WO2019237344A1 - Joint spatial and frequency domain compression of csi feedback - Google Patents

Joint spatial and frequency domain compression of csi feedback Download PDF

Info

Publication number
WO2019237344A1
WO2019237344A1 PCT/CN2018/091549 CN2018091549W WO2019237344A1 WO 2019237344 A1 WO2019237344 A1 WO 2019237344A1 CN 2018091549 W CN2018091549 W CN 2018091549W WO 2019237344 A1 WO2019237344 A1 WO 2019237344A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi feedback
matrix
compressed
matrices
feedback
Prior art date
Application number
PCT/CN2018/091549
Other languages
French (fr)
Inventor
Liangming WU
Yu Zhang
Chenxi HAO
Hao Xu
Wanshi Chen
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2018/091549 priority Critical patent/WO2019237344A1/en
Publication of WO2019237344A1 publication Critical patent/WO2019237344A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/04Protocols for data compression, e.g. ROHC

Definitions

  • aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for joint spatial and frequency domain compression (JSFC) of channel state information (CSI) feedback, such as precoder and/or channel feedback.
  • JSFC joint spatial and frequency domain compression
  • CSI channel state information
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) .
  • available system resources e.g., bandwidth, transmit power, etc.
  • multiple-access systems examples include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • a wireless multiple-access communication system may include a number of base stations (BSs) , which are each capable of simultaneously supporting communication for multiple communication devices, otherwise known as user equipments (UEs) .
  • BSs base stations
  • UEs user equipments
  • a set of one or more base stations may define an eNodeB (eNB) .
  • eNB eNodeB
  • a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs) , edge nodes (ENs) , radio heads (RHs) , smart radio heads (SRHs) , transmission reception points (TRPs) , etc.
  • DUs distributed units
  • EUs edge units
  • ENs edge nodes
  • RHs radio heads
  • SSRHs smart radio heads
  • TRPs transmission reception points
  • CUs central units
  • CNs central nodes
  • ANCs access node controllers
  • a set of one or more DUs, in communication with a CU may define an access node (e.g., which may be referred to as a BS, 5G NB, next generation NodeB (gNB or gNodeB) , transmission reception point (TRP) , etc. ) .
  • BS central nodes
  • 5G NB next generation NodeB
  • TRP transmission reception point
  • a BS or DU may communicate with a set of UEs on downlink channels (e.g., for transmissions from a BS or DU to a UE) and uplink channels (e.g., for transmissions from a UE to BS or DU) .
  • downlink channels e.g., for transmissions from a BS or DU to a UE
  • uplink channels e.g., for transmissions from a UE to BS or DU
  • NR e.g., new radio or 5G
  • LTE long term evolution
  • NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP.
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) .
  • OFDMA orthogonal frequency division multiple access
  • CP cyclic prefix
  • DL downlink
  • UL uplink
  • NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • MIMO multiple-input multiple-output
  • Certain aspects provide a method for wireless communication by a user equipment (UE) .
  • the method generally includes determining channel state information (CSI) feedback based on one or more received CSI reference signals (CSI-RS) .
  • the method includes performing joint spatial and frequency domain compression (JSFC) on the CSI feedback.
  • the JSFC includes a first stage compression and a second stage compression.
  • the method includes transmitting the compressed CSI feedback to a base station (BS) .
  • BS base station
  • Certain aspects provide a method for wireless communication by a BS.
  • the method generally includes receiving compressed CSI feedback from a UE.
  • the compressed CSI feedback is JSFC compressed CSI feedback.
  • the BS decompresses the JSFC compressed CSI feedback.
  • the decompression includes a first stage decompression and a second stage decompression.
  • the BS processes the decompressed CSI feedback.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
  • FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
  • FIG. 2 is a block diagram illustrating an example logical architecture of a distributed radio access network (RAN) , in accordance with certain aspects of the present disclosure.
  • RAN radio access network
  • FIG. 3 is a diagram illustrating an example physical architecture of a distributed RAN, in accordance with certain aspects of the present disclosure.
  • FIG. 4 is a block diagram conceptually illustrating a design of an example base station (BS) and user equipment (UE) , in accordance with certain aspects of the present disclosure.
  • BS base station
  • UE user equipment
  • FIG. 5 is a diagram showing examples for implementing a communication protocol stack, in accordance with certain aspects of the present disclosure.
  • FIG. 6 illustrates an example of a frame format for a new radio (NR) system, in accordance with certain aspects of the present disclosure.
  • NR new radio
  • FIG. 7 is a flow diagram illustrating example operations for joint spatial and frequency domain compression (JSFC) of channel state information (CSI) , in accordance with certain aspects of the present disclosure.
  • JSFC joint spatial and frequency domain compression
  • FIG. 8 is an example of encoding and decoding stages for JSFC of precoder CSI, in accordance with certain aspects of the present disclosure.
  • FIG. 9 is an example of encoding and decoding stages for JSFC of precoder CSI for stacked layers, in accordance with certain aspects of the present disclosure.
  • FIG. 10 is an example of encoding and decoding stages for JSFC of channel feedback CSI for multiple receivers, in accordance with certain aspects of the present disclosure.
  • FIG. 11 is an example of priority rules for transmitting compressed CSI feedback and information regarding the compression, in accordance with certain aspects of the present disclosure.
  • FIG. 12 is a flow diagram illustrating example operations for decompression of JSFC compressed CSI, in accordance with certain aspects of the present disclosure.
  • FIG. 13 illustrates a communications device that may include various components configured to perform operations for the techniques disclosed herein in accordance with aspects of the present disclosure.
  • FIG. 14 illustrates a communications device that may include various components configured to perform operations for the techniques disclosed herein in accordance with aspects of the present disclosure.
  • aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for joint spatial and frequency domain compression (JSFC) of channel state information (CSI) feedback, such as precoder and/or channel feedback.
  • JSFC joint spatial and frequency domain compression
  • CSI channel state information
  • Certain systems such as new radio (NR) or 5G systems, support type-II CSI feedback.
  • the type-II CSI may have high overhead, for example, due to per-beam linear combination feedback, per-polarization and/or per-layer amplitude and phase feedback, per-subband element quantization of phase feedback. Thus, reducing the overhead for CSI feedback is desirable.
  • aspects of the present disclosure provide overhead reduction by JSFC of CSI feedback, including precoder and/or channel feedback. Aspects provide for additional overhead reduction of CSI by compression with stacked layers or receivers. Aspects also provide for CSI feedback designs on the physical uplink shared channel (PUSCH) , including priority rules for transmitting the feedback.
  • PUSCH physical uplink shared channel
  • a CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • cdma2000 covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • An OFDMA network may implement a radio technology such as NR (e.g.
  • E-UTRA Evolved UTRA
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDMA
  • UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) .
  • New Radio is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) .
  • 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-Aand GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
  • New radio (NR) access may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 25 GHz or beyond) , massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mmW millimeter wave
  • mMTC massive machine type communications MTC
  • URLLC ultra-reliable low-latency communications
  • These services may include latency and reliability requirements.
  • These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements.
  • TTI transmission time intervals
  • QoS quality of service
  • these services may co-exist in the same subframe.
  • FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed.
  • the wireless communication network 100 may be a New Radio (NR) or 5G network.
  • a user equipment (UE) may send channel state information (CSI) feedback (e.g., precoder or channel feedback) to a base station (BS) 110.
  • CSI channel state information
  • BS base station
  • the UE 120 may compress the CSI feedback using joint spatial and frequency domain compression (JSFC) .
  • the JSFC may involve a first stage (e.g., spatial compression) and a second stage (e.g., frequency compression) .
  • the BS 110 may decompress the JSFC compressed CSI feedback.
  • the wireless communication network 100 may include a number of base stations (BSs) 110 and other network entities.
  • a BS may be a station that communicates with user equipments (UEs) .
  • Each BS 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a Node B (NB) and/or a NB subsystem serving this coverage area, depending on the context in which the term is used.
  • NB Node B
  • NB subsystem serving this coverage area, depending on the context in which the term is used.
  • the term “cell” and next generation NB (gNB or gNodeB) , NR BS, 5G NB, access point (AP) , or transmission reception point (TRP) may be interchangeable.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the base stations may be interconnected to one another and/or to one or more other base stations or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces, such as a direct physical connection, a wireless connection, a virtual network, or the like using any suitable transport network.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, etc.
  • a frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cells.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having an association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) .
  • CSG Closed Subscriber Group
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • the BSs 110a, 110b and 110c may be macro BSs for the macro cells 102a, 102b and 102c, respectively.
  • the BS 110x may be a pico BS for a pico cell 102x.
  • the BSs 110y and 110z may be femto BSs for the femto cells 102y and 102z, respectively.
  • a BS may support one or multiple (e.g., three) cells.
  • Wireless communication network 100 may also include relay stations.
  • a relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., a BS or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that relays transmissions for other UEs.
  • a relay station 110r may communicate with the BS 110a and a UE 120r in order to facilitate communication between the BS 110a and the UE 120r.
  • a relay station may also be referred to as a relay BS, a relay, etc.
  • Wireless communication network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BS, pico BS, femto BS, relays, etc. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless communication network 100.
  • macro BS may have a high transmit power level (e.g., 20 Watts) whereas pico BS, femto BS, and relays may have a lower transmit power level (e.g., 1 Watt) .
  • Wireless communication network 100 may support synchronous or asynchronous operation.
  • the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time.
  • the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
  • the techniques described herein may be used for both synchronous and asynchronous operation.
  • a network controller 130 may couple to a set of BSs and provide coordination and control for these BSs.
  • the network controller 130 may communicate with the BSs 110 via a backhaul.
  • the BSs 110 may also communicate with one another (e.g., directly or indirectly) via wireless or wireline backhaul.
  • the UEs 120 may be dispersed throughout the wireless communication network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc.
  • CPE Customer Premises Equipment
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC machine-type communication
  • eMTC evolved MTC
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • a network e.g., a wide area network such as Internet or a cellular network
  • Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband IoT
  • Certain wireless networks utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.
  • OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” (RB) ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast Fourier Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10, or 20 megahertz (MHz) , respectively.
  • the system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8, or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
  • NR may utilize OFDM with a CP on the uplink and downlink and include support for half-duplex operation using TDD. Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
  • a scheduling entity (e.g., a base station) allocates resources for communication among some or all devices and equipment within its service area or cell.
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
  • Base stations are not the only entities that may function as a scheduling entity.
  • a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs) , and the other UEs may utilize the resources scheduled by the UE for wireless communication.
  • a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network.
  • P2P peer-to-peer
  • UEs may communicate directly with one another in addition to communicating with a scheduling entity.
  • a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink.
  • a finely dashed line with double arrows indicates interfering transmissions between a UE and a BS.
  • FIG. 2 illustrates an example logical architecture of a distributed Radio Access Network (RAN) 200, which may be implemented in the wireless communication network 100 illustrated in FIG. 1.
  • a 5G access node 206 may include an ANC 202.
  • ANC 202 may be a central unit (CU) of the distributed RAN 200.
  • the backhaul interface to the Next Generation Core Network (NG-CN) 204 may terminate at ANC 202.
  • the backhaul interface to neighboring next generation access Nodes (NG-ANs) 210 may terminate at ANC 202.
  • ANC 202 may include one or more TRPs 208 (e.g., cells, BSs, gNBs, etc. ) .
  • TRPs 208 e.g., cells, BSs, gNBs, etc.
  • the TRPs 208 may be a distributed unit (DU) .
  • TRPs 208 may be connected to a single ANC (e.g., ANC 202) or more than one ANC (not illustrated) .
  • a single ANC e.g., ANC 202
  • ANC e.g., ANC 202
  • RaaS radio as a service
  • TRPs 208 may be connected to more than one ANC.
  • TRPs 208 may each include one or more antenna ports.
  • TRPs 208 may be configured to individually (e.g., dynamic selection) or jointly (e.g., joint transmission) serve traffic to a UE.
  • the logical architecture of distributed RAN 200 may support fronthauling solutions across different deployment types.
  • the logical architecture may be based on transmit network capabilities (e.g., bandwidth, latency, and/or jitter) .
  • next generation access node (NG-AN) 210 may support dual connectivity with NR and may share a common fronthaul for LTE and NR.
  • NG-AN next generation access node
  • the logical architecture of distributed RAN 200 may enable cooperation between and among TRPs 208, for example, within a TRP and/or across TRPs via ANC 202.
  • An inter-TRP interface may not be used.
  • Logical functions may be dynamically distributed in the logical architecture of distributed RAN 200.
  • the Radio Resource Control (RRC) layer, Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, Medium Access Control (MAC) layer, and a Physical (PHY) layers may be adaptably placed at the DU (e.g., TRP 208) or CU (e.g., ANC 202) .
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • PHY Physical
  • FIG. 3 illustrates an example physical architecture of a distributed RAN 300, according to aspects of the present disclosure.
  • a centralized core network unit (C-CU) 302 may host core network functions.
  • C-CU 302 may be centrally deployed.
  • C-CU 302 functionality may be offloaded (e.g., to advanced wireless services (AWS) ) , in an effort to handle peak capacity.
  • AWS advanced wireless services
  • a centralized RAN unit (C-RU) 304 may host one or more ANC functions.
  • the C-RU 304 may host core network functions locally.
  • the C-RU 304 may have distributed deployment.
  • the C-RU 304 may be close to the network edge.
  • a DU 306 may host one or more TRPs (Edge Node (EN) , an Edge Unit (EU) , a Radio Head (RH) , a Smart Radio Head (SRH) , or the like) .
  • the DU may be located at edges of the network with radio frequency (RF) functionality.
  • RF radio frequency
  • FIG. 4 illustrates example components of BS 110 and UE 120 (as depicted in FIG. 1) , which may be used to implement aspects of the present disclosure.
  • antennas 452, processors 466, 458, 464, and/or controller/processor 480 of the UE 120 and/or antennas 434, processors 420, 460, 438, and/or controller/processor 440 of the BS 110 may be used to perform the various techniques and methods described herein for JSFC of CSI.
  • a transmit processor 420 may receive data from a data source 412 and control information from a controller/processor 440.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc.
  • the data may be for the physical downlink shared channel (PDSCH) , etc.
  • the processor 420 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the processor 420 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and cell-specific reference signal (CRS) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 430 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 432a through 432t. Each modulator 432 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 432a through 432t may be transmitted via the antennas 434a through 434t, respectively.
  • the antennas 452a through 452r may receive the downlink signals from the base station 110 and may provide received signals to the demodulators (DEMODs) in transceivers 454a through 454r, respectively.
  • Each demodulator 454 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 456 may obtain received symbols from all the demodulators 454a through 454r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 458 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 460, and provide decoded control information to a controller/processor 480.
  • a transmit processor 464 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 462 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 480.
  • the transmit processor 464 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) .
  • the symbols from the transmit processor 464 may be precoded by a TX MIMO processor 466 if applicable, further processed by the demodulators in transceivers 454a through 454r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 110.
  • data e.g., for the physical uplink shared channel (PUSCH)
  • control information e.g., for the physical uplink control channel (PUCCH) from the controller/processor 480.
  • the transmit processor 464 may also generate reference symbols for a reference signal (e.g., for the
  • the uplink signals from the UE 120 may be received by the antennas 434, processed by the modulators 432, detected by a MIMO detector 436 if applicable, and further processed by a receive processor 438 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 438 may provide the decoded data to a data sink 439 and the decoded control information to the controller/processor 440.
  • the controllers/processors 440 and 480 may direct the operation at the BS 110 and the UE 120, respectively.
  • the processor 440 and/or other processors and modules at the BS 110 may perform or direct the execution of processes for the techniques described herein.
  • the memories 442 and 482 may store data and program codes for BS 110 and UE 120, respectively.
  • a scheduler 444 may schedule UEs for data transmission on the downlink and/or uplink.
  • FIG. 5 illustrates a diagram 500 showing examples for implementing a communications protocol stack, according to aspects of the present disclosure.
  • the illustrated communications protocol stacks may be implemented by devices operating in a wireless communication system, such as a 5G system (e.g., a system that supports uplink-based mobility) .
  • Diagram 500 illustrates a communications protocol stack including a RRC layer 510, a PDCP layer 515, a RLC layer 520, a MAC layer 525, and a PHY layer 530.
  • the layers of a protocol stack may be implemented as separate modules of software, portions of a processor or ASIC, portions of non-collocated devices connected by a communications link, or various combinations thereof. Collocated and non-collocated implementations may be used, for example, in a protocol stack for a network access device (e.g., ANs, CUs, and/or DUs) or a UE.
  • a network access device e.g., ANs, CUs, and
  • a first option 505-a shows a split implementation of a protocol stack, in which implementation of the protocol stack is split between a centralized network access device (e.g., an ANC 202 in FIG. 2) and distributed network access device (e.g., DU 208 in FIG. 2) .
  • a centralized network access device e.g., an ANC 202 in FIG. 2
  • distributed network access device e.g., DU 208 in FIG. 2
  • an RRC layer 510 and a PDCP layer 515 may be implemented by the central unit
  • an RLC layer 520, a MAC layer 525, and a PHY layer 530 may be implemented by the DU.
  • the CU and the DU may be collocated or non-collocated.
  • the first option 505-a may be useful in a macro cell, micro cell, or pico cell deployment.
  • a second option 505-b shows a unified implementation of a protocol stack, in which the protocol stack is implemented in a single network access device.
  • RRC layer 510, PDCP layer 515, RLC layer 520, MAC layer 525, and PHY layer 530 may each be implemented by the AN.
  • the second option 505-b may be useful in, for example, a femto cell deployment.
  • a UE may implement an entire protocol stack as shown in 505-c (e.g., the RRC layer 510, the PDCP layer 515, the RLC layer 520, the MAC layer 525, and the PHY layer 530) .
  • the basic transmission time interval (TTI) or packet duration is the 1 ms subframe.
  • a subframe is still 1 ms, but the basic TTI is referred to as a slot.
  • a subframe contains a variable number of slots (e.g., 1, 2, 4, 8, 16, ...slots) depending on the subcarrier spacing.
  • the NR RB is 12 consecutive frequency subcarriers.
  • NR may support a base subcarrier spacing of 15 KHz and other subcarrier spacing may be defined with respect to the base subcarrier spacing, for example, 30 kHz, 60 kHz, 120 kHz, 240 kHz, etc.
  • the symbol and slot lengths scale with the subcarrier spacing.
  • the CP length also depends on the subcarrier spacing.
  • FIG. 6 is a diagram showing an example of a frame format 600 for NR.
  • the transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames.
  • Each radio frame may have a predetermined duration (e.g., 10 ms) and may be partitioned into 10 subframes, each of 1 ms, with indices of 0 through 9.
  • Each subframe may include a variable number of slots depending on the subcarrier spacing.
  • Each slot may include a variable number of symbol periods (e.g., 7 or 14 symbols) depending on the subcarrier spacing.
  • the symbol periods in each slot may be assigned indices.
  • a mini-slot is a subslot structure (e.g., 2, 3, or 4 symbols) .
  • Each symbol in a slot may indicate a link direction (e.g., DL, UL, or flexible) for data transmission and the link direction for each subframe may be dynamically switched.
  • the link directions may be based on the slot format.
  • Each slot may include DL/UL data as well as DL/UL control information.
  • a synchronization signal (SS) block is transmitted.
  • the SS block includes a PSS, a SSS, and a two symbol PBCH.
  • the SS block can be transmitted in a fixed slot location, such as the symbols 0-3 as shown in FIG. 6.
  • the PSS and SSS may be used by UEs for cell search and acquisition.
  • the PSS may provide half-frame timing, the SS may provide the CP length and frame timing.
  • the PSS and SSS may provide the cell identity.
  • the PBCH carries some basic system information (SI) , such as downlink system bandwidth, timing information within radio frame, SS burst set periodicity, system frame number, etc.
  • the SS blocks may be organized into SS bursts to support beam sweeping. Further system information such as, remaining minimum system information (RMSI) , system information blocks (SIBs) , other system information (OSI) can be transmitted on a PDSCH in certain subframes.
  • SI basic system information
  • two or more subordinate entities may communicate with each other using sidelink signals.
  • Real-world applications of such sidelink communications may include public safety, proximity services, UE-to-network relaying, vehicle-to-vehicle (V2V) communications, Internet of Everything (IoE) communications, IoT communications, mission-critical mesh, and/or various other suitable applications.
  • a sidelink signal may refer to a signal communicated from one subordinate entity (e.g., UE1) to another subordinate entity (e.g., UE2) without relaying that communication through the scheduling entity (e.g., UE or BS) , even though the scheduling entity may be utilized for scheduling and/or control purposes.
  • the sidelink signals may be communicated using a licensed spectrum (unlike wireless local area networks, which typically use an unlicensed spectrum) .
  • a UE may operate in various radio resource configurations, including a configuration associated with transmitting pilots using a dedicated set of resources (e.g., a radio resource control (RRC) dedicated state, etc. ) or a configuration associated with transmitting pilots using a common set of resources (e.g., an RRC common state, etc. ) .
  • RRC radio resource control
  • the UE may select a dedicated set of resources for transmitting a pilot signal to a network.
  • the UE may select a common set of resources for transmitting a pilot signal to the network.
  • a pilot signal transmitted by the UE may be received by one or more network access devices, such as an AN, or a DU, or portions thereof.
  • Each receiving network access device may be configured to receive and measure pilot signals transmitted on the common set of resources, and also receive and measure pilot signals transmitted on dedicated sets of resources allocated to the UEs for which the network access device is a member of a monitoring set of network access devices for the UE.
  • One or more of the receiving network access devices, or a CU to which receiving network access device (s) transmit the measurements of the pilot signals may use the measurements to identify serving cells for the UEs, or to initiate a change of serving cell for one or more of the UEs.
  • Type-II channel state information is supported.
  • the Type-II CSI may be for multiple-input multiple-output (MIMO) systems.
  • MIMO multiple-input multiple-output
  • Type-II CSI is described in greater detail below in the Appendix.
  • the Type-II CSI may provide feedback regarding linear combination of multiple beams; per-layer and/or per-polarization amplitude and phase feedback; wideband and per-subband differential quantization of amplitude feedback; and/or subband quantization of phase feedback. Therefore, the overhead for the Type-II feedback may be large.
  • aspects of the present disclosure provide techniques for joint spatial and frequency domain compression (JSFC) of CSI feedback, including precoder feedback and/or channel feedback, to reduce the overhead of the CSI feedback.
  • aspects provide for further reduction of the overhead by JSFC compression of the CSI feedback across layers (e.g., stacked layers) and/or across receivers.
  • feedback designs for the compressed CSI feedback on the physical uplink shared channel (PUSCH) are provided, as well as priority rules for transmitting the compressed CSI feedback along with information regarding the compression.
  • FIG. 7 is a flow diagram illustrating example operations 700 for JSFC of CSI, in accordance with certain aspects of the present disclosure.
  • the operations 700 may be performed, for example, by a user equipment (UE) , such as a UE 120 in the wireless communication network 100.
  • UE user equipment
  • the operations 700 may begin, at 702, by determining CSI feedback.
  • the UE determines CSI feedback based on CSI reference signals (CSI-RS) received from a base station (BS) .
  • CSI-RS CSI reference signals
  • the CSI feedback is Type-II CSI feedback.
  • Type-II feedback is described in more detail below in the Appendix.
  • the CSI feedback may include channel feedback and/or precoder feedback.
  • the UE may determine a precoder matrix V. As shown in FIG. 9, the UE may determine the precoder matrices for multiple stacked layers R. As shown in FIGs. 8 and FIG. 9, the precoder matrices V correspond to a set of precoders (e.g., a stack of eigenvectors) . The set of precoders may be for N sb subbands. The precoders may be for N t transmit antennas. Thus, the precoder matrix V has the dimensions N sb X N t .
  • the UE may determine a channel matrix H, and the UE may determine the channel matrices for multiple receive antennas.
  • the channel matrix H corresponds to the set of channels for the bandwidth parameter N bw (e.g., number of subbands N sb or number of resource blocks (RBs) N RB ) .
  • the set of channels may be for N t transmit antennas.
  • the channel matrix H has the dimensions N bw X N t .
  • the UE may determine a channel matrix H for each receive antenna.
  • the UE performs JSFC on the CSI feedback.
  • the JSFC comprises a first stage compression and a second stage compression.
  • the first stage compression may be a spatial compression stage and the second stage compression may be a frequency compression stage.
  • the spatial compression stage of the JSFC may involve applying a spatial compression matrix B.
  • the spatial compression matrix B is applied to the precoding matrix V.
  • the spatial compression matrix B (e.g., the same B matrix) may be applied to each of the plurality of V matrices for the stacked layers.
  • the spatial compression may be based on one or more linear combinations of discrete Fourier transform (DFT) beams.
  • DFT discrete Fourier transform
  • the B matrix may have a dimension N t X N b .
  • N b is equal to 2*L, where L is the configured linear combination number of beams (e.g., as in Rel. 15 Type-II CSI feedback) .
  • the spatially compressed precoder matrix is V B .
  • the spatial compression matrix B is applied to the channel matrix H.
  • the spatial compression matrix B (e.g., the same B matrix) may be applied to each of the plurality of H matrices for the plurality of receive antennas.
  • the spatially compressed channel matrix is H B .
  • the frequency compression stage of the JSFC may involve applying a frequency compression matrix G.
  • the frequency compression matrix G is applied to the spatially compressed precoding matrix V B .
  • the frequency compression may be based on a frequency correlation to find dominant precoders of the spatially compressed CSI feedback.
  • the frequency compression may involve finding a new set of basis for the frequency domain compression. For example, the frequency compression may find the frequency correlation computed for the N g -th precoders (e.g., eigenvectors) of V B .
  • the G matrix may have a dimension N b X N g .
  • the spatially and frequency domain compressed precoder matrix is V G .
  • the frequency compression stage may involve cross layer compression of subband elements for JSFC based frequency domain compression with stacked layers (JSFC-S) .
  • the frequency compression matrix G may be applied to each of the plurality of V B matrices for the stacked layers.
  • R different G matrices may be applied for each of the V B matrices for the plurality of layers.
  • the JSFC-S compression results in a single common (shared) V G for the plurality of layers.
  • the compression matrix G is applied to each of the plurality of H matrices for the plurality of receive antennas.
  • the spatially compressed channel matrix is H G .
  • the UE transmits the compressed CSI feedback to the BS.
  • the compressed CSI feedback may have reduced overhead.
  • the UE also transmits information to the BS regarding the spatial compression matrix, B, and the frequency compression matrix, G, along with the compressed CSI feedback matrix V G and/or H G .
  • the BS can use the information to decompress the CSI feedback to recover the feedback.
  • the compressed CSI feedback and the information regarding the B and G matrices are transmitted on the PUSCH.
  • the compressed CSI feedback comprises a Part-1 portion and a Part-2 portion.
  • the UE transmits an explicit indication of a payload size of the Part-2 portion of the CSI feedback.
  • the payload size of the Part-2 part is indicated by replacing non-zero wideband amplitude number per layer.
  • the total number of payload bits in the Part-2 portion may be indicated as a range from the minimum to largest hypothesized payload size.
  • the explicit indication is transmitted using non-zero amplitude bits of the G matrix and after transmitting the compressed CSI feedback bits.
  • the explicit indication may be transmitted using non-zero amplitude bits per layer of the G matrix.
  • NZAPL non-zero amplitude bits per layer
  • the NZAPL may be only forG matrix.
  • the UE reports the actual payload after payload omission. If the UE is configured to report the N g value, then the UE may report the N g and the total number of non-zero amplitude elements column of G and V G (and/or H G ) .
  • the Part-2 portion of the compressed CSI feedback and the information related the B and G matrices may be transmitted based on priority rules.
  • the priority rules may be based on transmitting elements of G matrix and elements of the compressed CSI feedback based on at least one: layer, subband, row, column, or grouping.
  • the Part-2 portion of the CSI may include beam associated information (e.g., the Rel. 15 Type-II beam selection) .
  • the Part-2 portion of the CSI may include N g if the UE is configured to report it, and if the UE did not report in the Part-1 portion.
  • the UE may report the associated elements for G Nb,1 in the order of layers, followed by per element of V G,1 in the order subband, then, the UE may report the associated elements for G Nb,2 in the order of layers, followed by per element of V G,2 in the order subband.
  • the UE may report the associated elements for G Nb,Ng in the order of layers, followed by per element of V G,Ng in the order subband.
  • a priority part with lower index may be treated as high priority. If a payload size of the PUSCH is less than a payload size of the compressed CSI feedback and the information related the B and G matrices, discarding a lowest priority portion of at least one of: the compressed CSI feedback or the information.
  • Ng can be further grouped.
  • Ng/2 can be the first group and Ng (/2+1) can be the second group.
  • Dominant elements of G Nb,Ng per-layer, per-basis can be selected with an indicator of per-layer, per-basis, and the dominant element has 0 dB amplitude and 0 degree phase and does not need to be feedback.
  • the indicator of dominant element may be at the front of each priority part.
  • V G (and/orH G ) can be feedback with domain basis selection per row of V G , with an indicator of per-subband (row in the matrix) of V G (and/or H G ) .
  • the first priority part may be added to if dominant basis selection is desired.
  • V G,1 1 (i.e., the first column of V G ) and does not need to be fed back (e.g., because it always has a 0 dB amplitude and a 0 degree phase) , and the dominant basis selection indicator also does not need to be fed back
  • FIG. 12 is a flow diagram illustrating example operations 1200 for decompression of JSFC compressed CSI, in accordance with certain aspects of the present disclosure. Operations 1200 may be performed, for example, by a BS such as a BS 110 in the wireless communication network 100.
  • a BS such as a BS 110 in the wireless communication network 100.
  • Operations 1200 may begin, at 1202, by receiving compressed CSI feedback from a UE.
  • the compressed CSI feedback is JSFC compressed CSI feedback.
  • the BS decompresses the JSFC compressed CSI feedback.
  • the decompression includes a first stage decompression and a second stage decompression.
  • the BS receives the V G (and/or H G ) matrix, and uses the G matrix (or matrices) for the first stage decompression the B matrix for the second stage decompression to recover theV G (and/or H G ) matrix (or matrices) .
  • the BS processes the decompressed CSI feedback.
  • FIG. 13 illustrates a communications device 1300 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated inFIG. 7.
  • the communications device 1300 includes a processing system 1302 coupled to a transceiver 1308.
  • the transceiver 1308 is configured to transmit and receive signals for the communications device 1300 via an antenna 1310, such as the various signals as described herein.
  • the processing system 1302 may be configured to perform processing functions for the communications device 1300, including processing signals received and/or to be transmitted by the communications device 1300.
  • the processing system 1302 includes a processor 1304 coupled to a computer-readable medium/memory 1312 via a bus 1306.
  • the computer-readable medium/memory 1312 is configured to store instructions (e.g., computer executable code) that when executed by the processor 1304, cause the processor 1304 to perform the operations illustrated in FIG. 7, or other operations for performing the various techniques discussed herein for JSFC compression of CSI feedback.
  • computer-readable medium/memory 1312 stores code 1314 for determining CSI feedback; code 1316 for performing JSFC compression on the CSI feedback; and code 1316 for transmitting the compressed CSI feedback.
  • FIG. 14 illustrates a communications device 1400 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 12.
  • the communications device 1400 includes a processing system 1402 coupled to a transceiver 1408.
  • the transceiver 1408 is configured to transmit and receive signals for the communications device 1400 via an antenna 1410, such as the various signals as described herein.
  • the processing system 1402 may be configured to perform processing functions for the communications device 1400, including processing signals received and/or to be transmitted by the communications device 1400.
  • the processing system 1402 includes a processor 1404 coupled to a computer-readable medium/memory 1414 via a bus 1406.
  • the computer-readable medium/memory 1412 is configured to store instructions (e.g., computer executable code) that when executed by the processor 1404, cause the processor 1404 to perform the operations illustrated in FIG. 12, or other operations for performing the various techniques discussed herein for decompressing JSFC compressed CSI feedback.
  • computer-readable medium/memory 1412 stores code 1414 for receiving JSFC compressed CSI feedback; code 1416 for decompressing the JSFC compressed CSI feedback; and code 1418 for processing the decompressed CSI feedback.
  • the methods disclosed herein comprise one or more steps or actions for achieving the methods.
  • the method steps and/or actions may be interchanged with one another without departing from the scope of the claims.
  • the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • determining encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
  • the various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions.
  • the means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • an example hardware configuration may comprise a processing system in a wireless node.
  • the processing system may be implemented with a bus architecture.
  • the bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints.
  • the bus may link together various circuits including a processor, machine-readable media, and a bus interface.
  • the bus interface may be used to connect a network adapter, among other things, to the processing system via the bus.
  • the network adapter may be used to implement the signal processing functions of the PHY layer.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • the bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further.
  • the processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
  • the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium.
  • Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • the processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media.
  • a computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
  • the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface.
  • the machine-readable media, or any portion thereof may be integrated into the processor, such as the case may be with cache and/or general register files.
  • machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrical Erasable Programmable Read-Only Memory
  • registers magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • the machine-readable media may be embodied in a computer-program product.
  • a software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media.
  • the computer-readable media may comprise a number of software modules.
  • the software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions.
  • the software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices.
  • a software module may be loaded into RAM from a hard drive when a triggering event occurs.
  • the processor may load some of the instructions into cache to increase access speed.
  • One or more cache lines may then be loaded into a general register file for execution by the processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) .
  • computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
  • certain aspects may comprise a computer program product for performing the operations presented herein.
  • a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein.
  • modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable.
  • a user terminal and/or base station can be coupled to a server to facilitate the transfer of means for performing the methods described herein.
  • various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device.
  • storage means e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.
  • CD compact disc
  • floppy disk etc.
  • any other suitable technique for providing the methods and techniques described herein to a device can be utilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Certain aspects of the present disclosure provide techniques for joint spatial and frequency domain compression (JSFC) of channel state information (CSI) feedback, such as precoder and/or channel feedback. A method for wireless communications by a user equipment (UE) includes determining CSI feedback based on one or more received CSI reference signals (CSI-RS). The UE performs JSFC on the CSI feedback. The JSFC includes a first stage compression and a second stage compression. The UE transmits the compressed CSI feedback to a base station (BS). A method by a BS include receiving the JSFC compressed CSI feedback and decompressing the JSFC compressed CSI feedback using a first and second stage decompression.

Description

JOINT SPATIAL AND FREQUENCY DOMAIN COMPRESSION OF CSI FEEDBACK
INTRODUCTION
Field of the Disclosure
Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for joint spatial and frequency domain compression (JSFC) of channel state information (CSI) feedback, such as precoder and/or channel feedback.
Description of Related Art
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) . Examples of such multiple-access systems include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
In some examples, a wireless multiple-access communication system may include a number of base stations (BSs) , which are each capable of simultaneously supporting communication for multiple communication devices, otherwise known as user equipments (UEs) . In an LTE or LTE-Anetwork, a set of one or more base stations may define an eNodeB (eNB) . In other examples (e.g., in a next generation, a new radio (NR) , or 5G network) , a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs) , edge nodes (ENs) , radio heads (RHs) , smart radio heads (SRHs) , transmission reception points (TRPs) , etc. ) in communication with a number of central units (CUs) (e.g., central nodes (CNs) , access node controllers (ANCs) , etc. ) , where a set of one or more DUs, in communication with  a CU, may define an access node (e.g., which may be referred to as a BS, 5G NB, next generation NodeB (gNB or gNodeB) , transmission reception point (TRP) , etc. ) . A BS or DU may communicate with a set of UEs on downlink channels (e.g., for transmissions from a BS or DU to a UE) and uplink channels (e.g., for transmissions from a UE to BS or DU) .
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. NR (e.g., new radio or 5G) is an example of an emerging telecommunication standard. NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP. NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) . To these ends, NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in NR and LTE technology. Preferably, these improvements should be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
BRIEF SUMMARY
The systems, methods, and devices of the disclosure each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this disclosure as expressed by the claims which follow, some features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description” one will understand how the features of this disclosure provide advantages that include improved communications between access points and stations in a wireless network.
Certain aspects provide a method for wireless communication by a user equipment (UE) . The method generally includes determining channel state information (CSI) feedback based on one or more received CSI reference signals (CSI-RS) . The  method includes performing joint spatial and frequency domain compression (JSFC) on the CSI feedback. The JSFC includes a first stage compression and a second stage compression. The method includes transmitting the compressed CSI feedback to a base station (BS) .
Certain aspects provide a method for wireless communication by a BS. The method generally includes receiving compressed CSI feedback from a UE. The compressed CSI feedback is JSFC compressed CSI feedback. The BS decompresses the JSFC compressed CSI feedback. The decompression includes a first stage decompression and a second stage decompression. The BS processes the decompressed CSI feedback.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects.
FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
FIG. 2 is a block diagram illustrating an example logical architecture of a distributed radio access network (RAN) , in accordance with certain aspects of the present disclosure.
FIG. 3 is a diagram illustrating an example physical architecture of a distributed RAN, in accordance with certain aspects of the present disclosure.
FIG. 4 is a block diagram conceptually illustrating a design of an example base station (BS) and user equipment (UE) , in accordance with certain aspects of the present disclosure.
FIG. 5 is a diagram showing examples for implementing a communication protocol stack, in accordance with certain aspects of the present disclosure.
FIG. 6 illustrates an example of a frame format for a new radio (NR) system, in accordance with certain aspects of the present disclosure.
FIG. 7 is a flow diagram illustrating example operations for joint spatial and frequency domain compression (JSFC) of channel state information (CSI) , in accordance with certain aspects of the present disclosure.
FIG. 8 is an example of encoding and decoding stages for JSFC of precoder CSI, in accordance with certain aspects of the present disclosure.
FIG. 9 is an example of encoding and decoding stages for JSFC of precoder CSI for stacked layers, in accordance with certain aspects of the present disclosure.
FIG. 10 is an example of encoding and decoding stages for JSFC of channel feedback CSI for multiple receivers, in accordance with certain aspects of the present disclosure.
FIG. 11 is an example of priority rules for transmitting compressed CSI feedback and information regarding the compression, in accordance with certain aspects of the present disclosure.
FIG. 12 is a flow diagram illustrating example operations for decompression of JSFC compressed CSI, in accordance with certain aspects of the present disclosure.
FIG. 13 illustrates a communications device that may include various components configured to perform operations for the techniques disclosed herein in accordance with aspects of the present disclosure.
FIG. 14 illustrates a communications device that may include various components configured to perform operations for the techniques disclosed herein in accordance with aspects of the present disclosure.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one aspect may be beneficially utilized on other aspects without specific recitation.
DETAILED DESCRIPTION
Aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for joint spatial and frequency domain compression (JSFC) of channel state information (CSI) feedback, such as precoder and/or channel feedback.
Certain systems, such as new radio (NR) or 5G systems, support type-II CSI feedback. The type-II CSI may have high overhead, for example, due to per-beam linear combination feedback, per-polarization and/or per-layer amplitude and phase feedback, per-subband element quantization of phase feedback. Thus, reducing the overhead for CSI feedback is desirable.
Accordingly, aspects of the present disclosure provide overhead reduction by JSFC of CSI feedback, including precoder and/or channel feedback. Aspects provide for additional overhead reduction of CSI by compression with stacked layers or receivers. Aspects also provide for CSI feedback designs on the physical uplink shared channel (PUSCH) , including priority rules for transmitting the feedback.
The following description provides examples, and is not limiting of the scope, applicability, or examples set forth in the claims. Changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in some other examples. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to, or other than, the various aspects of the disclosure set forth herein. It should be understood that any  aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.
The techniques described herein may be used for various wireless communication technologies, such as LTE, CDMA, TDMA, FDMA, OFDMA, SC-FDMA and other networks. The terms “network” and “system” are often used interchangeably. A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) . An OFDMA network may implement a radio technology such as NR (e.g. 5G RA) , Evolved UTRA (E-UTRA) , Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) .
New Radio (NR) is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) . 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-Aand GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) . cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
New radio (NR) access (e.g., 5G technology) may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 25 GHz or beyond) , massive machine type communications MTC  (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) . These services may include latency and reliability requirements. These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements. In addition, these services may co-exist in the same subframe.
Example Wireless Communications System
FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed. For example, the wireless communication network 100 may be a New Radio (NR) or 5G network. A user equipment (UE) may send channel state information (CSI) feedback (e.g., precoder or channel feedback) to a base station (BS) 110. To reduce overhead, the UE 120 may compress the CSI feedback using joint spatial and frequency domain compression (JSFC) . The JSFC may involve a first stage (e.g., spatial compression) and a second stage (e.g., frequency compression) . The BS 110 may decompress the JSFC compressed CSI feedback.
As illustrated in FIG. 1, the wireless communication network 100 may include a number of base stations (BSs) 110 and other network entities. A BS may be a station that communicates with user equipments (UEs) . Each BS 110 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a Node B (NB) and/or a NB subsystem serving this coverage area, depending on the context in which the term is used. In NR systems, the term “cell” and next generation NB (gNB or gNodeB) , NR BS, 5G NB, access point (AP) , or transmission reception point (TRP) may be interchangeable. In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some examples, the base stations may be interconnected to one another and/or to one or more other base stations or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces, such as a direct physical connection, a wireless connection, a virtual network, or the like using any suitable transport network.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be  referred to as a radio technology, an air interface, etc. A frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cells. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having an association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in FIG. 1, the  BSs  110a, 110b and 110c may be macro BSs for the  macro cells  102a, 102b and 102c, respectively. The BS 110x may be a pico BS for a pico cell 102x. The BSs 110y and 110z may be femto BSs for the femto cells 102y and 102z, respectively. A BS may support one or multiple (e.g., three) cells.
Wireless communication network 100 may also include relay stations. A relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., a BS or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that relays transmissions for other UEs. In the example shown in FIG. 1, a relay station 110r may communicate with the BS 110a and a UE 120r in order to facilitate communication between the BS 110a and the UE 120r. A relay station may also be referred to as a relay BS, a relay, etc.
Wireless communication network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BS, pico BS, femto BS, relays, etc. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless communication network 100.  For example, macro BS may have a high transmit power level (e.g., 20 Watts) whereas pico BS, femto BS, and relays may have a lower transmit power level (e.g., 1 Watt) .
Wireless communication network 100 may support synchronous or asynchronous operation. For synchronous operation, the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time. For asynchronous operation, the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time. The techniques described herein may be used for both synchronous and asynchronous operation.
network controller 130 may couple to a set of BSs and provide coordination and control for these BSs. The network controller 130 may communicate with the BSs 110 via a backhaul. The BSs 110 may also communicate with one another (e.g., directly or indirectly) via wireless or wireline backhaul.
The UEs 120 (e.g., 120x, 120y, etc. ) may be dispersed throughout the wireless communication network 100, and each UE may be stationary or mobile. A UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc. ) , an entertainment device (e.g., a music device, a video device, a satellite radio, etc. ) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium. Some UEs may be considered machine-type communication (MTC) devices or evolved MTC (eMTC) devices. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be  considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
Certain wireless networks (e.g., LTE) utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink. OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” (RB) ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast Fourier Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10, or 20 megahertz (MHz) , respectively. The system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8, or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
While aspects of the examples described herein may be associated with LTE technologies, aspects of the present disclosure may be applicable with other wireless communications systems, such as NR. NR may utilize OFDM with a CP on the uplink and downlink and include support for half-duplex operation using TDD. Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
In some examples, access to the air interface may be scheduled, wherein a. A scheduling entity (e.g., a base station) allocates resources for communication among some or all devices and equipment within its service area or cell. The scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for  one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity. Base stations are not the only entities that may function as a scheduling entity. In some examples, a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs) , and the other UEs may utilize the resources scheduled by the UE for wireless communication. In some examples, a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network. In a mesh network example, UEs may communicate directly with one another in addition to communicating with a scheduling entity.
InFIG. 1, a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink. A finely dashed line with double arrows indicates interfering transmissions between a UE and a BS.
FIG. 2 illustrates an example logical architecture of a distributed Radio Access Network (RAN) 200, which may be implemented in the wireless communication network 100 illustrated in FIG. 1. A 5G access node 206 may include an ANC 202. ANC 202 may be a central unit (CU) of the distributed RAN 200. The backhaul interface to the Next Generation Core Network (NG-CN) 204 may terminate at ANC 202. The backhaul interface to neighboring next generation access Nodes (NG-ANs) 210 may terminate at ANC 202. ANC 202 may include one or more TRPs 208 (e.g., cells, BSs, gNBs, etc. ) .
The TRPs 208 may be a distributed unit (DU) . TRPs 208 may be connected to a single ANC (e.g., ANC 202) or more than one ANC (not illustrated) . For example, for RAN sharing, radio as a service (RaaS) , and service specific AND deployments, TRPs 208 may be connected to more than one ANC. TRPs 208 may each include one or more antenna ports. TRPs 208 may be configured to individually (e.g., dynamic selection) or jointly (e.g., joint transmission) serve traffic to a UE.
The logical architecture of distributed RAN 200 may support fronthauling solutions across different deployment types. For example, the logical architecture may be based on transmit network capabilities (e.g., bandwidth, latency, and/or jitter) .
The logical architecture of distributed RAN 200 may share features and/or components with LTE. For example, next generation access node (NG-AN) 210 may support dual connectivity with NR and may share a common fronthaul for LTE and NR.
The logical architecture of distributed RAN 200 may enable cooperation between and among TRPs 208, for example, within a TRP and/or across TRPs via ANC 202. An inter-TRP interface may not be used.
Logical functions may be dynamically distributed in the logical architecture of distributed RAN 200. As will be described in more detail with reference to FIG. 5, the Radio Resource Control (RRC) layer, Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, Medium Access Control (MAC) layer, and a Physical (PHY) layers may be adaptably placed at the DU (e.g., TRP 208) or CU (e.g., ANC 202) .
FIG. 3 illustrates an example physical architecture of a distributed RAN 300, according to aspects of the present disclosure. A centralized core network unit (C-CU) 302 may host core network functions. C-CU 302 may be centrally deployed. C-CU 302 functionality may be offloaded (e.g., to advanced wireless services (AWS) ) , in an effort to handle peak capacity.
A centralized RAN unit (C-RU) 304 may host one or more ANC functions. Optionally, the C-RU 304 may host core network functions locally. The C-RU 304 may have distributed deployment. The C-RU 304 may be close to the network edge.
DU 306 may host one or more TRPs (Edge Node (EN) , an Edge Unit (EU) , a Radio Head (RH) , a Smart Radio Head (SRH) , or the like) . The DU may be located at edges of the network with radio frequency (RF) functionality.
FIG. 4 illustrates example components of BS 110 and UE 120 (as depicted in FIG. 1) , which may be used to implement aspects of the present disclosure. For example, antennas 452,  processors  466, 458, 464, and/or controller/processor 480 of the UE 120 and/or antennas 434,  processors  420, 460, 438, and/or controller/processor 440 of the BS 110 may be used to perform the various techniques and methods described herein for JSFC of CSI.
At the BS 110, a transmit processor 420 may receive data from a data source 412 and control information from a controller/processor 440. The control information  may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc. The data may be for the physical downlink shared channel (PDSCH) , etc. The processor 420 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The processor 420 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and cell-specific reference signal (CRS) . A transmit (TX) multiple-input multiple-output (MIMO) processor 430 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 432a through 432t. Each modulator 432 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 432a through 432t may be transmitted via the antennas 434a through 434t, respectively.
At the UE 120, the antennas 452a through 452r may receive the downlink signals from the base station 110 and may provide received signals to the demodulators (DEMODs) in transceivers 454a through 454r, respectively. Each demodulator 454 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. A MIMO detector 456 may obtain received symbols from all the demodulators 454a through 454r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 458 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 460, and provide decoded control information to a controller/processor 480.
On the uplink, at UE 120, a transmit processor 464 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 462 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 480. The transmit processor 464 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) . The  symbols from the transmit processor 464 may be precoded by a TX MIMO processor 466 if applicable, further processed by the demodulators in transceivers 454a through 454r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 110. At the BS 110, the uplink signals from the UE 120 may be received by the antennas 434, processed by the modulators 432, detected by a MIMO detector 436 if applicable, and further processed by a receive processor 438 to obtain decoded data and control information sent by the UE 120. The receive processor 438 may provide the decoded data to a data sink 439 and the decoded control information to the controller/processor 440.
The controllers/ processors  440 and 480 may direct the operation at the BS 110 and the UE 120, respectively. The processor 440 and/or other processors and modules at the BS 110 may perform or direct the execution of processes for the techniques described herein. The  memories  442 and 482 may store data and program codes for BS 110 and UE 120, respectively. A scheduler 444 may schedule UEs for data transmission on the downlink and/or uplink.
FIG. 5 illustrates a diagram 500 showing examples for implementing a communications protocol stack, according to aspects of the present disclosure. The illustrated communications protocol stacks may be implemented by devices operating in a wireless communication system, such as a 5G system (e.g., a system that supports uplink-based mobility) . Diagram 500 illustrates a communications protocol stack including a RRC layer 510, a PDCP layer 515, a RLC layer 520, a MAC layer 525, and a PHY layer 530. In various examples, the layers of a protocol stack may be implemented as separate modules of software, portions of a processor or ASIC, portions of non-collocated devices connected by a communications link, or various combinations thereof. Collocated and non-collocated implementations may be used, for example, in a protocol stack for a network access device (e.g., ANs, CUs, and/or DUs) or a UE.
A first option 505-a shows a split implementation of a protocol stack, in which implementation of the protocol stack is split between a centralized network access device (e.g., an ANC 202 in FIG. 2) and distributed network access device (e.g., DU 208 in FIG. 2) . In the first option 505-a, an RRC layer 510 and a PDCP layer 515 may be implemented by the central unit, and an RLC layer 520, a MAC layer 525, and a PHY layer 530 may be implemented by the DU. In various examples the CU and  the DU may be collocated or non-collocated. The first option 505-amay be useful in a macro cell, micro cell, or pico cell deployment.
A second option 505-b shows a unified implementation of a protocol stack, in which the protocol stack is implemented in a single network access device. In the second option, RRC layer 510, PDCP layer 515, RLC layer 520, MAC layer 525, and PHY layer 530 may each be implemented by the AN. The second option 505-b may be useful in, for example, a femto cell deployment.
Regardless of whether a network access device implements part or all of a protocol stack, a UE may implement an entire protocol stack as shown in 505-c (e.g., the RRC layer 510, the PDCP layer 515, the RLC layer 520, the MAC layer 525, and the PHY layer 530) .
In LTE, the basic transmission time interval (TTI) or packet duration is the 1 ms subframe. In NR, a subframe is still 1 ms, but the basic TTI is referred to as a slot. A subframe contains a variable number of slots (e.g., 1, 2, 4, 8, 16, …slots) depending on the subcarrier spacing. The NR RB is 12 consecutive frequency subcarriers. NR may support a base subcarrier spacing of 15 KHz and other subcarrier spacing may be defined with respect to the base subcarrier spacing, for example, 30 kHz, 60 kHz, 120 kHz, 240 kHz, etc. The symbol and slot lengths scale with the subcarrier spacing. The CP length also depends on the subcarrier spacing.
FIG. 6 is a diagram showing an example of a frame format 600 for NR. The transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames. Each radio frame may have a predetermined duration (e.g., 10 ms) and may be partitioned into 10 subframes, each of 1 ms, with indices of 0 through 9. Each subframe may include a variable number of slots depending on the subcarrier spacing. Each slot may include a variable number of symbol periods (e.g., 7 or 14 symbols) depending on the subcarrier spacing. The symbol periods in each slot may be assigned indices. A mini-slot is a subslot structure (e.g., 2, 3, or 4 symbols) .
Each symbol in a slot may indicate a link direction (e.g., DL, UL, or flexible) for data transmission and the link direction for each subframe may be dynamically switched. The link directions may be based on the slot format. Each slot may include DL/UL data as well as DL/UL control information.
In NR, a synchronization signal (SS) block is transmitted. The SS block includes a PSS, a SSS, and a two symbol PBCH. The SS block can be transmitted in a fixed slot location, such as the symbols 0-3 as shown in FIG. 6. The PSS and SSS may be used by UEs for cell search and acquisition. The PSS may provide half-frame timing, the SS may provide the CP length and frame timing. The PSS and SSS may provide the cell identity. The PBCH carries some basic system information (SI) , such as downlink system bandwidth, timing information within radio frame, SS burst set periodicity, system frame number, etc. The SS blocks may be organized into SS bursts to support beam sweeping. Further system information such as, remaining minimum system information (RMSI) , system information blocks (SIBs) , other system information (OSI) can be transmitted on a PDSCH in certain subframes.
In some circumstances, two or more subordinate entities (e.g., UEs) may communicate with each other using sidelink signals. Real-world applications of such sidelink communications may include public safety, proximity services, UE-to-network relaying, vehicle-to-vehicle (V2V) communications, Internet of Everything (IoE) communications, IoT communications, mission-critical mesh, and/or various other suitable applications. Generally, a sidelink signal may refer to a signal communicated from one subordinate entity (e.g., UE1) to another subordinate entity (e.g., UE2) without relaying that communication through the scheduling entity (e.g., UE or BS) , even though the scheduling entity may be utilized for scheduling and/or control purposes. In some examples, the sidelink signals may be communicated using a licensed spectrum (unlike wireless local area networks, which typically use an unlicensed spectrum) .
A UE may operate in various radio resource configurations, including a configuration associated with transmitting pilots using a dedicated set of resources (e.g., a radio resource control (RRC) dedicated state, etc. ) or a configuration associated with transmitting pilots using a common set of resources (e.g., an RRC common state, etc. ) . When operating in the RRC dedicated state, the UE may select a dedicated set of resources for transmitting a pilot signal to a network. When operating in the RRC common state, the UE may select a common set of resources for transmitting a pilot signal to the network. In either case, a pilot signal transmitted by the UE may be received by one or more network access devices, such as an AN, or a DU, or portions thereof. Each receiving network access device may be configured to receive and  measure pilot signals transmitted on the common set of resources, and also receive and measure pilot signals transmitted on dedicated sets of resources allocated to the UEs for which the network access device is a member of a monitoring set of network access devices for the UE. One or more of the receiving network access devices, or a CU to which receiving network access device (s) transmit the measurements of the pilot signals, may use the measurements to identify serving cells for the UEs, or to initiate a change of serving cell for one or more of the UEs.
Example Joint Spatial And Frequency Compression Of CSI Feedback
In certain systems, such as new radio (NR) or 5G systems, Type-II channel state information (CSI) is supported. For example, the Type-II CSI may be for multiple-input multiple-output (MIMO) systems. Type-II CSI is described in greater detail below in the Appendix. The Type-II CSI may provide feedback regarding linear combination of multiple beams; per-layer and/or per-polarization amplitude and phase feedback; wideband and per-subband differential quantization of amplitude feedback; and/or subband quantization of phase feedback. Therefore, the overhead for the Type-II feedback may be large.
Thus, techniques for reducing the overhead for CSI feedback are desirable.
Accordingly, aspects of the present disclosure provide techniques for joint spatial and frequency domain compression (JSFC) of CSI feedback, including precoder feedback and/or channel feedback, to reduce the overhead of the CSI feedback. Aspects provide for further reduction of the overhead by JSFC compression of the CSI feedback across layers (e.g., stacked layers) and/or across receivers. Further, feedback designs for the compressed CSI feedback on the physical uplink shared channel (PUSCH) are provided, as well as priority rules for transmitting the compressed CSI feedback along with information regarding the compression.
FIG. 7 is a flow diagram illustrating example operations 700 for JSFC of CSI, in accordance with certain aspects of the present disclosure. The operations 700 may be performed, for example, by a user equipment (UE) , such as a UE 120 in the wireless communication network 100.
The operations 700 may begin, at 702, by determining CSI feedback. For example, the UE determines CSI feedback based on CSI reference signals (CSI-RS)  received from a base station (BS) . In some examples, the CSI feedback is Type-II CSI feedback. Type-II feedback is described in more detail below in the Appendix. The CSI feedback may include channel feedback and/or precoder feedback.
As shown in FIG. 8 below, for precoder CSI feedback, the UE may determine a precoder matrix V. As shown in FIG. 9, the UE may determine the precoder matrices for multiple stacked layers R. As shown in FIGs. 8 and FIG. 9, the precoder matrices V correspond to a set of precoders (e.g., a stack of eigenvectors) . The set of precoders may be for N sb subbands. The precoders may be for N t transmit antennas. Thus, the precoder matrix V has the dimensions N sb X N t.
As shown in FIG. 10 below, for channel CSI feedback, the UE may determine a channel matrix H, and the UE may determine the channel matrices for multiple receive antennas. The channel matrix H corresponds to the set of channels for the bandwidth parameter N bw (e.g., number of subbands N sb or number of resource blocks (RBs) N RB) . The set of channels may be for N t transmit antennas. Thus, the channel matrix H has the dimensions N bw X N t. The UE may determine a channel matrix H for each receive antenna.
At 704, the UE performs JSFC on the CSI feedback. The JSFC comprises a first stage compression and a second stage compression. The first stage compression may be a spatial compression stage and the second stage compression may be a frequency compression stage.
The spatial compression stage of the JSFC may involve applying a spatial compression matrix B. As shown in FIG. 8, for precoder feedback, the spatial compression matrix B is applied to the precoding matrix V. As shown in FIG. 9 the spatial compression matrix B (e.g., the same B matrix) may be applied to each of the plurality of V matrices for the stacked layers. The spatial compression may be based on one or more linear combinations of discrete Fourier transform (DFT) beams. Thus, the B matrix may have a dimension N t X N b. N bis equal to 2*L, where L is the configured linear combination number of beams (e.g., as in Rel. 15 Type-II CSI feedback) . After the spatial compression, the spatially compressed precoder matrix is V B. There may be a plurality of V B matrices
Figure PCTCN2018091549-appb-000001
for the plurality of layers.
As shown in FIG. 10, for channel feedback, the spatial compression matrix B is applied to the channel matrix H. As shown in FIG. 10 the spatial compression  matrix B (e.g., the same B matrix) may be applied to each of the plurality of H matrices for the plurality of receive antennas. After the spatial compression, the spatially compressed channel matrix is H B. There may be a plurality of H B matrices
Figure PCTCN2018091549-appb-000002
for the plurality of receive antennas.
The frequency compression stage of the JSFC may involve applying a frequency compression matrix G. As shown in FIG. 8, for precoder feedback, the frequency compression matrix G is applied to the spatially compressed precoding matrix V B. The frequency compression may be based on a frequency correlation to find dominant precoders of the spatially compressed CSI feedback. The frequency compression may involve finding a new set of basis for the frequency domain compression. For example, the frequency compression may find the frequency correlation computed for the N g-th precoders (e.g., eigenvectors) of V B. Thus, the G matrix may have a dimension N b X N g. After the frequency compression, the spatially and frequency domain compressed precoder matrix is V G.
As shown in FIG. 9, the frequency compression stage may involve cross layer compression of subband elements for JSFC based frequency domain compression with stacked layers (JSFC-S) . The frequency compression matrix G may be applied to each of the plurality of V B matrices for the stacked layers. As shown in FIG. 9, R different G matrices may be applied for each of the V B matrices
Figure PCTCN2018091549-appb-000003
for the plurality of layers. 
Figure PCTCN2018091549-appb-000004
can be computed as the first to the N g-th dominant precoder of the stacked
Figure PCTCN2018091549-appb-000005
matrices. In the feedback, 
Figure PCTCN2018091549-appb-000006
can still be decoupled into per rank
Figure PCTCN2018091549-appb-000007
As shown in FIG. 9, the JSFC-S compression results in a single common (shared) V G for the plurality of layers.
As shown in FIG. 10, for channel feedback, the compression matrix G is applied to each of the plurality of H matrices for the plurality of receive antennas. After the spatial compression, the spatially compressed channel matrix is H G.
At 706, the UE transmits the compressed CSI feedback to the BS. The compressed CSI feedback may have reduced overhead. According to certain aspects, the UE also transmits information to the BS regarding the spatial compression matrix, B, and the frequency compression matrix, G, along with the compressed CSI feedback matrix V G and/or H G. The BS can use the information to decompress the CSI feedback to recover the feedback.
According to certain aspects, the compressed CSI feedback and the information regarding the B and G matrices are transmitted on the PUSCH. The compressed CSI feedback comprises a Part-1 portion and a Part-2 portion. In some examples, in the Part-1 portion of the CSI feedback, the UE transmits an explicit indication of a payload size of the Part-2 portion of the CSI feedback.
In some example, the payload size of the Part-2 part is indicated by replacing non-zero wideband amplitude number per layer. The total number of payload bits in the Part-2 portion may be indicated as a range from the minimum to largest hypothesized payload size. In some examples, the explicit indication is transmitted using non-zero amplitude bits of the G matrix and after transmitting the compressed CSI feedback bits. For JSFC-C, the explicit indication may be transmitted using non-zero amplitude bits per layer of the G matrix. For JSFC-S, non-zero amplitude bits per layer (NZAPL) may be performed for each G and V G (and/or H G) matrix. For JSFC, the NZAPL may be only forG matrix.
If lower priority parts are discarded, then the UE reports the actual payload after payload omission. If the UE is configured to report the N g value, then the UE may report the N g and the total number of non-zero amplitude elements column of G and V G (and/or H G) .
According to certain aspects, the Part-2 portion of the compressed CSI feedback and the information related the B and G matrices may be transmitted based on priority rules. The priority rules may be based on transmitting elements of G matrix and elements of the compressed CSI feedback based on at least one: layer, subband, row, column, or grouping.
The Part-2 portion of the CSI may include beam associated information (e.g., the Rel. 15 Type-II beam selection) . The Part-2 portion of the CSI may include N g if the UE is configured to report it, and if the UE did not report in the Part-1 portion. According to one priority rule, shown in FIG. 11, the UE may report the associated elements for G Nb,1 in the order of layers, followed by per element of V G,1 in the order subband, then, the UE may report the associated elements for G Nb,2 in the order of layers, followed by per element of V G,2 in the order subband. According to another priority rule, the UE may report the associated elements for G Nb,Ng in the order of layers, followed by per element of V G,Ng in the order subband.
A priority part with lower index may be treated as high priority. If a payload size of the PUSCH is less than a payload size of the compressed CSI feedback and the information related the B and G matrices, discarding a lowest priority portion of at least one of: the compressed CSI feedback or the information.
According to certain aspects, further priority groupings can be used. Ng can be further grouped. For example, Ng/2 can be the first group and Ng (/2+1) can be the second group. Dominant elements of G Nb,Ng per-layer, per-basis, can be selected with an indicator of
Figure PCTCN2018091549-appb-000008
per-layer, per-basis, and the dominant element has 0 dB amplitude and 0 degree phase and does not need to be feedback. The indicator of dominant element may be at the front of each priority part. V G (and/orH G) can be feedback with domain basis selection per row of V G, with an indicator of
Figure PCTCN2018091549-appb-000009
per-subband (row in the matrix) of V G (and/or H G) . The first priority part may be added to if dominant basis selection is desired. If the domain basis selection is fixed at the first basis, then V G,1=1 (i.e., the first column of V G) and does not need to be fed back (e.g., because it always has a 0 dB amplitude and a 0 degree phase) , and the dominant basis selection indicator also does not need to be fed back
FIG. 12 is a flow diagram illustrating example operations 1200 for decompression of JSFC compressed CSI, in accordance with certain aspects of the present disclosure. Operations 1200 may be performed, for example, by a BS such as a BS 110 in the wireless communication network 100.
Operations 1200 may begin, at 1202, by receiving compressed CSI feedback from a UE. The compressed CSI feedback is JSFC compressed CSI feedback. At 1204, the BS decompresses the JSFC compressed CSI feedback. The decompression includes a first stage decompression and a second stage decompression. As shown in FIGs. 8-10, the BS receives the V G (and/or H G) matrix, and uses the G matrix (or matrices) for the first stage decompression the B matrix for the second stage decompression to recover theV G (and/or H G) matrix (or matrices) . At 1206, the BS processes the decompressed CSI feedback.
FIG. 13 illustrates a communications device 1300 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated inFIG. 7. The communications device 1300 includes a processing system 1302 coupled  to a transceiver 1308. The transceiver 1308 is configured to transmit and receive signals for the communications device 1300 via an antenna 1310, such as the various signals as described herein. The processing system 1302 may be configured to perform processing functions for the communications device 1300, including processing signals received and/or to be transmitted by the communications device 1300.
The processing system 1302 includes a processor 1304 coupled to a computer-readable medium/memory 1312 via a bus 1306. In certain aspects, the computer-readable medium/memory 1312 is configured to store instructions (e.g., computer executable code) that when executed by the processor 1304, cause the processor 1304 to perform the operations illustrated in FIG. 7, or other operations for performing the various techniques discussed herein for JSFC compression of CSI feedback. In certain aspects, computer-readable medium/memory 1312 stores code 1314 for determining CSI feedback; code 1316 for performing JSFC compression on the CSI feedback; and code 1316 for transmitting the compressed CSI feedback.
FIG. 14 illustrates a communications device 1400 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 12. The communications device 1400 includes a processing system 1402 coupled to a transceiver 1408. The transceiver 1408 is configured to transmit and receive signals for the communications device 1400 via an antenna 1410, such as the various signals as described herein. The processing system 1402 may be configured to perform processing functions for the communications device 1400, including processing signals received and/or to be transmitted by the communications device 1400.
The processing system 1402 includes a processor 1404 coupled to a computer-readable medium/memory 1414 via a bus 1406. In certain aspects, the computer-readable medium/memory 1412 is configured to store instructions (e.g., computer executable code) that when executed by the processor 1404, cause the processor 1404 to perform the operations illustrated in FIG. 12, or other operations for performing the various techniques discussed herein for decompressing JSFC compressed CSI feedback. In certain aspects, computer-readable medium/memory 1412 stores code 1414 for receiving JSFC compressed CSI feedback; code 1416 for  decompressing the JSFC compressed CSI feedback; and code 1418 for processing the decompressed CSI feedback.
The methods disclosed herein comprise one or more steps or actions for achieving the methods. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is specified, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
As used herein, the term “determining” encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Unless specifically stated otherwise, the term “some” refers to one or more. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the  claims. No claim element is to be construed under the provisions of 35 U.S.C. §112 (f) unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for. ”
The various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions. The means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor. Generally, where there are operations illustrated in figures, those operations may have corresponding counterpart means-plus-function components with similar numbering.
The various illustrative logical blocks, modules and circuits described in connection with the present disclosure may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device (PLD) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
If implemented in hardware, an example hardware configuration may comprise a processing system in a wireless node. The processing system may be implemented with a bus architecture. The bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints. The bus may link together various circuits including a processor, machine-readable media, and a bus interface. The bus interface may be used to connect a network adapter, among other things, to the processing system via the bus. The network adapter may be used to implement the signal processing functions of the PHY layer. In the case of a user terminal 120 (see FIG. 1) , a user interface (e.g., keypad, display, mouse, joystick, etc. ) may also be connected to the bus. The bus may also link various other circuits such as timing  sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further. The processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
If implemented in software, the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium. Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. The processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media. A computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. By way of example, the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface. Alternatively, or in addition, the machine-readable media, or any portion thereof, may be integrated into the processor, such as the case may be with cache and/or general register files. Examples of machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof. The machine-readable media may be embodied in a computer-program product.
A software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs,  and across multiple storage media. The computer-readable media may comprise a number of software modules. The software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions. The software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices. By way of example, a software module may be loaded into RAM from a hard drive when a triggering event occurs. During execution of the software module, the processor may load some of the instructions into cache to increase access speed. One or more cache lines may then be loaded into a general register file for execution by the processor. When referring to the functionality of a software module below, it will be understood that such functionality is implemented by the processor when executing instructions from that software module.
Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and
Figure PCTCN2018091549-appb-000010
disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in some aspects computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) . In addition, for other aspects computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
Thus, certain aspects may comprise a computer program product for performing the operations presented herein. For example, such a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein. For example, instructions for performing the operations described herein and illustrated in FIG. 7 and FIG. 12.
Further, it should be appreciated that modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable. For example, such a device can be coupled to a server to facilitate the transfer of means for performing the methods described herein. Alternatively, various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device. Moreover, any other suitable technique for providing the methods and techniques described herein to a device can be utilized.
It is to be understood that the claims are not limited to the precise configuration and components illustrated above. Various modifications, changes and variations may be made in the arrangement, operation and details of the methods and apparatus described above without departing from the scope of the claims.
Figure PCTCN2018091549-appb-000011
Figure PCTCN2018091549-appb-000012
Figure PCTCN2018091549-appb-000013
Figure PCTCN2018091549-appb-000014
Figure PCTCN2018091549-appb-000015
Figure PCTCN2018091549-appb-000016
Figure PCTCN2018091549-appb-000017
Figure PCTCN2018091549-appb-000018
Figure PCTCN2018091549-appb-000019
Figure PCTCN2018091549-appb-000020
Figure PCTCN2018091549-appb-000021
Figure PCTCN2018091549-appb-000022
Figure PCTCN2018091549-appb-000023
Figure PCTCN2018091549-appb-000024
Figure PCTCN2018091549-appb-000025
Figure PCTCN2018091549-appb-000026
Figure PCTCN2018091549-appb-000027

Claims (25)

  1. A method for wireless communications by a user equipment (UE) , comprising:
    determining channel state information (CSI) feedback based on one or more received CSI reference signals (CSI-RS) ;
    performing joint spatial and frequency domain compression (JSFC) on the CSI feedback, wherein the JSFC comprises a first stage compression and a second stage compression; and
    transmitting the compressed CSI feedback to a base station (BS) .
  2. The method of claim 1, wherein:
    the spatial compression is based on one or more linear combinations of discrete Fourier transform (DFT) beams, and
    the frequency compression is based on a frequency correlation to find dominant precoders of the spatially compressed CSI feedback.
  3. The method of claim 1, further comprising:
    transmitting information to the BS regarding a spatial compression matrix, B, used for the first stage compression and a frequency compression matrix, G, used for the second stage compression.
  4. The method of claim 3, wherein:
    determining the CSI feedback comprises determining precoder feedback;
    determining a precoder matrix, V, corresponding to a set of precoders, a number of the precoders equal a number of subbands, N sb, having a dimension equal to a number of transmit-side antennas, N t;
    B is used to compress V to obtain a spatially compressed precoder matrix, V B, having the dimension equal to a number of linear combination beams, N b;
    G is used to compress V B to obtain a spatial and frequency compressed precoder matrix, V G, having the dimension equal to a number of dominant precoders, N g; and
    V G comprises the compressed CSI feedback.
  5. The method of claim 4, wherein:
    a plurality of V matrices are determined for a plurality of layers;
    the same B matrix is applied to the plurality of V matrices to obtain a plurality of V B matrices for the plurality of layers;
    a plurality of G matrices are applied to the plurality of V B matrices to obtain a single V G matrix common for the plurality of layers; and
    the single V G is transmitted as the compressed CSI feedback for the plurality of layers.
  6. The method of claim 3, wherein:
    determining the CSI feedback comprises determining channel feedback;
    determining a channel matrix, H, corresponding to a set of channels, a number of the channels equal a bandwidth parameters, N bw, having a dimension equal to a number of transmit-side antennas, N t;
    B is used to compress H to obtain a spatially compressed channel matrix, H B, having the dimension equal to a number of linear combination beams, N b;
    G is used to compress H B to obtain a spatial and frequency compressed channel matrix, H G, having the dimension equal to a number of dominant channels, N g; and
    H G comprises the compressed CSI feedback.
  7. The method of claim 6, wherein N bw comprises a number of subbands or a number of resource blocks.
  8. The method of claim 6, wherein:
    a plurality of H matrices are determined for a plurality of receive antennas;
    the same B matrix is applied to the plurality of H matrices to obtain a plurality of H B matrices for the plurality of receive antennas;
    a plurality of G matrices are applied to the plurality of H B matrices to obtain a single H G matrix common for the plurality of receive antennas; and
    H G is transmitted as the compressed CSI feedback for the plurality of receive antennas.
  9. The method of claim 3, wherein the compressed CSI feedback and the information regarding the B and G matrices are transmitted on a physical uplink shared channel (PUSCH) .
  10. The method of claim 9, wherein:
    the compressed CSI feedback comprises a Part-1 portion and a Part-2 portion; and
    the method further comprises transmitting, in the Part-1 portion, an indication of a payload size of the Part-2 portion.
  11. The method of claim 10, wherein an explicit indication of the payload size of the Part-2 portion comprises an indication of a range of payload sizes from a minimum to a maximum hypothesized payload size of the Part-2 portion.
  12. The method of claim 10, wherein the explicit indication is transmitted using total number of non-zero amplitude elements per priority portion of the G and V G matrix.
  13. The method of claim 10, wherein the compressed CSI feedback and the information related the G matrices are divided into priority portions.
  14. The method of claim 13, wherein priority portions are obtained based on rules that segment elements of G matrix and elements of the compressed CSI feedback based on at least one: layer, subband, row, column, or grouping.
  15. The method of claim 13, further comprising:
    if the available payload size for Part-2 portion is less than a payload size of the compressed CSI feedback and the information related the B and G matrices, discarding a lowest priority portion.
  16. A method for wireless communications by a base station (BS) , comprising:
    receiving compressed channel state information (CSI) feedback from a user equipment (UE) , wherein the compressed CSI feedback comprises joint spatial and frequency domain compression (JSFC) compressed CSI feedback;
    decompressing the JSFC compressed CSI feedback, wherein the decompression  comprises a first stage decompression and a second stage decompression; and
    processing the decompressed CSI feedback.
  17. The method of claim 16, further comprising:
    receiving information to the UE regarding a spatial compression matrix, B, used for the second stage decompression and a frequency compression matrix, G, used for the second stage decompression.
  18. The method of claim 17, wherein:
    the compressed CSI feedback comprises a spatial and frequency compressed precoder matrix, V G, having a dimension equal to a number of dominant precoders, N g;
    G is used to decompress V G to obtain a spatially compressed precoder matrix, V B, having the dimension equal to a number of linear combination beams, N b;
    B is used to decompress V B to recover a precoder matrix, V, corresponding to a set of precoders, a number of the precoders equal a number of subbands, N sb, having a dimension equal to a number of transmit-side antennas, N t.
  19. The method of claim 18, wherein:
    a single V G matrix is received as compressed CSI feedback for a plurality of layers.
    a plurality of G matrices are applied to the single V G matrix to obtain a plurality of V B matrices for the plurality of layers; and
    the same B matrix is applied to the plurality of V B matrices to recover a plurality of V matrices for the plurality of layers.
  20. The method of claim 17, wherein:
    the compressed CSI feedback comprises a spatial and frequency compressed channel matrix, H G, having a dimension equal to a number of dominant channels, N g;
    G is used to decompress H G to obtain a spatially compressed channel matrix, H B, having the dimension equal to a number of linear combination beams, N b; and
    B is used to decompress H B to obtain a channel matrix, H, corresponding to a set of channels, a number of the channels equal a bandwidth parameters, N bw, having a dimension equal to a number of transmit-side antennas, N t.
  21. The method of claim 20, wherein N bw comprises a number of subbands or a number of resource blocks.
  22. The method of claim 20, wherein:
    H G is received as the compressed CSI feedback for a plurality of receive antennas;
    a plurality of G matrices are applied to the H G matrix to obtain a plurality of H B matrices for the plurality of receive antennas; and
    the same B matrix is applied to the plurality of H B matrices to obtain a plurality of H matrices for the plurality of receive antennas.
  23. The method of claim 17, wherein the compressed CSI feedback and the information regarding the B and G matrices are received on a physical uplink shared channel (PUSCH) .
  24. The method of claim 23, wherein:
    the compressed CSI feedback comprises a Part-1 portion and a Part-2 portion; and
    the Part-1 portion includes an indication of a payload size of the Part-2 portion.
  25. The method of claim 24, wherein an explicit indication of the payload size of the Part-2 portion comprises an indication of a range of payload sizes from a minimum to a maximum hypothesized payload size of the Part-2 portion.
PCT/CN2018/091549 2018-06-15 2018-06-15 Joint spatial and frequency domain compression of csi feedback WO2019237344A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/091549 WO2019237344A1 (en) 2018-06-15 2018-06-15 Joint spatial and frequency domain compression of csi feedback

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/091549 WO2019237344A1 (en) 2018-06-15 2018-06-15 Joint spatial and frequency domain compression of csi feedback

Publications (1)

Publication Number Publication Date
WO2019237344A1 true WO2019237344A1 (en) 2019-12-19

Family

ID=68841762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091549 WO2019237344A1 (en) 2018-06-15 2018-06-15 Joint spatial and frequency domain compression of csi feedback

Country Status (1)

Country Link
WO (1) WO2019237344A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021142631A1 (en) 2020-01-14 2021-07-22 Nokia Shanghai Bell Co., Ltd. Method, device and computer readable medium of communication
CN113508538A (en) * 2020-02-05 2021-10-15 上海诺基亚贝尔股份有限公司 Channel State Information (CSI) feedback enhancement depicting per-path angle and delay information
US11387880B2 (en) 2020-02-28 2022-07-12 Qualcomm Incorporated Channel state information feedback using channel compression and reconstruction
WO2023184253A1 (en) * 2022-03-30 2023-10-05 Huawei Technologies Co.,Ltd. Systems and methods for channel state information acquisition using joint space-frequency subspace
WO2024037380A1 (en) * 2022-08-15 2024-02-22 维沃移动通信有限公司 Channel information processing methods and apparatus, communication device, and storage medium
WO2024046288A1 (en) * 2022-08-29 2024-03-07 华为技术有限公司 Communication method and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160365913A1 (en) * 2014-02-19 2016-12-15 Huawei Technologies Co., Ltd. Channel state information feedback method and apparatus, user equipment, and base station
CN108141887A (en) * 2015-09-28 2018-06-08 纽瑞科姆有限公司 For the device and method of the TXOP Duration fields in PHY headers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160365913A1 (en) * 2014-02-19 2016-12-15 Huawei Technologies Co., Ltd. Channel state information feedback method and apparatus, user equipment, and base station
CN108141887A (en) * 2015-09-28 2018-06-08 纽瑞科姆有限公司 For the device and method of the TXOP Duration fields in PHY headers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Further enhancements on CSI reporting and codebook design", RI-1807128, 25 May 2018 (2018-05-25), XP051442326 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021142631A1 (en) 2020-01-14 2021-07-22 Nokia Shanghai Bell Co., Ltd. Method, device and computer readable medium of communication
EP4091261A4 (en) * 2020-01-14 2023-10-11 Nokia Technologies Oy Method, device and computer readable medium of communication
CN113508538A (en) * 2020-02-05 2021-10-15 上海诺基亚贝尔股份有限公司 Channel State Information (CSI) feedback enhancement depicting per-path angle and delay information
CN113508538B (en) * 2020-02-05 2023-06-23 上海诺基亚贝尔股份有限公司 Channel State Information (CSI) feedback enhancement depicting per path angle and delay information
US11387880B2 (en) 2020-02-28 2022-07-12 Qualcomm Incorporated Channel state information feedback using channel compression and reconstruction
WO2023184253A1 (en) * 2022-03-30 2023-10-05 Huawei Technologies Co.,Ltd. Systems and methods for channel state information acquisition using joint space-frequency subspace
WO2024037380A1 (en) * 2022-08-15 2024-02-22 维沃移动通信有限公司 Channel information processing methods and apparatus, communication device, and storage medium
WO2024046288A1 (en) * 2022-08-29 2024-03-07 华为技术有限公司 Communication method and apparatus

Similar Documents

Publication Publication Date Title
EP3652879B1 (en) Demodulation reference signal (dmrs) sequence generation and resource mapping for physical broadcast channel (pbch) transmissions
WO2020051922A1 (en) Csi for non-coherent joint transmission
WO2020056726A1 (en) Uplink control information multiplexing on physical uplink control channel
WO2020118501A1 (en) Basis report for compressed csi feedback with non-contiguous subband configuration
EP3834333B1 (en) Delay minimization for reference signal transmission
WO2020077536A1 (en) Uplink srs with precoding
WO2019237344A1 (en) Joint spatial and frequency domain compression of csi feedback
WO2020030078A1 (en) Channel state information feedback for non-coherent joint transmissions
WO2019052407A1 (en) Methods and apparatus for csi-rs port subset indication
WO2019192527A1 (en) Overhead reduction for channel state information
WO2020051896A1 (en) Csi report configuration with a codebook list
WO2019192007A1 (en) Collision handling for csi reporting on pusch
WO2020118549A1 (en) Coefficients report for compressed csi feedback
WO2020088496A1 (en) Channel state information (csi) with spatial and time domain compression
WO2020029288A1 (en) Quasi-colocation indication for non-zero power channel state information reference signal port groups
WO2020029880A1 (en) Quasi-colocation indication for demodulation reference signals
WO2020125713A1 (en) Configurations and feedback schemes for compressed channel state information (csi)
WO2020063726A1 (en) Channel state information (csi) with spatial and time domain compression
WO2020103011A1 (en) Linkage between reference signals for improvement of downlink transmissions
WO2022032647A1 (en) Physical uplink shared channel with switched antenna frequency domain resource allocation determination
WO2020057660A1 (en) Preemption indication for dl multiplexing of different types of traffic with non-coherent joint transmission
WO2020063434A1 (en) Csi reporting without full csi-rs presence
WO2021035495A1 (en) Deactivation time for semi-persistent channel state information (sp-csi)
WO2022000255A1 (en) Autonomous transmit power management in a small cell
WO2020029900A1 (en) Collision handling for channel state information reports and uplink data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922632

Country of ref document: EP

Kind code of ref document: A1