WO2020008502A1 - Information processing system, information processing device, server device, program, or method - Google Patents

Information processing system, information processing device, server device, program, or method Download PDF

Info

Publication number
WO2020008502A1
WO2020008502A1 PCT/JP2018/025066 JP2018025066W WO2020008502A1 WO 2020008502 A1 WO2020008502 A1 WO 2020008502A1 JP 2018025066 W JP2018025066 W JP 2018025066W WO 2020008502 A1 WO2020008502 A1 WO 2020008502A1
Authority
WO
WIPO (PCT)
Prior art keywords
index value
information
information processing
neural network
data set
Prior art date
Application number
PCT/JP2018/025066
Other languages
French (fr)
Japanese (ja)
Inventor
幸輝 島田
Original Assignee
シンセティックゲシュタルト エルティーディー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シンセティックゲシュタルト エルティーディー filed Critical シンセティックゲシュタルト エルティーディー
Priority to PCT/JP2018/025066 priority Critical patent/WO2020008502A1/en
Publication of WO2020008502A1 publication Critical patent/WO2020008502A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks

Definitions

  • the technology disclosed in the present application relates to an information processing system, an information processing device, a server device, a program, or a method.
  • various embodiments of the present invention provide an information processing system, an information processing device, a server device, a program, or a method for solving the above-described problem.
  • One embodiment of the present application is an acquisition unit that acquires a data set including a plurality of values corresponding to physical index values, characteristics of the data set, and learning of an association between the data set and the characteristics.
  • An information processing system comprising: a neural network that has been made to operate; and a first specifying unit that specifies the index value that affects the characteristic by using a structure in the neural network.
  • One embodiment of the present application is a database in which the index value and the substance information are stored in association with each other, and the index value specified by the first specifying unit is applied to the database, and the substance information corresponding to the index value is applied.
  • An information processing system comprising:
  • One embodiment of the present application is an information processing system, wherein the structure of the neural network used by the first specifying unit to specify the index value is at least one parameter of at least one layer included in the neural network. .
  • One embodiment of the present application uses a structure in a neural network that has learned the association between a data set including a plurality of values corresponding to physical index values and the characteristics of the data set to influence the characteristics.
  • An information processing apparatus comprising a specifying unit that specifies the index value to be given.
  • the index value specified by the specifying unit is applied to a database that stores the index value and the substance information in association with each other, and a second specification that specifies the substance information corresponding to the index value is performed.
  • An information processing device comprising a unit.
  • the data set is a biochemical component
  • the index value is an m / z value
  • the characteristic indicates that the subject is a healthy person or an affected person related to a specific disease.
  • Information processing device that is information.
  • the data set is a microbiome
  • the index value is a base sequence
  • the characteristic is information indicating that the subject is a healthy person or an affected person related to a specific disease. Processing equipment.
  • One embodiment of the present application learns the association between the database in which the index values and the substance information are stored in association with each other, a data set including a plurality of values corresponding to physical index values, and the characteristics of the data sets.
  • a second specifying unit that specifies substance information corresponding to the index value, using the index value that affects the characteristic, which is specified based on the structure in the neural network that has been made to operate. apparatus.
  • a computer acquires a data set including a plurality of values corresponding to physical index values, and a property of the data set, obtaining the data set, the data set, the property,
  • An information processing method comprising: a step of causing a neural network to learn the association of the above; and a first specifying step of using the structure in the neural network to specify the index value that affects the characteristic.
  • One embodiment of the present application uses a database in which the index value and the substance information are stored in association with each other, and applies the index value specified by the first specifying step to the database to correspond to the index value.
  • a second specifying step of specifying substance information uses a database in which the index value and the substance information are stored in association with each other, and applies the index value specified by the first specifying step to the database to correspond to the index value.
  • the data set is a biochemical component
  • the index value is an m / z value
  • the characteristic indicates that the subject is a healthy person or an affected person related to a specific disease.
  • Information processing method that is information.
  • the data set is a microbiome
  • the index value is a base sequence
  • the characteristic is information indicating that the subject is a healthy person or an affected person related to a specific disease. Processing method.
  • One embodiment of the present application is an acquisition unit that acquires a first data set including a plurality of values corresponding to physical index values, characteristics of the first data set, the first data set, and the characteristics And applying a second data set including a plurality of values corresponding to physical index values to the neural network, based on a calculated value at the time of application of the neural network,
  • An information processing system comprising: a first specifying unit that specifies an index value.
  • One embodiment of the present application is a database in which the index value and the substance information are stored in association with each other, and the index value specified by the first specifying unit is applied to the database, and the substance information corresponding to the index value is applied.
  • An information processing system comprising:
  • the calculated value at the time of application of the neural network is the neural network used to derive characteristics of the second data set when the second data set is applied to the neural network.
  • An information processing system that is a numerical value for each layer in the network.
  • One embodiment of the present application is a program that causes a computer to perform some of the operations described above.
  • the data set may be a biochemical component or a microbiome.
  • the biochemical component may be a biological component.
  • the data set may be in a vector format or a tensor format.
  • the data set does not need to include the physical index value in the information output from the analyzer, but may include the physical index value.
  • Physical index values include, but are not limited to, m / z values, base sequences, wavelengths, wave numbers, angles, times, or measurement locations.
  • Characteristics may be information indicating cell characteristics.
  • the cell characteristics include high differentiation characteristics (information such as high or low differentiation ability), high cell activity (information such as high or low cell activity), and high cell growth ( Information such as high or low cell proliferation), production of cytokines in the cell (information such as high or low production), high cytotoxic activity (information such as high or low cytotoxicity), Information such as the degree of differentiation (information on whether the cell is differentiated or not, and information on the degree of differentiation when the cell is differentiated) may be used. Further, the height of each characteristic may be based on the result measured by a measuring device that measures each characteristic.
  • the property may also be an evaluation based on a measurement result such as information indicating that the patient is a healthy person or an affected person for a specific disease, or an evaluation regarding a cell such as a good cell or a bad cell.
  • Microbiomes include, for example, intestinal flora.
  • the index value may be a genome, a metagenome, or a presence distribution of a bacterial species.
  • the substance information may be a substance name, a chemical formula of the substance, a composition formula of the substance, a molecular formula of the substance, an ionic formula of the substance, a structural formula of the substance, or the like.
  • data obtained from an analyzer can be more appropriately utilized.
  • FIG. 1 is a block diagram illustrating the configuration of one information processing apparatus according to one embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of another information processing apparatus according to the embodiment.
  • FIG. 3 is a block diagram illustrating a specific example of the function of the information processing apparatus according to the embodiment.
  • FIG. 4 is a block diagram illustrating a flow example of the information processing apparatus according to the embodiment.
  • FIG. 5 is a diagram illustrating a concept according to one embodiment.
  • FIG. 6 is a diagram illustrating how to read a diagram according to an embodiment.
  • FIG. 7 is a block diagram illustrating a configuration of the information processing apparatus according to the embodiment.
  • FIG. 8 is a block diagram illustrating a flow example of the information processing apparatus according to the embodiment.
  • FIG. 9 is a diagram illustrating a display example of the information processing apparatus according to the embodiment.
  • FIG. 10 is a diagram illustrating a display example of the information processing apparatus according to the embodiment.
  • the information processing apparatus 10 may include a bus 11, an arithmetic device 12, a storage device 13, and a communication IF 16, as shown in FIG. Further, the information processing device 10 may include an input device 14 and a display device 15. Further, it is directly or indirectly connected to the network 19.
  • the bus 11 may have a function of transmitting information among the arithmetic device 12, the storage device 13, the input device 14, the display device 15, and the communication IF 16.
  • arithmetic unit 12 is, for example, a processor. This may be a CPU or an MPU. Further, it may have a graphics processing unit, a digital signal processor, or the like. In short, the arithmetic device 12 may be any device that can execute the instructions of the program.
  • the storage device 13 is a device for recording information. This may be either an external memory or an internal memory, and may be either a main storage device or an auxiliary storage device. Further, a magnetic disk (hard disk), an optical disk, a magnetic tape, a semiconductor memory, or the like may be used. Further, a storage device via a network or a storage device on a cloud via a network may be provided.
  • a register, an L1 cache, an L2 cache, and the like that store information at a position physically close to the arithmetic device may be included in the arithmetic device 12 in the block diagram of FIG.
  • the storage device 13 may include the information recording device. In short, it is only necessary that the arithmetic device 12, the storage device 13, and the bus 11 are configured to cooperate and execute information processing.
  • the storage device 13 can include a program for executing a service related to the present invention. Further, data necessary for executing a service related to the present invention can be recorded as appropriate. Further, the storage device 13 may include a database.
  • the arithmetic device 12 is executed based on a program provided in the storage device 13 has been described, but one of the above-described forms in which the bus 11, the arithmetic device 12 and the storage device 13 are combined is described.
  • the information processing according to the present system may be realized by a programmable logic device capable of changing a hardware circuit itself or a dedicated circuit in which information processing to be performed is determined.
  • the input device 14 is for inputting information, but may have other functions. Examples of the input device 14 include input devices such as a keyboard, a mouse, a touch panel, and a pen-type pointing device.
  • the display device 15 has a function of displaying information.
  • a liquid crystal display, a plasma display, an organic EL display, and the like can be given.
  • any device that can display information may be used.
  • the input device 14 may be partially provided like a touch panel.
  • the network 19 transmits information together with the communication IF 16. That is, it has a function of transmitting information of ten information processing apparatuses to another information terminal (not shown) via the network 19.
  • the communication IF 16 may be of any connection type, such as USB, IEEE 1394, Ethernet (registered trademark), PCI, or SCSI.
  • the network 19 may be either wired or wireless, and may use an optical fiber, a coaxial cable, or the like.
  • the hardware constituting the information processing apparatus may be a general-purpose computer or a dedicated computer. Further, the hardware may be a workstation, a desktop personal computer, a laptop personal computer, a notebook personal computer, a PDA, a mobile phone, a smartphone, or the like.
  • FIG. 1 illustrates one information processing apparatus 10, the information processing apparatus 10 may include a plurality of information processing apparatuses.
  • the plurality of information processing devices may be internally connected or may be externally connected.
  • the owners thereof may be different.
  • the person who operates the information processing device 10 as the system according to the present invention may be different from the owner of the information processing device 10.
  • the information processing apparatus 10 may be a physical entity or a virtual entity.
  • the information processing apparatus 10 may be virtually realized using cloud computing.
  • An embodiment Figure 2 of the system is an example of the system of the present embodiment that schematizes.
  • a feature amount is extracted from the learning data 201 using a learned neural network, and a neural network 202 having a classification model is constructed.
  • the determination result 204 for the unknown data is extracted.
  • a feature amount 205 serving as a basis for the determination result is extracted.
  • the characteristic amount 205 is inquired to the database 206 to provide related substance information 207.
  • FIG. 7 shows another embodiment of the system of this embodiment.
  • the user terminals 71a and 71b are terminal devices assumed to be used by the user.
  • the user terminals 71a and 71b are connected to a network 72 so that information can be transmitted.
  • the management device 73a is a server that manages the system of this example.
  • the management server 73a can connect to the user terminals 71a and 71b via the network 72. Further, the management device 73a can be connected to the administrator terminals 73b and 73c.
  • the analyzer 75 may be configured to be connected to the network 72.
  • the analyzer 75 may be configured to be connected to the user terminal 71a or 71b, or may be configured to be connected to the management server 73a, for use by the user. Since the system of this example uses a sample obtained by the analyzer, the analyzer itself may be configured separately.
  • the neural network system 76 is connected to the network 72 and can be connected to the management device 73a.
  • the system of the present example includes the neural network system 76.
  • the neural network system 76 exists independently of the system of the present example, and the system of the present example includes the neural network system 76.
  • the system of this example is configured to receive a feature amount (or an explanatory element described later) from a neural network that has learned an analysis result (a sample such as a detection intensity vector described later) and a characteristic. Is also good.
  • the system of the present example transmits the target sample to the neural network in which the sample and the characteristic are learned, and the neural network in a state where the target sample is applied to the learned neural network.
  • the configuration may be such that the feature amount (or an explanatory element described later) relating to the internal structure is received from the neural network system 76.
  • the learning may be deep learning.
  • the database 74a and / or the database 74b include, for example, a database that associates data of an analyzer with substance information.
  • a database for associating a feature value (or an explanatory element described later) with substance information may be used. These may not be single but may be divided into a plurality.
  • the management device 73a may be configured to be able to acquire substance information from a database by an inquiry using a physical index value.
  • the system of this example may have a configuration including the database 74a and / or the database 74b, or may not include the database 74a and / or the database 74b.
  • the system of the present example includes databases 74a and 74b, and adds a feature amount (or an explanatory note) acquired from the neural network system 76 to a database including an association between a feature amount (or an explanatory note described later) and material information.
  • the database may be configured to transmit the substance information corresponding to the characteristic amount (or the explanatory element).
  • the system of the present embodiment transmits the feature amount (or explanatory note) acquired from the neural network system 76 to the database 74 and / or 74b, and the system of the present embodiment transmits the feature amount (or the explanatory note) from the database 74 and / or 74b. Or, it may be configured to receive the substance information corresponding to the above-described explanatory element).
  • Databases and neural networks may be implemented in a server-client format or in a cloud format.
  • the information processing device may be formed by one information processing device, or may be formed by a plurality of information processing devices. Further, in the case of a plurality of information processing apparatuses, the present invention is not limited to the diagram of FIG. 7 and may be realized by various network configurations.
  • FIG. 3 is a block diagram showing a specific example of a function according to the system of the present example.
  • the neural network unit 32 and the database unit 33 may be outside the system of the present example.
  • the acquisition unit 31 has a function of acquiring information.
  • the information includes a sample for causing the neural network unit to learn, characteristic information corresponding to the sample, and the like.
  • the neural network unit 32 has a function of learning using data.
  • the neural network unit 32 is not essential, but may have a function capable of responding to the input data with corresponding information using the learned neural network.
  • the database unit 33 has related data. Specifically, it has a function of associating the element associated with the neural network with the substance information and replying the substance information corresponding to the inquired element. For example, if the database associates m / z values with substance information, the database has a function of responding to substance information corresponding to one or more m / z values, and is a database that associates base sequences with substance information. If so, it may have a function capable of responding to the substance information corresponding to one or more base sequences, but is not limited thereto, and stores a physical index value and the corresponding substance information, It may have a function that can respond to the index information with the corresponding substance information.
  • the specifying unit 34 has a function of specifying a feature amount in the neural network unit 32 or an explanatory element described later.
  • the feature amount or the explanatory element may be specified from the learned neural network, or may be specified from information in the neural network when specific data is used.
  • Storage unit 35 The storage unit 35 may have a function of storing a program related to each of the above functions and / or corresponding data.
  • Example 4.1 Example 1 Next, an example of the overall flow using the system of the present example will be described. First, the user measures a plurality of samples under the same condition using the analyzer, and acquires data corresponding to each sample (401). Next, data pre-processing is performed (402). Next, using the data, the neural network is trained, the data is classified, and the features involved in the classification are specified (403). Next, the feature amount is displayed (404). Next, information related to the characteristic amount is specified and displayed from the database including the characteristic amount in the index and the specified characteristic amount (405).
  • a user measures a sample using an analyzer.
  • Various analyzers may be used as the analyzer used at this time.
  • a description will be given of a mass spectrometer.
  • the measurement of a plurality of samples is performed under the same conditions.
  • the same conditions are preferably strict measurement conditions, measurement errors may occur due to various factors. Any measurement result within a conceivable range may be used.
  • a biological component is used as a sample.
  • pre-process the data for example, a baseline correction is performed. This is because the standard may be affected by, for example, the inclusion of a magnetic substance in the sample. Baseline correction may be performed manually or automatically. Further, the processing may be performed as a process in the analyzer, or may be performed as one function of the system of the present example after inputting to the system of the present example.
  • a two-dimensional image may be created by regarding the measurement result as a vector.
  • a secondary image is created by sequentially folding information of a combination of an m / z value and detection intensity acquired as data.
  • the m / z value can be shared as a value of, for example, 1000.00 to 2999.99, and can be omitted.
  • each m / z value such as (1000.00: a), (1000.01: b), (1000.02: c).
  • a vector is composed of detection intensity values corresponding to the respective m / z values (a, b, c%) Intensity vector). It should be noted that information on a healthy person or an affected patient may be added to one vector of the detection intensity.
  • the learning algorithm may be a supervised learning algorithm or an unsupervised learning algorithm.
  • a relationship between the above-described data vector (or a tensor described later) corresponding to a physical index value measured by an analyzer and their characteristics as supervised data is represented by a neural network. Let them learn. When mass is analyzed using a mass spectrometer with a biological component as a sample, whether the person is a healthy person or an affected person with respect to a specific disease is given as teacher information. In this case, the system of the present example may learn the neural network by associating the information of the biological component with the healthy person or the affected person. Thereby, it is configured that the information of the biological component can be classified into a healthy person and an affected person.
  • the sample may not be annotated manually in advance, and a sample without annotation may be used.
  • the neural network learns the relationship between the above-described data vector (or tensor described later) corresponding to the physical index value and their characteristics as teacher data. Learning may be performed by adding input values of other information.
  • an auto encoder As an unsupervised learning algorithm, an auto encoder, a restricted Boltzmann machine, or a method in which these are multi-layered may be used.
  • the dimension of the input data is reduced by applying the encoder to the input data, and the decoder is applied to the data with the reduced dimension to recover the dimension. Then, learning is performed by changing the weight value so that the same data is obtained.
  • the classification is realized by changing the weighting, but the present invention is not limited to this method, and another method may be used.
  • the feature value affects the classification. More specifically, an explanatory element described later may be specified as the feature amount. For example, in a neural network acquired by the above-described mass spectrometer and learned to classify using the spectrum of the m / z value and the detected intensity or a vector based on the spectrum as the input data, the m / z value is calculated from the feature amount. Can be identified.
  • the method of specifying the m / z value may use, for example, parameters of each layer.
  • the parameter of each layer is a value indicating how much the input value affects the output value. Therefore, by tracing parameters that affect the output value from the output layer toward the input layer, it is possible to specify the input value that affects the final output value.
  • an input value that affects a final output value and / or information processed based on the input value is referred to as an explanation element.
  • the input value may be one or more.
  • the explanatory element for example, if a sample is a spectrum of m / z values, one or a plurality of m / z values may be mentioned.
  • the processed information includes an edge that would indicate a cell wall if the sample is an image, a contour of a cell morphology, and the like. Since these edges are processed using a filter on the input value, the explanatory note may include these.
  • the system according to the present embodiment converts the input value to which the first parameter is applied into an explanatory value. It may be configured to be set as.
  • the first parameter and the second parameter may have a common input value.
  • the first parameter is applied to the first parameter and the second to N-th parameters in the same layer when the first parameter is larger than the second to N-th parameters.
  • the first parameter and the second to N-th parameters may have a common input value.
  • the parameter may be a weight value in a calculation formula for calculating an inner product in a neural network.
  • the classification has been made on the basis of the feature quantity, so that there is an advantage that the user can easily understand the basis of the judgment made by the machine.
  • learning is performed by a neural network using, as target data, information relating detection intensity data corresponding to an m / z value acquired by a mass spectrometer with respect to a biological component and information on a healthy person or an affected patient.
  • the specific detection intensity (or the corresponding m / z value) that classifies the healthy person or the affected person can be specified, and the m / z value that is the basis for such a neural network to determine is The user can understand.
  • the system of the present example may be configured to display the specified feature amount or the explanatory element so that the user can easily understand the characteristic amount or the explanatory element.
  • processing may be performed and displayed so that the user can easily understand.
  • the system of the present example may be configured to list and display the specified plurality of m / z values, or to display the specified plurality of m / z values in a ranking format in consideration of the order in which the specified m / z values are affected. May be.
  • FIG. 9 is an example in which a ranking is given to a plurality of m / z values in the order of influence on the output value.
  • the degree of the influence may be determined by determining the magnitude of the input value that affects the output value based on the magnitude of the above-described parameter.
  • the method is not limited to this method, and other methods may be used. Good.
  • FIG. 5 is an example showing a method for specifying an m / z value serving as a feature amount.
  • an input layer that has a greater effect on the output layer is presented as a feature amount.
  • FIG. 6 shows an example of how to read the display of FIG. That is, the system of the present example displays each layer from the input layer to the output layer in the neural network, in which the input value to each layer is associated, and displays the input value whose influence on the output layer is larger than a predetermined value. A specific display may be performed rather than other input values.
  • the m / z value as a feature value when a supervised learning algorithm is used has an effect on classifying a biological component as a healthy person or an affected person. That is, by using the system of this example, it is possible to specify the m / z value that affects the determination of a healthy person or an affected person.
  • the detection intensity of the m / z value is very small, it is a specific target as long as it has an influence on the determination of a healthy person or an affected person. For this reason, in the prior art, as a biological component mass spectrometer, research or determination is mainly performed based on the peak value of the m / z value, whereas according to the above-described configuration, the detection intensity is very small. There is an advantage that the z value can be specified as a target.
  • the system of the present example may display information related to the feature amount from the database including the feature amount in the index and the specified feature amount.
  • the database is a database including an association between m / z values and substances.
  • one or a plurality of substances associated with one or a plurality of m / z values specified as the feature amount may be specified from the database.
  • the system of this example when configured in this way, can identify substances that affect the determination of a healthy person or an affected person.
  • the data used by the system of this example is not limited to the m / z value corresponding to a so-called peak having a high detection intensity, but may be data indicating the relationship between the m / z value other than the peak and the detection intensity.
  • a neural network is trained by deep learning, even if the detection intensity of the m / z value is very small, it may be possible to specify a small amount of substances as long as it affects the discrimination between a healthy person and an affected person. There is. As a result, it is possible to specify a small amount of a substance that has not been examined to determine the presence or absence of a disease. In particular, when a trace amount of a substance contains toxicity, it has an advantage that it can be effectively identified.
  • Various methods may be used for specifying one or more substances from one or more m / z values. For example, when one m / z value is specified, a plurality of substances in a database associated with the m / z value may be specified. The plurality of substances may be all substances associated with the m / z value in the database, or may be one selected by a specific criterion among all substances associated with the m / z value. Parts of the substance.
  • a substance related to the plurality of m / z values may be specified using the database.
  • the system of the present example specifies one or more related substances by using a database for one m / z value of the plurality of m / z values, and identifies the related substance or substances with the plurality of m / z values. Multiple substances may be specified by applying to all of the values. Further, the system of the present example may be configured to specify one or a plurality of substances that include all of the plurality of specified m / z values and are associated with the specified plurality of m / z values.
  • the degree of influence may be calculated in consideration of the degree of influence on the pattern classification among the plurality of feature amounts or explanatory characters.
  • FIG. 10 is an example of displaying related substances by ranking in relation to m / z values. Related substances A to E are displayed corresponding to the order of influence of the m / z value.
  • FIG. 10 shows one substance corresponding to each m / z value, but a plurality of substances corresponding to each m / z value (such as when a plurality of substances are searched in a database).
  • Substance information may be displayed, or one substance information may be displayed for a plurality of m / z values (such as when one substance is specified corresponding to a plurality of m / z values). .
  • Example 2 In the second embodiment, as in the first embodiment, the sample is a biological component, and the analyzer is a mass spectrometer. The second embodiment mainly describes differences from the first embodiment. In the second embodiment, unknown data is used to obtain an explanatory note.
  • the system of this example may make the neural network learn the association between the vector of the detection intensity and the information on the healthy person or the affected person. Thereafter, a vector of the detected intensity may be generated from a biological component of a specific patient, which is unknown whether it is a healthy person or an affected patient, and the vector may be applied to the neural network. Thereby, information indicating whether the patient is a healthy person or an affected person may be specified. Further, among the numerical values in the vector of the detection intensity of the patient, an m / z value corresponding to a numerical value that has influenced whether the patient is a healthy person or an affected person may be specified. Note that the information on whether the patient is a healthy person or an affected patient may not be used.
  • the method for determining the m / z value is to follow the numerical value of each layer in the neural network from the output layer to the input value in the calculation at the time when the vector of the detected intensity of the patient is applied to the learned neural network. In this way, among the numerical values in the vector of the detection intensity of the patient, a numerical value that has influenced the identification of whether the patient is a healthy person or an affected person is specified, and the m / z value corresponding to this is determined. Identify.
  • the calculation process in the neural network based on the structure of the neural network at the time when the sample relating to the patient is applied to the learned neural network for example, the sample information relating to the patient, May be used.
  • the specified m / z value is the same as that of the first embodiment in that the related substance information is specified using a database in which the m / z value is associated with the substance information.
  • FIG. 8 shows an example of the flow of the second embodiment.
  • the acquisition 801 of the analyzer, the preprocessing 802, and the specification and display 806 of the information related to the feature amount are the same as those in the first embodiment.
  • the deep learning 803 is performed, the neural network is applied to the unknown data after the deep learning 804, and the feature amount 805 is different from the first embodiment.
  • the m / z value that has influenced the determination of whether the subject is a healthy person or an affected individual is specified for a healthy person or a patient whose unknownness is unknown The substance information corresponding to this is specified, and the substance information serving as a basis when it is determined that the patient is affected can be specified.
  • the difference between the first embodiment and the second embodiment will be described more conceptually.
  • A, B, and C are m / z values specified based on the configuration of the neural network trained by associating the detected intensity vector with the information of a healthy person or an affected person.
  • m / z values are that if all three of A, B, and C satisfy predetermined requirements, they are determined to be healthy subjects or diseased patients, or A, B, and C If any one (or two) of the three satisfies the predetermined requirements, it is determined that the subject is a healthy person or an affected person, and all three may not need to satisfy the predetermined requirements.
  • the m / z value which is the requirement to be selectively satisfied is specified, and the target patient can be determined as a healthy person or an affected patient. There is an advantage in that evidence can be provided.
  • An acquisition unit configured to acquire a first data set including a plurality of values corresponding to physical index values, and characteristics of the first data set; A neural network that has learned the association between the first data set and the characteristic, A second data set including a plurality of values corresponding to physical index values is applied to the neural network, and a specifying unit that specifies the index value based on a calculated value when the neural network is applied, It may be a processing system.
  • the index value specified by the specifying unit may be an index value corresponding to information in the second data set that has influenced the derivation of characteristics for the second data set.
  • the calculated value at the time of application of the neural network is the value of each layer in the neural network used to derive the characteristics of the second data set. It may be a numerical value.
  • Example 3 describes an example in which intestinal microflora is used as a sample and a next-generation sequencer is used as an analyzer. Also in this case, samples obtained from healthy persons and affected persons are used. As a result, a base sequence can be obtained from a next-generation sequencer. Using the base sequence and data in which a healthy person or an affected person is associated, a learned neural network is constructed. Then, a sequence as a feature amount can be specified when classifying healthy subjects and affected patients. More specifically, it is possible to specify an array as an explanatory element.
  • the intestinal flora can be identified from the sequence derived as a feature value. This makes it possible to specify the intestinal microflora that influences the discrimination between a healthy person and an affected person for a specific disease. That is, intestinal flora related to the disease can be specified. Thereby, for example, the intestinal flora to be a target for studying the disease in more detail can be specified.
  • a base sequence serving as a feature may be specified from the structure of the neural network learned using the data to which information of a healthy person or an affected person is attached, or that after a deep learning, a healthy person or an affected person may be identified.
  • a base sequence serving as a feature may be specified from the structure of the neural network at the time when the unknown sample is applied to the learned neural network.
  • Example 4 In the fourth embodiment, an analyzer, a sample, and a characteristic other than the targets described in the first to third embodiments will be described. The description of the parts overlapping with the first to third embodiments will be omitted.
  • the mass spectrometer and the next-generation sequencer have been described.
  • other various analyzers may be used.
  • the optical analyzer include an ultraviolet / visible spectrophotometer, an infrared spectrophotometer, an atomic absorption analyzer, a fluorimeter, and a Raman spectrophotometer.
  • the electromagnetic analyzer include an X-ray analyzer, an X-ray absorption analyzer, a mass analyzer, a nuclear magnetic resonance apparatus, and the like.
  • any analyzer that is not listed above may be any device that can output a spectrum that can be changed to a vector format as an analysis result, as described later.
  • a biological component and a base sequence were used as a sample, but the present invention is not limited thereto.
  • the sample include components inside and outside an organism.
  • the component in the organism may be an animal component, a plant component, or a bacterial component.
  • a component in a human body may be used.
  • bacteria that exist inside the body such as the digestive tract, respiratory system, and oral cavity of the animal may be used.
  • bacteria may be present inside the body, such as the human digestive tract, respiratory system, or oral cavity as a class of animals.
  • the sample may be an intestinal flora.
  • the component outside the organism may be a component that has been excreted outside the organism, a component that has been excreted extracellularly, or a component that has been used or produced in a cell factory.
  • an example of the detection intensity with respect to the m / z value and the base sequence has been described as a vector.
  • data used as a vector may be other data according to each analyzer.
  • an optical analyzer when used as the analyzer, it may be a vector of numerical values for each wavelength. More specifically, if a spectrophotometer such as an ultraviolet / visible light photometer, an infrared spectrophotometer, and a Raman spectrometer is used as the analyzer, the transmittance (reflectance or absorbance) for each wavelength (or wave number) is assumed.
  • a fluorimeter is used as the analyzer, a vector of the fluorescence intensity for each wavelength may be used.
  • the concentration vector for each element may be used.
  • the vector may be an intensity vector for each angle.
  • the detection frequency with respect to time may be used.
  • the m / z value, the base sequence, the wavelength, the wave number, the element, the angle, the time, the measurement location, and the like are physical index values.
  • the system of the present example may be configured to acquire a plurality of data sets including a plurality of values corresponding to physical index values, and learn a neural network for the plurality of data sets.
  • a vector of the detected intensity of the m / z value and image data of the sample may be obtained.
  • the image data is data of the appearance of the sample.
  • the physical index in the image data is the measurement location (Cartesian coordinates, polar coordinates, etc.), and the value corresponding to this is the input value.
  • tensor data is obtained from the image value and the spectrum data.
  • color data may be included corresponding to the position data.
  • the color data may be RGB or CMYK.
  • the system of the present example includes a first data set including a plurality of values corresponding to a physical first index value, a second data set including a plurality of values corresponding to a physical second index value, Using an acquisition unit that acquires the characteristics of the set, the first data set, the second data set, the neural network that has learned the association between the characteristics, and a structure in the neural network, A first specifying unit that specifies the first index value that affects the characteristic, a database that stores the first index value and the substance information in association with each other, and an index value specified by the first specifying unit, An information processing system comprising: a second specifying unit that is applied to the database and specifies substance information corresponding to the index value.
  • the characteristic is information on a healthy person or an affected patient, but may be other information.
  • it may be a measurement result of a sample such as a cell or a biological component by another measurement device, may be an objective evaluation based on these, or may be a subjectivity based on these or other situations. It may be a simple evaluation.
  • the information on a healthy person or an affected person is a result of measurement by another device or a comprehensive medical finding based on these results, and is an example of evaluation.
  • the quality of the cells is also an example of the evaluation.
  • the data set measured by the analyzer can be measured in terms of characteristics (e.g., in terms of healthy or diseased patients, in terms of good and bad cells, or measured by other measurement devices). (Viewpoint of results), and an index value related to a data set that has influenced the classification can be specified.
  • the sample when the characteristic is information of another measurement result or evaluation based on the result, the sample can be classified based on the characteristic, and a physical index value that has influenced the characteristic can be specified.
  • the index value is applied to the database of the above, it is possible to specify the substance information that causes a difference between the other measurement results or the samples classified from the viewpoint of evaluation based on the other measurement results.
  • the system of this example may acquire a plurality of data as characteristics and use the plurality of data as teacher data when learning a neural network. For example, both information about a healthy person or an affected patient and information about the quality of cells may be acquired, and both pieces of information may be used as teacher data of a neural network. Thereby, when learning the sample in the neural network, the types and viewpoints of the characteristics are increased, so that there is an advantage that the classification can be set more finely and the sample can be classified from a more diverse viewpoint.
  • the database used was a database of m / z values and substance information, and the database of base sequences and substance information.
  • a database adapted to the characteristics of each physical index value was used. May be. That is, a database of substance information measurable by each of the analyzers associated with each index value measured by each of the analyzers may be used. This makes it possible to specify the substance information related to or indicating the index value in accordance with each index value measured by each analyzer. Then, by being configured to be able to display the substance information, the user specifies the substance information in the sample that affects the classification when the sample is classified from a predetermined viewpoint of the characteristic. It becomes possible.
  • a vector has been described as a data format of the data acquired from the analyzer, but a tensor may be used instead of or in addition to the vector. Since a vector is a first-order tensor, a second-order tensor, a third-order tensor,..., An N-th order tensor as an extension of the vector can be similarly learned. For example, when a fluorimeter is used as an analyzer and excitation wavelengths are selected, fluorescence intensity data for each excitation wavelength for each excitation wavelength, that is, a second-order tensor may be used.
  • the dimension of the measured value obtained by measuring the appearance information, constituent information, numerical information, temperature information, etc. related to the constituent material is added.
  • a tensor of the second, third, or higher order may be used.
  • An example of the two-dimensional data or the three-dimensional data may be data acquired by a microscope or X-ray analysis.
  • the microscope may be an optical microscope, an electron microscope, an X-ray microscope, an ultrasonic microscope, a scanning probe microscope, or the like.
  • three-dimensional data obtained by measurement with a cryo-electron microscope or three-dimensional data obtained by X-ray analysis may be used.
  • the invention examples described in the embodiments of the present application document are not limited to those described in the present application document, but may be applied to various examples within the technical idea.
  • the information presented on the screen of the information processing apparatus can be displayed on the screen of another information processing apparatus, and can be transmitted to the other information processing apparatus.
  • a system may be configured.
  • the processes and procedures described in the present application may be realized not only by those explicitly described in the embodiments but also by software, hardware, or a combination thereof.
  • the processes and procedures described in the present application may be implemented by a computer by implementing the processes and procedures as a computer program.

Abstract

The present invention provides an information processing system capable of more appropriately use data acquired from an analysis device. An information processing system is provided with: an acquisition unit for acquiring a data set including a plurality of values corresponding to physical index values and a feature of the data set; a neural network which is caused to learn associating between the data set and the feature; and a first identifying unit for identifying the index value which gives an influence on the feature by using a structure in the neural network. The information processing system is further provided with: a database in which the index value and substance information are associated and stored; and a second identifying unit for applying the index value identified by the first identifying unit to the database, and identifying substance information corresponding to the index value.

Description

情報処理システム、情報処理装置、サーバ装置、プログラム、又は方法Information processing system, information processing device, server device, program, or method
 本出願において開示された技術は、情報処理システム、情報処理装置、サーバ装置、プログラム、又は方法に関する。 技術 The technology disclosed in the present application relates to an information processing system, an information processing device, a server device, a program, or a method.
 近年、生物や化学などの分野において、計測技術の向上により1つのサンプルから多くの情報を得ることが可能となった。 In recent years, in fields such as biology and chemistry, it has become possible to obtain much information from one sample by improving measurement technology.
特開2017-211762号公報JP-A-2017-211762 特開2018-041434号公報JP 2018-041434A 特開2017-045341号公報JP-A-2017-045341
 しかしながら、分析装置の感度および速度の向上等により、一のサンプルから得られるデータ量が高次元かつ膨大になり、データの分類やデータの分析が困難になってきた。
 他方、機械学習の1つである深層学習は、学習の過程で高次元かつ膨大なデータ群に対して対処することができる一方で、その内部構造が複雑であることから、その学習結果を適切に用いることができないという課題があった。
 そこで、本発明の様々な実施形態は、上記の課題を解決するために、情報処理システム、情報処理装置、サーバ装置、プログラム、又は方法を提供する。
However, due to improvements in the sensitivity and speed of the analyzer, the amount of data obtained from one sample has become high-dimensional and enormous, and it has become difficult to classify data and analyze data.
On the other hand, deep learning, which is one type of machine learning, can deal with high-dimensional and enormous data groups in the learning process. There was a problem that it could not be used for
Therefore, various embodiments of the present invention provide an information processing system, an information processing device, a server device, a program, or a method for solving the above-described problem.
 本願の一実施例は、物理的な指標値に対応する値を複数含むデータセットと、前記データセットの特性と、を取得する取得部と、前記データセットと、前記特性と、の関連付けを学習させたニューラルネットワークと、前記ニューラルネットワーク内の構造を用いて、前記特性に影響を与える前記指標値を特定する第1特定部と、を備えた情報処理システム。 One embodiment of the present application is an acquisition unit that acquires a data set including a plurality of values corresponding to physical index values, characteristics of the data set, and learning of an association between the data set and the characteristics. An information processing system comprising: a neural network that has been made to operate; and a first specifying unit that specifies the index value that affects the characteristic by using a structure in the neural network.
 本願の一実施例は、前記指標値と物質情報とを関連付けて記憶されたデータベースと、前記第1特定部が特定した指標値を、前記データベースに適用させて、前記指標値に対応する物質情報を特定する第2特定部と、を備えた、情報処理システム。 One embodiment of the present application is a database in which the index value and the substance information are stored in association with each other, and the index value specified by the first specifying unit is applied to the database, and the substance information corresponding to the index value is applied. An information processing system, comprising:
 本願の一実施例は、前記第1特定部が前記指標値を特定するために用いるニューラルネットワークの構造は、前記ニューラルネットワーク内に含まれる少なくとも一の層の少なくとも一のパラメータである、情報処理システム。 One embodiment of the present application is an information processing system, wherein the structure of the neural network used by the first specifying unit to specify the index value is at least one parameter of at least one layer included in the neural network. .
 本願の一実施例は、物理的な指標値に対応する値を複数含むデータセットと、前記データセットの特性と、の関連付けを学習させたニューラルネットワーク内の構造を用いて、前記特性に影響を与える前記指標値を特定する特定部を備えた情報処理装置。 One embodiment of the present application uses a structure in a neural network that has learned the association between a data set including a plurality of values corresponding to physical index values and the characteristics of the data set to influence the characteristics. An information processing apparatus comprising a specifying unit that specifies the index value to be given.
 本願の一実施例は、前記特定部が特定した指標値を、前記指標値と物質情報とを関連付けて記憶されたデータベースに適用させて、前記指標値に対応する物質情報を特定する第2特定部を備えた、情報処理装置。 In one embodiment of the present application, the index value specified by the specifying unit is applied to a database that stores the index value and the substance information in association with each other, and a second specification that specifies the substance information corresponding to the index value is performed. An information processing device comprising a unit.
 本願の一実施例は、前記データセットは、生化学的な成分であり、前記指標値は、m/z値である、前記特性は、特定の疾患に関する健常者又は罹患者であることを示す情報である、情報処理装置。 In one embodiment of the present application, the data set is a biochemical component, the index value is an m / z value, and the characteristic indicates that the subject is a healthy person or an affected person related to a specific disease. Information processing device that is information.
 本願の一実施例は、前記データセットは、マイクロバイオームであり、前記指標値は、塩基配列であり、前記特性は、特定の疾患に関する健常者又は罹患者であることを示す情報である、情報処理装置。 In one embodiment of the present application, the data set is a microbiome, the index value is a base sequence, and the characteristic is information indicating that the subject is a healthy person or an affected person related to a specific disease. Processing equipment.
 本願の一実施例は、前記指標値と物質情報とを関連付けて記憶されたデータベースと、物理的な指標値に対応する値を複数含むデータセットと、前記データセットの特性と、の関連付けを学習させたニューラルネットワーク内の構造に基づいて特定された、前記特性に影響を与える前記指標値を用いて、前記指標値に対応する物質情報を特定する第2特定部と、を備えた、情報処理装置。 One embodiment of the present application learns the association between the database in which the index values and the substance information are stored in association with each other, a data set including a plurality of values corresponding to physical index values, and the characteristics of the data sets. A second specifying unit that specifies substance information corresponding to the index value, using the index value that affects the characteristic, which is specified based on the structure in the neural network that has been made to operate. apparatus.
 本願の一実施例は、コンピュータが、物理的な指標値に対応する値を複数含むデータセットと、前記データセットの特性と、を取得する取得するステップと、前記データセットと、前記特性と、の関連付けをニューラルネットワークに学習させるステップと、前記ニューラルネットワーク内の構造を用いて、前記特性に影響を与える前記指標値を特定する第1特定ステップと、を含む情報処理方法。 In one embodiment of the present application, a computer acquires a data set including a plurality of values corresponding to physical index values, and a property of the data set, obtaining the data set, the data set, the property, An information processing method comprising: a step of causing a neural network to learn the association of the above; and a first specifying step of using the structure in the neural network to specify the index value that affects the characteristic.
 本願の一実施例は、前記指標値と物質情報とを関連付けて記憶されたデータベースを用いて、前記第1特定ステップが特定した指標値を、前記データベースに適用させて、前記指標値に対応する物質情報を特定する第2特定ステップと、を含む、情報処理方法。 One embodiment of the present application uses a database in which the index value and the substance information are stored in association with each other, and applies the index value specified by the first specifying step to the database to correspond to the index value. A second specifying step of specifying substance information.
 本願の一実施例は、前記データセットは、生化学的な成分であり、前記指標値は、m/z値であり、前記特性は、特定の疾患に関する健常者又は罹患者であることを示す情報である、情報処理方法。 In one embodiment of the present application, the data set is a biochemical component, the index value is an m / z value, and the characteristic indicates that the subject is a healthy person or an affected person related to a specific disease. Information processing method that is information.
 本願の一実施例は、前記データセットは、マイクロバイオームであり、前記指標値は、塩基配列であり、前記特性は、特定の疾患に関する健常者又は罹患者であることを示す情報である、情報処理方法。 In one embodiment of the present application, the data set is a microbiome, the index value is a base sequence, and the characteristic is information indicating that the subject is a healthy person or an affected person related to a specific disease. Processing method.
 本願の一実施例は、物理的な指標値に対応する値を複数含む第1データセットと、前記第1データセットの特性と、を取得する取得部と、前記第1データセットと、前記特性と、の関連付けを学習させたニューラルネットワークと、物理的な指標値に対応する値を複数含む第2データセットを、前記ニューラルネットワークに適用させ、前記ニューラルネットワークの適用時の算出値に基づき、前記指標値を特定する第1特定部と、を備えた情報処理システム。 One embodiment of the present application is an acquisition unit that acquires a first data set including a plurality of values corresponding to physical index values, characteristics of the first data set, the first data set, and the characteristics And applying a second data set including a plurality of values corresponding to physical index values to the neural network, based on a calculated value at the time of application of the neural network, An information processing system comprising: a first specifying unit that specifies an index value.
 本願の一実施例は、前記指標値と物質情報とを関連付けて記憶されたデータベースと、前記第1特定部が特定した指標値を、前記データベースに適用させて、前記指標値に対応する物質情報を特定する第2特定部と、を備えた、情報処理システム。 One embodiment of the present application is a database in which the index value and the substance information are stored in association with each other, and the index value specified by the first specifying unit is applied to the database, and the substance information corresponding to the index value is applied. An information processing system, comprising:
 本願の一実施例は、前記ニューラルネットワークの適用時の算出値が、前記第2データセットを前記ニューラルネットワークに適用した場合における、前記第2データセットの特性を導出するのに使用された前記ニューラルネットワーク内の各層の数値である、情報処理システム。 In one embodiment of the present application, the calculated value at the time of application of the neural network is the neural network used to derive characteristics of the second data set when the second data set is applied to the neural network. An information processing system that is a numerical value for each layer in the network.
 本願の一実施例は、コンピュータに、上記に記載の一部の動作をさせるプログラム。 の 一 One embodiment of the present application is a program that causes a computer to perform some of the operations described above.
 データセットは、生化学的な成分又はマイクロバイオームであってよい。生化学的な成分として、生体成分であってよい。また、データセットは、ベクトル形式又はテンソル形式であってよい。データセットは、分析装置から出力された情報において、物理的な指標値を含まなくてよいが、物理的な指標値を含むものであってもよい。
 物理的な指標値は、m/z値、塩基配列、波長、波数、角度、時間、又は、測定箇所などが挙げられるが、これらに限られない。
The data set may be a biochemical component or a microbiome. The biochemical component may be a biological component. The data set may be in a vector format or a tensor format. The data set does not need to include the physical index value in the information output from the analyzer, but may include the physical index value.
Physical index values include, but are not limited to, m / z values, base sequences, wavelengths, wave numbers, angles, times, or measurement locations.
 特性は、細胞特性を示す情報であってよい。細胞特性は、分化特性の高さ(分化能力が高い又は低いなどの情報)、細胞の活性度の高さ(細胞の活性度が高い又は低いなどの情報)、細胞の増殖性の高さ(細胞の増殖度が高い又は低いなどの情報)、細胞のサイトカインの産生度(産生の程度が高い又は低いなどの情報)、細胞傷害活性の高さ(傷害活性が高い又は低いなどの情報)、分化の程度(分化しているか、分化していないかの情報や、分化している場合における分化の程度の情報)などの情報であってよい。また、各特性の高さは、各特性を測定する測定器により測定された結果に基づくものであってよい。 Characteristics may be information indicating cell characteristics. The cell characteristics include high differentiation characteristics (information such as high or low differentiation ability), high cell activity (information such as high or low cell activity), and high cell growth ( Information such as high or low cell proliferation), production of cytokines in the cell (information such as high or low production), high cytotoxic activity (information such as high or low cytotoxicity), Information such as the degree of differentiation (information on whether the cell is differentiated or not, and information on the degree of differentiation when the cell is differentiated) may be used. Further, the height of each characteristic may be based on the result measured by a measuring device that measures each characteristic.
 また、特性は、特定の疾患に関する健常者又は罹患者であることを示す情報のような測定結果に基づく評価、又は、良い細胞又は悪い細胞等の細胞に関する評価であってもよい。 The property may also be an evaluation based on a measurement result such as information indicating that the patient is a healthy person or an affected person for a specific disease, or an evaluation regarding a cell such as a good cell or a bad cell.
 マイクロバイオームとして、例えば、腸内細菌叢が挙げられる。
 指標値は、ゲノム、メタゲノム、又は、細菌種の存在分布であってよい。
 物質情報は、物質名、物質の化学式、物質の組成式、物質の分子式、物質のイオン式、又は、物質の構造式などであってよい。
Microbiomes include, for example, intestinal flora.
The index value may be a genome, a metagenome, or a presence distribution of a bacterial species.
The substance information may be a substance name, a chemical formula of the substance, a composition formula of the substance, a molecular formula of the substance, an ionic formula of the substance, a structural formula of the substance, or the like.
 本発明の一実施形態により、より適切に分析装置から得たデータを活用できる。 According to one embodiment of the present invention, data obtained from an analyzer can be more appropriately utilized.
図1は、一実施例に係る一の情報処理装置の構成を示すブロック図である。FIG. 1 is a block diagram illustrating the configuration of one information processing apparatus according to one embodiment. 図2は、一実施例に係る他の情報処理装置の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of another information processing apparatus according to the embodiment. 図3は、一実施例に係る情報処理装置の機能の具体例を示すブロック図である。FIG. 3 is a block diagram illustrating a specific example of the function of the information processing apparatus according to the embodiment. 図4は、一実施例に係る情報処理装置のフロー例を示すブロック図である。FIG. 4 is a block diagram illustrating a flow example of the information processing apparatus according to the embodiment. 図5は、一実施例に係る概念を示す図である。FIG. 5 is a diagram illustrating a concept according to one embodiment. 図6は、一実施例に係る図の見方を示す図である。FIG. 6 is a diagram illustrating how to read a diagram according to an embodiment. 図7は、一実施例に係る情報処理装置の構成を示すブロック図である。FIG. 7 is a block diagram illustrating a configuration of the information processing apparatus according to the embodiment. 図8は、一実施例に係る情報処理装置のフロー例を示すブロック図である。FIG. 8 is a block diagram illustrating a flow example of the information processing apparatus according to the embodiment. 図9は、一実施例に係る情報処理装置の表示例を示す図である。FIG. 9 is a diagram illustrating a display example of the information processing apparatus according to the embodiment. 図10は、一実施例に係る情報処理装置の表示例を示す図である。FIG. 10 is a diagram illustrating a display example of the information processing apparatus according to the embodiment.
1.情報処理装置10の各構成
 本願発明の一実施例に係る情報処理装置10は、図1のように、バス11、演算装置12、記憶装置13、及び通信IF16を備えてよい。また、情報処理装置10は、入力装置14、表示装置15を備えてよい。また、ネットワーク19と、直接または間接的に接続される。
1. Each Configuration of Information Processing Apparatus 10 The information processing apparatus 10 according to an embodiment of the present invention may include a bus 11, an arithmetic device 12, a storage device 13, and a communication IF 16, as shown in FIG. Further, the information processing device 10 may include an input device 14 and a display device 15. Further, it is directly or indirectly connected to the network 19.
 バス11は、演算装置12、記憶装置13、入力装置14、表示装置15及び通信IF16の間の情報を伝達する機能を有してよい。 The bus 11 may have a function of transmitting information among the arithmetic device 12, the storage device 13, the input device 14, the display device 15, and the communication IF 16.
 演算装置12の例としては、例えばプロセッサが挙げられる。これは、CPUであってもよいし、MPUであってもよい。また、グラフィックスプロセッシングユニット、デジタルシグナルプロセッサなどを有してもよい。要するに、演算装置12は、プログラムの命令を実行できる装置であればよい。 プ ロ セ ッ サ An example of the arithmetic unit 12 is, for example, a processor. This may be a CPU or an MPU. Further, it may have a graphics processing unit, a digital signal processor, or the like. In short, the arithmetic device 12 may be any device that can execute the instructions of the program.
 記憶装置13は、情報を記録する装置である。これは、外部メモリと内部メモリのいずれでもよく、主記憶装置と補助記憶装置のいずれでもよい。また、磁気ディスク(ハードディスク)、光ディスク、磁気テープ、半導体メモリなどでもよい。また、ネットワークを介した記憶装置又は、ネットワークを介したクラウド上の記憶装置を有してもよい。 The storage device 13 is a device for recording information. This may be either an external memory or an internal memory, and may be either a main storage device or an auxiliary storage device. Further, a magnetic disk (hard disk), an optical disk, a magnetic tape, a semiconductor memory, or the like may be used. Further, a storage device via a network or a storage device on a cloud via a network may be provided.
 なお、演算装置に物理的に近い位置で情報を記憶する、レジスタ、L1キャッシュ、L2キャッシュなどは、図1のブロック図においては、演算装置12内に含まれる場合もあるが、計算機アーキテクチャのデザインにおいて、情報を記録する装置としては、記憶装置13がこれらを含んでもよい。要するに、演算装置12、記憶装置13及びバス11が協調して、情報処理を実行できるよう構成されていればよい。 Note that a register, an L1 cache, an L2 cache, and the like that store information at a position physically close to the arithmetic device may be included in the arithmetic device 12 in the block diagram of FIG. , The storage device 13 may include the information recording device. In short, it is only necessary that the arithmetic device 12, the storage device 13, and the bus 11 are configured to cooperate and execute information processing.
 記憶装置13は、本発明に関連するサービスを実行するプログラムを備えることができる。また、本発明に関連するサービスを実行する際に必要なデータを、適宜記録することもできる。また、記憶装置13は、データベースを含んでもよい。 The storage device 13 can include a program for executing a service related to the present invention. Further, data necessary for executing a service related to the present invention can be recorded as appropriate. Further, the storage device 13 may include a database.
 また、上記は、演算装置12が、記憶装置13に備えられたプログラムに基づいて実行される場合を記載したが、上記のバス11、演算装置12と記憶装置13が組み合わされた形式の一つとして、本件システムに係る情報処理を、ハードウェア回路自体を変更することができるプログラマブルロジックデバイス又は実行する情報処理が決まっている専用回路で実現されてもよい。 In the above description, the case where the arithmetic device 12 is executed based on a program provided in the storage device 13 has been described, but one of the above-described forms in which the bus 11, the arithmetic device 12 and the storage device 13 are combined is described. Alternatively, the information processing according to the present system may be realized by a programmable logic device capable of changing a hardware circuit itself or a dedicated circuit in which information processing to be performed is determined.
 入力装置14は、情報を入力するものであるが、他の機能を有してもよい。入力装置14としては、キーボード、マウス、タッチパネル、又はペン型の指示装置などの入力装置が挙げられる。 The input device 14 is for inputting information, but may have other functions. Examples of the input device 14 include input devices such as a keyboard, a mouse, a touch panel, and a pen-type pointing device.
 表示装置15は、情報を表示する機能を有する。例えば、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイなどが挙げられるが、要するに、情報を表示できる装置であればよい。また、タッチパネルのように入力装置14を一部に備えてもよい。 The display device 15 has a function of displaying information. For example, a liquid crystal display, a plasma display, an organic EL display, and the like can be given. In short, any device that can display information may be used. Further, the input device 14 may be partially provided like a touch panel.
 ネットワーク19は、通信IF16と共に、情報を伝達する。すなわち、情報処理装置である10の情報を、ネットワーク19を介して他の情報端末(図示しない)に伝達できるようにする機能を有する。通信IF16は、どのような接続形式でもよく、USB、IEEE1394、イーサネット(登録商標)、PCI、SCSIなどでもよい。ネットワーク19は、有線と無線のいずれでもよく、光ファイバ、同軸ケーブルなどを用いてもよい。 The network 19 transmits information together with the communication IF 16. That is, it has a function of transmitting information of ten information processing apparatuses to another information terminal (not shown) via the network 19. The communication IF 16 may be of any connection type, such as USB, IEEE 1394, Ethernet (registered trademark), PCI, or SCSI. The network 19 may be either wired or wireless, and may use an optical fiber, a coaxial cable, or the like.
 本願発明の一実施例に係る情報処理装置を構成するハードウェアは、汎用電子計算機であってもよいし、専用電子計算機であってもよい。また、当該ハードウェアは、ワークステーション、デスクトップパソコン、ラップトップパソコン、ノートパソコン、PDA、携帯電話、スマートフォンなどでもよい。 The hardware constituting the information processing apparatus according to one embodiment of the present invention may be a general-purpose computer or a dedicated computer. Further, the hardware may be a workstation, a desktop personal computer, a laptop personal computer, a notebook personal computer, a PDA, a mobile phone, a smartphone, or the like.
 図1では、一台の情報処理装置10として説明したが、情報処理装置10は、複数の情報処理装置で構成されてもよい。当該複数の情報処理装置は、内部的に接続されていてもよいし、外部的に接続されていてもよい。また、情報処理装置10が複数の情報処理装置で構成される場合、その所有者は、異なってもよい。また、情報処理装置10を本願発明に係るシステムとして運営する者は、情報処理装置10の所有者と異なっていてもよい。
 また、情報処理装置10は、物理的な存在であってもよいし、仮想的なものであってもよい。例えば、クラウドコンピューティングを用いて、情報処理装置10を仮想的に実現してもよい。
Although FIG. 1 illustrates one information processing apparatus 10, the information processing apparatus 10 may include a plurality of information processing apparatuses. The plurality of information processing devices may be internally connected or may be externally connected. Further, when the information processing device 10 includes a plurality of information processing devices, the owners thereof may be different. Also, the person who operates the information processing device 10 as the system according to the present invention may be different from the owner of the information processing device 10.
Further, the information processing apparatus 10 may be a physical entity or a virtual entity. For example, the information processing apparatus 10 may be virtually realized using cloud computing.
2.システムの一実施例
 図2は、本例のシステムの一例を模式化したものである。学習データ201から、学習させたニューラルネットワークを用いて、特徴量を抽出し、分類モデルを備えたニューラルネットワーク202を構築する。このモデルを、未知データ203に対して用いることで、未知データに対する判定結果204を抽出する。また、判定結果の根拠となる特徴量205を抽出する。特徴量205は、データベース206に問い合わされることで、関連物質情報207が提供される。
2. An embodiment Figure 2 of the system is an example of the system of the present embodiment that schematizes. A feature amount is extracted from the learning data 201 using a learned neural network, and a neural network 202 having a classification model is constructed. By using this model for the unknown data 203, the determination result 204 for the unknown data is extracted. Further, a feature amount 205 serving as a basis for the determination result is extracted. The characteristic amount 205 is inquired to the database 206 to provide related substance information 207.
 図7は、本例のシステムの他の実施例である。利用者端末71a及び71bは、利用者が利用することを想定された端末装置である。利用者端末71a及び71bは、情報が伝達できるようネットワーク72に接続されている。 FIG. 7 shows another embodiment of the system of this embodiment. The user terminals 71a and 71b are terminal devices assumed to be used by the user. The user terminals 71a and 71b are connected to a network 72 so that information can be transmitted.
 管理装置73aは、本例のシステムを管理するサーバである。管理サーバ73aは、利用者端末71a及び71bとネットワーク72を介して接続できる。また、管理装置73aは、管理者端末73b及び73cと接続できる。 The management device 73a is a server that manages the system of this example. The management server 73a can connect to the user terminals 71a and 71b via the network 72. Further, the management device 73a can be connected to the administrator terminals 73b and 73c.
 分析装置75は、ネットワーク72と接続される構成でよい。分析装置75は、利用者が利用するものとして、利用者端末71a又は71bと接続される構成であってもよいし、管理サーバ73aと接続される構成であってもよい。本例のシステムは、分析装置で取得されたサンプルを使用するため、分析装置自体は別途の構成とされてよい。 The analyzer 75 may be configured to be connected to the network 72. The analyzer 75 may be configured to be connected to the user terminal 71a or 71b, or may be configured to be connected to the management server 73a, for use by the user. Since the system of this example uses a sample obtained by the analyzer, the analyzer itself may be configured separately.
 ニューラルネットワークシステム76は、ネットワーク72と接続され、管理装置73aと接続できるようにされている。 The neural network system 76 is connected to the network 72 and can be connected to the management device 73a.
 上述では、本例のシステムがニューラルネットワークシステム76を含む構成を前提として説明したが、ニューラルネットワークシステム76は、本例のシステムと独立に存在し、本例のシステムが、ニューラルネットワークシステム76を含まない構成であってもよい。その場合、例えば、本例のシステムは、分析結果(後述する検出強度ベクトルなどのサンプル)と特性とを学習させたニューラルネットワークから、特徴量(又は後述する説明子)を受信する構成であってもよい。また、本例のシステムは、サンプルと特性とを学習させたニューラルネットワークに対して、対象となるサンプルを送信し、前記対象となるサンプルを前記学習されたニューラルネットワークに適用した状態における前記ニューラルネットワーク内の構造に係る特徴量(又は後述する説明子)を、前記ニューラルネットワークシステム76から受信する構成であってもよい。また、学習は、深層学習であってよい。 The above description has been made on the assumption that the system of the present example includes the neural network system 76. However, the neural network system 76 exists independently of the system of the present example, and the system of the present example includes the neural network system 76. There may be no configuration. In this case, for example, the system of this example is configured to receive a feature amount (or an explanatory element described later) from a neural network that has learned an analysis result (a sample such as a detection intensity vector described later) and a characteristic. Is also good. Further, the system of the present example transmits the target sample to the neural network in which the sample and the characteristic are learned, and the neural network in a state where the target sample is applied to the learned neural network. The configuration may be such that the feature amount (or an explanatory element described later) relating to the internal structure is received from the neural network system 76. The learning may be deep learning.
 データベース74a、及び/又は、データベース74bは、例えば、分析装置のデータと物質情報とを関連付けるデータベースが挙げられる。例えば、特徴量(又は後述する説明子)と物質情報とを関連付けるデータベースが挙げられる。これらは、一つでなくとも複数に分かれているものであってよい。管理装置73aから、物理的指標値を用いた問い合わせにより、物質情報をデータベースから取得できるように構成されていてよい。 The database 74a and / or the database 74b include, for example, a database that associates data of an analyzer with substance information. For example, a database for associating a feature value (or an explanatory element described later) with substance information may be used. These may not be single but may be divided into a plurality. The management device 73a may be configured to be able to acquire substance information from a database by an inquiry using a physical index value.
 本例のシステムは、データベース74a及び/又はデータベース74bを含む構成であってもよいし、含まない構成であってもよい。例えば、本例のシステムは、データベース74a及び74bを備え、特徴量(又は後述する説明子)と物質情報との関連付けを含むデータベースに対し、ニューラルネットワークシステム76から取得した特徴量(又は説明子)を送信し、前記データベースは前記特徴量(又は前記説明子)に対応する物質情報を送信するよう構成されてもよいし、また、本例のシステムがデータベース74a及び/又は74bを備えない場合は、本例のシステムがニューラルネットワークシステム76から取得した特徴量(又は説明子)をデータベース74及び/又は74bに送信し、本例のシステムは、前記データベース74及び/又は74bから、前記特徴量(又は前記説明子)に対応する物質情報を受信するよう構成されてよい。 The system of this example may have a configuration including the database 74a and / or the database 74b, or may not include the database 74a and / or the database 74b. For example, the system of the present example includes databases 74a and 74b, and adds a feature amount (or an explanatory note) acquired from the neural network system 76 to a database including an association between a feature amount (or an explanatory note described later) and material information. And the database may be configured to transmit the substance information corresponding to the characteristic amount (or the explanatory element). Also, when the system of the present example does not include the database 74a and / or 74b, The system of the present embodiment transmits the feature amount (or explanatory note) acquired from the neural network system 76 to the database 74 and / or 74b, and the system of the present embodiment transmits the feature amount (or the explanatory note) from the database 74 and / or 74b. Or, it may be configured to receive the substance information corresponding to the above-described explanatory element).
 データベース、ニューラルネットワークは、サーバクライアント方式で実装されてもよいし、クラウド形式で実装されてもよい。また、情報処理装置は、一の情報処理装置で形成されてもよいし、複数の情報処理装置によって形成されてもよい。また、複数の情報処理装置の場合、図7の図に限らずに、種々のネットワーク構成によって実現されてよい。 Databases and neural networks may be implemented in a server-client format or in a cloud format. Further, the information processing device may be formed by one information processing device, or may be formed by a plurality of information processing devices. Further, in the case of a plurality of information processing apparatuses, the present invention is not limited to the diagram of FIG. 7 and may be realized by various network configurations.
3.本例のシステムの機能
 次に、本例のシステムにおける機能について、図3を参照して説明する。図3は、本例のシステムに係る機能の具体例を示すブロック図である。なお、上述のとおり、ニューラルネットワーク部32及びデータベース部33は、本例のシステムの外部にあってもよい。
3. Next, functions of the system of the present example will be described with reference to FIG. FIG. 3 is a block diagram showing a specific example of a function according to the system of the present example. As described above, the neural network unit 32 and the database unit 33 may be outside the system of the present example.
3.1.取得部31
 取得部31は、情報を取得する機能を有する。情報は、ニューラルネットワーク部に学習させるためのサンプル、当該サンプルに対応する特性情報などが挙げられる。
3.1. Acquisition unit 31
The acquisition unit 31 has a function of acquiring information. The information includes a sample for causing the neural network unit to learn, characteristic information corresponding to the sample, and the like.
3.2.ニューラルネットワーク部32
 ニューラルネットワーク部32は、データを用いて学習する機能を有する。ニューラルネットワーク部32は、必須ではないが、学習されたニューラルネットワークを用いて、入力データに対して対応する情報を回答できる機能を有してよい。
3.2. Neural network unit 32
The neural network unit 32 has a function of learning using data. The neural network unit 32 is not essential, but may have a function capable of responding to the input data with corresponding information using the learned neural network.
3.3.データベース部33
 データベース部33は、関連するデータを有する。具体的には、ニューラルネットワークで関連付けられた要素と、物質情報とを関連付けて、問い合わせをされた要素に対応する物質情報を回答できる機能を有する。例えば、m/z値と物質情報とを関連付けたデータベースであれば、一又は複数のm/z値に対応した物質情報を回答できる機能を有し、塩基配列と物質情報とを関連付けたデータベースであれば、一又は複数の塩基配列に対して対応する物質情報を回答できる機能を有してよいが、これらに限られず、物理的な指標値とそれに対応する物質情報を格納し、物理的な指標値に対して対応する物質情報を回答できる機能を有してよい。
3.3. Database unit 33
The database unit 33 has related data. Specifically, it has a function of associating the element associated with the neural network with the substance information and replying the substance information corresponding to the inquired element. For example, if the database associates m / z values with substance information, the database has a function of responding to substance information corresponding to one or more m / z values, and is a database that associates base sequences with substance information. If so, it may have a function capable of responding to the substance information corresponding to one or more base sequences, but is not limited thereto, and stores a physical index value and the corresponding substance information, It may have a function that can respond to the index information with the corresponding substance information.
3.4.特定部34
 特定部34は、ニューラルネットワーク部32における特徴量又は後述する説明子を特定する機能を有する。特徴量又は説明子は、学習済みのニューラルネットワークから特定してもよいし、特定のデータを使用した際のニューラルネットワーク内の情報から特定してもよい。
3.4. Identification unit 34
The specifying unit 34 has a function of specifying a feature amount in the neural network unit 32 or an explanatory element described later. The feature amount or the explanatory element may be specified from the learned neural network, or may be specified from information in the neural network when specific data is used.
3.5.記憶部35
 記憶部35は、上述の各機能に関連するプログラム、及び/又は、対応するデータを記憶する機能を有してよい。
3.5. Storage unit 35
The storage unit 35 may have a function of storing a program related to each of the above functions and / or corresponding data.
4.実施例
4.1.実施例1
 次に、本例のシステムを用いた、全体の流れの一例を説明する。まず、利用者は、分析装置により複数のサンプルを同一条件で測定し、各サンプルに対応するデータを取得する(401)。次に、データの前処理を行う(402)。次に、データを用いて、ニューラルネットを学習させ、データを分類し、分類に関与した特徴量を特定する(403)。次に、特徴量を表示する(404)。次に、特徴量をインデックスに含むデータベースと、特定された特徴量から、特徴量に関連する情報を特定し、表示する(405)。
4. Example
4.1. Example 1
Next, an example of the overall flow using the system of the present example will be described. First, the user measures a plurality of samples under the same condition using the analyzer, and acquires data corresponding to each sample (401). Next, data pre-processing is performed (402). Next, using the data, the neural network is trained, the data is classified, and the features involved in the classification are specified (403). Next, the feature amount is displayed (404). Next, information related to the characteristic amount is specified and displayed from the database including the characteristic amount in the index and the specified characteristic amount (405).
 次に、各ステップについて、より具体的に説明する。まず、利用者は、分析装置を用いて、サンプルの測定をする。このとき使用される分析装置としては、種々の分析装置が用いられてよい。本実施例においては、質量分析装置を対象として、説明する。 Next, each step will be described more specifically. First, a user measures a sample using an analyzer. Various analyzers may be used as the analyzer used at this time. In the present embodiment, a description will be given of a mass spectrometer.
 また、複数のサンプルの測定は同一の条件で行うことが好ましいが、この同一の条件は厳密な測定条件が好ましいものの、種々の要因による測定誤差が生じうることから、当業者にとって同一の条件と考えうる範囲内での測定結果であればよい。本実施例では、サンプルとして、生体成分を用いる。 In addition, it is preferable that the measurement of a plurality of samples is performed under the same conditions. However, although the same conditions are preferably strict measurement conditions, measurement errors may occur due to various factors. Any measurement result within a conceivable range may be used. In this embodiment, a biological component is used as a sample.
 次に、データの前処理を行う。前処理としては、例えば、ベースラインの補正を行う。これは、例えば、サンプル内に磁性物質が含まれている等により、基準に影響が与えられる場合があるためである。ベースラインの補正は、マニュアルで行われてもよいし、自動的に実施されてもよい。また、分析装置内の処理として行われてもよいし、その後に本例のシステムに入力後に、本例のシステムの一機能として行われてもよい。 Next, pre-process the data. As the pre-processing, for example, a baseline correction is performed. This is because the standard may be affected by, for example, the inclusion of a magnetic substance in the sample. Baseline correction may be performed manually or automatically. Further, the processing may be performed as a process in the analyzer, or may be performed as one function of the system of the present example after inputting to the system of the present example.
 また、前処理として、測定結果を、ベクトルとみなして、二次元画像を作成してよい。これは、例えば、質量分析装置においては、データとして取得されたm/z値と検出強度の組み合わせの情報を、順に折りたたんで二次画像を作成する。ここで、m/z値は、例えば、1000.00~2999.99の値として共通化し、省略することも可能である。例えば、各m/z値と検出強度のセットの情報として、(1000.00:a)、(1000.01:b)、(1000.02:c)・・・というような各m/z値と検出強度のセットの情報が存在する場合において、当該情報を入力とし、ベクトルとして、各m/z値に対応する検出強度の値から構成される(a、b、c・・・)(検出強度のベクトルという)を生成する。なお、一の検出強度のベクトルに対し、健常者又は罹患者との情報が付与されてよい。 {Circle around (2)} As a preprocessing, a two-dimensional image may be created by regarding the measurement result as a vector. For example, in a mass spectrometer, a secondary image is created by sequentially folding information of a combination of an m / z value and detection intensity acquired as data. Here, the m / z value can be shared as a value of, for example, 1000.00 to 2999.99, and can be omitted. For example, as information of a set of each m / z value and the detection intensity, each m / z value such as (1000.00: a), (1000.01: b), (1000.02: c). When there is information on a set of detection intensities and detection intensities, the information is input, and a vector is composed of detection intensity values corresponding to the respective m / z values (a, b, c...) Intensity vector). It should be noted that information on a healthy person or an affected patient may be added to one vector of the detection intensity.
 次に、データを用いて、ニューラルネットを学習させ、データを分類し、分類に関与した特徴量を特定する。学習アルゴリズムとしては、教師ありの学習アルゴリズムであっても、教師なしの学習アルゴリズムであってもよい。 Next, using the data, the neural network is trained, the data is classified, and the features involved in the classification are specified. The learning algorithm may be a supervised learning algorithm or an unsupervised learning algorithm.
 教師ありの学習アルゴリズムの場合、分析装置によって測定された、物理的な指標値に対応する上述のデータのベクトル(又は後述するテンソル)と、教師データとしてのそれらの特性と、の関係をニューラルネットワークに学習させる。生体成分をサンプルとして質量分析装置を用いて質量を分析する場合には、特定の疾患に関する、健常者であるか、罹患者であるか、を教師情報として与える。この場合、本例のシステムは、生体成分の情報と、健常者又は罹患者と、を関連付けてニューラルネットワークを学習してよい。これにより、生体成分の情報について、健常者又は罹患者で分類できるよう構成される。また、この場合、サンプルに対して、予めマニュアルによってアノテ―ションをせず、アノテ―ションのないサンプルを用いてもよい。また、上述では、物理的な指標値に対応する上述のデータのベクトル(又は後述するテンソル)と、教師データとしてのそれらの特性と、の関係をニューラルネットワークに学習させているが、これらに更に他の情報の入力値を加えて、学習をさせてもよい。 In the case of a supervised learning algorithm, a relationship between the above-described data vector (or a tensor described later) corresponding to a physical index value measured by an analyzer and their characteristics as supervised data is represented by a neural network. Let them learn. When mass is analyzed using a mass spectrometer with a biological component as a sample, whether the person is a healthy person or an affected person with respect to a specific disease is given as teacher information. In this case, the system of the present example may learn the neural network by associating the information of the biological component with the healthy person or the affected person. Thereby, it is configured that the information of the biological component can be classified into a healthy person and an affected person. In this case, the sample may not be annotated manually in advance, and a sample without annotation may be used. Further, in the above description, the neural network learns the relationship between the above-described data vector (or tensor described later) corresponding to the physical index value and their characteristics as teacher data. Learning may be performed by adding input values of other information.
 また、教師なしの学習アルゴリズムの場合、未知の情報を取得できることが可能となる。この場合、生体成分に対して、健常者であるか罹患者であるかの情報を与えずに、生体成分の分類をすることが可能となる。特に、アノテ―ションのないサンプルを用いる場合、マニュアルでアノテ―ションを付する負担が減少する利点がある。 In the case of an unsupervised learning algorithm, it is possible to acquire unknown information. In this case, it is possible to classify the biological component without giving information on whether the component is a healthy person or an affected patient. In particular, when using a sample without annotation, there is an advantage that the burden of manually annotating is reduced.
 教師なしの学習アルゴリズムとしては、オートエンコーダや、制限ボルツマンマシンや、またはこれらを多層化した手法などであってもよい。例えばオートエンコーダを用いた場合においては、入力データに対して、エンコーダを適用することにより、入力データの次元を削減し、当該次元が削減されたデータに対して、デコーダを適用させ、次元を回復させ、同一のデータとなるよう、重み付け値を変更させて学習をさせる。ここでは、重み付けを変更することで分類の実現をしているが、この方法に限らず、他の方法であってもよい。 学習 As an unsupervised learning algorithm, an auto encoder, a restricted Boltzmann machine, or a method in which these are multi-layered may be used. For example, when an auto encoder is used, the dimension of the input data is reduced by applying the encoder to the input data, and the decoder is applied to the data with the reduced dimension to recover the dimension. Then, learning is performed by changing the weight value so that the same data is obtained. Here, the classification is realized by changing the weighting, but the present invention is not limited to this method, and another method may be used.
 次に、分類に関与した特徴量を特定する。特徴量は、分類に影響を与えるものである。特徴量として、より具体的には、後述する説明子を特定してよい。例えば、上述の質量分析装置から取得された、m/z値と検出強度のスペクトル又はこれに基づくベクトルを入力データとして分類を学習させたニューラルネットワークにおいては、その特徴量から、m/z値を特定することができる。 (4) Next, specify the feature quantities involved in the classification. The feature value affects the classification. More specifically, an explanatory element described later may be specified as the feature amount. For example, in a neural network acquired by the above-described mass spectrometer and learned to classify using the spectrum of the m / z value and the detected intensity or a vector based on the spectrum as the input data, the m / z value is calculated from the feature amount. Can be identified.
 m/z値の特定方法は、例えば、各層のパラメータを利用してよい。ここで、各層のパラメータは、入力値をどの程度出力値に影響させるかを示す値である。そのため、出力値に影響を与えるようなパラメータを、出力層から、入力層に向けて、辿って行くことにより、最終的な出力値に影響を与える入力値を特定することができる。 The method of specifying the m / z value may use, for example, parameters of each layer. Here, the parameter of each layer is a value indicating how much the input value affects the output value. Therefore, by tracing parameters that affect the output value from the output layer toward the input layer, it is possible to specify the input value that affects the final output value.
 本願明細書において、最終的な出力値に影響を与える入力値及び/又はこれに基づき加工された情報を、説明子と呼ぶ。入力値は、一又は複数であってよい。説明子の具体例としては、例えば、サンプルをm/z値のスペクトルとすれば一又は複数のm/z値が挙げられる。また、加工された情報としては、サンプルが画像であれば細胞壁を示しているであろうエッジ、細胞形態の輪郭などが挙げられる。これらのエッジは、入力値に対してフィルターを用いて加工されるものであるから、説明子はこれらのものを含んでよい。なお、説明子が出力に影響を与える程度は種々の程度があり、大きな影響を与えるものもあれば、小さな影響を与えるものもある。なお、本願明細書における特徴量は、一般的に人間が解釈できない形式になっているものを含む、説明子のスーパーセットである。 に お い て In the specification of the present application, an input value that affects a final output value and / or information processed based on the input value is referred to as an explanation element. The input value may be one or more. As a specific example of the explanatory element, for example, if a sample is a spectrum of m / z values, one or a plurality of m / z values may be mentioned. The processed information includes an edge that would indicate a cell wall if the sample is an image, a contour of a cell morphology, and the like. Since these edges are processed using a filter on the input value, the explanatory note may include these. Note that the degree of influence of the explanatory element on the output varies, and some of them have a large effect, while others have a small effect. It should be noted that the feature quantity in the specification of the present application is a superset of explanatory characters, including those in a form that cannot be generally interpreted by humans.
 すなわち、本例のシステムは、同一の層における第1パラメータと第2パラメータに対し、前記第1パラメータが前記第2パラメータよりも大きい場合、前記第1パラメータが適用される入力値を、説明子として設定するよう構成されてよい。ここで、第1パラメータと第2パラメータが、共通の入力値を有することがあってもよい。 That is, for the first parameter and the second parameter in the same layer, when the first parameter is larger than the second parameter, the system according to the present embodiment converts the input value to which the first parameter is applied into an explanatory value. It may be configured to be set as. Here, the first parameter and the second parameter may have a common input value.
 また、本例のシステムは、同一の層において、第1パラメータと第2乃至第Nパラメータに対し、前記第1パラメータが前記第2乃至第Nパラメータよりも大きい場合、前記第1パラメータが適用される入力値を、説明子として設定するよう構成されてよい。ここで、第1パラメータ及び第2乃至第Nパラメータが、共通の入力値を有することがあってもよい。 Also, in the system of the present example, the first parameter is applied to the first parameter and the second to N-th parameters in the same layer when the first parameter is larger than the second to N-th parameters. May be configured to set an input value to be used as an explanatory note. Here, the first parameter and the second to N-th parameters may have a common input value.
 なお、以上において、パラメータは、ニューラルネットワーク内で内積計算を行う算出式における重み付け値であってよい。 In the above description, the parameter may be a weight value in a calculation formula for calculating an inner product in a neural network.
 機械学習装置は、その内部構造が複雑であることから、データ分類に寄与した特徴量など、機械が下した判断の根拠をユーザが理解できないという課題があったところ、本例のシステムが、特徴量を特定できる構成を備える場合、その特徴量を根拠として分類されたことが明らかになるため、機械が下した判断の根拠をユーザが理解しやすいという利点がある。例えば、生体成分に関し質量分析装置で取得されたm/z値に対応する検出強度のデータと、健常者又は罹患者の情報と、を関連付けた情報を対象データとして、ニューラルネットワークで学習させた場合、健常者又は罹患者とを分類した具体的な検出強度(又はこれに対応するm/z値)を特定することができ、このようなニューラルネットワークが判断した根拠となるm/z値を、ユーザが理解することができる。 Because the internal structure of the machine learning device is complicated, there is a problem that the user cannot understand the basis of the judgment made by the machine, such as the feature amount that has contributed to the data classification. In the case where a configuration capable of specifying the quantity is provided, it is clear that the classification has been made on the basis of the feature quantity, so that there is an advantage that the user can easily understand the basis of the judgment made by the machine. For example, when learning is performed by a neural network using, as target data, information relating detection intensity data corresponding to an m / z value acquired by a mass spectrometer with respect to a biological component and information on a healthy person or an affected patient. , The specific detection intensity (or the corresponding m / z value) that classifies the healthy person or the affected person can be specified, and the m / z value that is the basis for such a neural network to determine is The user can understand.
 また、本例のシステムは、特定した特徴量又は説明子を、ユーザに理解しやすいように、表示するよう構成されてよい。また、ユーザにより理解しやすいよう、加工をして、表示するよう構成されてよい。例えば、本例のシステムは、特定した複数のm/z値をリスト化して表示するよう構成してもよいし、特定した複数のm/z値を影響する順序を考慮してランキング形式により表示してもよい。図9は、複数のm/z値に対し、出力値に対して影響した順位でランキングを付した一例である。ここで、影響の度合いは、上述のパラメータの大小に基づいて出力値に対して影響を与える入力値の大小を判定することが考えられるが、この方法に限らず、他の方法であってもよい。 The system of the present example may be configured to display the specified feature amount or the explanatory element so that the user can easily understand the characteristic amount or the explanatory element. In addition, processing may be performed and displayed so that the user can easily understand. For example, the system of the present example may be configured to list and display the specified plurality of m / z values, or to display the specified plurality of m / z values in a ranking format in consideration of the order in which the specified m / z values are affected. May be. FIG. 9 is an example in which a ranking is given to a plurality of m / z values in the order of influence on the output value. Here, the degree of the influence may be determined by determining the magnitude of the input value that affects the output value based on the magnitude of the above-described parameter. However, the method is not limited to this method, and other methods may be used. Good.
 図5は、特徴量となるm/z値を特定するための手法を示す一例である。入力層から出力層に向けた各層の計算について、出力層により大きな影響を与える入力層が、特徴量として、提示される構成となっている。また、図6は、図5の表示の見方の一例を示す。すなわち、本例のシステムは、ニューラルネットワークにおける入力層から出力層までの各層を、各層への入力値が関連付けられて、表示し、出力層に与える影響が所定の値よりも大きい入力値を、それ以外の入力値よりも、特定の表示を行う構成とされてよい。 FIG. 5 is an example showing a method for specifying an m / z value serving as a feature amount. In the calculation of each layer from the input layer to the output layer, an input layer that has a greater effect on the output layer is presented as a feature amount. FIG. 6 shows an example of how to read the display of FIG. That is, the system of the present example displays each layer from the input layer to the output layer in the neural network, in which the input value to each layer is associated, and displays the input value whose influence on the output layer is larger than a predetermined value. A specific display may be performed rather than other input values.
 教師ありの学習アルゴリズムを採用した場合における特徴量としてのm/z値は、生体成分が、健常者であるか罹患者であるかを分類するのに影響を与えるものである。すなわち、本例のシステムを用いることにより、健常者又は罹患者の判別に影響を与えるm/z値を特定することができる。また、m/z値の検出強度が微量であっても、健常者又は罹患者の判別に影響を与えるものであれば、特定の対象となる。そのため、従来技術においては、生体成分の質量分析装置として主にm/z値のピーク値を基準に研究あるいは判定がされていたことに対し、上述の構成によれば検出強度が微量のm/z値も対象として、特定することができる利点がある。 M The m / z value as a feature value when a supervised learning algorithm is used has an effect on classifying a biological component as a healthy person or an affected person. That is, by using the system of this example, it is possible to specify the m / z value that affects the determination of a healthy person or an affected person. In addition, even if the detection intensity of the m / z value is very small, it is a specific target as long as it has an influence on the determination of a healthy person or an affected person. For this reason, in the prior art, as a biological component mass spectrometer, research or determination is mainly performed based on the peak value of the m / z value, whereas according to the above-described configuration, the detection intensity is very small. There is an advantage that the z value can be specified as a target.
 次に、本例のシステムは、特徴量をインデックスに含むデータベースと、特定された特徴量から、特徴量に関連する情報を表示してよい。例えば、特徴量として、一又は複数のm/z値を特定できたとする。また、データベースは、m/z値と物質との関連付けを含むデータベースであるとする。そのとき、データベースから、特徴量として特定された一又は複数のm/z値と関連付けられた一又は複数の物質を特定してよい。 Next, the system of the present example may display information related to the feature amount from the database including the feature amount in the index and the specified feature amount. For example, it is assumed that one or a plurality of m / z values can be specified as the feature amount. It is assumed that the database is a database including an association between m / z values and substances. At this time, one or a plurality of substances associated with one or a plurality of m / z values specified as the feature amount may be specified from the database.
 本例のシステムは、このように構成された場合、健常者又は罹患者の判別に影響を与える物質を特定することができる。 シ ス テ ム The system of this example, when configured in this way, can identify substances that affect the determination of a healthy person or an affected person.
 また、本例のシステムが使用するデータとして、検出強度が高いいわゆるピークに対応するm/z値に限定せずに、ピーク以外のm/z値と検出強度との関係を示すデータを用いて深層学習によりニューラルネットワークを学習させる場合、m/z値の検出強度が微量であっても、健常者又は罹患者の判別に影響を与えるものであれば、微量の物質も含めて特定できる可能性がある。これにより、従来は疾患の有無を判別するのに検討されてこなかった微量の物質も含めて特定できる。特に、微量の物質に毒性が含まれている場合において、これを効果的に特定できるという利点を有する。 The data used by the system of this example is not limited to the m / z value corresponding to a so-called peak having a high detection intensity, but may be data indicating the relationship between the m / z value other than the peak and the detection intensity. When a neural network is trained by deep learning, even if the detection intensity of the m / z value is very small, it may be possible to specify a small amount of substances as long as it affects the discrimination between a healthy person and an affected person. There is. As a result, it is possible to specify a small amount of a substance that has not been examined to determine the presence or absence of a disease. In particular, when a trace amount of a substance contains toxicity, it has an advantage that it can be effectively identified.
 一又は複数のm/z値から、一又は複数の物質を特定する手法は、種々の方法であってよい。例えば、一のm/z値が特定された場合、当該m/z値と関連付けられたデータベース内の複数の物質を特定してよい。当該複数の物質は、データベース内において前記m/z値と関連付けられた全ての物質であってもよいし、前記m/z値と関連付けられた全ての物質のうち特定の基準で選択された一部の物質であってもよい。 手法 Various methods may be used for specifying one or more substances from one or more m / z values. For example, when one m / z value is specified, a plurality of substances in a database associated with the m / z value may be specified. The plurality of substances may be all substances associated with the m / z value in the database, or may be one selected by a specific criterion among all substances associated with the m / z value. Parts of the substance.
 また、複数のm/z値が特定された場合、当該複数のm/z値と関係する物質を、当該データベースを用いて、特定してよい。この場合、本例のシステムは、複数のm/z値のうちの一のm/z値に対してデータベースを用いて関連する一又は複数の物質を特定し、これを前記複数のm/z値の全てに対して適用することで、複数の物質を特定してもよい。また、本例のシステムは、特定された複数のm/z値の所定の複数のm/z値を全て含んで関連付けられている一又は複数の物質を特定するよう構成されてもよい。 {Circle around (2)} When a plurality of m / z values are specified, a substance related to the plurality of m / z values may be specified using the database. In this case, the system of the present example specifies one or more related substances by using a database for one m / z value of the plurality of m / z values, and identifies the related substance or substances with the plurality of m / z values. Multiple substances may be specified by applying to all of the values. Further, the system of the present example may be configured to specify one or a plurality of substances that include all of the plurality of specified m / z values and are associated with the specified plurality of m / z values.
 また、複数の特徴量又は説明子のうち、パターン分類に影響を与えた程度を考慮して、前記複数の物質の特定において、影響を与えた程度を算出してもよい。図10は、m/z値に関連して、関連物質をランキングで表示する一例である。m/z値の影響順位に対応して、関連する物質A乃至Eが表示されている。ここで、図10は、各m/z値に対応して一の物質が表示されているが、各m/z値に対応して(データベースで複数の物質が検索された場合など)複数の物質情報が表示されてもよいし、(複数のm/z値に対応して一の物質が特定された場合など)複数のm/z値に対して一の物質情報が表示されてもよい。 In addition, in the specification of the plurality of substances, the degree of influence may be calculated in consideration of the degree of influence on the pattern classification among the plurality of feature amounts or explanatory characters. FIG. 10 is an example of displaying related substances by ranking in relation to m / z values. Related substances A to E are displayed corresponding to the order of influence of the m / z value. Here, FIG. 10 shows one substance corresponding to each m / z value, but a plurality of substances corresponding to each m / z value (such as when a plurality of substances are searched in a database). Substance information may be displayed, or one substance information may be displayed for a plurality of m / z values (such as when one substance is specified corresponding to a plurality of m / z values). .
4.2.実施例2
 実施例2は、実施例1と同じように、サンプルを生体成分とし、分析装置は質量分析装置とする。実施例2は、主に、実施例1との違いを説明する。実施例2では、説明子を取得するために、未知のデータを用いる。
4.2. Example 2
In the second embodiment, as in the first embodiment, the sample is a biological component, and the analyzer is a mass spectrometer. The second embodiment mainly describes differences from the first embodiment. In the second embodiment, unknown data is used to obtain an explanatory note.
 具体的には、本例のシステムは、検出強度のベクトルと、健常者又は罹患者との情報と、の関連付けをニューラルネットワークに学習させてよい。その後、健常者又は罹患者であるかが未知である、具体的な患者の生体成分から検出強度のベクトルを生成し、当該ベクトルを、前記ニューラルネットワークに適用してよい。これにより、当該患者が健常者又は罹患者であるか、の情報が特定できてよい。また、その前記患者に係る検出強度のベクトル内の数値のうち、当該患者が健常者又は罹患者であるかに影響を与えた数値に対応するm/z値を特定してよい。なお、この当該患者が健常者又は罹患者であるか、の情報は使用されなくてもよい。 Specifically, the system of this example may make the neural network learn the association between the vector of the detection intensity and the information on the healthy person or the affected person. Thereafter, a vector of the detected intensity may be generated from a biological component of a specific patient, which is unknown whether it is a healthy person or an affected patient, and the vector may be applied to the neural network. Thereby, information indicating whether the patient is a healthy person or an affected person may be specified. Further, among the numerical values in the vector of the detection intensity of the patient, an m / z value corresponding to a numerical value that has influenced whether the patient is a healthy person or an affected person may be specified. Note that the information on whether the patient is a healthy person or an affected patient may not be used.
 m/z値の特定方法は、前記患者に係る検出強度のベクトルが学習された前記ニューラルネットワークに適用された時点の計算において、前記ニューラルネットワーク内の各層の数値を、出力層から入力値に辿ることで、前記患者に係る検出強度のベクトル内の数値のうち当該患者が健常者又は罹患者であるかを特定するのに影響を与えた数値を特定し、これに対応するm/z値を特定する。ここで、説明子の算出には、前記患者に係るサンプルを学習済みニューラルネットワークに適用した時点におけるニューラルネットワークの構造、例えば、前記患者に係るサンプル情報を基にして、ニューラルネットワーク内での計算過程の数値が用いられてよい。 The method for determining the m / z value is to follow the numerical value of each layer in the neural network from the output layer to the input value in the calculation at the time when the vector of the detected intensity of the patient is applied to the learned neural network. In this way, among the numerical values in the vector of the detection intensity of the patient, a numerical value that has influenced the identification of whether the patient is a healthy person or an affected person is specified, and the m / z value corresponding to this is determined. Identify. Here, in the calculation of the explanatory element, the calculation process in the neural network based on the structure of the neural network at the time when the sample relating to the patient is applied to the learned neural network, for example, the sample information relating to the patient, May be used.
 当該特定されたm/z値は、m/z値と物質情報とを関連付けたデータベースを用いて、関連する物質情報を特定する点は、実施例1と同じである。 The specified m / z value is the same as that of the first embodiment in that the related substance information is specified using a database in which the m / z value is associated with the substance information.
 図8は、実施例2のフローの一例である。分析装置の取得801、前処理802及び特徴量に関連する情報の特定と表示806は、実施例1と同じである。他方、深層学習803を行い、深層学習後の未知のデータに対してニューラルネットワークを適用し804、特徴量を特定する805は、実施例1と異なる。 FIG. 8 shows an example of the flow of the second embodiment. The acquisition 801 of the analyzer, the preprocessing 802, and the specification and display 806 of the information related to the feature amount are the same as those in the first embodiment. On the other hand, the deep learning 803 is performed, the neural network is applied to the unknown data after the deep learning 804, and the feature amount 805 is different from the first embodiment.
 本例システムがこのような構成を備える場合、健常者又は罹患者であるかが未知である患者について、健常者又は罹患者であるかの判定に影響を与えたm/z値を特定し、これに対応する物質情報を特定し、罹患者であると判定された場合における根拠となる物質情報を特定できる。 When the present example system has such a configuration, the m / z value that has influenced the determination of whether the subject is a healthy person or an affected individual is specified for a healthy person or a patient whose unknownness is unknown, The substance information corresponding to this is specified, and the substance information serving as a basis when it is determined that the patient is affected can be specified.
 実施例1と実施例2の違いを、より概念的に説明する。例えば、実施例1において、健常者と罹患者とを区別するための入力値(例えば、m/z値)が、A、B、Cと3つあるとする。これらのA、B、Cは、検出強度ベクトルと、健常者又は罹患者の情報と、を関連付けて学習させたニューラルネットワークの構成に基づいて特定された、m/z値とする。これらの特定されたm/z値の意味として、A、B、Cの3つ全てについて、所定の要件を満たした場合に、健常者又は罹患者と判定されるのか、A、B、Cの3つのうちのいずれか一つ(又は二つ)所定の要件を満たせば、健常者又は罹患者と判定され、3つ全てが所定の要件を満たす必要がない場合もありうる。このように、選択的に要件を満たせばよい場合、実施例2においては、当該選択的に満たすべき要件であるm/z値を特定し、対象となる患者について健常者又は罹患者と判別できる根拠を提示できる点に、利点がある。 違 い The difference between the first embodiment and the second embodiment will be described more conceptually. For example, in the first embodiment, it is assumed that there are three input values (for example, m / z values) A, B, and C for distinguishing a healthy person from an affected person. These A, B, and C are m / z values specified based on the configuration of the neural network trained by associating the detected intensity vector with the information of a healthy person or an affected person. The meaning of these specified m / z values is that if all three of A, B, and C satisfy predetermined requirements, they are determined to be healthy subjects or diseased patients, or A, B, and C If any one (or two) of the three satisfies the predetermined requirements, it is determined that the subject is a healthy person or an affected person, and all three may not need to satisfy the predetermined requirements. As described above, when the requirement can be selectively satisfied, in the second embodiment, the m / z value which is the requirement to be selectively satisfied is specified, and the target patient can be determined as a healthy person or an affected patient. There is an advantage in that evidence can be provided.
 本例のシステムは、物理的な指標値に対応する値を複数含む第1データセットと、前記第1データセットの特性と、を取得する取得部と、
 前記第1データセットと、前記特性と、の関連付けを学習させたニューラルネットワークと、
 物理的な指標値に対応する値を複数含む第2データセットを、前記ニューラルネットワークに適用させ、前記ニューラルネットワークの適用時の算出値に基づき、前記指標値を特定する特定部とを含む、情報処理システムであってよい。
An acquisition unit configured to acquire a first data set including a plurality of values corresponding to physical index values, and characteristics of the first data set;
A neural network that has learned the association between the first data set and the characteristic,
A second data set including a plurality of values corresponding to physical index values is applied to the neural network, and a specifying unit that specifies the index value based on a calculated value when the neural network is applied, It may be a processing system.
 ここで、前記特定部によって特定される指標値は、前記第2データセットに対する特性を導出するのに影響を与えた前記第2データセット内の情報に対応する指標値であってよい。 Here, the index value specified by the specifying unit may be an index value corresponding to information in the second data set that has influenced the derivation of characteristics for the second data set.
 また、前記ニューラルネットワークの適用時の算出値は、前記第2データセットを前記ニューラルネットワークに適用した場合において、前記第2データセットの特性を導出するのに使用された前記ニューラルネットワーク内の各層の数値であってよい。 In addition, when the second data set is applied to the neural network, the calculated value at the time of application of the neural network is the value of each layer in the neural network used to derive the characteristics of the second data set. It may be a numerical value.
4.3.実施例3
 実施例3は、サンプルとしては腸内細菌叢を用いて、次世代シーケンサーを分析装置として使用する例を説明する。この場合においても、健常者及び罹患者から取得したサンプルを使用する。その結果、次世代シーケンサーから、塩基配列を取得することができる。この塩基配列と、健常者又は罹患者とが関連付けられたデータを用いて、学習させたニューラルネットワークを構築する。そうすると、健常者及び罹患者を分類するにあたり特徴量としての配列を特定することができる。より具体的には、説明子としての配列を特定することができる。
4.3. Example 3
Example 3 describes an example in which intestinal microflora is used as a sample and a next-generation sequencer is used as an analyzer. Also in this case, samples obtained from healthy persons and affected persons are used. As a result, a base sequence can be obtained from a next-generation sequencer. Using the base sequence and data in which a healthy person or an affected person is associated, a learned neural network is constructed. Then, a sequence as a feature amount can be specified when classifying healthy subjects and affected patients. More specifically, it is possible to specify an array as an explanatory element.
 当該配列と、腸内細菌叢と、を関連付けたデータベースを用いることにより、特徴量として導出された配列から、腸内細菌叢を特定することができる。これにより、特定の疾患に関し、健常者と罹患者とを判別するのに影響を与える腸内細菌叢を特定することができる。すなわち、疾患に関係のある腸内細菌叢を特定することができる。これにより、例えば、当該疾患をより詳しく研究するターゲットとなる腸内細菌叢を特定できる。 腸 By using a database in which the sequence is associated with the intestinal flora, the intestinal flora can be identified from the sequence derived as a feature value. This makes it possible to specify the intestinal microflora that influences the discrimination between a healthy person and an affected person for a specific disease. That is, intestinal flora related to the disease can be specified. Thereby, for example, the intestinal flora to be a target for studying the disease in more detail can be specified.
 なお、健常者又は罹患者の情報が付されたデータを用いて学習されたニューラルネットワークの構造から特徴量となる塩基配列を特定してもよいし、深層学習の後に、健常者又は罹患者が未知であるサンプルを当該学習済みニューラルネットワークに適用させた時点におけるニューラルネットワークの構造から特徴量となる塩基配列を特定してもよい。 It should be noted that a base sequence serving as a feature may be specified from the structure of the neural network learned using the data to which information of a healthy person or an affected person is attached, or that after a deep learning, a healthy person or an affected person may be identified. A base sequence serving as a feature may be specified from the structure of the neural network at the time when the unknown sample is applied to the learned neural network.
4.4.実施例4
 実施例4は、実施例1乃至3で説明した対象以外の分析装置、サンプル、特性について、説明する。実施例1乃至3と重複する部分は説明を省略する。
4.4. Example 4
In the fourth embodiment, an analyzer, a sample, and a characteristic other than the targets described in the first to third embodiments will be described. The description of the parts overlapping with the first to third embodiments will be omitted.
 実施例1乃至3では、質量分析装置、次世代シーケンサーの例を説明したが、他の種々の分析装置が用いられてよい。例えば、光分析装置や、電磁気分析装置、分離分析装置、熱分析装置、等が挙げられる。光分析装置においては、紫外・可視分光光度計、赤外分光光度計、原子吸光分析装置、蛍光度分析装置、ラマン分光光度計等が挙げられる。また、電磁気分析装置としては、X線解析装置、X線吸収分析装置、質量分析装置、核磁気共鳴装置等が挙げられる。また、分離分析装置としては、ガスクロマトグラフ、高速液体クロマトグラフ、電気泳動装置等が挙げられる。以上に挙げていない分析装置であっても、要するに、後述するようにベクトル形式に変更可能なスペクトルを分析結果として出力できる装置であればよい。 In the first to third embodiments, examples of the mass spectrometer and the next-generation sequencer have been described. However, other various analyzers may be used. For example, there are an optical analyzer, an electromagnetic analyzer, a separation analyzer, a thermal analyzer, and the like. Examples of the optical analyzer include an ultraviolet / visible spectrophotometer, an infrared spectrophotometer, an atomic absorption analyzer, a fluorimeter, and a Raman spectrophotometer. Examples of the electromagnetic analyzer include an X-ray analyzer, an X-ray absorption analyzer, a mass analyzer, a nuclear magnetic resonance apparatus, and the like. Examples of the separation analyzer include a gas chromatograph, a high-performance liquid chromatograph, and an electrophoresis apparatus. In short, any analyzer that is not listed above may be any device that can output a spectrum that can be changed to a vector format as an analysis result, as described later.
 また、実施例1乃至3においては、サンプルとして、生体成分、塩基配列を用いたが、これらに限られない。サンプルとしては、例えば、生物内外の成分が挙げられる。生物内の成分は、動物の成分、植物の成分、細菌の成分であってもよい。また、動物の成分として、人の体内の成分であってもよい。また、動物の体を形成する成分ではないものの、動物の消化管、呼吸器系、口腔などの体の内側に存在する細菌であってもよい。同様に、動物の一分類としてのヒトの消化管、呼吸器系、又は口腔などの体の内側に存在する細菌であってもよい。例えば、サンプルは、腸内細菌叢であってよい。生物外の成分としては、生物内の成分が生物外に排出されたもの、細胞外に排出されたもの、又は、セルファクトリーで使用又は生成されたものであってよい。 In addition, in Examples 1 to 3, a biological component and a base sequence were used as a sample, but the present invention is not limited thereto. Examples of the sample include components inside and outside an organism. The component in the organism may be an animal component, a plant component, or a bacterial component. Further, as a component of an animal, a component in a human body may be used. In addition, although not a component that forms the body of an animal, bacteria that exist inside the body such as the digestive tract, respiratory system, and oral cavity of the animal may be used. Similarly, bacteria may be present inside the body, such as the human digestive tract, respiratory system, or oral cavity as a class of animals. For example, the sample may be an intestinal flora. The component outside the organism may be a component that has been excreted outside the organism, a component that has been excreted extracellularly, or a component that has been used or produced in a cell factory.
 実施例1乃至3では、ベクトルとして、m/z値に対する検出強度と、塩基配列の一例を説明したが、ベクトルとして用いられるデータは、各分析装置に合わせて、他のデータであってよい。例えば、分析装置として、光分析装置を用いた場合には、波長毎の数値のベクトルであってよい。より具体的には、紫外・可視光光度計、赤外分光光度計、ラマン分光装置などの分光光度計を分析装置とすると、波長(又は波数)毎の透過率(反射率、又は、吸光度)のベクトルであってよい。また、分析装置として蛍光光度計を用いた場合には、波長毎の蛍光強度のベクトルであってよい。また、分析装置として原子吸光光度計を用いた場合には、元素毎の濃度のベクトルであってよい。また、分析装置としてX線解析装置を用いた場合には、角度毎の強度のベクトルであってよい。また、ガスクロマトグラフ、液体クロマトグラフ、電気泳動装置等の分析装置においては、時間に対する検出度数であってよい。なお、これらのデータにおいて、m/z値、塩基配列、波長、波数、元素、角度、時間、測定箇所などが物理的な指標値である。 In the first to third embodiments, an example of the detection intensity with respect to the m / z value and the base sequence has been described as a vector. However, data used as a vector may be other data according to each analyzer. For example, when an optical analyzer is used as the analyzer, it may be a vector of numerical values for each wavelength. More specifically, if a spectrophotometer such as an ultraviolet / visible light photometer, an infrared spectrophotometer, and a Raman spectrometer is used as the analyzer, the transmittance (reflectance or absorbance) for each wavelength (or wave number) is assumed. Vector. When a fluorimeter is used as the analyzer, a vector of the fluorescence intensity for each wavelength may be used. When an atomic absorption spectrometer is used as the analyzer, the concentration vector for each element may be used. When an X-ray analyzer is used as the analyzer, the vector may be an intensity vector for each angle. In the case of an analyzer such as a gas chromatograph, a liquid chromatograph, or an electrophoresis apparatus, the detection frequency with respect to time may be used. In these data, the m / z value, the base sequence, the wavelength, the wave number, the element, the angle, the time, the measurement location, and the like are physical index values.
 また、本例のシステムは、物理的な指標値に対応する値を複数含むデータセットを、複数取得し、複数のデータセットに対してニューラルネットワークを学習するよう構成されてよい。複数のデータセットを入力とさせることにより、対象データを共通にしつつも異なる観点を含めた多角的な情報でニューラルネットワークを深層学習できる利点がある。例えば、質量分析装置を用いて、生体成分をサンプルとしたとき、m/z値の検出強度のベクトルと、前記サンプルの画像データを取得するよう構成されてよい。画像データは、サンプルの外観のデータである。画像データにおける物理的な指標は、上述のとおり、その測定箇所(デカルト座標、極座標など)であり、これに対応する値が入力値である。この場合、画像値とスペクトルデータにより、テンソルデータとなる。また、位置データに対応して色データが含まれてもよい。色データは、RGBであったり、CMYKであったりしてよい。 The system of the present example may be configured to acquire a plurality of data sets including a plurality of values corresponding to physical index values, and learn a neural network for the plurality of data sets. By having a plurality of data sets as inputs, there is an advantage that the neural network can be deeply learned with diversified information including different viewpoints while sharing the target data. For example, when a biological component is used as a sample using a mass spectrometer, a vector of the detected intensity of the m / z value and image data of the sample may be obtained. The image data is data of the appearance of the sample. As described above, the physical index in the image data is the measurement location (Cartesian coordinates, polar coordinates, etc.), and the value corresponding to this is the input value. In this case, tensor data is obtained from the image value and the spectrum data. Further, color data may be included corresponding to the position data. The color data may be RGB or CMYK.
 すなわち、本例のシステムは、物理的な第1指標値に対応する値を複数含む第1データセットと、物理的な第2指標値に対応する値を複数含む第2データセットと、前記データセットの特性と、を取得する取得部と、前記第1データセットと、前記第2データセットと、前記特性と、の関連付けを学習させたニューラルネットワークと、前記ニューラルネットワーク内の構造を用いて、前記特性に影響を与える前記第1指標値を特定する第1特定部と、前記第1指標値と物質情報とを関連付けて記憶されたデータベースと、前記第1特定部が特定した指標値を、前記データベースに適用させて、前記指標値に対応する物質情報を特定する第2特定部と、を備えた、情報処理システムであってよい。 That is, the system of the present example includes a first data set including a plurality of values corresponding to a physical first index value, a second data set including a plurality of values corresponding to a physical second index value, Using an acquisition unit that acquires the characteristics of the set, the first data set, the second data set, the neural network that has learned the association between the characteristics, and a structure in the neural network, A first specifying unit that specifies the first index value that affects the characteristic, a database that stores the first index value and the substance information in association with each other, and an index value specified by the first specifying unit, An information processing system comprising: a second specifying unit that is applied to the database and specifies substance information corresponding to the index value.
 実施例1乃至3において、特性は、健常者又は罹患者との情報を用いたが、他の情報であってもよい。例えば、細胞や生体成分のようなサンプルに関する他の測定装置による測定結果であってもよいし、これらに基づく客観的な評価であってもよいし、これらに基づく又は他の状況などに基づく主観的な評価であってもよい。健常者又は罹患者との情報は、他の装置による測定結果又はこれらに基づく医学的な総合所見であり、評価の一例といえる。また、細胞良否も評価の一例である。特性をこのように構成することで、分析装置によって測定されたデータセットを特性の観点(例えば、健常者又は罹患者の観点、良い細胞と悪い細胞の観点、又は、他の測定装置での測定結果の観点)で分類し、この分類に影響を与えたデータセットに係る指標値を特定することができる。 特性 In the first to third embodiments, the characteristic is information on a healthy person or an affected patient, but may be other information. For example, it may be a measurement result of a sample such as a cell or a biological component by another measurement device, may be an objective evaluation based on these, or may be a subjectivity based on these or other situations. It may be a simple evaluation. The information on a healthy person or an affected person is a result of measurement by another device or a comprehensive medical finding based on these results, and is an example of evaluation. In addition, the quality of the cells is also an example of the evaluation. By configuring the characteristics in this manner, the data set measured by the analyzer can be measured in terms of characteristics (e.g., in terms of healthy or diseased patients, in terms of good and bad cells, or measured by other measurement devices). (Viewpoint of results), and an index value related to a data set that has influenced the classification can be specified.
 特に、特性が、他の測定結果又はこれに基づく評価の情報である場合、サンプルを当該特性に基づいて分類し、当該特性に影響を与えた物理的な指標値を特定することができ、後述のデータベースに前記指標値を適用させた場合には、前記他の測定結果又はこれに基づく評価の観点で分類されたサンプル間の差異を生じさせる物質情報を特定することが可能となる。 In particular, when the characteristic is information of another measurement result or evaluation based on the result, the sample can be classified based on the characteristic, and a physical index value that has influenced the characteristic can be specified. When the index value is applied to the database of the above, it is possible to specify the substance information that causes a difference between the other measurement results or the samples classified from the viewpoint of evaluation based on the other measurement results.
 また、本例のシステムは、複数のデータを特性として取得し、ニューラルネットワークを学習する際の教師データとして複数のデータを利用してよい。例えば、健常者又は罹患者との情報と、細胞良否に関する情報と、の両方を取得し、ニューラルネットワークの教師データとして、前記両方の情報を利用してよい。これにより、サンプルをニューラルネットワークにおいて学習する際、特性の種類及び観点が増えることにより、分類をより細かく設定でき、サンプルをより多面的な観点で分類することができる利点がある。 The system of this example may acquire a plurality of data as characteristics and use the plurality of data as teacher data when learning a neural network. For example, both information about a healthy person or an affected patient and information about the quality of cells may be acquired, and both pieces of information may be used as teacher data of a neural network. Thereby, when learning the sample in the neural network, the types and viewpoints of the characteristics are increased, so that there is an advantage that the classification can be set more finely and the sample can be classified from a more diverse viewpoint.
 また、実施例1乃至3において、データベースは、m/z値と物質情報とのデータベース、塩基配列と物質情報とのデータベースを用いたが、各物理的な指標値の特性に合わせたデータベースが用いられてよい。すなわち、各分析装置で測定された各指標値と関連付けられる前記各分析装置で測定されうる物質情報のデータベースが用いられてよい。これにより、各分析装置で測定された各指標値に合わせて、当該指標値と関連する又は示す物質情報を特定することができる。そして、当該物質情報を表示できるように構成されていることにより、利用者は、サンプルが、特性という所定の視点で分類された場合において、当該分類に影響を与えるサンプル内の物質情報を特定することが可能となる。 In Examples 1 to 3, the database used was a database of m / z values and substance information, and the database of base sequences and substance information. However, a database adapted to the characteristics of each physical index value was used. May be. That is, a database of substance information measurable by each of the analyzers associated with each index value measured by each of the analyzers may be used. This makes it possible to specify the substance information related to or indicating the index value in accordance with each index value measured by each analyzer. Then, by being configured to be able to display the substance information, the user specifies the substance information in the sample that affects the classification when the sample is classified from a predetermined viewpoint of the characteristic. It becomes possible.
 また、本願の明細書において、分析装置から取得されたデータのデータ形式として、ベクトルを説明したが、ベクトルに代えて又はベクトルに加えてテンソルであってもよい。ベクトルは、一階のテンソルであるから、ベクトルの拡張として、二階のテンソル、三階のテンソル、・・・N階のテンソルであっても、同様に学習される対象となりえる。例えば、分析装置として蛍光光度計を用いて、励起波長をそれぞれ選択した場合に各励起波長についての波長毎の蛍光強度のデータ、すなわち、二階のテンソルであってよい。また、対象物に対する画像の二次元データ又は体積の三次元データ自体、又はこれらの各箇所に関し、構成物質に関する外観情報、構成情報、数値情報、温度情報等を測定した測定値は、次元が追加されることから、二階、三階又はこれより高階のテンソルであってよい。二次元データ又は三次元データの一例としては、顕微鏡やX線解析で取得されるデータであってよい。顕微鏡は、光学顕微鏡、電子顕微鏡、X線顕微鏡、超音波顕微鏡、走査型プローブ顕微鏡などであってよい。例えばクライオ電子顕微鏡で測定して得られた三次元データや、X線解析による三次元データであってよい。 Also, in the specification of the present application, a vector has been described as a data format of the data acquired from the analyzer, but a tensor may be used instead of or in addition to the vector. Since a vector is a first-order tensor, a second-order tensor, a third-order tensor,..., An N-th order tensor as an extension of the vector can be similarly learned. For example, when a fluorimeter is used as an analyzer and excitation wavelengths are selected, fluorescence intensity data for each excitation wavelength for each excitation wavelength, that is, a second-order tensor may be used. Also, for the two-dimensional data of the image or the three-dimensional data of the volume of the object itself, or for each of these parts, the dimension of the measured value obtained by measuring the appearance information, constituent information, numerical information, temperature information, etc. related to the constituent material is added. Thus, a tensor of the second, third, or higher order may be used. An example of the two-dimensional data or the three-dimensional data may be data acquired by a microscope or X-ray analysis. The microscope may be an optical microscope, an electron microscope, an X-ray microscope, an ultrasonic microscope, a scanning probe microscope, or the like. For example, three-dimensional data obtained by measurement with a cryo-electron microscope or three-dimensional data obtained by X-ray analysis may be used.
 上述では、本例のシステムが実施する構成として説明したが、これらは、システム内の一又は複数の情報処理装置が実施する構成であってもよい。 In the above description, the configuration implemented by the system of the present example has been described, but these may be configured by one or a plurality of information processing apparatuses in the system.
 本願書類の実施例において述べた発明例は、本願書類で説明されたものに限らず、その技術的思想の範囲内で、種々の例に適用できることはいうまでもない。例えば、本願書類の実施例において、情報処理装置の画面に提示される情報は、他の情報処理装置における画面で表示できるために前記他の情報処理装置に対して送信できるよう、各実施例のシステムが構成されてもよい。 The invention examples described in the embodiments of the present application document are not limited to those described in the present application document, but may be applied to various examples within the technical idea. For example, in the embodiments of the present application, the information presented on the screen of the information processing apparatus can be displayed on the screen of another information processing apparatus, and can be transmitted to the other information processing apparatus. A system may be configured.
 また、本願書類で説明される処理及び手順は、実施形態において明示的に説明されたものによってのみならず、ソフトウェア、ハードウェア又はこれらの組み合わせによっても実現可能なものであってよい。また、本願書類で説明される処理及び手順は、それらの処理・手順をコンピュータプログラムとして実装し、各種のコンピュータに実行させることが可能であってよい。 The processes and procedures described in the present application may be realized not only by those explicitly described in the embodiments but also by software, hardware, or a combination thereof. The processes and procedures described in the present application may be implemented by a computer by implementing the processes and procedures as a computer program.

Claims (15)

  1.  物理的な指標値に対応する値を複数含むデータセットと、前記データセットの特性と、を取得する取得部と、
     前記データセットと、前記特性と、の関連付けを学習させたニューラルネットワークと、
     前記ニューラルネットワーク内の構造を用いて、前記特性に影響を与える前記指標値を特定する第1特定部と、
     を備えた情報処理システム。
    A data set including a plurality of values corresponding to physical index values, and characteristics of the data set;
    A neural network that has learned the association between the data set and the characteristic,
    A first specifying unit that specifies the index value that affects the characteristic using a structure in the neural network;
    Information processing system equipped with.
  2.  前記指標値と物質情報とを関連付けて記憶されたデータベースと、
     前記第1特定部が特定した指標値を、前記データベースに適用させて、前記指標値に対応する物質情報を特定する第2特定部と、
    を備えた、請求項1に記載の情報処理システム。
    A database stored in association with the index value and the substance information,
    A second specifying unit that applies the index value specified by the first specifying unit to the database and specifies substance information corresponding to the index value;
    The information processing system according to claim 1, comprising:
  3.  前記データセットは、生化学的な成分であり、
     前記指標値は、m/z値であり、
     前記特性は、特定の疾患に関する健常者又は罹患者であることを示す情報である、
     請求項1又は2に記載の情報処理システム。
    The dataset is a biochemical component,
    The index value is an m / z value,
    The characteristic is information indicating that the subject is a healthy person or an affected person for a specific disease,
    The information processing system according to claim 1.
  4.  前記データセットは、マイクロバイオームであり、
     前記指標値は、塩基配列であり、
     前記特性は、特定の疾患に関する健常者又は罹患者であることを示す情報である、
     請求項1又は2に記載の情報処理システム。
    The data set is a microbiome,
    The index value is a base sequence,
    The characteristic is information indicating that the subject is a healthy person or an affected person for a specific disease,
    The information processing system according to claim 1.
  5.  前記第1特定部が前記指標値を特定するために用いるニューラルネットワークの構造は、前記ニューラルネットワーク内に含まれる少なくとも一の層の少なくとも一のパラメータである、請求項1乃至4のいずれか一項に記載の情報処理システム。 The structure of the neural network used by the first specifying unit to specify the index value is at least one parameter of at least one layer included in the neural network. An information processing system according to item 1.
  6.  物理的な指標値に対応する値を複数含むデータセットと、前記データセットの特性と、
    の関連付けを学習させたニューラルネットワーク内の構造を用いて、前記特性に影響を与える前記指標値を特定する特定部を備えた情報処理装置。
    A data set including a plurality of values corresponding to physical index values, and characteristics of the data set,
    An information processing apparatus comprising: a specifying unit that specifies the index value that affects the characteristic by using a structure in a neural network that has learned association of the index.
  7.  前記特定部が特定した指標値を、前記指標値と物質情報とを関連付けて記憶されたデータベースに適用させて、前記指標値に対応する物質情報を特定する第2特定部を備えた、請求項6に記載の情報処理装置。 The apparatus according to claim 1, further comprising a second specifying unit configured to apply the index value specified by the specifying unit to a database storing the index value and the substance information in association with each other, and to specify the substance information corresponding to the index value. 7. The information processing apparatus according to 6.
  8.  前記データセットは、生化学的な成分であり、
     前記指標値は、m/z値である、
     前記特性は、特定の疾患に関する健常者又は罹患者であることを示す情報である、
     請求項6又は7に記載の情報処理装置。
    The dataset is a biochemical component,
    The index value is an m / z value.
    The property is information indicating that the subject is a healthy person or an affected person with respect to a specific disease,
    The information processing device according to claim 6.
  9.  前記データセットは、マイクロバイオームであり、
     前記指標値は、塩基配列であり、
     前記特性は、特定の疾患に関する健常者又は罹患者であることを示す情報である、
     請求項6又は7に記載の情報処理装置。
    The data set is a microbiome,
    The index value is a base sequence,
    The property is information indicating that the subject is a healthy person or an affected person with respect to a specific disease,
    The information processing device according to claim 6.
  10.  前記指標値と物質情報とを関連付けて記憶されたデータベースと、
     物理的な指標値に対応する値を複数含むデータセットと、前記データセットの特性と、
    の関連付けを学習させたニューラルネットワーク内の構造に基づいて特定された、前記特性に影響を与える前記指標値を用いて、前記指標値に対応する物質情報を特定する第2特定部と、
    を備えた、情報処理装置。
    A database stored in association with the index value and the substance information,
    A data set including a plurality of values corresponding to physical index values, and characteristics of the data set,
    A second specifying unit that specifies the substance information corresponding to the index value, using the index value that affects the characteristic, which is specified based on the structure in the neural network that has learned the association.
    An information processing device comprising:
  11.  コンピュータが、
     物理的な指標値に対応する値を複数含むデータセットと、前記データセットの特性と、を取得するステップと、
     前記データセットと、前記特性と、の関連付けをニューラルネットワークに学習させるステップと、
     前記ニューラルネットワーク内の構造を用いて、前記特性に影響を与える前記指標値を特定する第1特定ステップと、
     を含む情報処理方法。
    Computer
    Acquiring a data set including a plurality of values corresponding to physical index values, and characteristics of the data set,
    Training the neural network to associate the dataset with the property;
    A first specifying step of using the structure in the neural network to specify the index value affecting the characteristic;
    An information processing method including:
  12.  前記指標値と物質情報とを関連付けて記憶されたデータベースを用いて、
     前記第1特定ステップが特定した指標値を、前記データベースに適用させて、前記指標値に対応する物質情報を特定する第2特定ステップと、
    を含む、請求項11に記載の情報処理方法。
    Using a database stored in association with the index value and substance information,
    A second specifying step of applying the index value specified by the first specifying step to the database to specify substance information corresponding to the index value;
    The information processing method according to claim 11, comprising:
  13.  前記データセットは、生化学的な成分であり、
     前記指標値は、m/z値であり、
     前記特性は、特定の疾患に関する健常者又は罹患者であることを示す情報である、
     請求項11又は12に記載の情報処理方法。
    The dataset is a biochemical component,
    The index value is an m / z value,
    The property is information indicating that the subject is a healthy person or an affected person with respect to a specific disease,
    The information processing method according to claim 11.
  14.  前記データセットは、マイクロバイオームであり、
     前記指標値は、塩基配列であり、
     前記特性は、特定の疾患に関する健常者又は罹患者であることを示す情報である、
     請求項11又は12に記載の情報処理方法。
    The data set is a microbiome,
    The index value is a base sequence,
    The property is information indicating that the subject is a healthy person or an affected person with respect to a specific disease,
    The information processing method according to claim 11.
  15.  コンピュータに、請求項11乃至14のいずれか一項に記載の動作をさせるプログラム。 A program for causing a computer to perform the operation according to any one of claims 11 to 14.
PCT/JP2018/025066 2018-07-02 2018-07-02 Information processing system, information processing device, server device, program, or method WO2020008502A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/025066 WO2020008502A1 (en) 2018-07-02 2018-07-02 Information processing system, information processing device, server device, program, or method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/025066 WO2020008502A1 (en) 2018-07-02 2018-07-02 Information processing system, information processing device, server device, program, or method

Publications (1)

Publication Number Publication Date
WO2020008502A1 true WO2020008502A1 (en) 2020-01-09

Family

ID=69060808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025066 WO2020008502A1 (en) 2018-07-02 2018-07-02 Information processing system, information processing device, server device, program, or method

Country Status (1)

Country Link
WO (1) WO2020008502A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004094437A (en) * 2002-08-30 2004-03-25 Fuji Electric Holdings Co Ltd Data prediction method and data prediction system
JP2013183663A (en) * 2012-03-07 2013-09-19 Univ Of Tokyo Method for detecting inflammatory bowel disease, and method for testing human salivary flora
WO2018079840A1 (en) * 2016-10-31 2018-05-03 株式会社Preferred Networks Disease development determination device, disease development determination method, and disease development determination program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004094437A (en) * 2002-08-30 2004-03-25 Fuji Electric Holdings Co Ltd Data prediction method and data prediction system
JP2013183663A (en) * 2012-03-07 2013-09-19 Univ Of Tokyo Method for detecting inflammatory bowel disease, and method for testing human salivary flora
WO2018079840A1 (en) * 2016-10-31 2018-05-03 株式会社Preferred Networks Disease development determination device, disease development determination method, and disease development determination program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MONDE, YASUTAKA ET AL.: "Trial of lung cancer determination by applying Deep Learning to human urine data and search of the target substance. SIG-KBS-106-B502", THE JAPANESE SOCIETY FOR ARTIFICIAL INTELLIGENCE, 8 November 2015 (2015-11-08), pages 36 - 41 *

Similar Documents

Publication Publication Date Title
Bao et al. Rapid classification of wheat grain varieties using hyperspectral imaging and chemometrics
Ortega et al. Detecting brain tumor in pathological slides using hyperspectral imaging
Yang et al. Spectral and image integrated analysis of hyperspectral data for waxy corn seed variety classification
Al-Sarayreh et al. Detection of red-meat adulteration by deep spectral–spatial features in hyperspectral images
Zhang et al. Application of hyperspectral imaging and chemometric calibrations for variety discrimination of maize seeds
Zhao et al. Identification of leaf-scale wheat powdery mildew (Blumeria graminis f. sp. Tritici) combining hyperspectral imaging and an SVM classifier
Yao et al. Early visual detection of wheat stripe rust using visible/near-infrared hyperspectral imaging
Khan et al. Early detection of powdery mildew disease and accurate quantification of its severity using hyperspectral images in wheat
Feng et al. Identification of maize kernel vigor under different accelerated aging times using hyperspectral imaging
Zhao et al. Non-destructive and rapid variety discrimination and visualization of single grape seed using near-infrared hyperspectral imaging technique and multivariate analysis
Ma et al. Identification of fusarium head blight in winter wheat ears using continuous wavelet analysis
Sampathila et al. Customized deep learning classifier for detection of acute lymphoblastic leukemia using blood smear images
Liu et al. Rice seed purity identification technology using hyperspectral image with LASSO logistic regression model
Huang et al. Detection of fusarium head blight in wheat ears using continuous wavelet analysis and PSO-SVM
Feng et al. Detection of oil chestnuts infected by blue mold using near-infrared hyperspectral imaging combined with artificial neural networks
Edwards et al. Non-destructive spectroscopic and imaging techniques for the detection of processed meat fraud
Feng et al. Rice leaf blast classification method based on fused features and one-dimensional deep convolutional neural network
Wang et al. Non-destructive identification of naturally aged alfalfa seeds via multispectral imaging analysis
Basak et al. Determination of leaf nitrogen concentrations using electrical impedance spectroscopy in multiple crops
Khan et al. Wavelength selection for rapid identification of different particle size fractions of milk powder using hyperspectral imaging
Lin et al. Color classification of wooden boards based on machine vision and the clustering algorithm
Xu et al. Identification of defective maize seeds using hyperspectral imaging combined with deep learning
Blanco-Sacristán et al. Spectral diversity successfully estimates the α-diversity of biocrust-forming lichens
Aliteh et al. Fruit battery method for oil palm fruit ripeness sensor and comparison with computer vision method
Cho et al. Potential of snapshot-type hyperspectral imagery using support vector classifier for the classification of tomatoes maturity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.04.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18925692

Country of ref document: EP

Kind code of ref document: A1