WO2020013337A1 - Travel system for mobile vehicle - Google Patents

Travel system for mobile vehicle Download PDF

Info

Publication number
WO2020013337A1
WO2020013337A1 PCT/JP2019/027813 JP2019027813W WO2020013337A1 WO 2020013337 A1 WO2020013337 A1 WO 2020013337A1 JP 2019027813 W JP2019027813 W JP 2019027813W WO 2020013337 A1 WO2020013337 A1 WO 2020013337A1
Authority
WO
WIPO (PCT)
Prior art keywords
marker
traveling
unit
control unit
travel
Prior art date
Application number
PCT/JP2019/027813
Other languages
French (fr)
Japanese (ja)
Inventor
一洋 石川
剛 仲
アルマンダス ヤルシャウスカス
浩司 堀越
桂亮 羽富
志門 鯵坂
家威 唐
井上 真
泰孝 笠置
Original Assignee
株式会社Zmp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Zmp filed Critical 株式会社Zmp
Priority to JP2020530289A priority Critical patent/JP7006889B2/en
Publication of WO2020013337A1 publication Critical patent/WO2020013337A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to a traveling system of a moving vehicle that allows an unmanned moving vehicle to autonomously travel in, for example, a factory or a warehouse.
  • a technology called autonomous navigation of mobile objects has been practically used for aircraft and ships since ancient times, and has recently been realized for automobiles and drones.
  • the cost and performance of various sensors have also been reduced, and GPS, gyro sensors, cameras, and the like are widely used.
  • a distance measuring sensor using a laser can measure a distance to a surrounding object with high accuracy, and can detect the object as three-dimensional data in a range of 360 degrees.
  • the method of detecting surrounding objects using a laser ranging sensor can detect surrounding objects with high accuracy, but the laser ranging sensor itself generally costs several hundred thousand to several million yen, so initial investment is Significantly increase.
  • the surrounding map needs to be updated frequently, which makes the operation work cumbersome. It is.
  • self-position estimation based on wireless strength equipment costs increase because a plurality of wireless transmitters are installed in advance.
  • the method of autonomous driving using a gyro sensor or camera while complementing the lack of the surrounding map is based on the assumption that the surrounding map is collated, so the surrounding map can be complemented only in a very narrow range. Usage will be limited.
  • a traveling system for a moving vehicle includes: A traveling vehicle including a main body and a traveling unit for traveling on the ground, a drive control unit that drives and controls the traveling unit, and a marker detection unit, and a marker disposed along a traveling path on which the traveling vehicle is to travel, Equipped, A marker detection unit configured to capture an image of the lower part of the main body unit, an image processing unit that performs image processing on an imaging screen imaged by the imaging unit to detect the marker, and a marker that is detected by the image processing unit.
  • a marker control unit that outputs driving information set in advance to the marker to the drive control unit
  • the marker has at least one or more marks arranged laterally across the travel path and / or in a vertical direction along the travel path, and the drive control unit is configured to perform the operation based on the travel information from the marker control unit.
  • the moving vehicle By controlling the driving of the traveling unit, the moving vehicle is configured to travel autonomously along the traveling path specified by the marker.
  • the marker detection unit of the moving vehicle detects the marker arranged along the traveling path, outputs the traveling information set to the marker detected by the control unit to the drive control unit, and the drive control unit By controlling the driving of the traveling unit based on the traveling information, the moving vehicle travels autonomously along the traveling path specified by the marker. Since the markers may be arranged at predetermined intervals in a region where the moving vehicle travels, there is no need to provide a white line or the like over the entire length of the traveling path as in the related art.
  • a traveling system for a moving vehicle includes: A traveling vehicle including a main body, a traveling unit for traveling on the ground, a drive control unit that drives and controls the traveling unit, and a marker detection unit, A marker arranged along the travel path on which the mobile vehicle should travel, A network connected to the moving vehicle, An external driving control unit of the mobile vehicle connected to the network, A marker detection unit configured to capture an image of a lower portion of the main body unit, an image processing unit that performs image processing on an image captured by the imaging unit to detect a marker, and a marker detection unit that detects the marker based on the marker detected by the image processing unit.
  • the drive control unit drives and controls the traveling unit based on the traveling information from the marker control unit, and the moving vehicle autonomously travels along the traveling path designated by the marker.
  • the travel route of the moving vehicle can be arbitrarily changed by changing travel information at the marker via a network. If an external operation control unit is provided, the travel route of the moving vehicle can be arbitrarily changed as necessary or arbitrarily by changing the travel information at the marker via the network.
  • the external operation control unit may change the travel path only for the changed portion, or a new, replaced, or eliminated marker may be used. When the marker itself is soiled, damaged or peeled, only the marker needs to be replaced.
  • the moving vehicle when one or more marks are arranged on the marker in a horizontal direction across the travel path and / or in a vertical direction along the travel path, when the moving vehicle passes over the marker, for example, When the marks in the first row cannot be detected, the marks in the next row arranged in the traveling direction along with the traveling of the moving vehicle can be detected.
  • the moving vehicle further includes a wheel rotation sensor of the traveling unit and an inertial measurement unit attached to the main body
  • the drive control unit calculates a moving distance from a detection signal of the wheel rotation sensor, and calculates a moving distance of the inertial measurement unit. The deviation of the angle in the traveling direction of the transport vehicle is detected from the detection signal, and the traveling distance and the angle are corrected.
  • the image processing unit detects the direction in which the marks are lined up, and the marker control unit detects the deviation in the actual traveling direction based on this direction and corrects the traveling information, so that the moving vehicle can accurately move to the traveling path.
  • Travel along. Arrangement position information is set for each mark constituting the marker, and based on the mark located in the vicinity of the center of the imaging screen by the marker detection unit, the marker control unit uses the arrangement position information to determine the position of the moving vehicle in the horizontal direction on the travel path. By detecting the deviation and correcting the traveling information, the traveling vehicle travels accurately along the traveling path.
  • the moving vehicle can go straight, U-turn, left turn, right turn, stop, arc left turn, Autonomous traveling can be performed by any one of the arc-shaped right turns or a combination of one or more of them. Furthermore, if an emergency stop operation unit that outputs an emergency stop signal at the time of operation is provided, the moving vehicle stops the autonomous traveling by the marker based on the emergency stop signal and makes an emergency stop. Therefore, when the moving vehicle has deviated from the traveling path or is about to collide with an obstacle, the collision accident is prevented beforehand by the operator operating the emergency stop operation unit.
  • the main unit has a beacon detection unit, and when the marker is associated with the traveling information of the following mode switching to the beacon to follow ahead, the autonomous traveling by the marker is interrupted, and the moving vehicle follows the movement of the beacon. And run.
  • the main body of the moving vehicle is configured as a transport trolley equipped with a flat mounting table, and further provided with a coupling mechanism for towing the towed trolley, goods to be transported by towing the towed trolley Weight can be increased.
  • an extremely excellent traveling system for a mobile vehicle in which the mobile vehicle can autonomously travel at a low cost with a simple configuration and, further, the travel path of the mobile vehicle can be arbitrarily changed via a network as needed.
  • the traveling system for a mobile vehicle of the present invention for example, an autonomous traveling system using a laser ranging (SLAM) system that detects a slope on a wall or an autonomous line tracing method that cannot be used on a road surface having steps or irregularities.
  • the vehicle travels autonomously between the markers arranged in a point or line on the traveling road with respect to the traveling system, so that the traveling of the moving vehicle can continue the autonomous traveling regardless of the condition of the road surface in the middle.
  • a system can be provided.
  • FIG. 1 is a schematic partial plan view showing an embodiment of a traveling system of a transport trolley as a moving vehicle according to the present invention.
  • 1A is a schematic perspective view
  • FIG. 1B is a plan view
  • FIG. 1C is a side view
  • FIG. 1D is an enlarged plan view of an operation unit.
  • FIG. 3 is a bottom view showing the transport vehicle of FIG. 2.
  • FIG. 3 is a block diagram illustrating an internal configuration of the transport vehicle of FIG. 2.
  • FIG. 2 is a diagram illustrating a configuration of a marker in FIG. 1.
  • FIG. 3 is a schematic diagram illustrating a camera of a marker detection unit in the transport vehicle in FIG. 2.
  • FIG. 7A is a diagram illustrating a state in which the portable beacon is stopped.
  • FIG. 7A is a diagram illustrating a case in which there is a shift in the width direction
  • FIG. It is a flowchart which shows operation
  • It is explanatory drawing which shows the specific example of the autonomous driving
  • It is an outline partial plan view showing a 2nd embodiment.
  • It is an outline partial plan view showing a 3rd embodiment.
  • FIG. 17 is an explanatory diagram showing a traveling state of the transport trolley by a marker indicating an arc-shaped left turn in FIG. 17.
  • FIG. 17 is an explanatory diagram showing a traveling state of the transport trolley by a marker indicating an arc-shaped left turn in FIG. 17.
  • FIG. 13 is a schematic side view showing a connection between a transport vehicle and a towed vehicle in a traveling system of a mobile vehicle according to a first modification of the third embodiment.
  • FIG. 21 is a bottom view of the transport cart of FIG. 20.
  • FIG. 3 is a block diagram illustrating an internal configuration of a transport vehicle. In the traveling system of the mobile vehicle according to the second modification of the third embodiment, the positional relationship between the carrier and the towed vehicle is shown, (a) is a schematic plan view, and (b) is a schematic side view. It is.
  • FIG. 3A is a schematic plan view
  • FIG. 3B is a schematic side view, illustrating a connection relationship between a transport vehicle and a towed vehicle.
  • FIG. 24A is a cross-sectional view of the traction member and the restraint member of the transport vehicle along the line AA in FIG. 24A, where FIG. 24A is a state before connection 1, FIG. 24B is a state before connection 2, and FIG. Is a state at the time of connection, and (d) is a state at the time of disconnection.
  • FIGS. 1 to 4 show a traveling system of a transport vehicle according to a first embodiment as a moving vehicle according to the present invention.
  • a traveling system 1 of a transport vehicle includes a transport vehicle 10 and a marker 40 (described later) arranged in a travel area 2 of the transport vehicle 10.
  • the transport vehicle 10 includes a main body 11, a traveling section 12 provided below the main body 11, a drive control section 13, a beacon detection section 20, a marker detection section 30, and a CPU section 36.
  • the CPU unit 36 includes a CPU (Central Processing Unit) on which a chip of an electronic computer is mounted, and various sensors connected to the CPU, that is, an interface circuit such as a distance sensor 23 and a marker detection unit 30 described later, and a network 80 described later. And a communication unit including a transceiver connected to the external memory, an external memory, and the like.
  • an MPU Micro Processing Unit
  • ECU Engine Control Unit
  • FPGA Field Programmable Gate Array
  • the main switch 37 of the carrier 10 may be turned on or off by the CPU unit 36.
  • the main body 11 has, for example, a flat rectangular parallelepiped outer shape, an upper surface formed as a flat mounting table 11a, and a handle 11b extending upward from the rear end.
  • the traveling portion 12 has a pair of wheels disposed on the lower surface of the main body 11 on both sides in front (in the direction indicated by the arrow in FIG. 2 (B)).
  • a motor 16 having a speed reduction mechanism 16 a for driving each wheel 15, and a pair of casters 17 disposed on both sides behind the motor 16.
  • Each drive motor 16 is driven and controlled by a drive control unit 13 to be described later, so that each wheel 15 is rotationally driven, and the carrier 10 travels in a predetermined direction by moving forward, backward, or left and right.
  • the traveling unit 12 is not limited to the wheels 15 and may be configured by other driving means such as an endless track.
  • Each wheel 15 is provided with a wheel rotation sensor 15a for detecting the number of rotations.
  • the drive control unit 13 is disposed in the main body unit 11. Power is supplied to the drive control unit 13 and the motors 16 from a power supply 13 a disposed near the center of the lower surface of the main body 11. As the power supply 13a, a battery or a rechargeable secondary battery, for example, a lithium secondary battery can be used.
  • the drive control unit 13 controls the driving of each drive motor 16 of the traveling unit 12 based on traveling information, which will be described later, from the beacon detection unit 20 or the marker detection unit 30 provided in the main body unit 11, thereby driving the wheels 15. Are independently driven to perform traveling such as forward, backward, right and left turning, and the like.
  • the drive control unit 13 may stop the traveling unit 12 when detecting an obstacle based on information from an obstacle sensor (not shown) separately from the distance sensor 23.
  • the obstacle sensor is provided for the purpose of stopping the transport vehicle 10 before colliding with the obstacle, and it is only necessary to monitor the periphery and the traveling direction of the transport vehicle 10.
  • a laser radar for example, a laser radar, a millimeter wave radar, or the like can be used.
  • the laser radar is a sensor that performs laser image detection and distance measurement by TOF (Time $ Of Flight) method.
  • Two-dimensional or three-dimensional sensors can be used.
  • an inertial measurement unit 18 using a two-axis or three-axis acceleration sensor or a gyro sensor for measuring the acceleration or angular acceleration of the transport vehicle 10 is provided. This inertial measurement unit 18 is also called an IMU.
  • the drive control unit 13 calculates the moving distance of the transport trolley 10 based on the detection signals input from the two wheel rotation sensors 15a that respectively detect the rotation speeds of the respective wheels 15, and calculates the moving distance of the transport vehicle 10 from the inertia measurement unit 18. With reference to the input detection signal 18a, a shift in the traveling direction of the transport vehicle 10, that is, a shift in the angle is detected. Thereby, the drive control unit 13 can correct the shift of the moving distance and the angle due to the slippage of the wheel 15 and calculate the corrected moving distance, and can correct the angle of the transporting vehicle 10 in the traveling direction. The drive control unit 13 performs drive control of the traveling unit 12 based on traveling information 50a and 25b described later based on the corrected moving distance.
  • the drive control unit 13 may be operated by the operation unit 19 attached to the upper part of the handle 11b.
  • the operation unit 19 includes a so-called shift lever 19a, a joystick 19b, an emergency stop switch 19c as an emergency stop operation unit, and a main switch 37 described later.
  • the shift lever 19a has four modes, for example, P (parking), N (neutral), D (drive), and Fo (follow).
  • P parking
  • N neutral
  • D drive
  • Fo follow
  • Various input operations can be performed by tilting the joystick 19b in any direction.
  • the emergency stop switch 19c outputs an emergency stop signal 19d to the CPU unit 36 when operated.
  • the operation unit 19 may further be provided with a speed switching dial 19e.
  • the shift lever 19a and the speed switching dial 19e may further include indicator lights 19f and 19g indicating a mode position and a speed.
  • the CPU unit 36 suspends the autonomous travel based on the travel information 50a based on the emergency stop signal 19d, generates emergency stop travel information 50b, and sends the emergency stop travel information 50b to the drive control unit 13. Send out.
  • the beacon detector 20 is known per se, and is provided at a front portion of the main body 11 as shown in FIGS. 2 to 4, for example, and includes infrared cameras 21 and 22 as a pair of imaging means, a distance sensor 23, , A beacon calculation unit 24, a beacon processing unit 25, a beacon storage unit 25a, and the like. Each operation of the beacon calculation unit 24, the beacon processing unit 25, and the beacon storage unit 25a is executed by a program stored in the CPU unit 36.
  • the beacon storage unit 25a may use a storage device in the CPU unit 36 or a storage device provided outside the CPU unit 36.
  • Each of the infrared cameras 21 and 22 is separated from each other in the lateral direction of the main body 11 toward the front to capture the identification light from the beacon B to be tracked in front of the main body 11, respectively, for example, on the left and right sides of the front end. Is arranged toward the front. That is, the infrared cameras 21 and 22 are arranged so that their optical axes are substantially parallel to each other, for example, are inclined upward and extend forward. The inclination angle of each optical axis is set to, for example, about 10 degrees to about 30 degrees so that the optical axis passes through a position about 1 cm in front and about 50 cm in height.
  • Each of the infrared cameras 21 and 22 is a known infrared stereo camera, and includes an optical system such as an image sensor and a lens.
  • an infrared stereo camera is used as each of the infrared cameras 21 and 22, the distance and the angle to the beacon B can be measured.
  • the influence of disturbance light such as sunlight can be reduced, and the identification light from the beacon B can be reliably detected even in a dark place such as at night. is there.
  • an image sensor for detecting infrared light an optical filter that transmits only infrared light may be arranged on the incident side of a normal image sensor.
  • Each of the infrared cameras 21 and 22 captures an image of the beacon B to be tracked at predetermined time intervals, and sends the captured image signal to the beacon calculation unit 24.
  • the distance sensor 23 may be provided substantially at the center of the front end of the main body 11, and also at the left and right ends of the front end.
  • the distance sensor 23 is disposed toward the front, and is disposed at an obstacle in front of the traveling path 2a (FIG. 1).
  • an ultrasonic wave or an infrared ray is emitted to detect the reflected wave, and the distance to the obstacle is measured auxiliary. That is, the distance sensor 23 does not track the beacon B but exclusively detects the distance to an obstacle in front of the traveling path 2a.
  • the beacon calculation unit 24 calculates the position information 24a of the beacon B by the so-called stereo vision, that is, the direction and the distance by performing image processing on the imaging screen of the beacon B from each of the infrared cameras 21 and 22. To send to.
  • the beacon calculation unit 24 corrects the distortion of the imaging screen of the beacon B by the optical system of each of the infrared cameras 21 and 22, and attaches each of the infrared cameras 21 and 22 to the main body unit 11, that is, the position of each optical axis. The deviation from the parallelism between them is corrected, and the center position on the imaging screen is corrected.
  • the beacon calculation unit 24 calculates the distance to the beacon more accurately by referring to the distance to the beacon measured by the distance sensor 23.
  • the beacon calculation unit 24 does not create the beacon B position information 24a and does not send it to the beacon processing unit 25 when the position information 24a of the beacon B cannot be calculated by the image processing of the imaging screen from the infrared cameras 21 and 22.
  • the beacon processing unit 25 maps the position information 24a of the beacon B calculated by the beacon calculation unit 24 with respect to an area in which the transport vehicle 10 should travel, registers the position information 24a in the beacon storage unit 25a, and sends it to the CPU unit 36.
  • traveling information 25b including a speed and a direction (steering angle) for causing the carrier 10 to follow the beacon B.
  • the beacon processing unit 25 calculates a change in the relative speed and distance between the beacon B and the transport vehicle 10 by comparing the position information 24a of the beacon B with the position information 24a of the immediately preceding beacon B.
  • the speed included in the travel information 25b is determined so that the distance to the vehicle falls within a predetermined range.
  • the travel information 25b is control information for controlling the rotation speed of the drive motor 16 that drives the left and right wheels 15, and the left and right drive motors 16 are controlled at different rotation speeds, whereby the steering is performed based on the speed difference. Realize the corner.
  • the beacon processing unit 25 sequentially maps the position information 24a of the beacon B sent from the beacon operation unit 24 at predetermined time intervals and registers the position information 24a in the beacon storage unit 25a.
  • the position information 24a is read out, and the travel information 25b is generated based on the direction and the distance to the beacon B at that time, and transmitted to the drive control unit 13.
  • the beacon processing unit 25 does not receive the beacon B position information 24a from the beacon calculation unit 24, the beacon processing unit 25 generates the travel information 25b based on the beacon position information 24a by mapping already registered in the beacon storage unit 25a. To the drive control unit 13. Accordingly, even when the beacon B to be tracked advances along a curved path or turns left and right, tracking is reliably performed based on the mapped position information 24a of the beacon B.
  • the traveling system 1 of the transport vehicle in the present embodiment includes a marker 40 arranged in the traveling area 2 and a marker detecting unit 30 for detecting the marker 40.
  • the marker 40 has at least one mark, which is composed of a plurality of marks, preferably transversely across the track 2a and / or longitudinally along the track 2a. When a plurality of marks are provided on the marker 40, the marker is preferably configured in a single band.
  • the markers 40 may be arranged in one or more lines by continuously attaching a plurality of marks in a longitudinal direction along the traveling path 2a. In this case, a plurality of markers 40 may be arranged at predetermined intervals in the traveling direction along the traveling path 2a, or one marker may be arranged continuously.
  • the marker 40 is preferably formed in a band shape, and a plurality of marks arranged in a horizontal direction and / or a vertical direction are attached to the band-shaped marker.
  • the marks may be the same mark or different marks.
  • a plurality of the same marks or different marks may be arranged in one line in the horizontal direction on one band-shaped marker.
  • two or more rows may be arranged on one marker 40, and a plurality of the same marks or different marks may be arranged for each row.
  • a plurality of markers 40 may be juxtaposed in the vertical direction along the traveling path 2a.
  • the plurality of marks attached to the band-shaped marker 40 may be composed of the same mark or different marks as described above.
  • two markers 40 may be juxtaposed at the center of the traveling path 2a in the traveling direction, or may be juxtaposed at an interval on the left and right sides of the passage.
  • the marker 40 at the center in the horizontal direction is the first marker, the second and third markers 40 may be further arranged on both sides thereof. Also in these cases, the same mark or different marks may be provided for each marker.
  • FIG. 5 shows an example of the configuration of the marker in FIG.
  • the markers 40 are formed in a single band across the traveling direction, and the single band-shaped markers are marked with nine marks arranged in two rows vertically in the figure. That is, the marker 40 is composed of nine marks 41 in the first row on the near side with respect to the traveling direction (illustrated by the arrow) of the carriage 10 and nine marks 42 in the second row on the rear side.
  • the marks 41 in the first column are, in order from the left, 41a, 41b, 41c, 41d, 41e, 41f, 41g, 41h, 41i, and the marks 41a to 41i are referred to as rows a to i.
  • the marks 42 in the second row are 42a, 42b, 42c, 42d, 42e, 42f, 42g, 42h, and 42i in order from the left.
  • Each of the marks 42a to 41i is similarly referred to as a row to an i row.
  • a number or a letter may be changed as a symbol meaning the mark 41.
  • the symbols from left to right in the horizontal direction have arrangement position information 51 described later.
  • the transport vehicle 10 detects the marker 40, the transport vehicle 10 detects a lateral shift based on the arrangement position information 51 of the mark 41.
  • the markers 40 When arranging a plurality of markers 40 from the near side to the rear side in the traveling direction, if the same numbers and the same characters are arranged, failure or error in data acquisition of the arrangement position information 51 of the markers 40 will occur when the speed in the traveling direction increases. Can be eliminated.
  • the markers 40 When the markers 40 are arranged in the vertical direction along the traveling path 2a, the markers 40 may be provided in the lateral direction so as to cross the traveling path 2a in order to detect a lateral displacement.
  • the arrangement position information 51 in the lateral direction may be set for the marks constituting the markers 40 arranged on the left and right.
  • travel information 50 of the carrier 10 after passing the marker 40 of the carrier 10 is set in advance.
  • the travel information 50 is, for example, straight ahead, U-turn, left turn, right turn, stop or following mode switching. In the case of straight ahead, several steps, for example, low speed, medium speed and high speed, are set. I have.
  • one marker 40 including 18 marks 41 a to 41 i and 42 a to 42 i shown in FIG. 5 is all associated with the same travel information 50.
  • the individual marks 41a to 41i and 42a to 42i use ArUco markers, each having a size of about 2 cm in length and width, for example, and are arranged at an interval of about 8 cm from each other.
  • the sizes and intervals of the individual marks 41a to 41i and 42a to 42i are determined from the installation position of the camera 31 for detecting the marker 40 and the angle of view of the lens attached to the camera 31, as described later.
  • Each of the marks 41a to 41i and 42a to 42i is not limited to the ArUco marker, and may use a barcode, a QR code (registered trademark), or the like.
  • One marker 40 has a width that completely crosses the traveling path 2a of the transport vehicle 10.
  • arrangement position information 51 is sequentially set in the left-right direction from the left end to the right end and in the first row or the second row.
  • the arrangement position information 51 of the third row in the first row is set.
  • the travel information 50 and the arrangement position information 51 of each of the marks 41a to 41i and 42a to 42i are set in advance by a CPU unit 36 described later, and are stored in the marker storage unit 34 in the CPU unit 36.
  • the marker 40 is configured as a single sheet as a whole, and for example, an adhesive is applied to the back surface and can be attached to a floor surface or the like.
  • the marker detection unit 30 includes a camera 31 as an imaging unit and an image processing unit 32, and a signal from the image processing unit 32 is output to a marker control unit 33 in the CPU unit 36.
  • the information is stored in the marker storage unit 34 as needed.
  • Each operation of the marker control unit 33 and the marker storage unit 34a is executed by a program stored in the CPU unit 36.
  • the marker storage unit 34a can use a storage device in the CPU unit 36 or an external storage device of the CPU unit 36, similarly to the beacon storage unit 25a.
  • the camera 31 is disposed at a position that is hardly affected by sunlight, and in the illustrated example, is directed downward at the lower surface of the main body 11 of the transport vehicle 10.
  • a light emitting unit 31a for illuminating the inside of the angle of view.
  • the wavelength of the light emitted from the light emitting unit 31a may be visible light or infrared light.
  • an infrared camera and an infrared light emitting unit are preferably used so as to be hardly affected by disturbance light.
  • the camera 31 is mounted vertically at a height H (for example, about 12 cm) from the running surface, and has an angle of view in a range of a width W (for example, about 15 cm) on the running surface.
  • the light emitting unit 31a is configured by, for example, a light emitting diode or the like, and is disposed on both sides of the camera 31 in the illustrated case so as to illuminate the range of the angle of view.
  • the arrangement of the markers 40 is determined from the installation position of the camera 31 and the viewing angle of the lens of the camera 31, that is, the angle of view. If the distance between the markers is such that three or more markers 40 can be seen within the maximum viewing angle, the transportation is performed. No matter where the carriage 10 passes over the marker 40, two or more markers can be seen.
  • the image processing unit 32 receives the image pickup signal 31b from the camera 31, performs image processing on the image pickup screen based on the image pickup signal 31b, and detects the marker 40 appearing in the image pickup screen and the arrangement direction 32a of the marker 40.
  • the image processing unit 32 specifies the first row of marks 41a to 41i closest to the center among the markers 40 in the imaging screen, and similarly specifies the second row of marks 42a to 42i closest to the center. .
  • the image processing unit 32 performs the following based on the first-row marks 41a to 41i.
  • the specified first column marks 41a to 41i or the second column marks 42a to 42i can be specified. Based on 42i, the mark 41a to 41i or 42a to 42i is output to the marker control unit 33 as the detection mark information 32b together with the arrangement direction 32a. If the image processing unit 32 cannot identify any of the first row of marks 41a to 41i and the second row of marks 42a to 42i, it generates an error signal 32c and outputs it to the marker control unit 33.
  • the marker control unit 33 performs, based on the detected mark information 32b from the image processing unit 32, the traveling information 50 and the arrangement position information set in advance for the marks 41a to 41i or 42a to 42i specified by the image processing unit 32. 51 is read from the marker storage unit 34.
  • the marker control unit 33 detects, based on the arrangement direction 32a and the arrangement position information 51, a lateral deviation in the traveling direction and the traveling path 2a at that time, and a deviation in the traveling direction from the inertial measurement unit 18, that is, an angular deviation. To correct the deviation in the correct running direction and lateral direction.
  • the detection and correction of the angle shift are performed by a gyro sensor in the inertial measurement unit 18.
  • the marker detection unit 30 calculates the XY position and the angle of the carrier 10 with respect to the marker 40 based on the recognition of the marker 40, and outputs the calculated position and angle to the marker control unit 33.
  • the X position is a lateral direction on the traveling path 2a
  • the Y position indicates a traveling direction.
  • the correction is possible if at least one mark 41a can be detected.
  • the straight ahead, stop, right Recognize driving information such as left turn.
  • the number of the marks 41a By setting the number of the marks 41a to two or more, it is possible to avoid erroneous detection of a stain on a floor, which is a traveling path on which the carrier 10 travels, by mistake.
  • the marker 40 does not necessarily need to be used with priority given to the central one of the marks 41 shown in FIG.
  • the marker control unit 33 acquires the lateral displacement of the traveling direction of the transport vehicle 10 and the current angle from the marker 40, sets the traveling direction deviation to 0, and corrects the traveling direction to further eliminate the angle deviation,
  • the drive control unit corrects the read travel information 50 by generating a corrected travel information 50a by correcting the lateral position and the current angle of the travel path 2a so as to return the lateral displacement in the travel path 2a to the center. 13 is output.
  • the drive control unit 13 controls the drive of the traveling unit 12 based on the corrected traveling information 50a. Therefore, the transport vehicle 10 travels and travels as specified by the marker 40 according to the corrected travel information 50a.
  • the marker control unit 33 determines that reading of the marker 40 has failed, generates an emergency stop signal 33a, and outputs the emergency stop signal 33a to the drive control unit 13 of the transport vehicle 10. I do.
  • the drive control unit 13 controls the drive of the traveling unit 12 based on the emergency stop signal 33a to stop the drive of the motor 16.
  • the marker control unit 33 receives wheel rotation number information 15b from a wheel rotation sensor 15a provided on each wheel 15 of the transport trolley 10, and a detection signal 18a from the inertial measurement unit 18, and receives these wheel rotation number information. 15b, the traveling distance of the transport vehicle 10 is calculated, the slippage of the wheels 15 is detected based on the detection signal 18a of the inertial measurement unit 18, the traveling distance is corrected, and the traveling information is corrected based on the corrected traveling distance. 50 is corrected, and the corrected travel information 50a is output to the drive control unit 13.
  • the marker control unit 33 when the marker control unit 33 receives the position information 24a of the beacon B from the beacon processing unit 25 of the beacon detection unit 20 during the control of the autonomous traveling by the marker, the marker control unit 33 suspends the autonomous traveling by the marker, and the drive control unit. 13 is taken over by the beacon processing unit 25 of the beacon detection unit 20, and the beacon processing unit 25 transmits the traveling information 25b such that the vehicle travels straight along the traveling path 2a for a predetermined distance (for example, 3 m) to the vicinity of the beacon and stops. It is created and sent to the drive control unit 13.
  • a predetermined distance for example, 3 m
  • markers 40-1, 2, and 3 go straight ahead at low, medium and high speed respectively, marker 40-4 turns 90 degrees left, marker 40-5 turns 90 degrees right, marker 40-6 stops, and marker 40- turns. 7, entry is prohibited, marker 40-8 is associated with a counterclockwise U-turn, marker 40-9 is associated with a clockwise U-turn, and marker 40-10 is associated with following mode switching.
  • the image processing unit 32 of the marker detecting unit 30 Detects the arrangement direction 32a of the markers 40 and the detection mark information 32b from the imaging screen of the markers 40.
  • the marker control unit 33 reads the travel information 50 set for the marker 40 from the marker storage unit 34 based on the detection mark information 32b, and corrects the travel direction 50a corrected for the travel direction deviation and the width direction deviation with respect to the travel path 2a. Is output to the drive control unit 13.
  • the transport vehicle 10 corrects the deviation in the traveling direction and the width direction while moving slowly from the marker 40 to 2 m, and after the correction is completed, accelerates to the speed set in the traveling information 50 and goes straight.
  • the displacement in the width direction is corrected as shown in FIG. 7A, and when there is a deviation in the traveling direction and the displacement in the width direction with respect to the traveling path 2a, As shown in FIG. 7B, both the displacement in the traveling direction and the displacement in the width direction are corrected.
  • the image processing unit 32 of the marker detection unit 30 causes the marker 40 ,
  • the arrangement direction 32a of the markers 40 and the detection mark information 32b are detected.
  • the control unit 33 reads the travel information 50 set on the marker 40 from the detection mark information 32b, and outputs to the drive control unit 13 the travel information 50a corrected with respect to the deviation of the travel direction with respect to the travel path 2a.
  • the carriage 10 temporarily stops at a position 1 m from the marker 40 and then turns left.
  • the deviation in the traveling direction is corrected by adding the deviation in the direction to 90 degrees, and after the correction is completed, the vehicle travels straight at the speed set in the traveling information 50 immediately before. In this case, no correction is made for the displacement in the width direction.
  • the vehicle turns left as it is.
  • the deviation in the traveling direction is corrected. For example, when the deviation in the traveling direction is 10 degrees, the vehicle turns left by 100 degrees (90 degrees + 10 degrees). In the case of turning 90 degrees to the right, the operation in the left and right directions is reversed with respect to the case of turning 90 degrees to the left, and a detailed description thereof will be omitted.
  • the image processing unit 32 of the marker detection unit 30 detects the marker 40 from the imaging screen of the marker 40.
  • the arrangement direction 32a and the detection mark information 32b are detected.
  • the marker control unit 33 reads the travel information 50 set for the marker 40 from the detection mark information 32b, and outputs to the drive control unit 13 the travel information 50a corrected for the deviation in the direction with respect to the travel path 2a.
  • the transport vehicle 10 stops at a position 1 m from the marker 40.
  • the displacement in the running direction is corrected during the deceleration to the stop position, but no correction is made for the displacement in the width direction.
  • the image processing unit 32 of the marker detection unit 30 changes the marker image from the imaging screen of the marker 40 to the marker. Forty alignment directions 32a and detection mark information 32b are detected.
  • the marker control unit 33 ends the autonomous traveling by the marker, reads the traveling information 50 set for the marker 40 from the detection mark information 32b, and does not correct the deviation in the direction with respect to the traveling path 2a and the deviation in the width direction. Immediately stop. No correction is made for the displacement in the running direction and the displacement in the width direction. When there is only a displacement in the width direction with respect to the traveling path 2a, the operation is stopped as shown in FIG.
  • the shift lever 19a is manually set to the neutral position, the carrier 10 is manually moved to a correct position, and then a normal operation for starting the autonomous traveling is performed.
  • the image processing unit 32 of the marker detection unit 30 captures an image of the marker 40.
  • the arrangement direction 32a of the markers 40 and the detection mark information 32b are detected.
  • the marker control unit 33 reads the travel information 50 set for the marker 40 from the detection mark information 32b, and outputs to the drive control unit 13 the travel information 50a corrected for the displacement in the traveling direction and the displacement in the width direction with respect to the traveling path 2a. I do.
  • the transport vehicle 10 temporarily stops at the position a 1 m from the marker 40 and then turns left or right on the spot.
  • the deviation in the traveling direction is corrected by adding the deviation in the traveling direction to 180 degrees, and after the correction is completed, the deviation in the width direction is corrected while traveling to the position b of 2 m. Go straight at the speed set to 50.
  • the width direction is corrected after making a U-turn, and the shift in the travel direction and the shift in the width direction with respect to the travel path 2a are reduced.
  • the displacement in the running direction and the displacement in the width direction are corrected. In the case of a U-turn, since the vehicle turns on the spot, the same operation is performed in the case of a left turn and a right turn.
  • the image processing unit 32 of the marker detecting unit 30 sets the marker processing unit.
  • the arrangement direction 32a of the markers 40 and the detection mark information 32b are detected from the imaging screen 40.
  • the marker control unit 33 reads the travel information 50 set for the marker 40 from the detection mark information 32b, suspends the autonomous travel by the marker 40, and controls the drive control unit 13 by the beacon processing unit 25 of the beacon detection unit 20. Take over. After that, the transport vehicle 10 follows the beacon B detected by the beacon detector 20.
  • the beacon B may be worn by an operator.
  • the displacement in the width direction follows the beacon B without being corrected, and the deviation in the traveling direction with respect to the traveling path 2a
  • the beacon B follows.
  • the transport vehicle 10 is guided by the beacon B to a position deviating from the travel path 2a in the middle of the travel path 2a, and the luggage or the like mounted on the mounting table 11a of the transport vehicle 10 Can be loaded and unloaded.
  • the beacon detection unit 20 detects the identification light from the beacon B (portable beacon) during autonomous traveling of the transport vehicle 10 with the marker
  • the beacon processing unit 25 of the beacon detection unit 20 performs the operation.
  • the position information 24a of the beacon B is transmitted to the marker control unit 33 of the marker detection unit 30.
  • the marker control unit 33 of the marker detection unit 30 creates the traveling information 50 in which the autonomous traveling by the marker 40 is interrupted and the vehicle travels straight ahead for a predetermined distance (for example, 3 m) along the traveling path 2a to the vicinity of the beacon B and stops. And sends it to the drive control unit 13.
  • the drive control unit 13 controls the drive of the traveling unit 12, so that the transport vehicle 10 travels straight along the traveling path 2a for a predetermined distance to the vicinity of the beacon B and stops. At this time, the displacement in the traveling direction and the displacement in the width direction are not corrected. Even when there is no displacement in the traveling direction as shown in FIG. 13 (A), the displacement in the traveling direction as shown in FIG. In some cases, the transport vehicle 10 goes straight.
  • the autonomous traveling by the marker control unit 33 is not performed while the beacon detecting unit 20 detects the identification light from the beacon B, and the beacon processing unit 25 of the beacon detecting unit 20 Is performed, but when the identification light from the beacon B is no longer detected, since the transport vehicle 10 is located on the traveling path 2a, the marker detecting unit 30 restarts the autonomous traveling by the marker. can do.
  • the emergency stop signal 19d is input to the marker control unit 33 of the marker detection unit 30.
  • the marker control unit 33 interrupts the autonomous travel based on the travel information 50a, generates emergency stop travel information 50, and sends it to the drive control unit 13.
  • the drive control unit 13 immediately controls the drive of the traveling unit 12 based on the emergency stop traveling information 50, and immediately stops the traveling of the transport vehicle 10.
  • the marker control unit 33 of the marker detection unit 30 controls the drive control unit 13 based on the marker travel information 50a.
  • the marker control unit 33 operates as follows according to the flowchart of the autonomous driving mode shown in FIG. In the autonomous traveling mode, first, in step ST1, after the autonomous traveling starts, the marker detection unit 30 searches for the first marker and detects the marker 40.
  • the marker detection unit 30 determines “straight ahead”, “left turn”, “right turn”, “stop”, “U-turn”, “U-turn”, depending on the type of the travel information 50 associated with the marker 40 detected in step ST1. It determines “entry prohibited” and “follow mode switching”.
  • the marker control unit 33 creates the straight traveling information 50a in step ST2 as shown in FIG. 7, and corrects the deviation in the traveling direction and the deviation in the width direction in step ST3.
  • the drive unit 13 drives and controls the traveling unit 12 to move the transport carriage 10 forward, and returns to step ST1.
  • the marker control unit 33 creates the left turn or right turn travel information 50a as shown in FIG. 8 in step ST5 and step ST6, respectively.
  • the drive unit 12 is driven and controlled by the drive control unit 13 to move the transport carriage 10 forward, and the process returns to step ST1.
  • the marker control unit 33 creates stop travel information 50a in step ST7 as shown in FIG. 9 and corrects the shift in the running direction and the width direction in step ST8. Then, after waiting for the operator to resume the autonomous traveling in step ST9, the driving unit 12 is drive-controlled by the drive control unit 13 in step ST4, the transport carriage 10 is advanced, and the process returns to step ST1.
  • the marker control unit 33 creates the U-turn travel information 50a in step ST10 and makes the U-turn, as shown in FIG. Then, the displacement in the width direction is corrected, and in step ST4, the drive unit 13 is driven and controlled by the drive control unit 13, the transport carriage 10 is advanced, and the process returns to step ST1.
  • the marker control unit 33 immediately stops at Step ST12 without correcting the deviation in the traveling direction or the deviation in the width direction as shown in FIG. In this case, the marker control unit 33 ends the autonomous traveling by the marker in step 13 and waits for an operation by the operator. In the meantime, the marker control unit 33 stops the autonomous traveling and sets the mode to the neutral mode as shown in step ST14. In the case of “follow-up mode switching”, the marker control unit 33 suspends autonomous traveling by the marker in step ST15 and switches to the follow-up mode in step ST16, as shown in FIG.
  • a travel path 2a is set as shown by a dotted line in a travel area, for example, a warehouse, where the transport vehicle 10 travels, and appropriate locations 61 to 72 are provided to guide the transport vehicle 10 along the travel path 2a.
  • markers 40 are provided with markers 40 respectively.
  • the marker 40 at the positions 61 and 69 is set with stop travel information
  • the marker 40 at the positions 62, 63, 65, 71 and 72 is set with straight travel information
  • the marker 40 at positions 64, 66, 68 and 70 is set as Travel information of a left turn (turn 90 degrees left) is set
  • the marker 40 at the position 67 is set with travel information of a right turn (turn 90 degrees right).
  • Each marker 40 is installed on the floor surface of the traveling area by bonding or the like, and when changing the traveling path 2a, the existing marker 40 can be easily peeled off and an appropriate marker 40 is newly placed at a predetermined position. , The traveling path 2a can be easily changed.
  • the traveling system 5 of the moving vehicle is different from the traveling system 1 according to the first embodiment shown in FIG. 1 in that a network 80 connected to the transport vehicle 10 and an external operation of the transport vehicle 10 connected to the network 80 A control unit 90 is further provided.
  • the transport vehicle 10 has the same configuration as the traveling system 1 of the mobile vehicle according to the first embodiment, except that the CPU unit 36 includes a communication unit including a transceiver connected to the network 80.
  • the network 80 is a network having an arbitrary configuration, and may be a dedicated line network or a public line network such as 3G, LTE, or the Internet.
  • the network 80 is not limited to wireless, but may be wired.
  • the wired network 80 may be a LAN (Ethernet (registered trademark)), RS232C, CAN (Controlled Area Network) which is an in-vehicle network, or the like.
  • the wireless network 80 may be a so-called wireless LAN. WiFi (registered trademark) and Bluetooth (registered trademark) can be applied as the wireless LAN.
  • the network 80 may be constituted by electronic components such as transistors and relays capable of transmitting electrical signals as a communication function and an input / output function of the communication unit of the CPU unit 36, a transmission cable, and the like.
  • the transport vehicle 10 and the external operation control unit 90 are mutually connected by the network 80. Various signals can be transmitted and received to each other as needed.
  • the external operation control unit 90 includes, for example, a tablet and a program stored in the tablet.
  • a control device such as a PLC (programmable logic controller), a sequencer, or a remote controller may be used.
  • a tablet in which a program for controlling the carrier 10 is stored is used.
  • the external operation control unit 90 may control the transport vehicle 10 via the network 80 as necessary.
  • the travel path 2a of the transport trolley 10 may be arbitrarily changed by a tablet serving as the external operation control unit 90.
  • the driving information at the marker 40 may be changed by the external driving control unit 90.
  • the external driving control unit 90 can arbitrarily change the traveling path 2a of the mobile vehicle 10 by changing the traveling information on the marker 40 via the network 80 as necessary, as described below.
  • Modification 1 of marker As a modified example of the above-described marker 40, a description will be given of a method of changing the traveling information of the marker 40 once installed, that is, a method of making the marker 40 variable.
  • the meaning of the marker 40 can be changed between the first carrier 10 and the second carrier 10. For example, when at least three or more markers 40 of A, B, C,... Are installed in the movement range, the markers of the first transporting vehicle 10 and the markers 40 in the second transporting vehicle 10 are displayed. The meaning can be changed as follows. An example of the meaning when the number of the markers 40 is three will be described below. First transport cart 10: Marker A goes straight, marker B turns left, marker C stops. Second carrier 10: Marker A goes straight, marker B turns right, and marker C turns left.
  • the transport vehicle 10 is controlled according to the definition of the marker A (straight ahead), the marker B (left turn), and the marker C (stop). Is stored in the marker storage unit 34 in accordance with.
  • the marker control unit 33 and the marker storage unit 34 of the second transport vehicle 10 are controlled by the transport vehicle 10 based on the definition of the marker A (straight ahead), the marker B (right turn), and the marker C (left turn).
  • the data is stored in the marker storage unit 34 as needed.
  • the control of the marker control unit 33 and the marker storage unit 34 of each transport vehicle 10 may be set for each transport vehicle 10.
  • the marker control unit 33 and the marker storage unit 34 of each transport vehicle 10 may be controlled by an external operation control unit 90 such as a tablet connected to the network 80. This makes it possible to operate the plurality of transport vehicles 10 on different traveling paths 2a in one warehouse.
  • Modification 2 of marker (Modification 2 of marker) .. N are stored in advance in the same transport vehicle 10 as travel patterns using a plurality of markers, that is, travel patterns 1, 2, 3,... Next time, if the control is performed in the running pattern 2, the same transport vehicle 10 can be run in different running patterns of N traversals.
  • the marker 40 indicating the route is set on the traveling path 2a, or the installed marker 40 is modified with the tablet in the same manner as in the first modified example of the marker, that is, the definition of the marker 40 is modified.
  • the meaning may be changed.
  • the tablet serving as the external operation control unit 90 may communicate with the carrier 10 via a wireless LAN or the like.
  • a marker D may be provided as the marker 40 for specifying the traveling path 2a on the marker 40 installed on the traveling path 2a.
  • the marker D is a marker indicating a change from the running pattern 1 to the running pattern 2, and is stored in the marker storage unit 34.
  • the marker control unit 33 switches from the travel pattern 1 to the travel pattern 2.
  • the plurality of transport vehicles 10 may be controlled in real time from the external operation control unit 90 connected to the network 80.
  • the external operation control unit 90 can be installed in a command room adjacent to a warehouse or a command room provided in a remote place.
  • the marker 40 may be used for controlling other devices other than the control of the carrier 10.
  • the marker S installed in front of the warehouse shutter may have a meaning to open the shutter.
  • the marker control unit 33 that has detected the marker S may be connected to the network 80 via a network connection unit connected to the CPU unit 36, and may transmit a “shutter open” signal to the shutter control unit.
  • Modification 6 of marker When the transport vehicle 10 is towing another transport vehicle, the transport vehicle that is being towed may be cut off according to the instruction of the marker 40.
  • the traveling path 2a may be changed. For example, when the transport trolley 10 is towing another transport trolley and detects the marker D that specifies the travel path 2a, switching from the travel pattern 1 to the travel pattern 2 is performed as in the third modified example of the marker. May be.
  • an autonomous traveling system using a laser ranging (SLAM) system that detects a slope on a wall or a line trace that cannot be used on a road surface having steps or unevenness.
  • SLAM laser ranging
  • the autonomous driving since the autonomous driving is performed between the markers 40 arranged in the form of dots or lines on the driving road, the autonomous driving can be continued regardless of the condition of the road surface in the middle. .
  • a moving vehicle includes a towed vehicle 120 and a transport vehicle 110 tow the towed vehicle. These vehicles are configured so that they can be connected and disconnected from each other by a connection mechanism.
  • the coupling mechanism on the side of the transport vehicle 110 serving as a moving vehicle includes a connector 132 provided at the rear end of the transport vehicle 110, a connector 134 provided at the front end of the towed vehicle 120, and a connecting member 130 for coupling these components. In this configuration, the transport vehicle 110 leads and moves the towed vehicle 120 by leading.
  • the towed truck 120 may be a cart (roll box pallet), a six-wheeled truck (slim cart), or a pallet-conveyable truck.
  • the connecting device 132 is movably mounted on the connecting member 130
  • the connecting device 134 on the towed vehicle 120 is fixedly mounted on the connecting mechanism on the transporting vehicle 110 side.
  • the coupler 132 on the side of the carriage 110 is fixedly attached
  • the other coupler 134 may be movably attached.
  • the loading capacity of the towed truck 120 can be 100 kg to 300 kg. If each motor 16 is appropriately selected, the load capacity of the towed truck 120 can be further increased to, for example, 600 kg.
  • the moving vehicle 110 can use the marker 40 indicating straight ahead, U-turn, left turn, right turn and stop, and no entry as in the case of the moving vehicle 10, but further draws an arc (R) as shown in FIG.
  • a marker 40 that autonomously travels on a track can also be used in combination.
  • the autonomous running of the orbital track is referred to as an arc-shaped left turn and an arc-shaped right turn, respectively, to distinguish it from a right-angled left turn and a right-turn.
  • a marker 40 indicating turning is described. As shown in FIG.
  • the image processing unit of the marker detection unit 30 32 detects the arrangement direction 32a of the markers 40 and the detection mark information 32b from the imaging screen of the markers 40.
  • the marker 40-12 corrects the position of the transport vehicle 110 so that the vehicle first goes straight, for example, when it goes straight 2 m, so that it is at the center of the track 2a, and then the turning radius R and the turning angle are set.
  • it is possible to freely set such as traveling straight 2 m, turning 60 ° at a radius of 3 m (see the locus of FIG. 19A), traveling straight 2 m, turning 90 ° at a radius of 5 m (see the locus of FIG. 19B), and the like.
  • the marker control unit 33 reads, from the detection mark information 32b, the travel information 50 on the straight traveling distance, the turning radius R, and the turning angle set for the marker 40, and corrects the traveling information corrected for the deviation of the traveling direction with respect to the traveling path 2a. 50a is output to the drive control unit 13.
  • the transport vehicle 110 travels straight from the marker 40-12 to a predetermined position, temporarily stops, and then turns in a leftward orbit in an arc. That is, the moving vehicle 110 first goes straight in the same way as the straight-ahead markers (markers 40-1 to 40-3 in FIG. 7), and then turns left in an arc shape according to the turning radius R indicated by the marker 40-12 and the turning angle. do.
  • the transport vehicle 110 can smoothly turn when the towed vehicle 120 is towed and turns leftward in an arc shape.
  • the operation is performed in the left and right directions in reverse to the case of the arc-shaped left turn described above, and a detailed description thereof will be omitted.
  • the marker 40 may combine two or more functions of stopping at a predetermined distance or turning straight to a predetermined distance when turning in a specific direction. That is, the marker 40 has one or more of the above-described straight running, U-turn, left turning, right turning, stop, arc-shaped left turning, and arc-shaped right turning. Travel information may be set. For example, it can be set to stop at 5 m ahead, turn right in an arc at 3 m ahead, turn right in an arc, or the like.
  • the transport vehicle 110A includes a coupler 142 that can be automatically attached and detached as a coupling mechanism for the towed vehicle 120A.
  • the coupler 142 of the transport trolley 110A includes an automatic coupling member 144 having a mechanism movable in the vertical direction.
  • the automatic connection member 144 is driven by a solenoid or a motor disposed in the coupler 142 to move the pin portion 144a of the automatic connection member 144 in the vertical direction.
  • the towed vehicle 120A includes a coupler 142 on the towed vehicle side that is detachable from the coupler 142 of the transport vehicle 110A.
  • the coupler 154 on the towed truck side has an insertion hole into which the pin portion 144a of the automatic coupling member 144 is inserted.
  • a marker 40 called a marker D is installed at a location where the transport vehicle 110A and the towed vehicle 120A are to be automatically connected.
  • the marker D is defined as a location where the transport vehicle 110A and the towed vehicle 120A are automatically connected, and is stored in the marker storage unit 34.
  • the automatic connection between the transport vehicle 110A and the towed vehicle 120A is associated with the travel information 50.
  • the marker control unit 33 that has detected the marker D controls the CPU unit 36 to stop at the position of the marker D and perform automatic connection by the automatic connection member 144.
  • the CPU unit 36 controls the solenoid to move the pin portion 144a of the automatic connection member 144 upward, and inserts the pin portion 144a into the hole of the coupler 154 on the towed truck.
  • the external operation control unit 90 connected to the network 80 may send a signal of “connect to the towed vehicle 120A” to the CPU unit 36 of the transport vehicle 110A.
  • a PLC is used as the external operation control unit 90, control can be performed such that the towed vehicle 120A and the towed vehicle 120A are automatically connected from the PLC.
  • the network 80 connecting the PLC and the CPU unit 36 may be configured using a switch or a communication unit connected to the CPU unit 36.
  • a marker E is provided as the marker 40 at a position where the transportable vehicle 110A is separated from the towed vehicle 120A.
  • the marker E is defined as a location where the transport vehicle 110A separates from the towed vehicle 120A, and is stored in the marker storage unit 34.
  • the separation of the transport vehicle 110A from the towed vehicle 120A is associated with the traveling information 50.
  • the marker control unit 33 that has detected the marker E controls the CPU unit 36 to stop at the position of the marker E, and then to perform automatic disconnection by the automatic connection member 144.
  • the CPU unit 36 controls the solenoid to move the pin portion 144a of the automatic connection member 144 downward, and automatically detaches the pin portion 144a from the coupler 154 on the towed truck side.
  • the external operation control unit 90 connected to the network 80 sends a signal of "leaving from the towed vehicle 120A" to the CPU unit 36 of the transportable vehicle 110A. Then, the towed vehicle 120A may be separated.
  • the marker 40 When the towed vehicle 120A is connected to the transporting vehicle 110A, the marker 40 may be given a meaning of retreat, and the transporting vehicle 110A may be retracted to align the coupler 142 with the coupler 154 on the towed vehicle side. Good.
  • This alignment can be performed by the CPU unit 36. The alignment may be performed by an operator operating the handle of the transport carriage 110A. Alternatively, positioning may be performed using a switch connected to the external operation control unit 90 using a PLC or a communication function. As described above, if the travel information is set in advance so that the marker D or the marker E is automatically connected or disconnected, the transporting trolley 110A is stopped at the marker D or the marker E by the CPU unit 36, and then is stopped. By controlling the solenoid, automatic connection or automatic disconnection by the automatic connection member 144 is performed.
  • the transport trolley 110A further includes a distance measuring sensor 153.
  • the distance measuring sensor 153 has a longer distance including a left and right diagonal direction when the towed vehicle 120A having a width wider than the transport vehicle 110A is detected while the distance sensor 23 mainly detects an obstacle in front. Detect obstacles in range.
  • the distance may be set to about 5 m, for example, about 5 to 10 m.
  • the distance measuring sensor 153 is preferably a distance measuring sensor called a two-dimensional laser range finder (2DLRF), a distance measuring sensor for measuring a distance by image recognition by a camera such as a stereo camera, or the like.
  • 2DLRF two-dimensional laser range finder
  • the wide towed truck 120A When the wide towed truck 120A is towed, obstacles ahead in the traveling direction can be detected beforehand, so that the transporting cart 110A stops before colliding with the obstacle or avoids colliding with the obstacle. I do. Since the 2DLRF can measure distances on the order of millimeters, localization of obstacles around the carrier 110A with high accuracy and high density can be performed locally, thereby speeding up the stop operation for obstacles and obstructing obstacles. Perform the avoidance action quickly. The towed truck 120A loaded with a heavy object takes an extra braking time to stop after detecting an obstacle, so that the safety of the stopping operation is higher.
  • an operation unit 119 is provided on the side of the transport vehicle 110B as a coupling mechanism that causes the transport vehicle 110B to pull the tow vehicle 120B.
  • a traction member 170 for connecting to a pin 160 of the towed truck 120B described later, a restraining member 172, a link mechanism 174 connected to the traction member 172, a solenoid 176 for driving the link mechanism 174, and the like. Is provided, but does not include the handle 111b.
  • the towing member 170 is provided with a hole 170 into which the pin 160 is inserted when connecting the towed truck 120B.
  • the restraining member 172 is a spring-like member that prevents the pin 160 from coming off when the pin 160 is inserted into the hole 172a of the traction member 170.
  • the transport vehicle 110B is configured to tow and guide the towed vehicle 120B in a mode in which it is below the towed vehicle 120B.
  • the operation unit 119 is disposed substantially below the loading surface of the main body unit 111 so as not to hinder the carriage 110B from sinking below the towed truck 120B.
  • a pin 160 projecting downward at a lower portion of the main body 122, and a pair of guides 162 provided on the left and right sides for holding the transporting cart 110B under the towed truck 120A and holding it. It has.
  • the interval Wg between the guides 162 is formed to be substantially the same as or slightly wider than the width of the transport vehicle 110B, and is set to a width that allows the towed vehicle 120B to enter and hold it.
  • the traction member 170 of the carrier 110B returns to a predetermined position by the force of the spring 164. Since the transport vehicle 110B sneaks under the towed vehicle 120B and connects the towed vehicle 120B, the towed vehicle 120B can perform the same movement as the operation of the mobile vehicle 100A alone, and connects the towed vehicle to the rear of the transported vehicle. In this case, the towed truck can rotate in place. Further, since the transport vehicle 110B and the towed vehicle 120B move in a stacked state, the overall length is shortened, and the working efficiency is improved.
  • the ArUco marker is used as each mark of the marker 40, but other various marks, for example, a QR code (registered trademark) or the like may be used.
  • the marker 40 has marks arranged in two rows ⁇ 9, but may be arranged in one row, three or more rows, or two to eight or ten or more marks in the horizontal direction.
  • the marker control unit 33 and the beacon processing unit 25 of the beacon detection unit 20 may be shared without providing the marker detection unit 30 separately from the beacon detection unit 20.
  • the emergency stop switch 19 as an emergency stop operation unit may be provided on an external operation unit that performs various settings without being provided on the main body unit 11 of the transport trolley 10, or may be fixedly arranged in the traveling area of the transport trolley 10. May be.
  • the number of emergency stop switches 19 is not limited to one, but may be plural, and may be included in the operation of the joystick 19b.
  • the surrounding sensor for the emergency stop is not limited to a distance sensor such as an ultrasonic sensor, and may be detected by a bumper sensor 38a provided on the bumper 38.
  • the emergency stop operation unit may be configured such that the worker can remotely stop the transport vehicles 10 and 110 by using a beacon worn by the worker or another remote control device using infrared or wireless communication.
  • the transport vehicles 10, 110, 100A, and 100B may include a speaker.
  • the speaker can generate an alarm sound or a sound effect around the transport trolley before the operation of the marker 40 such as straight ahead, left turn, right turn, emergency stop, and the like.
  • the transport vehicles 10, 110, 100 ⁇ / b> A, and 100 ⁇ / b> B are used as the mobile vehicles.
  • the present invention is not limited thereto, and the present invention can be applied to any mobile vehicle other than the transport vehicles. it is obvious.
  • beacon detection unit 31: camera (imaging means), 31a: light emitting unit, 31b: imaging signal, 32: image processing unit, 32a: arrangement direction, 32b: detection mark information, 32c: error signal 33: marker control unit 33a: emergency stop signal 34: marker storage unit, 36: CPU unit, 37: main switch, 38: bumper, 38a: bumper sensor, 40: marker, 41, 41a to 41i: marks in the first row, 42, 42a to 42i: marks in the second row, 50: travel information, 50a: corrected travel information, 51: arrangement position information, 61-72: Position, 80: Network, 90: External operation control unit, 120, 120A, 120B ...
  • towed truck 130 ... connecting member, 132, 142 ... connecting mechanism on the moving vehicle side, 134, 154: coupling mechanism on the towed truck side, 144: Automatic connection member 144a: Pin portion 153: Distance measuring sensor 160 ... pin, 162 ... guide, 164 ... spring, 170: traction member, 170a: hole of traction member, 172: restraining member, 174: link mechanism, 176: solenoid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

A travel system 1 for a mobile vehicle, comprising: a mobile vehicle 10 containing a main body unit 11, a travel unit 12 for traveling on the ground, a drive control unit 13 for controlling driving of the travel unit 12, and a marker detection unit 30; and a marker 40 arranged along a travel path 2a to be traveled by the mobile vehicle 10. The marker detection unit 30 has: an imaging means 31 for capturing an area below the main body unit; an image processing unit 32 for carrying out image processing on a photographic image captured by the imaging means 31 and thus detecting a marker 40; and a marker control unit 33 for, on the basis of the marker 40 detected by the image processing unit 32, outputting travel information 50 that has been preset in the marker 40 to the drive control unit 13. The marker 40 is configured from one or more markers aligned in a horizontal direction or vertical direction intersecting the travel path 2a, and the drive control unit 13 controls driving of the travel unit 12 on the basis of the travel information 50 from the marker control unit 33, thereby enabling the mobile vehicle 10 to travel autonomously along the travel path 2a indicated by the marker 40.

Description

移動車両の走行システムTraveling system for mobile vehicles
 本発明は、例えば工場や倉庫等において無人の移動車両を自律走行させる移動車両の走行システムに関するものである。 The present invention relates to a traveling system of a moving vehicle that allows an unmanned moving vehicle to autonomously travel in, for example, a factory or a warehouse.
 移動体の自律航法と呼ばれる技術は、古くから航空機や船舶等で実用化されており、近年では自動車やドローン等でも実現されている。このような移動体は、それぞれ移動環境に対応して種々のセンサを組み合わせて使用することにより周囲の状況を把握する必要があり、そのためには適切なセンサを使用しなければならない。各種センサの低価格化、高性能化も進んでおり、GPS,ジャイロセンサ,カメラ等が大いに利用されている。特に、レーザーを用いた測距センサは、周囲の対象物までの距離を高精度で測定でき、360度の範囲で三次元データとして対象物を検出することが可能である。 技術 A technology called autonomous navigation of mobile objects has been practically used for aircraft and ships since ancient times, and has recently been realized for automobiles and drones. In such a moving object, it is necessary to grasp the surrounding situation by using various sensors in combination according to the moving environment, and for that purpose, an appropriate sensor must be used. The cost and performance of various sensors have also been reduced, and GPS, gyro sensors, cameras, and the like are widely used. In particular, a distance measuring sensor using a laser can measure a distance to a surrounding object with high accuracy, and can detect the object as three-dimensional data in a range of 360 degrees.
 これに対して、例えば工場や倉庫等で使用される積載重量が1トン程度の台車やゴルフカート,遊園地の乗り物等のように、私有地や関係者以外の立入りが制限される環境での移動体の運用においては、走行路に沿って白線や磁気テープ(特許文献1参照),ポイント,レール等を敷設し、これらで構成されるラインに沿って走行する(ライントレース)ことによって所定箇所から所定箇所まで移動させることも実用化されている。特に、走行路に沿って白線を敷設して白線に沿って自律走行させる場合、白線を容易に且つ低コストで敷設しなければならない。 On the other hand, moving in an environment where access to private land or anyone other than those involved is restricted, such as a truck or golf cart having a loading weight of about 1 ton used in a factory or a warehouse, or a vehicle in an amusement park. In the operation of the body, a white line, a magnetic tape (see Patent Document 1), points, rails, and the like are laid along a traveling path, and the vehicle travels along a line composed of these (line trace) to start from a predetermined position. Movement to a predetermined location has also been put to practical use. In particular, when laying a white line along a traveling path and autonomously traveling along the white line, the white line must be laid easily and at low cost.
 このような閉鎖的領域での自律走行においても、近年ではレーザー測距センサを用いた全周囲の計測により、白線やレール等がなくても自律走行による移動が実現されている。この場合、レーザー測距センサの検出信号、所謂SLAM技術(Simultaneously Localization and Mapping:自己位置推定と地図作成を同時に行う)を用いて、レーザー測距センサにより前もって作成された周囲マップと、自律走行時の計測データを照合して、移動体の自己位置を認識すると同時に、前もって作成された周囲マップから目標地点へのルートを計算して、移動体が目標地点まで自律走行する。 In recent years, even in autonomous driving in such a closed area, movement by autonomous driving has been realized without a white line, rail, or the like by measuring the entire circumference using a laser distance measuring sensor. In this case, using a detection signal of the laser ranging sensor, a so-called SLAM technique (simultaneously localization and mapping: simultaneously performing self-position estimation and map creation), a surrounding map created in advance by the laser ranging sensor and a self-driving state. The self-position of the moving body is recognized by comparing the measurement data of the moving object, and at the same time, the route to the target point is calculated from the previously created surrounding map, and the moving body autonomously travels to the target point.
特開平10-124144号公報JP-A-10-124144
 しかしながら、上述の走行路に敷設した白線を使用する自律走行において、走行路を変更する場合には白線を敷設し直す必要があることから、手間がかかり走行路を頻繁に変更することは困難である。また、走行路に沿って敷設した白線は、汚れたり剥離したりするので、走行路全体に亘って白線のメンテナンスが必要になる。 However, in the autonomous traveling using the white line laid on the above-described travel path, when changing the travel path, it is necessary to lay the white line again, so it is troublesome and it is difficult to frequently change the travel path. is there. Further, the white line laid along the traveling path becomes dirty or peels off, so that maintenance of the white line is required over the entire traveling path.
 レーザー測距センサを用いて周囲の対象物を検出する方式は、周囲の対象物が高精度で検出できるものの、レーザー測距センサ自体が一般に数十万円から数百万円するため、初期投資が著しく増大する。また、前もって作成された周囲マップとの照合が必要で、周囲環境が頻繁に変化する工場や倉庫等で使用するには、周囲マップを頻繁に更新する必要があり、運用面での作業が面倒である。他のセンサ、例えばGPSや無線強度による自己位置推定等で補完することも可能であるが、一般に工場や倉庫等の室内ではGPS利用は期待できない。無線強度による自己位置推定では、前もって複数個の無線送信機を設置するので設備コストが高くなる。また、ジャイロセンサやカメラを用いて、周囲マップの欠如を補完しながら自律走行する方法も、周囲マップとの照合が前提となるため、非常に狭い範囲でしか周囲マップの補完ができず、その利用は限定的になる。 The method of detecting surrounding objects using a laser ranging sensor can detect surrounding objects with high accuracy, but the laser ranging sensor itself generally costs several hundred thousand to several million yen, so initial investment is Significantly increase. In addition, it is necessary to collate with the surrounding map created in advance, and to use it in factories and warehouses where the surrounding environment changes frequently, the surrounding map needs to be updated frequently, which makes the operation work cumbersome. It is. It is also possible to supplement with other sensors, for example, self-position estimation based on GPS or wireless strength, but in general, GPS cannot be expected in a room such as a factory or a warehouse. In self-position estimation based on wireless strength, equipment costs increase because a plurality of wireless transmitters are installed in advance. Also, the method of autonomous driving using a gyro sensor or camera while complementing the lack of the surrounding map is based on the assumption that the surrounding map is collated, so the surrounding map can be complemented only in a very narrow range. Usage will be limited.
 本発明は以上の点に鑑み、簡単な構成により低コストで移動車両が自律走行できる移動車両の走行システムを提供することを第1の目的とし、必要に応じて又は任意で、ネットワークを介して移動車両の走行路を任意に変更できる移動車両の走行システムを提供することを第2の目的としている。 In view of the above, it is a first object of the present invention to provide a traveling system for a mobile vehicle that can autonomously travel at low cost with a simple configuration, and if necessary or optionally, via a network. It is a second object of the present invention to provide a traveling system for a mobile vehicle that can arbitrarily change the travel path of the mobile vehicle.
 上記第1の目的を達成するため、本発明による移動車両の走行システムは、
 本体部と地上を走行するための走行部と走行部を駆動制御する駆動制御部とマーカー検出部とを含む移動車両と、移動車両が走行すべき走行路に沿って配置されたマーカーと、を備えており、
 マーカー検出部が、本体部の下方を撮像する撮像手段と、撮像手段で撮像された撮像画面を画像処理して前記マーカーを検出する画像処理部と、画像処理部で検出されたマーカーに基づいて当該マーカーに前もって設定された走行情報を駆動制御部に出力するマーカー制御部と、を有し、
 マーカーが、走行路を横切るように横方向に及び/又は走行路に沿って縦方向に並んだ少なくとも1個以上のマークを有し、駆動制御部が、マーカー制御部からの走行情報に基づいて走行部を駆動制御することにより、移動車両がマーカーにより指定された走行路に沿って自律走行するよう構成されている。
In order to achieve the first object, a traveling system for a moving vehicle according to the present invention includes:
A traveling vehicle including a main body and a traveling unit for traveling on the ground, a drive control unit that drives and controls the traveling unit, and a marker detection unit, and a marker disposed along a traveling path on which the traveling vehicle is to travel, Equipped,
A marker detection unit configured to capture an image of the lower part of the main body unit, an image processing unit that performs image processing on an imaging screen imaged by the imaging unit to detect the marker, and a marker that is detected by the image processing unit. And a marker control unit that outputs driving information set in advance to the marker to the drive control unit,
The marker has at least one or more marks arranged laterally across the travel path and / or in a vertical direction along the travel path, and the drive control unit is configured to perform the operation based on the travel information from the marker control unit. By controlling the driving of the traveling unit, the moving vehicle is configured to travel autonomously along the traveling path specified by the marker.
 上記構成によれば、移動車両のマーカー検出部が走行路に沿って配置されたマーカーを検出し、制御部が検出したマーカーに設定された走行情報を駆動制御部に出力し、駆動制御部がこの走行情報に基づいて走行部を駆動制御することで、移動車両は、マーカーにより指定された走行路に沿って自律走行する。マーカーは、移動車両が走行する領域において所定の間隔をあけた地点に配置すればよいので、従来のように走行路の全長に亘って白線等を設ける必要がない。走行路を変更する場合には、変更部分のみにマーカーを新設,交換又は排除すればよく、さらに、マーカーが走行路を横切るように横方向又は縦方向に1個以上設定されるので、移動車両が走行路に対して左右に多少ずれて走行しても、いずれかのマークを検出することが可能である。 According to the above configuration, the marker detection unit of the moving vehicle detects the marker arranged along the traveling path, outputs the traveling information set to the marker detected by the control unit to the drive control unit, and the drive control unit By controlling the driving of the traveling unit based on the traveling information, the moving vehicle travels autonomously along the traveling path specified by the marker. Since the markers may be arranged at predetermined intervals in a region where the moving vehicle travels, there is no need to provide a white line or the like over the entire length of the traveling path as in the related art. When changing the traveling path, it is only necessary to newly install, replace, or eliminate the marker only in the changed portion, and since one or more markers are set in the horizontal or vertical direction so as to cross the traveling path, the moving vehicle Can be detected even if the vehicle travels slightly shifted left and right with respect to the travel path.
 上記第2の目的を達成するため、本発明による移動車両の走行システムは、
 本体部と地上を走行するための走行部と走行部を駆動制御する駆動制御部とマーカー検出部とを含む移動車両と、
 移動車両が走行すべき走行路に沿って配置されたマーカーと、
 移動車両に接続されるネットワークと、
 ネットワークに接続される移動車両の外部運転制御部と、を備え、
 マーカー検出部が、本体部の下方を撮像するための撮像手段と、撮像手段で撮像された撮像画面を画像処理してマーカーを検出する画像処理部と、画像処理部で検出されたマーカーに基づいて当該マーカーに前もって設定された走行情報を駆動制御部に出力するマーカー制御部と、を有し、
 駆動制御部が、マーカー制御部からの走行情報に基づいて走行部を駆動制御して移動車両がマーカーにより指定された走行路に沿って自律走行し、外部運転制御部が、必要に応じて、ネットワークを介して前記マーカーにおける走行情報を変更することにより移動車両の走行路を任意に変更できるよう構成されている。外部運転制御部を備えていると、必要に応じて又は任意にネットワークを介してマーカーにおける走行情報を変更して、移動車両の走行路を任意に変更できる。走行路を変更する場合には、変更部分のみに関して外部運転制御部が走行路を変更するか、又は、マーカーを新設,交換又は排除すればよい。マーカー自体の汚損,破損や剥離の際には、当該マーカーのみを交換すればよい。
In order to achieve the second object, a traveling system for a moving vehicle according to the present invention includes:
A traveling vehicle including a main body, a traveling unit for traveling on the ground, a drive control unit that drives and controls the traveling unit, and a marker detection unit,
A marker arranged along the travel path on which the mobile vehicle should travel,
A network connected to the moving vehicle,
An external driving control unit of the mobile vehicle connected to the network,
A marker detection unit configured to capture an image of a lower portion of the main body unit, an image processing unit that performs image processing on an image captured by the imaging unit to detect a marker, and a marker detection unit that detects the marker based on the marker detected by the image processing unit. And a marker control unit that outputs driving information set in advance to the marker to the drive control unit,
The drive control unit drives and controls the traveling unit based on the traveling information from the marker control unit, and the moving vehicle autonomously travels along the traveling path designated by the marker. The travel route of the moving vehicle can be arbitrarily changed by changing travel information at the marker via a network. If an external operation control unit is provided, the travel route of the moving vehicle can be arbitrarily changed as necessary or arbitrarily by changing the travel information at the marker via the network. When changing the travel path, the external operation control unit may change the travel path only for the changed portion, or a new, replaced, or eliminated marker may be used. When the marker itself is soiled, damaged or peeled, only the marker needs to be replaced.
 マーカーに、走行路を横切るように横方向に及び/又は走行路に沿って縦方向に1個以上のマークが並んで配置されていると、移動車両がマーカーの上を通過する際に、例えば一列目のマークを検出できなかった場合に、移動車両の走行に伴って走行方向に並んだ次の列のマークを検出することができる。移動車両がさらに、走行部の車輪回転センサと本体部に取り付けられた慣性計測ユニットとを備える場合は、駆動制御部が、車輪回転センサの検出信号から移動距離を算出すると共に、慣性計測ユニットの検出信号から搬送台車の進行方向の角度のずれを検出し、移動距離及び角度を補正して補正した移動距離及び角度に基づいて走行部を駆動制御する。よって、走行部の車輪がすべって空転したときなどでも車輪回転センサによる移動距離や角度のずれを補正して、正しい移動距離や進行方向の角度が得られる。画像処理部が各マークの並んだ方向を検出し、マーカー制御部が、この方向に基づいて実際の走行方向のずれを検出して走行情報を修正することで、移動車両が正確に走行路に沿って移動走行する。マーカーを構成する各マークに配置位置情報が設定され、マーカー検出部による撮像画面の中央付近に位置するマークに基づいて、マーカー制御部がその配置位置情報から当該移動車両の走行路における横方向のずれを検出して走行情報を修正することで、移動車両が正確に走行路に沿って移動走行する。各マークに、直進,Uターン,左旋回,右旋回及び停止の走行情報が設定されていると、移動車両は、直進,Uターン,左旋回,右旋回、停止、弧状の左旋回、弧状の右旋回の何れか又はこれらの一つ以上を組み合わせた自律走行ができる。さらに、操作時に非常停止信号を出力する非常停止操作部を備えていると、移動車両は非常停止信号に基づいてマーカーによる自律走行を中断して非常停止する。従って、移動車両が走行路を外れてしまった場合や障害物に衝突しそうになった場合は、操作者が非常停止操作部を操作することによって衝突事故が未然に防止される。本体部が、ビーコン検出部を備え、マーカーが前方の追従すべきビーコンへの追従モード切替えの走行情報に関連付けられているとき、マーカーによる自律走行を中断して、移動車両がビーコンの移動に追従して走行する。 When one or more marks are arranged on the marker in a horizontal direction across the travel path and / or in a vertical direction along the travel path, when the moving vehicle passes over the marker, for example, When the marks in the first row cannot be detected, the marks in the next row arranged in the traveling direction along with the traveling of the moving vehicle can be detected. When the moving vehicle further includes a wheel rotation sensor of the traveling unit and an inertial measurement unit attached to the main body, the drive control unit calculates a moving distance from a detection signal of the wheel rotation sensor, and calculates a moving distance of the inertial measurement unit. The deviation of the angle in the traveling direction of the transport vehicle is detected from the detection signal, and the traveling distance and the angle are corrected. Therefore, even when the wheels of the traveling unit slip and slip, the deviation of the moving distance and the angle by the wheel rotation sensor is corrected, and the correct moving distance and the angle of the traveling direction can be obtained. The image processing unit detects the direction in which the marks are lined up, and the marker control unit detects the deviation in the actual traveling direction based on this direction and corrects the traveling information, so that the moving vehicle can accurately move to the traveling path. Travel along. Arrangement position information is set for each mark constituting the marker, and based on the mark located in the vicinity of the center of the imaging screen by the marker detection unit, the marker control unit uses the arrangement position information to determine the position of the moving vehicle in the horizontal direction on the travel path. By detecting the deviation and correcting the traveling information, the traveling vehicle travels accurately along the traveling path. If the travel information of straight ahead, U-turn, left turn, right turn, and stop is set in each mark, the moving vehicle can go straight, U-turn, left turn, right turn, stop, arc left turn, Autonomous traveling can be performed by any one of the arc-shaped right turns or a combination of one or more of them. Furthermore, if an emergency stop operation unit that outputs an emergency stop signal at the time of operation is provided, the moving vehicle stops the autonomous traveling by the marker based on the emergency stop signal and makes an emergency stop. Therefore, when the moving vehicle has deviated from the traveling path or is about to collide with an obstacle, the collision accident is prevented beforehand by the operator operating the emergency stop operation unit. The main unit has a beacon detection unit, and when the marker is associated with the traveling information of the following mode switching to the beacon to follow ahead, the autonomous traveling by the marker is interrupted, and the moving vehicle follows the movement of the beacon. And run.
 移動車両の本体部が平坦な載置台を備えた搬送台車として構成され、さらに、被牽引台車を牽引するための連結機構が備えられていると、被牽引台車を牽引して搬送すべき商品等の重量を増大できる。 If the main body of the moving vehicle is configured as a transport trolley equipped with a flat mounting table, and further provided with a coupling mechanism for towing the towed trolley, goods to be transported by towing the towed trolley Weight can be increased.
 本発明によれば、簡単な構成で低コストで移動車両が自律走行でき、さらに、必要に応じて、ネットワークを介して移動車両の走行路を任意に変更できる、極めて優れた移動車両の走行システムを提供することができる。さらに、本発明の移動車両の走行システムによれば、例えば、坂道を壁と検知するレーザー測距(SLAM)システムを用いた自律走行システムや段差や凹凸のある路面では使用できないライントレース方式の自律走行システムに対して、走行路上に点状又は線状に配置されるマーカーとマーカーとの間を自律走行するので、途中の路面がどういう状況であっても、自律走行を継続できる移動車両の走行システムを提供することができる。 ADVANTAGE OF THE INVENTION According to the present invention, an extremely excellent traveling system for a mobile vehicle, in which the mobile vehicle can autonomously travel at a low cost with a simple configuration and, further, the travel path of the mobile vehicle can be arbitrarily changed via a network as needed. Can be provided. Further, according to the traveling system for a mobile vehicle of the present invention, for example, an autonomous traveling system using a laser ranging (SLAM) system that detects a slope on a wall or an autonomous line tracing method that cannot be used on a road surface having steps or irregularities. The vehicle travels autonomously between the markers arranged in a point or line on the traveling road with respect to the traveling system, so that the traveling of the moving vehicle can continue the autonomous traveling regardless of the condition of the road surface in the middle. A system can be provided.
本発明による移動車両として搬送台車の走行システムの一実施形態を示す概略部分平面図である。1 is a schematic partial plan view showing an embodiment of a traveling system of a transport trolley as a moving vehicle according to the present invention. 図1に示す搬送台車において、(A)は概略斜視図、(B)は平面図、(C)は側面図、(D)は操作部の拡大平面図である。1A is a schematic perspective view, FIG. 1B is a plan view, FIG. 1C is a side view, and FIG. 1D is an enlarged plan view of an operation unit. 図2の搬送台車を示す底面図である。FIG. 3 is a bottom view showing the transport vehicle of FIG. 2. 図2の搬送台車の内部構成を示すブロック図である。FIG. 3 is a block diagram illustrating an internal configuration of the transport vehicle of FIG. 2. 図1におけるマーカーの構成を示す図である。FIG. 2 is a diagram illustrating a configuration of a marker in FIG. 1. 図2の搬送台車におけるマーカー検出部のカメラを示す概略図である。FIG. 3 is a schematic diagram illustrating a camera of a marker detection unit in the transport vehicle in FIG. 2. 直進を表すマーカーによる搬送台車の走行状態を示し、(A)は幅方向のずれがある場合、(B)は走行方向のずれ及び幅方向のずれがある場合の説明図である。It is an explanatory view showing a traveling state of a transport cart by a marker indicating straight traveling, in which (A) shows a case where there is a displacement in the width direction, and (B) shows a case where there is a displacement in the traveling direction and a displacement in the width direction. 左折を表すマーカーによる搬送台車の走行状態を示し、(A)は幅方向のずれがある場合、(B)は走行方向のずれ及び幅方向のずれがある場合の説明図である。It is an explanatory view showing a traveling state of a transport carriage by a marker indicating a left turn, where (A) shows a case where there is a shift in the width direction, and (B) is an explanatory diagram showing a case where there is a shift in the running direction and a width direction. 停止を表すマーカーによる搬送台車の走行状態を示し、(A)は幅方向のずれがある場合、(B)は走行方向のずれ及び幅方向のずれがある場合の説明図である。It is an explanatory view showing a traveling state of a transport carriage by a marker indicating stop, in which (A) shows a case where there is a displacement in the width direction, and (B) is an explanatory diagram showing a case where there is a displacement in the traveling direction and a displacement in the width direction. 進入禁止を表すマーカーによる搬送台車の走行状態を示し、(A)は幅方向のずれがある場合、(B)は走行方向のずれ及び幅方向のずれがある場合の説明図である。It is an explanatory view showing a traveling state of a conveyance trolley by a marker indicating entry prohibition, where (A) shows a case where there is a displacement in the width direction, and (B) is an explanatory diagram showing a case where there is a displacement in the traveling direction and a displacement in the width direction. Uターンを表すマーカーによる搬送台車の走行状態を示し、(A)は幅方向のずれがある場合、(B)は走行方向のずれ及び幅方向のずれがある場合の説明図である。It is an explanatory view showing a traveling state of a transport cart by a marker representing a U-turn, where (A) shows a case where there is a shift in the width direction, and (B) is an explanatory view showing a case where there is a shift in the running direction and a width direction. 追従モード切替えを表すマーカーによる搬送台車の走行状態を示し、(A)は幅方向のずれがある場合、(B)は走行方向のずれ及び幅方向のずれがある場合の説明図である。It is an explanatory view showing a running state of a conveyance trolley by a marker indicating a following mode switching, in which (A) shows a case where there is a shift in the width direction, and (B) is an explanatory diagram showing a case where there is a shift in the running direction and a width direction. 携帯型ビーコンによる停止の状態を示し、(A)は幅方向のずれがある場合、(B)は走行方向のずれ及び幅方向のずれがある場合の説明図である。FIG. 7A is a diagram illustrating a state in which the portable beacon is stopped. FIG. 7A is a diagram illustrating a case in which there is a shift in the width direction, and FIG. マーカー検出部のマーカー制御部による自律走行の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the autonomous driving | running by the marker control part of a marker detection part. マーカーによる自律走行の具体例を示す説明図である。It is explanatory drawing which shows the specific example of the autonomous driving | operation by a marker. 第2の実施形態を示す概略部分平面図である。It is an outline partial plan view showing a 2nd embodiment. 第3の実施形態を示す概略部分平面図である。It is an outline partial plan view showing a 3rd embodiment. 搬送台車と被牽引台車との接続を示す概略側面図である。It is a schematic side view which shows the connection of a conveyance trolley and a towed trolley. 図17において、弧状の左旋回を表すマーカーによる搬送台車の走行状態を示す説明図である。FIG. 17 is an explanatory diagram showing a traveling state of the transport trolley by a marker indicating an arc-shaped left turn in FIG. 17. 第3の実施形態の変形例1に係る移動車両の走行システムにおいて、搬送台車と被牽引台車との接続を示す概略側面図である。FIG. 13 is a schematic side view showing a connection between a transport vehicle and a towed vehicle in a traveling system of a mobile vehicle according to a first modification of the third embodiment. 図20の搬送台車の底面図である。FIG. 21 is a bottom view of the transport cart of FIG. 20. 搬送台車の内部構成を示すブロック図である。FIG. 3 is a block diagram illustrating an internal configuration of a transport vehicle. 第3の実施形態の変形例2に係る移動車両の走行システムにおいて、搬送台車と被牽引台車との接続の際の位置関係を示し、(a)は概略平面図、(b)は概略側面図である。In the traveling system of the mobile vehicle according to the second modification of the third embodiment, the positional relationship between the carrier and the towed vehicle is shown, (a) is a schematic plan view, and (b) is a schematic side view. It is. 搬送台車と被牽引台車との接続関係を示し、(a)は概略平面図、(b)は概略側面図である。FIG. 3A is a schematic plan view, and FIG. 3B is a schematic side view, illustrating a connection relationship between a transport vehicle and a towed vehicle. 図24(a)のA-A線に沿った搬送台車の牽引部材及び拘束部材の断面図を示し、(a)は接続前1の状態、(b)は接続前2の状態、(c)は接続時の状態、(d)は離脱時の状態である。FIG. 24A is a cross-sectional view of the traction member and the restraint member of the transport vehicle along the line AA in FIG. 24A, where FIG. 24A is a state before connection 1, FIG. 24B is a state before connection 2, and FIG. Is a state at the time of connection, and (d) is a state at the time of disconnection.
 以下、図面に示した実施形態に基づいて本発明を詳細に説明する。
(第1の実施形態)
 図1-図4は、本発明による移動車両として第1の実施形態に係る搬送台車の走行システムを示す。図1において、搬送台車の走行システム1は、搬送台車10と、搬送台車10の走行エリア2に配置されたマーカー40(後述)と、から構成されている。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
(1st Embodiment)
FIGS. 1 to 4 show a traveling system of a transport vehicle according to a first embodiment as a moving vehicle according to the present invention. In FIG. 1, a traveling system 1 of a transport vehicle includes a transport vehicle 10 and a marker 40 (described later) arranged in a travel area 2 of the transport vehicle 10.
 搬送台車10は、本体部11と、本体部11の下部に設けられた走行部12と、駆動制御部13と、ビーコン検出部20と、マーカー検出部30と、CPU部36と、を含む。CPU部36は、電子計算機のチップを搭載したCPU(Central Processing Unit)と、CPUに接続される各種のセンサ、つまり、後述する距離センサ23やマーカー検出部30等のインターフェース回路、後述するネットワーク80に接続される送受信機を含む通信部、外部メモリ等から構成される。CPU36としては、MPU(Micro Processing Unit)、ECU(Engine ControlUnit)やFPGA(Field Programmable Gate Array)等が使用できる。搬送台車10の主スイッチ37は、CPU部36によりオンやオフされてもよい。 The transport vehicle 10 includes a main body 11, a traveling section 12 provided below the main body 11, a drive control section 13, a beacon detection section 20, a marker detection section 30, and a CPU section 36. The CPU unit 36 includes a CPU (Central Processing Unit) on which a chip of an electronic computer is mounted, and various sensors connected to the CPU, that is, an interface circuit such as a distance sensor 23 and a marker detection unit 30 described later, and a network 80 described later. And a communication unit including a transceiver connected to the external memory, an external memory, and the like. As the CPU 36, an MPU (Micro Processing Unit), an ECU (Engine Control Unit), an FPGA (Field Programmable Gate Array), or the like can be used. The main switch 37 of the carrier 10 may be turned on or off by the CPU unit 36.
 本体部11は、例えばその外形が偏平な直方体状に形成され、その上面が平坦な載置台11aとして形成されると共に、その後端から上方に伸びるハンドル11bを備える。走行部12は、図2(B)、図3に示すように、本体部11の下面にて、その前方(図2(B)にて矢印で示す方向)の両側に配置された一対の車輪15と、各車輪15をそれぞれ駆動する減速機構16aを備えたモータ16と、その後方の両側に配置された一対のキャスター17と、から構成される。各駆動モータ16が後述する駆動制御部13により駆動制御されることで各車輪15が回転駆動され、搬送台車10が前進,後退又は左右に転回して所定の方向に走行する。走行部12は、車輪15に限らず、例えば無限軌道等の他の駆動手段により構成されていてもよい。各車輪15には、それぞれその回転数を検出する車輪回転センサ15aが設けられている。 The main body 11 has, for example, a flat rectangular parallelepiped outer shape, an upper surface formed as a flat mounting table 11a, and a handle 11b extending upward from the rear end. As shown in FIGS. 2 (B) and 3, the traveling portion 12 has a pair of wheels disposed on the lower surface of the main body 11 on both sides in front (in the direction indicated by the arrow in FIG. 2 (B)). 15, a motor 16 having a speed reduction mechanism 16 a for driving each wheel 15, and a pair of casters 17 disposed on both sides behind the motor 16. Each drive motor 16 is driven and controlled by a drive control unit 13 to be described later, so that each wheel 15 is rotationally driven, and the carrier 10 travels in a predetermined direction by moving forward, backward, or left and right. The traveling unit 12 is not limited to the wheels 15 and may be configured by other driving means such as an endless track. Each wheel 15 is provided with a wheel rotation sensor 15a for detecting the number of rotations.
 駆動制御部13は、本体部11内に配置されている。駆動制御部13及び各モータ16への給電は、本体部11の下面中央付近に配置された電源13aから行なわれる。電源13aは、電池や充電可能な二次電池、例えばリチウム二次電池を使用できる。駆動制御部13は、本体部11に設けられたビーコン検出部20又はマーカー検出部30からの後述する走行情報に基づいて、走行部12の各駆動モータ16をそれぞれ駆動制御することにより、車輪15をそれぞれ独立的に駆動して、前進,後退,左右転回等の走行を行なわせる。駆動制御部13は、距離センサ23とは別に、図示しない障害物センサからの情報に基づいて、障害物を検出した場合には走行部12を停止させてもよい。障害物センサは、搬送台車10を障害物に対して衝突前に停止させるための目的で設けてあり、搬送台車10の周囲、進行方向を監視できればよい。障害物センサは、例えば、レーザレーダーやミリ波レーダー等を使用できる。レーザレーダーは、レーザー画像検出とTOF(Time Of Flight)方式による測距を行うセンサである。二次元や三次元のセンサが使用できる。センサとして、搬送台車10の加速度や角加速度を測定するための二軸又は三軸加速度センサあるいはジャイロセンサを利用した慣性計測ユニット18が備えられる。この慣性計測ユニット18は、IMUとも呼ばれる。さらに、駆動制御部13は、各車輪15の回転数をそれぞれ検出する二つの車輪回転センサ15aから入力される検出信号に基づいて、搬送台車10の移動距離を算出すると共に、慣性計測ユニット18から入力される検出信号18aを参照して、搬送台車10の進行方向のずれ、つまり角度のずれを検出する。これにより駆動制御部13は、車輪15の滑り等による移動距離及び角度のずれを補正し補正した移動距離を算出すると共に、搬送台車10の進行方向の角度を修正することができる。駆動制御部13は、この補正した移動距離に基づいて、後述する走行情報50a,25bによる走行部12の駆動制御を行なう。駆動制御部13は、ハンドル11bの上部に取り付けられた操作部19により操作されてもよい。図2(D)に示すように、操作部19は、所謂シフトレバー19a,ジョイスティック19bと非常停止操作部としての非常停止スイッチ19cと、後述する主スイッチ37とを備える。シフトレバー19aは、例えばP(パーキング),N(ニュートラル),D(ドライブ),Fo(追従)の四つのモードを有する。ジョイスティック19bは、任意の方向に倒すことにより、種々の入力操作ができる。非常停止スイッチ19cは、操作時に非常停止信号19dをCPU部36に出力する。操作部19には、さらに速度切替えダイヤル19eを設けてもよい。シフトレバー19a及び速度切替えダイヤル19eは、モードの位置や速度を示す表示灯19f,19gをさらに備えてもよい。CPU部36は、非常停止信号19dが入力されたとき、この非常停止信号19dに基づいて、走行情報50aによる自律走行を中断して、非常停止の走行情報50bを生成して駆動制御部13に送出する。 The drive control unit 13 is disposed in the main body unit 11. Power is supplied to the drive control unit 13 and the motors 16 from a power supply 13 a disposed near the center of the lower surface of the main body 11. As the power supply 13a, a battery or a rechargeable secondary battery, for example, a lithium secondary battery can be used. The drive control unit 13 controls the driving of each drive motor 16 of the traveling unit 12 based on traveling information, which will be described later, from the beacon detection unit 20 or the marker detection unit 30 provided in the main body unit 11, thereby driving the wheels 15. Are independently driven to perform traveling such as forward, backward, right and left turning, and the like. The drive control unit 13 may stop the traveling unit 12 when detecting an obstacle based on information from an obstacle sensor (not shown) separately from the distance sensor 23. The obstacle sensor is provided for the purpose of stopping the transport vehicle 10 before colliding with the obstacle, and it is only necessary to monitor the periphery and the traveling direction of the transport vehicle 10. As the obstacle sensor, for example, a laser radar, a millimeter wave radar, or the like can be used. The laser radar is a sensor that performs laser image detection and distance measurement by TOF (Time $ Of Flight) method. Two-dimensional or three-dimensional sensors can be used. As a sensor, an inertial measurement unit 18 using a two-axis or three-axis acceleration sensor or a gyro sensor for measuring the acceleration or angular acceleration of the transport vehicle 10 is provided. This inertial measurement unit 18 is also called an IMU. Further, the drive control unit 13 calculates the moving distance of the transport trolley 10 based on the detection signals input from the two wheel rotation sensors 15a that respectively detect the rotation speeds of the respective wheels 15, and calculates the moving distance of the transport vehicle 10 from the inertia measurement unit 18. With reference to the input detection signal 18a, a shift in the traveling direction of the transport vehicle 10, that is, a shift in the angle is detected. Thereby, the drive control unit 13 can correct the shift of the moving distance and the angle due to the slippage of the wheel 15 and calculate the corrected moving distance, and can correct the angle of the transporting vehicle 10 in the traveling direction. The drive control unit 13 performs drive control of the traveling unit 12 based on traveling information 50a and 25b described later based on the corrected moving distance. The drive control unit 13 may be operated by the operation unit 19 attached to the upper part of the handle 11b. As shown in FIG. 2D, the operation unit 19 includes a so-called shift lever 19a, a joystick 19b, an emergency stop switch 19c as an emergency stop operation unit, and a main switch 37 described later. The shift lever 19a has four modes, for example, P (parking), N (neutral), D (drive), and Fo (follow). Various input operations can be performed by tilting the joystick 19b in any direction. The emergency stop switch 19c outputs an emergency stop signal 19d to the CPU unit 36 when operated. The operation unit 19 may further be provided with a speed switching dial 19e. The shift lever 19a and the speed switching dial 19e may further include indicator lights 19f and 19g indicating a mode position and a speed. When the emergency stop signal 19d is input, the CPU unit 36 suspends the autonomous travel based on the travel information 50a based on the emergency stop signal 19d, generates emergency stop travel information 50b, and sends the emergency stop travel information 50b to the drive control unit 13. Send out.
 ビーコン検出部20はそれ自体公知であって、例えば図2~図4に示すように、本体部11の前部に設けられ、一対の撮像手段としての赤外線カメラ21及び22と、距離センサ23と、ビーコン演算部24と、ビーコン処理部25と、ビーコン記憶部25a等から構成される。ビーコン演算部24と、ビーコン処理部25と、ビーコン記憶部25aの各動作は、CPU部36内に格納されたプログラムにより実行される。又、ビーコン記憶部25aは、CPU部36内の記憶装置又はCPU部36の外部に設けた記憶装置を使用することができる。各赤外線カメラ21及び22は、それぞれ本体部11の前方の追尾すべきビーコンBからの識別光を撮像するために本体部11の互いに横方向に離れてそれぞれ前方に向かって、例えば前端の左右両側にて前方に向かって配置される。即ち、各赤外線カメラ21及び22は、各光軸が互いにほぼ平行に、例えば上向きに傾斜して前方に延びるように配置される。各光軸の傾斜角度は、例えば光軸が前方1メートルで高さ50cm程度の位置を通るように、例えば傾斜角度10度から30度程度に設定される。各赤外線カメラ21,22は公知の赤外線ステレオカメラであって、撮像素子及びレンズ等の光学系から構成される。各赤外線カメラ21,22として、赤外線ステレオカメラを用いた場合には、ビーコンBまでの距離と角度を計測することが可能となる。撮像素子が入射する赤外線を検知することにより、太陽光等の外乱光の影響を低減することができ、夜間等の暗い場所においても、確実にビーコンBからの識別光を検出することが可能である。赤外光を検出する撮像素子としては、通常の撮像素子の入射側に赤外線のみを透過する光学フィルターを配置して構成してもよい。各赤外線カメラ21,22は、追尾すべきビーコンBを所定時間ごとに撮像して、撮像した撮像信号をビーコン演算部24に送出する。 The beacon detector 20 is known per se, and is provided at a front portion of the main body 11 as shown in FIGS. 2 to 4, for example, and includes infrared cameras 21 and 22 as a pair of imaging means, a distance sensor 23, , A beacon calculation unit 24, a beacon processing unit 25, a beacon storage unit 25a, and the like. Each operation of the beacon calculation unit 24, the beacon processing unit 25, and the beacon storage unit 25a is executed by a program stored in the CPU unit 36. The beacon storage unit 25a may use a storage device in the CPU unit 36 or a storage device provided outside the CPU unit 36. Each of the infrared cameras 21 and 22 is separated from each other in the lateral direction of the main body 11 toward the front to capture the identification light from the beacon B to be tracked in front of the main body 11, respectively, for example, on the left and right sides of the front end. Is arranged toward the front. That is, the infrared cameras 21 and 22 are arranged so that their optical axes are substantially parallel to each other, for example, are inclined upward and extend forward. The inclination angle of each optical axis is set to, for example, about 10 degrees to about 30 degrees so that the optical axis passes through a position about 1 cm in front and about 50 cm in height. Each of the infrared cameras 21 and 22 is a known infrared stereo camera, and includes an optical system such as an image sensor and a lens. When an infrared stereo camera is used as each of the infrared cameras 21 and 22, the distance and the angle to the beacon B can be measured. By detecting infrared light incident on the image sensor, the influence of disturbance light such as sunlight can be reduced, and the identification light from the beacon B can be reliably detected even in a dark place such as at night. is there. As an image sensor for detecting infrared light, an optical filter that transmits only infrared light may be arranged on the incident side of a normal image sensor. Each of the infrared cameras 21 and 22 captures an image of the beacon B to be tracked at predetermined time intervals, and sends the captured image signal to the beacon calculation unit 24.
 距離センサ23は、本体部11の前端のほぼ中央、さらには前端の左端及び右端にも設けられてもよく、前方に向かって配置され、走行路2a(図1)の前方にある障害物に対して超音波や赤外線を出射してその反射波を検出して、当該障害物までの距離を補助的に測定する。つまり、距離センサ23は、ビーコンBの追尾は行わずに、専ら走行路2aの前方にある障害物との距離を検出する。 The distance sensor 23 may be provided substantially at the center of the front end of the main body 11, and also at the left and right ends of the front end. The distance sensor 23 is disposed toward the front, and is disposed at an obstacle in front of the traveling path 2a (FIG. 1). On the other hand, an ultrasonic wave or an infrared ray is emitted to detect the reflected wave, and the distance to the obstacle is measured auxiliary. That is, the distance sensor 23 does not track the beacon B but exclusively detects the distance to an obstacle in front of the traveling path 2a.
 ビーコン演算部24は、各赤外線カメラ21,22からのビーコンBの撮像画面を画像処理することにより、所謂ステレオ視によるビーコンBの位置情報24a、即ち方向及び距離を算出して、ビーコン処理部25に送出する。ビーコン演算部24は、ビーコンBの撮像画面に関して、各赤外線カメラ21,22の光学系による歪み補正を行なうと共に、各赤外線カメラ21,22の本体部11への取付姿勢、即ちそれぞれの光軸の間の平行からのずれを修正して、撮像画面上における中心位置を修正する。ビーコン演算部24は、距離センサ23で測定されたビーコンまでの距離を参照することにより、ビーコンまでの距離をより正確に算出する。ビーコン演算部24は、赤外線カメラ21,22からの撮像画面の画像処理によりビーコンBの位置情報24aを算出できないときには、ビーコンBの位置情報24aを作成せず、ビーコン処理部25に送出しない。ビーコン処理部25は、ビーコン演算部24で算出されたビーコンBの位置情報24aを、本搬送台車10が走行すべき領域に関してマッピングしてビーコン記憶部25aに登録し、またCPU部36に送出すると共に、このビーコンBの位置情報24aに基づいて、そのときの追尾すべきビーコンBに対する方向及び距離から、搬送台車10をビーコンBに追従させるための速度及び方向(操舵角)から成る走行情報25bを生成する。ビーコン処理部25は、当該ビーコンBの位置情報24aと直前のビーコンBの位置情報24aとを比較することにより、ビーコンBと搬送台車10との相対速度及び距離の変化を算出して、ビーコンBに対する距離が所定範囲内に収まるように、走行情報25bに含まれる速度を決定する。走行情報25bは、左右の車輪15を駆動する駆動モータ16の回転速度を制御するための制御情報であって、左右の駆動モータ16を互いに異なる回転速度で制御することにより、その速度差により操舵角を実現する。ビーコン処理部25は、所定時間毎にビーコン演算部24から送られてくるビーコンBの位置情報24aを順次にマッピングしてビーコン記憶部25aに登録すると共に、ビーコン記憶部25aから順次にビーコンBの位置情報24aを読み出して、そのときのビーコンBに対する方向及び距離に基づいて、走行情報25bを生成して、駆動制御部13に送出する。ビーコン処理部25は、ビーコン演算部24からビーコンBの位置情報24aが送られてこないときには、既にビーコン記憶部25aに登録されているマッピングによるビーコンの位置情報24aに基づいて走行情報25bを生成して駆動制御部13に送出する。これにより、追尾すべきビーコンBが屈曲した経路を進行したり、左右に曲がる場合であっても、マッピングされたビーコンBの位置情報24aに基づいて確実に追尾を行なう。 The beacon calculation unit 24 calculates the position information 24a of the beacon B by the so-called stereo vision, that is, the direction and the distance by performing image processing on the imaging screen of the beacon B from each of the infrared cameras 21 and 22. To send to. The beacon calculation unit 24 corrects the distortion of the imaging screen of the beacon B by the optical system of each of the infrared cameras 21 and 22, and attaches each of the infrared cameras 21 and 22 to the main body unit 11, that is, the position of each optical axis. The deviation from the parallelism between them is corrected, and the center position on the imaging screen is corrected. The beacon calculation unit 24 calculates the distance to the beacon more accurately by referring to the distance to the beacon measured by the distance sensor 23. The beacon calculation unit 24 does not create the beacon B position information 24a and does not send it to the beacon processing unit 25 when the position information 24a of the beacon B cannot be calculated by the image processing of the imaging screen from the infrared cameras 21 and 22. The beacon processing unit 25 maps the position information 24a of the beacon B calculated by the beacon calculation unit 24 with respect to an area in which the transport vehicle 10 should travel, registers the position information 24a in the beacon storage unit 25a, and sends it to the CPU unit 36. At the same time, based on the position information 24a of the beacon B, based on the direction and the distance to the beacon B to be tracked at that time, traveling information 25b including a speed and a direction (steering angle) for causing the carrier 10 to follow the beacon B. Generate The beacon processing unit 25 calculates a change in the relative speed and distance between the beacon B and the transport vehicle 10 by comparing the position information 24a of the beacon B with the position information 24a of the immediately preceding beacon B. The speed included in the travel information 25b is determined so that the distance to the vehicle falls within a predetermined range. The travel information 25b is control information for controlling the rotation speed of the drive motor 16 that drives the left and right wheels 15, and the left and right drive motors 16 are controlled at different rotation speeds, whereby the steering is performed based on the speed difference. Realize the corner. The beacon processing unit 25 sequentially maps the position information 24a of the beacon B sent from the beacon operation unit 24 at predetermined time intervals and registers the position information 24a in the beacon storage unit 25a. The position information 24a is read out, and the travel information 25b is generated based on the direction and the distance to the beacon B at that time, and transmitted to the drive control unit 13. When the beacon processing unit 25 does not receive the beacon B position information 24a from the beacon calculation unit 24, the beacon processing unit 25 generates the travel information 25b based on the beacon position information 24a by mapping already registered in the beacon storage unit 25a. To the drive control unit 13. Accordingly, even when the beacon B to be tracked advances along a curved path or turns left and right, tracking is reliably performed based on the mapped position information 24a of the beacon B.
 本実施形態における搬送台車の走行システム1は、走行エリア2に配置されたマーカー40と、このマーカー40を検出するためにマーカー検出部30を備える。マーカー40は、少なくとも1個のマークを有し、このマークは走行路2aを横切るように横方向に及び/又は走行路2aに沿って縦方向に、好ましくは複数個で構成される。マーカー40に複数個のマークを付す場合は、マーカーは1本の帯状に構成されるのが好ましい。
 マーカー40は、走行路2aに沿って縦方向に、複数個のマークを線状に連続的に付して、1本以上で配置してもよい。この場合、マーカー40は、走行路2aに沿って進行方向に所定の間隔で複数本配置するか、又は連続的に1本を配置してもよい。
 マーカー40は帯状に形成されることが好ましく、横方向に及び/又は縦方向に並んだ複数個のマークがこの帯状のマーカーに付される。マークは、同じマークでも異なるマークであってもよい。例えば、帯状のマーカー40が走行路2aを横切るように配置されている場合、この帯状の1本のマーカーに横方向に1列に複数個の同一のマーク又は異なるマークを配置してもよい。図5に示すように、1本のマーカー40に2列以上を配置して、列毎に複数個の同一のマーク又は異なるマークを配置してもよい。
 マーカー40を走行路2aに沿って縦方向に複数本併置してもよい。帯状のマーカー40に付された複数個のマークは、上記のように、同一のマーク又は異なるマークから構成されてもよい。例えば2本のマーカー40を走行路2aの進行方向中央で併置してもよく、或いは、通路の左右に間隔をあけて併置してもよい。また、横方向の中央のマーカー40を第1のマーカーとするとその両側にさらに第2、第3のマーカー40を併置してもよい。これらの場合も、マーカー毎に同じマークを付しても異なるマークを付してもよい。
The traveling system 1 of the transport vehicle in the present embodiment includes a marker 40 arranged in the traveling area 2 and a marker detecting unit 30 for detecting the marker 40. The marker 40 has at least one mark, which is composed of a plurality of marks, preferably transversely across the track 2a and / or longitudinally along the track 2a. When a plurality of marks are provided on the marker 40, the marker is preferably configured in a single band.
The markers 40 may be arranged in one or more lines by continuously attaching a plurality of marks in a longitudinal direction along the traveling path 2a. In this case, a plurality of markers 40 may be arranged at predetermined intervals in the traveling direction along the traveling path 2a, or one marker may be arranged continuously.
The marker 40 is preferably formed in a band shape, and a plurality of marks arranged in a horizontal direction and / or a vertical direction are attached to the band-shaped marker. The marks may be the same mark or different marks. For example, when the band-shaped markers 40 are arranged so as to cross the traveling path 2a, a plurality of the same marks or different marks may be arranged in one line in the horizontal direction on one band-shaped marker. As shown in FIG. 5, two or more rows may be arranged on one marker 40, and a plurality of the same marks or different marks may be arranged for each row.
A plurality of markers 40 may be juxtaposed in the vertical direction along the traveling path 2a. The plurality of marks attached to the band-shaped marker 40 may be composed of the same mark or different marks as described above. For example, two markers 40 may be juxtaposed at the center of the traveling path 2a in the traveling direction, or may be juxtaposed at an interval on the left and right sides of the passage. Further, if the marker 40 at the center in the horizontal direction is the first marker, the second and third markers 40 may be further arranged on both sides thereof. Also in these cases, the same mark or different marks may be provided for each marker.
 図5は図1のマーカーの構成の一例を示す。マーカー40は、走行方向を横切って1本の帯状に構成され、帯状の1本のマーカーに、図において上下に2列でそれぞれ9個並んでマークが付されている。すなわち、マーカー40は、搬送台車10の走行方向(矢印図示)に対して手前側の第一列の9個のマーク41と、後方の第二列の9個のマーク42とから構成される。第一列のマーク41は、左方から順に、41a,41b,41c,41d,41e,41f,41g,41h,41iであり、各マーク41a~41iを、a行からi行と呼ぶ。第二列のマーク42は、同様に左方から順に、42a,42b,42c,42d,42e,42f,42g,42h,42iである。各マーク42a~41iも同様にa行からi行と呼ぶ。マーカー40の行方向は、順にマーク41の意味する記号として、例えば数字や文字を異ならせても良い。列方向(横方向)に記号の異なる複数のマーク41を配置した場合には、横方向の左側から右側の記号が後述する配置位置情報51を有している。マーカー40を検知した時の搬送台車10は、マーク41の配置位置情報51によりの横方向のずれを検知する。又、走行方向に手前から後方側に複数のマーカー40を配列する場合、同じ数字や同じ文字を並べると、進行方向の速度が上がった時にマーカー40の配置位置情報51のデータ取得の失敗やエラーを無くすことができる。
 マーカー40を、走行路2aに沿って縦方向に配置する場合は、横方向のずれを検知するために走行路2aを横切るように横方向にもマーカー40を設けてもよい。また、マーカー40を走行路2aに沿って中央及び左右に配置する場合には、左右に配設されるマーカー40を構成するマークに横方向に関する配置位置情報51を設定してもよい。
FIG. 5 shows an example of the configuration of the marker in FIG. The markers 40 are formed in a single band across the traveling direction, and the single band-shaped markers are marked with nine marks arranged in two rows vertically in the figure. That is, the marker 40 is composed of nine marks 41 in the first row on the near side with respect to the traveling direction (illustrated by the arrow) of the carriage 10 and nine marks 42 in the second row on the rear side. The marks 41 in the first column are, in order from the left, 41a, 41b, 41c, 41d, 41e, 41f, 41g, 41h, 41i, and the marks 41a to 41i are referred to as rows a to i. Similarly, the marks 42 in the second row are 42a, 42b, 42c, 42d, 42e, 42f, 42g, 42h, and 42i in order from the left. Each of the marks 42a to 41i is similarly referred to as a row to an i row. In the row direction of the marker 40, for example, a number or a letter may be changed as a symbol meaning the mark 41. When a plurality of marks 41 having different symbols are arranged in the column direction (horizontal direction), the symbols from left to right in the horizontal direction have arrangement position information 51 described later. When the transport vehicle 10 detects the marker 40, the transport vehicle 10 detects a lateral shift based on the arrangement position information 51 of the mark 41. When arranging a plurality of markers 40 from the near side to the rear side in the traveling direction, if the same numbers and the same characters are arranged, failure or error in data acquisition of the arrangement position information 51 of the markers 40 will occur when the speed in the traveling direction increases. Can be eliminated.
When the markers 40 are arranged in the vertical direction along the traveling path 2a, the markers 40 may be provided in the lateral direction so as to cross the traveling path 2a in order to detect a lateral displacement. When the markers 40 are arranged at the center and left and right along the traveling path 2a, the arrangement position information 51 in the lateral direction may be set for the marks constituting the markers 40 arranged on the left and right.
 第一列のマーク41a~41i及び第二列のマーク42a~42iは、前もって搬送台車10の当該マーカー40を通過した後の搬送台車10の走行情報50が設定されている。この走行情報50は、例えば直進,Uターン,左旋回,右旋回,停止又は追従モード切替であり、直進の場合にはさらに数段階、例えば低速,中速及び高速の走行速度を設定されている。例えば図5に示す18個のマーク41a~41i及び42a~42iから成る一本のマーカー40は、すべて同じ走行情報50に関連付けられている。個々のマーク41a~41i及び42a~42iは、図示の場合、ArUcoマーカーが使用され、それぞれ縦横、例えば2cm程度の大きさを有すると共に、互いに例えば8cm程度の間隔で配置されている。個々のマーク41a~41i及び42a~42iの大きさと間隔は、後述するが、マーカー40を検出するカメラ31の設置位置とカメラ31に装着されるレンズの画角から決定される。個々のマーク41a~41i及び42a~42iは、ArUcoマーカーに限らず、バーコード、QRコード(登録商標)等を使用してもよい。一本のマーカー40は、搬送台車10の走行路2aを完全に横切るような幅を備える。マーカー40を構成する各マーク41a~41i及び42a~42iは、左端から右端まで順次に左右方向、そして第一列か第二列かの配置位置情報51を設定されている。例えば、マーク41cは、第一列三番目という配置位置情報51を設定されている。各マーク41a~41i及び42a~42iの走行情報50及び配置位置情報51は、それぞれ後述するCPU部36で前もって設定され、CPU部36内のマーカー記憶部34に記憶されている。図5において、マーカー40は、全体として一枚のシート状に構成され、例えば裏面に接着剤が塗布されて床面等に貼り付けることができる。これにより、各マークの間隔等を調整することなく、容易にマーカー40全体を正しい配置で設置することができる。図5に示すように、マーカー40のシートの一部に、その走行情報50の内容を示す『RIGHT』という表記43を備えることにより、マーカー40の取扱いがより一層容易となる。図示の『RIGHT』は、右旋回を示す。 In the first row of marks 41a to 41i and the second row of marks 42a to 42i, travel information 50 of the carrier 10 after passing the marker 40 of the carrier 10 is set in advance. The travel information 50 is, for example, straight ahead, U-turn, left turn, right turn, stop or following mode switching. In the case of straight ahead, several steps, for example, low speed, medium speed and high speed, are set. I have. For example, one marker 40 including 18 marks 41 a to 41 i and 42 a to 42 i shown in FIG. 5 is all associated with the same travel information 50. In the illustrated case, the individual marks 41a to 41i and 42a to 42i use ArUco markers, each having a size of about 2 cm in length and width, for example, and are arranged at an interval of about 8 cm from each other. The sizes and intervals of the individual marks 41a to 41i and 42a to 42i are determined from the installation position of the camera 31 for detecting the marker 40 and the angle of view of the lens attached to the camera 31, as described later. Each of the marks 41a to 41i and 42a to 42i is not limited to the ArUco marker, and may use a barcode, a QR code (registered trademark), or the like. One marker 40 has a width that completely crosses the traveling path 2a of the transport vehicle 10. In each of the marks 41a to 41i and 42a to 42i constituting the marker 40, arrangement position information 51 is sequentially set in the left-right direction from the left end to the right end and in the first row or the second row. For example, in the mark 41c, the arrangement position information 51 of the third row in the first row is set. The travel information 50 and the arrangement position information 51 of each of the marks 41a to 41i and 42a to 42i are set in advance by a CPU unit 36 described later, and are stored in the marker storage unit 34 in the CPU unit 36. In FIG. 5, the marker 40 is configured as a single sheet as a whole, and for example, an adhesive is applied to the back surface and can be attached to a floor surface or the like. This makes it possible to easily install the entire marker 40 in a correct arrangement without adjusting the interval between the marks and the like. As shown in FIG. 5, when a part of the sheet of the marker 40 is provided with the notation 43 of “RIGHT” indicating the content of the traveling information 50, the handling of the marker 40 is further facilitated. "RIGHT" shown in the figure indicates a right turn.
 マーカー検出部30は、図4に示すように、撮像手段としてのカメラ31と、画像処理部32とを備え、画像処理部32からの信号が、CPU部36内のマーカー制御部33に出力され必要に応じてマーカー記憶部34に保存される。マーカー制御部33とマーカー記憶部34aの各動作は、CPU部36内に格納されたプログラムにより実行される。マーカー記憶部34aは、ビーコン記憶部25aと同様にCPU部36内の記憶装置又はCPU部36の外部記憶装置を使用できる。カメラ31は、図2(C)及び図3に示すように、太陽光の影響を受けにくい位置、図示の場合には搬送台車10の本体部11の下面にて下方に向かうように下向きに配置されると共に、その画角内を照明する発光部31aを備える。発光部31aから出射する光の波長は、可視光や赤外線とし得る。カメラ31及び発光部31aとして、好ましくは、外乱光の影響を受けにくいように、例えば赤外線カメラ及び赤外線発光部が使用される。カメラ31は、図6に示すように、走行面から垂直に高さH(例えば12cm程度)の位置に取り付けられ、走行面にて幅W(例えば15cm程度)の範囲の画角を備える。発光部31aは、例えば発光ダイオード等から構成され、この画角の範囲を照明するように、図示の場合カメラ31の両側に配置される。マーカー40の配置は、カメラ31の設置位置とカメラ31のレンズの視野角、つまり画角から決定され、最大視野角内に3個以上のマーカー40が見えるようなマーカー間距離にすれば、搬送台車10がマーカー40上のどこを通過しても2個以上のマーカーが見える。 As shown in FIG. 4, the marker detection unit 30 includes a camera 31 as an imaging unit and an image processing unit 32, and a signal from the image processing unit 32 is output to a marker control unit 33 in the CPU unit 36. The information is stored in the marker storage unit 34 as needed. Each operation of the marker control unit 33 and the marker storage unit 34a is executed by a program stored in the CPU unit 36. The marker storage unit 34a can use a storage device in the CPU unit 36 or an external storage device of the CPU unit 36, similarly to the beacon storage unit 25a. As shown in FIGS. 2C and 3, the camera 31 is disposed at a position that is hardly affected by sunlight, and in the illustrated example, is directed downward at the lower surface of the main body 11 of the transport vehicle 10. And a light emitting unit 31a for illuminating the inside of the angle of view. The wavelength of the light emitted from the light emitting unit 31a may be visible light or infrared light. As the camera 31 and the light emitting unit 31a, for example, an infrared camera and an infrared light emitting unit are preferably used so as to be hardly affected by disturbance light. As shown in FIG. 6, the camera 31 is mounted vertically at a height H (for example, about 12 cm) from the running surface, and has an angle of view in a range of a width W (for example, about 15 cm) on the running surface. The light emitting unit 31a is configured by, for example, a light emitting diode or the like, and is disposed on both sides of the camera 31 in the illustrated case so as to illuminate the range of the angle of view. The arrangement of the markers 40 is determined from the installation position of the camera 31 and the viewing angle of the lens of the camera 31, that is, the angle of view. If the distance between the markers is such that three or more markers 40 can be seen within the maximum viewing angle, the transportation is performed. No matter where the carriage 10 passes over the marker 40, two or more markers can be seen.
 画像処理部32は、カメラ31からの撮像信号31bが入力され、この撮像信号31bによる撮像画面を画像処理し、撮像画面内に写っているマーカー40及び当該マーカー40の並び方向32aを検出する。画像処理部32は、この撮像画面内のマーカー40のうち、最も中央寄りの第一列のマーク41a~41iを特定すると共に、同様に最も中央よりの第二列のマーク42a~42iを特定する。画像処理部32は、特定した第一列のマーク41a~41iと第二列のマーク42a~42iの横方向位置が同じ場合には、以下第一列のマーク41a~41iに基づいて、第一列のマーク41a~41i又は第二列のマーク42a~42iのうち、一方が撮像画面不良により特定できない場合には、特定が可能な第一列のマーク41a~41i又は第二列のマーク42a~42iに基づいて、当該マーク41a~41i又は42a~42iを検出マーク情報32bとして、並び方向32aと共に、マーカー制御部33に出力する。画像処理部32が、第一列のマーク41a~41i及び第二列のマーク42a~42iのいずれも特定できない場合には、エラー信号32cを生成して、マーカー制御部33に出力する。 The image processing unit 32 receives the image pickup signal 31b from the camera 31, performs image processing on the image pickup screen based on the image pickup signal 31b, and detects the marker 40 appearing in the image pickup screen and the arrangement direction 32a of the marker 40. The image processing unit 32 specifies the first row of marks 41a to 41i closest to the center among the markers 40 in the imaging screen, and similarly specifies the second row of marks 42a to 42i closest to the center. . When the horizontal positions of the identified first-row marks 41a to 41i and the second-row marks 42a to 42i are the same, the image processing unit 32 performs the following based on the first-row marks 41a to 41i. When one of the column marks 41a to 41i or the second column marks 42a to 42i cannot be specified due to an imaging screen defect, the specified first column marks 41a to 41i or the second column marks 42a to 42i can be specified. Based on 42i, the mark 41a to 41i or 42a to 42i is output to the marker control unit 33 as the detection mark information 32b together with the arrangement direction 32a. If the image processing unit 32 cannot identify any of the first row of marks 41a to 41i and the second row of marks 42a to 42i, it generates an error signal 32c and outputs it to the marker control unit 33.
 マーカー制御部33は、画像処理部32からの検出マーク情報32bに基づいて、画像処理部32で特定されたマーク41a~41i又は42a~42iに対して前もって設定された走行情報50及び配置位置情報51をマーカー記憶部34から読み出す。マーカー制御部33は、並び方向32aと配置位置情報51から、そのときの走行方向及び走行路2aにおける横方向のずれと、慣性計測ユニット18からの進行方向のずれ、つまり角度のずれを検出して正しい走行方向及横方向のずれを補正する。角度のずれの検出や補正は、慣性計測ユニット18内のジャイロセンサにより行われる。マーカー検出部30は、マーカー40の認識により、マーカー40に対する搬送台車10のXY位置と角度を演算し、マーカー制御部33に出力する。ここで、X位置は走行路2aにおける横方向であり、Y位置は進行方向を示す。マーカー40の検出では、マーク41aが1個でも検出できれば補正は可能であり、2個以上の連続したマーカー40、又は同じマーカー40を見つけることで、後述するマーカー40の示す、直進、停止、右左折等の走行情報を認識する。マーク41aの数を2個以上とすることにより、搬送台車10が走行する走路となる床の汚れなどと間違って誤検知することを回避する。このように、マーカー40は、必ずしも、図5に示すマーク41の内、中央のものを優先して利用しなくても良い。 The marker control unit 33 performs, based on the detected mark information 32b from the image processing unit 32, the traveling information 50 and the arrangement position information set in advance for the marks 41a to 41i or 42a to 42i specified by the image processing unit 32. 51 is read from the marker storage unit 34. The marker control unit 33 detects, based on the arrangement direction 32a and the arrangement position information 51, a lateral deviation in the traveling direction and the traveling path 2a at that time, and a deviation in the traveling direction from the inertial measurement unit 18, that is, an angular deviation. To correct the deviation in the correct running direction and lateral direction. The detection and correction of the angle shift are performed by a gyro sensor in the inertial measurement unit 18. The marker detection unit 30 calculates the XY position and the angle of the carrier 10 with respect to the marker 40 based on the recognition of the marker 40, and outputs the calculated position and angle to the marker control unit 33. Here, the X position is a lateral direction on the traveling path 2a, and the Y position indicates a traveling direction. In the detection of the marker 40, the correction is possible if at least one mark 41a can be detected. By finding two or more consecutive markers 40 or the same marker 40, the straight ahead, stop, right Recognize driving information such as left turn. By setting the number of the marks 41a to two or more, it is possible to avoid erroneous detection of a stain on a floor, which is a traveling path on which the carrier 10 travels, by mistake. As described above, the marker 40 does not necessarily need to be used with priority given to the central one of the marks 41 shown in FIG.
 マーカー制御部33は、搬送台車10の走行方向の横方向のずれと、現在角度をマーカー40から取得し、走行方向のずれを0にし、さらに角度のずれを無くすように走行方向を修正し、走行路2aにおける横方向のずれを中央に戻すように走行路2aによる横位置及び現在角度を修正することにより、読み出した走行情報50を修正して、修正走行情報50aを生成して駆動制御部13に出力する。駆動制御部13は、この修正走行情報50aに基づいて走行部12を駆動制御する。よって、搬送台車10は、修正走行情報50aに従ってマーカー40により指定された通りに移動走行を行なう。マーカー制御部33は、画像処理部32からエラー信号32cが入力された場合には、マーカー40の読取失敗と判断して非常停止信号33aを生成して、搬送台車10の駆動制御部13に出力する。駆動制御部13は、この非常停止信号33aに基づいて走行部12を駆動制御して、モータ16の駆動を停止させる。 The marker control unit 33 acquires the lateral displacement of the traveling direction of the transport vehicle 10 and the current angle from the marker 40, sets the traveling direction deviation to 0, and corrects the traveling direction to further eliminate the angle deviation, The drive control unit corrects the read travel information 50 by generating a corrected travel information 50a by correcting the lateral position and the current angle of the travel path 2a so as to return the lateral displacement in the travel path 2a to the center. 13 is output. The drive control unit 13 controls the drive of the traveling unit 12 based on the corrected traveling information 50a. Therefore, the transport vehicle 10 travels and travels as specified by the marker 40 according to the corrected travel information 50a. When an error signal 32c is input from the image processing unit 32, the marker control unit 33 determines that reading of the marker 40 has failed, generates an emergency stop signal 33a, and outputs the emergency stop signal 33a to the drive control unit 13 of the transport vehicle 10. I do. The drive control unit 13 controls the drive of the traveling unit 12 based on the emergency stop signal 33a to stop the drive of the motor 16.
 マーカー制御部33は、搬送台車10の各車輪15に設けられた車輪回転センサ15aから車輪回転数情報15bと、慣性計測ユニット18からの検出信号18aが入力されており、これらの車輪回転数情報15bに基づいて搬送台車10の移動距離を算出すると共に、慣性計測ユニット18の検出信号18aに基づいて車輪15のすべり等を検出して移動距離を補正し、補正した移動距離に基づいて走行情報50を修正し、修正した走行情報50aを駆動制御部13に出力する。 The marker control unit 33 receives wheel rotation number information 15b from a wheel rotation sensor 15a provided on each wheel 15 of the transport trolley 10, and a detection signal 18a from the inertial measurement unit 18, and receives these wheel rotation number information. 15b, the traveling distance of the transport vehicle 10 is calculated, the slippage of the wheels 15 is detected based on the detection signal 18a of the inertial measurement unit 18, the traveling distance is corrected, and the traveling information is corrected based on the corrected traveling distance. 50 is corrected, and the corrected travel information 50a is output to the drive control unit 13.
 さらに、マーカー制御部33は、マーカーによる自律走行の制御中に、ビーコン検出部20のビーコン処理部25からビーコンBの位置情報24aを受け取ったときには、マーカーによる自律走行を中断して、駆動制御部13に対する制御をビーコン検出部20のビーコン処理部25に引き継いで、ビーコン処理部25がビーコンの近傍まで走行路2aに沿って所定距離(例えば3m)だけ直進して停止するような走行情報25bを作成して、駆動制御部13に送出する。 Further, when the marker control unit 33 receives the position information 24a of the beacon B from the beacon processing unit 25 of the beacon detection unit 20 during the control of the autonomous traveling by the marker, the marker control unit 33 suspends the autonomous traveling by the marker, and the drive control unit. 13 is taken over by the beacon processing unit 25 of the beacon detection unit 20, and the beacon processing unit 25 transmits the traveling information 25b such that the vehicle travels straight along the traveling path 2a for a predetermined distance (for example, 3 m) to the vicinity of the beacon and stops. It is created and sent to the drive control unit 13.
 ここで、種々のマーカー40、即ちマーカー40-1~40-10による搬送台車10の動作について説明する。マーカー40-1,2,3は、それぞれ低速,中速及び高速の直進、マーカー40-4は左90度旋回、マーカー40-5は右90度旋回、マーカー40-6は停止、マーカー40-7は進入禁止、マーカー40-8は反時計回りのUターン、マーカー40-9は、時計周りのUターン、マーカー40-10は追従モード切替に関連付けられている。
 まず、直進の場合、図7に示すように、前方に走行する搬送台車10がマーカー40(マーカー40-1,40-2又は40-3)を通過すると、マーカー検出部30の画像処理部32が当該マーカー40の撮像画面からマーカー40の並び方向32a及び検出マーク情報32bを検出する。マーカー制御部33は、検出マーク情報32bに基づいてマーカー記憶部34から当該マーカー40に設定された走行情報50を読み出し、走行路2aに対する走行方向のずれ及び幅方向のずれに関して修正した走行情報50aを駆動制御部13に出力する。搬送台車10は、当該マーカー40から2mの間で徐行しながら、走行方向及び幅方向のずれを補正し、補正終了後は走行情報50に設定された速度まで加速し直進する。走行路2aに対する幅方向のずれのみがある場合は、図7(A)に示すように幅方向のずれが修正され、また走行路2aに対する走行方向のずれ及び幅方向のずれがある場合には、図7(B)に示すように走行方向と幅方向のずれの双方が修正される。
Here, the operation of the carriage 10 by various markers 40, that is, the markers 40-1 to 40-10 will be described. Markers 40-1, 2, and 3 go straight ahead at low, medium and high speed respectively, marker 40-4 turns 90 degrees left, marker 40-5 turns 90 degrees right, marker 40-6 stops, and marker 40- turns. 7, entry is prohibited, marker 40-8 is associated with a counterclockwise U-turn, marker 40-9 is associated with a clockwise U-turn, and marker 40-10 is associated with following mode switching.
First, in the case of straight traveling, as shown in FIG. 7, when the transporting vehicle 10 traveling forward passes the marker 40 (marker 40-1, 40-2 or 40-3), the image processing unit 32 of the marker detecting unit 30 Detects the arrangement direction 32a of the markers 40 and the detection mark information 32b from the imaging screen of the markers 40. The marker control unit 33 reads the travel information 50 set for the marker 40 from the marker storage unit 34 based on the detection mark information 32b, and corrects the travel direction 50a corrected for the travel direction deviation and the width direction deviation with respect to the travel path 2a. Is output to the drive control unit 13. The transport vehicle 10 corrects the deviation in the traveling direction and the width direction while moving slowly from the marker 40 to 2 m, and after the correction is completed, accelerates to the speed set in the traveling information 50 and goes straight. When there is only a displacement in the width direction with respect to the traveling path 2a, the displacement in the width direction is corrected as shown in FIG. 7A, and when there is a deviation in the traveling direction and the displacement in the width direction with respect to the traveling path 2a, As shown in FIG. 7B, both the displacement in the traveling direction and the displacement in the width direction are corrected.
 続いて、左90度旋回の場合、図8に示すように、前方に走行する搬送台車10がマーカー40(マーカー40-4)を通過すると、マーカー検出部30の画像処理部32が当該マーカー40の撮像画面からマーカー40の並び方向32a及び検出マーク情報32bを検出する。制御部33は、検出マーク情報32bから当該マーカー40に設定された走行情報50を読み出し、走行路2aに対する走行方向のずれに関して修正した走行情報50aを駆動制御部13に出力する。これにより、搬送台車10は、当該マーカー40から1mの位置で、一旦停止した後、左に旋回する。旋回角に関して、90度に対して方向のずれを加算して走行方向のずれを補正し、補正終了後は直前の走行情報50に設定された速度で直進する。この場合、幅方向のずれに関する修正は行なわない。走行路2aに対する幅方向のずれのみがある場合には、図8(A)に示すように、そのまま左旋回し、また走行路2aに対する走行方向のずれ及び幅方向のずれがある場合には、図8(B)に示すように、走行方向のずれが修正される。例えば走行方向のずれが10度の場合には、100度(90度+10度)だけ左旋回する。右90度旋回の場合は、上述した左90度旋回の場合と左右に関して逆に動作するので、詳細な説明は省略する。 Subsequently, in the case of turning 90 degrees to the left, as shown in FIG. 8, when the transport vehicle 10 traveling forward passes the marker 40 (marker 40-4), the image processing unit 32 of the marker detection unit 30 causes the marker 40 , The arrangement direction 32a of the markers 40 and the detection mark information 32b are detected. The control unit 33 reads the travel information 50 set on the marker 40 from the detection mark information 32b, and outputs to the drive control unit 13 the travel information 50a corrected with respect to the deviation of the travel direction with respect to the travel path 2a. As a result, the carriage 10 temporarily stops at a position 1 m from the marker 40 and then turns left. With respect to the turning angle, the deviation in the traveling direction is corrected by adding the deviation in the direction to 90 degrees, and after the correction is completed, the vehicle travels straight at the speed set in the traveling information 50 immediately before. In this case, no correction is made for the displacement in the width direction. When there is only a shift in the width direction with respect to the traveling path 2a, as shown in FIG. 8 (A), the vehicle turns left as it is. As shown in FIG. 8B, the deviation in the traveling direction is corrected. For example, when the deviation in the traveling direction is 10 degrees, the vehicle turns left by 100 degrees (90 degrees + 10 degrees). In the case of turning 90 degrees to the right, the operation in the left and right directions is reversed with respect to the case of turning 90 degrees to the left, and a detailed description thereof will be omitted.
 停止の場合、図9に示すように前方に走行する搬送台車10がマーカー40(マーカー40-6)を通過すると、マーカー検出部30の画像処理部32が当該マーカー40の撮像画面からマーカー40の並び方向32a及び検出マーク情報32bを検出する。マーカー制御部33は、検出マーク情報32bから当該マーカー40に設定された走行情報50を読み出し、走行路2aに対する方向のずれに関して修正した走行情報50aを駆動制御部13に出力する。これにより、搬送台車10は、当該マーカー40から1mの位置で停止する。停止位置までの減速中に走行方向のずれを補正するが、幅方向のずれに関する修正は行なわない。走行路2aに対する幅方向のずれのみがある場合は、図9(A)に示すようにそのまま停止し、また走行路2aに対する走行方向のずれ及び幅方向のずれがある場合は、図9(B)に示すように走行方向のずれが修正される。このまま搬送台車10の走行を終了する場合は、適宜の操作、例えばシフトレバー19aをN(ニュートラル)にし、あるいはブレーキを作動させる。自律走行を再開する場合は、再び自律走行の開始に必要な操作、例えばジョイスティック19bを前方に倒して3秒以上キープする。この場合、直前の走行情報50に設定された速度で直進する。 In the case of a stop, as shown in FIG. 9, when the transport vehicle 10 traveling forward passes the marker 40 (marker 40-6), the image processing unit 32 of the marker detection unit 30 detects the marker 40 from the imaging screen of the marker 40. The arrangement direction 32a and the detection mark information 32b are detected. The marker control unit 33 reads the travel information 50 set for the marker 40 from the detection mark information 32b, and outputs to the drive control unit 13 the travel information 50a corrected for the deviation in the direction with respect to the travel path 2a. Thereby, the transport vehicle 10 stops at a position 1 m from the marker 40. The displacement in the running direction is corrected during the deceleration to the stop position, but no correction is made for the displacement in the width direction. When there is only a displacement in the width direction with respect to the traveling path 2a, the operation is stopped as shown in FIG. 9A, and when there is a displacement in the traveling direction and in the width direction with respect to the traveling path 2a, FIG. The shift in the running direction is corrected as shown in ()). When the traveling of the transport carriage 10 is to be terminated as it is, an appropriate operation is performed, for example, the shift lever 19a is set to N (neutral), or the brake is operated. When restarting the autonomous traveling, an operation necessary for starting the autonomous traveling again, for example, the joystick 19b is tilted forward and kept for 3 seconds or more. In this case, the vehicle travels straight at the speed set in the immediately preceding traveling information 50.
 進入禁止の場合、図10に示すように、前方に走行する搬送台車10がマーカー40(マーカー40-7)を通過すると、マーカー検出部30の画像処理部32が当該マーカー40の撮像画面からマーカー40の並び方向32a及び検出マーク情報32bを検出する。マーカー制御部33は、マーカーによる自律走行を終了して、検出マーク情報32bから当該マーカー40に設定された走行情報50を読み出し、走行路2aに対する方向のずれ及び幅方向のずれに関して修正を行なわずに、直ちに停止させる。走行方向のずれ及び幅方向のずれに関する修正は行なわない。走行路2aに対する幅方向のずれのみがある場合は、図10(A)に示すようにそのまま停止し、また走行路2aに対する走行方向のずれ及び幅方向のずれがある場合は、図10(B)に示すようにそのまま停止する。自律走行を再開させるためには、シフトレバー19aを手動でニュートラルにして、手動で搬送台車10自体を正しい位置に移動させたのち、通常の自律走行開始の操作を行なう。 In the case of entry prohibition, as shown in FIG. 10, when the transport vehicle 10 traveling forward passes the marker 40 (marker 40-7), the image processing unit 32 of the marker detection unit 30 changes the marker image from the imaging screen of the marker 40 to the marker. Forty alignment directions 32a and detection mark information 32b are detected. The marker control unit 33 ends the autonomous traveling by the marker, reads the traveling information 50 set for the marker 40 from the detection mark information 32b, and does not correct the deviation in the direction with respect to the traveling path 2a and the deviation in the width direction. Immediately stop. No correction is made for the displacement in the running direction and the displacement in the width direction. When there is only a displacement in the width direction with respect to the traveling path 2a, the operation is stopped as shown in FIG. 10A, and when there is a displacement in the traveling direction and in the width direction with respect to the traveling path 2a, FIG. Stop as it is as shown in). In order to resume the autonomous traveling, the shift lever 19a is manually set to the neutral position, the carrier 10 is manually moved to a correct position, and then a normal operation for starting the autonomous traveling is performed.
 Uターンの場合、図11に示すように、前方に走行する搬送台車10がマーカー40(マーカー40-8,9)を通過すると、マーカー検出部30の画像処理部32が当該マーカー40の撮像画面からマーカー40の並び方向32a及び検出マーク情報32bを検出する。マーカー制御部33は、検出マーク情報32bから当該マーカー40に設定された走行情報50を読み出し、走行路2aに対する走行方向のずれ及び幅方向のずれに関して修正した走行情報50aを駆動制御部13に出力する。これにより、搬送台車10は、当該マーカー40から1mの位置aで一旦停止した後、その場で左又は右に旋回する。旋回角に関して、180度に対して走行方向のずれを加算して走行方向のずれを補正し、補正終了後は2mの位置bまで走行しながら幅方向のずれを修正し、その後直前の走行情報50に設定された速度で直進する。走行路2aに対する幅方向のずれのみがある場合は、図11(A)に示すように、Uターンした後、幅方向が修正され、また走行路2aに対する走行方向のずれ及び幅方向のずれがある場合は、図11(B)に示すようにUターンした後、走行方向のずれ及び幅方向のずれが修正される。Uターンの場合にはその場で旋回するので、左旋回の場合も右旋回の場合も同様に動作する。 In the case of the U-turn, as shown in FIG. 11, when the carrier 10 traveling forward passes the marker 40 (markers 40-8 and 9), the image processing unit 32 of the marker detection unit 30 captures an image of the marker 40. , The arrangement direction 32a of the markers 40 and the detection mark information 32b are detected. The marker control unit 33 reads the travel information 50 set for the marker 40 from the detection mark information 32b, and outputs to the drive control unit 13 the travel information 50a corrected for the displacement in the traveling direction and the displacement in the width direction with respect to the traveling path 2a. I do. As a result, the transport vehicle 10 temporarily stops at the position a 1 m from the marker 40 and then turns left or right on the spot. With respect to the turning angle, the deviation in the traveling direction is corrected by adding the deviation in the traveling direction to 180 degrees, and after the correction is completed, the deviation in the width direction is corrected while traveling to the position b of 2 m. Go straight at the speed set to 50. When there is only a shift in the width direction with respect to the travel path 2a, as shown in FIG. 11A, the width direction is corrected after making a U-turn, and the shift in the travel direction and the shift in the width direction with respect to the travel path 2a are reduced. In some cases, after making a U-turn as shown in FIG. 11B, the displacement in the running direction and the displacement in the width direction are corrected. In the case of a U-turn, since the vehicle turns on the spot, the same operation is performed in the case of a left turn and a right turn.
 最後に、追従モード切替えの場合には、図12に示すように、前方に走行する搬送台車10がマーカー40(マーカー40-10)を通過すると、マーカー検出部30の画像処理部32が当該マーカー40の撮像画面からマーカー40の並び方向32a及び検出マーク情報32bを検出する。マーカー制御部33は、検出マーク情報32bから当該マーカー40に設定された走行情報50を読み出し、マーカー40による自律走行を中断して、駆動制御部13の制御をビーコン検出部20のビーコン処理部25に引き継ぐ。その後は、搬送台車10は、ビーコン検出部20で検出されたビーコンBに追従する。ビーコンBは、作業者が装着してもよい。走行路2aに対する幅方向のずれのみがある場合は、図12(A)に示すように、幅方向のずれは修正されずにそのままビーコンBに追従し、また走行路2aに対する走行方向のずれ及び幅方向のずれがある場合は、図12(B)に示すように、走行方向のずれも幅方向のずれも修正されず、そのままビーコンBに追従する。このような追従モードへの切替えによって、走行路2aの途中で、走行路2aから外れた位置まで、ビーコンBにより搬送台車10を誘導して、搬送台車10の載置台11a上に搭載した荷物等の積み下ろしを行なうことが可能となる。 Finally, in the case of the follow-up mode switching, as shown in FIG. 12, when the carrier 10 traveling forward passes the marker 40 (marker 40-10), the image processing unit 32 of the marker detecting unit 30 sets the marker processing unit. The arrangement direction 32a of the markers 40 and the detection mark information 32b are detected from the imaging screen 40. The marker control unit 33 reads the travel information 50 set for the marker 40 from the detection mark information 32b, suspends the autonomous travel by the marker 40, and controls the drive control unit 13 by the beacon processing unit 25 of the beacon detection unit 20. Take over. After that, the transport vehicle 10 follows the beacon B detected by the beacon detector 20. The beacon B may be worn by an operator. When there is only a displacement in the width direction with respect to the traveling path 2a, as shown in FIG. 12A, the displacement in the width direction follows the beacon B without being corrected, and the deviation in the traveling direction with respect to the traveling path 2a When there is a shift in the width direction, as shown in FIG. 12B, the shift in the running direction and the shift in the width direction are not corrected, and the beacon B follows. By switching to the following mode, the transport vehicle 10 is guided by the beacon B to a position deviating from the travel path 2a in the middle of the travel path 2a, and the luggage or the like mounted on the mounting table 11a of the transport vehicle 10 Can be loaded and unloaded.
 図13に示すように、搬送台車10のマーカーによる自律走行中に、ビーコン検出部20がビーコンB(携帯型ビーコン)からの識別光を検出した場合は、ビーコン検出部20のビーコン処理部25がビーコンBの位置情報24aをマーカー検出部30のマーカー制御部33に送出する。マーカー検出部30のマーカー制御部33は、マーカー40による自律走行を中断して、ビーコンBの近傍まで走行路2aに沿って所定距離(例えば3m)だけ直進して停止する走行情報50を作成して、駆動制御部13に送出する。これを受けて、駆動制御部13は、走行部12を駆動制御することにより、搬送台車10は、ビーコンBの近傍まで走行路2aに沿って所定距離だけ直進して停止する。このとき、走行方向のずれや幅方向のずれの修正は行なわれず、図13(A)に示すように走行方向のずれがない場合も、図13(B)に示すように走行方向のずれがある場合も、搬送台車10は、そのまま直進する。搬送台車10の走行が再開されたとき、ビーコン検出部20がビーコンBからの識別光を検出している間は、マーカー制御部33による自律走行は行なわれず、ビーコン検出部20のビーコン処理部25によるビーコン追尾走行が行なわれるが、ビーコンBからの識別光を検出しなくなった時点で、搬送台車10は走行路2a上に位置しているので、マーカー検出部30は、マーカーによる自律走行を再開することができる。 As shown in FIG. 13, when the beacon detection unit 20 detects the identification light from the beacon B (portable beacon) during autonomous traveling of the transport vehicle 10 with the marker, the beacon processing unit 25 of the beacon detection unit 20 performs the operation. The position information 24a of the beacon B is transmitted to the marker control unit 33 of the marker detection unit 30. The marker control unit 33 of the marker detection unit 30 creates the traveling information 50 in which the autonomous traveling by the marker 40 is interrupted and the vehicle travels straight ahead for a predetermined distance (for example, 3 m) along the traveling path 2a to the vicinity of the beacon B and stops. And sends it to the drive control unit 13. In response to this, the drive control unit 13 controls the drive of the traveling unit 12, so that the transport vehicle 10 travels straight along the traveling path 2a for a predetermined distance to the vicinity of the beacon B and stops. At this time, the displacement in the traveling direction and the displacement in the width direction are not corrected. Even when there is no displacement in the traveling direction as shown in FIG. 13 (A), the displacement in the traveling direction as shown in FIG. In some cases, the transport vehicle 10 goes straight. When the traveling of the transport vehicle 10 is resumed, the autonomous traveling by the marker control unit 33 is not performed while the beacon detecting unit 20 detects the identification light from the beacon B, and the beacon processing unit 25 of the beacon detecting unit 20 Is performed, but when the identification light from the beacon B is no longer detected, since the transport vehicle 10 is located on the traveling path 2a, the marker detecting unit 30 restarts the autonomous traveling by the marker. can do.
 搬送台車10に設けた非常停止スイッチ19cが操作されたとき、非常停止信号19dがマーカー検出部30のマーカー制御部33に入力される。マーカー制御部33は、非常停止信号19dに基づいて走行情報50aによる自律走行を中断して非常停止の走行情報50を生成して駆動制御部13に送出する。これを受けて、駆動制御部13は、非常停止の走行情報50に基づいてただちに走行部12を駆動制御して、搬送台車10の走行を緊急停止させる。 (4) When the emergency stop switch 19c provided on the transport trolley 10 is operated, the emergency stop signal 19d is input to the marker control unit 33 of the marker detection unit 30. Based on the emergency stop signal 19d, the marker control unit 33 interrupts the autonomous travel based on the travel information 50a, generates emergency stop travel information 50, and sends it to the drive control unit 13. In response to this, the drive control unit 13 immediately controls the drive of the traveling unit 12 based on the emergency stop traveling information 50, and immediately stops the traveling of the transport vehicle 10.
 マーカー検出部30のマーカー制御部33は、マーカーの走行情報50aにより駆動制御部13を制御する。マーカー制御部33は、図14に示す自律走行モードのフローチャートに従って、以下のように動作する。自律走行モードでは、まずステップST1にて、自律走行開始後に、マーカー検出部30が最初のマーカーを探し、マーカー40を検出する。マーカー検出部30は、ステップST1で検出したマーカー40が関連付けられている走行情報50の種類により、「直進」,「左旋回」,「右旋回」,「停止」,「Uターン」,「進入禁止」及び「追従モード切替」を判別する。 The marker control unit 33 of the marker detection unit 30 controls the drive control unit 13 based on the marker travel information 50a. The marker control unit 33 operates as follows according to the flowchart of the autonomous driving mode shown in FIG. In the autonomous traveling mode, first, in step ST1, after the autonomous traveling starts, the marker detection unit 30 searches for the first marker and detects the marker 40. The marker detection unit 30 determines “straight ahead”, “left turn”, “right turn”, “stop”, “U-turn”, “U-turn”, depending on the type of the travel information 50 associated with the marker 40 detected in step ST1. It determines “entry prohibited” and “follow mode switching”.
 「前進」の場合には、マーカー制御部33は、ステップST2にて図7に示すように、直進の走行情報50aを作成して、ステップST3にて走行方向のずれ及び幅方向のずれを修正した後、ステップST4にて駆動制御部13により走行部12を駆動制御して搬送台車10を前進させて、ステップST1に戻る。「左旋回」及び「右旋回」の場合には、マーカー制御部33は、それぞれステップST5及びステップST6にて、図8に示すように左旋回又は右旋回の走行情報50aを作成して左旋回又は右旋回させた後、ステップST4にて駆動制御部13により走行部12を駆動制御して搬送台車10を前進させてステップST1に戻る。「停止」の場合には、マーカー制御部33は、ステップST7にて図9に示すように、停止の走行情報50aを作成し、ステップST8にて走行方向のずれ及び幅方向のずれを修正し、ステップST9にて操作者の自律走行再開の操作を待って、ステップST4にて駆動制御部13により走行部12を駆動制御し、搬送台車10を前進させてステップST1に戻る。「Uターン」の場合には、マーカー制御部33は、ステップST10にて図11に示すように、Uターンの走行情報50aを作成してUターンさせた後、ステップST11にて走行方向のずれ及び幅方向のずれを修正し、ステップST4にて駆動制御部13により走行部12を駆動制御して搬送台車10を前進させてステップST1に戻る。「進入禁止」の場合には、マーカー制御部33は、ステップST12にて図10に示すように、走行方向のずれや幅方向のずれの修正を行なわずに、ただちに停止させる。この場合、マーカー制御部33は、ステップ13にてマーカーによる自律走行を終了して操作者の操作を待つ。その間、マーカー制御部33は自律走行を停止し、ステップST14で示すようにニュートラルモードにする。「追従モード切替」の場合には、マーカー制御部33は、ステップST15にて図12に示すように、マーカーによる自律走行を中断して、ステップST16にて追従モードに切り替える。 In the case of "forward", the marker control unit 33 creates the straight traveling information 50a in step ST2 as shown in FIG. 7, and corrects the deviation in the traveling direction and the deviation in the width direction in step ST3. After that, in step ST4, the drive unit 13 drives and controls the traveling unit 12 to move the transport carriage 10 forward, and returns to step ST1. In the case of “left turn” and “right turn”, the marker control unit 33 creates the left turn or right turn travel information 50a as shown in FIG. 8 in step ST5 and step ST6, respectively. After turning left or right, in step ST4, the drive unit 12 is driven and controlled by the drive control unit 13 to move the transport carriage 10 forward, and the process returns to step ST1. In the case of "stop", the marker control unit 33 creates stop travel information 50a in step ST7 as shown in FIG. 9 and corrects the shift in the running direction and the width direction in step ST8. Then, after waiting for the operator to resume the autonomous traveling in step ST9, the driving unit 12 is drive-controlled by the drive control unit 13 in step ST4, the transport carriage 10 is advanced, and the process returns to step ST1. In the case of “U-turn”, the marker control unit 33 creates the U-turn travel information 50a in step ST10 and makes the U-turn, as shown in FIG. Then, the displacement in the width direction is corrected, and in step ST4, the drive unit 13 is driven and controlled by the drive control unit 13, the transport carriage 10 is advanced, and the process returns to step ST1. In the case of “prohibition of entry”, the marker control unit 33 immediately stops at Step ST12 without correcting the deviation in the traveling direction or the deviation in the width direction as shown in FIG. In this case, the marker control unit 33 ends the autonomous traveling by the marker in step 13 and waits for an operation by the operator. In the meantime, the marker control unit 33 stops the autonomous traveling and sets the mode to the neutral mode as shown in step ST14. In the case of “follow-up mode switching”, the marker control unit 33 suspends autonomous traveling by the marker in step ST15 and switches to the follow-up mode in step ST16, as shown in FIG.
 上記搬送台車の走行システム1の具体的な使用例を、図15を参照して説明する。搬送台車10が走行すべき例えば倉庫等の走行エリア内において、点線で示すように走行路2aを設定し、この走行路2aに沿って搬送台車10を誘導するために、適宜の箇所61~72にそれぞれマーカー40を設置する。位置61及び69のマーカー40は停止の走行情報を設定され、位置62,63,65,71及び72のマーカー40は直進の走行情報を設定され、位置64,66,68及び70のマーカー40は左折(左90度旋回)の走行情報を設定され、位置67のマーカー40は右折(右90度旋回)の走行情報を設定されている。 具体 A specific example of use of the traveling system 1 for a transport trolley will be described with reference to FIG. A travel path 2a is set as shown by a dotted line in a travel area, for example, a warehouse, where the transport vehicle 10 travels, and appropriate locations 61 to 72 are provided to guide the transport vehicle 10 along the travel path 2a. Are provided with markers 40 respectively. The marker 40 at the positions 61 and 69 is set with stop travel information, the marker 40 at the positions 62, 63, 65, 71 and 72 is set with straight travel information, and the marker 40 at positions 64, 66, 68 and 70 is set as Travel information of a left turn (turn 90 degrees left) is set, and the marker 40 at the position 67 is set with travel information of a right turn (turn 90 degrees right).
 このような走行エリア内において、位置61で停止している搬送台車10がマーカーによる自律走行を開始すると、位置62及び63で直進し、位置64で左折し、位置65で直進し、位置66で左折,位置67で右折し、さらに位置68で左折し、位置69で停止する。図15に点線で示す搬送台車10の走行経路の各位置(61~69)において、それぞれ走行方向のずれ及び直進の場合には幅方向のずれが修正されることによって、搬送台車10は確実に走行路2aに沿って自律走行する。各マーカー40は、走行エリアの床面に接着等により設置され、走行路2aを変更する場合には、既設のマーカー40は容易に剥がすことができると共に、所定の位置に適宜のマーカー40を新たに設置することにより、容易に走行路2aの変更ができる。 In such a traveling area, when the carrier 10 stopped at the position 61 starts autonomous traveling by the marker, it goes straight at the positions 62 and 63, turns left at the position 64, goes straight at the position 65, and goes straight at the position 66. Turn left, turn right at position 67, turn left at position 68, and stop at position 69. At each position (61 to 69) of the traveling route of the transport vehicle 10 indicated by the dotted line in FIG. 15, the deviation in the traveling direction and in the case of going straight, the deviation in the width direction are corrected, so that the transport vehicle 10 can be surely moved. The vehicle travels autonomously along the traveling path 2a. Each marker 40 is installed on the floor surface of the traveling area by bonding or the like, and when changing the traveling path 2a, the existing marker 40 can be easily peeled off and an appropriate marker 40 is newly placed at a predetermined position. , The traveling path 2a can be easily changed.
(第2の実施形態)
 次に、本発明の第2の実施形態に係る移動車両の走行システム5について図16を参照して説明する。この移動車両の走行システム5が図1に示す第1の実施形態に係る走行システム1と異なるのは、搬送台車10に接続されるネットワーク80と、ネットワーク80に接続される搬送台車10の外部運転制御部90と、をさらに備えている点である。搬送台車10は、CPU部36がネットワーク80に接続される送受信機を含む通信部を備えている以外は、第1の実施形態に係る移動車両の走行システム1と同じ構成である。
(Second embodiment)
Next, a traveling system 5 for a mobile vehicle according to a second embodiment of the present invention will be described with reference to FIG. The traveling system 5 of the moving vehicle is different from the traveling system 1 according to the first embodiment shown in FIG. 1 in that a network 80 connected to the transport vehicle 10 and an external operation of the transport vehicle 10 connected to the network 80 A control unit 90 is further provided. The transport vehicle 10 has the same configuration as the traveling system 1 of the mobile vehicle according to the first embodiment, except that the CPU unit 36 includes a communication unit including a transceiver connected to the network 80.
 ネットワーク80は任意の構成のネットワークであって、専用回線ネットワークであっても、3G、LTE、インターネットのような公衆回線ネットワークであってもよい。ネットワーク80は、無線に限らず有線であってもよい。有線を用いたネットワーク80としては、LAN(イーサネット(登録商標))、RS232C、車載ネットワークであるCAN(Controlled Area Network)等であってよい。無線を用いたネットワーク80としては所謂無線LANであってよい。無線LANとしてはWiFi(登録商標)やブルートゥース(登録商標)が適用できる。ネットワーク80としては、CPU部36の通信部が備える通信機能及び入出力機能として電気的な信号を送出できるトランジスタやリレーのような電子部品と伝送用ケーブル等により構成してもよい。ネットワーク80により、搬送台車10と外部運転制御部90がそれぞれ相互に接続される。必要に応じて各種信号が相互に送受信され得る。 The network 80 is a network having an arbitrary configuration, and may be a dedicated line network or a public line network such as 3G, LTE, or the Internet. The network 80 is not limited to wireless, but may be wired. The wired network 80 may be a LAN (Ethernet (registered trademark)), RS232C, CAN (Controlled Area Network) which is an in-vehicle network, or the like. The wireless network 80 may be a so-called wireless LAN. WiFi (registered trademark) and Bluetooth (registered trademark) can be applied as the wireless LAN. The network 80 may be constituted by electronic components such as transistors and relays capable of transmitting electrical signals as a communication function and an input / output function of the communication unit of the CPU unit 36, a transmission cable, and the like. The transport vehicle 10 and the external operation control unit 90 are mutually connected by the network 80. Various signals can be transmitted and received to each other as needed.
 外部運転制御部90は、例えば、タブレットとタブレットに格納されるプログラムにより構成されるが、PLC(プログラマブルロジックコントローラ)やシーケンサ、リモコン等の制御装置を用いてもよい。本明細書においては、搬送台車10を制御するプログラムが格納されているタブレットを用いる。 The external operation control unit 90 includes, for example, a tablet and a program stored in the tablet. However, a control device such as a PLC (programmable logic controller), a sequencer, or a remote controller may be used. In this specification, a tablet in which a program for controlling the carrier 10 is stored is used.
 第2実施形態に従えば、外部運転制御部90が、必要に応じてネットワーク80を介して搬送台車10の制御を行ってもよい。例えば、外部運転制御部90となるタブレットにより搬送台車10の走行路2aを任意に変更してもよい。マーカー40における走行情報が、外部運転制御部90により変更されてもよい。外部運転制御部90は、下記のように、必要に応じてネットワーク80を介してマーカー40における走行情報を変更することにより、移動車両10の走行路2aを任意に変更できる。 According to the second embodiment, the external operation control unit 90 may control the transport vehicle 10 via the network 80 as necessary. For example, the travel path 2a of the transport trolley 10 may be arbitrarily changed by a tablet serving as the external operation control unit 90. The driving information at the marker 40 may be changed by the external driving control unit 90. The external driving control unit 90 can arbitrarily change the traveling path 2a of the mobile vehicle 10 by changing the traveling information on the marker 40 via the network 80 as necessary, as described below.
(マーカーの変形例1)
 上述のマーカー40の変形例として、一度設置したマーカー40の走行情報を可変するマーカー40、つまり可変のマーカー40とする方法について説明する。一つの倉庫内において、複数の搬送台車10を異なる走行路2aで運行する場合は、走行路2aの移動範囲内で複数のAのマーカー40、Bのマーカー40、Cのマーカー40を設置した後に、1台目の搬送台車10と、2台目の搬送台車10における、マーカー40の意味を変えることができる。例えば、移動範囲内でA、B、C、・・・という少なくとも3つ以上のマーカー40を設置したときに、1台目の搬送台車10と、2台目の搬送台車10における、マーカー40の意味を、以下のように変えることも可能である。以下に、マーカー40が3つのときの意味付けの例を示す。
  1台目の搬送台車10:マーカーAが直進、マーカーBが左折、マーカーCが停止。
  2台目の搬送台車10:マーカーAが直進、マーカーBが右折、マーカーCが左折。
(Modification 1 of marker)
As a modified example of the above-described marker 40, a description will be given of a method of changing the traveling information of the marker 40 once installed, that is, a method of making the marker 40 variable. In the case of operating a plurality of transport carts 10 on different traveling paths 2a in one warehouse, after installing a plurality of A markers 40, B markers 40, and C markers 40 within the moving range of the traveling path 2a. The meaning of the marker 40 can be changed between the first carrier 10 and the second carrier 10. For example, when at least three or more markers 40 of A, B, C,... Are installed in the movement range, the markers of the first transporting vehicle 10 and the markers 40 in the second transporting vehicle 10 are displayed. The meaning can be changed as follows. An example of the meaning when the number of the markers 40 is three will be described below.
First transport cart 10: Marker A goes straight, marker B turns left, marker C stops.
Second carrier 10: Marker A goes straight, marker B turns right, and marker C turns left.
 1台目の搬送台車10のマーカー制御部33及びマーカー記憶部34には、上記のマーカーA(直進)、マーカーB(左折)、マーカーC(停止)の定義により搬送台車10が制御され、必要に応じてマーカー記憶部34に保存される。同様に、2台目の搬送台車10のマーカー制御部33及びマーカー記憶部34には、上記のマーカーA(直進)、マーカーB(右折)、マーカーC(左折)の定義により搬送台車10が制御され、必要に応じてマーカー記憶部34に保存される。ここで、各搬送台車10のマーカー制御部33及びマーカー記憶部34の制御は、搬送台車10毎に設定されてもよい。各搬送台車10のマーカー制御部33及びマーカー記憶部34は、ネットワーク80に接続されるタブレットのような外部運転制御部90により制御されてもよい。これにより、一つの倉庫内において、複数の搬送台車10を異なる走行路2aで運行することが可能となる。 In the marker control unit 33 and the marker storage unit 34 of the first transport vehicle 10, the transport vehicle 10 is controlled according to the definition of the marker A (straight ahead), the marker B (left turn), and the marker C (stop). Is stored in the marker storage unit 34 in accordance with. Similarly, the marker control unit 33 and the marker storage unit 34 of the second transport vehicle 10 are controlled by the transport vehicle 10 based on the definition of the marker A (straight ahead), the marker B (right turn), and the marker C (left turn). The data is stored in the marker storage unit 34 as needed. Here, the control of the marker control unit 33 and the marker storage unit 34 of each transport vehicle 10 may be set for each transport vehicle 10. The marker control unit 33 and the marker storage unit 34 of each transport vehicle 10 may be controlled by an external operation control unit 90 such as a tablet connected to the network 80. This makes it possible to operate the plurality of transport vehicles 10 on different traveling paths 2a in one warehouse.
(マーカーの変形例2)
 同一の搬送台車10に複数のマーカーによる走行パターンとしてN通り、つまり、走行パターン1、2、3・・・Nをあらかじめ記憶させ、搬送台車10の使用予定にあわせて、今回は走行パターン1、次回は走行パターン2というように制御すれば、同一の搬送台車10を異なるN通リの走行パターンで走行させることができる。走行パターンの指定方法としては、ルートを指示するマーカー40を走行路2aに設定するか、設置されたマーカー40を、上記マーカーの変形例1と同様に、タブレットでマーカー40の定義の修正、つまり、意味付けの変更で実施してもよい。外部運転制御部90となるタブレットは、無線LAN等で、搬送台車10との相互通信が行われてもよい。
(Modification 2 of marker)
.. N are stored in advance in the same transport vehicle 10 as travel patterns using a plurality of markers, that is, travel patterns 1, 2, 3,... Next time, if the control is performed in the running pattern 2, the same transport vehicle 10 can be run in different running patterns of N traversals. As a method of designating the traveling pattern, the marker 40 indicating the route is set on the traveling path 2a, or the installed marker 40 is modified with the tablet in the same manner as in the first modified example of the marker, that is, the definition of the marker 40 is modified. Alternatively, the meaning may be changed. The tablet serving as the external operation control unit 90 may communicate with the carrier 10 via a wireless LAN or the like.
(マーカーの変形例3)
 走行路2aに設置するマーカー40に走行路2aを指定するマーカー40として、マーカーDを設けてもよい。マーカーDは、走行パターン1から走行パターン2への変更を示すマーカーであり、マーカー記憶部34に記憶されている。搬送台車10が走行路2aにおいてマーカーDを検知すると、マーカー制御部33により走行パターン1から走行パターン2に切り替えられる。
(Modification 3 of marker)
A marker D may be provided as the marker 40 for specifying the traveling path 2a on the marker 40 installed on the traveling path 2a. The marker D is a marker indicating a change from the running pattern 1 to the running pattern 2, and is stored in the marker storage unit 34. When the transport trolley 10 detects the marker D on the travel path 2a, the marker control unit 33 switches from the travel pattern 1 to the travel pattern 2.
(マーカーの変形例4)
 例えば、ネットワーク80に接続された外部運転制御部90から、複数の搬送台車10をリアルタイムで制御してもよい。外部運転制御部90は、倉庫に隣接した指令室や遠隔地に設けた指令室に設置することができる。
(Modification 4 of marker)
For example, the plurality of transport vehicles 10 may be controlled in real time from the external operation control unit 90 connected to the network 80. The external operation control unit 90 can be installed in a command room adjacent to a warehouse or a command room provided in a remote place.
(マーカーの変形例5)
 マーカー40は、搬送台車10の制御以外の他の機器の制御に使用してもよい。例えば、倉庫のシャッターの前に設置するマーカーSには、シャッターを開けさせる意味付けをしても良い。マーカーSを検知したマーカー制御部33は、CPU部36に接続されたネットワーク接続手段を介してネットワーク80に接続され、シャッターの制御部に「シャッター開」の信号を送出しても良い。
(Modification 5 of marker)
The marker 40 may be used for controlling other devices other than the control of the carrier 10. For example, the marker S installed in front of the warehouse shutter may have a meaning to open the shutter. The marker control unit 33 that has detected the marker S may be connected to the network 80 via a network connection unit connected to the CPU unit 36, and may transmit a “shutter open” signal to the shutter control unit.
(マーカーの変形例6)
 搬送台車10が別の搬送台車を牽引している場合は、マーカー40の指示により牽引している搬送台車を切り離してもよい。走行路2aを変更しても良い。例えば、搬送台車10が別の搬送台車を牽引している際に、走行路2aを指定するマーカーDを検知した時には、マーカーの変形例3と同様に走行パターン1から走行パターン2に切り替えが行われてもよい。
(Modification 6 of marker)
When the transport vehicle 10 is towing another transport vehicle, the transport vehicle that is being towed may be cut off according to the instruction of the marker 40. The traveling path 2a may be changed. For example, when the transport trolley 10 is towing another transport trolley and detects the marker D that specifies the travel path 2a, switching from the travel pattern 1 to the travel pattern 2 is performed as in the third modified example of the marker. May be.
 さらに、本発明の移動車両の走行システム1,5によれば、例えば、坂道を壁と検知するレーザー測距(SLAM)システムを用いた自律走行システムや段差や凹凸のある路面では使用できないライントレース方式の自律走行システムに対して、走行路上に点状又は線状に配置されるマーカー40とマーカー40との間を自律走行するので、途中の路面がどういう状況であっても自律走行を継続できる。 Furthermore, according to the traveling systems 1 and 5 of the moving vehicle of the present invention, for example, an autonomous traveling system using a laser ranging (SLAM) system that detects a slope on a wall or a line trace that cannot be used on a road surface having steps or unevenness. In contrast to the autonomous driving system of the type, since the autonomous driving is performed between the markers 40 arranged in the form of dots or lines on the driving road, the autonomous driving can be continued regardless of the condition of the road surface in the middle. .
(第3の実施形態)
 次に、図17及び図18を参照して本発明の第3の実施形態に係る移動車両の走行システム100を説明する。第3の実施形態では、移動車両が被牽引台車120とこの被牽引台車を牽引する搬送台車110とで構成される。これらの車両は、連結機構により互いに連結及び連結解除できるよう構成される。移動車両となる搬送台車110側の連結機構は、搬送台車110の後端に設けた連結器132と、被牽引台車120の前端に設けた連結器134と、これらを連結する連結用部材130とを備え、搬送台車110が先導して被牽引台車120を牽引して移動する構成である。被牽引台車120は、カゴ台車(ロールボックスパレット)、六輪台車(スリムカート)、あるいは、パレット搬送可能な台車であってよい。搬送台車110側の連結機構は、連結器132を連結用部材130に可動に取り付ける場合は、被牽引台車120側の連結器134は固定して取り付ける。逆に、搬送台車110側の連結器132を固定して取り付ける場合は、他方の連結器134を可動に取り付ければよい。被牽引台車120の積載量は、100kg~300kgとすることができる。各モータ16を適宜に選定すれば、被牽引台車120の積載量をさらに増大して、例えば600kgとすることも可能である。
(Third embodiment)
Next, a traveling system 100 for a mobile vehicle according to a third embodiment of the present invention will be described with reference to FIGS. In the third embodiment, a moving vehicle includes a towed vehicle 120 and a transport vehicle 110 tow the towed vehicle. These vehicles are configured so that they can be connected and disconnected from each other by a connection mechanism. The coupling mechanism on the side of the transport vehicle 110 serving as a moving vehicle includes a connector 132 provided at the rear end of the transport vehicle 110, a connector 134 provided at the front end of the towed vehicle 120, and a connecting member 130 for coupling these components. In this configuration, the transport vehicle 110 leads and moves the towed vehicle 120 by leading. The towed truck 120 may be a cart (roll box pallet), a six-wheeled truck (slim cart), or a pallet-conveyable truck. When the connecting device 132 is movably mounted on the connecting member 130, the connecting device 134 on the towed vehicle 120 is fixedly mounted on the connecting mechanism on the transporting vehicle 110 side. Conversely, when the coupler 132 on the side of the carriage 110 is fixedly attached, the other coupler 134 may be movably attached. The loading capacity of the towed truck 120 can be 100 kg to 300 kg. If each motor 16 is appropriately selected, the load capacity of the towed truck 120 can be further increased to, for example, 600 kg.
(マーカーの変形例7)
 移動車両110は、移動車両10と同様に直進,Uターン,左旋回,右旋回及び停止、侵入禁止を示すマーカー40を使用できるが、図17に示すように、さらに弧(R)を描く軌道を自律走行するマーカー40も併用することができる。弧を描く軌道の自律走行を、直角状の左旋回及び右旋回と区別するために、それぞれ、弧状の左旋回及び弧状の右旋回と呼ぶ。マーカーの変形例7として、旋回を示すマーカー40について説明する。
 図19に示すように、被牽引台車120を牽引する搬送台車110が弧状の左旋回をする場合、搬送台車110がマーカー40(マーカー40-12)を通過すると、マーカー検出部30の画像処理部32が当該マーカー40の撮像画面からマーカー40の並び方向32a及び検出マーク情報32bを検出する。マーカー40-12により、最初に直進し、例えば2m直進したときに走路2aの中央位置になるように搬送台車110の位置が補正され、次に旋回半径Rと旋回する角度が設定される。例えば、2m直進し、半径3mで60°旋回(図19のAの軌跡参照)、2m直進し、半径5mで90°旋回(図19のBの軌跡参照)等に自由に設定ができる。
(Modification 7 of marker)
The moving vehicle 110 can use the marker 40 indicating straight ahead, U-turn, left turn, right turn and stop, and no entry as in the case of the moving vehicle 10, but further draws an arc (R) as shown in FIG. A marker 40 that autonomously travels on a track can also be used in combination. The autonomous running of the orbital track is referred to as an arc-shaped left turn and an arc-shaped right turn, respectively, to distinguish it from a right-angled left turn and a right-turn. As a seventh modified example of the marker, a marker 40 indicating turning is described.
As shown in FIG. 19, when the transport vehicle 110 that pulls the towed vehicle 120 makes an arc-shaped left turn, when the transport vehicle 110 passes the marker 40 (marker 40-12), the image processing unit of the marker detection unit 30 32 detects the arrangement direction 32a of the markers 40 and the detection mark information 32b from the imaging screen of the markers 40. The marker 40-12 corrects the position of the transport vehicle 110 so that the vehicle first goes straight, for example, when it goes straight 2 m, so that it is at the center of the track 2a, and then the turning radius R and the turning angle are set. For example, it is possible to freely set such as traveling straight 2 m, turning 60 ° at a radius of 3 m (see the locus of FIG. 19A), traveling straight 2 m, turning 90 ° at a radius of 5 m (see the locus of FIG. 19B), and the like.
 マーカー制御部33は、検出マーク情報32bから当該マーカー40に設定された、直進する距離と旋回半径Rと旋回する角度に関する走行情報50を読み出し、走行路2aに対する走行方向のずれに関して修正した走行情報50aを駆動制御部13に出力する。これにより、搬送台車110は当該マーカー40-12から所定の位置迄直進し、一旦停止した後、左方向に弧を描くような軌道で旋回する。つまり、移動車両110は、始めは直進マーカー(図7のマーカー40-1~3)と同じように直進し、次に、マーカー40-12が示す旋回半径Rと旋回する角度に従って弧状の左旋回をする。この場合、直進する際に幅方向のずれに関する修正が行なわれる。これにより、搬送台車110は、被牽引台車120を牽引して弧状に左旋回をする際に円滑に旋回することができる。弧状の右旋回の場合は、上述した弧状の左旋回の場合と左右に関して逆に動作するので、詳細な説明は省略する。 The marker control unit 33 reads, from the detection mark information 32b, the travel information 50 on the straight traveling distance, the turning radius R, and the turning angle set for the marker 40, and corrects the traveling information corrected for the deviation of the traveling direction with respect to the traveling path 2a. 50a is output to the drive control unit 13. As a result, the transport vehicle 110 travels straight from the marker 40-12 to a predetermined position, temporarily stops, and then turns in a leftward orbit in an arc. That is, the moving vehicle 110 first goes straight in the same way as the straight-ahead markers (markers 40-1 to 40-3 in FIG. 7), and then turns left in an arc shape according to the turning radius R indicated by the marker 40-12 and the turning angle. do. In this case, when the vehicle travels straight, a correction relating to the displacement in the width direction is performed. Thus, the transport vehicle 110 can smoothly turn when the towed vehicle 120 is towed and turns leftward in an arc shape. In the case of an arc-shaped right turn, the operation is performed in the left and right directions in reverse to the case of the arc-shaped left turn described above, and a detailed description thereof will be omitted.
(マーカーの変形例8)
 マーカー40は、特定の方向へ進む際に、所定の距離で停止、又は所定の距離まで直進して旋回するという、二つ以上の機能を組み合わせても良い。つまり、マーカー40には、上述の直進,Uターン,左旋回,右旋回、停止、弧状の左旋回、弧状の右旋回の何れかに加えて、さらに、これらの一つ以上を組み合わせた走行情報を設定してもよい。例えば、5m先で停止、3m先で弧状に右旋回又は弧状の右旋回等に設定できる。
(Modification 8 of marker)
The marker 40 may combine two or more functions of stopping at a predetermined distance or turning straight to a predetermined distance when turning in a specific direction. That is, the marker 40 has one or more of the above-described straight running, U-turn, left turning, right turning, stop, arc-shaped left turning, and arc-shaped right turning. Travel information may be set. For example, it can be set to stop at 5 m ahead, turn right in an arc at 3 m ahead, turn right in an arc, or the like.
(第3の実施形態の変形例1)
 第3の実施形態の変形例1に係る移動車両の走行システム100Aを図20~図22を参照して説明する。搬送台車110Aは、被牽引台車120Aの連結機構として、自動的に着脱できる連結器142を備える。搬送台車110Aの連結器142は、上下方向に移動可能な機構を備えた自動連結用部材144を備える。自動連結用部材144は、連結器142内に配置されたソレノイドやモータにより駆動されて、自動連結用部材144のピン部144aを上下方向に移動する。被牽引台車120Aは、搬送台車110Aの連結器142と着脱可能な被牽引台車側の連結器154を備える。被牽引台車側の連結器154は、自動連結用部材144のピン部144aが挿入される挿入孔を備える。
(Modification 1 of Third Embodiment)
A traveling system 100A for a mobile vehicle according to a first modification of the third embodiment will be described with reference to FIGS. The transport vehicle 110A includes a coupler 142 that can be automatically attached and detached as a coupling mechanism for the towed vehicle 120A. The coupler 142 of the transport trolley 110A includes an automatic coupling member 144 having a mechanism movable in the vertical direction. The automatic connection member 144 is driven by a solenoid or a motor disposed in the coupler 142 to move the pin portion 144a of the automatic connection member 144 in the vertical direction. The towed vehicle 120A includes a coupler 142 on the towed vehicle side that is detachable from the coupler 142 of the transport vehicle 110A. The coupler 154 on the towed truck side has an insertion hole into which the pin portion 144a of the automatic coupling member 144 is inserted.
(搬送台車110Aと被牽引台車120Aとの自動接続)
 搬送台車110Aと被牽引台車120Aとの自動接続について説明する。例えば、倉庫の走行路2aにおいて、搬送台車110Aと被牽引台車120Aとが自動接続すべき箇所にマーカーDと呼ぶマーカー40が設置されている。マーカーDは、搬送台車110Aと被牽引台車120Aとが自動接続される箇所と定義され、マーカー記憶部34に保存される。搬送台車110Aと被牽引台車120Aとが自動接続されることが、走行情報50に関連付けられる。マーカーDを検知したマーカー制御部33は、CPU部36にマーカーDの箇所で停止し、自動連結用部材144による自動接続をするように制御する。これを受けて、CPU部36は、自動連結用部材144のピン部144aを上方向に移動するようにソレノイドを制御して、ピン部144aが被牽引台車側の連結器154の孔に挿入する。ネットワーク80に接続された外部運転制御部90が、搬送台車110AのCPU部36に「被牽引台車120Aと接続する」の信号を送出しても良い。外部運転制御部90としてPLCを用いた場合は、PLCから被牽引台車120Aと被牽引台車120Aとが自動接続されるように制御することができる。PLCとCPU部36とを接続するネットワーク80は、CPU部36に接続されるスイッチや通信部を用いて構成してもよい。
(Automatic connection between the transport vehicle 110A and the towed vehicle 120A)
Automatic connection between the transport vehicle 110A and the towed vehicle 120A will be described. For example, on the traveling path 2a of the warehouse, a marker 40 called a marker D is installed at a location where the transport vehicle 110A and the towed vehicle 120A are to be automatically connected. The marker D is defined as a location where the transport vehicle 110A and the towed vehicle 120A are automatically connected, and is stored in the marker storage unit 34. The automatic connection between the transport vehicle 110A and the towed vehicle 120A is associated with the travel information 50. The marker control unit 33 that has detected the marker D controls the CPU unit 36 to stop at the position of the marker D and perform automatic connection by the automatic connection member 144. In response, the CPU unit 36 controls the solenoid to move the pin portion 144a of the automatic connection member 144 upward, and inserts the pin portion 144a into the hole of the coupler 154 on the towed truck. . The external operation control unit 90 connected to the network 80 may send a signal of “connect to the towed vehicle 120A” to the CPU unit 36 of the transport vehicle 110A. When a PLC is used as the external operation control unit 90, control can be performed such that the towed vehicle 120A and the towed vehicle 120A are automatically connected from the PLC. The network 80 connecting the PLC and the CPU unit 36 may be configured using a switch or a communication unit connected to the CPU unit 36.
(搬送台車110Aと被牽引台車120Aとの自動脱離)
 例えば、倉庫の走行路2aにおいて、搬送台車110Aと被牽引台車120Aとの接続を解除する場合、搬送台車110Aを被牽引台車120Aから離脱させる箇所にマーカー40としてマーカーEが設置されている。マーカーEは、搬送台車110Aを被牽引台車120Aから離脱する箇所と定義され、マーカー記憶部34に保存される。搬送台車110Aが被牽引台車120Aから離脱されることは、走行情報50に関連付けられる。マーカーEを検知したマーカー制御部33は、CPU部36にマーカーEの箇所で停止し、次に自動連結用部材144による自動離脱をするように制御する。これを受けて、CPU部36は、自動連結用部材144のピン部144aを下方向に移動するようにソレノイドを制御して、ピン部144aを被牽引台車側の連結器154から自動離脱させる。なお、搬送台車110Aと被牽引台車120Aとの自動接続と同様に、ネットワーク80に接続した外部運転制御部90が、搬送台車110AのCPU部36に「被牽引台車120Aから離脱」の信号を送出して、被牽引台車120Aを離脱させてもよい。
(Automatic detachment of the transport vehicle 110A and the towed vehicle 120A)
For example, when the connection between the transport vehicle 110A and the towed vehicle 120A is released on the traveling path 2a of the warehouse, a marker E is provided as the marker 40 at a position where the transportable vehicle 110A is separated from the towed vehicle 120A. The marker E is defined as a location where the transport vehicle 110A separates from the towed vehicle 120A, and is stored in the marker storage unit 34. The separation of the transport vehicle 110A from the towed vehicle 120A is associated with the traveling information 50. The marker control unit 33 that has detected the marker E controls the CPU unit 36 to stop at the position of the marker E, and then to perform automatic disconnection by the automatic connection member 144. In response to this, the CPU unit 36 controls the solenoid to move the pin portion 144a of the automatic connection member 144 downward, and automatically detaches the pin portion 144a from the coupler 154 on the towed truck side. Note that, similarly to the automatic connection between the transport vehicle 110A and the towed vehicle 120A, the external operation control unit 90 connected to the network 80 sends a signal of "leaving from the towed vehicle 120A" to the CPU unit 36 of the transportable vehicle 110A. Then, the towed vehicle 120A may be separated.
 搬送台車110Aに被牽引台車120Aを接続するときには、マーカー40に後退の意味付けを行い、搬送台車110Aを後退させて、連結器142と被牽引台車側の連結器154に対する位置合わせを行ってもよい。この位置合わせは、CPU部36により行うことができる。また、位置合わせは、作業者が搬送台車110Aのハンドルを操作して行ってもよい。或いは、PLCを用いた外部運転制御部90に接続されたスイッチや、通信機能を用いて位置合わせしてもよい。このように、マーカーD又はマーカーEに、自動接続又は自動離脱するように前もって走行情報が設定されていれば、搬送台車110AはCPU部36によりマーカーD又はマーカーEの箇所で停止し、次にソレノイドを制御して自動連結用部材144による自動接続又は自動離脱をする。 When the towed vehicle 120A is connected to the transporting vehicle 110A, the marker 40 may be given a meaning of retreat, and the transporting vehicle 110A may be retracted to align the coupler 142 with the coupler 154 on the towed vehicle side. Good. This alignment can be performed by the CPU unit 36. The alignment may be performed by an operator operating the handle of the transport carriage 110A. Alternatively, positioning may be performed using a switch connected to the external operation control unit 90 using a PLC or a communication function. As described above, if the travel information is set in advance so that the marker D or the marker E is automatically connected or disconnected, the transporting trolley 110A is stopped at the marker D or the marker E by the CPU unit 36, and then is stopped. By controlling the solenoid, automatic connection or automatic disconnection by the automatic connection member 144 is performed.
 この搬送台車110Aは、図21及び図22に示すように、測距センサ153をさらに備えて構成されている。測距センサ153は、距離センサ23が主として前方の障害物を検知するのに対して、搬送台車110Aよりも幅の広い被牽引台車120Aを牽引する時に左右の斜め方向を含む、より距離の長い範囲にある障害物を検知する。距離は、大凡5m前後、例えば5~10m程度に設定してもよい。測距センサ153は、2次元のレーザレンジファインダー(2DLRF)と呼ばれている測距センサ、ステレオカメラ等のカメラによる画像認識により測距する測距センサ等が好適である。幅広の被牽引台車120Aを牽引する際、進行方向前方の障害物を未然に検知し得ることで、障害物との衝突の前に搬送台車110Aを停止したり、障害物と衝突しないように回避する。2DLRFはmmオーダの測距ができるので、局所的に高精度、高密度に搬送台車110Aの周囲にある障害物との測距を行うことにより、障害物のための停止動作の早期化と障害物回避の動作を迅速に行う。重量物を積載している被牽引台車120Aは、障害物を検知して停止する迄の制動時間が余計に掛かるので停止動作の安全性がより高くなる。 搬 送 As shown in FIGS. 21 and 22, the transport trolley 110A further includes a distance measuring sensor 153. The distance measuring sensor 153 has a longer distance including a left and right diagonal direction when the towed vehicle 120A having a width wider than the transport vehicle 110A is detected while the distance sensor 23 mainly detects an obstacle in front. Detect obstacles in range. The distance may be set to about 5 m, for example, about 5 to 10 m. The distance measuring sensor 153 is preferably a distance measuring sensor called a two-dimensional laser range finder (2DLRF), a distance measuring sensor for measuring a distance by image recognition by a camera such as a stereo camera, or the like. When the wide towed truck 120A is towed, obstacles ahead in the traveling direction can be detected beforehand, so that the transporting cart 110A stops before colliding with the obstacle or avoids colliding with the obstacle. I do. Since the 2DLRF can measure distances on the order of millimeters, localization of obstacles around the carrier 110A with high accuracy and high density can be performed locally, thereby speeding up the stop operation for obstacles and obstructing obstacles. Perform the avoidance action quickly. The towed truck 120A loaded with a heavy object takes an extra braking time to stop after detecting an obstacle, so that the safety of the stopping operation is higher.
(第3の実施形態の変形例2)
 第3の実施形態の走行システム100Bでは、図23(a)及び(b)に示すように、搬送台車110Bが被牽引台車120Bを牽引する連結機構として、搬送台車110B側には、操作部119と、後述する被牽引台車120Bのピン160に接続するための牽引部材170と、拘束部材172と、該牽引部材172に接続されるリンク機構174と、該リンク機構174を駆動するソレノイド176等とが設けられるが、ハンドル111bを備えていない。牽引部材170は、被牽引台車120Bを連結する際にピン160を挿入する孔170が設けられている。拘束部材172は、ピン160が牽引部材170の孔172aに挿入されたときに該ピン160の離脱を抑止するバネ性の部材である。この実施形態では、搬送台車110Bが被牽引台車120Bの下側に潜り込んだ態様で被牽引台車120Bを牽引し誘導する構成である。操作部119は、搬送台車110Bが被牽引台車120Bの下部側に潜り込む際に支障がないように本体部111の積載面と水平の位置から略下側に配置されている。被牽引台車120B側の連結機構として、本体部122の下部において下方に突出したピン160と、搬送台車110Bを被牽引台車120Aの下部側に潜り込ませて保持する左右両側に設けた一対のガイド162を備えている。ガイド162の間隔Wgは搬送台車110Bの幅と略同じかそれより僅かに幅広に形成され、被牽引台車120Bを潜り込ませてこれを保持し得る幅に設定されている。
(Modification 2 of Third Embodiment)
In the traveling system 100B according to the third embodiment, as shown in FIGS. 23A and 23B, an operation unit 119 is provided on the side of the transport vehicle 110B as a coupling mechanism that causes the transport vehicle 110B to pull the tow vehicle 120B. And a traction member 170 for connecting to a pin 160 of the towed truck 120B described later, a restraining member 172, a link mechanism 174 connected to the traction member 172, a solenoid 176 for driving the link mechanism 174, and the like. Is provided, but does not include the handle 111b. The towing member 170 is provided with a hole 170 into which the pin 160 is inserted when connecting the towed truck 120B. The restraining member 172 is a spring-like member that prevents the pin 160 from coming off when the pin 160 is inserted into the hole 172a of the traction member 170. In this embodiment, the transport vehicle 110B is configured to tow and guide the towed vehicle 120B in a mode in which it is below the towed vehicle 120B. The operation unit 119 is disposed substantially below the loading surface of the main body unit 111 so as not to hinder the carriage 110B from sinking below the towed truck 120B. As a coupling mechanism on the towed truck 120B side, a pin 160 projecting downward at a lower portion of the main body 122, and a pair of guides 162 provided on the left and right sides for holding the transporting cart 110B under the towed truck 120A and holding it. It has. The interval Wg between the guides 162 is formed to be substantially the same as or slightly wider than the width of the transport vehicle 110B, and is set to a width that allows the towed vehicle 120B to enter and hold it.
(搬送台車110Bと被牽引台車120Bとの自動接続)
 図24(a)及び(b)に示すように、被牽引台車120B側にはその連結機構として、本体部111の下部側に、前述の一対のガイド162に加え、下方に向かって突出するピン160を備える。搬送台車110Bは被牽引台車120Bの下部側に潜り込み、ガイド162に沿って直進することにより搬送台車110Bの牽引部材170の孔170aに被牽引台車120Bのピン160が挿入されて相互に連結する。連結機構による連結の動作を具体的に説明すると、まず、図25(a)に示すように、搬送台車110Bが矢印方向に進むと、被牽引台車120Bのピン160に、搬送台車110Bの拘束部材172が近接する。さらに進むと、図25(b)に示すように、バネ164で所定位置に弾性保持されている拘束部材172を被牽引台車120Bのピン160がバネ力に抗して押し下げると共に、このピン160は搬送台車110Bの牽引部材170の孔170aに入り込む。ピン160が孔170aの終端まで進むと、図25(c)に示すように、拘束部材172は被牽引台車120Bのピン160と離れ、再びバネ154により所定位置に戻る。その結果、牽引部材170がピン160に水平方向で引っ掛かり、牽引部材の孔170aにピン160が挿入されることで被牽引台車120Bが搬送台車110Bに接続される。
(Automatic connection between the transport vehicle 110B and the towed vehicle 120B)
As shown in FIGS. 24 (a) and (b), on the towed truck 120B side, as a connecting mechanism, on the lower side of the main body 111, in addition to the above-mentioned pair of guides 162, a pin projecting downward. 160 is provided. The transport vehicle 110B dives below the towed vehicle 120B, and goes straight along the guide 162, whereby the pin 160 of the towed vehicle 120B is inserted into the hole 170a of the towed member 170 of the transportable vehicle 110B and connected to each other. The connection operation by the connection mechanism will be specifically described. First, as shown in FIG. 25A, when the transport vehicle 110B advances in the direction of the arrow, the pin 160 of the towed vehicle 120B is attached to the restraining member of the transport vehicle 110B. 172 approach. 25B, the pin 160 of the tow truck 120B pushes down the restraining member 172 elastically held at a predetermined position by the spring 164 against the spring force, and the pin 160 It enters the hole 170a of the traction member 170 of the transport carriage 110B. When the pin 160 advances to the end of the hole 170a, as shown in FIG. 25 (c), the restraining member 172 separates from the pin 160 of the towed truck 120B and returns to the predetermined position by the spring 154 again. As a result, the towing member 170 is hooked on the pin 160 in the horizontal direction, and the pin 160 is inserted into the hole 170a of the towing member, whereby the towed vehicle 120B is connected to the transporting vehicle 110B.
(搬送台車110Bと被牽引台車120Bとの自動脱離)
 図25(c)に示す連結機構による連結を解除する場合は、図25(d)に示すように、搬送台車110Bの本体部の下部に配置されたソレノイド176を駆動してリンク機構174を吸引することで、牽引部材170をピン160より下方向(矢印C)に引き下げる。これにより、搬送台車110Bの牽引部材170の孔170aから被牽引台車120Bのピン160の水平方向の接続を解除する。この状態で、搬送台車110Bが進行方向へ進むと被牽引台車120Bから離脱する。ソレノイド176はピン160から十分に離れた時間の経過後に停止することで、搬送台車110Bの牽引部材170はバネ164の力により所定の位置へ復帰する。搬送台車110Bが被牽引台車120Bの下部側に潜り込んで被牽引台車120Bを連結するので、被牽引台車120Bが移動車両100A単独の動作と同じ動きができ、被牽引台車を搬送台車の後方に接続した場合に被牽引台車のその場回転が可能になる。また、搬送台車110Bと被牽引台車120Bとは積層状態で移動するので、全体の長さが短縮され、作業効率が向上する。
(Automatic detachment of the transport vehicle 110B and the towed vehicle 120B)
When releasing the connection by the connection mechanism shown in FIG. 25C, as shown in FIG. 25D, the solenoid 176 arranged at the lower part of the main body of the transport carriage 110B is driven to suck the link mechanism 174. By doing so, the traction member 170 is pulled down below the pin 160 (arrow C). This releases the horizontal connection of the pin 160 of the towed vehicle 120B from the hole 170a of the towed member 170 of the transporting vehicle 110B. In this state, when the transport vehicle 110B advances in the traveling direction, it separates from the towed vehicle 120B. When the solenoid 176 stops after a lapse of time sufficiently away from the pin 160, the traction member 170 of the carrier 110B returns to a predetermined position by the force of the spring 164. Since the transport vehicle 110B sneaks under the towed vehicle 120B and connects the towed vehicle 120B, the towed vehicle 120B can perform the same movement as the operation of the mobile vehicle 100A alone, and connects the towed vehicle to the rear of the transported vehicle. In this case, the towed truck can rotate in place. Further, since the transport vehicle 110B and the towed vehicle 120B move in a stacked state, the overall length is shortened, and the working efficiency is improved.
 本発明は、その趣旨を逸脱しない範囲において様々な形態で実施することができる。上述した実施形態では、マーカー40の個々のマークとして、ArUcoマーカーが使用されているが、他の種々のマーク、例えばQRコード(登録商標)等も使用され得る。マーカー40は、二列×9個で並んで配置されたマークを備えているが、一列の配置又は三列以上でも、横方向に2~8又は10以上のマークが並んでいてもよい。搬送台車10,110,110A,110Bの進行方向の速度が上がった時、マーカー40の検知の可否は、カメラ31のシャッター速度とCPU部36の処理速度に依存する。従って、進行方向のマーカー40の列数を増して設置すれば、搬送台車10,110,110A,110Bの速度が上がった時でも、確実にマーカー40から走行情報を取得することができる。マーカー検出部30をビーコン検出部20と別体に独立して設けることなく、マーカー制御部33とビーコン検出部20のビーコン処理部25を共通化してもよい。非常停止操作部としての非常停止スイッチ19は、搬送台車10の本体部11に設けられることなく各種設定を行なう外部操作部に設けられてもよく、また搬送台車10の走行エリア内に固定配置されてもよい。この非常停止スイッチ19は、一つに限らず複数あっても良く、ジョイスティック19bの操作に含ませてもよい。非常停止のための周囲センサは、超音波センサのような距離センサに限らず、バンパー38に設けたバンパーセンサ38aによって検知してもよい。非常停止操作部としては、作業者が装着するビーコンや、他の赤外線や無線通信によるリモコン装置により、作業者がリモート操作により搬送台車10,110を停止させる構成としても良い。 The present invention can be implemented in various forms without departing from the spirit thereof. In the embodiment described above, the ArUco marker is used as each mark of the marker 40, but other various marks, for example, a QR code (registered trademark) or the like may be used. The marker 40 has marks arranged in two rows × 9, but may be arranged in one row, three or more rows, or two to eight or ten or more marks in the horizontal direction. When the speed of the transport carts 10, 110, 110A, 110B in the traveling direction increases, whether the marker 40 can be detected depends on the shutter speed of the camera 31 and the processing speed of the CPU unit 36. Accordingly, if the number of rows of the markers 40 in the traveling direction is increased and installed, the traveling information can be reliably acquired from the markers 40 even when the speed of the transport vehicles 10, 110, 110A, 110B increases. The marker control unit 33 and the beacon processing unit 25 of the beacon detection unit 20 may be shared without providing the marker detection unit 30 separately from the beacon detection unit 20. The emergency stop switch 19 as an emergency stop operation unit may be provided on an external operation unit that performs various settings without being provided on the main body unit 11 of the transport trolley 10, or may be fixedly arranged in the traveling area of the transport trolley 10. May be. The number of emergency stop switches 19 is not limited to one, but may be plural, and may be included in the operation of the joystick 19b. The surrounding sensor for the emergency stop is not limited to a distance sensor such as an ultrasonic sensor, and may be detected by a bumper sensor 38a provided on the bumper 38. The emergency stop operation unit may be configured such that the worker can remotely stop the transport vehicles 10 and 110 by using a beacon worn by the worker or another remote control device using infrared or wireless communication.
 移動車両の走行システム1,5,100,110A,110Bの安全機能として、マーカー40が例えば10m進んでも発見できない場合には、移動車両10,110,110A,110Bがコースを外れたと認識して自動で停止してもよい。搬送台車10,110,100A,100Bは、スピーカを備えてもよい。スピーカにより、マーカー40の直進、左折、右折、緊急停止等の動作の前に搬送台車の周囲に警報音や効果音を発生することができる。上述した実施形態においては、移動車両として、搬送台車10,110,100A,100Bに例をとって説明したが、これに限らず、搬送台車以外のあらゆる移動車両に本発明を適用し得ることは明らかである。 As a safety function of the traveling system 1, 5, 100, 110A, 110B of the moving vehicle, if the marker 40 cannot be found even if the marker 10m advances, for example, it is recognized that the moving vehicle 10, 110, 110A, 110B has deviated from the course and automatically. It may stop at. The transport vehicles 10, 110, 100A, and 100B may include a speaker. The speaker can generate an alarm sound or a sound effect around the transport trolley before the operation of the marker 40 such as straight ahead, left turn, right turn, emergency stop, and the like. In the above-described embodiment, an example has been described in which the transport vehicles 10, 110, 100 </ b> A, and 100 </ b> B are used as the mobile vehicles. However, the present invention is not limited thereto, and the present invention can be applied to any mobile vehicle other than the transport vehicles. it is obvious.
 1,5,100,100A,100B…移動車両の走行システム、
 2…走行エリア、 2a…走行路、
 10,110,110A,110B…搬送台車(移動車両)、
 11,111…本体部、 11a…載置台、 11b,111b…ハンドル、
 12…走行部、 13…駆動制御部、 13a…電源、
 15…車輪、 15a…車輪回転センサ、 15b…車輪回転数情報、
 16…モータ、 16a…減速機構、 17…キャスター、
 18…慣性計測ユニット(IMU)、 18a…検出信号、 19,119…操作部、 19a…シフトレバー、 19b…ジョイスティック、 19c…非常停止スイッチ、 19d…非常停止信号、 19e…速度切り替えダイヤル、 19f,19g…表示灯、
 20…ビーコン検出部、 21,22…赤外線カメラ、 23…距離センサ、
 24…ビーコン演算部、 24a…ビーコンBの位置情報、
 25…ビーコン処理部、 25a…ビーコン記憶部、 25b…走行情報、
 30…マーカー検出部、 31…カメラ(撮像手段)、 31a…発光部、 31b…撮像信号、 32…画像処理部、 32a…並び方向、 32b…検出マーク情報、
 32c…エラー信号、 33…マーカー制御部、 33a…非常停止信号、
 34…マーカー記憶部、 36…CPU部、 37…主スイッチ、 38…バンパー、
 38a…バンパーセンサ、 40…マーカー、
 41,41a~41i…第一列のマーク、 42,42a~42i…第二列のマーク、
 50…走行情報、 50a…修正走行情報、 51…配置位置情報、
 61~72…位置、 80…ネットワーク、 90…外部運転制御部、
 120,120A,120B…被牽引台車、 130…連結用部材、
 132,142…移動車両側の連結機構、
 134,154…被牽引台車側の連結機構、
 144…自動連結用部材、 144a…ピン部、 153…測距センサ、
 160…ピン、 162…ガイド、 164…バネ、
 170…牽引部材、 170a…牽引部材の孔、
 172…拘束部材、 174…リンク機構、 176…ソレノイド。

 
1,5,100,100A, 100B ... traveling system for moving vehicle,
2 ... running area 2a ... running path
10, 110, 110A, 110B ... Transportation trolley (moving vehicle),
11, 111: body part, 11a: mounting table, 11b, 111b: handle,
12: running section, 13: drive control section, 13a: power supply,
15: wheel, 15a: wheel rotation sensor, 15b: wheel rotation speed information,
16 ... motor, 16a ... reduction mechanism, 17 ... caster,
18: Inertial measurement unit (IMU), 18a: Detection signal, 19, 119: Operation unit, 19a: Shift lever, 19b: Joystick, 19c: Emergency stop switch, 19d: Emergency stop signal, 19e: Speed switching dial, 19f, 19g ... indicator light,
20: beacon detector, 21, 22: infrared camera, 23: distance sensor,
24: beacon operation unit, 24a: position information of beacon B,
25: beacon processing unit 25a: beacon storage unit 25b: travel information
Reference Signs List 30: marker detection unit, 31: camera (imaging means), 31a: light emitting unit, 31b: imaging signal, 32: image processing unit, 32a: arrangement direction, 32b: detection mark information,
32c: error signal 33: marker control unit 33a: emergency stop signal
34: marker storage unit, 36: CPU unit, 37: main switch, 38: bumper,
38a: bumper sensor, 40: marker,
41, 41a to 41i: marks in the first row, 42, 42a to 42i: marks in the second row,
50: travel information, 50a: corrected travel information, 51: arrangement position information,
61-72: Position, 80: Network, 90: External operation control unit,
120, 120A, 120B ... towed truck, 130 ... connecting member,
132, 142 ... connecting mechanism on the moving vehicle side,
134, 154: coupling mechanism on the towed truck side,
144: Automatic connection member 144a: Pin portion 153: Distance measuring sensor
160 ... pin, 162 ... guide, 164 ... spring,
170: traction member, 170a: hole of traction member,
172: restraining member, 174: link mechanism, 176: solenoid.

Claims (18)

  1.  本体部と、地上を走行するための走行部と、前記走行部を駆動制御する駆動制御部と、マーカー検出部と、を含む移動車両と、
     前記移動車両が走行すべき走行路に沿って配置されたマーカーと、
    を、備えており、
     前記マーカー検出部が、前記本体部の下方を撮像するための撮像手段と、前記撮像手段で撮像された撮像画面を画像処理して、前記マーカーを検出する画像処理部と、前記画像処理部で検出されたマーカーに基づいて、当該マーカーに前もって設定された走行情報を前記駆動制御部に出力するマーカー制御部と、を含んでおり、
     前記マーカーが、走行路を横切るように横方向に及び/又は走行路に沿って縦方向に並んだ少なくとも1個以上のマークを有し、
     前記駆動制御部が、前記マーカー制御部からの走行情報に基づいて前記走行部を駆動制御することにより、前記移動車両が、前記マーカーにより指定された走行路に沿って自律走行する、移動車両の走行システム。
    A traveling vehicle including a main body, a traveling unit for traveling on the ground, a drive control unit that drives and controls the traveling unit, and a marker detection unit,
    A marker arranged along a traveling path on which the moving vehicle should travel,
    , And
    An image pickup unit for picking up an image of the lower side of the main body unit, an image processing unit for performing image processing on an image picked up by the image pickup unit to detect the marker, and an image processing unit for detecting the marker. Based on the detected marker, a marker control unit that outputs travel information set in advance to the marker to the drive control unit,
    The marker has at least one or more marks arranged laterally across the track and / or vertically along the track;
    The drive control unit drives and controls the travel unit based on travel information from the marker control unit, whereby the mobile vehicle autonomously travels along a travel path specified by the marker. Traveling system.
  2.  本体部と、地上を走行するための走行部と、前記走行部を駆動制御する駆動制御部と、マーカー検出部と、を含む移動車両と、
     前記移動車両が走行すべき走行路に沿って配置されたマーカーと、
     前記移動車両に接続されるネットワークと、
     前記ネットワークに接続される前記移動車両の外部運転制御部と、
    を、備えており、
     前記マーカー検出部が、本体部の下方を撮像するための撮像手段と、前記撮像手段で撮像された撮像画面を画像処理して前記マーカーを検出する画像処理部と、前記画像処理部で検出されたマーカーに基づいて当該マーカーに前もって設定された走行情報を前記駆動制御部に出力するマーカー制御部と、を含んでおり、
     前記駆動制御部が、前記マーカー制御部からの走行情報に基づいて前記走行部を駆動制御することにより、前記移動車両が前記マーカーにより指定された走行路に沿って自律走行し、
     前記外部運転制御部が、必要に応じて前記ネットワークを介して前記マーカーにおける走行情報を変更することにより、前記移動車両の走行路を任意に変更できる、移動車両の走行システム。
    A traveling vehicle including a main body, a traveling unit for traveling on the ground, a drive control unit that drives and controls the traveling unit, and a marker detection unit,
    A marker arranged along a traveling path on which the moving vehicle should travel,
    A network connected to the moving vehicle;
    An external operation control unit of the mobile vehicle connected to the network,
    , And
    An image pickup unit for picking up an image of a lower part of the main body unit; an image processing unit for performing image processing on an image picked up by the image pickup unit to detect the marker; and A marker control unit that outputs driving information set in advance to the marker based on the marker, to the drive control unit,
    The drive control unit drives and controls the traveling unit based on traveling information from the marker control unit, whereby the mobile vehicle autonomously travels along a traveling path specified by the marker,
    A traveling system for a mobile vehicle, wherein the external driving control unit can change the travel route of the mobile vehicle arbitrarily by changing the travel information at the marker via the network as needed.
  3.  前記マーカーが、走行路を横切るように横方向に及び/又は走行路に沿って縦方向に並んだ少なくとも1個以上のマークを有する、請求項2に記載の移動車両の走行システム。 The traveling system for a mobile vehicle according to claim 2, wherein the marker has at least one or more marks arranged laterally across the traveling path and / or vertically along the traveling path.
  4.  前記マーカーが、横方向に及び/又は縦方向に並んだ複数個のマークを有する、請求項1又は2に記載の移動車両の走行システム。 The travel system according to claim 1 or 2, wherein the marker has a plurality of marks arranged in a horizontal direction and / or a vertical direction.
  5.  前記横方向に及び/又は縦方向に並んだ複数個のマークが、それぞれ同じマークでなるか又は異なるマークでなる、請求項1又は2に記載の移動車両の走行システム。 The traveling system for a mobile vehicle according to claim 1 or 2, wherein the plurality of marks arranged in the horizontal direction and / or the vertical direction each include the same mark or different marks.
  6.  前記移動車両は、さらに、前記走行部の車輪回転センサと前記本体部に取り付けられた慣性計測ユニットとを備えており、
     前記駆動制御部が、前記車輪回転センサの検出信号から移動距離を算出すると共に、前記慣性計測ユニットの検出信号から前記移動車両の進行方向の角度のずれを検出し、前記移動距離及び前記角度を補正し補正した移動距離及び角度に基づいて前記走行部を駆動制御する、請求項1又は2に記載の移動車両の走行システム。
    The moving vehicle further includes a wheel rotation sensor of the traveling unit and an inertial measurement unit attached to the main body,
    The drive control unit calculates a moving distance from a detection signal of the wheel rotation sensor, detects a deviation of an angle in a traveling direction of the moving vehicle from a detection signal of the inertial measurement unit, and calculates the moving distance and the angle. The traveling system for a moving vehicle according to claim 1, wherein the traveling unit is drive-controlled based on the corrected and corrected moving distance and angle.
  7.  前記画像処理部が、前記マーカーを構成する各マークの並んだ方向を検出し、
     前記マーカー制御部が、前記各マークの並んだ方向に基づいて走行情報による走行方向と実際の走行方向のずれを検出して前記走行情報を修正する、請求項1又は2に記載の移動車両の走行システム。
    The image processing unit detects a direction in which the marks constituting the marker are arranged,
    The moving vehicle according to claim 1, wherein the marker control unit corrects the traveling information by detecting a deviation between a traveling direction based on traveling information and an actual traveling direction based on a direction in which the marks are arranged. 4. Traveling system.
  8.  前記マーカーを構成する各マークが、それぞれ当該マーカーにおける配置位置情報を設定されており、
     前記マーカーを構成する各マークのうち、前記マーカー検出部による撮像画面の中央付近に位置するマークに基づいて、前記マーカー制御部がその配置位置情報から当該移動車両の走行路における横方向のずれを検出して前記走行情報を修正する、請求項1又は2に記載の移動車両の走行システム。
    Each mark constituting the marker is set the arrangement position information in the marker respectively,
    Based on the mark that is located near the center of the imaging screen by the marker detection unit among the marks that constitute the marker, the marker control unit determines the lateral displacement on the traveling path of the mobile vehicle from the arrangement position information based on the arrangement position information. The traveling system for a moving vehicle according to claim 1, wherein the traveling information is detected and the traveling information is corrected.
  9.  前記マーカーを構成する各マークが、直進、Uターン、左旋回、右旋回、停止、弧状の左旋回、弧状の右旋回の何れか又はこれらの一つ以上を組み合わせた走行情報を設定されている、請求項1又は2に記載の移動車両の走行システム。 Each mark constituting the marker is set to travel information that is any one of straight ahead, U-turn, left turn, right turn, stop, arc left turn, arc right turn, or a combination of one or more of these. The traveling system for a mobile vehicle according to claim 1, wherein
  10.  前記マーカーを構成する各マークが、直進の走行情報に関して、数段階の走行速度を設定されている、請求項9に記載の移動車両の走行システム。 The traveling system for a mobile vehicle according to claim 9, wherein each mark constituting the marker is set at several stages of traveling speeds with respect to traveling information of straight traveling.
  11.  さらに、移動車両が、障害物センサを備えている、請求項1又は2に記載の移動車両の走行システム。 (3) The traveling system for a moving vehicle according to claim 1 or 2, wherein the moving vehicle further includes an obstacle sensor.
  12.  さらに、操作時に非常停止信号を出力する非常停止操作部を備えており、
     前記非常停止操作部が操作されたとき、前記マーカー制御部が、前記非常停止操作部からの非常停止信号に基づいて前記マーカーによる自律走行を中断して非常停止の走行情報を生成して前記駆動制御部に送出し、
     前記駆動制御部が、前記マーカー制御部からの非常停止の走行情報に基づいて、前記走行部を駆動制御して非常停止させる、請求項1又は2に記載の移動車両の走行システム。
    In addition, it has an emergency stop operation unit that outputs an emergency stop signal at the time of operation,
    When the emergency stop operation unit is operated, the marker control unit interrupts autonomous traveling by the marker based on an emergency stop signal from the emergency stop operation unit, generates emergency stop travel information, and performs the drive. Sent to the control unit,
    The traveling system for a mobile vehicle according to claim 1, wherein the drive control unit drives and controls the travel unit to perform an emergency stop based on emergency stop travel information from the marker control unit.
  13.  前記マーカーを構成する各マークが、さらに追従モード切替えの走行情報を設定されており、
     前記本体部が、前方の追従すべきビーコンからの識別光を検出して、前記ビーコンの方向及び距離から成るビーコン位置情報を生成するビーコン検出部を備えていて、
     前記マーカー制御部が、前記画像処理部で検出したマーカーが追従モード切替えの走行情報に関連付けられているとき、前記マーカーによる自律走行を中断して、前記ビーコン検出部がビーコン位置情報に基づいて前記ビーコンに向かって走行するための走行情報を生成して前記駆動制御部に送出し、
     前記駆動制御部が、前記ビーコン検出部からの走行情報に基づいて前記走行部を駆動制御することにより、前記移動車両が前記ビーコンの移動に追従して走行する、請求項1又は2に記載の移動車両の走行システム。
    Each mark constituting the marker is further set with travel information for following mode switching,
    The main unit includes a beacon detecting unit that detects identification light from a beacon to be followed ahead and generates beacon position information including a direction and a distance of the beacon,
    The marker control unit, when the marker detected by the image processing unit is associated with the traveling information of the following mode switching, suspends autonomous traveling by the marker, the beacon detection unit based on the beacon position information, Generates traveling information for traveling toward the beacon and sends it to the drive control unit,
    3. The vehicle according to claim 1, wherein the drive control unit drives and controls the traveling unit based on traveling information from the beacon detection unit, so that the moving vehicle travels following the movement of the beacon. 4. Traveling system for moving vehicles.
  14.  前記ビーコンが、携帯型ビーコンであって、
     前記ビーコン検出部が前記携帯型ビーコンからの識別光を検出したとき、前記マーカー制御部が前記マーカーによる自律走行を中断して、前記ビーコン検出部が前記移動車両を所定距離だけ直進して停止させる、請求項13に記載の移動車両の走行システム。
    The beacon is a portable beacon,
    When the beacon detection unit detects the identification light from the portable beacon, the marker control unit suspends autonomous traveling by the marker, and the beacon detection unit stops the mobile vehicle by moving straight ahead by a predetermined distance. A traveling system for a mobile vehicle according to claim 13.
  15.  前記本体部が、平坦な載置台を備えた搬送台車の本体部として構成されている、請求項1又は2に記載の移動車両の走行システム。 The traveling system for a mobile vehicle according to claim 1 or 2, wherein the main body is configured as a main body of a transport vehicle having a flat mounting table.
  16.  前記移動車両と被牽引台車とを牽引するための連結機構を備えている、請求項1又は2に記載の移動車両の走行システム。 The traveling system for a mobile vehicle according to claim 1 or 2, further comprising a connection mechanism for towing the mobile vehicle and the towed truck.
  17.  前記連結機構として、前記被牽引台車が、該被牽引台車の本体部の下部において下方に突出したピンと、前記移動車両を該被牽引台車の下部側に潜り込ませて保持する左右両側に設けた一対のガイドと、を備え、
     前記移動車両が、前記被牽引台車を連結する際に前記ピンを挿入する牽引部材と、前記ピンが該牽引部材の孔に挿入されたときに該ピンの離脱を抑止するバネ性の拘束部材と、前記牽引部材に接続したリンク機構と、該リンク機構を駆動するソレノイドと、を備え、
     前記連結機構による連結を解除する際は、前記ソレノイドを駆動することにより前記リンク機構を吸引して前記牽引部材を前記ピンの下方に引き下げることで前記被牽引台車を前記移動車両から離脱させる、請求項16に記載の移動車両の走行システム。
    As the connection mechanism, the towed truck has a pin protruding downward at a lower portion of the main body of the towed truck, and a pair of left and right sides provided to hold the moving vehicle underneath the towed truck. And a guide of
    The moving vehicle, a traction member that inserts the pin when connecting the towed truck, and a spring-like restraining member that prevents detachment of the pin when the pin is inserted into a hole of the traction member. A link mechanism connected to the traction member, and a solenoid driving the link mechanism,
    When releasing the connection by the connection mechanism, the towed truck is disengaged from the moving vehicle by driving the solenoid to suck the link mechanism and pull the towing member below the pin. Item 17. A traveling system for a mobile vehicle according to item 16.
  18.  前記移動車両が前記被牽引台車に自動接続又は自動離脱するように、前記マーカーに前もって走行情報が設定される、請求項16又は17に記載の移動車両の走行システム。

     
    The traveling system for a moving vehicle according to claim 16 or 17, wherein traveling information is set in advance on the marker so that the traveling vehicle is automatically connected to or disconnected from the towed vehicle.

PCT/JP2019/027813 2018-07-13 2019-07-12 Travel system for mobile vehicle WO2020013337A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020530289A JP7006889B2 (en) 2018-07-13 2019-07-12 Traveling system for moving vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-133735 2018-07-13
JP2018133735 2018-07-13

Publications (1)

Publication Number Publication Date
WO2020013337A1 true WO2020013337A1 (en) 2020-01-16

Family

ID=69143053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027813 WO2020013337A1 (en) 2018-07-13 2019-07-12 Travel system for mobile vehicle

Country Status (2)

Country Link
JP (1) JP7006889B2 (en)
WO (1) WO2020013337A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240006670A (en) 2021-11-10 2024-01-15 가부시키가이샤 제트엠피 Driving system of self-driving car

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05108153A (en) * 1991-10-18 1993-04-30 Shinko Electric Co Ltd Traveling control method for unmanned vehicle
JPH08211936A (en) * 1995-02-02 1996-08-20 Mitsubishi Heavy Ind Ltd Guiding device for traveling object
JP2000053395A (en) * 1998-08-07 2000-02-22 Mitsubishi Electric Corp Automatical transporting device
JP2002091564A (en) * 2000-09-20 2002-03-29 Hitachi Cable Ltd Running controller and automatic running system using the controller
JP2015222541A (en) * 2014-05-23 2015-12-10 株式会社日立産機システム Carriage conveying system, carrier, and carriage conveying method
JP2016134019A (en) * 2015-01-20 2016-07-25 村田機械株式会社 Travel vehicle system
US20160313740A1 (en) * 2014-01-14 2016-10-27 Grenzebach Maschinenbau Gmbh Orientation device for electrically operated transportation vehicles, automatically guided in factory building
JP2017041188A (en) * 2015-08-21 2017-02-23 株式会社Zmp Load carrying device and computer program
CN107479545A (en) * 2016-06-08 2017-12-15 易控自动化科技股份有限公司 The system of automatic guided vehicle
JP2018106312A (en) * 2016-12-23 2018-07-05 株式会社Zmp Mobile vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4840162B2 (en) 2007-01-26 2011-12-21 パナソニック電工株式会社 Autonomous mobile system
JP2009237851A (en) 2008-03-27 2009-10-15 Toyota Motor Corp Mobile object control system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05108153A (en) * 1991-10-18 1993-04-30 Shinko Electric Co Ltd Traveling control method for unmanned vehicle
JPH08211936A (en) * 1995-02-02 1996-08-20 Mitsubishi Heavy Ind Ltd Guiding device for traveling object
JP2000053395A (en) * 1998-08-07 2000-02-22 Mitsubishi Electric Corp Automatical transporting device
JP2002091564A (en) * 2000-09-20 2002-03-29 Hitachi Cable Ltd Running controller and automatic running system using the controller
US20160313740A1 (en) * 2014-01-14 2016-10-27 Grenzebach Maschinenbau Gmbh Orientation device for electrically operated transportation vehicles, automatically guided in factory building
JP2015222541A (en) * 2014-05-23 2015-12-10 株式会社日立産機システム Carriage conveying system, carrier, and carriage conveying method
JP2016134019A (en) * 2015-01-20 2016-07-25 村田機械株式会社 Travel vehicle system
JP2017041188A (en) * 2015-08-21 2017-02-23 株式会社Zmp Load carrying device and computer program
CN107479545A (en) * 2016-06-08 2017-12-15 易控自动化科技股份有限公司 The system of automatic guided vehicle
JP2018106312A (en) * 2016-12-23 2018-07-05 株式会社Zmp Mobile vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240006670A (en) 2021-11-10 2024-01-15 가부시키가이샤 제트엠피 Driving system of self-driving car

Also Published As

Publication number Publication date
JP7006889B2 (en) 2022-01-24
JPWO2020013337A1 (en) 2021-08-02

Similar Documents

Publication Publication Date Title
JP4920645B2 (en) Autonomous mobile robot system
JP6047083B2 (en) Parking assistance system
WO2019187816A1 (en) Mobile body and mobile body system
WO2019026761A1 (en) Moving body and computer program
JP2016218736A (en) Unmanned conveyance system
JP7469494B2 (en) Method for controlling an automated guided vehicle and a control system configured to carry out said method - Patents.com
JP2019139549A (en) System and method for controlling travel of transport vehicles
KR101968217B1 (en) Automated Guided Vehicle capable of sequential obstacle avoidance
JP7450271B2 (en) Conveyance system and conveyance control method
JP2018092393A (en) Automatic carrier vehicle control system
WO2020013337A1 (en) Travel system for mobile vehicle
JP6684531B2 (en) Unmanned transport system
US20210284233A1 (en) Autonomous traveling device and autonomous traveling control method
JP2020154454A (en) Autonomous mobile device, guidance system, and movement method of autonomous mobile device
US20220410898A1 (en) Autonomous trailer maneuvering
JP7095301B2 (en) Travel control system for transport vehicles and travel control methods for transport vehicles
JP7112803B1 (en) Transport system and transport control method
CN115712287A (en) Cargo handling system based on AGV conveyer
JP2022034519A (en) Mobile vehicle travelling system
JP6532096B1 (en) Unmanned carrier system using unmanned air vehicle
WO2019069921A1 (en) Mobile body
KR20210021746A (en) Tracking Driving System for Logistics Transfer Robot
JP7464319B2 (en) Transport system and transport control method
JP7301409B2 (en) Transport system and transport control method
WO2022149285A1 (en) Transport system and transport control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833344

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020530289

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833344

Country of ref document: EP

Kind code of ref document: A1