WO2019243644A1 - Heatable panel and its manufacturing method - Google Patents

Heatable panel and its manufacturing method Download PDF

Info

Publication number
WO2019243644A1
WO2019243644A1 PCT/ES2019/070276 ES2019070276W WO2019243644A1 WO 2019243644 A1 WO2019243644 A1 WO 2019243644A1 ES 2019070276 W ES2019070276 W ES 2019070276W WO 2019243644 A1 WO2019243644 A1 WO 2019243644A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
thermoplastic material
conductive particles
heating panel
insulating layer
Prior art date
Application number
PCT/ES2019/070276
Other languages
Spanish (es)
French (fr)
Inventor
Begoña Galindo Galiana
Vanessa GUTIÉRREZ ARAGONÉS
Vicent MARTÍNEZ SANZ
Original Assignee
Asociación De Investigación De Materiales Plásticos Y Conexas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asociación De Investigación De Materiales Plásticos Y Conexas filed Critical Asociación De Investigación De Materiales Plásticos Y Conexas
Priority to EP19823534.3A priority Critical patent/EP3809600B1/en
Priority to ES19823534T priority patent/ES2940748T3/en
Publication of WO2019243644A1 publication Critical patent/WO2019243644A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/146Conductive polymers, e.g. polyethylene, thermoplastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/286Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an organic material, e.g. plastic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/011Heaters using laterally extending conductive material as connecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Definitions

  • the present invention refers to heated panels produced by conventional plastics transformation processes and based on conductive thermoplastic compounds.
  • the panel is heated thanks to the Joule effect by which an electrical conductive material is heated by applying an electric current.
  • These panels can be used as a heating system in different sectors such as automotive, construction, aerospace and packaging.
  • the panels can be obtained by extrusion, injection or compression molding and subsequently shaped to adapt to different geometries.
  • the invention ES2574622 uses as a heating material an additive thermoset elastomer with a high percentage of carbon nanotubes (NTC) (between 20-45% by weight). This elastomer is used as a coating on different substrates.
  • NTC carbon nanotubes
  • the invention indicates the importance of copper electrodes, which are deposited by electrochemical electrodeposition on the conductive material.
  • WO 2007089118 a high conductivity film capable of being heated is obtained by spraying an aqueous solution of carbon nanotubes (NTC) onto a polymeric sheet.
  • the invention DE102011086448 (A1) also bases its invention on the deposition of layers of an aqueous solution of carbon nanotubes (NTC) to obtain a heated coating.
  • the invention W02002076805 A1 describes a heated flywheel by applying conductive coatings based on carbon particles. They also work with different layers of conductive coatings in the invention ES2402034B1, which also contemplates the encapsulation of the heating elements and the electrodes.
  • US2005172950 and WO 2009011674 refer to heated fabrics or garments. The first is based on the impregnation of fabrics with conductive coatings and the second obtains the conductive fabric from long carbon nanotube fibers.
  • ES 2537400 B1 conductive coatings are applied on heating elements of automobiles, in particular in mirrors.
  • thermostable polymer in the example the use of a silicone is specified.
  • thermoplastic polymers can be partially crosslinked to obtain an extruded sheet, but in that case they cannot be re-melted so they cannot be recycled.
  • the materials do not intersect in any case, being recyclability a characteristic of the panel of great novelty.
  • it refers to soft materials, such as silicone, while the materials of the present invention are rigid panels.
  • the resistivity of the materials developed in the present invention is much lower, being much more conductive than the materials specified in said German invention DE102011003012.
  • the low conductivity determines the design of the electrodes, causing them to be relatively close and of a large size (similar to the geometry of the heated sheet).
  • the process of obtaining a film with high conductivity is very different from the one developed in the present invention. It is based on the annealing annealing that is made to the polymer after extrusion of the film. This annealing can last up to 24 hours.
  • the present invention does not contemplate this technology since good conductivity is achieved by dispersing the conductive load well and correctly processing the material to obtain the final film or piece with the desired conductive properties. Therefore, a PTC plastic is obtained by conventional processes thanks to the good dispersion of the conductive particles which are achieved by applying specific and specific processing conditions, which also allows to produce larger geometries with greater distance from the electrodes.
  • the invention CN201610317174 refers to solvent-based conductive pastes without being thermoplastic polymers.
  • the polymeric material that is produced by extrusion is the substrate (non-conductive) on which the conductive paste is applied. It is a functional printing process of inks, very different from thermoplastic processing.
  • the inventions found are based on the application of conductive paints or varnishes that finally make up a conductive coating or are based on the extrusion of materials with worse electrical conductivities, which subsequently complicates and complicates the configuration of the electrodes.
  • the application of coatings is a manual process and the final behavior of the heating element depends on different factors, such as: number of layers of the paint or conductive solution, worker who applies the paint, homogeneity of the solution, since if the conductive particles They decant over time, the first applied layer may have a concentration of conductive particles much greater than the last applied layer. Therefore, the heating homogeneity and reproducibility of the heating elements produced is not stable.
  • the conductive particles are dispersed in the thermoplastic matrix in a co-rotating twin screw extruder.
  • a homogeneous nanocomposite of high electrical conductivity is obtained, allowing the electrodes to be positioned at a great distance.
  • this material is melted to obtain a conductive sheet.
  • Said process can be an extrusion, a compression or an injection.
  • the piece obtained will have a concentration of homogeneous conductive particles ensuring a reproducible and homogeneous behavior.
  • the sheet can be crushed and reprocessed ensuring recycling at the end of the product's life. Recycling is not contemplated in the state of the art since different materials and thermosetting coatings that do not allow recycling are combined.
  • the materials developed and the manufacturing process carried out in the present invention provide a lower resistivity of the conductive sheet being 10 1 Ohm.cm, much lower compared to the patent DE102011003012A1, which mentions resistances between 10 3 to 10 6 ohm.cm, which implies a greater conduction through the developed panel.
  • the present invention has been devised as a heating panel that uses electrical energy as a power source to be converted into thermal energy.
  • the novelty lies in the type of material that makes up the heating panel and in its manufacturing process.
  • the solution conceived is based on obtaining a conductive, lightweight and recyclable polymer sheet to be used in a wide variety of designs depending on the sizes and geometries required according to the application.
  • Polymeric materials are usually insulating, however, thanks to the addition of conductive additives, they can change their thermal and electrical properties and replace metallic heat-generating resistors when this type of heating is required.
  • the heating panel produces thermal energy when an electric current is applied, so that, to carry out this process, the panel comprises:
  • thermoplastic material additive with temperature conductive particles that provide the sheet with PTC (Possitive Temperature Coefficient) behavior, where the geometry of the sheet can be adaptable by the processes of thermoforming or used in its manufacture and where said sheet is recyclable;
  • metal electrodes mechanically connected to the sheet and configured to apply an electric current flowing through said sheet
  • a first temperature and electricity insulating layer configured to avoid losses of heat energy in the opposite direction to the desired one
  • a second electrical insulating layer configured to avoid direct contact with the sheet
  • thermocouple sensor attached to the sheet configured to measure the internal temperature of the heating panel
  • thermocouple sensor is joined in the central part of the sheet.
  • thermocouple sensor All these components that form the heating panel, the sheet, the first insulating layer, the second insulating layer, the thermocouple sensor and the metal electrodes, are reusable to be part of another heated panel or to be part of another system.
  • the sheet Since the sheet has a PTC thermistor behavior, when an electric current is applied to the metal electrodes, the sheet works by increasing the electrical resistance with increasing temperature. That is, once the desired temperature is reached it stabilizes and no temperature peaks are generated, being a safe heating system. This feature gives it the particularity of being self-regulating, regardless of the need for thermostats, necessary in other heating systems.
  • the conductive particles that add the thermoplastic material of the sheet have percentages directly proportional in the mixture with the thermoplastic material, depending on the final temperature required by the heating panel and the type of conductive particles used. Once the material has been formulated, the temperature of the panels can be regulated by adapting the input voltage or cutting off the power supply, without adapting the formulation to each of the applications.
  • These conductive particles of sheet temperature can be carbon nanotubes, graphene, graphite, carbon black or a combination of the above.
  • the conductive particles that add the thermoplastic material of the sheet are carbon nanotubes and have a concentration between 5-5 10% with respect to the total weight of the sheet.
  • the concentration is between 20-40%, when they are carbon black, the concentration is between 10-30%, when they are graphene, between 3 -10%, all these percentages being with respect to the total weight of the mixture that forms the sheet.
  • thermoplastic materials of the sheet can be polyolefins, polyesters, polyamides, thermoplastic elastomers, polysulfones, polyetherimides or a combination of all of the above, since they all allow mixing with the conductive temperature particles and have adequate structural and mechanical characteristics for the use of the heated panel, although preferably one type of polyolefin, polypropylene, is used.
  • the "composite" layer can take multiple forms by thermoforming, obtaining a lightweight final compound, allowing its use for spaces with special geometries.
  • machining operations can be applied to adjust with other elements.
  • the heating panel also comprises a covering fabric that partially or totally covers the panel, said covering fabric being an electrical insulating material resistant to temperature changes and which is selected according to the characteristics of the installation of the panel.
  • the conductive materials of the metal electrodes can be made of copper or silver, although other metallic materials that can be mechanically attached to the sheet can be selected to be reused.
  • the manufacturing process of the sheet, made of thermoplastic material, additive with temperature conductive particles, is carried out through processes of transformation of plastics and thermoplastics.
  • the conductive particles, in powder form and of the thermoplastic material, preferably polypropylene, in the form of pellets are introduced into a heated tank of a co-rotating twin-screw extruder.
  • the conductive particles and the thermoplastic material are mixed hot, melting the thermoplastic material in the extruder, to achieve a homogeneous mixture, applying, at the same time as the melting of the thermoplastic material, an energy specific mechanics of at least 0.5 kWh / kg.
  • the objective of this process is to disperse the conductive charge in the polymer matrix to achieve optimal electrical properties homogeneously throughout the entire volume of the sheet.
  • the melting of the thermoplastic material is carried out at a temperature of 210 ° C, for the preferred case of a polypropylene matrix, and the spindles rotate at a speed greater than 600 rpm, for a material input of 10 kilograms per hour in the co-rotating extruder with a diameter of 25 mm and a ratio of length between diameter equal to 40.
  • said mixture of the molten plastic with the conductive particles is passed through an extruder head, configured to generate filaments of thermoplastic material added with conductive particles.
  • the calender rollers In order not to lose the electrical conductivity, it is necessary to optimize the processing by ensuring a slow cooling of the material at the head outlet.
  • the calender rollers must be at a high temperature ensuring that the carbon nanotubes have enough time to distribute in the polymer matrix and form the conductive network.
  • the pellets are melted to obtain the sheet of the heated panel by means of a new extrusion, a drawing, a rolling by rollers, or a combination of these manufacturing processes, all these processes being hot to facilitate the molding of the sheet, although it can also be carried out by injection into plastic dies or compression molding.
  • the geometry of the sheet can be adaptable to any geometry depending on the needs of shape and size.
  • the conductive sheet thermoplastic material additive with conductive particles can be obtained in one step, by coupling a co-rotary extruder to a flat sheet head. In this way, the panel is cheaper and faster to manufacture.
  • the sheet can be crushed, for a new obtaining of pellets, and re-processed ensuring recycling at the end of the product's life. This recycling is not contemplated in the background found since different materials, embedded and thermosetting coatings are combined that do not allow recycling.
  • the conductive particles do not cover any material, but are dispersed in the matrix of the twin-screw extruder co-rotating with the thermoplastic material, unlike these inventions mentioned in the background, by what materials developed in the present invention obtain the mentioned resistivity of 10 1 Ohm.cm, and a greater thermal conduction.
  • This good conductivity is only achieved by dispersing the conductive load well and correctly processing the conductive particles to obtain the sheet with the desired conductive properties.
  • a PTC plastic sheet is achieved by manufacturing processes thanks to the dispersion of the conductive particles, which are achieved by applying specific and specific processing conditions. This also allows to produce geometries larger than those found and with greater distance between the electrodes.
  • the construction of the heating panel is carried out by custom machining according to the desired geometry of the final panel or by a thermoforming, connecting the electrodes to the sheet and placing the isolation layers on the sides of said sheet.
  • the assembly is covered by the covering fabric, tailored, according to the design and the final application with fabrics resistant to changes in temperatures or possible iterations that may have with the outside to provide a finish suitable for use.
  • Figure 1 shows an elevation view and another in profile of the heated panel.
  • Figure 2 shows the temperature reached of heated panels with heat conduction sheets of different sizes and geometries.
  • Figure 3 shows a graph in which the temperature levels of the material of a sheet made of polypropylene with carbon nanotubes vary, when 48V are applied starting from a temperature of -21 ° C.
  • the heating panel of the present invention is composed of a sheet (1), made of thermoplastic material, metal electrodes (6) mechanically connected on the sides to the sheet (1), a first insulating layer (3) located on one side of the sheet (1), which prevents the loss of temperature of the sheet on the opposite side to the desired one, and also prevents the passage of electric current through that side, a second insulating layer (2) of electricity to limit the passage of electric current on the opposite side of the sheet (1) where heat is emitted and a thermocouple sensor (5) attached to the sheet (1) that measures the internal temperature of the heated panel.
  • said heating panel is partially or totally covered by a covering fabric (4), of an electrical insulating material, with a double purpose. Prevent a user close to the panel from having unwanted contact with the electrically conductive heating sheet (1) and provide a finish according to the installation site of the panel.
  • This covering fabric (4) can be of many types, but preferably a natural fabric is selected.
  • the sheet (1) is capable of emitting heat, despite being made of thermoplastic material, because it is additive with electrical conductive particles providing the sheet (1) with a PTC behavior.
  • These conductive particles of sheet temperature (1) can be of different types such as carbon nanotubes, graphene, graphite, carbon black and a combination of the above, preferably using carbon nanotubes (NTC, or CTN by its acronym in English) for the heat conduction properties.
  • the percentage of these particles of carbon nanotubes is between 5 and 10% with respect to the total weight of the sheet, which is completed with thermoplastic materials selected from polyolefins, polyesters, polyamides, thermoplastic elastomers, polysulfone, polyetherimide or a combination of all of the above, although polypropylene, a compound within the group of polyolefins, is preferably used.
  • Figure 2 shows the temperature that can reach the heating panel using as an additive particle, carbon nanotubes (CNT) in different percentages and different sizes, so that the higher the percentage of nanotubes, the higher the temperature reached by the panel.
  • CNT carbon nanotubes
  • thermoplastic material used in this case is a polypropylene in which they have been mixed with different percentages of carbon nanotubes (CNT) from 3% to 10% by weight. Applying a voltage of 48 V to the heating panel, different temperatures are generated in degrees Celsius, reaching up to 100 ° C if the panel has a reduced surface of 15 x 15 cm side.
  • CNT carbon nanotubes
  • the graph of figure 3 shows the operation of a sheet made of polypropylene with carbon nanotubes to which a voltage of 48 volts has been applied, gradually during the first minute, establishing that constant voltage until minute 6. Due to the applied load, the temperature of the panel begins to heat up in a logarithmic growth, to go from -21 ° C to 75 ° C in those 6 minutes, in which the indicated voltage is applied. When the voltage is removed, the temperature is gradually reduced in an exponential decrease.
  • the energy consumption of said heated panel is 120W for a rectangular geometry of 350 cm side by 250 cm on the other side and 2 cm wide, applying 48V and 64W, for the same geometry, applying 24V.
  • the power consumption is 20W at 48V and 5W at 24V.
  • the sheet (1) is composed of a thermoplastic material and additive particles, first of all, a mixture of both components is made, so that they are joined in a state of pellets and powder, and heated to obtain the melting of the material plastic, where it is removed inside an extruder applying a specific mechanical energy of at least 0.5 kWh / kg.
  • thermoplastic material is carried out at a temperature of at least 210 ° C, when polypropylene is used and the spindles rotate at a speed of at least 600 rpm, for a material input of 10 kilograms per hour in a co-extruder Rotary of 25 mm in diameter and length ratio between diameter equal to 40.
  • the material is extruded to obtain filaments that are cooled and solidified in rollers, to be subsequently cut by a shear and obtain new pellets but of the mixture of components.
  • Said pellets are used to obtain the sheet (1) following one or different processes of transformation of the plastics, such as extrusion, stretching, compression molding, roller lamination or die injection.
  • the sheet (1) joins the rest of the components that form the heating panel and is ready for use.
  • the present example refers to a sheet of polypropylene and carbon nanotubes obtained by extrusion of flat sheet.
  • the plastic material is melted by heat and shear in an extruder and is forced to pass through a head giving it a sheet shape.
  • the sheet is passed through a calender or roller system.
  • the cooling of the material is controlled by varying the temperature of these rollers.
  • Table 1 shows the key parameters for extrusion processing of the sheet with high electrical conductivity.
  • the percentage of carbon nanotubes is determined according to the use temperature required by the application. Being the optimum range between 5-10% of nanotubes to reach temperatures between 25-100 ° C.
  • Example 2 Heating panel based on polypropylene and graphite
  • the sheet is obtained by compression molding.
  • the main parameters involved in the process are the pressure exerted on the mold, the cycle time and the temperature during processing.
  • Table 2 shows the processing conditions to achieve optimum electrical conductivity in the graphite plates.
  • Table 3 shows the temperatures reached in three zones of the heating panel when applying a certain voltage.
  • the geometry of the panels in this case is 15 x 15 cm and they were obtained by compression molding.
  • Table 3 Thermal behavior of polypropylene panels with graphite

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Surface Heating Bodies (AREA)

Abstract

The present invention relates to a heating panel that uses as electrical energy as a power source, converting same into thermal energy. For this purpose, the solution obtained is based on obtaining a sheet (1) of recyclable, lightweight conductive polymer. Owing to the addition of conductive additives, the sheet can change its thermal and electrical properties and replace heat-generating metallic resistors when this type of heating is required. The additive-containing sheet with conductive particles forms part of a heatable panel that produces thermal energy when an electric current is applied to it. To carry out the method, the panel therefore comprises, in addition to the conductive sheet: metallic electrodes (6) mechanically connected to the sheet; a first temperature-insulating layer (3); a second electricity-insulating layer (2); and a thermocouple sensor (5) joined to the sheet, configured to measure the internal temperature of the heatable panel.

Description

PANEL CALEFACTABLE Y PROCEDIMIENTO DE FABRICACIÓN DEL MISMO  HEATING PANEL AND MANUFACTURING PROCEDURE OF THE SAME
DESCRIPCIÓN  DESCRIPTION
Objeto de la invención y campo de aplicación Object of the invention and field of application
La presente invención hace referencia a paneles calefactables producidos por procesos convencionales de transformación de plásticos y basados en compuestos termoplásticos conductores. El panel se calienta gracias al efecto Joule por el cual un material conductor eléctrico se calienta al aplicar una corriente eléctrica. Estos paneles pueden ser empleados como sistema de calefacción en diferentes sectores tales como automoción, construcción, aeroespacial y envases. Los paneles pueden ser obtenidos por extrusión, inyección o moldeado por compresión y posteriormente conformados para poder adaptarse a diferentes geometrías. The present invention refers to heated panels produced by conventional plastics transformation processes and based on conductive thermoplastic compounds. The panel is heated thanks to the Joule effect by which an electrical conductive material is heated by applying an electric current. These panels can be used as a heating system in different sectors such as automotive, construction, aerospace and packaging. The panels can be obtained by extrusion, injection or compression molding and subsequently shaped to adapt to different geometries.
Antecedentes de la invención Background of the invention
Hasta la fecha se conocen diferentes sistemas protegidos para ser empleados como calefacción por efecto Joule o calefacción resistiva. Ninguna de las invenciones revisadas hace referencia a polímeros termoplásticos obtenidos por extrusión, inyección o compresión, ya que la obtención de alta conductividad eléctrica necesaria para conseguir el electo Joule es mucho más difícil de ser alcanzada por procesos convencionales de procesado de plásticos. De este modo, se han encontrado varias invenciones que centran su novedad en el desarrollo de recubrimientos conductores sobre diferentes sustratos. To date, different protected systems are known to be used as Joule heating or resistive heating. None of the inventions reviewed refer to thermoplastic polymers obtained by extrusion, injection or compression, since obtaining the high electrical conductivity necessary to achieve the Joule elect is much more difficult to be achieved by conventional plastics processing processes. In this way, several inventions have been found that focus their novelty on the development of conductive coatings on different substrates.
La invención ES2574622 emplea como material calefactable un elastómero termoestable aditivado con un alto porcentaje de nanotubos de carbono (NTC) (entre un 20-45% en peso). Este elastómero se emplea como recubrimiento en diferentes sustratos. La invención indica la importancia de los electrodos de cobre, los cuales se depositan por electrodeposición electroquímica sobre el material conductor. The invention ES2574622 uses as a heating material an additive thermoset elastomer with a high percentage of carbon nanotubes (NTC) (between 20-45% by weight). This elastomer is used as a coating on different substrates. The invention indicates the importance of copper electrodes, which are deposited by electrochemical electrodeposition on the conductive material.
En la invención WO 2007089118 se obtiene un film de alta conductividad susceptible de ser calefactado, pulverizando una disolución acuosa de nanotubos de carbono (NTC) sobre una lámina polimérica. La invención DE102011086448(A1) también basa su invención en la deposición de capas de una disolución acuosa de nanotubos de carbono (NTC) para obtener un recubrimiento calefactable. La invención W02002076805 A1 describe un volante calefactable mediante la aplicación de recubrimientos conductores basados en partículas de carbono. También trabajan con diferentes capas de recubrimientos conductores en la invención ES2402034B1 , la cual también contempla la encapsulación de los elementos calefactables y los electrodos. In the invention WO 2007089118 a high conductivity film capable of being heated is obtained by spraying an aqueous solution of carbon nanotubes (NTC) onto a polymeric sheet. The invention DE102011086448 (A1) also bases its invention on the deposition of layers of an aqueous solution of carbon nanotubes (NTC) to obtain a heated coating. The invention W02002076805 A1 describes a heated flywheel by applying conductive coatings based on carbon particles. They also work with different layers of conductive coatings in the invention ES2402034B1, which also contemplates the encapsulation of the heating elements and the electrodes.
Las invenciones US2005172950 y WO 2009011674 hacen referencia a tejidos o prendas calefactables. La primera se basa en la impregnación de tejidos con recubrimientos conductores y la segunda obtiene el tejido conductor a partir de fibras largas de nanotubos de carbono. Inventions US2005172950 and WO 2009011674 refer to heated fabrics or garments. The first is based on the impregnation of fabrics with conductive coatings and the second obtains the conductive fabric from long carbon nanotube fibers.
En la invención DE102007004953 (A1) se emplean nanotubos de carbono y polímeros intrínsecamente conductores como recubrimiento calefactable en cristales. In the invention DE102007004953 (A1) carbon nanotubes and intrinsically conductive polymers are used as a heated coating on crystals.
En la invención ES 2537400 B1 se aplican recubrimientos conductores en elementos calefactables de automóviles, en concreto en retrovisores. In the invention ES 2537400 B1 conductive coatings are applied on heating elements of automobiles, in particular in mirrors.
En la patente DE102011003012, en la reivindicación 2, se hace referencia a un polímero entrecruzado y en el ejemplo se especifica el empleo de una silicona. Estos materiales son termoestables y no se pueden procesar por extrusión. Los polímeros termoplásticos se pueden entrecruzar parcialmente para obtener una lámina extruida pero, en ese caso no se pueden volver a fundir por lo que no se pueden reciclar. In DE102011003012, in claim 2, reference is made to a crosslinked polymer and in the example the use of a silicone is specified. These materials are thermostable and cannot be processed by extrusion. The thermoplastic polymers can be partially crosslinked to obtain an extruded sheet, but in that case they cannot be re-melted so they cannot be recycled.
En la presente invención los materiales no se entrecruzan en ningún caso, siendo la reciclabilidad una característica del panel de gran novedad. Además, hace referencia a materiales blandos, tales como la silicona, mientras que los materiales de la presente invención son paneles rígidos. In the present invention the materials do not intersect in any case, being recyclability a characteristic of the panel of great novelty. In addition, it refers to soft materials, such as silicone, while the materials of the present invention are rigid panels.
La resistividad de los materiales desarrollados en la presente invención es mucho menor, siendo mucho más conductores que los materiales especificados en dicha invención alemana DE102011003012. La baja conductividad condiciona el diseño de los electrodos, haciendo que deban estar relativamente cerca y ser de un gran tamaño (similar a la geometría de la lámina calefactable). The resistivity of the materials developed in the present invention is much lower, being much more conductive than the materials specified in said German invention DE102011003012. The low conductivity determines the design of the electrodes, causing them to be relatively close and of a large size (similar to the geometry of the heated sheet).
En la invención GR1449261 , el proceso de obtención de un film con alta conductividad es muy diferente al desarrollado en la presente invención. Se basa en el recocido“annealing” que se le hace al polímero tras la extrusión del film. Este recocido puede durar hasta 24h. In the invention GR1449261, the process of obtaining a film with high conductivity is very different from the one developed in the present invention. It is based on the annealing annealing that is made to the polymer after extrusion of the film. This annealing can last up to 24 hours.
La presente invención no contempla esta tecnología ya que la buena conductividad se consigue dispersando bien la carga conductora y procesando correctamente el material para obtener el film o pieza final con las propiedades conductoras deseadas. Por lo tanto, se obtiene un plástico PTC por procesos convencionales gracias a la buena dispersión de las partículas conductoras las cuales se consiguen aplicando unas condiciones de procesado determinadas y específicas, lo cual también permite producir geometrías más grandes con mayor distancia de los electrodos. The present invention does not contemplate this technology since good conductivity is achieved by dispersing the conductive load well and correctly processing the material to obtain the final film or piece with the desired conductive properties. Therefore, a PTC plastic is obtained by conventional processes thanks to the good dispersion of the conductive particles which are achieved by applying specific and specific processing conditions, which also allows to produce larger geometries with greater distance from the electrodes.
La invención CN201610317174 hace referencia a pastas conductoras en base solvente sin ser polímeros termoplásticos. El material polimérico que se produce por extrusión es el sustrato (no conductor) sobre el que se aplica la pasta conductora. Es un proceso de impresión funcional de tintas, muy diferente al procesado de termoplásticos. The invention CN201610317174 refers to solvent-based conductive pastes without being thermoplastic polymers. The polymeric material that is produced by extrusion is the substrate (non-conductive) on which the conductive paste is applied. It is a functional printing process of inks, very different from thermoplastic processing.
Por lo tanto, las invenciones encontradas se basan en la aplicación de pinturas o barnices conductores que finalmente conforman un recubrimiento conductor o están basadas en la extrusión de materiales con peores conductividades eléctricas lo que posteriormente dificulta y complica la configuración de los electrodos. La aplicación de recubrimientos es un proceso manual y el comportamiento final del elemento calefactor depende de diferentes factores, tales como: número de capas de la pintura o disolución conductora, trabajador que aplica la pintura, homogeneidad de la disolución, ya que si las partículas conductoras decantan con el tiempo puede que la primera capa aplicada tenga una concentración de partículas conductoras mucho mayor que la última capa aplicada. Por lo tanto, la homogeneidad de calentamiento y la reproducibilidad de los elementos calefactables producidos no es estable. Therefore, the inventions found are based on the application of conductive paints or varnishes that finally make up a conductive coating or are based on the extrusion of materials with worse electrical conductivities, which subsequently complicates and complicates the configuration of the electrodes. The application of coatings is a manual process and the final behavior of the heating element depends on different factors, such as: number of layers of the paint or conductive solution, worker who applies the paint, homogeneity of the solution, since if the conductive particles They decant over time, the first applied layer may have a concentration of conductive particles much greater than the last applied layer. Therefore, the heating homogeneity and reproducibility of the heating elements produced is not stable.
En la presente invención las partículas conductoras se dispersan en la matriz termoplástica en una extrusora de doble husillo co-rotativa. Se obtiene un nanocompuesto homogéneo de alta conductividad eléctrica, permitiendo posicionar los electrodos a gran distancia. En un procesado posterior, este material se funde para obtener una lámina conductora. Dicho proceso puede ser una extrusión, una compresión o una inyección. La pieza obtenida tendrá una concentración de partículas conductoras homogénea asegurando un comportamiento reproducible y homogéneo. Además, al basarse en materiales termoplásticos, la lámina puede ser triturada y volverse a procesar asegurando el reciclado al final de la vida del producto. El reciclado no se contempla en el estado de la técnica ya que se combinan materiales diferentes y recubrimientos termoestables que no permiten su reciclado. In the present invention the conductive particles are dispersed in the thermoplastic matrix in a co-rotating twin screw extruder. A homogeneous nanocomposite of high electrical conductivity is obtained, allowing the electrodes to be positioned at a great distance. In a subsequent processing, this material is melted to obtain a conductive sheet. Said process can be an extrusion, a compression or an injection. The piece obtained will have a concentration of homogeneous conductive particles ensuring a reproducible and homogeneous behavior. In addition, based on materials thermoplastics, the sheet can be crushed and reprocessed ensuring recycling at the end of the product's life. Recycling is not contemplated in the state of the art since different materials and thermosetting coatings that do not allow recycling are combined.
A diferencia de las invenciones mencionadas en los antecedentes, los materiales desarrollados y el proceso de fabricación llevado en la presente invención proporciona una menor resistividad de la lámina conductora siendo de 101 Ohm.cm, mucho menor respecto a la patente DE102011003012A1, que menciona resistencias de entre 103 a 106 ohm.cm, lo que implica una conducción mayor por el panel desarrollado. Unlike the inventions mentioned in the background, the materials developed and the manufacturing process carried out in the present invention provide a lower resistivity of the conductive sheet being 10 1 Ohm.cm, much lower compared to the patent DE102011003012A1, which mentions resistances between 10 3 to 10 6 ohm.cm, which implies a greater conduction through the developed panel.
Descripción de la invención Description of the invention
La presente invención ha sido ideada como un panel de calefacción que utiliza como fuente de alimentación energía eléctrica para ser convertida en energía térmica. La novedad radica en el tipo de material que compone el panel calefactable y en su proceso de fabricación. The present invention has been devised as a heating panel that uses electrical energy as a power source to be converted into thermal energy. The novelty lies in the type of material that makes up the heating panel and in its manufacturing process.
La solución concebida está basada en obtener una lámina de polímero conductor, ligero y reciclable para poder ser utilizado en una amplia variedad de diseños en función de los tamaños y geometrías requeridos según la aplicación. The solution conceived is based on obtaining a conductive, lightweight and recyclable polymer sheet to be used in a wide variety of designs depending on the sizes and geometries required according to the application.
Los materiales polímeros son habitualmente aislantes, sin embargo, gracias a la adición de aditivos conductores, pueden cambiar sus propiedades térmicas y eléctricas y sustituir a las resistencias metálicas generadoras de calor cuando se requiere este tipo de calefacción. Polymeric materials are usually insulating, however, thanks to the addition of conductive additives, they can change their thermal and electrical properties and replace metallic heat-generating resistors when this type of heating is required.
El panel calefactable produce energía térmica al ser aplicado una corriente eléctrica, de forma que, para llevar a cabo este proceso, el panel comprende: The heating panel produces thermal energy when an electric current is applied, so that, to carry out this process, the panel comprises:
una lámina, de material termoplástico, aditivada con partículas conductoras de temperatura que proporcionan a la lámina un comportamiento PTC (Possitive Temperature Coefficient), donde la geometría de la lámina puede ser adaptable por los procesos de te rm oconformad o utilizados en su fabricación y donde dicha lámina es reciclable;  a sheet, of thermoplastic material, additive with temperature conductive particles that provide the sheet with PTC (Possitive Temperature Coefficient) behavior, where the geometry of the sheet can be adaptable by the processes of thermoforming or used in its manufacture and where said sheet is recyclable;
unos electrodos metálicos conectados de forma mecánica a la lámina y configurados para aplicar una corriente eléctrica que atraviesa dicha lámina; metal electrodes mechanically connected to the sheet and configured to apply an electric current flowing through said sheet;
una primera capa aislante de temperatura y electricidad configurada para evitar pérdidas de energía calorífica por la dirección opuesta a la deseada;  a first temperature and electricity insulating layer configured to avoid losses of heat energy in the opposite direction to the desired one;
una segunda capa aislante de electricidad, configurada para evitar el contacto directo con la lámina; y  a second electrical insulating layer, configured to avoid direct contact with the sheet; Y
un sensor termopar unido a la lámina configurada para medir la temperatura interna del panel calefactable;  a thermocouple sensor attached to the sheet configured to measure the internal temperature of the heating panel;
de forma que la lámina está unida a la primera capa aislante por un lado y por el opuesto a la segunda capa aislante. Los electrodos metálicos, se unen por extremos opuestos longitudinales la lámina y el sensor termopar se une en la parte central de la lámina. so that the sheet is attached to the first insulating layer on one side and the opposite of the second insulating layer. The metal electrodes are joined by longitudinal opposite ends of the sheet and the thermocouple sensor is joined in the central part of the sheet.
Todos estos componentes que forman el panel calefactable, la lámina, la primera capa aislante, la segunda capa aislante, el sensor termopar y los electrodos metálicos, son reutilizables para formar parte de otro panel calefactable o para formar parte de otro sistema. All these components that form the heating panel, the sheet, the first insulating layer, the second insulating layer, the thermocouple sensor and the metal electrodes, are reusable to be part of another heated panel or to be part of another system.
Al tener la lámina un comportamiento termistor PTC, cuando se aplica una corriente eléctrica a los electrodos metálicos, la lámina funciona aumentando la resistencia eléctrica con el aumento de la temperatura. Es decir, una vez alcanzada la temperatura deseada se estabiliza y no se generan picos de temperatura, siendo un sistema seguro de calefacción. Esta característica le confiere la particularidad de ser auto-regulable, prescindiendo de la necesidad de termostatos, necesarios en otros sistemas de calefacción. Since the sheet has a PTC thermistor behavior, when an electric current is applied to the metal electrodes, the sheet works by increasing the electrical resistance with increasing temperature. That is, once the desired temperature is reached it stabilizes and no temperature peaks are generated, being a safe heating system. This feature gives it the particularity of being self-regulating, regardless of the need for thermostats, necessary in other heating systems.
Las partículas conductoras que aditivan el material termoplástico de la lámina tienen porcentajes directamente proporcionales en la mezcla con el material termoplástico, en función de la temperatura final requerida por el panel calefactable y del tipo de partículas conductoras utilizadas. Una vez formulado el material, la temperatura de los paneles puede ser regulada adaptando el voltaje de entrada o cortando el suministro de corriente, sin ser necesaria la adaptación de la formulación a cada una de las aplicaciones. The conductive particles that add the thermoplastic material of the sheet have percentages directly proportional in the mixture with the thermoplastic material, depending on the final temperature required by the heating panel and the type of conductive particles used. Once the material has been formulated, the temperature of the panels can be regulated by adapting the input voltage or cutting off the power supply, without adapting the formulation to each of the applications.
Estas partículas conductoras de temperatura de la lámina pueden ser nanotubos de carbono, grafeno, grafito, negro de humo o una combinación de las anteriores. These conductive particles of sheet temperature can be carbon nanotubes, graphene, graphite, carbon black or a combination of the above.
En una realización, las partículas conductoras que aditivan el material termoplástico de la lámina son nanotubos de carbono y poseen una concentración comprendida entre un 5- 10% respecto al peso total de la lámina. In one embodiment, the conductive particles that add the thermoplastic material of the sheet are carbon nanotubes and have a concentration between 5-5 10% with respect to the total weight of the sheet.
En otras realizaciones, cuando las partículas conductoras son de material grafito, la concentración está comprendida entre un 20-40%, cuando son de negro de humo, la concentración se sitúa entre un 10-30%, cuando son de grafeno, entre un 3-10%, siendo todos estos porcentajes respecto al peso total de la mezcla que forma la lámina. In other embodiments, when the conductive particles are of graphite material, the concentration is between 20-40%, when they are carbon black, the concentration is between 10-30%, when they are graphene, between 3 -10%, all these percentages being with respect to the total weight of the mixture that forms the sheet.
Los materiales termoplásticos de la lámina pueden ser poliolefinas, poliésteres, poliamidas, elastómeros termoplásticos, polisulfonas, polieterimidas o una combinación de todos los anteriores, ya que, todos ellos permiten el mezclado con las partículas conductoras de temperatura y poseen unas características estructurales y mecánicas adecuadas para el uso del panel calefactable, aunque preferiblemente se utiliza un tipo de poliolefina, el polipropileno. The thermoplastic materials of the sheet can be polyolefins, polyesters, polyamides, thermoplastic elastomers, polysulfones, polyetherimides or a combination of all of the above, since they all allow mixing with the conductive temperature particles and have adequate structural and mechanical characteristics for the use of the heated panel, although preferably one type of polyolefin, polypropylene, is used.
Además, al tratarse de un compuesto polimérico, la capa del“composite” puede adoptar múltiples formas por termoconformado, obteniendo un compuesto final ligero, permitiendo su uso para espacios con geometrías especiales. Además se le puede aplicar operaciones de mecanizado para realizar el ajuste con otros elementos. In addition, being a polymeric compound, the "composite" layer can take multiple forms by thermoforming, obtaining a lightweight final compound, allowing its use for spaces with special geometries. In addition, machining operations can be applied to adjust with other elements.
En una realización, el panel calefactable también comprende un tejido de recubrimiento que reviste parcial o la totalmente el panel, siendo dicho tejido de recubrimiento de un material aislante eléctrico resistente a cambios de temperatura y que se selecciona en función de las características de la instalación del panel. In one embodiment, the heating panel also comprises a covering fabric that partially or totally covers the panel, said covering fabric being an electrical insulating material resistant to temperature changes and which is selected according to the characteristics of the installation of the panel.
Los materiales conductores de los electrodos metálicos pueden ser de cobre o plata, aunque se pueden seleccionar otros materiales metálicos que se puedan unir mecánicamente a la lámina para poder ser reutilizados. The conductive materials of the metal electrodes can be made of copper or silver, although other metallic materials that can be mechanically attached to the sheet can be selected to be reused.
El proceso de fabricación de la lámina, de material termoplástico, aditivada con partículas conductoras de temperatura se lleva a cabo mediante procesos de transformación de plásticos y termoplásticos. The manufacturing process of the sheet, made of thermoplastic material, additive with temperature conductive particles, is carried out through processes of transformation of plastics and thermoplastics.
Para ello, en primer lugar, se introducen las partículas conductoras, en forma de polvo y del material termoplástico, preferiblemente polipropileno, en forma de pellets, en un depósito calentado de una extrusora de doble husillo, co-rotativa. Un vez que se han introducido las partículas conductoras y el material termoplástico en el depósito, se mezclan en caliente, fundiendo el material termoplástico en la extrusora, para conseguir una mezcla homogénea, aplicando, al mismo tiempo de la fundición del material termoplástico, una energía mecánica específica de al menos 0.5 kWh/kg. For this, firstly, the conductive particles, in powder form and of the thermoplastic material, preferably polypropylene, in the form of pellets, are introduced into a heated tank of a co-rotating twin-screw extruder. Once the conductive particles and the thermoplastic material have been introduced into the tank, they are mixed hot, melting the thermoplastic material in the extruder, to achieve a homogeneous mixture, applying, at the same time as the melting of the thermoplastic material, an energy specific mechanics of at least 0.5 kWh / kg.
El objetivo de este proceso consiste en dispersar la carga conductora en la matriz polimérica para conseguir propiedades eléctricas óptimas homogéneamente en todo el volumen de la lámina. The objective of this process is to disperse the conductive charge in the polymer matrix to achieve optimal electrical properties homogeneously throughout the entire volume of the sheet.
Para conseguir una óptima dispersión, la fundición del material termoplástico se realiza a una temperatura de 210 °C, para el caso preferente de una matriz de polipropileno, y los husillos giran a una velocidad superior a 600 rpm, para una entrada de material de 10 kilogramos a la hora en la extrusora co-rotativa de 25 mm de diámetro y de relación de longitud entre diámetro igual a 40. To achieve optimum dispersion, the melting of the thermoplastic material is carried out at a temperature of 210 ° C, for the preferred case of a polypropylene matrix, and the spindles rotate at a speed greater than 600 rpm, for a material input of 10 kilograms per hour in the co-rotating extruder with a diameter of 25 mm and a ratio of length between diameter equal to 40.
Una vez que se ha conseguido una mezcla homogénea, se pasa dicha mezcla del plástico fundido con las partículas conductoras por un cabezal de la extrusora, configurado para generar unos filamentos de material termoplástico aditivado con partículas conductoras. Once a homogeneous mixture has been achieved, said mixture of the molten plastic with the conductive particles is passed through an extruder head, configured to generate filaments of thermoplastic material added with conductive particles.
Estos filamentos de material termoplástico aditivado, una vez enfriados, son cortados por una cizalla para la obtención de pellets de dicho material. These filaments of additive thermoplastic material, once cooled, are cut by a shear to obtain pellets of said material.
Para no perder la conductividad eléctrica es necesario optimizar el procesado asegurando un enfriamiento lento del material a la salida del cabezal. Los rodillos de la calandra deben estar a alta temperatura asegurando que los nanotubos de carbono tienen tiempo suficiente para repartirse en la matriz polimérica y formar la red conductora. In order not to lose the electrical conductivity, it is necessary to optimize the processing by ensuring a slow cooling of the material at the head outlet. The calender rollers must be at a high temperature ensuring that the carbon nanotubes have enough time to distribute in the polymer matrix and form the conductive network.
En un proceso de fabricación posterior, se funden dichos pellets para la obtención de la lámina del panel calefactable mediante una nueva extrusión, un estirado, una laminación por rodillos, o una combinación de estos procesos de fabricación, siendo todos estos procesos en caliente para facilitar el moldeado de la lámina, aunque también se puede realizar mediante una inyección en matrices de plástico o en un moldeado por compresión. Con estos procesos de fabricación, la geometría de la lámina puede ser adaptable a cualquier geometría en función de las necesidades de forma y tamaño. En otra realización, la lámina conductora material termoplástico aditivado con partículas conductoras puede obtenerse en un solo paso, acoplando una extrusora co-rotativa a un cabezal de lámina plana. De esta forma, el panel es más económico y rápido de fabricar. In a subsequent manufacturing process, said pellets are melted to obtain the sheet of the heated panel by means of a new extrusion, a drawing, a rolling by rollers, or a combination of these manufacturing processes, all these processes being hot to facilitate the molding of the sheet, although it can also be carried out by injection into plastic dies or compression molding. With these manufacturing processes, the geometry of the sheet can be adaptable to any geometry depending on the needs of shape and size. In another embodiment, the conductive sheet thermoplastic material additive with conductive particles can be obtained in one step, by coupling a co-rotary extruder to a flat sheet head. In this way, the panel is cheaper and faster to manufacture.
Además, al basarse en materiales termoplásticos, la lámina puede ser triturada, para una nueva obtención de pellets, y volverse a procesar asegurando el reciclado al final de la vida del producto. Este reciclado no se contempla en los antecedentes encontrados ya que se combinan materiales diferentes, embebidos y recubrimientos termoestables que no permiten su reciclado. In addition, based on thermoplastic materials, the sheet can be crushed, for a new obtaining of pellets, and re-processed ensuring recycling at the end of the product's life. This recycling is not contemplated in the background found since different materials, embedded and thermosetting coatings are combined that do not allow recycling.
En este procedimiento descrito de fabricación de la lámina, las partículas conductoras no recubren ningún material, sino que son dispersadas en la matriz de la extrusora de doble husillo co-rotativa con el material termoplástico, a diferencia de estas invenciones mencionadas en los antecedentes, por lo que los materiales desarrollados en la presente invención obtienen la resistividad mencionada de 101 Ohm.cm, y una conducción térmica mayor. In this described process of manufacturing the sheet, the conductive particles do not cover any material, but are dispersed in the matrix of the twin-screw extruder co-rotating with the thermoplastic material, unlike these inventions mentioned in the background, by what materials developed in the present invention obtain the mentioned resistivity of 10 1 Ohm.cm, and a greater thermal conduction.
Esta buena conductividad únicamente se consigue dispersando bien la carga conductora y procesando correctamente las partículas conductoras para obtener la lámina con las propiedades conductoras deseadas. This good conductivity is only achieved by dispersing the conductive load well and correctly processing the conductive particles to obtain the sheet with the desired conductive properties.
Por lo tanto, con este proceso se consigue una lámina de plástico PTC por procesos de fabricación gracias a la dispersión de las partículas conductoras, las cuales se consiguen aplicando unas condiciones de procesado determinadas y específicas. Esto también permite producir geometrías de mayor tamaño que las encontradas y con mayor distancia entre los electrodos. Therefore, with this process a PTC plastic sheet is achieved by manufacturing processes thanks to the dispersion of the conductive particles, which are achieved by applying specific and specific processing conditions. This also allows to produce geometries larger than those found and with greater distance between the electrodes.
Cuando todos los materiales han sido fabricados, la construcción del panel calefactor se lleva a cabo mediante un mecanizado a medida según la geometría deseada del panel final o mediante un termoconformado, conectando los electrodos a la lámina y situando las capas de asilamiento a los lados de dicha lámina. When all the materials have been manufactured, the construction of the heating panel is carried out by custom machining according to the desired geometry of the final panel or by a thermoforming, connecting the electrodes to the sheet and placing the isolation layers on the sides of said sheet.
Una vez que estas capas han sido unidas a la lámina, el conjunto se reviste mediante el tejido de recubrimiento, a medida, según el diseño y la aplicación final con tejidos resistentes a cambios de temperaturas o posibles iteraciones que puedan tener con el exterior para proporcionar un acabado adecuado al uso. Once these layers have been attached to the sheet, the assembly is covered by the covering fabric, tailored, according to the design and the final application with fabrics resistant to changes in temperatures or possible iterations that may have with the outside to provide a finish suitable for use.
De esta forma, todas las partes del panel calefactor son completamente reciclables, debido a su naturaleza, y reutilizables para la misma u otra aplicación. In this way, all parts of the heating panel are completely recyclable, due to their nature, and reusable for the same or another application.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
En la figura 1 se muestra un vista en alzado y otra en perfil del panel calefactable. En la figura 2 se muestra la temperatura alcanzada de paneles calefactables con láminas de conducción de calor de diferentes tamaños y geometrías. Figure 1 shows an elevation view and another in profile of the heated panel. Figure 2 shows the temperature reached of heated panels with heat conduction sheets of different sizes and geometries.
En la figura 3 se muestra una gráfica en la que se indica como varían los niveles de temperatura del material de una lámina fabricada en polipropileno con nanotubos de carbono, cuando se aplican 48V comenzando desde una temperatura de -21°C.  Figure 3 shows a graph in which the temperature levels of the material of a sheet made of polypropylene with carbon nanotubes vary, when 48V are applied starting from a temperature of -21 ° C.
DESCRIPCIÓN PREFERENTE DE LA INVENCIÓN PREFERRED DESCRIPTION OF THE INVENTION
Como se puede apreciar en la figura 1 , el panel calefactable de la presente invención está compuesto por una lámina (1), fabricada en material termoplástico, unos electrodos metálicos (6) conectados en los laterales de forma mecánica a la lámina (1), una primera capa aislante (3) situada a uno de los lados de la lámina (1), que evita la perdida de temperatura de la lámina por el lado opuesto al deseado, y evita también el paso de corriente eléctrica por ese lado, una segunda capa aislante (2) de electricidad para limitar el paso de la corriente eléctrica por el lado opuesto de la lámina (1) por donde se emite el calor y un sensor termopar (5) unido a la lámina (1) que mide la temperatura interna del panel calefactable. As can be seen in Figure 1, the heating panel of the present invention is composed of a sheet (1), made of thermoplastic material, metal electrodes (6) mechanically connected on the sides to the sheet (1), a first insulating layer (3) located on one side of the sheet (1), which prevents the loss of temperature of the sheet on the opposite side to the desired one, and also prevents the passage of electric current through that side, a second insulating layer (2) of electricity to limit the passage of electric current on the opposite side of the sheet (1) where heat is emitted and a thermocouple sensor (5) attached to the sheet (1) that measures the internal temperature of the heated panel.
En la realización preferente, dicho panel calefactable está recubierto parcial o la totalmente por un tejido de recubrimiento (4), de un material aislante eléctrico, con doble finalidad. Evitar que un usuario próximo al panel pueda tener contacto indeseado con la lámina (1) calefactable conductora de electricidad y proporcionar un acabado acorde al lugar de instalación del panel. In the preferred embodiment, said heating panel is partially or totally covered by a covering fabric (4), of an electrical insulating material, with a double purpose. Prevent a user close to the panel from having unwanted contact with the electrically conductive heating sheet (1) and provide a finish according to the installation site of the panel.
Este tejido de recubrimiento (4) puede ser de muchos tipos, pero preferentemente se selecciona un tejido natural. La lámina (1) es capaz de emitir calor, a pesar de estar fabricada en material termoplástico, porque está aditivada con partículas conductoras eléctricas proporcionando a la lámina (1) un comportamiento PTC. Estas partículas conductoras de temperatura de la lámina (1) pueden ser de diferentes tipos como nanotubos de carbono, grafeno, grafito, negro de humo y una combinación de las anteriores, utilizándose preferentemente los nanotubos de carbono (NTC, ó CTN por su siglas en inglés) por las propiedades que tienen de conducción de calor. This covering fabric (4) can be of many types, but preferably a natural fabric is selected. The sheet (1) is capable of emitting heat, despite being made of thermoplastic material, because it is additive with electrical conductive particles providing the sheet (1) with a PTC behavior. These conductive particles of sheet temperature (1) can be of different types such as carbon nanotubes, graphene, graphite, carbon black and a combination of the above, preferably using carbon nanotubes (NTC, or CTN by its acronym in English) for the heat conduction properties.
El porcentaje de estas partículas de nanotubos de carbono está comprendida entre un 5 y un 10% respecto al peso total de la lámina, que se completa con materiales termoplásticos seleccionados entre poliolefinas, poliésteres, poliamidas, elastómeros termoplásticos, polisulfona, polieterimida o una combinación de todos los anteriores, aunque se utiliza preferentemente el polipropileno, un compuesto dentro del grupo de poliolefinas. The percentage of these particles of carbon nanotubes is between 5 and 10% with respect to the total weight of the sheet, which is completed with thermoplastic materials selected from polyolefins, polyesters, polyamides, thermoplastic elastomers, polysulfone, polyetherimide or a combination of all of the above, although polypropylene, a compound within the group of polyolefins, is preferably used.
En la figura 2 se observa la temperatura que puede alcanzar el panel calefactable utilizando como partícula aditiva, nanotubos de carbono (CNT) en diferentes porcentajes y diferentes tamaños, de modo que a mayor porcentaje de nanotubos, mayor es la temperatura alcanzada por el panel. Figure 2 shows the temperature that can reach the heating panel using as an additive particle, carbon nanotubes (CNT) in different percentages and different sizes, so that the higher the percentage of nanotubes, the higher the temperature reached by the panel.
El material termoplástico utilizado en este caso, mostrado en la figura 2, es un polipropileno en el cual se han mezclado con diferentes porcentajes de nanotubos de carbono (CNT) desde un 3% a un 10% en peso. Aplicando una tensión de 48 V al panel calefactable, se generan diferentes temperaturas en grados centígrados, llegando a alacanzar hasta los 100°C si el panel tiene una superficie reducida de 15 x 15 cm de lado. The thermoplastic material used in this case, shown in Figure 2, is a polypropylene in which they have been mixed with different percentages of carbon nanotubes (CNT) from 3% to 10% by weight. Applying a voltage of 48 V to the heating panel, different temperatures are generated in degrees Celsius, reaching up to 100 ° C if the panel has a reduced surface of 15 x 15 cm side.
En la gráfica de la figura 3, se muestra el funcionamiento lámina fabricada en polipropileno con nanotubos de carbono a la cual se le ha aplicado un voltaje de 48 voltios, de forma paulatina durante el primer minuto, estableciendo ese voltaje constante hasta el minuto 6. Debido a la carga aplicada, la temperatura del panel empieza a calentarse en un crecimiento logarítmico, para pasar de -21°C hasta los 75°C en esos 6 minutos, en los cuales se aplica el voltaje indicado. Al retirar el voltaje, la temperatura se reduce de forma paulatina en un decrecimiento exponencial. The graph of figure 3 shows the operation of a sheet made of polypropylene with carbon nanotubes to which a voltage of 48 volts has been applied, gradually during the first minute, establishing that constant voltage until minute 6. Due to the applied load, the temperature of the panel begins to heat up in a logarithmic growth, to go from -21 ° C to 75 ° C in those 6 minutes, in which the indicated voltage is applied. When the voltage is removed, the temperature is gradually reduced in an exponential decrease.
Con estos materiales utilizados en la de la lámina del panel calefactable, cuyo ensayo se recoge en la figura 3, se consigue alcanzar los 45°C en 4 min comenzando a una temperatura de -21°C. With these materials used in the sheet of the heated panel, whose test is collected in figure 3, it is possible to reach 45 ° C in 4 min starting at a temperature of -21 ° C.
El consumo de energía de dicho panel calefactable es de 120W para una geometría rectangular de 350 cm de lado por 250 cm por otro lado y por 2 cm de ancho, aplicando 48V y de 64W, para la misma geometría, aplicando 24V. Para una geometría más reducida, de un panel de forma cuadrada de 15 cm por cada lado y por 1 cm de ancho el consumo de energía es de 20W a 48V y de 5W a 24V. The energy consumption of said heated panel is 120W for a rectangular geometry of 350 cm side by 250 cm on the other side and 2 cm wide, applying 48V and 64W, for the same geometry, applying 24V. For a smaller geometry, with a 15 cm square panel on each side and 1 cm wide, the power consumption is 20W at 48V and 5W at 24V.
Para la fabricación de la lámina (1) se siguen una serie de procesos, para conseguir las características mencionadas de funcionamiento. Al estar compuesta la lámina (1) por un material termoplástico y por las partículas aditivadas, en primer lugar se hace un mezclado de ambos componentes, de modo que se unen en estado de pellets y polvo, y se calientan para obtener el fundido del material plástico, donde se remueve dentro de una extrusora aplicando una energía mecánica específica de al menos 0.5 kWh/kg. For the manufacture of the sheet (1) a series of processes are followed, to achieve the mentioned operating characteristics. Since the sheet (1) is composed of a thermoplastic material and additive particles, first of all, a mixture of both components is made, so that they are joined in a state of pellets and powder, and heated to obtain the melting of the material plastic, where it is removed inside an extruder applying a specific mechanical energy of at least 0.5 kWh / kg.
La fundición del material termoplástico se realiza a una temperatura de al menos 210 °C, cuando se utiliza polipropileno y los husillos giran a una velocidad de al menos 600 rpm, para una entrada de material de 10 kilogramos a la hora en una extrusora co-rotativa de 25 mm de diámetro y de relación de longitud entre diámetro igual a 40. The melting of the thermoplastic material is carried out at a temperature of at least 210 ° C, when polypropylene is used and the spindles rotate at a speed of at least 600 rpm, for a material input of 10 kilograms per hour in a co-extruder Rotary of 25 mm in diameter and length ratio between diameter equal to 40.
Una vez que se ha conseguido la correcta homogeneización de la mezcla, se extruye el material para obtener unos filamentos que se enfrían y se solidifican en unos rodillos, para ser posteriormente cortados por una cizalla y obtener unos nuevos pellets pero de la mezcla de componentes. Once the correct homogenization of the mixture has been achieved, the material is extruded to obtain filaments that are cooled and solidified in rollers, to be subsequently cut by a shear and obtain new pellets but of the mixture of components.
Dichos pellets se utilizan para la obtención de la lámina (1) siguiendo uno o diferentes procesos de transformación de los plásticos, como la extrusión, el estirado, el moldeado por compresión, la laminación por rodillos o la inyección en matrices. Said pellets are used to obtain the sheet (1) following one or different processes of transformation of the plastics, such as extrusion, stretching, compression molding, roller lamination or die injection.
Una vez que la lámina (1) ha sido fabricada, se une al resto de componentes que forman el panel calefactable y se dispone para su uso. Once the sheet (1) has been manufactured, it joins the rest of the components that form the heating panel and is ready for use.
EJEMPLOS Ejemplo 1 : Panel calefactable basado en polipropileno y nanotubos de carbono (NTC) EXAMPLES Example 1: Heating panel based on polypropylene and carbon nanotubes (NTC)
El presente ejemplo hace referencia a una lámina de polipropileno y nanotubos de carbono obtenida por extrusión de lámina plana. En este proceso el material plástico se funde mediante calor y cizalla en una extrusora y es forzado a pasar por un cabezal otorgándole forma de lámina. La lámina se hace pasar a través de una calandra o sistema de rodillos. El enfriamiento del material se controla variando la temperatura de estos rodillos. The present example refers to a sheet of polypropylene and carbon nanotubes obtained by extrusion of flat sheet. In this process the plastic material is melted by heat and shear in an extruder and is forced to pass through a head giving it a sheet shape. The sheet is passed through a calender or roller system. The cooling of the material is controlled by varying the temperature of these rollers.
En la Tabla 1 se recopilan los parámetros clave para el procesado por extrusión de la lámina con alta conductividad eléctrica. Table 1 shows the key parameters for extrusion processing of the sheet with high electrical conductivity.
Tabla 1 : Parámetros óptimos de extrusión Table 1: Optimum extrusion parameters
Figure imgf000014_0001
Figure imgf000014_0001
El porcentaje de nanotubos de carbono se determina según la temperatura de uso que requiera la aplicación. Siendo el rango óptimo entre un 5-10% de nanotubos para alcanzar temperaturas de entre 25-100°C. The percentage of carbon nanotubes is determined according to the use temperature required by the application. Being the optimum range between 5-10% of nanotubes to reach temperatures between 25-100 ° C.
Ejemplo 2: Panel calefactable basado en polipropileno y grafito En este segundo ejemplo la lámina se obtiene por moldeo por compresión. Los principales parámetros que intervienen en el proceso son la presión ejercida sobre el molde, el tiempo del ciclo y la temperatura durante el procesado. Example 2: Heating panel based on polypropylene and graphite In this second example the sheet is obtained by compression molding. The main parameters involved in the process are the pressure exerted on the mold, the cycle time and the temperature during processing.
En la tabla 2 se muestras las condiciones de procesado para alcanzar una conductividad eléctrica óptima en las placas de grafito. Table 2 shows the processing conditions to achieve optimum electrical conductivity in the graphite plates.
Tabla 2: Parámetros de procesado por moldeo por compresión Table 2: Compression molding processing parameters
Figure imgf000015_0001
Figure imgf000015_0001
La Tabla 3 muestra las temperaturas alcanzadas en tres zonas del panel calefactable al aplicar un voltaje determinado. La geometría de los paneles en este caso es de 15 x 15 cm y se obtuvieron por moldeo por compresión. Tabla 3: Comportamiento térmico de paneles de polipropileno con grafito Table 3 shows the temperatures reached in three zones of the heating panel when applying a certain voltage. The geometry of the panels in this case is 15 x 15 cm and they were obtained by compression molding. Table 3: Thermal behavior of polypropylene panels with graphite
Figure imgf000015_0002
Figure imgf000015_0002

Claims

REIVINDICACIONES
1.- Panel o lámina calefactable, capaz de producir energía calor al ser aplicada una corriente eléctrica, caracterizado por que comprende: 1.- Panel or heated sheet, capable of producing heat energy when an electric current is applied, characterized in that it comprises:
una lámina (1), de material termoplástico, aditivada con partículas conductoras eléctricas que proporcionan a la lámina (1) un comportamiento PTC, donde dicha lámina (1) es reciclable;  a sheet (1), made of thermoplastic material, additive with electrical conductive particles that provide the sheet (1) with a PTC behavior, where said sheet (1) is recyclable;
unos electrodos metálicos (6) conectados de forma mecánica a la lámina (1) y configurados para aplicar una corriente eléctrica que atraviesa dicha lámina (1); una primera capa aislante (3) de temperatura y electricidad configurada para evitar pérdidas de energía calorífica por la dirección opuesta a la deseada;  metal electrodes (6) mechanically connected to the sheet (1) and configured to apply an electric current through said sheet (1); a first insulating layer (3) of temperature and electricity configured to avoid losses of heat energy in the opposite direction to the desired one;
una segunda capa aislante (2) de electricidad, configurada para evitar el contacto directo con la lámina (1); y  a second insulating layer (2) of electricity, configured to avoid direct contact with the sheet (1); Y
un sensor termopar (5) unido a la lámina (1) configurada para medir la temperatura interna del panel calefactable;  a thermocouple sensor (5) attached to the sheet (1) configured to measure the internal temperature of the heating panel;
donde la lámina (1) está unida a: where the sheet (1) is attached to:
la primera capa aislante (3) por un lado de dicha lámina (1);  the first insulating layer (3) on one side of said sheet (1);
la segunda capa aislante (2) por el lado opuesto de la unión de dicha lámina (1) con la primera capa aislante (3);  the second insulating layer (2) on the opposite side of the junction of said sheet (1) with the first insulating layer (3);
a los electrodos metálicos (6), por extremos opuestos longitudinales de dicha lámina (1) y;  to the metal electrodes (6), by longitudinal opposite ends of said sheet (1) and;
al sensor termopar (5) en la parte central de la lámina (1),  to the thermocouple sensor (5) in the central part of the sheet (1),
siendo, la lámina (1), la primera capa aislante (3), la segunda capa aislante (2), el sensor termopar (5) y los electrodos metálicos (6), reutilizables. being, the sheet (1), the first insulating layer (3), the second insulating layer (2), the thermocouple sensor (5) and the metal electrodes (6), reusable.
2.- Panel calefactable según la reivindicación 1 , caracterizado por que las partículas conductoras de temperatura de la lámina (1) están seleccionadas dentro del grupo que consiste en nanotubos de carbono, grafeno, grafito, negro de humo y una combinación de las anteriores. 2. Heating panel according to claim 1, characterized in that the temperature conducting particles of the sheet (1) are selected from the group consisting of carbon nanotubes, graphene, graphite, carbon black and a combination of the above.
3.- Panel calefactable según la reivindicación 2, caracterizado por que las partículas conductoras que aditivan el material termoplástico de la lámina (1) son nanotubos de carbono con una concentración comprendida entre un 5-10% respecto al peso total de la lámina. 3. Heating panel according to claim 2, characterized in that the conductive particles that add the thermoplastic material of the sheet (1) are carbon nanotubes with a concentration between 5-10% with respect to the total weight of the sheet.
4.- Panel calefactable según la reivindicación 2, caracterizado por que las partículas conductoras que aditivan el material termoplástico de la lámina (1) son de material grafito, con una concentración comprendida entre un 20-40% respecto al peso total de la lámina 4. Heating panel according to claim 2, characterized in that the conductive particles that add the thermoplastic material of the sheet (1) are made of graphite material, with a concentration between 20-40% with respect to the total weight of the sheet
5.- Panel calefactable según la reivindicación 2, caracterizado por que las partículas conductoras que aditivan el material termoplástico de la lámina (1) son de negro de humo, con una concentración comprendida entre un 10-30% respecto al peso total de la lámina. 5. Heating panel according to claim 2, characterized in that the conductive particles that add the thermoplastic material of the sheet (1) are carbon black, with a concentration between 10-30% with respect to the total weight of the sheet .
6.- Panel calefactable según la reivindicación 2, caracterizado por que las partículas conductoras que aditivan el material termoplástico de la lámina (1) son de grafeno, con una concentración comprendida entre un 3-10% respecto al peso total de la lámina. 6. Heating panel according to claim 2, characterized in that the conductive particles that add the thermoplastic material of the sheet (1) are graphene, with a concentration between 3-10% with respect to the total weight of the sheet.
7.- Panel calefactable según una cualquiera de las reivindicaciones anteriores, caracterizado por que los materiales termoplásticos de la lámina (1) están seleccionados dentro del grupo que consiste en poliolefinas, poliésteres, poliamidas, elastómeros termoplásticos, polisulfona, polieterimida y una combinación de todos los anteriores. 7. Heating panel according to any one of the preceding claims, characterized in that the thermoplastic materials of the sheet (1) are selected from the group consisting of polyolefins, polyesters, polyamides, thermoplastic elastomers, polysulfone, polyetherimide and a combination of all the above
8.- Panel calefactable según una cualquiera de las reivindicaciones anteriores, caracterizado por que el panel calefactable adicionalmente comprende un tejido de recubrimiento (4) que reviste parcial o la totalmente el panel, siendo dicho tejido de recubrimiento (4) de un material aislante eléctrico, seleccionados dentro de un grupo que consiste en policloruro de vinilo, poliuretano, tejidos naturales y una combinación de todos los anteriores. 8. Heating panel according to any one of the preceding claims, characterized in that the heating panel additionally comprises a covering fabric (4) that partially or totally covers the panel, said covering fabric (4) being of an electrical insulating material , selected from a group consisting of polyvinyl chloride, polyurethane, natural fabrics and a combination of all of the above.
9.- Panel calefactable según una cualquiera de las reivindicaciones anteriores, caracterizado por que los materiales conductores de los electrodos metálicos (6) están seleccionadas dentro del grupo que consiste cobre y plata. 9. Heating panel according to any one of the preceding claims, characterized in that the conductive materials of the metal electrodes (6) are selected from the group consisting of copper and silver.
10.- Proceso de fabricación de la lámina (1), de material termoplástico, aditivada con partículas conductoras de temperatura, mediante procesos de transformación de plásticos y termoplásticos, caracterizado por que el proceso comprende: 10.- Manufacturing process of the sheet (1), made of thermoplastic material, additive with temperature conductive particles, through processes of transformation of plastics and thermoplastics, characterized in that the process comprises:
a) Introducir las partículas conductoras en forma de polvo y el material termoplástico, en forma de pellets, en un depósito calentado de una extrusora de doble husillo, co- rotativa; b) Mezclar en caliente, fundiendo el material termoplástico en la extrusora, configurada para obtener una mezcla homogénea de dicho material termoplástico con las partículas conductoras, aplicando, al mismo tiempo de la fundición del material termoplástico, una energía mecánica específica de al menos 0.5 kWh/kg. a) Insert the conductive particles in powder form and the thermoplastic material, in the form of pellets, into a heated tank of a twin-screw extruder, rotary; b) Hot mix, melting the thermoplastic material in the extruder, configured to obtain a homogeneous mixture of said thermoplastic material with the conductive particles, applying, at the same time as the melting of the thermoplastic material, a specific mechanical energy of at least 0.5 kWh / kg
11.- Proceso de fabricación de la lámina (1), según la reivindicación 10, caracterizado por que el proceso de fabricación adicionalmente comprende: 11.- Manufacturing process of the sheet (1), according to claim 10, characterized in that the manufacturing process additionally comprises:
c1) Forzar el paso de la mezcla del plástico fundido con las partículas conductoras, por un cabezal de la extrusora, configurado para generar unos filamentos de material termoplástico aditivado con partículas conductoras;  c1) Force the passage of the mixture of the molten plastic with the conductive particles, through an extruder head, configured to generate filaments of thermoplastic material added with conductive particles;
d1) Cortar de dichos filamentos de material termoplástico aditivado con una cizalla para la obtención de pellets de dicho material;  d1) Cut said filaments of additive thermoplastic material with a shear to obtain pellets of said material;
e1) Fundir dichos pellets, para la obtención de la lámina (1) del panel calefactable, en un proceso seleccionado dentro de un grupo que consiste en extrusión, estirado, moldeado por compresión, laminación por rodillos e inyección.  e1) Melt said pellets, in order to obtain the sheet (1) of the heating panel, in a process selected within a group consisting of extrusion, stretching, compression molding, roller rolling and injection.
12.- Proceso de fabricación de la lámina (1), según la reivindicación 10, caracterizado por que el proceso de fabricación adicionalmente comprende: 12.- Manufacturing process of the sheet (1), according to claim 10, characterized in that the manufacturing process additionally comprises:
c2) Extrusionar el material termoplástico aditivado con partículas conductoras, por la extrusora, produciendo la lámina (1) del panel calefactable.  c2) Extrude the thermoplastic material added with conductive particles, by the extruder, producing the sheet (1) of the heated panel.
13.- Proceso de fabricación de la lámina (1), según la reivindicación 10, caracterizado por que la lámina (1) es reciclada, siendo triturada en forma de pellets que se añaden a las partículas conductoras en forma de polvo y al material termoplástico en forma de pellets al depósito calentado de la extrusora, de la fase a). 13.- Manufacturing process of the sheet (1), according to claim 10, characterized in that the sheet (1) is recycled, being crushed in the form of pellets that are added to the conductive particles in the form of powder and the thermoplastic material in the form of pellets to the heated tank of the extruder, of phase a).
14.- Proceso de fabricación del panel calefactable, según la reivindicación 10, caracterizado por que la fundición del material termoplástico se realiza a una temperatura de al menos 210 °C, para polipropileno y los husillos giran a una velocidad de al menos 600 rpm, para una entrada de material de 10 kilogramos a la hora en una extrusora co- rotativa de 25 mm de diámetro y de relación de longitud entre diámetro igual a 40. 14.- Manufacturing process of the heated panel according to claim 10, characterized in that the melting of the thermoplastic material is carried out at a temperature of at least 210 ° C, for polypropylene and the spindles rotate at a speed of at least 600 rpm, for an input of material of 10 kilograms per hour in a co-rotating extruder of 25 mm in diameter and of a ratio of length between diameter equal to 40.
PCT/ES2019/070276 2018-06-18 2019-04-23 Heatable panel and its manufacturing method WO2019243644A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19823534.3A EP3809600B1 (en) 2018-06-18 2019-04-23 Heatable panel and its manufacturing method
ES19823534T ES2940748T3 (en) 2018-06-18 2019-04-23 Heatable panel and manufacturing process thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201830593 2018-06-18
ES201830593A ES2735428B2 (en) 2018-06-18 2018-06-18 HEATING PANEL AND SAME MANUFACTURING PROCEDURE

Publications (1)

Publication Number Publication Date
WO2019243644A1 true WO2019243644A1 (en) 2019-12-26

Family

ID=68847872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070276 WO2019243644A1 (en) 2018-06-18 2019-04-23 Heatable panel and its manufacturing method

Country Status (4)

Country Link
EP (1) EP3809600B1 (en)
ES (2) ES2735428B2 (en)
PT (1) PT3809600T (en)
WO (1) WO2019243644A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112822803A (en) * 2020-12-31 2021-05-18 泰安市中研复合材料科技有限公司 Bendable heating device with adhesive tape structure and preparation method thereof
CH717856A1 (en) * 2020-09-15 2022-03-15 Graphenaton Tech Sa Self-regulated heating film.

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0437239A2 (en) * 1990-01-12 1991-07-17 Idemitsu Kosan Company Limited Process for the production of molded article having positive temperature coefficient characteristics
WO2002076805A1 (en) 2001-03-27 2002-10-03 Dalphi Metal España, S.A. Heated steering wheel for motor vehicles
US20050172950A1 (en) 2001-02-15 2005-08-11 Integral Technologies, Inc. Low cost heated clothing manufactured from conductive loaded resin-based materials
WO2007089118A1 (en) 2006-02-03 2007-08-09 Exaenc Corp. Heating element using carbon nano tube
DE102007004953A1 (en) 2007-01-26 2008-07-31 Tesa Ag heating element
WO2009011674A1 (en) 2007-07-13 2009-01-22 Western Michigan University Research Foundation Trans-1,2-diphenylethylene derivatives and nanosensors made therefrom
WO2009040774A1 (en) * 2007-09-28 2009-04-02 Sabic Innovative Plastics Ip B.V. Thermoplastic composition and method for making' thereof
US20100213189A1 (en) * 2009-02-26 2010-08-26 Tesa Se Heated Planar Element
DE102011003012A1 (en) 2011-01-23 2012-07-26 Jürgen Schaeffer Heating film for use in seat heater in inner space of motor car, has electrical conductive polymer layer made of thermal stable, cross linked polymer and arranged between two metallic films that are electrically insulated from each other
DE102011086448A1 (en) 2011-11-16 2013-05-16 Margarete Franziska Althaus Method for producing a heating element
ES2402034B1 (en) 2011-10-13 2014-02-25 Fundación Para La Promoción De La Innov., Inv. Y Desarrollo Tecnológico En La Industria De Automoción De Galicia MANUFACTURING PROCEDURE OF A RADIANT HEAT COATING.
CN104788818A (en) * 2015-04-09 2015-07-22 郑州大学 PTC (positive temperature coefficient) polymer-matrix conductive composite with adjustable PTC strength and preparation method of composite
ES2537400B1 (en) 2013-12-04 2016-01-22 Seat, S.A. Procedure for obtaining a heater in a car
ES2574622A1 (en) 2014-12-18 2016-06-21 Fundación Para La Promoción De La Innovación, Invest. Y Desarrollo Tecnológico En La Industria De Automoción De Galicia Heating device comprising a conductive sheet and metal electrodes and method of manufacturing thereof (Machine-translation by Google Translate, not legally binding)
US20170006664A1 (en) * 2015-07-03 2017-01-05 Ndt Engineering & Aerospace Co., Ltd. Wet-use plane heater using ptc constant heater-ink polymer
EP3288890A1 (en) * 2015-04-28 2018-03-07 Benecke-Kaliko AG Conductive film for a resistance heater

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0437239A2 (en) * 1990-01-12 1991-07-17 Idemitsu Kosan Company Limited Process for the production of molded article having positive temperature coefficient characteristics
US20050172950A1 (en) 2001-02-15 2005-08-11 Integral Technologies, Inc. Low cost heated clothing manufactured from conductive loaded resin-based materials
WO2002076805A1 (en) 2001-03-27 2002-10-03 Dalphi Metal España, S.A. Heated steering wheel for motor vehicles
WO2007089118A1 (en) 2006-02-03 2007-08-09 Exaenc Corp. Heating element using carbon nano tube
DE102007004953A1 (en) 2007-01-26 2008-07-31 Tesa Ag heating element
WO2009011674A1 (en) 2007-07-13 2009-01-22 Western Michigan University Research Foundation Trans-1,2-diphenylethylene derivatives and nanosensors made therefrom
WO2009040774A1 (en) * 2007-09-28 2009-04-02 Sabic Innovative Plastics Ip B.V. Thermoplastic composition and method for making' thereof
US20100213189A1 (en) * 2009-02-26 2010-08-26 Tesa Se Heated Planar Element
DE102011003012A1 (en) 2011-01-23 2012-07-26 Jürgen Schaeffer Heating film for use in seat heater in inner space of motor car, has electrical conductive polymer layer made of thermal stable, cross linked polymer and arranged between two metallic films that are electrically insulated from each other
ES2402034B1 (en) 2011-10-13 2014-02-25 Fundación Para La Promoción De La Innov., Inv. Y Desarrollo Tecnológico En La Industria De Automoción De Galicia MANUFACTURING PROCEDURE OF A RADIANT HEAT COATING.
DE102011086448A1 (en) 2011-11-16 2013-05-16 Margarete Franziska Althaus Method for producing a heating element
ES2537400B1 (en) 2013-12-04 2016-01-22 Seat, S.A. Procedure for obtaining a heater in a car
ES2574622A1 (en) 2014-12-18 2016-06-21 Fundación Para La Promoción De La Innovación, Invest. Y Desarrollo Tecnológico En La Industria De Automoción De Galicia Heating device comprising a conductive sheet and metal electrodes and method of manufacturing thereof (Machine-translation by Google Translate, not legally binding)
CN104788818A (en) * 2015-04-09 2015-07-22 郑州大学 PTC (positive temperature coefficient) polymer-matrix conductive composite with adjustable PTC strength and preparation method of composite
EP3288890A1 (en) * 2015-04-28 2018-03-07 Benecke-Kaliko AG Conductive film for a resistance heater
US20170006664A1 (en) * 2015-07-03 2017-01-05 Ndt Engineering & Aerospace Co., Ltd. Wet-use plane heater using ptc constant heater-ink polymer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"GRAPHENE-BASED POLYMER NANOCOMPOSITES IN ELECTRONICS", 20 January 2015, SPRINGER LINK, ISBN: 978-3-319-13875-6, article P. NOORUNNISA KHANAM ET AL.: "Electrical properties of graphene polymer nanocomposites.", pages: 25 - 47, XP055664565, DOI: 10.1007/978-3-319-13875-6_2 *
GARY THOMAS: "Recycling of polypropylene", AZOCLEANTECH.COM, 19 October 2012 (2012-10-19), XP009520857, Retrieved from the Internet <URL:http://web.archive.org/web/20121019101645/https://www.azocleantech.com/article.aspx?ArticleID=240> [retrieved on 20190527] *
See also references of EP3809600A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH717856A1 (en) * 2020-09-15 2022-03-15 Graphenaton Tech Sa Self-regulated heating film.
CN112822803A (en) * 2020-12-31 2021-05-18 泰安市中研复合材料科技有限公司 Bendable heating device with adhesive tape structure and preparation method thereof
CN112822803B (en) * 2020-12-31 2023-08-04 泰安市中研复合材料科技有限公司 Bendable heating device of adhesive tape structure and preparation method thereof

Also Published As

Publication number Publication date
PT3809600T (en) 2023-03-22
ES2940748T3 (en) 2023-05-11
EP3809600A1 (en) 2021-04-21
ES2735428B2 (en) 2022-10-26
EP3809600A4 (en) 2021-08-18
ES2735428A1 (en) 2019-12-18
EP3809600B1 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
ES2940748T3 (en) Heatable panel and manufacturing process thereof
KR101328353B1 (en) Heating sheet using carbon nano tube
JP5657889B2 (en) Heating element
JP5866073B2 (en) Carbon exothermic composition and carbon exothermic body
JP2022023890A (en) Air heating system for vehicles
BR102016004479B1 (en) COMPOSITE PANEL, VEHICLE, AND METHOD FOR MANUFACTURING A COMPOSITE PANEL
KR20180115378A (en) Radiation heater
KR101785352B1 (en) Heater and method of manufacturing the same
Xia et al. Fast and efficient electrical–thermal responses of functional nanoparticle decorated nanocarbon aerogels
WO2017208659A1 (en) Electric heater and air conditioning device provided with electric heater
Huang et al. Potential temperature sensing of oriented carbon-fiber filled composite and its resistance memory effect
DE19823494A1 (en) Heating roller
CN101193467B (en) Making method for plane macromolecule compound material heating sheet and its heating base material
KR20140082034A (en) Heating plate for battery module
CN106317799A (en) Flexible PTC thermistor containing graphene and application thereof
CN110958725A (en) Preparation method of flexible low-voltage composite polymer heating film
CN109561526B (en) Heating element and heating device
CN204236293U (en) A kind of conductive heating film and seat thin film heater
JPS6325468B2 (en)
JP2000040579A (en) Sheet heating element
CN111319256B (en) Method for directly manufacturing organic polymer PTC thermosensitive device through 3D printing
JP2010132055A (en) Vehicle heater
JP2003017227A (en) Plane heating element and heating method
JP2008186700A (en) Planar heating element
Aragonés et al. Low energy heating system based on Joule effect: JOSPEL project

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823534

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019823534

Country of ref document: EP

Effective date: 20210118