WO2019244419A1 - Image display device and wearable display - Google Patents

Image display device and wearable display Download PDF

Info

Publication number
WO2019244419A1
WO2019244419A1 PCT/JP2019/008895 JP2019008895W WO2019244419A1 WO 2019244419 A1 WO2019244419 A1 WO 2019244419A1 JP 2019008895 W JP2019008895 W JP 2019008895W WO 2019244419 A1 WO2019244419 A1 WO 2019244419A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
screen
combiner
display
display device
Prior art date
Application number
PCT/JP2019/008895
Other languages
French (fr)
Japanese (ja)
Inventor
敬太 丸井
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2019244419A1 publication Critical patent/WO2019244419A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to an image display device and a wearable display, for example, an optical see-through type image display device that projects and displays a two-dimensional image of a liquid crystal display device (LCD) on an observer's eye with a combiner,
  • a wearable display such as a head-mounted display
  • an image display device for example, an optical see-through type image display device that projects and displays a two-dimensional image of a liquid crystal display device (LCD) on an observer's eye with a combiner
  • a wearable display such as a head-mounted display
  • Patent Literature 1 proposes an image display device that reflects light of a predetermined wavelength using a notch filter coated on a lattice surface of a relief hologram as a combiner.
  • Patent Document 2 discloses an image in which a double image is prevented from occurring even when the reflection wavelength range of the notch filter is narrow by changing the light source wavelength according to the change in the incident angle to the notch filter used in the combiner. Display devices have been proposed.
  • the combiner is formed of a notch filter, but the change in screen brightness when the combiner surface is a curved surface is not considered.
  • a wearable image display device when work or walking is performed in the mounted state, the user's pupil position is vertically displaced from the designed pupil position of the device, and the observed screen becomes dark. Or the color may change. This is because, when the combiner surface is a curved surface, if the pupil position shifts, the incident angle of the image light to the notch filter changes. That is, since the image light whose incident angle with respect to the notch filter has changed enters the eyes, a luminance change occurs on the screen.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide an image display device in which a screen is hardly darkened even when a pupil position is relatively shifted, and a wearable display including the same. It is in.
  • the image display device of the present invention is an optical see-through image display device that projects an image onto an observer's eye by superimposing an image on an external scene, A display element that displays the image, a combiner that simultaneously guides image light from the display element and external light from the external scene to the observer's eye, and joins to act as a plane-parallel plate with respect to the external light. And two prisms that support the combiner at the joint surface thereof, The joining surface includes a prism convex surface and a prism concave surface,
  • the combiner is a notch filter made of a dielectric multilayer film having a characteristic of selectively reflecting only at least one light of a specific wavelength, It is characterized by satisfying the following conditional expression (1).
  • ⁇ deg the wavelength shift amount [mm / deg.] Of the longest wavelength peak with respect to the change of the incident angle of the light beam from the center of the screen of the displayed image to the notch filter, [] Indicates the unit, deg. Is the degree of the angle,
  • the center of the screen in the display image is the origin
  • the normal of the screen in the display image is the z-axis
  • the normal of the plane containing the screen central chief ray incident and reflected on the combiner is the x-axis
  • the normal of the zx plane is the y-axis.
  • the wearable display according to the present invention is characterized in that the image display device according to the present invention is mounted, and the combiner has a function of projecting and displaying the image to the observer's eye in a see-through manner.
  • an image display device which is lightweight and compact, and whose screen is hardly darkened even when the pupil position is relatively shifted, and a wearable display including the image display device.
  • a wearable display including the image display device. For example, by performing work or walking while wearing a head-mounted display, even if the relative position of the pupil in the design of the image display device with respect to the user's pupil shifts in the vertical direction, the luminance change in the center of the screen is not changed. It is possible to observe a screen with a small and stable brightness.
  • FIG. 1 is a schematic configuration diagram showing one embodiment (Examples 1 and 2) of an image display device.
  • FIG. 2 is a front view showing a glasses-type head mounted display including the image display device of FIG. 1.
  • FIG. 5 is a sectional view taken along line V-V ′ of FIG. 3.
  • FIG. 2 is an optical path diagram showing ⁇ deg of a notch filter in the image display device of FIG.
  • FIG. 2 is a conceptual diagram of a spectrum showing a relationship between an output wavelength region of a light source and a reflection wavelength region of a notch filter in the image display device of FIG. 1.
  • 4 is a graph showing the reflection characteristics (incident angle: 26 °) of the notch filter of Example 1 in terms of spectral reflectance (wavelength: 380 to 780 nm).
  • 5 is a graph showing the reflection characteristics (incident angle: 26 °) of the notch filter of Example 1 in terms of spectral reflectance (wavelength: 620 to 650 nm).
  • 5 is a graph showing the reflection characteristics (incident angle: 21 °) of the notch filter of Example 1 in terms of spectral reflectance (wavelength: 620 to 650 nm).
  • 9 is a graph showing the reflection characteristics (incident angle: 26 °) of the notch filter of Example 2 in terms of spectral reflectance (wavelength: 380 to 780 nm).
  • 9 is a graph showing the reflection characteristics (incident angle: 26 °) of the notch filter of Example 2 in terms of spectral reflectance (wavelength: 620 to 660 nm).
  • 11 is a graph showing the reflection characteristics (incident angle: 21 °) of the notch filter of Example 2 in terms of spectral reflectance (wavelength: 620 to 660 nm).
  • FIG. 1 shows a schematic cross section of an image display device 9 according to an embodiment of the present invention.
  • FIG. 2 shows an external configuration of a glasses-type head mounted display 10 provided with an image display device 9, and
  • FIG. 3 shows a schematic structure of a cross section taken along line V-V '.
  • the image display device 9 shown in FIG. 1 projects the image of the display element 6 (FIG. 1) on the external scenery to the observer's eye EY, as can be seen from the optical paths of the image light La and the external light Lb shown in FIG.
  • This is an optical see-through type image display device for displaying, and has an optical device 5, a display element 6, a polarizing beam splitter 7, and the like.
  • FIG. 1 shows a schematic cross section of an image display device 9 according to an embodiment of the present invention.
  • FIG. 2 shows an external configuration of a glasses-type head mounted display 10 provided with an image display device 9
  • FIG. 3 shows a schematic structure of a cross section taken along line V-V '.
  • the display element 6 is an optical device that displays an image IM by emitting image light La composed of visible light, and specific examples thereof include, for example, a reflective LCD represented by LCOS (liquid crystal on silicon), and a transmissive LCD.
  • a reflective LCD represented by LCOS (liquid crystal on silicon)
  • a transmissive LCD a transmissive LCD.
  • -Type LCD digital micromirror device
  • the ninth surface S9 is a cover glass surface of the display element 6.
  • an illumination device for illuminating the display element 6 may be provided.
  • the illuminating device include an illuminating device including an illuminating optical system including a light source such as an LED and a condensing optical element (a lens, a mirror, and the like).
  • the light source for illumination include an LED light source, a laser light source, and an organic EL light source, and correspond to, for example, three primary colors RGB that emit light in three wavelength bands (emission peak wavelengths are, for example, 450 nm, 532 nm, and 640 nm). LED light source.
  • the illumination light emitted from the light source can be efficiently delivered to the observer's eye EY. It is preferable to use a reflection-type liquid crystal display element as the display element 6 in order to not only spatially modulate the illumination light but also reduce the size by folding back the light.
  • the image display device 9 uses a plane-type polarization beam splitter 7 in a small space to define the polarization to be incident on the reflection type liquid crystal display element and to selectively transmit the modulated light. By utilizing two polarization separation functions of generating polarized light by reflection and selecting polarized light by transmission, it is possible to reduce the size of the optical configuration.
  • the seventh surface S7 is the lower surface of the polarization beam splitter 7, and the eighth surface S8 is the upper surface of the polarization beam splitter 7.
  • the optical device 5 is joined to the combiner 3 for simultaneously guiding the image light La from the display element 6 and the external light Lb from the external scene to the observer's eye EY so as to act as a plane parallel plate to the external light Lb.
  • the prisms 1 and 2 that support the combiner 3 at the joint surface.
  • the joining surface between the prism 1 and the prism 2 is formed by joining the prism convex surface 1a of the prism 1 and the prism concave surface 2a of the prism 2, and the combiner 3 is positioned so as to be sandwiched between the prism convex surface 1a and the prism concave surface 2a. are doing.
  • the two transparent prisms 1 and 2 are transparent optical members made of a resin material such as acrylic resin, polycarbonate (PC), and cycloolefin resin.
  • a resin material such as acrylic resin, polycarbonate (PC), and cycloolefin resin.
  • the prism 1 two reflections are performed between the incident and the exit.
  • a large-sized reflective liquid crystal display element can be arranged on the opposite side of the observer's eye. As a result, it is possible to avoid interference between the liquid crystal display element and the observer's forehead and glasses.
  • the third surface S3 and the fifth surface S5 are prism surfaces on the eye EY side
  • the sixth surface S6 is a prism surface on the side where the image light La is incident.
  • the combiner 3 is a notch filter (a band stop filter having a narrow stop band) made of a dielectric multilayer film having a characteristic of selectively reflecting only at least one specific wavelength of light (narrow band reflection characteristic).
  • This dielectric multilayer film is composed of alternating layers of a high-refractive-index layer (for example, TiO 2 ) and a low-refractive-index layer (for example, SiO 2 ), and the total number of film layers is 40 or more.
  • the method of forming the dielectric multilayer film includes electron beam evaporation, resistance heating evaporation, ion plating, sputtering, and the like.
  • the fourth surface S4 is a notch surface (polynomial surface).
  • the dielectric multilayer film can make the refractive index difference larger, so that the wavelength variation (that is, angle dependency) due to the incident angle can be reduced, and the dielectric multilayer film can be made thinner. Ridge line becomes thin, and high see-through property is obtained. Further, since the dielectric multilayer film has a larger wavelength width than the hologram optical element, the reflectance (display efficiency) is increased. When the wavelength width is small, the see-through property increases, but when the wavelength width is too small, the display efficiency is reduced. Conversely, if the display efficiency is to be improved, the see-through property (how to see or see) is reduced as in the case of the half mirror.
  • the optical device 5 has a non-axially symmetric (non-rotationally symmetric) positive optical power in the combiner 3, and thereby an observation optical system for guiding the image light La from the display element 6 to the observer's eye EY. Function as As a result, the display image is projected and displayed on the observer's eye EY as an enlarged virtual image so that the image of the display element 6 overlaps the external image via the combiner 3.
  • the optical power of the combiner 3 can be realized by depositing a dielectric multilayer film on the prism convex surface 1a of the prism 1 or depositing a dielectric multilayer film on the prism concave surface 2a of the prism 2.
  • the optical power of the combiner 3 By configuring the optical power of the combiner 3 with a curved surface, it is not necessary to separately arrange an optical element such as a lens, so that the size of the image display device 9 can be reduced.
  • a curved surface such as a conical surface is exemplified.
  • the two prisms 1 and 2 are joined with an adhesive 4 such that a combiner 3 made of a dielectric multilayer film deposited on one of the prisms 1 and 2 is sandwiched between a prism convex surface 1a and a prism concave surface 2a.
  • the prism convex surface 1a and the prism concave surface 2a preferably have the same shape or substantially the same shape, and preferably have a shape in which the thickness of the layer of the adhesive 4 is uniform.
  • the prism 1 acts to guide the image light La coming from the display element 6 internally by total internal reflection while transmitting light of an external image (external light Lb).
  • the combiner 3 is provided on the joint surface between the prisms 1 and 2, the see-through property (combiner function) of the external image via the joint surface is ensured.
  • the external light Lb is formed at the lower end portion of the prism 1 (a portion forming a curved surface inclined substantially in a wedge shape). Can be prevented from being canceled out by the prism 2 when refracting light through the prism 2 and the observed external image is distorted (improvement in see-through performance). Further, since the dielectric multilayer film forming the combiner 3 is not in direct contact with air by being sandwiched between the prism convex surface 1a and the prism concave surface 2a, even if the humidity fluctuates rapidly, the influence is not affected. Is greatly reduced by the prisms 1 and 2. As a result, film cracking due to humidity fluctuation is reduced or prevented.
  • the dielectric multilayer film forming the combiner 3 is a notch filter having reflection bands at three wavelengths of three primary colors RGB for colorization. Therefore, the image light La in the RGB reflection band is reflected as a part of the image light La incident on the combiner 3.
  • the image light La reflected by the combiner 3 enters the observer's eye EY together with the external light Lb transmitted through the combiner 3, so that the observer observes the displayed image as well as the external image (high transmittance). be able to.
  • the prism 1 as a transparent base is configured to totally reflect the image light La from the display element 6 and guide the image light La to the combiner 3, the image light La emitted from the display element 6 is wasted. Without using it, a bright image can be provided to the observer.
  • the notch filter is an optical filter that reflects only a single wavelength of light at a predetermined reflectance and transmits the rest of the light. Therefore, compared with a half mirror, the notch filter has compatibility with light sources such as LEDs, wavelength width, and wavelength variation. Efficiency is high with respect to the above. Therefore, as described above, the dielectric multilayer film is preferably a notch filter having reflection bands at three wavelengths corresponding to the three primary colors RGB. Also, in designing a dielectric multilayer film, a certain number of layers is required to design a notch filter having reflection bands at three wavelengths corresponding to the three primary colors RGB.
  • the dielectric multilayer film is preferably composed of alternating layers of a high refractive index layer and a low refractive index layer, and the total number of film layers is preferably 40 or more.
  • a dielectric multilayer film As described above, by forming a dielectric multilayer film on the prism convex surface 1a or the prism concave surface 2a, it is possible to obtain the combiner 3 constituting the concave surface of positive power. If a combiner having the same shape is formed by a half mirror, the luminous transmittance decreases, and it becomes difficult to obtain a good see-through property. Therefore, when a dielectric multilayer film is used as compared with a half mirror, it is possible to achieve a good balance between the high luminous transmittance of the external light Lb and the brightness of the image light La (display image).
  • the pupil position of the user is vertically displaced from the pupil position in the device design, and the screen to be observed becomes dark or has a color. May change.
  • the combiner surface is formed of a curved surface, if the pupil position shifts, the incident angle of the image light to the notch filter changes. That is, the image light whose incident angle with respect to the notch filter has changed enters the observer's eyes, so that the luminance changes on the screen.
  • the image display device 9 has a configuration satisfying the following conditional expression (1).
  • ⁇ deg the wavelength shift amount [mm / deg.] Of the longest wavelength peak with respect to the change of the incident angle of the light beam from the center of the screen of the displayed image to the notch filter, [] Indicates the unit, deg. Is the degree of the angle, The center of the screen in the displayed image is the origin, the normal of the screen in the displayed image is the z-axis, the normal of the plane including the central ray of the screen incident and reflected on the combiner is the x-axis, and the normal of the zx plane is the y-axis.
  • a central ray Lc solid line
  • a principal ray Ld dashed line
  • 0.01 °
  • FIG. 5 is a conceptual diagram of the wavelength shift amount ⁇ deg with respect to the change of the incident angle to the notch filter (NL: surface normal of the combiner 3).
  • the wavelength shift amount ⁇ deg depends on the difference between the incident angle of the light beam L1 (solid line) and the light beam L2 (dashed line), ie, the peak wavelength does not change, that is, the incident angle of the image light La to the notch filter changes by 1 °.
  • the figure shows the wavelength shift amount [mm / deg.] At this time.
  • FIG. 6 is a conceptual diagram showing the relationship between the spectrum of the light source and the spectrum of the notch filter by the relationship between the light source wavelength region A0 and the reflection wavelength regions B0 and B1.
  • the horizontal axis represents wavelength
  • the vertical axis represents intensity (light source luminance or normalized reflectance).
  • conditional expression (1a) defines a more preferable condition range based on the viewpoints and the like, among the conditional ranges defined by the conditional expression (1). Therefore, preferably, by satisfying conditional expression (1a), the above effect can be further enhanced.
  • conditional expression (1) presupposes that the focal length and the eye point substantially match, the configuration in which the display image IM is not re-imaged like the optical device 5 is reduced in size of the image display device 9 and the screen brightness. It is effective for stabilization of etc.
  • the image display device 9 described above it is possible to perform image display in which the screen is hardly darkened even when the pupil position is relatively shifted, while achieving weight reduction and compactness. For example, by performing work or walking with the head mounted display 10 mounted, the relative position of the designed pupil EP of the image display device 9 with respect to the pupil of the observer eye EY of the user is shifted in the vertical direction. Also, it is possible to observe a screen with stable brightness with little change in luminance at the center of the screen.
  • a wearable display (such as the head-mounted display 10) having a function of projecting and displaying an image on the observer's eye EY by the optical device 5 in a see-through manner can be configured.
  • the image display device 9 is mounted on the wearable display to provide the combiner 3 with a function of projecting and displaying an image on the observer's eye EY in a see-through manner.
  • the wearable display is a head-mounted display including a support member that supports the image display device 9 so that the combiner 3 is positioned in front of the observer's eye EY (that is, supports the image display device 9 in front of the observer's eyes). Is desirable. Since the image display device 9 has a high see-through property, a high image display effect can be obtained by disposing the image display device 9 in front of the observer's eyes.
  • a head-mounted display HMD
  • a head-up display HUD
  • Examples of the form of the head-mounted display include an eyeglass type and a helmet type, and examples of the use of the head-up display include driving of an automobile, control of an airplane, and the like.
  • the prisms 1 and 2 made of resin are lighter in weight than glass prisms, they are suitable for wearable displays such as the head mounted display 10.
  • a head-mounted display 10 (FIGS. 2 and 3) is a head-mounted wearable display including the above-described image display device 9, a frame (supporting member) 11, lenses 12a and 12b, and a housing 13. This is an example.
  • the lenses 12 a and 12 b and the housing 13 are supported by the frame 11.
  • the display element 6 and the illumination device (not shown) of the image display device 9 are housed in the housing 13, and the upper end of the optical device 5 serving as an observation optical system is also located in the housing 13. Therefore, by supporting the housing 13 with the frame 11, the main body of the optical device 5 is located in front (outside of the outside) of the lens 12a for the right eye (FIG. 3).
  • the lenses 12a and 12b may be spectacle lenses, or may be dummy lenses made of parallel plane plates.
  • the display element 6, the light source (not shown), and the like in the housing 13 are connected to a circuit board (not shown) via a cable (not shown) provided through the housing 13, and Driving power and video signals are supplied to the display element 6, the light source, and the like.
  • the image display device 9 further includes an imaging device for photographing a still image or a moving image, a microphone, a speaker, an earphone, and the like.
  • the information of the captured image and the display image is transmitted via an external server or terminal to a communication line such as the Internet. Or a configuration for exchanging (transmitting and receiving) audio information.
  • the head mounted display 10 When the head mounted display 10 is mounted on the observer's head and an image is displayed on the display element 6 (FIG. 1), the image light La (FIG. 3) is guided to the observer's eye EY via the optical device 5.
  • the observer can observe an enlarged virtual image of the display image on the image display device 9.
  • the observer can observe the external image through the optical device 5 in a see-through manner. Since the image display device 9 is supported by the frame 11, the observer can simultaneously and stably observe the display image and the external image provided from the image display device 9 in a hands-free manner for a long time. Can perform a desired operation.
  • two image display devices 9 may be used so that images can be observed with both eyes.
  • the joining surface includes a prism convex surface and a prism concave surface
  • the combiner is a notch filter made of a dielectric multilayer film having a characteristic of selectively reflecting only at least one light of a specific wavelength
  • An image display device satisfying the following conditional expression (1); 0.01 ⁇ deg ⁇ 10 6 /fy ⁇ 0.35 (1)
  • ⁇ deg the wavelength shift amount [mm / deg.] Of the longest wavelength peak with respect to the change of the incident angle of the light beam from the center of the screen of the displayed image to the notch filter, [] Indicates the unit, deg.
  • (# 5) The wearable display according to (# 4), further including a support member that supports the image display device so that the combiner is located in front of an observer's eye.
  • Examples 1 and 2 (EX1 and EX2) mentioned here are common except for the film configuration of the dielectric multilayer film (notch filter), and are numerical examples corresponding to the above-described embodiments of the image display device.
  • the schematic cross-sectional view (FIG. 1) shows the optical arrangement, optical paths, and the like of the first and second embodiments.
  • Table 1 shows the construction data and the like of Examples 1 and 2.
  • the radius (mm), the radius of curvature (mm) in the X direction, the optical action (reflection and refraction), the refractive index and the Abbe number for a wavelength of 532 nm are shown.
  • the aperture ST corresponds to the pupil EP
  • the image plane IM corresponds to the image display surface 6a (for example, a liquid crystal screen for displaying an image).
  • the radii of curvature in the Y direction and the X direction are defined by coordinate axes in an orthogonal coordinate system (X, Y, Z) with the origin at the surface vertex of each optical surface Si and the normal at the surface vertex as the Z axis. is there.
  • Table 2 shows the arrangement data of the surface Si in Examples 1 and 2.
  • the arrangement of each surface Si is specified by the surface vertex coordinates (X, Y, Z) and the rotation angle around the X axis in the eccentricity data based on the first surface S1.
  • the surface vertex coordinates of the optical surface Si are determined by using the surface vertex as the origin of the local rectangular coordinate system (X, Y, Z), and using the local rectangular coordinates (X, Y, Z) of the global first surface S1.
  • each optical surface Si is represented by the rotation angle about the X axis about the surface vertex ( Unit: °; counterclockwise with respect to the positive direction of the X, Y, Z axes is the positive direction of the rotation angle of the X, Y, Z rotation.)
  • the global orthogonal coordinate system (X, Y, Z) of the first surface S1 is not limited to the first surface S1 but also to the local surface of the second surface S2 (aperture ST). It is an absolute coordinate system that also matches the simple rectangular coordinate system (X, Y, Z).
  • the reference direction of the rotation angle around the coordinate axis (that is, the coordinate axis direction before rotation) is the coordinate axis direction in the orthogonal coordinate system (X, Y, Z) of the first surface S1.
  • the X direction is the direction perpendicular to the paper surface (the horizontal direction of the angle of view)
  • the Y direction is the vertical direction of the paper surface (the vertical direction of the angle of view)
  • the depth direction of the paper is the + X direction
  • the upward direction is the + Y direction
  • the right direction on the paper is the + Z direction.
  • Tables 3 and 4 show the coefficients Cj of the fourth surface S4 and the sixth surface S6 in Examples 1 and 2.
  • Z (C0 ⁇ h 2) / [1 + ⁇ ⁇ 1- (1 + K) ⁇ C0 2 ⁇ h 2 ⁇ ] + ⁇ (Cj ⁇ X m ⁇ Y n) ...
  • the film configurations of the dielectric multilayer films (notch filters) of Examples 1 and 2 and the refractive indexes of the film materials TiO 2 , H4 (trade name of Merck Ltd.) and SiO 2 for each wavelength are as follows. Shown in The dielectric multilayer film of Example 1 is composed of alternating layers (TiO2 / H4) of a high refractive index layer made of TiO 2 and a low refractive index layer made of H4. The film is composed of alternating layers (TiO2 / SiO2) of a high refractive index layer made of TiO 2 and a low refractive index layer made of SiO 2 , and the layer numbers are assigned in order from the prism 1 side.
  • FIGS. 7 to 9 show the spectral reflectance characteristics of the dielectric multilayer film (notch filter) of Example 1
  • the graphs of FIGS. 10 to 12 show the spectral reflectance of the dielectric multilayer film (notch filter) of Example 2.
  • the reflectance characteristics are shown (vertical axis: reflectance [%], horizontal axis: wavelength [nm]).
  • FIG. 7 shows the reflection characteristics (incidence angle: 26 °) of the notch filter of Example 1 in terms of spectral reflectance (wavelength: 380 to 780 nm), and FIG. 8 shows the reflection characteristics (of the notch filter of Example 1). Incident angle: 26 °) is shown by spectral reflectance (wavelength: 620 to 650 nm).
  • FIG. 9 shows the reflection characteristics (incident angle: 21 °) of the notch filter of Example 1 in terms of spectral reflectance (wavelength: 620 to 650 nm).
  • FIG. 10 shows the reflection characteristics (incidence angle: 26 °) of the notch filter of Example 2 in terms of spectral reflectance (wavelength: 380 to 780 nm), and FIG. 11 shows the reflection characteristics of the notch filter (Example 2). Incident angle: 26 °) is shown by spectral reflectance (wavelength: 620 to 660 nm).
  • FIG. 12 shows the reflection characteristics (incident angle: 21 °) of the notch filter of Example 2 in terms of spectral reflectance (wavelength: 620 to 660 nm).
  • Example 1 Dielectric multilayer film of Example 1 (notch filter) Layer number Material Thickness (nm) 1 TiO2 90.97 2 H4 80.46 3 TiO2 21.48 4 H4 15.75 5 TiO2 72.96 6 H4 105.54 7 TiO2 104.55 8 H4 15.00 9 TiO2 10.00 10 H4 114.28 11 TiO2 87.41 12 H4 76.74 13 TiO2 78.87 14 H4 137.63 15 TiO2 75.08 16 H4 79.75 17 TiO2 134.95 18 H4 15.00 19 TiO2 27.98 20 H4 37.63 21 TiO2 112.69 22 H4 93.53 23 TiO2 99.87 24 H4 20.25 25 TiO2 10.01 26 H4 75.43 27 TiO2 67.70 28 H4 69.91 29 TiO2 176.53 30 H4 21.43 31 TiO2 199.39 32 H4 15.00 33 TiO2 151.36 34 H4 15.00 35
  • Dielectric multilayer film of Example 2 (notch filter) Layer number Material Thickness (nm) 1 TiO2 90.23 2 SiO2 188.96 3 TiO2 93.33 4 SiO2 192.20 5 TiO2 96.70 6 SiO2 20.00 7 TiO2 10.00 8 SiO2 76.16 9 TiO2 17.81 10 SiO2 27.83 11 TiO2 58.64 12 SiO2 65.95 13 TiO2 17.33 14 SiO2 42.45 15 TiO2 96.13 16 SiO2 167.97 17 TiO2 120.05 18 SiO2 52.09 19 TiO2 21.81 20 SiO2 29.13 21 TiO2 82.56 22 SiO2 57.22 23 TiO2 10.24 24 SiO2 72.13 25 TiO2 85.77 26 SiO2 34.51 27 TiO2 15.61 28 SiO2 93.12 29 TiO2 100.13 30 SiO2 79.69 31 TiO2 10.00 32 SiO2 91.76 33 TiO

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

This optical see-through image display device includes a combiner capable of simultaneously guiding video light from a display element and external light from external scenery into an observer's eye. The combiner is a notch filter comprising a dielectric multilayer film having properties for selectively reflecting only light of at least one specific wavelength, and the following conditional expression is satisfied: 0.01 < Δλdeg × 106 / fy < 0.35 where Δλdeg represents a wavelength shift amount [mm/deg] of the longest wavelength peak with respect to a change in the incident angle of a beam from the center of a screen presenting video to the notch filter, and given a local rectangular coordinate system represented by (x, y, z) where the screen center in the display video is the origin, the line normal to the screen in the display video is the z-axis, the line normal to the plane including a principal beam at the center of the screen that is incident onto and reflected by the combiner is the x-axis, and the line normal to the z-x plane is the y-axis, fy represents the focal length [mm] of the principal beam at the center of the screen in the y-direction and satisfies fy = tan(ΔΘ)/Δy, wherein Δy represents the difference on the screen of the display video between the principal beam at the center of the screen and a principal beam with an angle of view different from the principal beam at the center of the screen by a minute angle of ΔΘ in the y-direction.

Description

画像表示装置とウェアラブルディスプレイImage display and wearable display
 本発明は画像表示装置とウェアラブルディスプレイに関するものであり、例えば、液晶表示素子(LCD:liquid crystal display)の2次元映像をコンバイナーで観察者眼に投影表示する光学シースルー型の画像表示装置と、その画像表示装置を備えたウェアラブルディスプレイ(ヘッドマウントディスプレイ等)に関するものである。 The present invention relates to an image display device and a wearable display, for example, an optical see-through type image display device that projects and displays a two-dimensional image of a liquid crystal display device (LCD) on an observer's eye with a combiner, The present invention relates to a wearable display (such as a head-mounted display) provided with an image display device.
 映像のシースルー表示を行うためにコンバイナーを搭載した光学シースルー型の画像表示装置が従来より知られている。例えば特許文献1には、レリーフ型ホログラムの格子面にコートされたノッチフィルターをコンバイナーとして用いて、所定波長の光を反射させる画像表示装置が提案されている。また特許文献2には、コンバイナーに用いられたノッチフィルターへの入射角の変化に応じて光源波長を変更することにより、ノッチフィルターの反射波長範囲が狭い場合でも二重像の発生を防止する画像表示装置が提案されている。 (2) An optical see-through type image display device equipped with a combiner for performing see-through display of an image has been conventionally known. For example, Patent Literature 1 proposes an image display device that reflects light of a predetermined wavelength using a notch filter coated on a lattice surface of a relief hologram as a combiner. Patent Document 2 discloses an image in which a double image is prevented from occurring even when the reflection wavelength range of the notch filter is narrow by changing the light source wavelength according to the change in the incident angle to the notch filter used in the combiner. Display devices have been proposed.
特開2013-127489号公報JP 2013-127489 A 特開2012-78619号公報JP 2012-78619 A
 特許文献1,2に記載の画像表示装置では、コンバイナーがノッチフィルターで構成されているが、コンバイナー面が曲面からなる場合の画面の輝度変化については考慮されていない。ウェアラブルタイプの画像表示装置では、装着状態での作業や歩行が行われると、装置の設計上の瞳位置に対して使用者の瞳位置が垂直方向にズレてしまい、観察される画面が暗くなったり色が変わったりすることがある。これは、コンバイナー面が曲面で構成されている場合、上記瞳位置のズレが生じると、ノッチフィルターへの映像光の入射角が変化するためである。つまり、ノッチフィルターに対する入射角の変化した映像光が眼に入るため、画面に輝度変化が生じてしまうのである。 In the image display devices described in Patent Literatures 1 and 2, the combiner is formed of a notch filter, but the change in screen brightness when the combiner surface is a curved surface is not considered. In a wearable image display device, when work or walking is performed in the mounted state, the user's pupil position is vertically displaced from the designed pupil position of the device, and the observed screen becomes dark. Or the color may change. This is because, when the combiner surface is a curved surface, if the pupil position shifts, the incident angle of the image light to the notch filter changes. That is, since the image light whose incident angle with respect to the notch filter has changed enters the eyes, a luminance change occurs on the screen.
 例えば、特許文献1記載の画像表示装置では、上記瞳位置のズレにより画面が暗くなってしまうことに関して配慮されていない。特許文献2の装置では、ノッチフィルターの波長シフトによる二重像の発生を防止するため、光源温度を変化させることにより光源の出力波長を変化させているが、この方法では消費電力が大きくなってしまう。 For example, in the image display device described in Patent Literature 1, no consideration is given to the fact that the screen is darkened due to the deviation of the pupil position. In the device of Patent Document 2, the output wavelength of the light source is changed by changing the light source temperature in order to prevent the occurrence of a double image due to the wavelength shift of the notch filter. However, this method consumes a large amount of power. I will.
 本発明はこのような状況に鑑みてなされたものであって、その目的は、瞳位置が相対的にズレても画面が暗くなりにくい画像表示装置と、それを備えたウェアラブルディスプレイを提供することにある。 The present invention has been made in view of such a situation, and an object of the present invention is to provide an image display device in which a screen is hardly darkened even when a pupil position is relatively shifted, and a wearable display including the same. It is in.
 上記目的を達成するために、本発明の画像表示装置は、映像を外界風景に重ねて観察者眼に投影表示する光学シースルー型の画像表示装置であって、
 前記映像を表示する表示素子と、前記表示素子からの映像光と前記外界風景からの外界光とを同時に観察者眼に導くコンバイナーと、前記外界光に対して平行平面板として作用するように接合されると共に、その接合面で前記コンバイナーを支持する2枚のプリズムと、を有し、
 前記接合面が、プリズム凸面とプリズム凹面とからなり、
 前記コンバイナーが、少なくとも1つの特定波長の光のみを選択的に反射する特性を有する誘電体多層膜からなるノッチフィルターであり、
 以下の条件式(1)を満足することを特徴とする。
0.01<Δλdeg×106/fy<0.35 …(1)
 ただし、
Δλdeg:表示映像の画面中央からノッチフィルターへの光線の入射角度の変化に対する最も長い波長ピークの波長シフト量[mm/deg.]であり、
[ ]内は単位を表し、deg.は角度の度であり、
 表示映像における画面中心を原点とし、表示映像における画面の法線をz軸とし、コンバイナーに入射及び反射する画面中央主光線を含む平面の法線をx軸とし、zx平面の法線をy軸とするローカルな直交座標系を(x,y,z)とすると、
fy:画面中央主光線のy方向の焦点距離[mm]、
fy=tan(ΔΘ)/Δy、
Δy:表示映像の画面において、画面中央主光線と、その画面中央主光線からy方向に微小角度ΔΘ異なる画角の主光線と、の差、
である。
In order to achieve the above object, the image display device of the present invention is an optical see-through image display device that projects an image onto an observer's eye by superimposing an image on an external scene,
A display element that displays the image, a combiner that simultaneously guides image light from the display element and external light from the external scene to the observer's eye, and joins to act as a plane-parallel plate with respect to the external light. And two prisms that support the combiner at the joint surface thereof,
The joining surface includes a prism convex surface and a prism concave surface,
The combiner is a notch filter made of a dielectric multilayer film having a characteristic of selectively reflecting only at least one light of a specific wavelength,
It is characterized by satisfying the following conditional expression (1).
0.01 <Δλ deg × 10 6 /fy<0.35 (1)
However,
Δλ deg : the wavelength shift amount [mm / deg.] Of the longest wavelength peak with respect to the change of the incident angle of the light beam from the center of the screen of the displayed image to the notch filter,
[] Indicates the unit, deg. Is the degree of the angle,
The center of the screen in the display image is the origin, the normal of the screen in the display image is the z-axis, the normal of the plane containing the screen central chief ray incident and reflected on the combiner is the x-axis, and the normal of the zx plane is the y-axis. Let (x, y, z) be the local Cartesian coordinate system
fy: focal length [mm] of the central ray of the screen in the y direction,
fy = tan (ΔΘ) / Δy,
Δy: difference between a central ray of the screen and a principal ray having a small angle ΔΘ in the y direction from the central ray of the screen on the screen of the display image,
It is.
 本発明のウェアラブルディスプレイは、本発明の画像表示装置を搭載することにより、前記コンバイナーで前記映像を観察者眼にシースルーで投影表示する機能を備えたことを特徴とする。 The wearable display according to the present invention is characterized in that the image display device according to the present invention is mounted, and the combiner has a function of projecting and displaying the image to the observer's eye in a see-through manner.
 本発明によれば、軽量・コンパクトでありながら、瞳位置が相対的にズレても画面が暗くなりにくい画像表示装置と、それを備えたウェアラブルディスプレイを実現することができる。例えば、ヘッドマウントディスプレイを装着した状態で作業や歩行を行うことにより、使用者の瞳に対する画像表示装置の設計上の瞳の相対位置が垂直方向にズレてしまっても、画面中央の輝度変化が少なく安定した明るさの画面観察が可能となる。 According to the present invention, it is possible to realize an image display device which is lightweight and compact, and whose screen is hardly darkened even when the pupil position is relatively shifted, and a wearable display including the image display device. For example, by performing work or walking while wearing a head-mounted display, even if the relative position of the pupil in the design of the image display device with respect to the user's pupil shifts in the vertical direction, the luminance change in the center of the screen is not changed. It is possible to observe a screen with a small and stable brightness.
画像表示装置の一実施の形態(実施例1,2)を示す概略構成図。FIG. 1 is a schematic configuration diagram showing one embodiment (Examples 1 and 2) of an image display device. 図1の画像表示装置を備えた眼鏡型のヘッドマウントディスプレイを示す正面図。FIG. 2 is a front view showing a glasses-type head mounted display including the image display device of FIG. 1. 図3のV-V’線断面図。FIG. 5 is a sectional view taken along line V-V ′ of FIG. 3. 図1の画像表示装置におけるfy=tan(ΔΘ)/Δyを示す光路図。FIG. 2 is an optical path diagram showing fy = tan (ΔΘ) / Δy in the image display device in FIG. 1. 図1の画像表示装置におけるノッチフィルターのΔλdegを示す光路図。FIG. 2 is an optical path diagram showing Δλ deg of a notch filter in the image display device of FIG. 図1の画像表示装置における光源の出力波長領域とノッチフィルターの反射波長領域と関係を示すスペクトルの概念図。FIG. 2 is a conceptual diagram of a spectrum showing a relationship between an output wavelength region of a light source and a reflection wavelength region of a notch filter in the image display device of FIG. 1. 実施例1のノッチフィルターの反射特性(入射角度:26°)を分光反射率(波長:380~780nm)で示すグラフ。4 is a graph showing the reflection characteristics (incident angle: 26 °) of the notch filter of Example 1 in terms of spectral reflectance (wavelength: 380 to 780 nm). 実施例1のノッチフィルターの反射特性(入射角度:26°)を分光反射率(波長:620~650nm)で示すグラフ。5 is a graph showing the reflection characteristics (incident angle: 26 °) of the notch filter of Example 1 in terms of spectral reflectance (wavelength: 620 to 650 nm). 実施例1のノッチフィルターの反射特性(入射角度:21°)を分光反射率(波長:620~650nm)で示すグラフ。5 is a graph showing the reflection characteristics (incident angle: 21 °) of the notch filter of Example 1 in terms of spectral reflectance (wavelength: 620 to 650 nm). 実施例2のノッチフィルターの反射特性(入射角度:26°)を分光反射率(波長:380~780nm)で示すグラフ。9 is a graph showing the reflection characteristics (incident angle: 26 °) of the notch filter of Example 2 in terms of spectral reflectance (wavelength: 380 to 780 nm). 実施例2のノッチフィルターの反射特性(入射角度:26°)を分光反射率(波長:620~660nm)で示すグラフ。9 is a graph showing the reflection characteristics (incident angle: 26 °) of the notch filter of Example 2 in terms of spectral reflectance (wavelength: 620 to 660 nm). 実施例2のノッチフィルターの反射特性(入射角度:21°)を分光反射率(波長:620~660nm)で示すグラフ。11 is a graph showing the reflection characteristics (incident angle: 21 °) of the notch filter of Example 2 in terms of spectral reflectance (wavelength: 620 to 660 nm).
 以下、本発明の実施の形態に係る画像表示装置,ウェアラブルディスプレイ等を、図面を参照しつつ説明する。なお、実施の形態,実施例等の相互で同一の部分や相当する部分には同一の符号を付して重複説明を適宜省略する。 Hereinafter, an image display device, a wearable display, and the like according to an embodiment of the present invention will be described with reference to the drawings. The same reference numerals are given to the same or corresponding parts in the embodiments, examples, and the like, and the description thereof will not be repeated.
 図1に、本発明の一実施の形態に係る画像表示装置9の概略構成を縦断面で示す。また、図2に画像表示装置9を備えた眼鏡型のヘッドマウントディスプレイ10の外観構成を示し、図3にそのV-V’線断面の概略構造を示す。図1に示す画像表示装置9は、図3に示す映像光La及び外界光Lbの各光路から分かるように、表示素子6(図1)の映像を外界風景に重ねて観察者眼EYに投影表示する光学シースルー型の画像表示装置であって、光学デバイス5,表示素子6,偏光ビームスプリッター7等を有している。なお、図1では瞳EPから表示映像IMに至る光路の順に面番号i(i=1,2,...,11)を付してあるので、第i面Siのうち、第1面S1が基準面であり、それと同一位置の第2面S2が絞りに相当する瞳EPであり、第10面S10が最終面であり、それと同一位置の第11面S11が像面に相当する画像表示面6a(例えば、映像IMを表示する液晶画面)である。 FIG. 1 shows a schematic cross section of an image display device 9 according to an embodiment of the present invention. FIG. 2 shows an external configuration of a glasses-type head mounted display 10 provided with an image display device 9, and FIG. 3 shows a schematic structure of a cross section taken along line V-V '. The image display device 9 shown in FIG. 1 projects the image of the display element 6 (FIG. 1) on the external scenery to the observer's eye EY, as can be seen from the optical paths of the image light La and the external light Lb shown in FIG. This is an optical see-through type image display device for displaying, and has an optical device 5, a display element 6, a polarizing beam splitter 7, and the like. In FIG. 1, the surface numbers i (i = 1, 2,..., 11) are assigned in the order of the optical paths from the pupil EP to the display image IM, so the first surface S1 of the i-th surface Si Is a reference surface, the second surface S2 at the same position as the reference surface is the pupil EP corresponding to the stop, the tenth surface S10 is the final surface, and the eleventh surface S11 at the same position as the image display is the image surface. This is a surface 6a (for example, a liquid crystal screen displaying an image IM).
 表示素子6は、可視光からなる映像光Laの発光により映像IMを表示する光学装置であり、その具体例としては、例えば、LCOS(liquid crystal on silicon)に代表される反射型のLCD,透過型のLCD,デジタル・マイクロミラー・デバイス(digital micromirror device),有機発光ダイオード(organic light-emitting diode:OLED)に代表される有機EL(organic electro-luminescence)ディスプレイ,マイクロLED(light emitting diode)パネル等、あるいはそれらを含むものが挙げられる。なお、第9面S9は表示素子6のカバーガラス面である。 The display element 6 is an optical device that displays an image IM by emitting image light La composed of visible light, and specific examples thereof include, for example, a reflective LCD represented by LCOS (liquid crystal on silicon), and a transmissive LCD. -Type LCD, digital micromirror device, organic electro-luminescence (EL) display represented by organic light-emitting diode (OLED), micro LED (light-emitting diode) panel Etc. or those containing them. The ninth surface S9 is a cover glass surface of the display element 6.
 さらに、表示素子6を照明するための照明装置を配置してもよい。照明装置としては、LED等の光源,集光用光学素子(レンズ,ミラー等)で構成された照明光学系等を備えたものが挙げられる。照明用の光源としては、LED光源,レーザー光源,有機EL光源等が挙げられ、例えば、3つの波長帯域(発光ピーク波長が例えば450nm,532nm,640nmである。)の光を発する三原色RGBに対応したLED光源が挙げられる。 照明 Furthermore, an illumination device for illuminating the display element 6 may be provided. Examples of the illuminating device include an illuminating device including an illuminating optical system including a light source such as an LED and a condensing optical element (a lens, a mirror, and the like). Examples of the light source for illumination include an LED light source, a laser light source, and an organic EL light source, and correspond to, for example, three primary colors RGB that emit light in three wavelength bands (emission peak wavelengths are, for example, 450 nm, 532 nm, and 640 nm). LED light source.
 光源からの照明光を照明光学系でコリメートすることにより、光源が発した照明光を効率良く観察者眼EYに届けることができる。その照明光を空間変調するだけでなく光の折り返しによる小型化のために、表示素子6として反射型の液晶表示素子を用いることが好ましい。画像表示装置9では、小さな空間において、反射型の液晶表示素子に入射させる偏光を規定し、さらに変調された光を選択的に透過させるために、平面型の偏光ビームスプリッター7を用いている。反射による偏光の生成と透過による偏光の選択との2つの偏光分離機能を利用することにより、光学構成の小型化を達成することができる。なお、第7面S7は偏光ビームスプリッター7の下面であり、第8面S8は偏光ビームスプリッター7の上面である。 (4) By collimating the illumination light from the light source with the illumination optical system, the illumination light emitted from the light source can be efficiently delivered to the observer's eye EY. It is preferable to use a reflection-type liquid crystal display element as the display element 6 in order to not only spatially modulate the illumination light but also reduce the size by folding back the light. The image display device 9 uses a plane-type polarization beam splitter 7 in a small space to define the polarization to be incident on the reflection type liquid crystal display element and to selectively transmit the modulated light. By utilizing two polarization separation functions of generating polarized light by reflection and selecting polarized light by transmission, it is possible to reduce the size of the optical configuration. The seventh surface S7 is the lower surface of the polarization beam splitter 7, and the eighth surface S8 is the upper surface of the polarization beam splitter 7.
 光学デバイス5は、表示素子6からの映像光Laと外界風景からの外界光Lbとを同時に観察者眼EYに導くコンバイナー3と、外界光Lbに対して平行平面板として作用するように接合されると共に、その接合面でコンバイナー3を支持するプリズム1,2と、を有している。プリズム1のプリズム凸面1aとプリズム2のプリズム凹面2aとの接合により、プリズム1とプリズム2との接合面が形成されており、コンバイナー3はプリズム凸面1aとプリズム凹面2aとで挟まれるように位置している。 The optical device 5 is joined to the combiner 3 for simultaneously guiding the image light La from the display element 6 and the external light Lb from the external scene to the observer's eye EY so as to act as a plane parallel plate to the external light Lb. And the prisms 1 and 2 that support the combiner 3 at the joint surface. The joining surface between the prism 1 and the prism 2 is formed by joining the prism convex surface 1a of the prism 1 and the prism concave surface 2a of the prism 2, and the combiner 3 is positioned so as to be sandwiched between the prism convex surface 1a and the prism concave surface 2a. are doing.
 2枚の透明なプリズム1,2は、例えば、アクリル系樹脂,ポリカーボネート(PC),シクロオレフィン樹脂等の樹脂材料で構成された透明な光学部材である。プリズム1では、入射から射出までの間に2回の反射が行われる。プリズム1で2回反射の導光光学系を構成することにより、大型部品である反射型の液晶表示素子を観察者眼の反対側に配置することができる。その結果、液晶表示素子と観察者の額部や眼鏡との干渉を回避することができる。なお、第3面S3及び第5面S5は眼EY側のプリズム面であり、第6面S6は映像光Laが入射する側のプリズム面である。 The two transparent prisms 1 and 2 are transparent optical members made of a resin material such as acrylic resin, polycarbonate (PC), and cycloolefin resin. In the prism 1, two reflections are performed between the incident and the exit. By configuring the light guide optical system that reflects twice with the prism 1, a large-sized reflective liquid crystal display element can be arranged on the opposite side of the observer's eye. As a result, it is possible to avoid interference between the liquid crystal display element and the observer's forehead and glasses. Note that the third surface S3 and the fifth surface S5 are prism surfaces on the eye EY side, and the sixth surface S6 is a prism surface on the side where the image light La is incident.
 コンバイナー3は、少なくとも1つの特定波長の光のみを選択的に反射する特性(狭帯域反射特性)を有する誘電体多層膜からなるノッチフィルター(阻止帯域が狭いバンドストップフィルター)である。この誘電体多層膜は、高屈折率層(例えばTiO2)と低屈折率層(例えばSiO2)との交互層からなり、その総膜層数は40層以上である。また、誘電体多層膜の形成方法には、電子線ビーム蒸着,抵抗加熱蒸着,イオンプレーティング,スパッタリング等が含まれる。なお、第4面S4はノッチ面(多項式面)である。 The combiner 3 is a notch filter (a band stop filter having a narrow stop band) made of a dielectric multilayer film having a characteristic of selectively reflecting only at least one specific wavelength of light (narrow band reflection characteristic). This dielectric multilayer film is composed of alternating layers of a high-refractive-index layer (for example, TiO 2 ) and a low-refractive-index layer (for example, SiO 2 ), and the total number of film layers is 40 or more. The method of forming the dielectric multilayer film includes electron beam evaporation, resistance heating evaporation, ion plating, sputtering, and the like. The fourth surface S4 is a notch surface (polynomial surface).
 誘電体多層膜では、ホログラム光学素子と比較した場合、屈折率差を大きくとることができるので、入射角度による波長変動(すなわち角度依存性)を小さくすることができ、しかも薄く構成できるので、接合の稜線が細くなって高いシースルー性が得られる。また、誘電体多層膜はホログラム光学素子よりも波長幅が大きいので、反射率(表示効率)は高くなる。波長幅が小さいとシースルー性は高くなるが、波長幅が小さすぎると表示効率が低下する。逆に表示効率を向上させようとすると、ハーフミラーと同様、シースルー性(見え方や見られ方)が低下してしまう。 Compared with the hologram optical element, the dielectric multilayer film can make the refractive index difference larger, so that the wavelength variation (that is, angle dependency) due to the incident angle can be reduced, and the dielectric multilayer film can be made thinner. Ridge line becomes thin, and high see-through property is obtained. Further, since the dielectric multilayer film has a larger wavelength width than the hologram optical element, the reflectance (display efficiency) is increased. When the wavelength width is small, the see-through property increases, but when the wavelength width is too small, the display efficiency is reduced. Conversely, if the display efficiency is to be improved, the see-through property (how to see or see) is reduced as in the case of the half mirror.
 光学デバイス5は、非軸対称(非回転対称)な正の光学的パワーをコンバイナー3に有しており、それによって表示素子6からの映像光Laを観察者眼EYに導くための観察光学系として機能する。その結果、コンバイナー3を介して表示素子6の映像が外界像に重なるように、その表示映像が拡大虚像として観察者眼EYにシースルーで投影表示される。コンバイナー3の光学的パワーは、プリズム1のプリズム凸面1aに誘電体多層膜を蒸着させたり、プリズム2のプリズム凹面2aに誘電体多層膜を蒸着させたりすることにより実現可能である。コンバイナー3の光学的パワーを曲面で構成することにより、レンズ等の光学素子を別途配置する必要がなくなるので、画像表示装置9の小型化が可能になる。なお、接合面を構成するプリズム凸面1aとプリズム凹面2aの具体例としては、例えば円錐面等の曲面が挙げられる。 The optical device 5 has a non-axially symmetric (non-rotationally symmetric) positive optical power in the combiner 3, and thereby an observation optical system for guiding the image light La from the display element 6 to the observer's eye EY. Function as As a result, the display image is projected and displayed on the observer's eye EY as an enlarged virtual image so that the image of the display element 6 overlaps the external image via the combiner 3. The optical power of the combiner 3 can be realized by depositing a dielectric multilayer film on the prism convex surface 1a of the prism 1 or depositing a dielectric multilayer film on the prism concave surface 2a of the prism 2. By configuring the optical power of the combiner 3 with a curved surface, it is not necessary to separately arrange an optical element such as a lens, so that the size of the image display device 9 can be reduced. In addition, as a specific example of the prism convex surface 1a and the prism concave surface 2a which form the joining surface, a curved surface such as a conical surface is exemplified.
 2枚のプリズム1,2は、いずれか一方に蒸着された誘電体多層膜からなるコンバイナー3を、プリズム凸面1aとプリズム凹面2aとで挟むようにして接着剤4で接合されて、前記平行平面板を形成している。したがって、プリズム凸面1aとプリズム凹面2aとは同一形状又は略同一形状を有することが好ましく、接着剤4の層の厚さが均一になる形状を有することが好ましい。プリズム1は、表示素子6から入射してくる映像光Laを全反射により内部で導光する一方、外界像の光(外界光Lb)を透過させるように作用する。その際、プリズム1,2の接合面上にコンバイナー3が設けられているため、接合面を介した外界像のシースルー性(コンバイナー機能)が確保される。 The two prisms 1 and 2 are joined with an adhesive 4 such that a combiner 3 made of a dielectric multilayer film deposited on one of the prisms 1 and 2 is sandwiched between a prism convex surface 1a and a prism concave surface 2a. Has formed. Therefore, the prism convex surface 1a and the prism concave surface 2a preferably have the same shape or substantially the same shape, and preferably have a shape in which the thickness of the layer of the adhesive 4 is uniform. The prism 1 acts to guide the image light La coming from the display element 6 internally by total internal reflection while transmitting light of an external image (external light Lb). At this time, since the combiner 3 is provided on the joint surface between the prisms 1 and 2, the see-through property (combiner function) of the external image via the joint surface is ensured.
 外界光Lbに対して平行平面板として作用するように、プリズム2がプリズム1に接合されているため、外界光Lbがプリズム1の下端部(略楔状に傾斜した曲面を形成している部分)を透過するときの屈折がプリズム2でキャンセルされて、観察される外界像に歪みが生じるのを防止することができる(シースルー性の向上)。また、コンバイナー3を構成している誘電体多層膜は、プリズム凸面1aとプリズム凹面2aとで挟まれることによって、直接空気に触れない状態にあるため、急激に湿度が変動しても、その影響はプリズム1,2で大幅に緩和される。その結果、湿度変動による膜割れが低減又は防止される。 Since the prism 2 is joined to the prism 1 so as to act as a plane-parallel plate with respect to the external light Lb, the external light Lb is formed at the lower end portion of the prism 1 (a portion forming a curved surface inclined substantially in a wedge shape). Can be prevented from being canceled out by the prism 2 when refracting light through the prism 2 and the observed external image is distorted (improvement in see-through performance). Further, since the dielectric multilayer film forming the combiner 3 is not in direct contact with air by being sandwiched between the prism convex surface 1a and the prism concave surface 2a, even if the humidity fluctuates rapidly, the influence is not affected. Is greatly reduced by the prisms 1 and 2. As a result, film cracking due to humidity fluctuation is reduced or prevented.
 コンバイナー3を構成している誘電体多層膜は、カラー化のために3原色RGBの3波長に反射帯域を有するノッチフィルターである。したがって、コンバイナー3に入射した映像光Laの一部として、RGBの反射帯域の映像光Laが反射される。コンバイナー3で反射した映像光Laは、コンバイナー3を透過した外界光Lbと共に、観察者眼EYに入射することになるので、観察者は表示映像と共に外界像(高透過率)も良好に観察することができる。また、透明基材であるプリズム1は、表示素子6からの映像光Laを内部で全反射させてコンバイナー3に導光する構成になっているため、表示素子6から発光した映像光Laを無駄なく利用して、観察者に明るい映像を提供することができる。 The dielectric multilayer film forming the combiner 3 is a notch filter having reflection bands at three wavelengths of three primary colors RGB for colorization. Therefore, the image light La in the RGB reflection band is reflected as a part of the image light La incident on the combiner 3. The image light La reflected by the combiner 3 enters the observer's eye EY together with the external light Lb transmitted through the combiner 3, so that the observer observes the displayed image as well as the external image (high transmittance). be able to. Further, since the prism 1 as a transparent base is configured to totally reflect the image light La from the display element 6 and guide the image light La to the combiner 3, the image light La emitted from the display element 6 is wasted. Without using it, a bright image can be provided to the observer.
 ノッチフィルターは、単一波長の光のみを所定の反射率で反射させ、残りの光は透過させる光学フィルターであるため、ハーフミラーと比較すると、LED等の光源との相性、波長幅、波長変動等に関して効率が良い。したがって、誘電体多層膜は、前述したように、3原色RGBに対応した3波長に反射帯域を有するノッチフィルターであることが好ましい。また、誘電体多層膜の設計上、3原色RGBに対応した3波長に反射帯域を有するノッチフィルターを設計するには、ある程度の層数が必要である。層数が少ないと、透過部分の透過率が下がったり(シースルー性)、反射部分の帯域が狭くなったり(シースルー性)、反射部分の反射率(明るさ)が低くなったりする、という不具合が生じやすいので、誘電体多層膜は、高屈折率層と低屈折率層との交互層からなり、総膜層数が40層以上であることが好ましい。 The notch filter is an optical filter that reflects only a single wavelength of light at a predetermined reflectance and transmits the rest of the light. Therefore, compared with a half mirror, the notch filter has compatibility with light sources such as LEDs, wavelength width, and wavelength variation. Efficiency is high with respect to the above. Therefore, as described above, the dielectric multilayer film is preferably a notch filter having reflection bands at three wavelengths corresponding to the three primary colors RGB. Also, in designing a dielectric multilayer film, a certain number of layers is required to design a notch filter having reflection bands at three wavelengths corresponding to the three primary colors RGB. If the number of layers is small, the transmittance of the transmission part decreases (see-through property), the band of the reflection part narrows (see-through property), and the reflectance (brightness) of the reflection part decreases. The dielectric multilayer film is preferably composed of alternating layers of a high refractive index layer and a low refractive index layer, and the total number of film layers is preferably 40 or more.
 上述したように、プリズム凸面1a又はプリズム凹面2a上に誘電体多層膜を形成することにより、正パワーの凹面反射面を構成するコンバイナー3を得ることができる。これと同一形状のコンバイナーをハーフミラーで構成しようとすると、視感度透過率が低くなって、良好なシースルー性を得ることが困難になる。したがって、ハーフミラーと比較した場合、誘電体多層膜を用いると、外界光Lbの高視感度透過率と映像光La(表示映像)の明るさとをバランス良く両立させることが可能になる。 As described above, by forming a dielectric multilayer film on the prism convex surface 1a or the prism concave surface 2a, it is possible to obtain the combiner 3 constituting the concave surface of positive power. If a combiner having the same shape is formed by a half mirror, the luminous transmittance decreases, and it becomes difficult to obtain a good see-through property. Therefore, when a dielectric multilayer film is used as compared with a half mirror, it is possible to achieve a good balance between the high luminous transmittance of the external light Lb and the brightness of the image light La (display image).
 従来のウェアラブルディスプレイでは、装着状態で作業や歩行が行われると、装置の設計上の瞳位置に対して使用者の瞳位置が垂直方向にズレてしまい、観察される画面が暗くなったり色が変わったりすることがある。コンバイナー面が曲面で構成されている場合、上記瞳位置のズレが生じると、ノッチフィルターへの映像光の入射角が変化するためである。つまり、ノッチフィルターに対する入射角の変化した映像光が観察者眼に入るため、画面に輝度変化が生じることになる。この問題を解決するため、画像表示装置9は以下の条件式(1)を満たした構成を有している。
0.01<Δλdeg×106/fy<0.35 …(1)
 ただし、
Δλdeg:表示映像の画面中央からノッチフィルターへの光線の入射角度の変化に対する最も長い波長ピークの波長シフト量[mm/deg.]であり、
[ ]内は単位を表し、deg.は角度の度であり、
 表示映像における画面中心を原点とし、表示映像における画面の法線をz軸とし、コンバイナーに入射及び反射する画面中央主光線を含む平面の法線をx軸とし、zx平面の法線をy軸とするローカルな直交座標系を(x,y,z)とすると、
fy:画面中央主光線のy方向の焦点距離[mm]、
fy=tan(ΔΘ)/Δy、
Δy:表示映像の画面において、画面中央主光線と、その画面中央主光線からy方向に微小角度ΔΘ異なる画角の主光線と、の差、
である。
In a conventional wearable display, when work or walking is performed in the mounted state, the pupil position of the user is vertically displaced from the pupil position in the device design, and the screen to be observed becomes dark or has a color. May change. This is because, when the combiner surface is formed of a curved surface, if the pupil position shifts, the incident angle of the image light to the notch filter changes. That is, the image light whose incident angle with respect to the notch filter has changed enters the observer's eyes, so that the luminance changes on the screen. In order to solve this problem, the image display device 9 has a configuration satisfying the following conditional expression (1).
0.01 <Δλ deg × 10 6 /fy<0.35 (1)
However,
Δλ deg : the wavelength shift amount [mm / deg.] Of the longest wavelength peak with respect to the change of the incident angle of the light beam from the center of the screen of the displayed image to the notch filter,
[] Indicates the unit, deg. Is the degree of the angle,
The center of the screen in the displayed image is the origin, the normal of the screen in the displayed image is the z-axis, the normal of the plane including the central ray of the screen incident and reflected on the combiner is the x-axis, and the normal of the zx plane is the y-axis. Let (x, y, z) be the local Cartesian coordinate system
fy: focal length [mm] of the central ray of the screen in the y direction,
fy = tan (ΔΘ) / Δy,
Δy: difference between a central ray of the screen and a principal ray having a small angle ΔΘ in the y direction from the central ray of the screen on the screen of the display image,
It is.
 図4は、fy=tan(ΔΘ)/Δyの概念図である。表示映像IMの画面において、画面中央主光線Lc(実線)と、その画面中央主光線Lcからy方向に微小角度ΔΘ(例えば、ΔΘ=0.01°)異なる画角の主光線Ld(破線)と、の差Δyから、観察光学系の焦点距離fyは画面中央主光線Lcにおける局所的な焦点距離とみなすことができる。なお、主光線Ldは瞳EPから像面(表示映像)IMに至る観察光学系の光路として描いてある。 FIG. 4 is a conceptual diagram of fy = tan (ΔΘ) / Δy. On the screen of the display image IM, a central ray Lc (solid line) at the center of the screen, and a principal ray Ld (dashed line) having a field angle different from the central ray Lc by a small angle ΔΘ (for example, ΔΘ = 0.01 °) in the y direction. From the difference Δy, the focal length fy of the observation optical system can be regarded as a local focal length in the central ray Lc at the center of the screen. The principal ray Ld is drawn as an optical path of the observation optical system from the pupil EP to the image plane (display image) IM.
 図5は、ノッチフィルターへの入射角度の変化に対する波長シフト量Δλdegの概念図である(NL:コンバイナー3の面法線)。波長シフト量Δλdegは、光線L1(実線)と光線L2(破線)との入射角の差に対してピーク波長がいくらずれるか、つまり、ノッチフィルターへの映像光Laの入射角が1°変化したときの波長のズレ量[mm/deg.]を示している。 FIG. 5 is a conceptual diagram of the wavelength shift amount Δλ deg with respect to the change of the incident angle to the notch filter (NL: surface normal of the combiner 3). The wavelength shift amount Δλ deg depends on the difference between the incident angle of the light beam L1 (solid line) and the light beam L2 (dashed line), ie, the peak wavelength does not change, that is, the incident angle of the image light La to the notch filter changes by 1 °. The figure shows the wavelength shift amount [mm / deg.] At this time.
 図6は、光源とノッチフィルターのスペクトルの関係を、光源波長領域A0と反射波長領域B0,B1との関係で示す概念図である。図6において、横軸は波長、縦軸は強度(光源輝度又は規格化反射率)である。ヘッドマウントディスプレイ10が装着するべき位置からずれると、光源波長領域A0は変わらないが、映像光Laのノッチフィルターへの入射角が変化することによって、ノッチフィルターの反射波長領域B0(破線)が反射波長領域B1(実線)へとシフトする。例えば、ヘッドマウントディスプレイ10が垂直方向の上側にズレたとき、ピーク波長が長波長側へシフトして画面が暗くなり、逆に、ヘッドマウントディスプレイ10が垂直方向の下側にズレたとき、ピーク波長が短波長側へシフトして画面が暗くなる。 FIG. 6 is a conceptual diagram showing the relationship between the spectrum of the light source and the spectrum of the notch filter by the relationship between the light source wavelength region A0 and the reflection wavelength regions B0 and B1. In FIG. 6, the horizontal axis represents wavelength, and the vertical axis represents intensity (light source luminance or normalized reflectance). When the head mount display 10 is displaced from the position to be mounted, the light source wavelength region A0 does not change, but the reflection wavelength region B0 (broken line) of the notch filter is reflected by the change in the incident angle of the image light La to the notch filter. The wavelength shifts to the wavelength region B1 (solid line). For example, when the head-mounted display 10 shifts upward in the vertical direction, the peak wavelength shifts to the longer wavelength side and the screen becomes darker. Conversely, when the head-mount display 10 shifts downward in the vertical direction, the peak shifts. The wavelength shifts to the shorter wavelength side and the screen becomes darker.
 条件式(1)の下限を規定している閾値:0.01は、Δλdeg×106=0.5[nm/deg.]、fy=50[mm]として計算している。fy=50[mm]という閾値においては、アイポイントが約50[mm]となる。眼鏡では一般的に角膜頂点間距離(眼鏡から眼までの距離)が12[mm]であり、それを考慮するとヘッドマウントディスプレイ10のアイポイントは20~30[mm]程度であることが好ましい。アイポイント50[mm]ではヘッドマウントディスプレイ10の装着位置が観察者眼EYから遠くなって大型化するため、条件式(1)の下限を上回るように設定することが好ましい。 The threshold value: 0.01 that defines the lower limit of conditional expression (1) is calculated as Δλ deg × 10 6 = 0.5 [nm / deg.] And fy = 50 [mm]. At a threshold value of fy = 50 [mm], the eye point is about 50 [mm]. In glasses, the distance between the corneal vertices (the distance from the glasses to the eyes) is generally 12 [mm]. Considering this, the eye point of the head mounted display 10 is preferably about 20 to 30 [mm]. At the eye point of 50 [mm], the mounting position of the head mounted display 10 is far from the observer's eye EY and becomes large. Therefore, it is preferable to set the value so as to exceed the lower limit of the conditional expression (1).
 光学デバイス5のようにコンバイナー3にパワーがある観察光学系の場合、アイポイントに比例してプリズム1,2の厚みが増加していく。アイポイントが50[mm]となれば、ヘッドマウントディスプレイ10の一般的なアイポイントが20~30[mm]程度であることから考えると、プリズム1,2の厚みが略倍となり、頭部に装着する端末としては好ましくない。また、厳密ではないが(液晶の大きさ)=fy×tan(画角)という関係式からfyを大きくすることで画角がタンジェントの関数として小さくなる。これはシースルー画像として情報を提示するには好ましくない。 In the case of an observation optical system having power in the combiner 3 such as the optical device 5, the thicknesses of the prisms 1 and 2 increase in proportion to the eye point. If the eye point is 50 [mm], considering that the general eye point of the head mounted display 10 is about 20 to 30 [mm], the thickness of the prisms 1 and 2 becomes approximately double, and It is not preferable as a terminal to be attached. Although not strict, the angle of view is reduced as a function of tangent by increasing fy from the relational expression (size of liquid crystal) = fy × tan (angle of view). This is not preferable for presenting information as a see-through image.
 条件式(1)の上限を規定している閾値:0.35は、Δλdeg×106=6.0[nm/deg.]、fy=17[mm]として計算している。これは、ヘッドマウントディスプレイ10が装着するべき(設計された)位置からずれたとき、画面中央主光線Lcが暗くならないようにするための条件である。したがって、この条件を満たすことにより、ヘッドマウントディスプレイ10の垂直方向のズレに対して画面中央の輝度変化が少ない映像表示が可能となる。 The threshold value: 0.35 that defines the upper limit of conditional expression (1) is calculated as Δλ deg × 10 6 = 6.0 [nm / deg.] And fy = 17 [mm]. This is a condition for preventing the screen center principal ray Lc from becoming dark when the head-mounted display 10 deviates from a position (designed) where the head-mounted display 10 is to be mounted. Therefore, by satisfying this condition, it is possible to display an image with a small change in luminance at the center of the screen with respect to the vertical displacement of the head mounted display 10.
 画像表示装置9は、以下の条件式(1a)を満たすことが好ましい。
0.013<Δλdeg×106/fy<0.21 …(1a)
 この条件式(1a)は、前記条件式(1)が規定している条件範囲のなかでも、前記観点等に基づいた更に好ましい条件範囲を規定している。したがって、好ましくは条件式(1a)を満たすことにより、上記効果をより一層大きくすることができる。
It is preferable that the image display device 9 satisfies the following conditional expression (1a).
0.013 <Δλ deg × 10 6 /fy<0.21 (1a)
The conditional expression (1a) defines a more preferable condition range based on the viewpoints and the like, among the conditional ranges defined by the conditional expression (1). Therefore, preferably, by satisfying conditional expression (1a), the above effect can be further enhanced.
 条件式(1a)の下限を規定している閾値:0.013は、Δλdeg×106=0.5[nm/deg.]、fy=40[mm]として計算しており、条件式(1a)の上限を規定している閾値:0.21は、Δλdeg×106=4.0[nm/deg.]、fy=19[mm]として計算している。条件式(1a)を満たすことにより、ヘッドマウントディスプレイ10が装着するべき(設計された)位置からずれたとき、条件式(1)に比べてより画面中央主光線Lcが暗くならないようにすることができる。 The threshold value defining the lower limit of conditional expression (1a): 0.013 is calculated as Δλ deg × 10 6 = 0.5 [nm / deg.], Fy = 40 [mm], and the upper limit of conditional expression (1a) Is calculated as Δλ deg × 10 6 = 4.0 [nm / deg.] And fy = 19 [mm]. By satisfying conditional expression (1a), when the head-mounted display 10 deviates from the position where it is to be mounted (designed), the central ray of light Lc is prevented from becoming darker than in conditional expression (1). Can be.
 画像表示装置9では、表示映像IMの中間像が形成されないことが好ましい。条件式(1)では焦点距離とアイポイントとが略一致することを前提としているので、光学デバイス5のように表示映像IMが再結像しない構成は、画像表示装置9の小型化、画面輝度の安定化等に有効である。 It is preferable that the image display device 9 does not form an intermediate image of the display video IM. Since conditional expression (1) presupposes that the focal length and the eye point substantially match, the configuration in which the display image IM is not re-imaged like the optical device 5 is reduced in size of the image display device 9 and the screen brightness. It is effective for stabilization of etc.
 以上説明した画像表示装置9によれば、軽量・コンパクト化を達成しながら、瞳位置が相対的にズレても画面が暗くなりにくい画像表示を行うことが可能である。例えば、ヘッドマウントディスプレイ10を装着した状態で作業や歩行を行うことにより、使用者の観察者眼EYの瞳に対する画像表示装置9の設計上の瞳EPの相対位置が垂直方向にズレてしまっても、画面中央の輝度変化が少なく安定した明るさの画面観察が可能となる。 According to the image display device 9 described above, it is possible to perform image display in which the screen is hardly darkened even when the pupil position is relatively shifted, while achieving weight reduction and compactness. For example, by performing work or walking with the head mounted display 10 mounted, the relative position of the designed pupil EP of the image display device 9 with respect to the pupil of the observer eye EY of the user is shifted in the vertical direction. Also, it is possible to observe a screen with stable brightness with little change in luminance at the center of the screen.
 前述したように、コンバイナー3は表示素子6に表示される映像と外界像とを同時に観察者眼EYに導くので、観察者はコンバイナー3を介して表示素子6から提供される映像と外界像とを同時に観察することができる。したがって、上述した画像表示装置9を搭載することにより、光学デバイス5で映像を観察者眼EYにシースルーで投影表示する機能を備えたウェアラブルディスプレイ(ヘッドマウントディスプレイ10等)を構成することができる。 As described above, since the combiner 3 simultaneously guides the image displayed on the display element 6 and the external image to the observer's eye EY, the observer can view the image provided from the display element 6 via the combiner 3 and the external image. Can be observed simultaneously. Therefore, by mounting the above-described image display device 9, a wearable display (such as the head-mounted display 10) having a function of projecting and displaying an image on the observer's eye EY by the optical device 5 in a see-through manner can be configured.
 上記のように、ウェアラブルディスプレイにおいて画像表示装置9を搭載することにより、コンバイナー3で映像を観察者眼EYにシースルーで投影表示する機能を備えることが望ましい。また、そのウェアラブルディスプレイは、コンバイナー3が観察者眼EYの前方に位置するように画像表示装置9を支持する(つまり、観察者の眼前で支持する)支持部材を備えたヘッドマウントディスプレイであることが望ましい。画像表示装置9はシースルー性が高いため、観察者の眼前で映像を表示する配置にすれば、高い映像表示効果を得ることができる。 As described above, it is preferable that the image display device 9 is mounted on the wearable display to provide the combiner 3 with a function of projecting and displaying an image on the observer's eye EY in a see-through manner. Further, the wearable display is a head-mounted display including a support member that supports the image display device 9 so that the combiner 3 is positioned in front of the observer's eye EY (that is, supports the image display device 9 in front of the observer's eyes). Is desirable. Since the image display device 9 has a high see-through property, a high image display effect can be obtained by disposing the image display device 9 in front of the observer's eyes.
 ウェアラブルディスプレイとしては、ヘッドマウントディスプレイ(HMD),ヘッドアップディスプレイ(HUD)等が挙げられる。また、ヘッドマウントディスプレイの形態としては眼鏡型,ヘルメット型等が挙げられ、ヘッドアップディスプレイの用途としては自動車の運転用,飛行機の操縦用等が挙げられる。樹脂製のプリズム1,2はガラスプリズムに比べて軽量であることから、ヘッドマウントディスプレイ10のようなウェアラブルディスプレイ用として好適である。 As the wearable display, a head-mounted display (HMD), a head-up display (HUD) and the like can be mentioned. Examples of the form of the head-mounted display include an eyeglass type and a helmet type, and examples of the use of the head-up display include driving of an automobile, control of an airplane, and the like. Since the prisms 1 and 2 made of resin are lighter in weight than glass prisms, they are suitable for wearable displays such as the head mounted display 10.
 ヘッドマウントディスプレイ10(図2,図3)は、上述した画像表示装置9と、フレーム(支持部材)11と、レンズ12a,12bと、筐体13と、を備えた頭部装着型のウェアラブルディスプレイの一例である。レンズ12a,12bと筐体13は、フレーム11で支持されている。画像表示装置9の表示素子6や照明装置(不図示)等は、筐体13内に収容されており、観察光学系である光学デバイス5の上端部も筐体13内に位置している。したがって、筐体13がフレーム11で支持されることにより、光学デバイス5の本体部分は右眼用のレンズ12aの前方(外界側)に位置することになる(図3)。なお、レンズ12a,12bは眼鏡用レンズでもよく、平行平面板からなるダミーレンズでもよい。 A head-mounted display 10 (FIGS. 2 and 3) is a head-mounted wearable display including the above-described image display device 9, a frame (supporting member) 11, lenses 12a and 12b, and a housing 13. This is an example. The lenses 12 a and 12 b and the housing 13 are supported by the frame 11. The display element 6 and the illumination device (not shown) of the image display device 9 are housed in the housing 13, and the upper end of the optical device 5 serving as an observation optical system is also located in the housing 13. Therefore, by supporting the housing 13 with the frame 11, the main body of the optical device 5 is located in front (outside of the outside) of the lens 12a for the right eye (FIG. 3). Note that the lenses 12a and 12b may be spectacle lenses, or may be dummy lenses made of parallel plane plates.
 筐体13内の表示素子6,光源(不図示)等は、筐体13を貫通して設けられるケーブル(不図示)を介して、回路基板(不図示)と接続されており、回路基板から表示素子6,光源等に駆動電力や映像信号が供給される。なお、画像表示装置9は、静止画や動画を撮影する撮像装置,マイク,スピーカー,イヤホン等をさらに備え、外部のサーバーや端末とインターネット等の通信回線を介して、撮像画像及び表示映像の情報や音声情報をやりとり(送受信)する構成であってもよい。 The display element 6, the light source (not shown), and the like in the housing 13 are connected to a circuit board (not shown) via a cable (not shown) provided through the housing 13, and Driving power and video signals are supplied to the display element 6, the light source, and the like. The image display device 9 further includes an imaging device for photographing a still image or a moving image, a microphone, a speaker, an earphone, and the like. The information of the captured image and the display image is transmitted via an external server or terminal to a communication line such as the Internet. Or a configuration for exchanging (transmitting and receiving) audio information.
 ヘッドマウントディスプレイ10を観察者の頭部に装着し、表示素子6(図1)に映像を表示すると、その映像光La(図3)が光学デバイス5を介して観察者眼EYに導かれて、観察者は、画像表示装置9の表示映像の拡大虚像を観察することができる。また、これと同時に、観察者は光学デバイス5を介して、外界像をシースルーで観察することができる。画像表示装置9がフレーム11で支持されることにより、観察者は画像表示装置9から提供される表示映像と外界像とを同時にハンズフリーで長時間安定して観察することができ、空いた手で所望の作業を行うことができる。なお、画像表示装置9を2つ用いて両眼で映像を観察できるようにしてもよい。 When the head mounted display 10 is mounted on the observer's head and an image is displayed on the display element 6 (FIG. 1), the image light La (FIG. 3) is guided to the observer's eye EY via the optical device 5. The observer can observe an enlarged virtual image of the display image on the image display device 9. At the same time, the observer can observe the external image through the optical device 5 in a see-through manner. Since the image display device 9 is supported by the frame 11, the observer can simultaneously and stably observe the display image and the external image provided from the image display device 9 in a hands-free manner for a long time. Can perform a desired operation. Note that two image display devices 9 may be used so that images can be observed with both eyes.
 以上の説明から分かるように、上述した実施の形態や後述する実施例には以下の特徴的な構成(#1)~(#5)等が含まれている。 分 か る As can be understood from the above description, the above-described embodiments and examples described below include the following characteristic configurations (# 1) to (# 5).
 (#1):映像を外界風景に重ねて観察者眼に投影表示する光学シースルー型の画像表示装置であって、
 前記映像を表示する表示素子と、前記表示素子からの映像光と前記外界風景からの外界光とを同時に観察者眼に導くコンバイナーと、前記外界光に対して平行平面板として作用するように接合されると共に、その接合面で前記コンバイナーを支持する2枚のプリズムと、を有し、
 前記接合面が、プリズム凸面とプリズム凹面とからなり、
 前記コンバイナーが、少なくとも1つの特定波長の光のみを選択的に反射する特性を有する誘電体多層膜からなるノッチフィルターであり、
 以下の条件式(1)を満足することを特徴とする画像表示装置;
0.01<Δλdeg×106/fy<0.35 …(1)
 ただし、
Δλdeg:表示映像の画面中央からノッチフィルターへの光線の入射角度の変化に対する最も長い波長ピークの波長シフト量[mm/deg.]であり、
[ ]内は単位を表し、deg.は角度の度であり、
 表示映像における画面中心を原点とし、表示映像における画面の法線をz軸とし、コンバイナーに入射及び反射する画面中央主光線を含む平面の法線をx軸とし、zx平面の法線をy軸とするローカルな直交座標系を(x,y,z)とすると、
fy:画面中央主光線のy方向の焦点距離[mm]、
fy=tan(ΔΘ)/Δy、
Δy:表示映像の画面において、画面中央主光線と、その画面中央主光線からy方向に微小角度ΔΘ異なる画角の主光線と、の差、
である。
(# 1): An optical see-through image display device that superimposes an image on an external scene and displays the image on an observer's eye,
A display element that displays the image, a combiner that simultaneously guides image light from the display element and external light from the external scene to the observer's eye, and joins to act as a plane-parallel plate with respect to the external light. And two prisms that support the combiner at the joint surface thereof,
The joining surface includes a prism convex surface and a prism concave surface,
The combiner is a notch filter made of a dielectric multilayer film having a characteristic of selectively reflecting only at least one light of a specific wavelength,
An image display device satisfying the following conditional expression (1);
0.01 <Δλ deg × 10 6 /fy<0.35 (1)
However,
Δλ deg : the wavelength shift amount [mm / deg.] Of the longest wavelength peak with respect to the change of the incident angle of the light beam from the center of the screen of the displayed image to the notch filter,
[] Indicates the unit, deg. Is the degree of the angle,
The center of the screen in the display image is the origin, the normal of the screen in the display image is the z-axis, the normal of the plane containing the screen central chief ray incident and reflected on the combiner is the x-axis, and the normal of the zx plane is the y-axis. Let (x, y, z) be the local Cartesian coordinate system
fy: focal length [mm] of the central ray of the screen in the y direction,
fy = tan (ΔΘ) / Δy,
Δy: difference between a central ray of the screen and a principal ray having a small angle ΔΘ in the y direction from the central ray of the screen on the screen of the display image,
It is.
 (#2):以下の条件式(1a)を満足することを特徴とする(#1)記載の画像表示装置。
0.013<Δλdeg×106/fy<0.21 …(1a)
(# 2): The image display device according to (# 1), wherein the following conditional expression (1a) is satisfied.
0.013 <Δλ deg × 10 6 /fy<0.21 (1a)
 (#3):前記表示映像の中間像が形成されないことを特徴とする(#1)又は(#2)記載の画像表示装置。 (# 3): The image display device according to (# 1) or (# 2), wherein an intermediate image of the display image is not formed.
 (#4):(#1)~(#3)のいずれか1項に記載の画像表示装置を搭載することにより、前記コンバイナーで前記映像を観察者眼にシースルーで投影表示する機能を備えたことを特徴とするウェアラブルディスプレイ。 (# 4): By mounting the image display device according to any one of (# 1) to (# 3), a function of projecting and displaying the video image to the observer's eyes with the combiner is provided. A wearable display characterized by the above.
 (#5):前記コンバイナーが観察者眼の前方に位置するように前記画像表示装置を支持する支持部材を備えたことを特徴とする(#4)記載のウェアラブルディスプレイ。 (# 5): The wearable display according to (# 4), further including a support member that supports the image display device so that the combiner is located in front of an observer's eye.
 以下、本発明を実施した画像表示装置の構成等を、実施例のコンストラクションデータ等を挙げて更に具体的に説明する。ここで挙げる実施例1,2(EX1,2)は、誘電体多層膜(ノッチフィルター)の膜構成以外は共通しており、また、前述した画像表示装置の実施の形態に対応する数値実施例であって、その概略断面図(図1)は実施例1,2の光学配置,光路等を示している。 Hereinafter, the configuration and the like of the image display device embodying the present invention will be described more specifically with reference to the construction data and the like of the embodiments. Examples 1 and 2 (EX1 and EX2) mentioned here are common except for the film configuration of the dielectric multilayer film (notch filter), and are numerical examples corresponding to the above-described embodiments of the image display device. The schematic cross-sectional view (FIG. 1) shows the optical arrangement, optical paths, and the like of the first and second embodiments.
 表1に、実施例1,2のコンストラクションデータ等を示す。コンストラクションデータでは、左側の欄から順に、面番号i(i=0,1,2,...,11;OB:物面,ST:絞り,IM:像面),面形状,Y方向の曲率半径(mm),X方向の曲率半径(mm),光学作用(反射,屈折),波長532nmに関する屈折率及びアッベ数を示す。第i面Si(面番号i=0,1,2,...,11)は、物面OB(S0)から像面IM(S11)に至る光路において、物面OB側から数えてi番目の面を示している。したがって、絞りSTは瞳EPに相当し、像面IMは画像表示面6a(例えば、画像を表示する液晶画面)に相当する。また、Y方向,X方向の曲率半径は、各光学面Siの面頂点を原点とし、かつ、面頂点での法線をZ軸とする直交座標系(X,Y,Z)における座標軸方向である。 Table 1 shows the construction data and the like of Examples 1 and 2. In the construction data, the surface number i (i = 0, 1, 2,..., 11; OB: object surface, ST: aperture, IM: image surface), surface shape, curvature in the Y direction are arranged in order from the left column. The radius (mm), the radius of curvature (mm) in the X direction, the optical action (reflection and refraction), the refractive index and the Abbe number for a wavelength of 532 nm are shown. The i-th surface Si (surface number i = 0, 1, 2,..., 11) is the i-th surface counted from the object surface OB side in the optical path from the object surface OB (S0) to the image surface IM (S11). Is shown. Therefore, the aperture ST corresponds to the pupil EP, and the image plane IM corresponds to the image display surface 6a (for example, a liquid crystal screen for displaying an image). The radii of curvature in the Y direction and the X direction are defined by coordinate axes in an orthogonal coordinate system (X, Y, Z) with the origin at the surface vertex of each optical surface Si and the normal at the surface vertex as the Z axis. is there.
 表2に、実施例1,2における面Siの配置データを示す。各面Siの配置は、第1面S1を基準にした偏心データ中の面頂点座標(X,Y,Z)とX軸周り回転角度でそれぞれ特定される。光学面Siの面頂点座標は、その面頂点をローカルな直交座標系(X,Y,Z)の原点として、グローバルな第1面S1の直交座標系(X,Y,Z)におけるローカルな直交座標系(X,Y,Z)の原点の座標で表されており(単位:mm)、その面頂点を中心とするX軸回りの回転角度で各光学面Siの傾きが表されている(単位:°;X,Y,Z軸の正方向に対して反時計回りがX,Y,Z回転の回転角度の正方向である。)。 Table 2 shows the arrangement data of the surface Si in Examples 1 and 2. The arrangement of each surface Si is specified by the surface vertex coordinates (X, Y, Z) and the rotation angle around the X axis in the eccentricity data based on the first surface S1. The surface vertex coordinates of the optical surface Si are determined by using the surface vertex as the origin of the local rectangular coordinate system (X, Y, Z), and using the local rectangular coordinates (X, Y, Z) of the global first surface S1. It is represented by the coordinates of the origin of the coordinate system (X, Y, Z) (unit: mm), and the inclination of each optical surface Si is represented by the rotation angle about the X axis about the surface vertex ( Unit: °; counterclockwise with respect to the positive direction of the X, Y, Z axes is the positive direction of the rotation angle of the X, Y, Z rotation.)
 ただし、座標系はすべて右手系で定義されており、グローバルな第1面S1の直交座標系(X,Y,Z)は、第1面S1だけでなく第2面S2(絞りST)のローカルな直交座標系(X,Y,Z)とも一致した絶対座標系になっている。また、座標軸周りの回転角度の基準方向(つまり回転前の座標軸方向)は、第1面S1の直交座標系(X,Y,Z)における座標軸方向である。したがって、第1面S1では、そのX方向が紙面に垂直方向(画角の左右方向)、Y方向が紙面の上下方向(画角の上下方向)であり、紙面奥方向が+X方向、紙面における上方向が+Y方向、紙面における右方向が+Z方向である。 However, all the coordinate systems are defined by the right-handed system, and the global orthogonal coordinate system (X, Y, Z) of the first surface S1 is not limited to the first surface S1 but also to the local surface of the second surface S2 (aperture ST). It is an absolute coordinate system that also matches the simple rectangular coordinate system (X, Y, Z). The reference direction of the rotation angle around the coordinate axis (that is, the coordinate axis direction before rotation) is the coordinate axis direction in the orthogonal coordinate system (X, Y, Z) of the first surface S1. Therefore, on the first surface S1, the X direction is the direction perpendicular to the paper surface (the horizontal direction of the angle of view), the Y direction is the vertical direction of the paper surface (the vertical direction of the angle of view), the depth direction of the paper is the + X direction, The upward direction is the + Y direction, and the right direction on the paper is the + Z direction.
 表3,表4に、実施例1,2における第4面S4と第6面S6の係数Cjを示す。第4面S4と第6面S6はXY多項式面であり、その面形状は面頂点を原点とするローカルな直交座標系(X,Y,Z)を用いた以下の式(FS)で定義される。なお、表記の無い項の係数は0であり、すべてのデータに関してE-n=×10-nである。
Z=(C0・h2)/[1+√{1-(1+K)・C02・h2}]+Σ(Cj・Xm・Yn) …(FS)
 ただし、式(FS)中、
h:Z軸に対して垂直な方向の高さ(h2=X2+Y2)、
Z:高さhの位置でのZ軸方向の変位量(面頂点基準)、
C0:面頂点での曲率(=1/曲率半径)、
K:コーニック定数、
Cj:単項式Xmnの係数、
j=[{(m+n)2+m+3n}/2]+1、
Σ:j=2~66の総和、
である。
Tables 3 and 4 show the coefficients Cj of the fourth surface S4 and the sixth surface S6 in Examples 1 and 2. The fourth surface S4 and the sixth surface S6 are XY polynomial surfaces, and their surface shapes are defined by the following expression (FS) using a local rectangular coordinate system (X, Y, Z) with the origin at the surface vertex. You. Note that the coefficient of the term without the notation is 0, and En = × 10 −n for all data.
Z = (C0 · h 2) / [1 + √ {1- (1 + K) · C0 2 · h 2}] + Σ (Cj · X m · Y n) ... (FS)
However, in the formula (FS),
h: height in the direction perpendicular to the Z axis (h 2 = X 2 + Y 2 ),
Z: Amount of displacement in the Z-axis direction at the position of height h (based on surface vertex),
C0: curvature at surface vertex (= 1 / radius of curvature),
K: conic constant,
Cj: coefficients of the monomials X m Y n,
j = [{(m + n) 2 + m + 3n} / 2] +1,
Σ: sum of j = 2 to 66,
It is.
 実施例1,2の誘電体多層膜(ノッチフィルター)の膜構成と、膜材料であるTiO2,H4(メルク(株)社の商品名),SiO2の波長ごとの屈折率と、を以下に示す。実施例1の誘電体多層膜は、TiO2からなる高屈折率層と、H4からなる低屈折率層と、の交互層(TiO2/H4)で構成されており、実施例2の誘電体多層膜は、TiO2からなる高屈折率層と、SiO2からなる低屈折率層と、の交互層(TiO2/SiO2)で構成されており、層番号はプリズム1側から順に付してある。 The film configurations of the dielectric multilayer films (notch filters) of Examples 1 and 2 and the refractive indexes of the film materials TiO 2 , H4 (trade name of Merck Ltd.) and SiO 2 for each wavelength are as follows. Shown in The dielectric multilayer film of Example 1 is composed of alternating layers (TiO2 / H4) of a high refractive index layer made of TiO 2 and a low refractive index layer made of H4. The film is composed of alternating layers (TiO2 / SiO2) of a high refractive index layer made of TiO 2 and a low refractive index layer made of SiO 2 , and the layer numbers are assigned in order from the prism 1 side.
 図7~図9のグラフに実施例1の誘電体多層膜(ノッチフィルター)の分光反射率特性を示し、図10~図12のグラフに実施例2の誘電体多層膜(ノッチフィルター)の分光反射率特性を示す(縦軸:反射率[%],横軸:波長[nm])。 7 to 9 show the spectral reflectance characteristics of the dielectric multilayer film (notch filter) of Example 1, and the graphs of FIGS. 10 to 12 show the spectral reflectance of the dielectric multilayer film (notch filter) of Example 2. The reflectance characteristics are shown (vertical axis: reflectance [%], horizontal axis: wavelength [nm]).
 図7は、実施例1のノッチフィルターの反射特性(入射角度:26°)を分光反射率(波長:380~780nm)で示しており、図8は、実施例1のノッチフィルターの反射特性(入射角度:26°)を分光反射率(波長:620~650nm)で示している。また図9は、実施例1のノッチフィルターの反射特性(入射角度:21°)を分光反射率(波長:620~650nm)で示している。実施例1において、Δλdeg×106=(643-633)/(26-21)=2.0,fy=26.2であることから、Δλdeg×106/fy=0.076であり、条件式(1),(1a)を満たしている。 FIG. 7 shows the reflection characteristics (incidence angle: 26 °) of the notch filter of Example 1 in terms of spectral reflectance (wavelength: 380 to 780 nm), and FIG. 8 shows the reflection characteristics (of the notch filter of Example 1). Incident angle: 26 °) is shown by spectral reflectance (wavelength: 620 to 650 nm). FIG. 9 shows the reflection characteristics (incident angle: 21 °) of the notch filter of Example 1 in terms of spectral reflectance (wavelength: 620 to 650 nm). In the first embodiment, since Δλ deg × 10 6 = (643-633) / (26-21) = 2.0 and fy = 26.2, Δλ deg × 10 6 /fy=0.076, and the conditional expression (1) , (1a).
 図10は、実施例2のノッチフィルターの反射特性(入射角度:26°)を分光反射率(波長:380~780nm)で示しており、図11は、実施例2のノッチフィルターの反射特性(入射角度:26°)を分光反射率(波長:620~660nm)で示している。また図12は、実施例2のノッチフィルターの反射特性(入射角度:21°)を分光反射率(波長:620~660nm)で示している。実施例2において、Δλdeg×106=(652-635)/(26-21)=3.4,fy=26.2であることから、Δλdeg×106/fy=0.130であり、条件式(1),(1a)を満たしている。 FIG. 10 shows the reflection characteristics (incidence angle: 26 °) of the notch filter of Example 2 in terms of spectral reflectance (wavelength: 380 to 780 nm), and FIG. 11 shows the reflection characteristics of the notch filter (Example 2). Incident angle: 26 °) is shown by spectral reflectance (wavelength: 620 to 660 nm). FIG. 12 shows the reflection characteristics (incident angle: 21 °) of the notch filter of Example 2 in terms of spectral reflectance (wavelength: 620 to 660 nm). In the second embodiment, since Δλ deg × 10 6 = (652-635) / (26-21) = 3.4 and fy = 26.2, Δλ deg × 10 6 /fy=0.130, and the conditional expression (1) , (1a).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1の誘電体多層膜(ノッチフィルター)
層番号   材料    膜厚(nm)
1        TiO2       90.97
2        H4         80.46
3        TiO2       21.48
4        H4         15.75
5        TiO2       72.96
6        H4        105.54
7        TiO2      104.55
8        H4         15.00
9        TiO2       10.00
10       H4        114.28
11       TiO2       87.41
12       H4         76.74
13       TiO2       78.87
14       H4        137.63
15       TiO2       75.08
16       H4         79.75
17       TiO2      134.95
18       H4         15.00
19       TiO2       27.98
20       H4         37.63
21       TiO2      112.69
22       H4         93.53
23       TiO2       99.87
24       H4         20.25
25       TiO2       10.01
26       H4         75.43
27       TiO2       67.70
28       H4         69.91
29       TiO2      176.53
30       H4         21.43
31       TiO2      199.39
32       H4         15.00
33       TiO2      151.36
34       H4         15.00
35       TiO2       78.92
36       H4         77.50
37       TiO2       86.90
38       H4         53.37
39       TiO2       10.40
40       H4         62.06
41       TiO2       74.14
42       H4         74.14
43       TiO2       96.50
44       H4        139.17
45       TiO2      108.66
46       H4         89.52
47       TiO2       83.31
48       H4         15.00
49       TiO2       15.40
50       H4         81.31
51       TiO2       87.91
Dielectric multilayer film of Example 1 (notch filter)
Layer number Material Thickness (nm)
1 TiO2 90.97
2 H4 80.46
3 TiO2 21.48
4 H4 15.75
5 TiO2 72.96
6 H4 105.54
7 TiO2 104.55
8 H4 15.00
9 TiO2 10.00
10 H4 114.28
11 TiO2 87.41
12 H4 76.74
13 TiO2 78.87
14 H4 137.63
15 TiO2 75.08
16 H4 79.75
17 TiO2 134.95
18 H4 15.00
19 TiO2 27.98
20 H4 37.63
21 TiO2 112.69
22 H4 93.53
23 TiO2 99.87
24 H4 20.25
25 TiO2 10.01
26 H4 75.43
27 TiO2 67.70
28 H4 69.91
29 TiO2 176.53
30 H4 21.43
31 TiO2 199.39
32 H4 15.00
33 TiO2 151.36
34 H4 15.00
35 TiO2 78.92
36 H4 77.50
37 TiO2 86.90
38 H4 53.37
39 TiO2 10.40
40 H4 62.06
41 TiO2 74.14
42 H4 74.14
43 TiO2 96.50
44 H4 139.17
45 TiO2 108.66
46 H4 89.52
47 TiO2 83.31
48 H4 15.00
49 TiO2 15.40
50 H4 81.31
51 TiO2 87.91
 TiO2の波長と屈折率の関係
波長(nm)   屈折率
450        2.365302
550        2.284830
650        2.238846
Relationship between wavelength and refractive index of TiO2 Wavelength (nm) Refractive index
450 2.365302
550 2.284830
650 2.238846
 H4の波長と屈折率の関係
波長(nm)   屈折率
450        1.9825524
550        1.9512684
650        1.9285164
Relationship between H4 wavelength and refractive index Wavelength (nm) Refractive index
450 1.9825524
550 1.9512684
650 1.9285164
 実施例2の誘電体多層膜(ノッチフィルター)
層番号   材料    膜厚(nm)
1        TiO2       90.23
2        SiO2      188.96
3        TiO2       93.33
4        SiO2      192.20
5        TiO2       96.70
6        SiO2       20.00
7        TiO2       10.00
8        SiO2       76.16
9        TiO2       17.81
10       SiO2       27.83
11       TiO2       58.64
12       SiO2       65.95
13       TiO2       17.33
14       SiO2       42.45
15       TiO2       96.13
16       SiO2      167.97
17       TiO2      120.05
18       SiO2       52.09
19       TiO2       21.81
20       SiO2       29.13
21       TiO2       82.56
22       SiO2       57.22
23       TiO2       10.24
24       SiO2       72.13
25       TiO2       85.77
26       SiO2       34.51
27       TiO2       15.61
28       SiO2       93.12
29       TiO2      100.13
30       SiO2       79.69
31       TiO2       10.00
32       SiO2       91.76
33       TiO2      100.27
34       SiO2       68.96
35       TiO2       10.00
36       SiO2       76.06
37       TiO2      103.49
38       SiO2      196.66
39       TiO2      110.63
40       SiO2      161.61
41       TiO2      101.97
42       SiO2       29.22
43       TiO2       33.71
44       SiO2       30.00
45       TiO2       66.64
46       SiO2       58.53
47       TiO2       10.25
48       SiO2       81.72
49       TiO2      109.88
50       SiO2      188.83
51       TiO2       87.33
52       SiO2       72.18
53       TiO2       10.78
54       SiO2       59.23
55       TiO2      104.12
Dielectric multilayer film of Example 2 (notch filter)
Layer number Material Thickness (nm)
1 TiO2 90.23
2 SiO2 188.96
3 TiO2 93.33
4 SiO2 192.20
5 TiO2 96.70
6 SiO2 20.00
7 TiO2 10.00
8 SiO2 76.16
9 TiO2 17.81
10 SiO2 27.83
11 TiO2 58.64
12 SiO2 65.95
13 TiO2 17.33
14 SiO2 42.45
15 TiO2 96.13
16 SiO2 167.97
17 TiO2 120.05
18 SiO2 52.09
19 TiO2 21.81
20 SiO2 29.13
21 TiO2 82.56
22 SiO2 57.22
23 TiO2 10.24
24 SiO2 72.13
25 TiO2 85.77
26 SiO2 34.51
27 TiO2 15.61
28 SiO2 93.12
29 TiO2 100.13
30 SiO2 79.69
31 TiO2 10.00
32 SiO2 91.76
33 TiO2 100.27
34 SiO2 68.96
35 TiO2 10.00
36 SiO2 76.06
37 TiO2 103.49
38 SiO2 196.66
39 TiO2 110.63
40 SiO2 161.61
41 TiO2 101.97
42 SiO2 29.22
43 TiO2 33.71
44 SiO2 30.00
45 TiO2 66.64
46 SiO2 58.53
47 TiO2 10.25
48 SiO2 81.72
49 TiO2 109.88
50 SiO2 188.83
51 TiO2 87.33
52 SiO2 72.18
53 TiO2 10.78
54 SiO2 59.23
55 TiO2 104.12
 TiO2の波長と屈折率の関係
波長(nm)   屈折率
450        2.518380
550        2.432700
650        2.383740
Relationship between wavelength and refractive index of TiO2 Wavelength (nm) Refractive index
450 2.518380
550 2.432700
650 2.383740
 SiO2の波長と屈折率の関係
波長(nm)   屈折率
450        1.439592
550        1.431720
660        1.428768
Relationship between SiO2 wavelength and refractive index Wavelength (nm) Refractive index
450 1.439592
550 1.431720
660 1.428768
 1,2  プリズム
 1a  プリズム凸面(接合面)
 2a  プリズム凹面(接合面)
 3  コンバイナー(誘電体多層膜,ノッチフィルター)
 4  接着剤
 5  光学デバイス
 6  表示素子
 7  偏光ビームスプリッター
 9  画像表示装置
 10  ヘッドマウントディスプレイ(ウェアラブルディスプレイ)
 11  フレーム(支持部材)
 12a,12b  レンズ
 13  筐体
 EP  瞳
 IM  表示映像(像面)
 L1,L2  光線
 La  映像光
 Lb  外界光
 Lc  画面中央主光線
 Ld  主光線
 EY  観察者眼
1,2 prism 1a prism convex surface (joint surface)
2a Prism concave surface (joint surface)
3 Combiner (dielectric multilayer film, notch filter)
Reference Signs List 4 adhesive 5 optical device 6 display element 7 polarizing beam splitter 9 image display device 10 head mounted display (wearable display)
11 frame (supporting member)
12a, 12b Lens 13 Housing EP Pupil IM Display image (image plane)
L1, L2 Ray La Image light Lb External light Lc Center chief ray Ld Chief ray EY Observer's eye

Claims (5)

  1.  映像を外界風景に重ねて観察者眼に投影表示する光学シースルー型の画像表示装置であって、
     前記映像を表示する表示素子と、前記表示素子からの映像光と前記外界風景からの外界光とを同時に観察者眼に導くコンバイナーと、前記外界光に対して平行平面板として作用するように接合されると共に、その接合面で前記コンバイナーを支持する2枚のプリズムと、を有し、
     前記接合面が、プリズム凸面とプリズム凹面とからなり、
     前記コンバイナーが、少なくとも1つの特定波長の光のみを選択的に反射する特性を有する誘電体多層膜からなるノッチフィルターであり、
     以下の条件式(1)を満足する画像表示装置;
    0.01<Δλdeg×106/fy<0.35 …(1)
     ただし、
    Δλdeg:表示映像の画面中央からノッチフィルターへの光線の入射角度の変化に対する最も長い波長ピークの波長シフト量[mm/deg.]であり、
    [ ]内は単位を表し、deg.は角度の度であり、
     表示映像における画面中心を原点とし、表示映像における画面の法線をz軸とし、コンバイナーに入射及び反射する画面中央主光線を含む平面の法線をx軸とし、zx平面の法線をy軸とするローカルな直交座標系を(x,y,z)とすると、
    fy:画面中央主光線のy方向の焦点距離[mm]、
    fy=tan(ΔΘ)/Δy、
    Δy:表示映像の画面において、画面中央主光線と、その画面中央主光線からy方向に微小角度ΔΘ異なる画角の主光線と、の差、
    である。
    An optical see-through type image display device for projecting and displaying an image on an observer's eye by superimposing an image on an external scene,
    A display element that displays the image, a combiner that simultaneously guides image light from the display element and external light from the external scene to the observer's eye, and joins to act as a plane-parallel plate with respect to the external light. And two prisms that support the combiner at the joint surface thereof,
    The joining surface includes a prism convex surface and a prism concave surface,
    The combiner is a notch filter made of a dielectric multilayer film having a characteristic of selectively reflecting only at least one light of a specific wavelength,
    An image display device satisfying the following conditional expression (1);
    0.01 <Δλ deg × 10 6 /fy<0.35 (1)
    However,
    Δλ deg : the wavelength shift amount [mm / deg.] Of the longest wavelength peak with respect to the change of the incident angle of the light beam from the center of the screen of the displayed image to the notch filter,
    [] Indicates the unit, deg. Is the degree of the angle,
    The center of the screen in the display image is the origin, the normal of the screen in the display image is the z-axis, the normal of the plane containing the screen central chief ray incident and reflected on the combiner is the x-axis, and the normal of the zx plane is the y-axis. Let (x, y, z) be the local Cartesian coordinate system
    fy: focal length [mm] of the central ray of the screen in the y direction,
    fy = tan (ΔΘ) / Δy,
    Δy: difference between a central ray of the screen and a principal ray having a small angle ΔΘ in the y direction from the central ray of the screen on the screen of the display image,
    It is.
  2.  以下の条件式(1a)を満足する請求項1記載の画像表示装置。
    0.013<Δλdeg×106/fy<0.21 …(1a)
    The image display device according to claim 1, wherein the following conditional expression (1a) is satisfied.
    0.013 <Δλ deg × 10 6 /fy<0.21 (1a)
  3.  前記表示映像の中間像が形成されない請求項1又は2記載の画像表示装置。 3. The image display device according to claim 1, wherein an intermediate image of the display image is not formed.
  4.  請求項1~3のいずれか1項に記載の画像表示装置を搭載することにより、前記コンバイナーで前記映像を観察者眼にシースルーで投影表示する機能を備えたウェアラブルディスプレイ。 (4) A wearable display having a function of projecting and displaying the video image to an observer's eye in a see-through manner by the combiner by mounting the image display device according to any one of (1) to (3).
  5.  前記コンバイナーが観察者眼の前方に位置するように前記画像表示装置を支持する支持部材を備えた請求項4記載のウェアラブルディスプレイ。 5. The wearable display according to claim 4, further comprising a support member that supports the image display device so that the combiner is located in front of an observer's eye.
PCT/JP2019/008895 2018-06-19 2019-03-06 Image display device and wearable display WO2019244419A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-116086 2018-06-19
JP2018116086 2018-06-19

Publications (1)

Publication Number Publication Date
WO2019244419A1 true WO2019244419A1 (en) 2019-12-26

Family

ID=68982821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008895 WO2019244419A1 (en) 2018-06-19 2019-03-06 Image display device and wearable display

Country Status (1)

Country Link
WO (1) WO2019244419A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172719A1 (en) * 2011-06-16 2012-12-20 パナソニック株式会社 Head-mounted display and misalignment correction method thereof
WO2015140859A1 (en) * 2014-03-17 2015-09-24 パナソニックIpマネジメント株式会社 Display apparatus
JP2017116690A (en) * 2015-12-24 2017-06-29 セイコーエプソン株式会社 Virtual image display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172719A1 (en) * 2011-06-16 2012-12-20 パナソニック株式会社 Head-mounted display and misalignment correction method thereof
WO2015140859A1 (en) * 2014-03-17 2015-09-24 パナソニックIpマネジメント株式会社 Display apparatus
JP2017116690A (en) * 2015-12-24 2017-06-29 セイコーエプソン株式会社 Virtual image display device

Similar Documents

Publication Publication Date Title
JP6349704B2 (en) Virtual image display device
CN106896501B (en) Virtual image display device
US6563648B2 (en) Compact wide field of view imaging system
US8094377B2 (en) Head-mounted optical apparatus using an OLED display
JP6394393B2 (en) Image display device, image generation device, and transmissive spatial light modulation device
US10606095B2 (en) Virtual image display device
TW202026685A (en) Light-guide display with reflector
WO2010032700A1 (en) Video image display device and head mount display
JP2011039490A (en) Image display device, head-mounted display, and light beam extending device
KR102642282B1 (en) Light guide plate and image display device
EP3531182A1 (en) Virtual image display device
JP2006003872A (en) Optical element, combiner optical system, and image display unit
US20210239969A1 (en) Optical system and image display apparatus provided therewith
JP2018054977A (en) Virtual image display device
JP7183610B2 (en) virtual image display
JP7027748B2 (en) Virtual image display device
US11640060B2 (en) Head-mounted display
JP2020091449A (en) Image display device and head mount display
WO2018043254A1 (en) Video display device and optical see-through display
JP2016170203A (en) Image displaying apparatus
US11327309B2 (en) Virtual image display apparatus
CN111443484A (en) Virtual image display device
WO2019244419A1 (en) Image display device and wearable display
JP2019117237A (en) Head-mounted display
JP2018066799A (en) Image display device and optical see-through display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP