WO2020008796A1 - Impact determination device - Google Patents

Impact determination device Download PDF

Info

Publication number
WO2020008796A1
WO2020008796A1 PCT/JP2019/022513 JP2019022513W WO2020008796A1 WO 2020008796 A1 WO2020008796 A1 WO 2020008796A1 JP 2019022513 W JP2019022513 W JP 2019022513W WO 2020008796 A1 WO2020008796 A1 WO 2020008796A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
route
estimated
shape
point
Prior art date
Application number
PCT/JP2019/022513
Other languages
French (fr)
Japanese (ja)
Inventor
昇悟 松永
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020008796A1 publication Critical patent/WO2020008796A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/072Curvature of the road
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a collision determination device that determines whether an object has collided with the own vehicle based on the estimated path of the own vehicle and the estimated path of the object.
  • the collision determination device that determines whether an object collides with a host vehicle based on an estimated route of the host vehicle and an estimated route of an object around the host vehicle.
  • the collision determination device disclosed in Patent Literature 1 estimates a curve radius of a route on which the vehicle travels in the future, and calculates an estimated route of the vehicle based on the estimated curve radius.
  • the calculated estimated route is a route assuming a steady circular turning of the own vehicle. Therefore, when the actual traveling route of the own vehicle cannot be approximated only by a route assuming a steady circular turn, the estimated route may largely deviate from the traveling route of the own vehicle. In this case, there is a concern that the result of the collision determination of the object with the own vehicle does not match the actual traveling route of the own vehicle. It is also conceivable to change the estimated route based on a change in the amount of steering during traveling of the own vehicle. However, in this case, it may take time until a change in the steering amount is detected, and there is a concern that it may take time until the result of the collision determination matches the actual traveling route of the own vehicle. .
  • the present disclosure has been made in view of the above problems, and has as its object to provide a collision determination device that can appropriately determine whether an object has collided with the own vehicle.
  • the present disclosure relates to a collision determination device that determines a collision of an object with respect to a host vehicle based on the estimated path of the host vehicle and the estimated path of the object.
  • the collision determination device estimates a curve radius of a route on which the vehicle travels in the future, and an estimated route calculation unit that calculates the estimated route of the vehicle based on the estimated curve radius, and the vehicle starts turning right and left.
  • a right / left turn determination unit that determines whether or not the own vehicle starts right / left turn by the right / left turn determination unit.
  • An end point detection unit that detects an end point as a turning end point, and a straight line correction unit that corrects a section after the detected turning end point on the calculated estimated route of the vehicle to a straight road. Prepare.
  • the present disclosure is a collision determination device that determines a collision of the object with the own vehicle based on the estimated route of the own vehicle and the estimated route of the object, and the own vehicle travels in the future.
  • An estimated route calculation unit that estimates a curve radius of a route and calculates the estimated route of the vehicle based on the estimated curve radius; and a shape acquisition unit that obtains shape information indicating the shape of the own lane on which the vehicle travels.
  • a divergence point detection unit that detects a divergence point at which a divergence starts to occur between the shape of the own lane based on the obtained shape information in the calculated estimated route of the own vehicle;
  • a road shape correction unit that corrects a section after the detected divergence point to the shape of the own lane based on the shape information in the estimated route.
  • FIG. 1 is a configuration diagram of a vehicle control system
  • FIG. 2 is a view for explaining the own vehicle presence area on the XY plane
  • FIG. 3 is a diagram illustrating an object existence area on an XY plane.
  • FIG. 4 is a diagram illustrating a vehicle solid and an object solid
  • FIG. 5 is a diagram illustrating a traveling route of the own vehicle and an estimated vehicle route passing through the intersection
  • FIG. 6 is a diagram for explaining the correction of the estimated vehicle route.
  • FIG. 7 is a flowchart illustrating the procedure of collision determination.
  • FIG. 1 is a configuration diagram of a vehicle control system
  • FIG. 2 is a view for explaining the own vehicle presence area on the XY plane
  • FIG. 3 is a diagram illustrating an object existence area on an XY plane.
  • FIG. 4 is a diagram illustrating a vehicle solid and an object solid
  • FIG. 5 is a diagram illustrating a traveling route of the own vehicle and an estimated vehicle route passing through the intersection
  • FIG. 8 is a flowchart illustrating a procedure of a collision determination according to the second embodiment.
  • FIG. 9 is a diagram showing a traveling route and an estimated vehicle route when the own vehicle travels on an S-shaped curved road,
  • FIG. 10 is a flowchart illustrating a procedure of a collision determination according to the third embodiment.
  • the vehicle control system 100 shown in FIG. 1 includes a radar sensor 11, an image sensor 12, a collision determination ECU 20, and a collision suppression device 30.
  • the collision determination ECU 20 corresponds to a collision determination device.
  • the radar sensor 11 transmits a millimeter wave, and detects a position of an object around the own vehicle and a relative speed of the object with respect to the own vehicle based on a reflected wave generated by reflecting the transmitted millimeter wave on the object.
  • the wave transmitting unit and the wave receiving unit of the radar sensor 11 are attached to, for example, a front part and a rear part of the own vehicle, respectively, emit a millimeter wave around the own vehicle, and receive a reflected wave thereof.
  • the image sensor 12 recognizes an object located in front of the own vehicle based on a captured image of the front of the own vehicle and detects the position of the recognized object.
  • the image sensor 12 is mounted in the vehicle cabin, for example, with the imaging direction facing the front of the vehicle through the windshield.
  • the yaw rate sensor 13, the steering angle sensor 14, the wheel speed sensor 15, and the collision suppression device 30 are connected to the collision determination ECU 20.
  • the yaw rate sensor 13 is provided, for example, at the center position of the own vehicle, and outputs a yaw rate signal corresponding to the change speed of the steering amount of the own vehicle to the collision determination ECU 20.
  • the steering angle sensor 14 is attached to, for example, a steering rod of the vehicle, and outputs a steering angle signal corresponding to a change in the steering angle of the steering wheel accompanying the driver's operation to the collision determination ECU 20.
  • the wheel speed sensor 15 is attached to, for example, a wheel portion of the vehicle, and outputs a wheel speed signal corresponding to the wheel speed of the vehicle to the collision determination ECU 20.
  • the navigation device 16 that stores map information is connected to the collision determination ECU 20.
  • roads on which the own vehicle can travel are stored as image data.
  • the position and shape of the lane marking on the road, the position of the traffic light, the position and shape of the road marking, and the position and type of the road sign are stored as auxiliary information.
  • the navigation device 16 can refer to the map information around the own vehicle in the map information, for example, by comparing the current position of the own vehicle based on the GPS information with the position on the map information.
  • the collision suppression device 30 is a device that suppresses a collision of an object with the own vehicle, and includes a brake ECU 31 and a seat belt actuator 32 in the present embodiment.
  • the brake ECU 31 controls the braking force of the brake actuator based on the deceleration signal output from the collision determination ECU 20.
  • the deceleration amount of the host vehicle is adjusted by controlling the braking force of the brake actuator.
  • the seat belt actuator 32 activates the seat belt winding device based on the start signal output from the collision determination ECU 20, and winds and tightens the seat belt.
  • the collision determination ECU 20 determines whether an object located around the own vehicle has a collision with the own vehicle.
  • the collision determination ECU 20 is configured by a computer including a CPU, a ROM, a RAM, and an input / output interface.
  • the collision determination ECU 20 operates the collision suppression device 30 to perform the collision suppression control on the own vehicle.
  • the collision determination ECU 20 performs the collision suppression control by generating and outputting a deceleration signal output to the brake ECU 31 and a start signal output to the seat belt actuator 32.
  • the collision determination ECU 20 estimates the curve radius R of the route on which the vehicle will travel in the future, and calculates the estimated vehicle route PA1 indicating the estimated route of the vehicle based on the estimated curve radius R. Then, based on the calculated estimated vehicle route PA1, a three-dimensional vehicle that is a three-dimensional body that indicates the transition of the area in which the vehicle is present is calculated in a virtually formed three-dimensional coordinate system. In addition, the collision determination ECU 20 calculates the moving path of the object in the three-dimensional coordinate system.
  • the presence / absence of collision between the own vehicle and the object is determined, thereby including the positional relationship of the object with respect to the own vehicle and the movement state of the object It is possible to make collision determinations corresponding to various scenes.
  • the own vehicle route estimation unit 21 calculates the own vehicle estimated route PA1 based on the curve radius R. Details of the vehicle route estimating unit 21 according to the present embodiment will be described later.
  • the own-vehicle region calculation unit 22 determines a predetermined distance on the own-vehicle estimated route PA1 on the XY plane of the two-dimensional coordinate system defined by the current distance Y in the own vehicle traveling direction and the distance X in the vehicle width direction.
  • An own vehicle existence area EA1 indicating an area where the own vehicle exists for each time is calculated.
  • the own vehicle area calculation unit 22 calculates the own vehicle existing area EA1 at each position on the own vehicle estimated route PA1 during the period from the current T0 to the estimation end time TN.
  • FIG. 2A shows the current vehicle existing area EA1 at the time T0.
  • the own vehicle presence area EA1 is defined as a rectangular area including the entire outer periphery of the own vehicle when the own vehicle is viewed from above.
  • the host vehicle area calculation unit 22 determines a rectangular area that forms the host vehicle existence area EA1 based on vehicle specifications indicating the size of the host vehicle.
  • the current vehicle existence area EA1 at T0 is defined such that the intersection (0, 0) between the X axis and the Y axis is the reference position P0 of the own vehicle.
  • the reference position P0 of the own vehicle is set to be the center in the vehicle width direction in front of the own vehicle.
  • FIG. 2 (b) shows the future vehicle existence area EA1 by T1 from the present.
  • a broken line indicates the own vehicle existing area EA1 at the current time T0 and the own vehicle existing area EA1 in the future (T2> T1) by T2 from the present time. I have.
  • the own vehicle existence region EA1 in the future by T1 from the present indicates the existence region of the own vehicle after the elapsed time T1 from the current own vehicle position when the own vehicle moves along the own vehicle estimated route PA1.
  • the own vehicle area calculation unit 22 determines the reference position of the own vehicle at the current time T0 on the own vehicle estimated route PA1 based on the own vehicle estimated route PA1 calculated at the current own vehicle position and the own vehicle speed.
  • a future passage position is calculated from P0 by a predetermined elapsed time Tn (n is a value of 0 or more and N or less).
  • a rectangular area having each passing position as the reference position Pn is calculated as the future vehicle existing area EA1 by Tn from the present time.
  • the direction of the own vehicle existence area EA1 at each elapsed time Tn is determined as the direction of the tangent to the own vehicle estimated route PA1 at each reference position Pn.
  • the own-vehicle information calculation unit 23 calculates a plurality of own-vehicle existing areas EA1 in a three-dimensional coordinate system defined by a distance Y in the own-vehicle traveling direction, a distance X in the vehicle width direction, and an elapsed time T from the present.
  • the own vehicle three-dimensional body D1 indicating the transition of the own vehicle existing area EA1 is calculated.
  • a point (0, 0, 0) indicates the current reference position P0 of the own vehicle.
  • the three-dimensional own vehicle D1 shows the movement transition of the own vehicle existing area EA1 with the elapsed time T in the three-dimensional coordinate system.
  • the vehicle three-dimensional body D1 is calculated in the predicted time width from the current T0 to the estimated end time TN.
  • the host vehicle information calculation unit 23 converts the calculated host vehicle existence areas EA1 into information of a three-dimensional coordinate system. Then, in the three-dimensional coordinate system, the vehicle three-dimensional space D1 is calculated by linearly complementing four corners between the vehicle existence regions EA1 adjacent to each other in the direction in which the T axis that determines the elapsed time extends.
  • the object path estimating unit 24 calculates an object estimated path PA2 indicating the estimated path of the object based on the position of the object detected by each of the sensors 11 and 12 and the relative speed of the object with respect to the own vehicle. For example, the object path estimating unit 24 calculates the movement trajectory of the object based on the change in the object position, and sets the movement trajectory as the object estimation path PA2.
  • the object area calculation unit 25 calculates an object existence area EA2 indicating an area where an object exists at predetermined time intervals on the object estimation path PA2 on the XY plane.
  • the object existence area EA2 indicates the existence area of the object every predetermined time when the object moves along the object estimation path PA2.
  • FIG. 3A shows the object existing area EA2 at the current time T0.
  • the object existence area EA2 on the XY plane at the current T0 indicates the existence area of the object detected by each of the sensors 11 and 12 at the current vehicle position.
  • the object area calculation unit 25 sets the object existence area EA2 as a rectangular area including the entire periphery of the object when the object is viewed from above. For example, a rectangular area forming the object existence area EA2 is set based on the size of the object calculated by each of the sensors 11 and 12.
  • FIG. 3B shows the future object existence area EA2 by T1 from the present.
  • the object region calculation unit 25 determines a predetermined elapsed time Tn from the current reference position B0 of the object on the object estimation route PA2. The passage position after the lapse of the time elapses is calculated. Then, a rectangular area having each passing position as the reference position Bn is calculated as the future object existing area EA2 by the elapsed time Tn from the present.
  • the object information calculation unit 26 calculates an object solid D2, which is a solid indicating the transition of the object existence area EA2, by complementing the plurality of object existence areas EA2 in the three-dimensional coordinate system.
  • the object solid D2 shown in FIG. 4 shows the movement transition of the object existence area EA2 with the elapsed time T in the three-dimensional coordinate system.
  • the object information calculation unit 26 calculates the object solid D2 by linearly complementing the four corners between the adjacent object existence areas EA2 in the direction in which the T axis that determines the elapsed time extends.
  • the determination unit 27 determines whether or not an object has collided with the own vehicle based on whether or not the own vehicle D3 and the object D2 intersect. In the present embodiment, the determination unit 27 calculates the first determination area indicating the area in which the vehicle is present at the predetermined elapsed time T using the three-dimensional vehicle D1. In addition, a second determination area indicating an existing area of the object at the same elapsed time T as the first determination area is calculated using the object solid D2. Then, when there is an overlapping area between the first and second determination areas at the calculated same elapsed time T, it is determined that the own vehicle solid body D1 and the object solid body D2 intersect.
  • FIG. 5 shows the estimated vehicle route PA1 and the actual travel route PR of the vehicle when the vehicle travels at the intersection.
  • the own vehicle estimated route PA1 is a route assuming a steady circular turning of the own vehicle.
  • the estimated vehicle route PA1 is set as an arc-shaped route defined by a curve radius R.
  • the travel route PR of the own vehicle can be approximated by a route assuming a steady circular turn. It matches the route PA1.
  • the traveling route PR of the own vehicle changes linearly due to the straight traveling of the own vehicle, and the estimated vehicle route PA1 greatly deviates from the traveling route PR. ing.
  • the traveling route PR of the own vehicle crosses the object estimation route PA2, whereas the own vehicle estimation route PA1 does not intersect the object estimation route PA2. Therefore, even when the own vehicle three-dimensional D1 is generated based on the own vehicle estimated route PA1 at the current own vehicle position, the result of the collision determination of the object with respect to the own vehicle is based on the actual running route PR of the own vehicle. It is feared that it will not be. It is conceivable that the collision determination ECU 20 changes the estimated vehicle path PA1 based on the change in the steering amount while the own vehicle is traveling at the intersection. However, in this case, it may take time until a change in the steering amount is detected, and there is a concern that it may take time until the result of the collision determination matches the actual traveling route of the own vehicle. .
  • the collision determination ECU 20 corrects the estimated vehicle route PA1 so as to suppress a deviation between the traveling route PR of the vehicle and the estimated vehicle route PA1. Therefore, the own vehicle route estimation unit 21 includes an estimated route calculation unit 41, a right / left turn determination unit 42, an end point detection unit 43, and a straight line correction unit 44.
  • the estimated route calculation unit 41 determines the own path based on the yaw rate ⁇ of the own vehicle calculated using the yaw rate signal from the yaw rate sensor 13 and the own vehicle speed calculated using the wheel speed signal from the wheel speed sensor 15. Estimate the curve radius R of the route on which the car will travel in the future. Then, the route when the own vehicle travels along the estimated curve radius R is calculated as the own vehicle estimated route PA1. Note that the estimated route calculation unit 41 may calculate the curve radius R using the change speed of the steering amount calculated based on the steering angle signal from the steering angle sensor 14 instead of the yaw rate ⁇ .
  • the right / left turn determination unit 42 determines whether or not the vehicle starts right / left turn. In the present embodiment, the right / left turn determination unit 42 determines whether the vehicle has a curve radius R equal to or smaller than the radius threshold value in a turning direction indicated by the direction indicator. Determines that a right / left turn is to be started.
  • the radius threshold value is a curve radius smaller in the turning direction of the vehicle than the curve radius R assumed when the vehicle travels straight.
  • the end point detection unit 43 detects a point at which the turn of the vehicle will be completed in the future on the estimated vehicle path PA1 as a turn end point when the right / left turn determination unit 42 determines that the vehicle starts turning right / left. I do.
  • the end point detection unit 43 determines a predetermined turning angle ⁇ (for example, 90 degrees) from the point K1 where the own vehicle is determined to start turning right and left on the own vehicle estimated route PA1. ) Is detected as a turning end point K2.
  • the turning angle is defined by a central angle of a circle forming a curve radius R of the own vehicle.
  • the straight line correction unit 44 corrects the section after the turning end point K2 on the estimated vehicle route PA1 into a straight road.
  • the section after the turning end point K2 in the estimated vehicle route PA1 is corrected from a curved road indicated by a broken line to a straight road indicated by a solid line.
  • the straight line correction unit 44 corrects a section after the turning end point K2 on the own vehicle estimated route PA1 by using a tangent line of the own vehicle estimated route PA1 at the turning end point K2.
  • the section after the turning end point K2 may be corrected to a straight road that extends the own vehicle estimated route PA1 straight in the traveling direction of the vehicle at the turning end point K2.
  • step S10 the host vehicle is estimated at the current host vehicle position on the XY plane based on the host vehicle speed calculated based on the wheel speed signal and the host vehicle yaw rate ⁇ calculated based on the yaw rate signal.
  • the route PA1 is calculated.
  • step S11 it is determined whether or not the vehicle starts turning right or left.
  • the process proceeds to step S12.
  • the process proceeds to step S14.
  • step S12 a turning end point K2 indicating a point where turning of the own vehicle will end in the future is detected in the own vehicle estimated route PA1 calculated in step S10. For example, first, based on the current steering amount and the own vehicle speed, the time required for the own vehicle to turn by 90 degrees in the turning angle is calculated. Then, a point that has traveled on the estimated vehicle path PA1 from the point K1 at which the own vehicle is determined to start turning right or left by the calculated time is detected as a turning end point K2. In step S13, the section after the turning end point K2 detected in step S12 on the own vehicle estimated route PA1 is corrected to a straight road.
  • step S14 the object estimation path PA2 is calculated on the XY plane based on the object position detected by each of the sensors 11 and 12, and the relative speed of the object with respect to the own vehicle.
  • step S15 a plurality of vehicle existence areas EA1 passing through the vehicle estimation route PA1 are calculated.
  • step S16 the three-dimensional coordinate system D1 is calculated by complementing the plurality of own vehicle existence areas EA1 calculated in step S15 in the three-dimensional coordinate system.
  • step S17 a plurality of object existence areas EA2 passing through the object estimation path PA2 are calculated.
  • step S18 an object solid D2 is calculated in the three-dimensional coordinate system by complementing the plurality of object existence areas EA2 calculated in step S17.
  • step S19 it is determined whether or not the vehicle three-dimensional body D1 calculated in step S16 intersects with the object three-dimensional body D2 calculated in step S18. Specifically, when there is an area overlapping the first determination area DA1 and the second determination area DA2 at the same elapsed time T, it is determined that there is an intersection between the own vehicle solid body D1 and the object solid body D2. I do.
  • step S19 If it is determined in step S19 that the vehicle D3 and the object D2 intersect, it is determined that the object collides with the vehicle, and the process proceeds to step S20. If it is determined that there is no intersection between the own vehicle solid body D1 and the object solid body D2, the processing in FIG.
  • the collision margin time until the own vehicle collides with the object at the current own vehicle position is determined.
  • the TTC shown is calculated.
  • the TTC is calculated by dividing the linear distance from the current vehicle position to the object by the relative speed of the object to the vehicle.
  • step S21 it is determined whether or not the TTC calculated in step S20 is equal to or less than a threshold value TH1. First, it is determined that the TTC is greater than the threshold value TH1, and the process of FIG. 7 is temporarily terminated. When it is determined that the TTC is equal to or less than the threshold value TH1 by the process of step S21 performed thereafter, the process proceeds to step S22.
  • step S22 the collision suppression control for the own vehicle is performed.
  • the vehicle speed is reduced by outputting a speed reduction signal to the brake ECU 31.
  • step S23 ends, the processing in FIG. 7 ends once.
  • the collision determination ECU 20 determines that the own vehicle starts turning right or left
  • the collision determination ECU 20 detects a turning end point K2 where the turning of the own vehicle ends in the future on the own vehicle estimated route PA1. Then, the section after the turning end point K2 on the own vehicle estimated route PA1 is corrected to a straight road. In this case, when a right or left turn of the own vehicle is started, a section in which the deviation from the actual travel route of the own vehicle is large in the own vehicle estimated route PA1 is corrected. It can be implemented properly.
  • the collision determination ECU 20 detects, as the turning end point K2, a point on the estimated vehicle path PA1 at which the vehicle is estimated to have turned by a predetermined turning angle ⁇ from a point K1 determined to start turning right or left. In this case, since the turning end point K2 can be detected based on the turning angle, the load required for detecting the turning end point K2 can be suppressed.
  • step S10 After calculating the estimated vehicle route PA1 in step S10, the process proceeds to step S30, and among the characteristic portions and the objects of the road recognized by the image sensor 12, the characteristic portions and the objects of the road indicating the entrance of the intersection ahead of the own vehicle are determined.
  • the position is acquired as entrance position information F1.
  • a characteristic portion of a road indicating an entrance of an intersection a break in a lane marking, a stop line, and a pedestrian crossing existing within a predetermined distance in front of the current vehicle position are used.
  • a stop road sign and a traffic light are used as objects indicating the entrance of the intersection.
  • step S30 If it is determined in step S30 that the entrance position information F1 has been acquired, in step S31, it is determined that there is an entrance to the intersection ahead of the vehicle, and the process proceeds to step S11. On the other hand, if the entrance position information F1 has not been acquired in step S30, it is determined in step S31 that there is no entrance at the intersection ahead of the vehicle, and the process proceeds to step S14.
  • step S11 If it is determined in step S11 that the own vehicle starts turning right and left, the process proceeds to step S32.
  • step S32 among the characteristic portions and the objects of the road recognized by the image sensor 12, the position of the characteristic portion of the road and the position of the object indicating the exit of the intersection existing around the estimated vehicle path PA1 are acquired as the exit position information F2. I do.
  • Step S32 corresponds to an information acquisition unit.
  • the sidewalk is used.
  • a road sign indicating a stop and a traffic light are used as an object indicating an exit of an intersection.
  • step S33 the position of the exit of the intersection is estimated from the exit position information F2 acquired in step S32, and the turning end point K2 in the estimated vehicle route PA1 is detected based on the estimated position of the exit of the intersection.
  • step S13 the section after the turning end point K2 on the estimated vehicle route PA1 is corrected to a straight road. Then, the processing of steps S14 to S22 is performed.
  • the collision determination ECU 20 detects the turning end point K2 on the estimated vehicle path PA1 based on the characteristic portion of the road indicating the exit of the intersection existing ahead of the own vehicle and the position of the object. Therefore, since the turning end point K2 can be detected in accordance with the actual traffic environment around the own vehicle, the deviation of the estimated vehicle route PA1 from the travel route of the own vehicle can be suitably suppressed.
  • the collision determination ECU 20 may directly detect the entrance and the exit of the intersection based on the map information stored in the navigation device 16.
  • the position of the entrance of the intersection existing ahead of the vehicle may be acquired as the entrance position information F1.
  • the exit position of the intersection existing around the estimated vehicle path PA1 may be acquired as the exit position information F2 based on the map information and the GPS information indicating the own vehicle position. .
  • the vehicle control system 100 may include a communication device capable of performing inter-vehicle communication with another vehicle traveling around the own vehicle.
  • the characteristic portion of the road indicating the entrance and the exit of the intersection and the position of the object are acquired from another vehicle by inter-vehicle communication, and the turning end point on the estimated vehicle route PA1 is determined based on the acquired characteristic portion of the road and the position of the object.
  • K2 may be detected.
  • FIG. 9 is a diagram showing the estimated vehicle route PA1 and the actual travel route PR of the own vehicle when the own vehicle runs on an S-shaped curved road.
  • the S-curve road can be approximated by the vehicle estimation route PA1 in the first half section S1 in which the steering direction of the vehicle is the same on the S-curve road.
  • the latter half section S2 in which the steering direction of the own vehicle is opposite to the first half section S1 on the S-shaped curved road, there is a concern that the degree of deviation between the S-shaped curved road and the estimated own vehicle path PA1 is increased. .
  • the collision determination ECU 20 calculates the shape of the own lane from the map information, and detects a divergence point K3 at which a divergence from the calculated shape of the own lane starts to occur on the own vehicle estimated route PA1. . Then, the section after the departure point K3 in the own vehicle estimated route PA1 is corrected to the calculated shape of the own lane.
  • step S10 After calculating the estimated vehicle route PA1 in step S10, the process proceeds to step S40, in which the shape of the lane marking indicating the shape of the road on which the vehicle travels and the road curvature are acquired from the map information. Therefore, in the present embodiment, the shape of the lane marking and the road curvature correspond to the shape information.
  • Step S40 corresponds to a shape acquisition unit.
  • step S41 based on the shape of the lane marking obtained in step S40 and the curvature of the road, an approximate curve AC indicating the shape of the current lane in which the vehicle is currently traveling is calculated.
  • step S42 the estimated vehicle route PA1 is compared with the approximation curve AC calculated in step S41, and the departure point is a point at which a deviation starts to occur between the calculated shape of the own lane and the estimated vehicle route PA1. Detected as K3. Steps S41 and S42 correspond to a deviation point detection unit.
  • step S43 if the deviation point K3 has been detected in step S42, it is determined that the estimated vehicle route PA1 is deviated from the traveling route of the vehicle, and the process proceeds to step S44. On the other hand, if the deviation point K3 cannot be detected in step S42, it is determined that the own vehicle estimated route PA1 does not deviate from the traveling route of the own vehicle, and the process proceeds to step S14.
  • step S44 it is determined whether a lane along the estimated vehicle route PA1 exists after the departure point K3 on the estimated vehicle route PA1. If the lane along the estimated vehicle route PA1 exists in the section after the departure point K3 in the estimated vehicle route PA1, the driver may be trying to travel on the lane. In such a case, it is better to entrust the driving of the own vehicle to the driver. Therefore, if it is determined in step S44 that a lane exists after the departure point K3 on the own vehicle estimated route PA1, the process proceeds to step S14. In this case, the own vehicle estimated route PA1 is not corrected. Step S44 corresponds to a lane determination unit.
  • the determination as to whether or not a lane along the estimated vehicle route PA1 exists after the departure point K3 in the estimated vehicle route PA1 is made based on the map information provided in the navigation device 16. Alternatively, based on recognition by the image sensor 12, it may be determined whether or not a lane along the estimated vehicle route PA1 exists in a section after the departure point K3.
  • step S44 determines that there is no lane along the estimated vehicle route PA1 after the departure point K3
  • the process proceeds to step S45.
  • step S45 the section after the departure point K3 on the estimated vehicle route PA1 is corrected based on the shape of the corresponding section of the approximate curve AC calculated in step S41.
  • Step S44 corresponds to a road shape correction unit.
  • the collision determination ECU 20 detects a divergence point K3 at which a divergence from the calculated shape of the own lane starts to occur on the own vehicle estimated route PA1. Then, the section after the departure point K3 in the own vehicle estimated route PA1 is corrected to the calculated shape of the own lane. In this case, even when the vehicle travels on a traveling route that cannot be approximated by a route that assumes a steady circular turn, the deviation of the estimated vehicle route PA1 from the actual traveling route of the vehicle can be suppressed. Therefore, the collision determination of the object with respect to the own vehicle can be appropriately performed.
  • the collision determination ECU 20 determines whether or not a lane along the estimated vehicle path PA1 exists in the section after the departure point K3 on the estimated vehicle path PA1. Then, on the condition that it is determined that no lane exists in the section after the departure point K3, the section after the departure point K3 in the own vehicle estimated route PA1 is corrected. In this case, when it is difficult to predict the future travel route of the own vehicle, unnecessary operation by the collision determination ECU 20 can be suppressed by entrusting the travel of the own vehicle to the driver.
  • the collision determination ECU 20 may perform the detection of the turning end point K2 and the detection of the departure point K3 with respect to the own vehicle estimated route PA1.
  • the turning end point K2 and the departure point K3 are detected on the own vehicle estimated route PA1.
  • the processes of steps S40 to S44 may be performed between step S10 and step S11.
  • the section after the turning end point K2 on the own vehicle estimated route PA1 is corrected to a straight road.
  • the section after the deviation point K3 on the estimated vehicle route PA1 may be corrected to the shape of the own lane based on the shape information.
  • the collision determination ECU 20 determines whether or not the own vehicle estimated route PA1 intersects with the object estimated route PA2. If the collision determination ECU 20 determines that the own vehicle estimated route PA1 and the object estimated route PA2 intersect, the collision determination ECU 20 determines the intersection of the own vehicle estimated route PA1 and the object estimated route PA2. It may be determined that the object collides. In this case, in FIGS. 7, 8, and 10, the collision determination ECU 20 does not perform the processing of steps S15 to S18, and determines in step S19 whether or not the own vehicle estimated route PA1 and the object estimated route PA2 intersect. judge. Then, when it is determined that an object collides with the own vehicle due to the intersection of the own vehicle estimated route PA1 and the object estimated route PA2, the process proceeds to step S20.
  • Step S44 in FIG. 10 may be omitted.
  • the collision determination ECU 20 may calculate the estimated vehicle path PA1 using the acceleration of the vehicle in addition to the yaw rate of the vehicle and the vehicle speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

An impact determination device (20) determines a collision of an object with an own vehicle on the basis of an estimated route of the own vehicle and an estimated route of the object. This impact determination device comprises: an estimated route calculation unit (41) that estimates the curve radius of a route on which the own vehicle will travel in the future, and calculates an estimated route of the own vehicle on the basis of the estimated curve radius; a left/right turning determination unit (42) that determines whether the own vehicle will initiate left/right turning; a completion location detection unit (43) that, if the left/right turning determination unit has determined that the vehicle will initiate left/right turning, detects, as a turning completion location, the location on the calculated estimated route of the own vehicle where the turning of the vehicle will be completed in the future; and a straight line correction unit (44) that corrects a section of the calculated estimated route of the own vehicle to be a straight line path, said section being after the detected turning completion location.

Description

衝突判定装置Collision judgment device 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年7月2日に出願された日本出願番号2018-126343号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2018-126343 filed on Jul. 2, 2018, the contents of which are incorporated herein by reference.
 自車の推定経路と、物体の推定経路とに基づいて自車に対する物体の衝突の有無を判定する衝突判定装置に関する。 (4) The present invention relates to a collision determination device that determines whether an object has collided with the own vehicle based on the estimated path of the own vehicle and the estimated path of the object.
 自車の推定経路、及び自車周囲の物体の推定経路に基づいて自車に対する物体の衝突の有無を判定する衝突判定装置が知られている。特許文献1に開示された衝突判定装置では、自車が将来走行する経路のカーブ半径を推定し、推定したカーブ半径に基づいて自車の推定経路を算出している。 There is known a collision determination device that determines whether an object collides with a host vehicle based on an estimated route of the host vehicle and an estimated route of an object around the host vehicle. The collision determination device disclosed in Patent Literature 1 estimates a curve radius of a route on which the vehicle travels in the future, and calculates an estimated route of the vehicle based on the estimated curve radius.
特開2008-213535号公報JP 2008-13535 A
 推定したカーブ半径に基づいて自車の推定経路を算出する場合、算出される推定経路は自車の定常円旋回を想定した経路となる。そのため、実際の自車の走行経路が定常円旋回を想定した経路のみで近似できない場合、自車の走行経路に対して推定経路が大きく乖離するおそれがある。この場合、自車に対する物体の衝突判定の結果が、実際の自車の走行経路に即したものとならないことが懸念される。なお、自車の走行中の操舵量の変化に基づいて、推定経路を変更することも考えられる。しかし、この場合、操舵量の変化が検出されるまでに時間を要する場合があり、衝突判定の結果が実際の自車の走行経路に即したものとなるまでに時間を要することが懸念される。 場合 When calculating the estimated route of the own vehicle based on the estimated curve radius, the calculated estimated route is a route assuming a steady circular turning of the own vehicle. Therefore, when the actual traveling route of the own vehicle cannot be approximated only by a route assuming a steady circular turn, the estimated route may largely deviate from the traveling route of the own vehicle. In this case, there is a concern that the result of the collision determination of the object with the own vehicle does not match the actual traveling route of the own vehicle. It is also conceivable to change the estimated route based on a change in the amount of steering during traveling of the own vehicle. However, in this case, it may take time until a change in the steering amount is detected, and there is a concern that it may take time until the result of the collision determination matches the actual traveling route of the own vehicle. .
 本開示は上記課題に鑑みたものであり、自車に対する物体の衝突の有無を適正に判定することができる衝突判定装置を提供することを目的とする。 The present disclosure has been made in view of the above problems, and has as its object to provide a collision determination device that can appropriately determine whether an object has collided with the own vehicle.
 上記課題を解決するために本開示は、自車の推定経路と、物体の推定経路とに基づいて、自車に対する前記物体の衝突判定を行う衝突判定装置に関する。衝突判定装置は、自車が将来走行する経路のカーブ半径を推定し、推定した前記カーブ半径に基づいて自車の前記推定経路を算出する推定経路算出部と、自車が右左折を開始するか否かを判定する右左折判定部と、前記右左折判定部により自車が右左折を開始すると判定された場合に、算出された自車の前記推定経路において、将来、自車の旋回が終了する地点を旋回終了地点として検出する終了地点検出部と、算出された自車の前記推定経路において、検出された前記旋回終了地点以降の区間を、直線路に補正する直線補正部と、を備える。 The present disclosure relates to a collision determination device that determines a collision of an object with respect to a host vehicle based on the estimated path of the host vehicle and the estimated path of the object. The collision determination device estimates a curve radius of a route on which the vehicle travels in the future, and an estimated route calculation unit that calculates the estimated route of the vehicle based on the estimated curve radius, and the vehicle starts turning right and left. A right / left turn determination unit that determines whether or not the own vehicle starts right / left turn by the right / left turn determination unit. An end point detection unit that detects an end point as a turning end point, and a straight line correction unit that corrects a section after the detected turning end point on the calculated estimated route of the vehicle to a straight road. Prepare.
 自車の走行中に自車の右左折が想定される場面では、自車が現在の自車位置から左右のいずれかに旋回した後に直進することが想定される。そのため、自車の走行経路において自車の旋回が終了した地点から以降の区間で、カーブ半径に基づいて算出された自車の推定経路と実際の走行経路との間の乖離が大きくなることが懸念される。そこで、上記構成では、自車が右左折を開始すると判定された場合に、自車の推定経路において、将来、自車の旋回が終了する地点を旋回終了地点として検出する。そして、自車の推定経路において、旋回終了地点以降の区間を、直線路に補正する。この場合、自車の右左折が開始される際に、推定経路において実際の自車の走行経路に対して乖離が大きくなる区間が補正されるため、自車に対する物体の衝突判定を適正に実施することができる。 で は In a situation where the vehicle is expected to make a right or left turn while the vehicle is traveling, it is conceivable that the vehicle will travel straight after turning left or right from the current vehicle position. Therefore, in a section after the turning point of the own vehicle on the running path of the own vehicle, a deviation between the estimated path of the own vehicle calculated based on the curve radius and the actual running path may increase. There is concern. Therefore, in the above configuration, when it is determined that the own vehicle starts turning right and left, a point where the own vehicle turns in the future in the estimated route of the own vehicle is detected as a turning end point. Then, the section after the turning end point on the estimated route of the own vehicle is corrected to a straight road. In this case, when the own vehicle starts turning right or left, a section where the deviation from the actual traveling route of the own vehicle in the estimated route is increased is corrected, so that the collision determination of the object with the own vehicle is appropriately performed. can do.
 上記課題を解決するために本開示は、自車の推定経路と、物体の推定経路とに基づいて、自車に対する前記物体の衝突判定を行う衝突判定装置であって、自車が将来走行する経路のカーブ半径を推定し、推定した前記カーブ半径に基づいて自車の前記推定経路を算出する推定経路算出部と、自車が走行する自車線の形状を示す形状情報を取得する形状取得部と、算出された自車の前記推定経路において、取得された前記形状情報に基づく前記自車線の形状との間で乖離が生じ始める乖離地点を検出する乖離地点検出部と、算出された自車の前記推定経路において、検出された前記乖離地点以降の区間を、前記形状情報に基づく前記自車線の形状に補正する道路形状補正部と、を備える。 In order to solve the above problem, the present disclosure is a collision determination device that determines a collision of the object with the own vehicle based on the estimated route of the own vehicle and the estimated route of the object, and the own vehicle travels in the future. An estimated route calculation unit that estimates a curve radius of a route and calculates the estimated route of the vehicle based on the estimated curve radius; and a shape acquisition unit that obtains shape information indicating the shape of the own lane on which the vehicle travels. And a divergence point detection unit that detects a divergence point at which a divergence starts to occur between the shape of the own lane based on the obtained shape information in the calculated estimated route of the own vehicle; A road shape correction unit that corrects a section after the detected divergence point to the shape of the own lane based on the shape information in the estimated route.
 自車が定常円旋回を想定した経路で近似できない道路を走行する場合、この道路において自車の推定経路との間の乖離度合が大きくなることが懸念される。そこで、上記構成では、自車の推定経路において、形状情報に基づく自車線の形状との間で乖離が生じ始める乖離地点を検出する。そして、自車の推定経路において、乖離地点以降の区間を、形状情報に基づく自車線の形状に補正する。そのため、定常円旋回を想定した経路で近似できない走行経路を、自車が走行する場合においても、実際の自車の走行経路に対する自車の推定経路の乖離を抑制できるため、自車に対する物体の衝突判定を適正に実施できる。 (4) When the vehicle travels on a road that cannot be approximated by a route that assumes a steady circular turn, there is a concern that the degree of deviation from the estimated route of the vehicle on this road may increase. Therefore, in the above configuration, a divergence point where a divergence from the shape of the own lane based on the shape information starts to be detected in the estimated route of the own vehicle. Then, in the estimated route of the own vehicle, the section after the departure point is corrected to the shape of the own lane based on the shape information. Therefore, even when the own vehicle is traveling on a traveling route that cannot be approximated by a route assuming a steady circular turn, the deviation of the estimated route of the own vehicle from the actual traveling route of the own vehicle can be suppressed. Collision determination can be properly performed.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、車両制御システムの構成図であり、 図2は、XY平面上での自車存在領域を説明する図であり、 図3は、XY平面上での物体存在領域を説明する図であり、 図4は、自車立体及び物体立体を説明する図であり、 図5は、交差点を通行する自車の走行経路と自車推定経路とを示す図であり、 図6は、自車推定経路の補正を説明する図であり、 図7は、衝突判定の手順を説明するフローチャートであり、 図8は、第2実施形態に係る衝突判定の手順を説明するフローチャートであり、 図9は、自車がS字カーブ路を走行する場合の走行経路と自車推定経路とを示す図であり、 図10は、第3実施形態に係る衝突判定の手順を説明するフローチャートである。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a configuration diagram of a vehicle control system, FIG. 2 is a view for explaining the own vehicle presence area on the XY plane, FIG. 3 is a diagram illustrating an object existence area on an XY plane. FIG. 4 is a diagram illustrating a vehicle solid and an object solid, FIG. 5 is a diagram illustrating a traveling route of the own vehicle and an estimated vehicle route passing through the intersection, FIG. 6 is a diagram for explaining the correction of the estimated vehicle route. FIG. 7 is a flowchart illustrating the procedure of collision determination. FIG. 8 is a flowchart illustrating a procedure of a collision determination according to the second embodiment. FIG. 9 is a diagram showing a traveling route and an estimated vehicle route when the own vehicle travels on an S-shaped curved road, FIG. 10 is a flowchart illustrating a procedure of a collision determination according to the third embodiment.
 (第1実施形態)
 以下、車両に適用される車両制御システムの実施形態について図面を参照しつつ説明する。図1に示す車両制御システム100は、レーダセンサ11、画像センサ12、衝突判定ECU20及び衝突抑制装置30を備えている。本実施形態では、衝突判定ECU20が衝突判定装置に相当する。
(1st Embodiment)
Hereinafter, an embodiment of a vehicle control system applied to a vehicle will be described with reference to the drawings. The vehicle control system 100 shown in FIG. 1 includes a radar sensor 11, an image sensor 12, a collision determination ECU 20, and a collision suppression device 30. In the present embodiment, the collision determination ECU 20 corresponds to a collision determination device.
 レーダセンサ11は、ミリ波を送信し、送信したミリ波が物体に反射することで生じる反射波に基づいて、自車周囲の物体の位置及び自車に対する物体の相対速度を検出する。レーダセンサ11の送波部及び受波部は、例えば、自車の前部及び後部にそれぞれ取り付けられており、ミリ波を自車周囲に出射し、その反射波を受信する。 The radar sensor 11 transmits a millimeter wave, and detects a position of an object around the own vehicle and a relative speed of the object with respect to the own vehicle based on a reflected wave generated by reflecting the transmitted millimeter wave on the object. The wave transmitting unit and the wave receiving unit of the radar sensor 11 are attached to, for example, a front part and a rear part of the own vehicle, respectively, emit a millimeter wave around the own vehicle, and receive a reflected wave thereof.
 画像センサ12は、自車前方を撮像した撮像画像に基づいて、自車前方に位置する物体を認識し、認識した物体の位置を検出する。画像センサ12は、例えば、撮像方向をフロントガラス越しに自車前方に向けた状態で、車室内に取り付けられている。 (4) The image sensor 12 recognizes an object located in front of the own vehicle based on a captured image of the front of the own vehicle and detects the position of the recognized object. The image sensor 12 is mounted in the vehicle cabin, for example, with the imaging direction facing the front of the vehicle through the windshield.
 衝突判定ECU20には、ヨーレートセンサ13、操舵角センサ14、車輪速センサ15、及び衝突抑制装置30が接続されている。ヨーレートセンサ13は、たとえば自車の中央位置に設けられており、自車の操舵量の変化速度に応じたヨーレート信号を衝突判定ECU20に出力する。操舵角センサ14は、たとえば車両のステアリングロッドに取り付けられており、運転者の操作に伴うステアリングホイールの操舵角の変化に応じた操舵角信号を衝突判定ECU20に出力する。車輪速センサ15は、たとえば車両のホイール部分に取り付けられており、車両の車輪速度に応じた、車輪速度信号を衝突判定ECU20に出力する。 The yaw rate sensor 13, the steering angle sensor 14, the wheel speed sensor 15, and the collision suppression device 30 are connected to the collision determination ECU 20. The yaw rate sensor 13 is provided, for example, at the center position of the own vehicle, and outputs a yaw rate signal corresponding to the change speed of the steering amount of the own vehicle to the collision determination ECU 20. The steering angle sensor 14 is attached to, for example, a steering rod of the vehicle, and outputs a steering angle signal corresponding to a change in the steering angle of the steering wheel accompanying the driver's operation to the collision determination ECU 20. The wheel speed sensor 15 is attached to, for example, a wheel portion of the vehicle, and outputs a wheel speed signal corresponding to the wheel speed of the vehicle to the collision determination ECU 20.
 衝突判定ECU20には、地図情報を記憶するナビゲーション装置16が接続されている。ナビゲーション装置16が記憶する地図情報には、自車が走行可能な道路が画像データとして記憶されている。また、地図情報には、付属情報として、道路上の走行区画線の位置や形状、信号機の位置、路面標示の位置や形状、及び道路標識の位置や種別が記憶されている。ナビゲーション装置16は、例えば、GPS情報に基づく現在の自車位置を、地図情報上の位置に照らし合わせることにより、地図情報のうち、自車周囲の地図情報を参照することができる。 The navigation device 16 that stores map information is connected to the collision determination ECU 20. In the map information stored in the navigation device 16, roads on which the own vehicle can travel are stored as image data. In the map information, the position and shape of the lane marking on the road, the position of the traffic light, the position and shape of the road marking, and the position and type of the road sign are stored as auxiliary information. The navigation device 16 can refer to the map information around the own vehicle in the map information, for example, by comparing the current position of the own vehicle based on the GPS information with the position on the map information.
 衝突抑制装置30は、自車に対する物体の衝突を抑制する装置であり、本実施形態では、ブレーキECU31と、シートベルトアクチュエータ32とを備えている。ブレーキECU31は、衝突判定ECU20から出力される減速信号に基づいて、ブレーキアクチュエータの制動力を制御する。ブレーキアクチュエータの制動力が制御されることにより自車の減速量が調整される。シートベルトアクチュエータ32は、衝突判定ECU20から出力される起動信号に基づいて、シートベルトの巻取装置を作動させ、シートベルトを巻き取って緊張させる。 The collision suppression device 30 is a device that suppresses a collision of an object with the own vehicle, and includes a brake ECU 31 and a seat belt actuator 32 in the present embodiment. The brake ECU 31 controls the braking force of the brake actuator based on the deceleration signal output from the collision determination ECU 20. The deceleration amount of the host vehicle is adjusted by controlling the braking force of the brake actuator. The seat belt actuator 32 activates the seat belt winding device based on the start signal output from the collision determination ECU 20, and winds and tightens the seat belt.
 衝突判定ECU20は、自車周囲に位置する物体に対して、自車に対する衝突の有無を判定する。衝突判定ECU20は、CPU、ROM、RAM、及び入出力インターフェイスなどを備えるコンピュータにより構成されている。衝突判定ECU20は、自車に対して物体が衝突すると判定した場合に、衝突抑制装置30を作動させることにより、自車に対する衝突抑制制御を実施する。例えば、衝突判定ECU20は、ブレーキECU31に出力する減速信号及びシートベルトアクチュエータ32に出力する起動信号を生成して出力することにより衝突抑制制御を実施する。 The collision determination ECU 20 determines whether an object located around the own vehicle has a collision with the own vehicle. The collision determination ECU 20 is configured by a computer including a CPU, a ROM, a RAM, and an input / output interface. When it is determined that the object collides with the own vehicle, the collision determination ECU 20 operates the collision suppression device 30 to perform the collision suppression control on the own vehicle. For example, the collision determination ECU 20 performs the collision suppression control by generating and outputting a deceleration signal output to the brake ECU 31 and a start signal output to the seat belt actuator 32.
 次に、本実施形態の衝突判定に係る衝突判定ECU20の各機能を説明する。 Next, each function of the collision determination ECU 20 according to the collision determination of the present embodiment will be described.
 衝突判定ECU20は、自車が将来走行する経路のカーブ半径Rを推定し、推定したカーブ半径Rに基づいて自車の推定経路を示す自車推定経路PA1を算出する。そして、算出した、自車推定経路PA1に基づいて、仮想的に形成される3次元座標系において、自車の存在領域の推移を示す立体である自車立体を算出する。また、衝突判定ECU20は、3次元座標系において、物体の移動経路を算出する。そして、自車立体と、物体の移動経路との交わりの有無に基づいて、自車と物体との衝突の有無を判定することにより、自車に対する物体の位置関係や、物体の移動状態を含む様々なシーンに対応した衝突判定を可能としている。 The collision determination ECU 20 estimates the curve radius R of the route on which the vehicle will travel in the future, and calculates the estimated vehicle route PA1 indicating the estimated route of the vehicle based on the estimated curve radius R. Then, based on the calculated estimated vehicle route PA1, a three-dimensional vehicle that is a three-dimensional body that indicates the transition of the area in which the vehicle is present is calculated in a virtually formed three-dimensional coordinate system. In addition, the collision determination ECU 20 calculates the moving path of the object in the three-dimensional coordinate system. Then, based on the presence / absence of intersection between the three-dimensional vehicle and the movement path of the object, the presence / absence of collision between the own vehicle and the object is determined, thereby including the positional relationship of the object with respect to the own vehicle and the movement state of the object It is possible to make collision determinations corresponding to various scenes.
 自車経路推定部21は、カーブ半径Rに基づいて、自車推定経路PA1を算出する。本実施形態に係る自車経路推定部21の詳細は後述する。 The own vehicle route estimation unit 21 calculates the own vehicle estimated route PA1 based on the curve radius R. Details of the vehicle route estimating unit 21 according to the present embodiment will be described later.
 自車領域算出部22は、現在の自車進行方向での距離Y、及び車幅方向での距離Xで規定される2次元座標系のXY平面上に、自車推定経路PA1上での所定時間毎の自車が存在領する領域を示す自車存在領域EA1を算出する。本実施形態では、自車領域算出部22は、現在T0から推定終了時間TNまでの期間において、自車推定経路PA1上の各位置における自車存在領域EA1を算出する。 The own-vehicle region calculation unit 22 determines a predetermined distance on the own-vehicle estimated route PA1 on the XY plane of the two-dimensional coordinate system defined by the current distance Y in the own vehicle traveling direction and the distance X in the vehicle width direction. An own vehicle existence area EA1 indicating an area where the own vehicle exists for each time is calculated. In the present embodiment, the own vehicle area calculation unit 22 calculates the own vehicle existing area EA1 at each position on the own vehicle estimated route PA1 during the period from the current T0 to the estimation end time TN.
 図2(a)は、現在T0での自車存在領域EA1を示している。本実施形態では、自車存在領域EA1を、自車を上方から見た場合の自車の外周を全て含む矩形領域として定めている。自車領域算出部22は、自車の大きさを示す車両諸元に基づいて、自車存在領域EA1を形成する矩形領域を定めている。例えば、現在T0での自車存在領域EA1は、X軸とY軸との交点(0,0)が、自車の基準位置P0となるように定められている。また、自車の基準位置P0は、自車前方において車幅方向の中心となるように設定されている。 FIG. 2A shows the current vehicle existing area EA1 at the time T0. In the present embodiment, the own vehicle presence area EA1 is defined as a rectangular area including the entire outer periphery of the own vehicle when the own vehicle is viewed from above. The host vehicle area calculation unit 22 determines a rectangular area that forms the host vehicle existence area EA1 based on vehicle specifications indicating the size of the host vehicle. For example, the current vehicle existence area EA1 at T0 is defined such that the intersection (0, 0) between the X axis and the Y axis is the reference position P0 of the own vehicle. Further, the reference position P0 of the own vehicle is set to be the center in the vehicle width direction in front of the own vehicle.
 図2(b)は、現在からT1だけ将来の自車存在領域EA1を示している。なお、図2(b)では、説明を容易にするため、現在T0での自車存在領域EA1と、現在からT2だけ将来(T2>T1)での自車存在領域EA1とを破線により示している。 FIG. 2 (b) shows the future vehicle existence area EA1 by T1 from the present. In FIG. 2B, for ease of explanation, a broken line indicates the own vehicle existing area EA1 at the current time T0 and the own vehicle existing area EA1 in the future (T2> T1) by T2 from the present time. I have.
 現在からT1だけ将来の自車存在領域EA1は、自車が自車推定経路PA1に沿って移動する場合に、現在の自車位置から経過時間T1後での自車の存在領域を示している。例えば、自車領域算出部22は、現在の自車位置で算出される自車推定経路PA1と、自車速度とに基づいて、自車推定経路PA1において、現在T0での自車の基準位置P0から所定の経過時間Tn(nは、0以上、N以下の値)だけ将来の通過位置を算出する。そして、各通過位置を基準位置Pnとする矩形領域を、現在からTnだけ将来の自車存在領域EA1として算出する。本実施形態では、各経過時間Tnでの自車存在領域EA1の向きを、各基準位置Pnでの自車推定経路PA1の接線の向きに定めている。 The own vehicle existence region EA1 in the future by T1 from the present indicates the existence region of the own vehicle after the elapsed time T1 from the current own vehicle position when the own vehicle moves along the own vehicle estimated route PA1. . For example, the own vehicle area calculation unit 22 determines the reference position of the own vehicle at the current time T0 on the own vehicle estimated route PA1 based on the own vehicle estimated route PA1 calculated at the current own vehicle position and the own vehicle speed. A future passage position is calculated from P0 by a predetermined elapsed time Tn (n is a value of 0 or more and N or less). Then, a rectangular area having each passing position as the reference position Pn is calculated as the future vehicle existing area EA1 by Tn from the present time. In the present embodiment, the direction of the own vehicle existence area EA1 at each elapsed time Tn is determined as the direction of the tangent to the own vehicle estimated route PA1 at each reference position Pn.
 自車情報算出部23は、自車進行方向での距離Y、車幅方向での距離X、及び現在からの経過時間Tにより規定される3次元座標系において、複数の自車存在領域EA1を補完することにより、自車存在領域EA1の推移を示す自車立体D1を算出する。図4に示す3次元座標系において、点(0,0,0)が、現在の自車の基準位置P0を示している。自車立体D1は、3次元座標系において、経過時間Tに伴う自車存在領域EA1の移動推移を示している。図4では、現在T0から、推定終了時間TNまでの予測時間幅において、自車立体D1が算出されている。 The own-vehicle information calculation unit 23 calculates a plurality of own-vehicle existing areas EA1 in a three-dimensional coordinate system defined by a distance Y in the own-vehicle traveling direction, a distance X in the vehicle width direction, and an elapsed time T from the present. By complementing, the own vehicle three-dimensional body D1 indicating the transition of the own vehicle existing area EA1 is calculated. In the three-dimensional coordinate system shown in FIG. 4, a point (0, 0, 0) indicates the current reference position P0 of the own vehicle. The three-dimensional own vehicle D1 shows the movement transition of the own vehicle existing area EA1 with the elapsed time T in the three-dimensional coordinate system. In FIG. 4, the vehicle three-dimensional body D1 is calculated in the predicted time width from the current T0 to the estimated end time TN.
 本実施形態では、自車情報算出部23は、算出した複数の自車存在領域EA1を3次元座標系の情報に変換する。そして、3次元座標系において、経過時間を定めるT軸が延びる方向で隣り合う自車存在領域EA1間の四隅を直線補完することにより、自車立体D1を算出する。 In the present embodiment, the host vehicle information calculation unit 23 converts the calculated host vehicle existence areas EA1 into information of a three-dimensional coordinate system. Then, in the three-dimensional coordinate system, the vehicle three-dimensional space D1 is calculated by linearly complementing four corners between the vehicle existence regions EA1 adjacent to each other in the direction in which the T axis that determines the elapsed time extends.
 物体経路推定部24は、各センサ11,12により検出された物体の位置、及び自車に対する物体の相対速度に基づいて、物体の推定経路を示す物体推定経路PA2を算出する。例えば、物体経路推定部24は、物体位置の変化に基づいて、物体の移動軌跡を算出し、この移動軌跡を物体推定経路PA2とする。 The object path estimating unit 24 calculates an object estimated path PA2 indicating the estimated path of the object based on the position of the object detected by each of the sensors 11 and 12 and the relative speed of the object with respect to the own vehicle. For example, the object path estimating unit 24 calculates the movement trajectory of the object based on the change in the object position, and sets the movement trajectory as the object estimation path PA2.
 物体領域算出部25は、XY平面上において、物体推定経路PA2上での所定時間毎の物体が存在する領域を示す物体存在領域EA2を算出する。物体存在領域EA2は、物体が、物体推定経路PA2に沿って移動する場合の、所定時間毎の物体の存在領域を示す。図3(a)は、現在T0での物体存在領域EA2を示している。現在T0でのXY平面上の物体存在領域EA2は、現在の自車位置において、各センサ11,12により検出されている物体の存在領域を示している。物体領域算出部25は、物体存在領域EA2を、物体を上方から見た場合の物体の外周を全て含む矩形領域として設定している。例えば、物体存在領域EA2を形成する矩形領域は、各センサ11,12により算出された物体の大きさに基づいて設定される。 The object area calculation unit 25 calculates an object existence area EA2 indicating an area where an object exists at predetermined time intervals on the object estimation path PA2 on the XY plane. The object existence area EA2 indicates the existence area of the object every predetermined time when the object moves along the object estimation path PA2. FIG. 3A shows the object existing area EA2 at the current time T0. The object existence area EA2 on the XY plane at the current T0 indicates the existence area of the object detected by each of the sensors 11 and 12 at the current vehicle position. The object area calculation unit 25 sets the object existence area EA2 as a rectangular area including the entire periphery of the object when the object is viewed from above. For example, a rectangular area forming the object existence area EA2 is set based on the size of the object calculated by each of the sensors 11 and 12.
 図3(b)は、現在からT1だけ将来の物体存在領域EA2を示している。例えば、物体領域算出部25は、物体推定経路PA2と、自車を基準とする物体の相対速度とに基づいて、物体推定経路PA2上において、現在の物体の基準位置B0から所定の経過時間Tnだけ経過した後の通過位置を算出する。そして、各通過位置を基準位置Bnとする矩形領域を、現在から経過時間Tnだけ将来の物体存在領域EA2として算出する。 FIG. 3B shows the future object existence area EA2 by T1 from the present. For example, based on the object estimation route PA2 and the relative speed of the object with respect to the own vehicle, the object region calculation unit 25 determines a predetermined elapsed time Tn from the current reference position B0 of the object on the object estimation route PA2. The passage position after the lapse of the time elapses is calculated. Then, a rectangular area having each passing position as the reference position Bn is calculated as the future object existing area EA2 by the elapsed time Tn from the present.
 物体情報算出部26は、3次元座標系において、複数の物体存在領域EA2を補完することにより、物体存在領域EA2の推移を示す立体である物体立体D2を算出する。図4に示す物体立体D2は、3次元座標系において、経過時間Tに伴う物体存在領域EA2の移動推移を示している。本実施形態では、物体情報算出部26は、経過時間を定めるT軸の延びる方向で隣り合う物体存在領域EA2間の四隅を直線補完することにより、物体立体D2を算出する。 The object information calculation unit 26 calculates an object solid D2, which is a solid indicating the transition of the object existence area EA2, by complementing the plurality of object existence areas EA2 in the three-dimensional coordinate system. The object solid D2 shown in FIG. 4 shows the movement transition of the object existence area EA2 with the elapsed time T in the three-dimensional coordinate system. In the present embodiment, the object information calculation unit 26 calculates the object solid D2 by linearly complementing the four corners between the adjacent object existence areas EA2 in the direction in which the T axis that determines the elapsed time extends.
 判定部27は、自車立体D1と物体立体D2との交わりの有無に基づいて、自車に対する物体の衝突の有無を判定する。本実施形態では、判定部27は、所定の経過時間Tでの自車の存在領域を示す第1判定用領域を、自車立体D1を用いて算出する。また、第1判定用領域と同一経過時間Tでの物体の存在領域を示す第2判定用領域を、物体立体D2を用いて算出する。そして、算出した同一経過時間Tでの第1,第2判定用領域間に重複する領域が存在する場合に、自車立体D1と物体立体D2とが交わると判定する。 The determination unit 27 determines whether or not an object has collided with the own vehicle based on whether or not the own vehicle D3 and the object D2 intersect. In the present embodiment, the determination unit 27 calculates the first determination area indicating the area in which the vehicle is present at the predetermined elapsed time T using the three-dimensional vehicle D1. In addition, a second determination area indicating an existing area of the object at the same elapsed time T as the first determination area is calculated using the object solid D2. Then, when there is an overlapping area between the first and second determination areas at the calculated same elapsed time T, it is determined that the own vehicle solid body D1 and the object solid body D2 intersect.
 図5は、自車が交差点を走行する際の自車推定経路PA1と、自車の実際の走行経路PRとを示している。衝突判定ECU20が、推定したカーブ半径Rに基づいて自車推定経路PA1を算出する場合、この自車推定経路PA1は自車の定常円旋回を想定した経路となる。具体的には、自車推定経路PA1は、カーブ半径Rにより規定される円弧状の経路として設定されている。ここで、交差点の入口C1から交差点の出口C2までの区間では、自車の走行経路PRは定常円旋回を想定した経路で近似することができるため、自車の走行経路PRは、自車推定経路PA1に一致している。一方で、交差点の出口C2以降の区間では、自車が直進することにより、自車の走行経路PRは直線状に推移しており、走行経路PRに対して自車推定経路PA1が大きく乖離している。 FIG. 5 shows the estimated vehicle route PA1 and the actual travel route PR of the vehicle when the vehicle travels at the intersection. When the collision determination ECU 20 calculates the own vehicle estimated route PA1 based on the estimated curve radius R, the own vehicle estimated route PA1 is a route assuming a steady circular turning of the own vehicle. Specifically, the estimated vehicle route PA1 is set as an arc-shaped route defined by a curve radius R. Here, in the section from the entrance C1 of the intersection to the exit C2 of the intersection, the travel route PR of the own vehicle can be approximated by a route assuming a steady circular turn. It matches the route PA1. On the other hand, in the section after the exit C2 of the intersection, the traveling route PR of the own vehicle changes linearly due to the straight traveling of the own vehicle, and the estimated vehicle route PA1 greatly deviates from the traveling route PR. ing.
 図5では、自車の走行経路PRは、物体推定経路PA2と交差しているのに対して、自車推定経路PA1は、物体推定経路PA2と交差していない。そのため、現在の自車位置において、自車推定経路PA1に基づいて自車立体D1を生成した場合でも、自車に対する物体の衝突判定の結果が、実際の自車の走行経路PRに即したものとならないことが懸念される。なお、自車が交差点を走行中に、衝突判定ECU20が操舵量の変化に基づいて自車推定経路PA1を変更することも考えられる。しかし、この場合、操舵量の変化が検出されるまでに時間を要する場合があり、衝突判定の結果が実際の自車の走行経路に即したものとなるまでに時間を要することが懸念される。 In FIG. 5, the traveling route PR of the own vehicle crosses the object estimation route PA2, whereas the own vehicle estimation route PA1 does not intersect the object estimation route PA2. Therefore, even when the own vehicle three-dimensional D1 is generated based on the own vehicle estimated route PA1 at the current own vehicle position, the result of the collision determination of the object with respect to the own vehicle is based on the actual running route PR of the own vehicle. It is feared that it will not be. It is conceivable that the collision determination ECU 20 changes the estimated vehicle path PA1 based on the change in the steering amount while the own vehicle is traveling at the intersection. However, in this case, it may take time until a change in the steering amount is detected, and there is a concern that it may take time until the result of the collision determination matches the actual traveling route of the own vehicle. .
 そこで、衝突判定ECU20は、自車が交差点に進入する際に、自車の走行経路PRと、自車推定経路PA1との間の乖離を抑制するように、自車推定経路PA1を補正する。そのため、自車経路推定部21は、推定経路算出部41と、右左折判定部42と、終了地点検出部43と、直線補正部44とを備えている。 Therefore, when the vehicle enters the intersection, the collision determination ECU 20 corrects the estimated vehicle route PA1 so as to suppress a deviation between the traveling route PR of the vehicle and the estimated vehicle route PA1. Therefore, the own vehicle route estimation unit 21 includes an estimated route calculation unit 41, a right / left turn determination unit 42, an end point detection unit 43, and a straight line correction unit 44.
 推定経路算出部41は、ヨーレートセンサ13からのヨーレート信号を用いて算出される自車のヨーレートψと、車輪速センサ15からの車輪速度信号を用いて算出される自車速度とに基づいて自車が将来走行する経路のカーブ半径Rを推定する。そして、推定したカーブ半径Rに沿って自車が走行する場合の経路を自車推定経路PA1として算出する。なお、推定経路算出部41は、ヨーレートψに換えて、操舵角センサ14からの操舵角信号に基づいて算出した操舵量の変化速度を用いてカーブ半径Rを算出してもよい。 The estimated route calculation unit 41 determines the own path based on the yaw rate ψ of the own vehicle calculated using the yaw rate signal from the yaw rate sensor 13 and the own vehicle speed calculated using the wheel speed signal from the wheel speed sensor 15. Estimate the curve radius R of the route on which the car will travel in the future. Then, the route when the own vehicle travels along the estimated curve radius R is calculated as the own vehicle estimated route PA1. Note that the estimated route calculation unit 41 may calculate the curve radius R using the change speed of the steering amount calculated based on the steering angle signal from the steering angle sensor 14 instead of the yaw rate ψ.
 右左折判定部42は、自車が右左折を開始するか否かを判定する。本実施形態では、右左折判定部42は、運転者により方向指示器が操作され、この方向指示器により示される旋回方向での自車のカーブ半径Rが半径閾値以下となる場合に、自車が右左折を開始すると判定する。例えば、半径閾値は、自車が直進する場合に想定されるカーブ半径Rよりも自車の旋回方向において小さなカーブ半径である。 The right / left turn determination unit 42 determines whether or not the vehicle starts right / left turn. In the present embodiment, the right / left turn determination unit 42 determines whether the vehicle has a curve radius R equal to or smaller than the radius threshold value in a turning direction indicated by the direction indicator. Determines that a right / left turn is to be started. For example, the radius threshold value is a curve radius smaller in the turning direction of the vehicle than the curve radius R assumed when the vehicle travels straight.
 終了地点検出部43は、右左折判定部42により自車が右左折を開始すると判定された場合に、自車推定経路PA1において、将来、自車の旋回が終了する地点を旋回終了地点として検出する。本実施形態では、図6に示すように、終了地点検出部43は、自車推定経路PA1において、自車が右左折を開始すると判定された地点K1から、所定旋回角度θ(例えば、90度)だけ旋回したと想定した場合の地点を、旋回終了地点K2として検出する。なお、旋回角度は、自車のカーブ半径Rを形成する円の中心角により規定される。 The end point detection unit 43 detects a point at which the turn of the vehicle will be completed in the future on the estimated vehicle path PA1 as a turn end point when the right / left turn determination unit 42 determines that the vehicle starts turning right / left. I do. In the present embodiment, as shown in FIG. 6, the end point detection unit 43 determines a predetermined turning angle θ (for example, 90 degrees) from the point K1 where the own vehicle is determined to start turning right and left on the own vehicle estimated route PA1. ) Is detected as a turning end point K2. The turning angle is defined by a central angle of a circle forming a curve radius R of the own vehicle.
 直線補正部44は、自車推定経路PA1において、旋回終了地点K2以降の区間を、直線路に補正する。図6では、自車推定経路PA1において、旋回終了地点K2以降の区間が破線で示される曲線路から、実線で示される直線路に補正されている。例えば、直線補正部44は、旋回終了地点K2での自車推定経路PA1の接線を用いて、自車推定経路PA1における旋回終了地点K2以降の区間を補正する。なお、旋回終了地点K2以降の区間を、旋回終了地点K2における車両の進行方向へ自車推定経路PA1を直線で延長した直線路に補正してもよい。 The straight line correction unit 44 corrects the section after the turning end point K2 on the estimated vehicle route PA1 into a straight road. In FIG. 6, the section after the turning end point K2 in the estimated vehicle route PA1 is corrected from a curved road indicated by a broken line to a straight road indicated by a solid line. For example, the straight line correction unit 44 corrects a section after the turning end point K2 on the own vehicle estimated route PA1 by using a tangent line of the own vehicle estimated route PA1 at the turning end point K2. Note that the section after the turning end point K2 may be corrected to a straight road that extends the own vehicle estimated route PA1 straight in the traveling direction of the vehicle at the turning end point K2.
 次に、図7を用いて、本実施形態に係る衝突判定の手順を説明する。図7に示す処理は、衝突判定ECU20により所定周期で繰り返し実施される。 Next, the procedure of collision determination according to the present embodiment will be described with reference to FIG. The process shown in FIG. 7 is repeatedly performed by the collision determination ECU 20 at a predetermined cycle.
 ステップS10では、車輪速度信号に基づいて算出される自車速度と、ヨーレート信号に基づいて算出される自車のヨーレートψとに基づいて、XY平面上において現在の自車位置での自車推定経路PA1を算出する。 In step S10, the host vehicle is estimated at the current host vehicle position on the XY plane based on the host vehicle speed calculated based on the wheel speed signal and the host vehicle yaw rate 推定 calculated based on the yaw rate signal. The route PA1 is calculated.
 ステップS11では、自車が右左折を開始するか否かを判定する。自車が右左折を開始すると判定すると、ステップS12に進む。一方、自車が右左折を開始しないと判定していると、ステップS14に進む。 In step S11, it is determined whether or not the vehicle starts turning right or left. When it is determined that the vehicle starts turning right or left, the process proceeds to step S12. On the other hand, if it is determined that the vehicle does not start turning right or left, the process proceeds to step S14.
 ステップS12では、ステップS10で算出した自車推定経路PA1において、将来、自車の旋回が終了する地点を示す旋回終了地点K2を検出する。例えば、まず、現在の操舵量及び自車速度に基づいて、自車が旋回角度で90度だけ旋回するのに要する時間を算出する。そして、自車が右左折を開始すると判定した地点K1から、算出した時間までに自車推定経路PA1を進んだ地点を、旋回終了地点K2として検出する。
ステップS13では、自車推定経路PA1において、ステップS12で検出した旋回終了地点K2以降の区間を、直線路に補正する。
In step S12, a turning end point K2 indicating a point where turning of the own vehicle will end in the future is detected in the own vehicle estimated route PA1 calculated in step S10. For example, first, based on the current steering amount and the own vehicle speed, the time required for the own vehicle to turn by 90 degrees in the turning angle is calculated. Then, a point that has traveled on the estimated vehicle path PA1 from the point K1 at which the own vehicle is determined to start turning right or left by the calculated time is detected as a turning end point K2.
In step S13, the section after the turning end point K2 detected in step S12 on the own vehicle estimated route PA1 is corrected to a straight road.
 ステップS14では、各センサ11,12により検出された物体位置、及び自車に対する物体の相対速度に基づいて、XY平面上において物体推定経路PA2を算出する。 In step S14, the object estimation path PA2 is calculated on the XY plane based on the object position detected by each of the sensors 11 and 12, and the relative speed of the object with respect to the own vehicle.
 ステップS15では、自車推定経路PA1を通過する複数の自車存在領域EA1を算出する。ステップS16では、3次元座標系において、ステップS15で算出した複数の自車存在領域EA1を補完することにより、自車立体D1を算出する。 In step S15, a plurality of vehicle existence areas EA1 passing through the vehicle estimation route PA1 are calculated. In step S16, the three-dimensional coordinate system D1 is calculated by complementing the plurality of own vehicle existence areas EA1 calculated in step S15 in the three-dimensional coordinate system.
 ステップS17では、物体推定経路PA2を通過する複数の物体存在領域EA2を算出する。ステップS18では、3次元座標系において、ステップS17で算出した複数の物体存在領域EA2を補完することにより、物体立体D2を算出する。 In step S17, a plurality of object existence areas EA2 passing through the object estimation path PA2 are calculated. In step S18, an object solid D2 is calculated in the three-dimensional coordinate system by complementing the plurality of object existence areas EA2 calculated in step S17.
 ステップS19では、ステップS16で算出した自車立体D1と、ステップS18で算出した物体立体D2との交わりの有無を判定する。具体的には、同一経過時間Tでの第1判定用領域DA1と、第2判定用領域DA2とに重なる領域が存在する場合に、自車立体D1と物体立体D2とに交わりがあると判定する。 In step S19, it is determined whether or not the vehicle three-dimensional body D1 calculated in step S16 intersects with the object three-dimensional body D2 calculated in step S18. Specifically, when there is an area overlapping the first determination area DA1 and the second determination area DA2 at the same elapsed time T, it is determined that there is an intersection between the own vehicle solid body D1 and the object solid body D2. I do.
 ステップS19の処理において、自車立体D1と物体立体D2とに交わりがあると判定した場合、自車に対して物体が衝突するとして、ステップS20に進む。なお、自車立体D1と物体立体D2とに交わりがないと判定すると、自車に対して物体が衝突しないとして、図7の処理を一旦終了する。 If it is determined in step S19 that the vehicle D3 and the object D2 intersect, it is determined that the object collides with the vehicle, and the process proceeds to step S20. If it is determined that there is no intersection between the own vehicle solid body D1 and the object solid body D2, the processing in FIG.
 本実施形態では、自車立体D1と物体立体D2とに交わりがあると判定したことを条件に、ステップS20では現在の自車位置において、自車と物体とが衝突するまでの衝突余裕時間を示すTTCを算出する。例えば、現在の自車位置から物体までの直線距離を、自車に対する物体の相対速度で割ることによりTTCを算出する。 In the present embodiment, on condition that it is determined that the own vehicle three-dimensional object D1 and the object three-dimensional object D2 intersect, in step S20, the collision margin time until the own vehicle collides with the object at the current own vehicle position is determined. The TTC shown is calculated. For example, the TTC is calculated by dividing the linear distance from the current vehicle position to the object by the relative speed of the object to the vehicle.
 ステップS21では、ステップS20で算出したTTCが閾値TH1以下であるか否かを判定する。まずは、TTCが閾値TH1よりも大きいと判定したとして、図7の処理を一旦終了する。その後に実施されるステップS21の処理により、TTCが閾値TH1以下でると判定すると、ステップS22に進む。 In step S21, it is determined whether or not the TTC calculated in step S20 is equal to or less than a threshold value TH1. First, it is determined that the TTC is greater than the threshold value TH1, and the process of FIG. 7 is temporarily terminated. When it is determined that the TTC is equal to or less than the threshold value TH1 by the process of step S21 performed thereafter, the process proceeds to step S22.
 ステップS22では、自車に対する衝突抑制制御を実施する。例えば、ブレーキECU31に対して速度軽減信号を出力することにより、自車速度を減速させる。ステップS23の処理を終了すると、図7の処理を一旦終了する。 で は In step S22, the collision suppression control for the own vehicle is performed. For example, the vehicle speed is reduced by outputting a speed reduction signal to the brake ECU 31. When the processing in step S23 ends, the processing in FIG. 7 ends once.
 以上説明した本実施形態では、以下の効果を奏することができる。 本 The above-described embodiment has the following advantages.
 ・衝突判定ECU20は、自車が右左折を開始すると判定した場合に、自車推定経路PA1において、将来、自車の旋回が終了する旋回終了地点K2を検出する。そして、自車推定経路PA1において、旋回終了地点K2以降の区間を、直線路に補正する。この場合、自車の右左折が開始される際に、自車推定経路PA1において実際の自車の走行経路に対して乖離が大きくなる区間が補正されるため、自車に対する物体の衝突判定を適正に実施することができる。 (4) When the collision determination ECU 20 determines that the own vehicle starts turning right or left, the collision determination ECU 20 detects a turning end point K2 where the turning of the own vehicle ends in the future on the own vehicle estimated route PA1. Then, the section after the turning end point K2 on the own vehicle estimated route PA1 is corrected to a straight road. In this case, when a right or left turn of the own vehicle is started, a section in which the deviation from the actual travel route of the own vehicle is large in the own vehicle estimated route PA1 is corrected. It can be implemented properly.
 ・衝突判定ECU20は、自車推定経路PA1において、自車が右左折を開始すると判定した地点K1から所定旋回角度θだけ自車が旋回したと推定した地点を、旋回終了地点K2として検出する。この場合、旋回角度に基づいて、旋回終了地点K2を検出することができるため、旋回終了地点K2の検出に要する負荷を抑制することができる。 · The collision determination ECU 20 detects, as the turning end point K2, a point on the estimated vehicle path PA1 at which the vehicle is estimated to have turned by a predetermined turning angle θ from a point K1 determined to start turning right or left. In this case, since the turning end point K2 can be detected based on the turning angle, the load required for detecting the turning end point K2 can be suppressed.
 (第2実施形態)
 第2実施形態では、第1実施形態と異なる構成を主に説明する。なお、各実施形態で同じ箇所には、同一の符号を付しており、その説明は繰り返さない。
(2nd Embodiment)
In the second embodiment, a configuration different from the first embodiment will be mainly described. In the embodiments, the same portions are denoted by the same reference numerals, and description thereof will not be repeated.
 交差点内には、交差点の出口を示す道路の特徴部分や物体が存在するため、これら道路の特徴部分や物体から自車前方に交差点の出口が存在するか否かを判断することができる。そこで、本実施形態では、画像センサ12により認識される道路の特徴部分や物体のうち、交差点の出口を示す道路の特徴部分や物体における位置を出口位置情報として取得し、取得した出口位置情報に基づいて、自車推定経路PA1における旋回終了地点K2を検出する。 た め Since there are road features and objects that indicate the exit of the intersection within the intersection, it is possible to determine whether or not there is an exit of the intersection ahead of the vehicle based on these features and objects of the road. Therefore, in the present embodiment, among the characteristic parts and objects of the road recognized by the image sensor 12, the position of the characteristic part and the object of the road indicating the exit of the intersection is acquired as exit position information, and the acquired exit position information is included in the acquired exit position information. Based on this, the turning end point K2 on the estimated vehicle route PA1 is detected.
 次に、図8を用いて、本実施形態に係る衝突判定の手順を説明する。図8に示す処理は、衝突判定ECU20により所定周期で繰り返し実施される。 Next, the procedure of collision determination according to the present embodiment will be described with reference to FIG. The process shown in FIG. 8 is repeatedly performed by the collision determination ECU 20 at a predetermined cycle.
 ステップS10において、自車推定経路PA1を算出すると、ステップS30に進み、画像センサ12により認識された道路の特徴部分及び物体のうち、自車前方において交差点の入口を示す道路の特徴部分及び物体の位置を入口位置情報F1として取得する。本実施形態では、交差点の入口を示す道路の特徴部分として、現在の自車位置から前方の所定距離内に存在する、走行区画線の途切れ、停止線、横断歩道を用いている。また、交差点の入口を示す物体として、停止の道路標識及び信号機を用いている。 After calculating the estimated vehicle route PA1 in step S10, the process proceeds to step S30, and among the characteristic portions and the objects of the road recognized by the image sensor 12, the characteristic portions and the objects of the road indicating the entrance of the intersection ahead of the own vehicle are determined. The position is acquired as entrance position information F1. In the present embodiment, as a characteristic portion of a road indicating an entrance of an intersection, a break in a lane marking, a stop line, and a pedestrian crossing existing within a predetermined distance in front of the current vehicle position are used. In addition, a stop road sign and a traffic light are used as objects indicating the entrance of the intersection.
 ステップS30において、入口位置情報F1を取得できている場合、ステップS31では、自車前方に交差点の入口があると判定し、ステップS11に進む。一方、ステップS30において、入口位置情報F1を取得できていない場合、ステップS31では、自車前方に交差点の入口がないと判定し、ステップS14に進む。 If it is determined in step S30 that the entrance position information F1 has been acquired, in step S31, it is determined that there is an entrance to the intersection ahead of the vehicle, and the process proceeds to step S11. On the other hand, if the entrance position information F1 has not been acquired in step S30, it is determined in step S31 that there is no entrance at the intersection ahead of the vehicle, and the process proceeds to step S14.
 ステップS11における自車の右左折の開始判定において、自車が右左折を開始すると判定している場合、ステップS32に進む。ステップS32では、画像センサ12により認識された道路の特徴部分及び物体のうち、自車推定経路PA1の周囲に存在する交差点の出口を示す道路の特徴部分及び物体の位置を出口位置情報F2として取得する。ステップS32が情報取得部に相当する。 に お い て If it is determined in step S11 that the own vehicle starts turning right and left, the process proceeds to step S32. In step S32, among the characteristic portions and the objects of the road recognized by the image sensor 12, the position of the characteristic portion of the road and the position of the object indicating the exit of the intersection existing around the estimated vehicle path PA1 are acquired as the exit position information F2. I do. Step S32 corresponds to an information acquisition unit.
 本実施形態では、交差点の出口を示す道路の特徴部分として、自車推定経路PA1の周囲に存在する現在の自車の進行方向に対して直交する向きに延びる走行区画線、停止線、及び横断歩道を用いている。また、交差点の出口を示す物体として、停止を示す道路標識、信号機を用いている。 In the present embodiment, as a characteristic portion of the road indicating the exit of the intersection, a traveling lane line, a stop line, and a traverse extending in a direction orthogonal to the current traveling direction of the current vehicle existing around the estimated vehicle path PA1. The sidewalk is used. In addition, as an object indicating an exit of an intersection, a road sign indicating a stop and a traffic light are used.
 ステップS33では、ステップS32で取得した出口位置情報F2から、交差点の出口の位置を推定し、推定した交差点の出口の位置に基づいて自車推定経路PA1における旋回終了地点K2を検出する。 In step S33, the position of the exit of the intersection is estimated from the exit position information F2 acquired in step S32, and the turning end point K2 in the estimated vehicle route PA1 is detected based on the estimated position of the exit of the intersection.
 ステップS13では、自車推定経路PA1において、旋回終了地点K2以降の区間を直線路に補正する。そして、ステップS14~S22の処理を実施する。 In step S13, the section after the turning end point K2 on the estimated vehicle route PA1 is corrected to a straight road. Then, the processing of steps S14 to S22 is performed.
 以上説明した本実施形態では、以下の効果を奏することができる。 本 The above-described embodiment has the following advantages.
 衝突判定ECU20は、自車前方に存在する交差点の出口を示す道路の特徴部分及び物体の位置に基づいて、自車推定経路PA1における旋回終了地点K2を検出する。そのため、実際の自車周囲の交通環境に即して旋回終了地点K2を検出することができるため、自車の走行経路に対する自車推定経路PA1の乖離を好適に抑制することができる。 The collision determination ECU 20 detects the turning end point K2 on the estimated vehicle path PA1 based on the characteristic portion of the road indicating the exit of the intersection existing ahead of the own vehicle and the position of the object. Therefore, since the turning end point K2 can be detected in accordance with the actual traffic environment around the own vehicle, the deviation of the estimated vehicle route PA1 from the travel route of the own vehicle can be suitably suppressed.
 (第2実施形態の変形例)
 ・衝突判定ECU20は、ナビゲーション装置16が記憶する地図情報に基づいて、交差点の入口及び出口を直接検出してもよい。この場合、図8のステップS30において、地図情報と、自車位置を示すGPS情報とに基づいて、自車前方に存在する交差点の入口の位置を入口位置情報F1として取得すればよい。また、図8のステップS32において、地図情報と、自車位置を示すGPS情報とに基づいて、自車推定経路PA1の周囲に存在する交差点の出口の位置を出口位置情報F2として取得すればよい。
(Modification of the second embodiment)
The collision determination ECU 20 may directly detect the entrance and the exit of the intersection based on the map information stored in the navigation device 16. In this case, in step S30 in FIG. 8, based on the map information and the GPS information indicating the position of the vehicle, the position of the entrance of the intersection existing ahead of the vehicle may be acquired as the entrance position information F1. Further, in step S32 in FIG. 8, the exit position of the intersection existing around the estimated vehicle path PA1 may be acquired as the exit position information F2 based on the map information and the GPS information indicating the own vehicle position. .
 ・車両制御システム100は、自車周囲を走行する他車との間で、車車間通信を実施可能な通信装置を備えていても良い。この場合、交差点の入口及び出口を示す道路の特徴部分及び物体の位置を車車間通信により他車から取得し、取得した道路の特徴部分及び物体の位置により、自車推定経路PA1における旋回終了地点K2を検出するものであってもよい。 The vehicle control system 100 may include a communication device capable of performing inter-vehicle communication with another vehicle traveling around the own vehicle. In this case, the characteristic portion of the road indicating the entrance and the exit of the intersection and the position of the object are acquired from another vehicle by inter-vehicle communication, and the turning end point on the estimated vehicle route PA1 is determined based on the acquired characteristic portion of the road and the position of the object. K2 may be detected.
 (第3実施形態)
 第3実施形態では、第1実施形態と異なる構成を主に説明する。なお、第3実施形態と第1実施形態とで同じ箇所には、同一の符号を付しており、その説明は繰り返さない。
(Third embodiment)
In the third embodiment, a configuration different from the first embodiment will be mainly described. In the third embodiment and the first embodiment, the same portions are denoted by the same reference numerals, and description thereof will not be repeated.
 図9は自車がS字カーブ路を走行する場合の、自車推定経路PA1と、自車の実際の走行経路PRとを示す図である。自車がS字カーブ路を走行する場合、S字カーブ路において自車の操舵方向が同一方向となる前半区間S1では、S字カーブ路を自車推定経路PA1により近似することができる。しかし、S字カーブ路において自車の操舵方向が前半区間S1と反対方向となる後半区間S2では、S字カーブ路と自車推定経路PA1との間の乖離度合が大きくなることが懸念される。そこで、本実施形態では、衝突判定ECU20は、地図情報から自車線の形状を算出し、自車推定経路PA1において、算出した自車線の形状との間で乖離が生じ始める乖離地点K3を検出する。そして、自車推定経路PA1のうち、乖離地点K3以降の区間を、算出した自車線の形状に補正する。 FIG. 9 is a diagram showing the estimated vehicle route PA1 and the actual travel route PR of the own vehicle when the own vehicle runs on an S-shaped curved road. When the vehicle travels on an S-curve road, the S-curve road can be approximated by the vehicle estimation route PA1 in the first half section S1 in which the steering direction of the vehicle is the same on the S-curve road. However, in the latter half section S2 in which the steering direction of the own vehicle is opposite to the first half section S1 on the S-shaped curved road, there is a concern that the degree of deviation between the S-shaped curved road and the estimated own vehicle path PA1 is increased. . Therefore, in the present embodiment, the collision determination ECU 20 calculates the shape of the own lane from the map information, and detects a divergence point K3 at which a divergence from the calculated shape of the own lane starts to occur on the own vehicle estimated route PA1. . Then, the section after the departure point K3 in the own vehicle estimated route PA1 is corrected to the calculated shape of the own lane.
 次に、図10を用いて、本実施形態に係る衝突判定の手順を説明する。図10に示す処理は、衝突判定ECU20により所定周期で繰り返し実施される。 Next, the procedure of collision determination according to the present embodiment will be described with reference to FIG. The process shown in FIG. 10 is repeatedly performed by the collision determination ECU 20 at a predetermined cycle.
 ステップS10において、自車推定経路PA1を算出すると、ステップS40に進み、地図情報のうち、自車が走行する道路の形状を示す走行区画線の形状や、道路曲率を取得する。そのため、本実施形態では、走行区画線の形状や、道路曲率が形状情報に相当する。ステップS40が形状取得部に相当する。 After calculating the estimated vehicle route PA1 in step S10, the process proceeds to step S40, in which the shape of the lane marking indicating the shape of the road on which the vehicle travels and the road curvature are acquired from the map information. Therefore, in the present embodiment, the shape of the lane marking and the road curvature correspond to the shape information. Step S40 corresponds to a shape acquisition unit.
 ステップS41では、ステップS40で取得した走行区画線の形状や、道路曲率に基づいて、現在、自車が走行している自車線の形状を示す近似曲線ACを算出する。 In step S41, based on the shape of the lane marking obtained in step S40 and the curvature of the road, an approximate curve AC indicating the shape of the current lane in which the vehicle is currently traveling is calculated.
 ステップS42では、自車推定経路PA1と、ステップS41で算出した近似曲線ACとを対比し、自車推定経路PA1において、算出した自車線の形状との間で乖離が生じ始める地点である乖離地点K3として検出する。ステップS41,S42が乖離地点検出部に相当する。 In step S42, the estimated vehicle route PA1 is compared with the approximation curve AC calculated in step S41, and the departure point is a point at which a deviation starts to occur between the calculated shape of the own lane and the estimated vehicle route PA1. Detected as K3. Steps S41 and S42 correspond to a deviation point detection unit.
 ステップS43では、ステップS42において乖離地点K3を検出できている場合、自車の走行経路に対して自車推定経路PA1が乖離していると判定し、ステップS44に進む。一方、ステップS42において乖離地点K3を検出できない場合、自車の走行経路に対して自車推定経路PA1が乖離していないと判定し、ステップS14に進む。 In step S43, if the deviation point K3 has been detected in step S42, it is determined that the estimated vehicle route PA1 is deviated from the traveling route of the vehicle, and the process proceeds to step S44. On the other hand, if the deviation point K3 cannot be detected in step S42, it is determined that the own vehicle estimated route PA1 does not deviate from the traveling route of the own vehicle, and the process proceeds to step S14.
 ステップS44では、自車推定経路PA1において乖離地点K3以降に自車推定経路PA1に沿った車線が存在しているか否かを判定する。自車推定経路PA1において、乖離地点K3以降の区間に自車推定経路PA1に沿った車線が存在している場合、運転者がこの車線を走行しようとしている可能性がある。このような場合、自車の走行を運転者に委ねた方が良い。そこで、ステップS44において、自車推定経路PA1において乖離地点K3以降に、車線が存在していると判定すると、ステップS14に進む。この場合、自車推定経路PA1は補正されない。ステップS44が車線判定部に相当する。 In step S44, it is determined whether a lane along the estimated vehicle route PA1 exists after the departure point K3 on the estimated vehicle route PA1. If the lane along the estimated vehicle route PA1 exists in the section after the departure point K3 in the estimated vehicle route PA1, the driver may be trying to travel on the lane. In such a case, it is better to entrust the driving of the own vehicle to the driver. Therefore, if it is determined in step S44 that a lane exists after the departure point K3 on the own vehicle estimated route PA1, the process proceeds to step S14. In this case, the own vehicle estimated route PA1 is not corrected. Step S44 corresponds to a lane determination unit.
 本実施形態では、自車推定経路PA1において、乖離地点K3以降に自車推定経路PA1に沿った車線が存在しているか否かの判定を、ナビゲーション装置16が備える地図情報に基づいて判断する。これ以外にも、画像センサ12による認識に基づいて、乖離地点K3以降の区間に、自車推定経路PA1に沿った車線が存在するか否かを判定してもよい。 In the present embodiment, the determination as to whether or not a lane along the estimated vehicle route PA1 exists after the departure point K3 in the estimated vehicle route PA1 is made based on the map information provided in the navigation device 16. Alternatively, based on recognition by the image sensor 12, it may be determined whether or not a lane along the estimated vehicle route PA1 exists in a section after the departure point K3.
 一方、ステップS44において、乖離地点K3以降に自車推定経路PA1に沿った車線が存在していないと判定すると、ステップS45に進む。ステップS45では、自車推定経路PA1において、乖離地点K3以降の区間を、ステップS41で算出した近似曲線ACのうち対応する区間の形状に基づいて補正する。ステップS44が道路形状補正部に相当する。 On the other hand, if it is determined in step S44 that there is no lane along the estimated vehicle route PA1 after the departure point K3, the process proceeds to step S45. In step S45, the section after the departure point K3 on the estimated vehicle route PA1 is corrected based on the shape of the corresponding section of the approximate curve AC calculated in step S41. Step S44 corresponds to a road shape correction unit.
 そして、ステップS14~S22の処理を実施した後、図10の処理を一旦終了する。 Then, after performing the processing of steps S14 to S22, the processing of FIG. 10 is temporarily terminated.
 以上説明した本実施形態では、以下の効果を奏することができる。 本 The above-described embodiment has the following advantages.
 ・衝突判定ECU20は、自車推定経路PA1において、算出した自車線の形状との間で乖離が生じ始める乖離地点K3を検出する。そして、自車推定経路PA1のうち、乖離地点K3以降の区間を、算出した自車線の形状に補正する。この場合、自車が定常円旋回を想定した経路で近似できない走行経路を走行する場合においても、実際の自車の走行経路に対する自車推定経路PA1の乖離を抑制できる。そのため、自車に対する物体の衝突判定を適正に実施することができる。 · The collision determination ECU 20 detects a divergence point K3 at which a divergence from the calculated shape of the own lane starts to occur on the own vehicle estimated route PA1. Then, the section after the departure point K3 in the own vehicle estimated route PA1 is corrected to the calculated shape of the own lane. In this case, even when the vehicle travels on a traveling route that cannot be approximated by a route that assumes a steady circular turn, the deviation of the estimated vehicle route PA1 from the actual traveling route of the vehicle can be suppressed. Therefore, the collision determination of the object with respect to the own vehicle can be appropriately performed.
 ・衝突判定ECU20は、乖離地点K3を算出した場合に、自車推定経路PA1において乖離地点K3以降の区間に、自車推定経路PA1に沿った車線が存在しているか否かを判定する。そして、乖離地点K3以降の区間に車線が存在していないと判定したことを条件に、自車推定経路PA1のうち、乖離地点K3以降の区間を補正する。この場合、将来の自車の走行経路の予測が困難な場合に、自車の走行を運転者に委ねることにより、衝突判定ECU20による不要作動を抑制することができる。 When the departure point K3 is calculated, the collision determination ECU 20 determines whether or not a lane along the estimated vehicle path PA1 exists in the section after the departure point K3 on the estimated vehicle path PA1. Then, on the condition that it is determined that no lane exists in the section after the departure point K3, the section after the departure point K3 in the own vehicle estimated route PA1 is corrected. In this case, when it is difficult to predict the future travel route of the own vehicle, unnecessary operation by the collision determination ECU 20 can be suppressed by entrusting the travel of the own vehicle to the driver.
 (その他実施形態)
 ・衝突判定ECU20は、自車推定経路PA1に対して、旋回終了地点K2の検出と、乖離地点K3の検出とを、それぞれ実施してもよい。この場合、図7,図8の、ステップS12において、自車推定経路PA1において、旋回終了地点K2及び乖離地点K3を検出する。なお、ステップS10とステップS11との間に、ステップS40~ステップS44の各処理を実施すればよい。そして、自車推定経路PA1において旋回終了地点K2を検出した場合は、ステップS13において、自車推定経路PA1において旋回終了地点K2以降の区間を直線路に補正する。また、自車推定経路PA1において乖離地点K3を検出した場合は、ステップS13において、自車推定経路PA1において乖離地点K3以降の区間を、形状情報に基づく自車線の形状に補正すればよい。
(Other embodiments)
The collision determination ECU 20 may perform the detection of the turning end point K2 and the detection of the departure point K3 with respect to the own vehicle estimated route PA1. In this case, in step S12 of FIGS. 7 and 8, the turning end point K2 and the departure point K3 are detected on the own vehicle estimated route PA1. Note that the processes of steps S40 to S44 may be performed between step S10 and step S11. Then, when the turning end point K2 is detected on the own vehicle estimated route PA1, in step S13, the section after the turning end point K2 on the own vehicle estimated route PA1 is corrected to a straight road. When the deviation point K3 is detected on the estimated vehicle route PA1, in step S13, the section after the deviation point K3 on the estimated vehicle route PA1 may be corrected to the shape of the own lane based on the shape information.
 ・衝突判定ECU20は、自車推定経路PA1と、物体推定経路PA2との交差の有無を判定し、自車推定経路PA1と物体推定経路PA2とが交差すると判定した場合に、自車に対して物体が衝突すると判定してもよい。この場合、図7,図8,図10において、衝突判定ECU20は、ステップS15~S18の処理を実施せず、かつステップS19では、自車推定経路PA1と物体推定経路PA2との交差の有無を判定する。そして、自車推定経路PA1と物体推定経路PA2とが交差することにより、自車に対して物体が衝突すると判定した場合、ステップS20に進む。 The collision determination ECU 20 determines whether or not the own vehicle estimated route PA1 intersects with the object estimated route PA2. If the collision determination ECU 20 determines that the own vehicle estimated route PA1 and the object estimated route PA2 intersect, the collision determination ECU 20 determines the intersection of the own vehicle estimated route PA1 and the object estimated route PA2. It may be determined that the object collides. In this case, in FIGS. 7, 8, and 10, the collision determination ECU 20 does not perform the processing of steps S15 to S18, and determines in step S19 whether or not the own vehicle estimated route PA1 and the object estimated route PA2 intersect. judge. Then, when it is determined that an object collides with the own vehicle due to the intersection of the own vehicle estimated route PA1 and the object estimated route PA2, the process proceeds to step S20.
 ・図10のステップS44を省略してもよい。 · Step S44 in FIG. 10 may be omitted.
 ・衝突判定ECU20は、自車のヨーレートψと自車速度とに加えて、自車の加速度を用いて、自車推定経路PA1を算出してもよい。 The collision determination ECU 20 may calculate the estimated vehicle path PA1 using the acceleration of the vehicle in addition to the yaw rate of the vehicle and the vehicle speed.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and the structure. The present disclosure also encompasses various modifications and variations within an equivalent range. In addition, various combinations and forms, and other combinations and forms including only one element, more or less, are also included in the scope and spirit of the present disclosure.

Claims (6)

  1.  自車の推定経路と、物体の推定経路とに基づいて、自車に対する前記物体の衝突判定を行う衝突判定装置(20)であって、
     自車が将来走行する経路のカーブ半径を推定し、推定した前記カーブ半径に基づいて自車の前記推定経路を算出する推定経路算出部(41)と、
     自車が右左折を開始するか否かを判定する右左折判定部(42)と、
     前記右左折判定部により自車が右左折を開始すると判定された場合に、算出された自車の前記推定経路において、将来、自車の旋回が終了する地点を旋回終了地点として検出する終了地点検出部(43)と、
     算出された自車の前記推定経路において、検出された前記旋回終了地点以降の区間を、直線路に補正する直線補正部(44)と、を備える衝突判定装置。
    A collision determination device (20) that determines collision of the object with the own vehicle based on the estimated path of the own vehicle and the estimated path of the object,
    An estimated route calculation unit (41) for estimating a curve radius of a route on which the vehicle travels in the future and calculating the estimated route of the vehicle based on the estimated curve radius;
    A right / left turn determining unit (42) for determining whether or not the vehicle starts right / left turn;
    An end point for detecting a point where the turn of the own vehicle will be completed in the future on the calculated estimated route of the own vehicle as a turn end point when the right / left turn determination unit determines that the own vehicle starts a right / left turn. A detection unit (43);
    A collision determination device comprising: a straight line correction unit (44) that corrects a section after the detected turning end point on the calculated estimated route of the own vehicle to a straight road.
  2.  前記終了地点検出部は、自車の前記推定経路において前記右左折判定部により自車が右左折を開始すると判定された地点から所定の旋回角度だけ自車が旋回した地点を、前記旋回終了地点として検出する請求項1に記載の衝突判定装置。 The end point detection unit is configured to determine a point at which the vehicle has turned a predetermined turning angle from a point at which the vehicle is determined to start turning right or left on the estimated route of the vehicle, at the turning end point. The collision determination device according to claim 1, wherein the collision detection device detects the collision.
  3.  前記右左折判定部により自車が右左折を開始すると判定された場合に、自車が走行する道路において、自車前方の交差点の出口の位置を示す情報を取得する情報取得部を備え、
     前記終了地点検出部は、取得された前記出口の位置を示す情報に基づいて、自車の前記推定経路における前記旋回終了地点を検出する請求項1に記載の衝突判定装置。
    When the vehicle is determined to start turning right or left by the right / left turn determination unit, the information processing unit includes an information acquisition unit that obtains information indicating an exit position of an intersection in front of the vehicle on a road on which the vehicle runs.
    The collision determination device according to claim 1, wherein the end point detection unit detects the turning end point on the estimated route of the vehicle based on the acquired information indicating the position of the exit.
  4.  自車が走行する自車線の形状を示す形状情報を取得する形状取得部と、
     算出された自車の前記推定経路において、取得された前記形状情報に基づく前記自車線の形状との間で乖離が生じ始める乖離地点を検出する乖離地点検出部と、
     算出された自車の前記推定経路において、検出された前記乖離地点以降の区間を、前記形状情報に基づく前記自車線の形状に補正する道路形状補正部と、を備える請求項1~3のいずれか一項に記載の衝突判定装置。
    A shape acquisition unit that acquires shape information indicating the shape of the own lane in which the own vehicle travels,
    A deviation point detection unit that detects a deviation point at which a deviation starts to occur between the shape of the own lane based on the acquired shape information and the calculated estimated route of the own vehicle,
    4. The road shape correction unit according to claim 1, further comprising: a road shape correction unit configured to correct a section after the detected divergence point on the calculated estimated route of the own vehicle to a shape of the own lane based on the shape information. The collision determination device according to claim 1.
  5.  自車の推定経路と、物体の推定経路とに基づいて、自車に対する前記物体の衝突判定を行う衝突判定装置であって、
     自車が将来走行する経路のカーブ半径を推定し、推定した前記カーブ半径に基づいて自車の前記推定経路を算出する推定経路算出部と、
     自車が走行する自車線の形状を示す形状情報を取得する形状取得部と、
     算出された自車の前記推定経路において、取得された前記形状情報に基づく前記自車線の形状との間で乖離が生じ始める乖離地点を検出する乖離地点検出部と、
     算出された自車の前記推定経路において、検出された前記乖離地点以降の区間を、前記形状情報に基づく前記自車線の形状に補正する道路形状補正部と、を備える衝突判定装置。
    A collision determination device that performs collision determination of the object with respect to the vehicle based on the estimated path of the vehicle and the estimated path of the object,
    An estimated route calculating unit that estimates a curve radius of a route on which the vehicle travels in the future and calculates the estimated route of the vehicle based on the estimated curve radius;
    A shape acquisition unit that acquires shape information indicating the shape of the own lane in which the own vehicle travels,
    A deviation point detection unit that detects a deviation point at which a deviation starts to occur between the shape of the own lane based on the acquired shape information and the calculated estimated route of the own vehicle,
    A collision determination device comprising: a road shape correction unit that corrects a section after the detected divergence point on the calculated estimated route of the own vehicle to a shape of the own lane based on the shape information.
  6.  前記乖離地点検出部により前記乖離地点が検出された場合に、自車の前記推定経路において前記乖離地点以降の区間に、車線が存在しているか否かを判定する車線判定部を備え、
     前記道路形状補正部は、前記車線判定部により前記乖離地点以降の区間に車線が存在していないと判定されたことを条件に、自車の前記推定経路のうち、検出された前記乖離地点以降の区間を補正する請求項4又は5に記載の衝突判定装置。
    When the divergence point is detected by the divergence point detection unit, a lane determination unit that determines whether a lane exists in a section after the divergence point on the estimated route of the own vehicle,
    The road shape correction unit, on the condition that it is determined that the lane does not exist in the section after the divergence point by the lane determination unit, of the estimated route of the own vehicle, after the detected divergence point The collision determination device according to claim 4, wherein the section is corrected.
PCT/JP2019/022513 2018-07-02 2019-06-06 Impact determination device WO2020008796A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018126343A JP6988717B2 (en) 2018-07-02 2018-07-02 Collision detection device
JP2018-126343 2018-07-02

Publications (1)

Publication Number Publication Date
WO2020008796A1 true WO2020008796A1 (en) 2020-01-09

Family

ID=69060792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022513 WO2020008796A1 (en) 2018-07-02 2019-06-06 Impact determination device

Country Status (2)

Country Link
JP (1) JP6988717B2 (en)
WO (1) WO2020008796A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069728A1 (en) * 2022-09-27 2024-04-04 日立Astemo株式会社 Vehicle control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066912A (en) * 2002-08-05 2004-03-04 Nissan Motor Co Ltd Obstacle detection device for vehicle
JP2006143051A (en) * 2004-11-22 2006-06-08 Honda Motor Co Ltd Vehicle control device
JP2006309445A (en) * 2005-04-27 2006-11-09 Aisin Aw Co Ltd Driving-support device
JP2018101373A (en) * 2016-12-22 2018-06-28 トヨタ自動車株式会社 Vehicle driving support device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6363519B2 (en) * 2015-01-21 2018-07-25 株式会社デンソー Vehicle control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066912A (en) * 2002-08-05 2004-03-04 Nissan Motor Co Ltd Obstacle detection device for vehicle
JP2006143051A (en) * 2004-11-22 2006-06-08 Honda Motor Co Ltd Vehicle control device
JP2006309445A (en) * 2005-04-27 2006-11-09 Aisin Aw Co Ltd Driving-support device
JP2018101373A (en) * 2016-12-22 2018-06-28 トヨタ自動車株式会社 Vehicle driving support device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069728A1 (en) * 2022-09-27 2024-04-04 日立Astemo株式会社 Vehicle control device

Also Published As

Publication number Publication date
JP6988717B2 (en) 2022-01-05
JP2020006707A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
CN109017791B (en) Lane change assist device
JP6380919B2 (en) Vehicle control device
US10407061B2 (en) Vehicle control system
JP6551384B2 (en) Vehicle alert device
CN107615011B (en) Parking position setting device and method
WO2018074287A1 (en) Vehicle control device
US11526173B2 (en) Traveling trajectory correction method, traveling control method, and traveling trajectory correction device
US10414394B2 (en) Vehicle control system
US10569769B2 (en) Vehicle control device
CN111527015A (en) Vehicle control device
US11169526B2 (en) Vehicle control device
JP2016223812A (en) Vehicle control device and vehicle control method
JP6188779B2 (en) Driving assistance device
US11054832B2 (en) Vehicle control device for setting vehicle offset spacing
KR20190045308A (en) A vehicle judging method, a traveling path correcting method, a vehicle judging device, and a traveling path correcting device
US11180141B2 (en) Vehicle control system
JP2020087267A (en) Route candidate setting system and route candidate setting method
CN112470034A (en) Collision determination device
US20200255029A1 (en) Vehicle control device
US11878697B2 (en) Vehicle control device
JP6609292B2 (en) Outside environment recognition device
WO2020008796A1 (en) Impact determination device
JP7312356B2 (en) Vehicle driving support system
JP5166975B2 (en) Vehicle periphery monitoring device and vehicle periphery monitoring method
JP2019172168A (en) Automatic driving system and automatic driving program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19831449

Country of ref document: EP

Kind code of ref document: A1