WO2020012928A1 - In-vehicle electronic control device - Google Patents

In-vehicle electronic control device Download PDF

Info

Publication number
WO2020012928A1
WO2020012928A1 PCT/JP2019/024868 JP2019024868W WO2020012928A1 WO 2020012928 A1 WO2020012928 A1 WO 2020012928A1 JP 2019024868 W JP2019024868 W JP 2019024868W WO 2020012928 A1 WO2020012928 A1 WO 2020012928A1
Authority
WO
WIPO (PCT)
Prior art keywords
integrated circuit
voltage level
communication
arithmetic
arithmetic unit
Prior art date
Application number
PCT/JP2019/024868
Other languages
French (fr)
Japanese (ja)
Inventor
比呂志 簡野
宇佐美 陽
昌宏 土肥
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2020530073A priority Critical patent/JP7091456B2/en
Publication of WO2020012928A1 publication Critical patent/WO2020012928A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements

Definitions

  • the present invention relates to an on-vehicle electronic control device for the purpose of adjusting the signal voltage levels of both communication means in communication within the on-vehicle electronic control device.
  • the serial communication represented by the two values of the high-level voltage “1” and the low-level voltage “0” is generally used between the devices in the vehicle-mounted electronic control device.
  • an appropriate signal voltage level on the transmission (output) side corresponding to the voltage threshold on the reception (input) side is required. If the signal voltage level between the transmission and the reception does not match, the transmission content cannot be correctly received on the receiving side ("0" and "1" cannot be correctly determined), and the communication is not established.
  • a differential method that is resistant to common-mode noise is used for high-speed communication.
  • high speed is required for communication from the arithmetic unit to an integrated circuit having a built-in drive unit, and normal high-level and low-level low-speed communication is used from the integrated circuit to the arithmetic unit.
  • Patent Document 1 describes serial communication performed between a CAN transceiver and an arithmetic unit.
  • TxD is an output signal sent from the arithmetic unit to the CAN transceiver
  • RxD is an input signal received by the arithmetic unit from the CAN transceiver.
  • These communications correspond to the low-speed communications performed between the devices in the above-mentioned in-vehicle electronic control device.
  • the differential communication performed by the CAN transceiver using the CAN bus line with another in-vehicle electronic control device does not correspond to the aforementioned high-speed serial communication performed in the in-vehicle electronic control device.
  • the signal voltage level between such a CAN transceiver and the arithmetic unit is set by a Vio pin provided on the CAN transceiver.
  • the Vio pin By connecting this Vio pin to the Vcc of the processing unit, the signal voltage level output from the CAN transceiver to the processing unit as RxD is set to the Vcc of the processing unit.
  • the signal voltage level of TxD input from the arithmetic unit to the CAN transceiver is Vcc, and the input threshold of the CAN transceiver is set to a value suitable for the Vcc level. In this way, the input and output signal voltage levels of the CAN transceiver and the arithmetic unit are set to appropriate values, so that communication can be performed without any problem.
  • the number of pins of the arithmetic unit has increased drastically with the advancement of functions of the arithmetic unit, and a plurality of input / output functions are assigned to one pin. It is difficult to arbitrarily set the signal voltage level of the pin.
  • the signal voltage level of a pin used for serial communication is fixed to 5 V or 3.3 V in advance, or a plurality of Vio pins for setting signal voltage levels of a plurality of pins are provided, Either method has been used.
  • the problem to be solved by the present invention is to make it possible to arbitrarily set the output signal voltage level on the integrated circuit side of the high-speed serial communication using the differential method for such an arithmetic device that is becoming more sophisticated and complicated. It is to be.
  • a switch for switching the output signal voltage level of the high-speed serial communication using the differential method is provided in the integrated circuit, and the switch is used for communication from the arithmetic device. By switching the switch, the output signal voltage level on the integrated circuit side can be set arbitrarily.
  • a switch for switching an output signal voltage level of high-speed serial communication using a differential method in an integrated circuit and a pin for switching the switch are provided, and the pin is set to a high level or a low level.
  • the output signal voltage level on the integrated circuit side can be arbitrarily set.
  • a pin for providing an output signal voltage level for high-speed serial communication using a differential method is provided in an integrated circuit, and an arbitrary power supply voltage is applied to the pin, so that an output signal on the integrated circuit side is provided.
  • the voltage level can be set arbitrarily.
  • a signal voltage level conversion circuit is provided on an output signal line of high-speed serial communication using a differential method of an integrated circuit, so that a signal voltage level input to an arithmetic unit can be arbitrarily set. Can be.
  • the communication with the arithmetic unit can be established by arbitrarily setting the output signal voltage level on the integrated circuit side without providing a new pin on the integrated circuit.
  • the output signal voltage level on the integrated circuit side can be arbitrarily set without changing the communication definition between the integrated circuit and the arithmetic device. Communication can be established.
  • the signal voltage level input to the arithmetic unit is arbitrarily set only by adding the signal voltage level conversion circuit to establish communication with the arithmetic unit. be able to.
  • Circuit configuration diagram of Example 1 Detailed view of voltage switch 103 Circuit configuration diagram of Embodiment 2 Circuit configuration diagram of Embodiment 3 Circuit configuration diagram of Example 4
  • Example 5 circuit configuration diagram Example 5 circuit configuration diagram
  • the on-vehicle electronic control device 1 is provided with an arithmetic unit 101 and an integrated circuit 102, and both perform high-speed serial communication using a differential system.
  • the arithmetic unit 101 performs “”.
  • the integrated circuit 102 performs “”.
  • the data register 105 performs “”.
  • SI + is communicated via the differential input signal line (+) 201
  • SI ⁇ is communicated via the differential input signal line ( ⁇ ) from the arithmetic unit 101 to the integrated circuit 102.
  • each bias level and signal amplitude are specified in advance, and a device that satisfies the specifications can communicate normally.
  • Data input from the integrated circuit 102 to the arithmetic device 101 is SO203 of serial output data represented by high level and low level.
  • the output interface 104 of the integrated circuit 102 is provided with a switch 103 for switching the output signal voltage level.
  • the switch 103 is provided to switch the connection destination of the output interface 104 to one of VCC33 (3.3 V power supply) and VCC5 (5 V power supply).
  • the switch 103 is controlled by a switching signal 204 output from the data register 105.
  • the arithmetic device 101 transmits the differential signals SI + 201 and SI-202 to the data register of the integrated circuit 102.
  • An output signal voltage level register (not shown) 105 is set to VCC5.
  • the switching signal 204 controls the switch 103 to select VCC5, and the output interface 104 is supplied with VCC5.
  • the SO203 of the serial output data becomes a signal whose high level is 5 V, and communication with the arithmetic unit 101 is established.
  • the switching signal 204 similarly controls the switch 103 to select VCC33, and SO203 of the serial output data is high.
  • the signal has a level of 3.3 V, and communication with the arithmetic unit 101 is established.
  • the output signal voltage levels are two types, VCC33 (3.3V power supply) and VCC5 (5V power supply) .However, the output signal voltage levels are not limited to these voltage values, but may be different. Any configuration may be used as long as it is set. Further, the present invention is not limited to two types, and may include three or more types of voltage set values. The same applies to the following embodiments.
  • the switch element provided in the integrated circuit 102 is controlled based on the input value from the differential signal line, and the voltage level of the internal power supply supplied to the output interface 104 is selected to an arbitrary value. Therefore, the signal voltage level of the SO 203 of the integrated circuit 102 can be arbitrarily set without providing a new pin on the integrated circuit 102. According to the present embodiment, there is a specific effect that communication with various arithmetic devices 101 can be established without increasing the number of pins of the integrated circuit 102.
  • Embodiment 2 of the present invention will be described with reference to FIG.
  • the switch 103 for switching the output signal voltage level of the output interface 104 of the integrated circuit 102 is controlled by the switching signal 204 output from the data register 105.
  • a pin 302 for setting the switching signal 204 is provided as shown in FIG.
  • switch 103 selects VCC33 when 5V is applied to pin 302 and VCC5 when 0V (GND) is applied, connecting pin 302 to GND as shown in Fig. SO203 becomes a signal whose high level is 5V, and communication with the arithmetic unit 101 is established.
  • connection destination of the pin (terminal) 302 is, for example, a voltage line provided on a substrate on which the integrated circuit 102 and the arithmetic device 101 are mounted.
  • the switching control for switching the connection destination of the output interface of the integrated circuit 102 to the first internal power supply (3.3 V) or the second internal power supply (5 V) is performed by changing the switching control to the voltage connected to the pin 302. Since the present invention is implemented in accordance with this, the signal voltage level of SO203 of the integrated circuit 102 can be set arbitrarily without changing the register configuration of the data register 105 of the integrated circuit 102. In the present embodiment, similarly, communication with various arithmetic devices 101 can be established by the same circuit configuration of the integrated circuit.
  • the switch 103 for switching the output signal voltage level of the output interface 104 of the integrated circuit 102 is built in the integrated circuit 102.
  • the switch 103 is not provided, and the pin 401 for setting the output signal voltage level of the output interface 104 of the integrated circuit 102 is provided.
  • the SO203 of the serial output data becomes a signal having a high level of 5V, and the communication with the arithmetic unit 101 is established.
  • connection destination of the pin 401 shown in FIG. 4 is changed from VCC5 to VCC33, communication with the arithmetic device 101 is established even when the signal voltage level of the input interface of the arithmetic device 101 is 3.3 V. Will be done.
  • connection destination of the pin (terminal) 401 is, for example, a voltage line provided on a substrate on which the integrated circuit 102 and the arithmetic device 101 are mounted.
  • the integrated circuit 102 includes the terminal 401 connected to the output interface 104, and the terminal 401 is connected to a voltage equal to the signal voltage level of the input interface 106 of the arithmetic device 101 to perform the arithmetic operation.
  • the signal levels of the input interface of the device 101 and the output interface of the integrated circuit 102 are equalized.
  • Embodiment 4 of the present invention will be described with reference to FIG.
  • the integrated circuit 102 is provided with the diode 501 between the internal power supply VCC33 and the output interface 104.
  • the diode 501 is provided so that the direction from the internal power supply VCC33 to the output interface 104 is forward.
  • the integrated circuit 102 is provided with a pin (terminal) 401 connected between the diode 501 and the output interface 104.
  • VCC33 is given to the output interface 104 via the diode 501, and SO203 of serial output data is output.
  • the terminal When the signal voltage level of the input interface 106 of the arithmetic unit 101 is equal to the voltage supplied from the internal power supply VCC33 to the output interface 104 via the diode 501, the terminal is opened to connect the output interface 104 to the input The signal voltage levels of the interface 106 become equal, and communication can be established.
  • connection destination of the pin (terminal) 401 is, for example, a voltage line provided on a substrate on which the integrated circuit 102 and the arithmetic device 101 are mounted.
  • the signal voltage level of the output interface 104 can be determined depending on whether the pin 401 is open or connected, the appearance inspection becomes easy.
  • communication with various arithmetic devices 101 can be established by the same circuit configuration of the integrated circuit.
  • Embodiments 1 to 3 show a method of solving the problem by adding new means to the integrated circuit 102, but this embodiment is a solution without changing the integrated circuit 102.
  • the output signal voltage level of the output interface 104 of the integrated circuit 102 is fixed to VCC33, and the SO203 of the serial output data is a signal whose high level is 3.3V.
  • the power supply voltage pin 301 of the input interface 106 of the arithmetic unit 101 is connected to VCC5, the input interface 106 has a threshold corresponding to a signal voltage level of 5 V, and is a high-level voltage “1”. And low-level voltage “0” may not be correctly identified.
  • the signal of the output interface 104 of the integrated circuit 102 is input to the input interface 106 of the arithmetic unit 101 via the signal voltage level conversion circuit 601.
  • the signal voltage level conversion circuit 601 can be easily realized by using an AND circuit, an OR circuit, a buffer circuit, or the like of a general-purpose logic IC capable of outputting 5 V corresponding to a 3.3 V input, for example.
  • the signal voltage level conversion circuit 601 By using the signal voltage level conversion circuit 601 to convert the high level of SO203, which is the output of the output interface 104 of the integrated circuit 102, from 3.3V to 5V and input the same to the input interface 106 of the arithmetic unit 101, communication is performed. It can be established.
  • FIG. 1 A further preferred example is shown using FIG.
  • the input of the arithmetic unit 101 is shared not only with the integrated circuit 102 but also with the second integrated circuit 702 and the third integrated circuit 703, in order to avoid collision of output signals, respective signal voltage level conversion circuits are used. It is necessary to provide the 701, 704, and 705 with a function to make the output high impedance.
  • This function can be easily realized by using a general-purpose logic IC that makes the output not only high-level and low-level voltage but also high impedance. It should be noted that a chip select signal (not shown) output from the arithmetic unit 101 to each of the integrated circuits 101, 702, and 703 may be used as a control signal for setting a high impedance (not shown).
  • communication between the two can be established without changing the arithmetic unit 101 or the integrated circuit 102. Further, the input of the arithmetic unit can be shared by a plurality of integrated circuits.
  • on-vehicle electronic control unit 101 ... arithmetic unit 102 ... integrated circuit 103 ... switch 104 for switching the output signal voltage level ... output interface 105 of integrated circuit 102 ... data register 106 of integrated circuit 102 ... input interface 201 of arithmetic unit 101 ... differential input signal line (+) 202 ... differential input signal line (-) 203 ... serial output data 204 of the integrated circuit 102 ... switch signal 301 of the switch 103 ... power supply voltage pin 302 of the input interface 106 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Mechanical Engineering (AREA)
  • Logic Circuits (AREA)
  • Information Transfer Systems (AREA)

Abstract

As the functionality of a calculating device is increased to a high level, the number of pins in said calculating device increases significantly, and a plurality of input/output functions are assigned to a single pin, and thus it becomes difficult to set signal voltage levels for each individual input/output pin of the calculating device at will. For high-speed serial communication using a differential system, signal voltage levels between devices are commonly stipulated in advance, and cannot be set at will. The present invention addresses the problem of allowing an integrated circuit-side output signal voltage level for high-speed serial communication using a differential system to be set at will, in a calculating device with a high level of functionality and increased complexity.

Description

車載電子制御装置In-vehicle electronic control unit
 本発明は、車載電子制御装置内の通信において、通信手段双方の信号電圧レベルを合わせることを目的とした車載電子制御装置に関する。 The present invention relates to an on-vehicle electronic control device for the purpose of adjusting the signal voltage levels of both communication means in communication within the on-vehicle electronic control device.
 車載電子制御装置内のデバイス間では、ハイレベルの電圧である”1”とローレベルの電圧である”0”の2値で表現されるシリアル通信が一般的に用いられる。デバイス間で正常な通信を行う為には、受信(入力)側の電圧閾値に対応した適切な送信(出力)側の信号電圧レベルが必要である。送受信間の信号電圧レベルが合わなければ、受信側で送信内容が正しく受け取れず(”0”と”1”を正しく判別できない)、通信が成立しない。 シ リ ア ル The serial communication represented by the two values of the high-level voltage “1” and the low-level voltage “0” is generally used between the devices in the vehicle-mounted electronic control device. In order to perform normal communication between devices, an appropriate signal voltage level on the transmission (output) side corresponding to the voltage threshold on the reception (input) side is required. If the signal voltage level between the transmission and the reception does not match, the transmission content cannot be correctly received on the receiving side ("0" and "1" cannot be correctly determined), and the communication is not established.
 また、車載電子制御装置が駆動するリレーやソレノイドなどの数は年々増加し、駆動装置の制御端子を個別に演算装置が制御するのは困難になっている。このため、高速のシリアル通信で駆動装置を内蔵した集積回路と演算装置をつなぐ方法が採用され始めている。
このような高速シリアル通信を用いれば、リアルタイムの制御を確保しながら、演算装置が直接多くの駆動装置の制御端子を制御する必要がなく、大幅に演算装置及び駆動装置を内蔵した集積回路のピンを削減することができる。
In addition, the number of relays, solenoids, and the like driven by the on-vehicle electronic control device is increasing year by year, and it is difficult for the arithmetic device to individually control the control terminals of the drive device. For this reason, a method of connecting an arithmetic circuit with an integrated circuit having a built-in driving device by high-speed serial communication has begun to be adopted.
The use of such high-speed serial communication eliminates the need for the arithmetic unit to directly control the control terminals of many drive units while ensuring real-time control, and significantly reduces the pins of the integrated circuit incorporating the arithmetic unit and the drive unit. Can be reduced.
 尚、一般的に高速通信には同相ノイズに強い差動方式が用いられている。ここで、高速化が求められるのは、演算装置から駆動装置を内蔵した集積回路への通信であり、集積回路から演算装置へは通常のハイレベルとローレベルの低速通信が用いられている。 In general, a differential method that is resistant to common-mode noise is used for high-speed communication. Here, high speed is required for communication from the arithmetic unit to an integrated circuit having a built-in drive unit, and normal high-level and low-level low-speed communication is used from the integrated circuit to the arithmetic unit.
 このような状況の中で、演算装置の高機能化に伴い、ピン数が増加するとともに、一つのピンに複数の入出力機能が割り当てられるなどの使い勝手の向上が図られている。 (5) Under such circumstances, the number of pins has been increased along with the sophistication of the arithmetic unit, and the usability has been improved such that a plurality of input / output functions are assigned to one pin.
特開2014-226947JP 2014-226947
 特許文献1では、CANトランシーバーと演算装置の間で行われるシリアル通信が表記されている。ここでTxDは演算装置からCANトランシーバーへ送られる出力信号であり、RxDは演算装置がCANトランシーバーから受取る入力信号である。これらの通信は前述の車載電子制御装置内のデバイス間で行われる低速通信に該当する。但し、CANトランシーバーがCANバスラインを使って他の車載電子制御装置と行う差動方式の通信は、車載電子制御装置内で行われる前述の高速シリアル通信には該当しない。 Patent Document 1 describes serial communication performed between a CAN transceiver and an arithmetic unit. Here, TxD is an output signal sent from the arithmetic unit to the CAN transceiver, and RxD is an input signal received by the arithmetic unit from the CAN transceiver. These communications correspond to the low-speed communications performed between the devices in the above-mentioned in-vehicle electronic control device. However, the differential communication performed by the CAN transceiver using the CAN bus line with another in-vehicle electronic control device does not correspond to the aforementioned high-speed serial communication performed in the in-vehicle electronic control device.
 このようなCANトランシーバーと演算装置間の信号電圧レベルは、CANトランシーバーに設けられたVioピンで設定される。このVioピンを演算装置のVccと接続することで、RxDとしてCANトランシーバーから演算装置に出力される信号電圧レベルが、演算装置のVccに設定される。また、演算装置からCANトランシーバーに入力されるTxDの信号電圧レベルはVccであり、CANトランシーバーの入力閾値はVccレベルに適した値に設定される。このようにして、CANトランシーバーと演算装置の入出力信号電圧レベルは適正な値に設定されるため、問題なく通信が行われることになる。 信号 The signal voltage level between such a CAN transceiver and the arithmetic unit is set by a Vio pin provided on the CAN transceiver. By connecting this Vio pin to the Vcc of the processing unit, the signal voltage level output from the CAN transceiver to the processing unit as RxD is set to the Vcc of the processing unit. The signal voltage level of TxD input from the arithmetic unit to the CAN transceiver is Vcc, and the input threshold of the CAN transceiver is set to a value suitable for the Vcc level. In this way, the input and output signal voltage levels of the CAN transceiver and the arithmetic unit are set to appropriate values, so that communication can be performed without any problem.
 しかし、前述のように演算装置の高機能化に伴い、演算装置のピン数が大幅に増加するとともに、一つのピンに複数の入出力機能が割り当てられているため、演算装置の個別の入出力ピンの信号電圧レベルを任意に設定することが困難になっている。 However, as described above, the number of pins of the arithmetic unit has increased drastically with the advancement of functions of the arithmetic unit, and a plurality of input / output functions are assigned to one pin. It is difficult to arbitrarily set the signal voltage level of the pin.
 一般的には、シリアル通信に用いられるピンの信号電圧レベルは、5Vもしくは3.3Vに予め固定されているか、複数のピンの信号電圧レベルを設定するための複数のVioピンが設けられているか、いずれかの方法が用いられている。 In general, the signal voltage level of a pin used for serial communication is fixed to 5 V or 3.3 V in advance, or a plurality of Vio pins for setting signal voltage levels of a plurality of pins are provided, Either method has been used.
 また、差動方式を用いた高速シリアル通信の場合、一般的に予めデバイス間の信号電圧レベルが規定され、任意に設定することはできない。 In addition, in the case of high-speed serial communication using a differential method, generally, a signal voltage level between devices is specified in advance and cannot be arbitrarily set.
 例えば、信号電圧レベルが規定された差動方式を用いた高速シリアル通信を採用した集積回路と、複数のピンの信号電圧レベルをVioピンで設定する方法が用いられている演算装置の場合を想定する。集積回路側は、高速シリアル通信の信号電圧レベルが規定されているため、任意に設定することはできない。一方、演算装置側は、高速シリアル通信に用いるピンだけを、任意の信号電圧レベルに設定することはできないため、両者の信号電圧レベルが合わず、通信が成立しない場合が有り得る。 For example, assume the case of an integrated circuit that employs high-speed serial communication using a differential method in which signal voltage levels are specified, and an arithmetic device that uses a method of setting signal voltage levels of multiple pins with Vio pins. I do. Since the signal voltage level of the high-speed serial communication is specified on the integrated circuit side, it cannot be set arbitrarily. On the other hand, since the arithmetic unit cannot set only the pins used for high-speed serial communication to an arbitrary signal voltage level, the signal voltage levels of the two may not match, and communication may not be established.
 本発明が解決しようとする課題は、このように高機能化と複雑化が進む演算装置に対し、差動方式を用いた高速シリアル通信の集積回路側の出力信号電圧レベルを任意に設定できるようにすることである。 The problem to be solved by the present invention is to make it possible to arbitrarily set the output signal voltage level on the integrated circuit side of the high-speed serial communication using the differential method for such an arithmetic device that is becoming more sophisticated and complicated. It is to be.
 上記課題を解決するため、本発明に係る車載電子制御装置では、集積回路内に差動方式を用いた高速シリアル通信の出力信号電圧レベルを切り替えるためのスイッチを設け、演算装置からの通信で前記スイッチを切り替えることで、集積回路側の出力信号電圧レベルを任意に設定することができる。 In order to solve the above problems, in the vehicle-mounted electronic control device according to the present invention, a switch for switching the output signal voltage level of the high-speed serial communication using the differential method is provided in the integrated circuit, and the switch is used for communication from the arithmetic device. By switching the switch, the output signal voltage level on the integrated circuit side can be set arbitrarily.
 また、本発明では、集積回路内に差動方式を用いた高速シリアル通信の出力信号電圧レベルを切り替えるためのスイッチと、前記スイッチを切り替えるためのピンを設け、前記ピンをハイレベルやローレベルなどに設定することで、集積回路側の出力信号電圧レベルを任意に設定することができる。 In the present invention, a switch for switching an output signal voltage level of high-speed serial communication using a differential method in an integrated circuit and a pin for switching the switch are provided, and the pin is set to a high level or a low level. , The output signal voltage level on the integrated circuit side can be arbitrarily set.
 また、本発明では、集積回路内に差動方式を用いた高速シリアル通信の出力信号電圧レベルを与えるためのピンを設け、前記ピンに任意の電源電圧を与えることで、集積回路側の出力信号電圧レベルを任意に設定することができる。 Further, according to the present invention, a pin for providing an output signal voltage level for high-speed serial communication using a differential method is provided in an integrated circuit, and an arbitrary power supply voltage is applied to the pin, so that an output signal on the integrated circuit side is provided. The voltage level can be set arbitrarily.
 さらに、本発明では、集積回路の差動方式を用いた高速シリアル通信の出力信号ライン上に、信号電圧レベル変換回路を設けることで、演算装置に入力される信号電圧レベルを任意に設定することができる。 Further, according to the present invention, a signal voltage level conversion circuit is provided on an output signal line of high-speed serial communication using a differential method of an integrated circuit, so that a signal voltage level input to an arithmetic unit can be arbitrarily set. Can be.
 本発明によれば、集積回路に新たなピンを設けることなく、集積回路側の出力信号電圧レベルを任意に設定して、演算装置との通信を成立させることができる。 According to the present invention, the communication with the arithmetic unit can be established by arbitrarily setting the output signal voltage level on the integrated circuit side without providing a new pin on the integrated circuit.
 また、本発明によれば、新たにピンを設けることで、集積回路と演算装置との間の通信定義を変更せずに、集積回路側の出力信号電圧レベルを任意に設定して、演算装置との通信を成立させることができる。 Further, according to the present invention, by providing a new pin, the output signal voltage level on the integrated circuit side can be arbitrarily set without changing the communication definition between the integrated circuit and the arithmetic device. Communication can be established.
 さらに、本発明によれば、集積回路を変更せずに、信号電圧レベル変換回路を追加するだけで演算装置に入力される信号電圧レベルを任意に設定して、演算装置との通信を成立させることができる。 Further, according to the present invention, without changing the integrated circuit, the signal voltage level input to the arithmetic unit is arbitrarily set only by adding the signal voltage level conversion circuit to establish communication with the arithmetic unit. be able to.
実施例1の回路構成図Circuit configuration diagram of Example 1 電圧切替スイッチ103の詳細図Detailed view of voltage switch 103 実施例2の回路構成図Circuit configuration diagram of Embodiment 2 実施例3の回路構成図Circuit configuration diagram of Embodiment 3 実施例4の回路構成図Circuit configuration diagram of Example 4 実施例5の回路構成図Example 5 circuit configuration diagram 実施例5の回路構成図Example 5 circuit configuration diagram
 以下、本発明の実施例について、図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1と図2を用いて、本発明の実施例1を説明する。 (1) Embodiment 1 of the present invention will be described with reference to FIGS.
 車載電子制御装置1は、演算装置101と集積回路102が設けられており、両者は差動方式を用いた高速シリアル通信を行う。 The on-vehicle electronic control device 1 is provided with an arithmetic unit 101 and an integrated circuit 102, and both perform high-speed serial communication using a differential system.
 演算装置101は、「」を行う。 The arithmetic unit 101 performs “”.
 集積回路102は、「」を行う。 The integrated circuit 102 performs “”.
 データレジスタ105は、「」を行う。 The data register 105 performs “”.
 演算装置101から集積回路102に入力されるデータは、差動方式のSI+とSI-の2つの信号で構成される。SI+は差動入力信号線(+)201を介して、SI-は差動入力信号線(-)を介して、演算装置101から集積回路102で通信される。差動方式は予め各々のバイアスレベルと信号振幅が規定されており、規定を満足するデバイスであれば正常に通信することができる。 デ ー タ Data input from the arithmetic unit 101 to the integrated circuit 102 is composed of two signals of SI + and SI− of a differential system. SI + is communicated via the differential input signal line (+) 201, and SI− is communicated via the differential input signal line (−) from the arithmetic unit 101 to the integrated circuit 102. In the differential system, each bias level and signal amplitude are specified in advance, and a device that satisfies the specifications can communicate normally.
 また、集積回路102から演算装置101に入力されるデータは、ハイレベルとローレベルであらわされるシリアル出力データのSO203である。 Data input from the integrated circuit 102 to the arithmetic device 101 is SO203 of serial output data represented by high level and low level.
 集積回路102の出力インタフェース104には、出力信号電圧レベルを切り替えるためのスイッチ103が設けられている。スイッチ103は、出力インターフェース104の接続先をVCC33(3.3V電源)とVCC5(5V電源)の何れかに切り替えるように設けられている。スイッチ103は、データレジスタ105の出力である切替信号204で制御される。 (4) The output interface 104 of the integrated circuit 102 is provided with a switch 103 for switching the output signal voltage level. The switch 103 is provided to switch the connection destination of the output interface 104 to one of VCC33 (3.3 V power supply) and VCC5 (5 V power supply). The switch 103 is controlled by a switching signal 204 output from the data register 105.
 図1に示すように、演算装置101の入力インタフェース106の電源電圧ピン301がVCC5に接続されている場合、演算装置101は差動信号SI+201とSI-202で、集積回路102のデータレジスタ105の図示していない出力信号電圧レベルレジスタをVCC5に設定する。このレジスタがVCC5に設定されると、切替信号204はスイッチ103がVCC5を選択するように制御し、出力インタフェース104にはVCC5が供給される。これにより、シリアル出力データのSO203はハイレベルが5Vの信号になり、演算装置101との通信が成立する。 As shown in FIG. 1, when the power supply voltage pin 301 of the input interface 106 of the arithmetic device 101 is connected to VCC5, the arithmetic device 101 transmits the differential signals SI + 201 and SI-202 to the data register of the integrated circuit 102. An output signal voltage level register (not shown) 105 is set to VCC5. When this register is set to VCC5, the switching signal 204 controls the switch 103 to select VCC5, and the output interface 104 is supplied with VCC5. As a result, the SO203 of the serial output data becomes a signal whose high level is 5 V, and communication with the arithmetic unit 101 is established.
 一方で、演算装置101の入力インタフェース106の電源電圧ピン301がVCC33に接続されている場合は、同様に切替信号204はスイッチ103がVCC33を選択するように制御し、シリアル出力データのSO203はハイレベルが3.3Vの信号になり、演算装置101との通信が成立する。 On the other hand, when the power supply voltage pin 301 of the input interface 106 of the arithmetic unit 101 is connected to VCC33, the switching signal 204 similarly controls the switch 103 to select VCC33, and SO203 of the serial output data is high. The signal has a level of 3.3 V, and communication with the arithmetic unit 101 is established.
 尚、本実施例では便宜的に出力信号電圧レベルを、VCC33(3.3V電源)とVCC5(5V電源)の2種類にしているが、これらの電圧値に限定するものではなく、異なる電圧値に設定する構成であればよい。また、2種類に限定されるものでなく、3種類以上の電圧設定値を備えていても構わない。以下の実施例でも同様である。 In this embodiment, for convenience, the output signal voltage levels are two types, VCC33 (3.3V power supply) and VCC5 (5V power supply) .However, the output signal voltage levels are not limited to these voltage values, but may be different. Any configuration may be used as long as it is set. Further, the present invention is not limited to two types, and may include three or more types of voltage set values. The same applies to the following embodiments.
 本実施例は、差動信号線からの入力値に基づいて集積回路102に設けられるスイッチ素子の制御を行い、出力インターフェース104に供給する内部電源の電圧レベルを任意の値に選択するようにしているので、集積回路102に新たなピンを設けることなく集積回路102のSO203の信号電圧レベルを任意に設定可能となる。本実施例によれば、集積回路102のピン数を増やすことなく、様々な演算装置101との通信を成立させることができるという特有の効果を奏する。 In the present embodiment, the switch element provided in the integrated circuit 102 is controlled based on the input value from the differential signal line, and the voltage level of the internal power supply supplied to the output interface 104 is selected to an arbitrary value. Therefore, the signal voltage level of the SO 203 of the integrated circuit 102 can be arbitrarily set without providing a new pin on the integrated circuit 102. According to the present embodiment, there is a specific effect that communication with various arithmetic devices 101 can be established without increasing the number of pins of the integrated circuit 102.
 以下、本発明の実施例2を図3により説明する。 Hereinafter, Embodiment 2 of the present invention will be described with reference to FIG.
 実施例1では、集積回路102の出力インタフェース104の出力信号電圧レベルを切り替えるためのスイッチ103を、データレジスタ105の出力である切替信号204で制御していた。 In the first embodiment, the switch 103 for switching the output signal voltage level of the output interface 104 of the integrated circuit 102 is controlled by the switching signal 204 output from the data register 105.
 これに対し、本実施例では、図3に示すように切替信号204を設定するためのピン302を設けている。例えばピン302に5Vが与えられた時にスイッチ103がVCC33を、0V(GND)が与えられた時にVCC5を選択するとした場合、図3に示すようにピン302をGNDに接続すれば、シリアル出力データのSO203はハイレベルが5Vの信号になり、演算装置101との通信が成立することになる。 In contrast, in the present embodiment, a pin 302 for setting the switching signal 204 is provided as shown in FIG. For example, if switch 103 selects VCC33 when 5V is applied to pin 302 and VCC5 when 0V (GND) is applied, connecting pin 302 to GND as shown in Fig. SO203 becomes a signal whose high level is 5V, and communication with the arithmetic unit 101 is established.
 ピン(端子)302の接続先は、例えば、集積回路102や演算装置101が実装される基板に設けられている電圧ラインである。 The connection destination of the pin (terminal) 302 is, for example, a voltage line provided on a substrate on which the integrated circuit 102 and the arithmetic device 101 are mounted.
 本実施例によれば、集積回路102の出力インターフェースの接続先を、第1の内部電源(3.3V)又は第2の内部電源(5V)に切り替える切り替え制御を、ピン302に接続される電圧に応じて実施するようにしているので、集積回路102のデータレジスタ105のレジスタ構成を変更することなく、集積回路102のSO203の信号電圧レベルを任意に設定可能である。本実施例も同様に、様々な演算装置101との通信を同一の集積回路の回路構成で成立させることができる。 According to the present embodiment, the switching control for switching the connection destination of the output interface of the integrated circuit 102 to the first internal power supply (3.3 V) or the second internal power supply (5 V) is performed by changing the switching control to the voltage connected to the pin 302. Since the present invention is implemented in accordance with this, the signal voltage level of SO203 of the integrated circuit 102 can be set arbitrarily without changing the register configuration of the data register 105 of the integrated circuit 102. In the present embodiment, similarly, communication with various arithmetic devices 101 can be established by the same circuit configuration of the integrated circuit.
 図4を用いて、本発明の実施例3を説明する。 Third Embodiment A third embodiment of the present invention will be described with reference to FIG.
 実施例2では、集積回路102の出力インタフェース104の出力信号電圧レベルを切り替えるためのスイッチ103を、集積回路102に内蔵していた。 In the second embodiment, the switch 103 for switching the output signal voltage level of the output interface 104 of the integrated circuit 102 is built in the integrated circuit 102.
 これに対し、本実施例では、図4に示すようにスイッチ103を設けず、集積回路102の出力インタフェース104の出力信号電圧レベルを設定するためのピン401を設けている。 On the other hand, in the present embodiment, as shown in FIG. 4, the switch 103 is not provided, and the pin 401 for setting the output signal voltage level of the output interface 104 of the integrated circuit 102 is provided.
 例えば図4に示すようにピン401をVCC5に接続すれば、シリアル出力データのSO203はハイレベルが5Vの信号になり、演算装置101との通信が成立することになる。 For example, if the pin 401 is connected to VCC5 as shown in FIG. 4, the SO203 of the serial output data becomes a signal having a high level of 5V, and the communication with the arithmetic unit 101 is established.
 一方で、図4で示したピン401の接続先を、VCC5からVCC33に変更すれば、演算装置101の入力インターフェースの信号電圧レベルが3.3Vであった場合でも、演算装置101との通信が成立することとなる。 On the other hand, if the connection destination of the pin 401 shown in FIG. 4 is changed from VCC5 to VCC33, communication with the arithmetic device 101 is established even when the signal voltage level of the input interface of the arithmetic device 101 is 3.3 V. Will be done.
 ピン(端子)401の接続先は、例えば、集積回路102や演算装置101が実装される基板に設けられている電圧ラインである。 The connection destination of the pin (terminal) 401 is, for example, a voltage line provided on a substrate on which the integrated circuit 102 and the arithmetic device 101 are mounted.
 本実施例によれば、集積回路102は、出力インターフェース104と接続される端子401を備えており、端子401に演算装置101の入力インターフェース106の信号電圧レベルと等しい電圧と接続することで、演算装置101の入力インターフェースと集積回路102の出力インターフェースの信号レベルを等しくしている。本構成により、集積回路102のデータレジスタ105のレジスタ構成の変更や、スイッチ103の追加もなく、最小限の変更で集積回路102のSO203の信号電圧レベルを任意に設定して、演算装置101との通信を成立させることができる。本実施例も同様に、様々な演算装置101との通信を同一の集積回路の回路構成で成立させることができる。 According to the present embodiment, the integrated circuit 102 includes the terminal 401 connected to the output interface 104, and the terminal 401 is connected to a voltage equal to the signal voltage level of the input interface 106 of the arithmetic device 101 to perform the arithmetic operation. The signal levels of the input interface of the device 101 and the output interface of the integrated circuit 102 are equalized. With this configuration, without changing the register configuration of the data register 105 of the integrated circuit 102 or adding the switch 103, the signal voltage level of the SO 203 of the integrated circuit 102 can be arbitrarily set with minimal change, and Can be established. In the present embodiment, similarly, communication with various arithmetic devices 101 can be established by the same circuit configuration of the integrated circuit.
 図5を用いて本発明の実施例4の説明を行う。 Embodiment 4 of the present invention will be described with reference to FIG.
 本実施例では、集積回路102は、内部電源VCC33と出力インターフェース104との間に、ダイオード501が設けられている。ダイオード501は、内部電源VCC33から出力インターフェース104の方向を順方向とするように設けられている。 で は In the present embodiment, the integrated circuit 102 is provided with the diode 501 between the internal power supply VCC33 and the output interface 104. The diode 501 is provided so that the direction from the internal power supply VCC33 to the output interface 104 is forward.
 そして、集積回路102には、ダイオード501と出力インターフェース104の間に接続するピン(端子)401が設けられている。 The integrated circuit 102 is provided with a pin (terminal) 401 connected between the diode 501 and the output interface 104.
 ピン401を集積回路102の内部で、ダイオード501を介してVCC33に接続しておけば、ピン401をオープンにした時はダイオード501を介して出力インタフェース104にVCC33が与えられ、シリアル出力データのSO203はハイレベルが3.3Vの信号にできる。尚、正確にはダイオード501の順方向電圧VFを考慮して、VCC33よりもVF分高い電圧をダイオード501のアノードに供給する必要がある。 If the pin 401 is connected to VCC33 via the diode 501 inside the integrated circuit 102, when the pin 401 is opened, VCC33 is given to the output interface 104 via the diode 501, and SO203 of serial output data is output. Can be a 3.3V high level signal. It is necessary to supply a voltage higher by VF than VCC33 to the anode of the diode 501 in consideration of the forward voltage VF of the diode 501.
 演算装置101の入力インターフェース106の信号電圧レベルが、内部電源VCC33からダイオード501を介して出力インターフェース104に供給される電圧と等しい場合には、前記端子をオープンとすることで、出力インターフェース104と入力インターフェース106の信号電圧レベルが等しくなり、通信を成立させることができる。 When the signal voltage level of the input interface 106 of the arithmetic unit 101 is equal to the voltage supplied from the internal power supply VCC33 to the output interface 104 via the diode 501, the terminal is opened to connect the output interface 104 to the input The signal voltage levels of the interface 106 become equal, and communication can be established.
 演算装置101の入力インターフェース106の信号電圧レベルが、内部電源VCC33からダイオード501を介して出力インターフェース104に供給される電圧よりも大きい場合(VCC5)には、端子401に前記信号電圧レベルと等しい電圧(VCC5)と接続することで、出力インターフェース104と入力インターフェース106の信号電圧レベルが等しくなり、通信を成立させることができる。 When the signal voltage level of the input interface 106 of the arithmetic unit 101 is higher than the voltage supplied from the internal power supply VCC33 to the output interface 104 via the diode 501 (VCC5), a voltage equal to the signal voltage level is applied to the terminal 401. (VCC5), the signal voltage levels of the output interface 104 and the input interface 106 become equal, and communication can be established.
 ピン(端子)401の接続先は、例えば、集積回路102や演算装置101が実装される基板に設けられている電圧ラインである。 The connection destination of the pin (terminal) 401 is, for example, a voltage line provided on a substrate on which the integrated circuit 102 and the arithmetic device 101 are mounted.
 本実施例によれば、ピン401がオープンか接続されているかで出力インターフェース104の信号電圧レベルが判断可能であるので、外観検査が容易となる。本実施例も同様に、様々な演算装置101との通信を同一の集積回路の回路構成で成立させることができる。 According to the present embodiment, since the signal voltage level of the output interface 104 can be determined depending on whether the pin 401 is open or connected, the appearance inspection becomes easy. In the present embodiment, similarly, communication with various arithmetic devices 101 can be established by the same circuit configuration of the integrated circuit.
 以下、本発明の実施例5を図6と図7により説明する。 Hereinafter, a fifth embodiment of the present invention will be described with reference to FIGS.
 実施例1から実施例3は、集積回路102に新たな手段を追加することにより、課題を解決する方法を示しているが、本実施例は集積回路102の変更を伴わない解決方法である。 Embodiments 1 to 3 show a method of solving the problem by adding new means to the integrated circuit 102, but this embodiment is a solution without changing the integrated circuit 102.
 図6に示すように集積回路102の出力インタフェース104の出力信号電圧レベルはVCC33に固定されており、シリアル出力データのSO203はハイレベルが3.3Vの信号になっている。
これに対し、演算装置101の入力インタフェース106の電源電圧ピン301がVCC5に接続されているため、入力インタフェース106は信号電圧レベルが5Vに対応した閾値であり、ハイレベルの電圧である”1”とローレベルの電圧である”0”を正しく判別できない可能性がある。
As shown in FIG. 6, the output signal voltage level of the output interface 104 of the integrated circuit 102 is fixed to VCC33, and the SO203 of the serial output data is a signal whose high level is 3.3V.
On the other hand, since the power supply voltage pin 301 of the input interface 106 of the arithmetic unit 101 is connected to VCC5, the input interface 106 has a threshold corresponding to a signal voltage level of 5 V, and is a high-level voltage “1”. And low-level voltage “0” may not be correctly identified.
 本実施例では、集積回路102の出力インタフェース104の信号を、信号電圧レベル変換回路601を介して、演算装置101の入力インタフェース106に入力させる。信号電圧レベル変換回路601は、例えば3.3V入力に対応して5V出力可能な汎用ロジックICのAND回路や、OR回路、バッファ回路などを用いることで容易に実現できる。 In this embodiment, the signal of the output interface 104 of the integrated circuit 102 is input to the input interface 106 of the arithmetic unit 101 via the signal voltage level conversion circuit 601. The signal voltage level conversion circuit 601 can be easily realized by using an AND circuit, an OR circuit, a buffer circuit, or the like of a general-purpose logic IC capable of outputting 5 V corresponding to a 3.3 V input, for example.
 信号電圧レベル変換回路601を用いて、集積回路102の出力インタフェース104の出力であるSO203のハイレベルを3.3Vから5Vに変換して、演算装置101の入力インタフェース106に入力することで、通信を成立させることができる。 By using the signal voltage level conversion circuit 601 to convert the high level of SO203, which is the output of the output interface 104 of the integrated circuit 102, from 3.3V to 5V and input the same to the input interface 106 of the arithmetic unit 101, communication is performed. It can be established.
 更なる好例を図7を用いて示す。演算装置101の入力を、集積回路102だけでなく、第2の集積回路702および第3の集積回路703と共用する場合は、出力信号の衝突を回避するために、それぞれの信号電圧レベル変換回路701、704、705に出力をハイインピーダンスにする機能を持たせる必要がある。 A further preferred example is shown using FIG. When the input of the arithmetic unit 101 is shared not only with the integrated circuit 102 but also with the second integrated circuit 702 and the third integrated circuit 703, in order to avoid collision of output signals, respective signal voltage level conversion circuits are used. It is necessary to provide the 701, 704, and 705 with a function to make the output high impedance.
 出力をハイレベルとローレベルの電圧だけでなく、ハイインピーダンスにする汎用ロジックICを用いればこの機能は容易に実現できる。尚、図示していないハイインピーダンスにするための制御信号は、演算装置101から各集積回路101、702、703に出力される図示していないチップセレクト信号を用いれば良い。 機能 This function can be easily realized by using a general-purpose logic IC that makes the output not only high-level and low-level voltage but also high impedance. It should be noted that a chip select signal (not shown) output from the arithmetic unit 101 to each of the integrated circuits 101, 702, and 703 may be used as a control signal for setting a high impedance (not shown).
 本実施例によれば、演算装置101や集積回路102の変更を伴うことなく、両者の通信を成立させることができる。また、演算装置の入力を複数の集積回路で共有することができる。 According to the present embodiment, communication between the two can be established without changing the arithmetic unit 101 or the integrated circuit 102. Further, the input of the arithmetic unit can be shared by a plurality of integrated circuits.
1  …車載電子制御装置101…演算装置102…集積回路103…出力信号電圧レベルを切り替えるためのスイッチ104…集積回路102の出力インタフェース105…集積回路102のデータレジスタ106…演算装置101の入力インタフェース201…差動入力信号線(+)202…差動入力信号線(-)203…集積回路102のシリアル出力データ204…スイッチ103の切替信号301…入力インタフェース106の電源電圧ピン302…切替信号204を設定するためのピン401…出力インタフェース104の出力信号電圧レベルを設定するためのピン501…内部ダイオード601…信号電圧レベル変換回路602…演算装置101のシリアル入力データ701,704,705…出力をハイインピーダンスにする機能を持つ信号電圧レベル変換回路702…第2の集積回路703…第3の集積回路706…共有される演算装置101のシリアル入力データ 1: on-vehicle electronic control unit 101 ... arithmetic unit 102 ... integrated circuit 103 ... switch 104 for switching the output signal voltage level ... output interface 105 of integrated circuit 102 ... data register 106 of integrated circuit 102 ... input interface 201 of arithmetic unit 101 ... differential input signal line (+) 202 ... differential input signal line (-) 203 ... serial output data 204 of the integrated circuit 102 ... switch signal 301 of the switch 103 ... power supply voltage pin 302 of the input interface 106 ... switch signal 204 Pin 401 for setting: Pin 501 for setting the output signal voltage level of the output interface 104: Internal diode 601: Signal voltage level conversion circuit 602: Serial input data 701, 704, 705 of the arithmetic unit 101: Function for setting the output to high impedance Signal voltage level conversion circuit 702 having a second integrated circuit 703 third integrated circuit 706 serial input data of the arithmetic unit 101 to be shared

Claims (6)

  1.  集積回路と、
     演算装置と、を備え、
     前記演算装置から前記集積回路への通信は差動方式であり、
     前記集積回路から前記演算装置への通信はシリアル方式である車載用電子制御装置において、
     前記集積回路は、
     第1の内部電源と、
     前記第1の内部電源と電圧レベルが異なる第2の内部電源と、
     出力インターフェースと、
     前記出力インターフェースの接続先を、前記第1または第2の内部電源に切り替える切り替え部と、
     前記切り替え手段の切り替え先を前記演算装置からの入力データに基づいて制御する制御部と、を備える車載電子制御装置。
    An integrated circuit;
    And an arithmetic unit,
    Communication from the arithmetic unit to the integrated circuit is a differential system,
    The communication from the integrated circuit to the arithmetic device is a serial type in-vehicle electronic control device,
    The integrated circuit comprises:
    A first internal power supply;
    A second internal power supply having a voltage level different from that of the first internal power supply;
    An output interface,
    A switching unit that switches a connection destination of the output interface to the first or second internal power supply;
    A control unit that controls a switching destination of the switching unit based on input data from the arithmetic device.
  2.  集積回路と、
     演算装置と、を備え、
     前記演算装置から前記集積回路への通信は差動方式であり、
     前記集積回路から前記演算装置への通信はシリアル方式である車載用電子制御装置において、
     前記集積回路は、
     第1の内部電源と、
     前記第1の内部電源と電圧レベルが異なる第2の内部電源と、
     出力インターフェースと、
     前記出力インターフェースの接続先を、前記第1または第2の内部電源に切り替える切り替え部と、
     前記切り替え部の切り替え先を選択するための設定端子と、を備え、
     前記切り替え部の接続先を、前記演算装置の入力インターフェースの電圧に対応した内部電源に選択されるように、前記設定端子に接続する電圧を設定する車載電子制御装置。
    An integrated circuit;
    And an arithmetic unit,
    Communication from the arithmetic unit to the integrated circuit is a differential system,
    The communication from the integrated circuit to the arithmetic device is a serial type in-vehicle electronic control device,
    The integrated circuit comprises:
    A first internal power supply;
    A second internal power supply having a voltage level different from that of the first internal power supply;
    An output interface,
    A switching unit that switches a connection destination of the output interface to the first or second internal power supply;
    A setting terminal for selecting a switching destination of the switching unit,
    An in-vehicle electronic control device configured to set a voltage connected to the setting terminal so that a connection destination of the switching unit is selected to an internal power supply corresponding to a voltage of an input interface of the arithmetic device.
  3.  集積回路と、
     演算装置と、を備え、
     前記演算装置から前記集積回路への通信は差動方式であり、
     前記集積回路から前記演算装置への通信はシリアル方式である車載用電子制御装置において、
     前記集積回路は、
     出力インターフェースと、
     前記出力インターフェースと接続される端子と、を備え、
     前記端子は、前記演算装置の入力インターフェースの信号電圧レベルと等しい電圧と接続される車載電子制御装置。
    An integrated circuit;
    And an arithmetic unit,
    Communication from the arithmetic unit to the integrated circuit is a differential system,
    The communication from the integrated circuit to the arithmetic device is a serial type in-vehicle electronic control device,
    The integrated circuit comprises:
    An output interface,
    A terminal connected to the output interface,
    The in-vehicle electronic control device, wherein the terminal is connected to a voltage equal to a signal voltage level of an input interface of the arithmetic device.
  4.  集積回路と、
     演算装置と、を備え、
     前記演算装置から前記集積回路への通信は差動方式であり、
     前記集積回路から前記演算装置への通信はシリアル方式である車載用電子制御装置において、
     前記集積回路は、
     内部電源と、
     前記内部電源とダイオードを介して接続される出力インターフェースと、
     前記ダイオードと出力インターフェースの間に接続する端子と、を備え、
     前記演算装置の入力インターフェースの信号電圧レベルが、前記出力インターフェースに供給される電圧と等しい場合には、前記端子はオープンとし、
     前記演算装置の入力インターフェースの信号電圧レベルが、前記出力インターフェースに供給される電圧よりも大きい場合には、前記端子に前記信号電圧レベルと等しい電圧と接続する車載電子制御装置。
    An integrated circuit;
    And an arithmetic unit,
    Communication from the arithmetic unit to the integrated circuit is a differential system,
    The communication from the integrated circuit to the arithmetic device is a serial type in-vehicle electronic control device,
    The integrated circuit comprises:
    Internal power supply,
    An output interface connected to the internal power supply via a diode,
    A terminal connected between the diode and an output interface,
    If the signal voltage level of the input interface of the arithmetic device is equal to the voltage supplied to the output interface, the terminal is open,
    The on-vehicle electronic control unit connects the terminal to a voltage equal to the signal voltage level when the signal voltage level of the input interface of the arithmetic unit is higher than the voltage supplied to the output interface.
  5.  集積回路と、
     演算装置と、を備え、
     前記演算装置から前記集積回路への通信は差動方式であり、
     前記集積回路から前記演算装置への通信はシリアル方式である車載用電子制御装置において、
     前記集積回路から前記演算装置への出力データライン上に、前記集積回路の電圧レベルを前記演算装置の電圧レベルと等しくするように電圧レベルを変換するための電圧レベルシフト装置を備えた車載電子制御装置。
    An integrated circuit;
    And an arithmetic unit,
    Communication from the arithmetic unit to the integrated circuit is a differential system,
    The communication from the integrated circuit to the arithmetic device is a serial type in-vehicle electronic control device,
    An on-vehicle electronic control having a voltage level shifter for converting a voltage level on the output data line from the integrated circuit to the arithmetic unit so that the voltage level of the integrated circuit is equal to the voltage level of the arithmetic unit; apparatus.
  6. 前記電圧レベルシフト装置は、ハイインピーダンス状態の設定を可能とする請求項5に記載の車載電子制御装置。 The on-vehicle electronic control device according to claim 5, wherein the voltage level shift device enables setting of a high impedance state.
PCT/JP2019/024868 2018-07-13 2019-06-24 In-vehicle electronic control device WO2020012928A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020530073A JP7091456B2 (en) 2018-07-13 2019-06-24 In-vehicle electronic control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-132854 2018-07-13
JP2018132854 2018-07-13

Publications (1)

Publication Number Publication Date
WO2020012928A1 true WO2020012928A1 (en) 2020-01-16

Family

ID=69141952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024868 WO2020012928A1 (en) 2018-07-13 2019-06-24 In-vehicle electronic control device

Country Status (2)

Country Link
JP (1) JP7091456B2 (en)
WO (1) WO2020012928A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016075727A1 (en) * 2014-11-14 2016-05-19 ルネサスエレクトロニクス株式会社 Semiconductor device and control method therefor
WO2017104346A1 (en) * 2015-12-15 2017-06-22 セイコーエプソン株式会社 Circuit device, electrooptical device, electronic apparatus, movable body, and error detection method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005018312A (en) * 2003-06-25 2005-01-20 Sony Corp Signal transmission device and method, and information equipment
CN202422677U (en) * 2011-12-30 2012-09-05 上海博泰悦臻电子设备制造有限公司 Vehicle-mounted display system
JP6032247B2 (en) * 2013-10-09 2016-11-24 株式会社デンソー Distortion compensation system and communication apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016075727A1 (en) * 2014-11-14 2016-05-19 ルネサスエレクトロニクス株式会社 Semiconductor device and control method therefor
WO2017104346A1 (en) * 2015-12-15 2017-06-22 セイコーエプソン株式会社 Circuit device, electrooptical device, electronic apparatus, movable body, and error detection method

Also Published As

Publication number Publication date
JPWO2020012928A1 (en) 2021-06-03
JP7091456B2 (en) 2022-06-27

Similar Documents

Publication Publication Date Title
US9929732B2 (en) LVDS input window circuit with two comparators and multiplexer
US7940086B2 (en) Interface circuit that can switch between single-ended transmission and differential transmission
JP5792690B2 (en) Differential output circuit and semiconductor integrated circuit
US5731711A (en) Integrated circuit chip with adaptive input-output port
KR0167471B1 (en) Cmos simultaneous transmission bidirectional driver receiver
US7411421B1 (en) Apparatus and method for generating differential signal using single-ended drivers
JP2008042376A (en) Bi-directional transmission circuit and transceiver element
US6985009B2 (en) Signal transmitting system
JP2002094365A (en) Output buffer circuit
US20080079457A1 (en) High speed IO buffer
KR20090110309A (en) Circuit arrangement for a motor vehicle data bus
US5990701A (en) Method of broadly distributing termination for buses using switched terminators
JPH09219637A (en) Drive circuit
US5982191A (en) Broadly distributed termination for buses using switched terminator logic
WO2020012928A1 (en) In-vehicle electronic control device
EP2464009B1 (en) Differential signal termination circuit
US6366126B1 (en) Input circuit, output circuit, and input/output circuit and signal transmission system using the same input/output circuit
US7768310B2 (en) Semiconductor device, method of switching drive capability of the semiconductor device, and system including semiconductor devices
KR20020064666A (en) Driver circuit and data communication device
US6741106B2 (en) Programmable driver method and apparatus for high and low voltage operation
US20080068064A1 (en) Input buffer circuit
JP2009110317A (en) Interface circuit capable of switching single end transmission and differential transmission, memory controller, nonvolatile storage device, host device, and nonvolatile memory system
JPH10285012A (en) Semiconductor integrated circuit, electronic circuit device and input/output buffer test method
KR20050029980A (en) Printed circuit board
JP2003309610A (en) Communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530073

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834392

Country of ref document: EP

Kind code of ref document: A1