームスポット940のxy平面上での形状はy方向がx方向より長い楕円形となる。 The optical measurement device of the fifth embodiment is realized with the same member configuration as the optical measurement device 1 of the first embodiment, but differs from the first embodiment in that the installation angle of the beam shaping prism 103 is rotated by 90 degrees. In this case, the cross-sectional shape of the beam incident on the lens 113 is an ellipse in which the x direction is longer than the y direction. Therefore, the numerical aperture at the time of light collection is larger in the x direction than in the y direction, and as shown in FIG. 9, the shape of the beam spot 940 in the measurement object 115 on the xy plane is such that the y direction is the x direction. It becomes a longer ellipse.
 ビームスポット940は測定対象物115の2次元領域を走査し、測定対象物115の2次元像(xy像)を取得する。走査方向152に一定の走査速さv、走査周期Tで繰り返し走査しつつ、走査方向152の折り返し位置901に到達すると、副走査方向952、ここではy方向にビームスポット940を走査線幅δyだけ移動させる。この結果、ビームスポット940は軌跡902をたどる。軌跡902の実線部分は測定しながら走査する区間、破線は測定せずに走査する区間を表す。時刻tに斜線部の位置にあるビームスポット940は、時刻t+Tに予定位置957、時刻t+2Tには予定位置958に位置する。このように、実施例5の走査方法では、走査周期T毎に同じx位置(ここではx)に戻る。 The beam spot 940 scans a two-dimensional area of the measurement target 115, and acquires a two-dimensional image (xy image) of the measurement target 115. Uniform scanning speed v in a scanning direction 152, while repeatedly scanned with a scanning period T x, and reaches the return position 901 in the scanning direction 152, the sub-scanning direction 952, wherein the scanning line width δy a beam spot 940 in the y-direction Just move. As a result, the beam spot 940 follows the trajectory 902. A solid line portion of the trajectory 902 indicates a section for scanning while measuring, and a broken line indicates a section for scanning without measuring. Beam spot 940 at time t 1 is in the position of the hatched portion, the time t 1 + T x scheduled position 957, at time t 1 + 2T x located predetermined position 958. Thus, in the scanning method of Example 5, returns to the same x-position for each scanning period T x (x 1 in this case).
 図9に示された例では、走査線幅δyと四つの測定領域903の間隔δx’とが一致するように走査している。この場合、時刻tに測定領域のAが測定した位置は、時刻t+Tには測定領域のAが、時刻t+2Tには測定領域のAが、それぞれ測定することとなり、時間分解能が走査周期Tと等しい経時変化情報を取得できる。さらにこの場合、例えば、時刻tの測定領域のAの測定結果と、時刻t+2Tの測定領域のAの測定結果を比較することで、走査周期Tのn倍に等しい経時変化情報を取得することもできる。 In the example shown in FIG. 9, scanning is performed so that the scanning line width δy and the interval δx ′ between the four measurement regions 903 match. In this case, the position where A 1 is measured in the measurement region at a time t 1, the time t 1 + T x A 2 of the measurement region in the, the time t 1 + 2T x A 3 of the measurement region in, measuring respectively next, time resolution can be obtained changes with time information equal to the scanning period T x. Furthermore, in this case, for example, by comparing the measurement result of A 1 in the measurement area at time t 1, the measurement results of A 3 in the measurement region at time t 1 + 2T x, equal time to n times the scan period T x Change information can also be obtained.
 なお、走査線幅δyと四つの測定領域903の間隔δx’が、δy=δx’/mであるとき、時刻tに測定領域のAが測定した位置を測定領域のAが再び測定する時刻は、時刻t+mTとなり、時間分解能はmTとなる。 The distance .delta.x of scanlines wide .delta.y and four measurement area 903 'is, .delta.y = .delta.x' when / is m, A 2 is again measured in the measurement region the position where A 1 is measured in the measurement region at a time t 1 time, time t 1 + mT x, and the time resolution is mT x to.
 走査線幅δyと四つの測定領域903の間隔δx’が、δy=δx’×m(=2)である場合、時刻tに測定領域のAが測定した位置は、時刻t+Tには測定領域のAが、時刻tに測定領域のAが測定した位置は、時刻t+Tには測定領域のAが、それぞれ測定することとなり、時間分解能はTであるが、δyがm倍と大きくできるため、所定の面積を走査して測定するのに要する時間を短くできる。 Interval .delta.x of scanlines wide .delta.y and four measurement area 903 'is, .delta.y = .delta.x' if a × m (= 2), the position of A 1 was measured in the measurement region at a time t 1, the time t 1 + T x is a 3 of the measurement region in, the position where a 2 is measured in the measurement region at a time t 1, the time t 1 + T x a 4 of the measurement region in becomes the measuring each time resolution is T x However, since δy can be increased to m times, the time required to scan and measure a predetermined area can be shortened.
 以上のように、走査方向152と垂直な方向に長い径を持つビームスポット940と、同じく走査方向152と垂直な方向に対応する方向に設けられた複数の検出器を用いることで、走査周期Tより長い時間分解能での情報を取得することができる。 As described above, by using the beam spot 940 having a long diameter in the direction perpendicular to the scanning direction 152 and the plurality of detectors provided in the direction corresponding to the direction perpendicular to the scanning direction 152, the scanning cycle T Information with a time resolution longer than x can be obtained.
 また、楕円の長軸方向を走査方向152に対して傾ける(例えば45度)ように配置することで、走査周期Tの整数倍以外の時間分解能を得ることも可能である。 Further, by arranging to tilt the major axis of the ellipse with respect to the scanning direction 152 (e.g., 45 degrees), it is possible to obtain a time resolution of non-integer times of the scanning period T x.
<実施例5の変形例>
 図10は、測定領域がx方向およびy方向の両方向に複数の測定領域が定義された走査方法を示す図である。図10には、ビームスポット1040のx方向およびy方向の両方に対応する方向にそれぞれ複数の検出器を設けた場合の測定領域1003(A11、A12、A13、A14、A21、A22、A23、A24)が示されている。上で説明した走査と同様の走査を実施することによって、この例では、走査周期Tより短い時間分解能と長い時間分解能の両方の経時変化情報を同時に取得することができる。
<Modification of Embodiment 5>
FIG. 10 is a diagram illustrating a scanning method in which a plurality of measurement regions are defined in both the x direction and the y direction. FIG. 10 shows a measurement area 1003 (A 11 , A 12 , A 13 , A 14 , A 21 , and A 21 ) when a plurality of detectors are provided in directions corresponding to both the x direction and the y direction of the beam spot 1040. A 22 , A 23 , A 24 ) are shown. By implementing the same scanning and scanning described above, in this example, the time course information for both short time resolution and long time resolution than the scanning period T x can be simultaneously acquired.
101、701 光源
102、702 コリメートレンズ
103、703 ビーム整形プリズム
104 NDフィルタ
105 λ/2板
106、706 偏光ビームスプリッタ
107 2次元スキャナ
108、109 ガルバノミラー
110、111 レンズ
112、118 λ/4板
113、713 レンズ
114 カバーガラス
115、715 測定対象物
116、716 制御部
117 レンズアクチュエータ
119、719 ミラー
120 ハーフビームスプリッタ
121、127 λ/2板
122、128、722 集光レンズ
123、129 偏光ビームスプリッタ
124、125、130、131、724 フォトダイオードアレイ
126 λ/4板
132 干渉光学系
134、135 差動検出回路
136、736 信号処理部
137、138、737 信号
139、739 試料ステージ
140、740、940、1040 ビームスポット
141 信号光
142 反射された信号光
143、743 参照光
144、145、146、147 干渉光
148、149、150、151、748 光検出素子
152 走査方向
153、154、155、156、753 像
157、158、957、958、1057、1058 将来のビームスポットの予定位置
159、759 走査部
190、790 光源部
191、791 参照光学系
301、302 光検出素子の並ぶ方向
303、903、1003 測定領域
304、305、306、307 差動検出回路
401、302、403、404 測定領域位置のトレース
500 ビーム径を拡大する参照光学系
501 偏光ビームスプリッタ
502、503 レンズ
504、505 ミラー
506 ビームエクスパンダ
507 λ/2板
601 干渉光学系
602 回折格子
603 位相板
604 λ/2板
605 ウォラストンプリズム
606 集光レンズ
607 フォトダイオードアレイ
608、609、610、611 複数の光検出素子からなる領域
760 アクチュエータ
801 光観察ユニット
802 集光レンズ
803 偏波保持光ファイババンドル
804 光検出ユニット
805 コリメートレンズ
807 ファイバ接続部
809、810 像
101, 701 Light source 102, 702 Collimating lens 103, 703 Beam shaping prism 104 ND filter 105 λ / 2 plate 106, 706 Polarizing beam splitter 107 Two-dimensional scanner 108, 109 Galvano mirror 110, 111 Lens 112, 118 λ / 4 plate 113 , 713 Lens 114 Cover glass 115, 715 Measurement object 116, 716 Control unit 117 Lens actuator 119, 719 Mirror 120 Half beam splitter 121, 127 λ / 2 plate 122, 128, 722 Condensing lens 123, 129 Polarizing beam splitter 124 , 125, 130, 131, 724 Photodiode array 126 λ / 4 plate 132 Interference optical system 134, 135 Differential detection circuit 136, 736 Signal processor 137, 138, 737 Signal 139 , 739 Sample stage 140, 740, 940, 1040 Beam spot 141 Signal light 142 Reflected signal light 143, 743 Reference light 144, 145, 146, 147 Interference light 148, 149, 150, 151, 748 Light detection element 152 Scanning Direction 153, 154, 155, 156, 753 Images 157, 158, 957, 958, 1057, 1058 Planned positions of future beam spots 159, 759 Scanning units 190, 790 Light source units 191, 791 Reference optical systems 301, 302 Light detection Element arrangement direction 303, 903, 1003 Measurement area 304, 305, 306, 307 Differential detection circuit 401, 302, 403, 404 Trace 500 at measurement area position Reference optical system 501 for expanding beam diameter Polarizing beam splitter 502, 503 Lens 504, 5 5 Mirror 506 Beam expander 507 λ / 2 plate 601 Interfering optical system 602 Diffraction grating 603 Phase plate 604 λ / 2 plate 605 Wollaston prism 606 Condensing lens 607 Photodiode array 608, 609, 610, 611 Multiple photodetectors Area 760 Actuator 801 Light observation unit 802 Condensing lens 803 Polarization maintaining optical fiber bundle 804 Photodetection unit 805 Collimating lens 807 Fiber connection parts 809, 810

Claims (14)

  1.  光源と、
     前記光源から出射された光を参照光と信号光とに分岐する光分岐部と、
     前記信号光を照射して測定対象物を走査する走査部と、
     前記測定対象物によって反射または散乱された信号光と前記参照光とを合波し、干渉光を生成する光学系と、
     前記光学系で生成された前記干渉光を受光して電気信号に変換する光検出部と、
     前記光検出部によって変換された前記電気信号に基づいて前記信号光の強度を算出する信号処理部と、
     を備える光計測装置であって、
     前記光検出部は、前記信号光の照射領域と重なる複数の測定領域のそれぞれと対応づけられた複数の光検出素子によって前記信号光を検出し、
     前記信号処理部は、前記複数の光検出素子のそれぞれが検出した前記信号光の強度を算出し、
     前記走査部は、前記測定対象物に照射する前記信号光の前記照射領域を、第1の時点における前記複数の測定領域の一部が第2の時点における前記複数の測定領域の別の一部と重なるように移動させて前記測定対象物を走査する、
     光計測装置。
    Light source,
    An optical branching unit that branches the light emitted from the light source into reference light and signal light,
    A scanning unit that irradiates the signal light and scans the measurement object,
    An optical system that combines the signal light and the reference light reflected or scattered by the measurement object and generates interference light,
    A light detection unit that receives the interference light generated by the optical system and converts the interference light into an electric signal;
    A signal processing unit that calculates the intensity of the signal light based on the electric signal converted by the light detection unit,
    An optical measurement device comprising:
    The light detection unit detects the signal light by a plurality of light detection elements associated with each of a plurality of measurement regions overlapping with the irradiation region of the signal light,
    The signal processing unit calculates the intensity of the signal light detected by each of the plurality of light detection elements,
    The scanning unit may be configured to irradiate the irradiation area of the signal light irradiating the measurement target with a part of the plurality of measurement areas at a first time point and another part of the plurality of measurement areas at a second time point. Scanning the measurement object by moving so as to overlap with,
    Optical measuring device.
  2.  請求項1に記載の光計測装置において、
     前記走査部は、前記複数の測定領域のそれぞれが配列される方向に沿って前記測定対象物を走査し、
     前記複数の光学素子のそれぞれは、前記複数の測定領域と光学的に共役の位置関係で配列されている、
     光計測装置。
    The optical measurement device according to claim 1,
    The scanning unit scans the measurement target along a direction in which each of the plurality of measurement regions is arranged,
    Each of the plurality of optical elements is arranged in an optically conjugated positional relationship with the plurality of measurement regions,
    Optical measuring device.
  3.  請求項1に記載の光計測装置において、
     前記信号処理部は、前記第1の時点における前記複数の測定領域の一部に対応する光検出素子で検出した前記信号光の強度と前記第2の時点における前記複数の測定領域の別の一部に対応する光検出素子で検出した前記信号光の強度とを前記測定対象物の同一箇所の時系列情報として処理する、
     光計測装置。
    The optical measurement device according to claim 1,
    The signal processing unit may further include an intensity of the signal light detected by a photodetector corresponding to a part of the plurality of measurement regions at the first time and another one of the plurality of measurement regions at the second time. Processing the intensity of the signal light detected by the light detection element corresponding to the unit as time-series information of the same location of the measurement object,
    Optical measuring device.
  4.  請求項3に記載の光計測装置において、
     前記第1の時点と前記第2の時点との時間間隔は、前記複数の測定領域の一部と前記複数の測定領域の別の一部の間隔を、前記走査部が前記照射領域を移動させる速度で除した値である、
     光計測装置。
    The optical measurement device according to claim 3,
    The time interval between the first time point and the second time point is an interval between a part of the plurality of measurement areas and another part of the plurality of measurement areas, and the scanning unit moves the irradiation area. Value divided by speed,
    Optical measuring device.
  5.  請求項2に記載の光計測装置において、
     前記走査部は、前記測定対象物を第1の方向に走査する第1の走査部と、前記測定対象物を第1の方向とは異なる第2の方向に走査する第2の走査部と、を備え、
     前記第1の走査部は、前記第2の走査部よりも高速に前記照射領域を移動させる、
     光計測装置。
    The optical measurement device according to claim 2,
    A first scanning unit that scans the measurement object in a first direction, a second scanning unit that scans the measurement object in a second direction different from the first direction, With
    The first scanning unit moves the irradiation area faster than the second scanning unit,
    Optical measuring device.
  6.  請求項1に記載の光計測装置において、
     前記照射領域の形状は、前記測定対象物を走査する走査方向の径が、前記走査方向に垂直な方向の径よりも大きい形状である、
     光計測装置。
    The optical measurement device according to claim 1,
    The shape of the irradiation area, the diameter in the scanning direction for scanning the measurement object is a shape larger than the diameter in the direction perpendicular to the scanning direction,
    Optical measuring device.
  7.  請求項6に記載の光計測装置において、
     前記走査部における光路上の少なくとも一点において、前記信号光のビームの形状は、前記走査方向の径が前記走査方向に垂直な方向の径よりも小さい、
     光計測装置。
    The optical measurement device according to claim 6,
    At least one point on the optical path in the scanning unit, the shape of the beam of the signal light, the diameter in the scanning direction is smaller than the diameter in a direction perpendicular to the scanning direction,
    Optical measuring device.
  8.  請求項1に記載の光計測装置において、
     前記照射領域は前記複数の測定領域を含む、
     光計測装置。
    The optical measurement device according to claim 1,
    The irradiation area includes the plurality of measurement areas,
    Optical measuring device.
  9.  請求項1に記載の光計測装置において、
     前記信号処理部は、前記複数の測定領域のそれぞれに対応する前記信号光の強度をキャリブレーションして算出する、
     光計測装置。
    The optical measurement device according to claim 1,
    The signal processing unit calculates and calculates the intensity of the signal light corresponding to each of the plurality of measurement regions,
    Optical measuring device.
  10.  請求項1に記載の光計測装置において、
     複数の前記光検出部と、
     前記干渉光を互いに干渉位相が異なる三つ以上の干渉光に分光する干渉光学系と、
     を備え、
     前記三つ以上の干渉光の前記複数の光検出部における前記信号光と前記参照光との干渉位相の位相差は、互いに略90度の整数倍であり、前記位相差が略180度異なる干渉光に対応する出力電流の対が電流差動検出を行う差動検出回路に入力される、
     光計測装置。
    The optical measurement device according to claim 1,
    A plurality of the light detection units,
    An interference optical system that disperses the interference light into three or more interference lights having different interference phases from each other,
    With
    An interference phase between the signal light and the reference light of the three or more interference lights in the plurality of light detectors is an integral multiple of substantially 90 degrees from each other, and the phase difference differs by approximately 180 degrees. A pair of output currents corresponding to light is input to a differential detection circuit that performs current differential detection,
    Optical measuring device.
  11.  請求項10に記載の光計測装置において、
     前記光検出部の個数は四個であり、
     前記干渉光学系は、前記干渉光を前記干渉位相が異なる四つの干渉光に分光し、
     二組の前記干渉位相の位相差が略180度である干渉光の対のそれぞれが前記差動検出回路に入力される、
     光計測装置。
    The optical measurement device according to claim 10,
    The number of the light detection unit is four,
    The interference optical system disperses the interference light into four interference lights having different interference phases,
    Two pairs of interference light having a phase difference between the two sets of interference phases of approximately 180 degrees are input to the differential detection circuit,
    Optical measuring device.
  12.  請求項1に記載の光計測装置において、
     光ファイババンドルをさらに備え、
     前記干渉光を生成する光学系は、合成した前記干渉光を前記光ファイババンドルの一端が接続される光ファイバ接続部に入射させる、
     光計測装置。
    The optical measurement device according to claim 1,
    Further comprising an optical fiber bundle,
    The optical system that generates the interference light, the combined interference light is made incident on an optical fiber connection portion to which one end of the optical fiber bundle is connected,
    Optical measuring device.
  13.  請求項1に記載の光計測装置において、
     前記光検出部は、三つ以上の前記光検出素子によって前記信号光を検出する、
     光計測装置。
    The optical measurement device according to claim 1,
    The light detection unit detects the signal light by three or more of the light detection elements,
    Optical measuring device.
  14.  光干渉断層像を取得する光計測装置を用いる試料観察方法であって、
     測定対象物に信号光を照射し、反射または散乱された信号光と参照光とを合成して干渉光を生成するステップと、
     前記信号光の照射領域と重なる複数の測定領域のそれぞれに対応した複数の光検出素子によって第1の時点における前記干渉光の信号強度を検出するステップと、
     前記第1の時点における前記複数の測定領域の一部と第2の時点における前記複数の測定領域の別の一部とが重なるように前記照射領域を移動させるステップと、
     前記複数の測定領域のそれぞれに対応した前記複数の光検出素子によって前記第2の時点における前記干渉光の信号強度を検出するステップと、
     を含む試料観察方法。
    A sample observation method using an optical measurement device that acquires an optical coherence tomographic image,
    Irradiating the measurement target with signal light, and generating interference light by combining the reflected or scattered signal light and the reference light,
    Detecting a signal intensity of the interference light at a first time by a plurality of light detection elements corresponding to a plurality of measurement regions overlapping with the irradiation region of the signal light,
    Moving the irradiation area so that a part of the plurality of measurement areas at the first time and another part of the plurality of measurement areas at the second time overlap.
    Detecting the signal intensity of the interference light at the second time point by the plurality of light detection elements corresponding to each of the plurality of measurement regions;
    A sample observation method including:
PCT/JP2018/027268 2018-07-20 2018-07-20 Light measurement device and sample observation method WO2020017017A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/027268 WO2020017017A1 (en) 2018-07-20 2018-07-20 Light measurement device and sample observation method
JP2020530835A JP7175982B2 (en) 2018-07-20 2018-07-20 Optical measurement device and sample observation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/027268 WO2020017017A1 (en) 2018-07-20 2018-07-20 Light measurement device and sample observation method

Publications (1)

Publication Number Publication Date
WO2020017017A1 true WO2020017017A1 (en) 2020-01-23

Family

ID=69163671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027268 WO2020017017A1 (en) 2018-07-20 2018-07-20 Light measurement device and sample observation method

Country Status (2)

Country Link
JP (1) JP7175982B2 (en)
WO (1) WO2020017017A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112587086A (en) * 2021-03-04 2021-04-02 季华实验室 Dual-mode polarization optical coherent imaging system and imaging method thereof
JP2022114850A (en) * 2021-01-27 2022-08-08 シンクランド株式会社 Light interference tomography system
JP2022550631A (en) * 2019-12-03 2022-12-02 ダマエ メディカル Apparatus and method for line scanning microscopy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114324244B (en) * 2021-12-31 2023-11-07 浙江大学嘉兴研究院 Biological film collagen beam orientation optical detection method and system based on weak coherent interference

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330798A (en) * 2000-03-16 2001-11-30 Gyeongsang Natl Univ Three-dimensional simultaneous imaging device for eyeball retina
JP2005265440A (en) * 2004-03-16 2005-09-29 Topcon Corp Optical image measuring device
US20070263226A1 (en) * 2006-05-15 2007-11-15 Eastman Kodak Company Tissue imaging system
JP2008157710A (en) * 2006-12-22 2008-07-10 Naohiro Tanno Optical coherence tomography system
WO2008081653A1 (en) * 2006-12-28 2008-07-10 Terumo Kabushiki Kaisha Optical probe
US20140276684A1 (en) * 2013-03-15 2014-09-18 Volcano Corporation Atherectomy methods using coregistered sets of data
JP2015175678A (en) * 2014-03-14 2015-10-05 株式会社日立エルジーデータストレージ Optical tomographic observation device
JP2016140406A (en) * 2015-01-30 2016-08-08 株式会社トーメーコーポレーション Ophthalmologic apparatus and control method thereof
JP2016194459A (en) * 2015-03-31 2016-11-17 株式会社ニデック Oct signal processing device, and oct signal processing program
JP2017140302A (en) * 2016-02-12 2017-08-17 キヤノン株式会社 Image processing apparatus, image processing method, and program

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330798A (en) * 2000-03-16 2001-11-30 Gyeongsang Natl Univ Three-dimensional simultaneous imaging device for eyeball retina
JP2005265440A (en) * 2004-03-16 2005-09-29 Topcon Corp Optical image measuring device
US20070263226A1 (en) * 2006-05-15 2007-11-15 Eastman Kodak Company Tissue imaging system
JP2008157710A (en) * 2006-12-22 2008-07-10 Naohiro Tanno Optical coherence tomography system
WO2008081653A1 (en) * 2006-12-28 2008-07-10 Terumo Kabushiki Kaisha Optical probe
US20140276684A1 (en) * 2013-03-15 2014-09-18 Volcano Corporation Atherectomy methods using coregistered sets of data
JP2015175678A (en) * 2014-03-14 2015-10-05 株式会社日立エルジーデータストレージ Optical tomographic observation device
JP2016140406A (en) * 2015-01-30 2016-08-08 株式会社トーメーコーポレーション Ophthalmologic apparatus and control method thereof
JP2016194459A (en) * 2015-03-31 2016-11-17 株式会社ニデック Oct signal processing device, and oct signal processing program
JP2017140302A (en) * 2016-02-12 2017-08-17 キヤノン株式会社 Image processing apparatus, image processing method, and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI GUO ET AL.: "Improved motion contrast and processing efficiency in OCT angiography using complex-correlation algorithm", JOURNAL OF OPTICS, vol. 18, no. 2, February 2016 (2016-02-01), pages 1 - 11, XP020297049 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022550631A (en) * 2019-12-03 2022-12-02 ダマエ メディカル Apparatus and method for line scanning microscopy
US11609412B2 (en) 2019-12-03 2023-03-21 Damae Medical Devices and methods for line-scanning microscopy
JP7339447B2 (en) 2019-12-03 2023-09-05 ダマエ メディカル Apparatus and method for line scanning microscopy
JP2022114850A (en) * 2021-01-27 2022-08-08 シンクランド株式会社 Light interference tomography system
JP7134509B2 (en) 2021-01-27 2022-09-12 シンクランド株式会社 Optical coherence tomography system
CN112587086A (en) * 2021-03-04 2021-04-02 季华实验室 Dual-mode polarization optical coherent imaging system and imaging method thereof

Also Published As

Publication number Publication date
JP7175982B2 (en) 2022-11-21
JPWO2020017017A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
US9658054B2 (en) Optical measuring apparatus
US7488070B2 (en) Optical measuring system and optical measuring method
WO2020017017A1 (en) Light measurement device and sample observation method
JP6118441B2 (en) Adaptive optical retinal imaging apparatus and method
US8204300B2 (en) Image forming method and optical coherence tomograph apparatus using optical coherence tomography
RU2532992C2 (en) Optical tomography apparatus (versions)
JP6018711B2 (en) Optical tomograph
JP6188521B2 (en) Optical measuring device
US11578964B2 (en) Optical coherence tomography apparatus and image generation method using the same
JP2011242177A (en) Imaging apparatus and imaging method
WO2017154895A1 (en) Measuring device, observing device and measuring method
JP2001108417A (en) Optical shape measuring instrument
JP6701322B2 (en) Point spread function measuring apparatus, measuring method, image acquiring apparatus and image acquiring method
JP6887350B2 (en) Optical image measuring device
JP6720051B2 (en) Optical image measuring device and optical image measuring method
KR101226442B1 (en) Spectral domain optical coherence tomograpy including of high resolution spectromiter and the method
JP2020086204A (en) Optical image measurement device and optical image measurement method
US20110242649A1 (en) Wavefront measurement method, wavefront measurement apparatus, and microscope
JP2018000954A (en) Control method of checker, control device and program
KR101709973B1 (en) Measuring method using hybrid beam scanning optical coherence tomography and thereof
KR101727832B1 (en) Super-resolution imaging apparatus using a heterodyne interference
KR102498742B1 (en) Multiple focusing-based high-resolution optical coherence tomography apparatus for depth-of-focus enhancement
JP7201007B2 (en) Optical coherence tomographic imaging apparatus and method for generating optical coherence tomographic image
JP2018185201A (en) Optical image measurement device
JPH07100119A (en) Blood flow distribution measuring instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927046

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530835

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927046

Country of ref document: EP

Kind code of ref document: A1