WO2019235372A1 - Optical system, and imaging device and imaging system equipped with same - Google Patents

Optical system, and imaging device and imaging system equipped with same Download PDF

Info

Publication number
WO2019235372A1
WO2019235372A1 PCT/JP2019/021656 JP2019021656W WO2019235372A1 WO 2019235372 A1 WO2019235372 A1 WO 2019235372A1 JP 2019021656 W JP2019021656 W JP 2019021656W WO 2019235372 A1 WO2019235372 A1 WO 2019235372A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
section
cross
light
front group
Prior art date
Application number
PCT/JP2019/021656
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 博樹
木村 一己
工藤 源一郎
▲寛▼人 加納
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019044281A external-priority patent/JP6639718B2/en
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2019235372A1 publication Critical patent/WO2019235372A1/en
Priority to US17/108,661 priority Critical patent/US11674908B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/08Anamorphotic objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • the present invention relates to an optical system used in an imaging apparatus that obtains image information by splitting a light beam from an object, and is suitable for inspection and evaluation in industrial fields such as manufacturing, agriculture, and medicine.
  • Patent Document 1 describes an optical system having cylindrical mirrors disposed on both sides of a slit that is long in one direction and a diffraction grating that splits a light beam from the cylindrical mirror.
  • the optical system described in Patent Document 1 employs a cylindrical mirror, the light beam incident on the slit and the light beam dispersed by the diffraction grating become parallel light in a cross section including the longitudinal direction of the slit. ing. Therefore, in order to collect the light beam in the cross section, it is necessary to dispose a lens on the image side of the diffraction grating. Furthermore, in order to realize a wide angle of view, it is necessary to arrange more optical elements, and the entire system becomes large.
  • An object of the present invention is to provide an optical system capable of realizing a wide angle of view while being small, an imaging apparatus including the optical system, and an imaging system.
  • an optical system is an optical system including a front group, a light shielding member, and a rear group arranged in order from the object side to the image side.
  • a long opening is provided in the first direction, and the front group does not form an object on the opening in the first cross section parallel to the first direction, and the first group extends in the first direction.
  • the rear group splits the light beam that has passed through the opening in the second cross section into a plurality of light beams having different wavelengths.
  • the plurality of light beams are condensed at different positions in the second cross section, and the light beams that exit from the front group and enter the aperture are not in the first cross section.
  • an XYZ coordinate system is defined as an absolute coordinate system
  • an xyz coordinate system is defined as a local coordinate system for each optical surface.
  • the x axis is the normal axis (optical axis) at the apex (origin) of each optical surface
  • the y axis is parallel to the Y axis and orthogonal to the x axis at the origin
  • the z axis is the x axis
  • It is an axis orthogonal to the y-axis.
  • the Y direction and the y direction are the first direction (reading direction)
  • the Z direction and the z direction are the second direction (spectral direction)
  • the XY cross section and the xy cross section are the first cross section (read cross section)
  • the ZX cross section and
  • the zx cross section is also referred to as a second cross section (spectral cross section).
  • FIG. 1 and FIG. 2 are main part schematic views of an optical system 10 according to an embodiment of the present invention
  • FIG. 1 shows a first cross section
  • FIG. 2 shows a second cross section
  • 1 and 2 show the shape of each member in a cross section including the optical axis.
  • each member is shown in the same sheet for convenience.
  • the diffraction grating on the diffraction surface is omitted for convenience.
  • the test object is illuminated with white light (light having a plurality of wavelength components) such as sunlight.
  • the region other than the aperture in the aperture stop 1 and the light shielding member 4 is a light shielding surface that does not transmit light in at least the use wavelength band (design wavelength band) of the optical system 10.
  • the diaphragm 1 and the light shielding member 4 it is possible to employ one having a hole in a sheet metal or one having a chromium vapor deposited on the surface of a glass plate.
  • the optical system 10 can form an image of a linear reading region (test region) that is long in the first direction.
  • the rear group 12 only needs to have at least one diffractive surface.
  • the base surface of the diffractive surface 5 is made an aspherical surface (anamorphic surface), and the fourth reflecting surface 6 is made spherical or removed. May be.
  • the diffractive surface 5 is provided in the front group 11, only a part of the light beams having a certain wavelength can pass through the opening of the light shielding member 4. Therefore, the diffractive surface 5 needs to be provided in the rear group 12.
  • each of the front group 11 and the rear group 12 is constituted by two reflecting surfaces as in this embodiment.
  • a blazed shape is employed that is relatively easy to achieve both improvement in diffraction efficiency and ease of manufacture.
  • a blazed diffraction grating the portion farthest from the base surface in the x direction is the lattice apex, the portion that reflects (diffracts) incident light is the blazed surface (lattice surface), and does not contribute to diffraction adjacent to the blazed surface.
  • the part is called a lattice wall surface.
  • the diffractive surface 5 according to this embodiment is arranged so that the blaze surface faces the light receiving surface 7 side (image side) and the grating wall surface faces the object side. As a result, a short wavelength light beam is incident on the + Z side of the light receiving surface 7 in FIG. 2, and a long wavelength light beam is incident on the ⁇ Z side.
  • a reflective coating may be applied to the surface of the diffraction grating.
  • the base surface of the diffractive surface 5 is preferably an anamorphic surface having different curvatures in the xy section and the zx section. This makes it possible to share power with other anamorphic optical surfaces, thus facilitating correction of aberrations.
  • the base surface of the diffractive surface 5 is an anamorphic surface.
  • the base surface may be a flat surface or a spherical surface with emphasis on the ease of manufacturing the diffraction grating.
  • the light beam emitted from the test object passes through the aperture of the diaphragm 1, is reflected by the first reflecting surface 2 and the second reflecting surface 3, and reaches the light shielding member 4.
  • the front group 11 does not image the test object on the opening of the light shielding member 4 in the first cross section (XY cross section), and on the opening of the light shielding member 4 in the second cross section (ZX cross section).
  • An intermediate image of the test object is formed in That is, the front group 11 is configured such that the focal position does not coincide with the object plane in the first cross section.
  • a line-shaped intermediate image (line image) that is long in the first direction is formed on the opening of the light shielding member 4.
  • “on the opening” is not limited to the exact position of the opening, but also includes the vicinity (substantially above the opening) of the opening slightly separated from the position of the opening in the optical axis direction.
  • the light beam that has passed through the opening of the light shielding member 4 is split into a plurality of light beams having different wavelengths by the diffraction surface 5 in the second cross section.
  • the diffraction grating on the diffraction surface 5 is composed of a plurality of gratings (ridge lines) arranged in the z direction, the light beam incident on the diffraction surface 5 is subjected to spectral action only in the z direction and spectral action in the y direction. I do not receive it.
  • the plurality of light beams from the diffractive surface 5 are reflected by the fourth reflecting surface 6 and enter the light receiving surface 7 disposed on the image surface. At this time, a plurality of light beams having different wavelengths are condensed at different positions on the light receiving surface 7 in the second cross section. That is, according to the optical system 10 according to the present embodiment, since a plurality of images for each wavelength can be formed on the light receiving surface 7, the light receiving surface 7 can acquire a plurality of image information for each wavelength.
  • the optical system 10 generates different optical actions in the first cross section including the reading direction and the second cross section including the spectral direction.
  • the test object is imaged on the light receiving surface 7 without being imaged once on the opening of the light shielding member 4, but in the second cross section, the test object is imaged on the light shielding member 4.
  • the image is once formed on the aperture and then re-imaged on the light receiving surface 7. That is, the test object is imaged once in the first cross section, while the test object is imaged twice in the second cross section.
  • the light beam passing through the opening of the light shielding member 4 can be made non-parallel light. Thereby, it becomes easy to realize a wide angle of view in the first cross section. If the light beam passing through the opening of the light shielding member 4 is parallel light, it is necessary to arrange a large number of optical elements in the rear group 12 in order to increase the angle of view of the optical system 10. The system becomes larger.
  • a wide angle of view is realized by using a divergent light as a light beam passing through the opening of the light shielding member 4.
  • a light beam passing through the opening of the light shielding member 4 as necessary. May be convergent light.
  • each of the front group 11 and the rear group 12 when the test object is once imaged on the opening of the light shielding member 4, each of the front group 11 and the rear group 12 must independently correct the aberration. Therefore, it is necessary to increase the power of each optical surface, for example, the degree of freedom in designing each optical surface is lowered, and it is difficult to increase the angle of view of the optical system 10.
  • the second cross section since it is not necessary to widen the angle of view, it is possible to increase the NA by once imaging the test object on the opening of the light shielding member 4.
  • each of the front group 11 and the rear group 12 has different powers in the first cross section and the second cross section.
  • the anamorphic optical surface included in the front group 11 should be positively given power not only to the second cross section but also to the first cross section (make the absolute value of curvature larger than 0). desirable.
  • the power code of the front group 11 and the power code of the rear group 12 are different from each other.
  • a positive power is applied to the front group 11 and the rear group 12 in order to form an image once on the opening of the light shielding member 4 and then re-image the light receiving surface 7. It is necessary to have.
  • the front group 11 is given negative power. It is desirable to give the rear group 12 positive power.
  • the optical system 10 becomes a retro focus type in the first cross section, the focal length of the entire system is shortened, and a wide angle of view can be realized.
  • the optical system 10 is made a telephoto optical system by giving the front group 11 positive power and giving the rear group 12 negative power. Also good.
  • the chief ray L1P and the marginal rays L1U and L1L in the white light beam emitted from the test object are line-shaped intermediately on the opening of the light shielding member 4 via the stop 1, the first reflecting surface 2, and the second reflecting surface 3. Form an image.
  • the principal ray L2P and the marginal rays L2U, L2L that have passed through the opening of the light shielding member 4 are caused by the diffraction surface 5 to have rays L3P, L3U, L3L of wavelength ⁇ 1, rays L4P, L4U, L4L of wavelength ⁇ 2, and rays of wavelength ⁇ 3.
  • each of the light beams having the wavelength ⁇ 1, the wavelength ⁇ 2, and the wavelength ⁇ 3 is condensed at the first position 73, the second position 74, and the third position 75 on the light receiving surface 7.
  • Example 1 The optical system 10 according to Example 1 of the present invention will be described below.
  • the optical system 10 according to the present example has the same configuration as the optical system 10 according to the above-described embodiment.
  • the distance from the test object to the diaphragm 1 is 300 mm
  • the width of the reading region in the first direction is 300 mm
  • the angle of view in the first section is ⁇ 24.17 °.
  • the wavelength band used is 400 nm to 1000 nm
  • the width of the image forming area (incident area) of the light beam on the light receiving surface 7 in the second direction is 2.7 mm.
  • the composite focal lengths in the first cross section of the front group 11 and the rear group 12 according to this embodiment are -16.27 mm and 28.30 mm, respectively, and the composite focal lengths in the second cross section of the front group 11 and the rear group 12 are respectively.
  • the focal lengths are 19.99 mm and 25.76 mm, respectively.
  • the optical system 10 according to the present embodiment improves the imaging performance by performing the intermediate in the second cross section, while widening the angle of view (reading) by adopting the retrofocus type in the first cross section. Realization of wide area).
  • each optical surface of the optical system 10 will be described.
  • the expression of the surface shape of each optical surface is not limited to that described later, and each optical surface may be designed using another expression as necessary.
  • R y is a radius of curvature (bus curvature radius) in the xy section
  • K y , B 2 , B 4 , and B 6 are aspheric coefficients in the xy section.
  • the numerical values of the aspheric coefficients B 2 , B 4 , and B 6 may be different from each other on both sides of the x axis ( ⁇ y side and + y side) as necessary.
  • the bus shape can be asymmetric in the y direction with respect to the x axis.
  • secondary to sixth-order aspheric coefficients are used, but higher-order aspheric coefficients may be used as necessary.
  • K z and M jk are aspheric coefficients in the zx section.
  • r ′ is a radius of curvature (sub-wire curvature radius) in the zx section at a position separated by y from the optical axis in the y direction, and is represented by the following equation.
  • the near infrared region can be intensively observed, or by setting the fundamental wavelength to about 700 nm, the near infrared region can be observed in a balanced manner from the visible region. Also good.
  • curvature radii in the XY cross section and the ZX cross section at the reflection point of the light beam are shown.
  • the value of the radius of curvature of each reflecting surface is positive, it indicates a concave surface, and when it is negative, it indicates a convex surface.
  • Table 3 shows the aperture [1] in the y direction and the z direction of the aperture of the diaphragm 1, the aperture of the light shielding member 4, and the light receiving surface 7.
  • all of the aperture of the diaphragm 1, the aperture of the light shielding member 4, and the light receiving surface 7 are rectangular.
  • FIG. 4 is a schematic diagram of a main part in the first and second cross sections of the optical system 10 according to the embodiment of the present invention.
  • the optical system 10 according to the present embodiment has a shorter optical path length from the stop 1 to the light receiving surface 7 than the optical system 10 according to the first embodiment, thereby realizing further downsizing of the entire system.
  • the distance from the test object to the diaphragm 1 is 300 mm
  • the width of the reading region in the first direction is 300 mm
  • the angle of view in the first section is ⁇ 24.46 °.
  • the used wavelength band is 400 nm to 1000 nm
  • the width of the imaging region in the second direction on the light receiving surface 7 is 2.7 mm.
  • the composite focal lengths in the first cross section of the front group 11 and the rear group 12 according to the present embodiment are respectively -14.21 mm and 16.69 mm
  • the composite focal lengths in the second cross section of the front group 11 and the rear group 12 are respectively.
  • the focal lengths are 19.33 mm and 11.01 mm, respectively.
  • FIG. 5 shows the MTF of the optical system 10 according to the present embodiment, as in FIG. As can be seen from FIG. 5, the aberration is satisfactorily corrected over the entire reading region, and a sufficient depth of focus is ensured.
  • the distance from the test object to the diaphragm 1 is 300 mm
  • the width of the reading region in the first direction is 300 mm
  • the angle of view in the first section is ⁇ 24.44 °.
  • the wavelength band used is 400 nm to 1000 nm
  • the width of the imaging region in the second direction on the light receiving surface 7 is 2.64 mm.
  • the composite focal lengths in the first cross section of the front group 11 and the rear group 12 according to the present embodiment are -14.46 mm and 26.85 mm, respectively, and the composite focal lengths in the second cross section of the front group 11 and the rear group 12 are respectively.
  • the focal lengths are 19.34 mm and 24.98 mm, respectively.
  • Table 7 shows the position of the vertex of each optical surface of the optical system 10 according to this example, the direction of the normal at the vertex, and the radius of curvature at each cross section.
  • Table 8 shows each optical surface.
  • Table 9 shows the aperture of the diaphragm 1, the aperture of the light shielding member 4, and the diameter of the light receiving surface 7.
  • FIG. 7 shows the MTF of the optical system 10 according to the present embodiment, as in FIG. As can be seen from FIG. 7, the aberration is satisfactorily corrected over the entire reading region, and a sufficient depth of focus is ensured.
  • Example 4 The optical system 10 according to Example 4 of the present invention will be described below.
  • the description of the configuration equivalent to that of the optical system 10 according to Embodiment 1 described above is omitted.
  • FIG. 8 is a schematic diagram of a main part in the first and second cross sections of the optical system 10 according to the embodiment of the present invention.
  • the optical system 10 according to the present embodiment has a shorter optical path length from the stop 1 to the light receiving surface 7 than the optical system 10 according to the first embodiment, thereby realizing further downsizing of the entire system.
  • the distance from the test object to the diaphragm 1 is 300 mm
  • the width of the reading region in the first direction is 300 mm
  • the angle of view in the first section is ⁇ 24.49 °.
  • the wavelength band used is 400 nm to 1000 nm
  • the width of the imaging region in the second direction on the light receiving surface 7 is 2.37 mm.
  • the combined focal lengths in the first cross section of the front group 11 and the rear group 12 according to the present embodiment are ⁇ 13.23 mm and 16.78 mm, respectively, and the combined focal lengths of the front group 11 and the rear group 12 in the second cross section are respectively.
  • the focal lengths are 17.53 mm and 11.25 mm, respectively.
  • Table 10 shows the position of the vertex of each optical surface of the optical system 10 according to this example, the direction of the normal line at the vertex, and the radius of curvature at each cross section.
  • Table 11 shows each optical surface.
  • Table 12 shows the aperture of the diaphragm 1, the aperture of the light shielding member 4, and the diameter of the light receiving surface 7. The reason why the values of the curvature radii Ry do not match between Table 10 and Table 11 is that the values of the curvature radii in Table 10 take into account the tilt angle in the second cross section.
  • the sub-wire shapes of the first reflecting surface 2, the second reflecting surface 3, the third reflecting surface 5, and the fourth reflecting surface 6 are the following formulas instead of the above formula (Equation 3). It is expressed using Further, the shape of the sub-line of the third reflecting surface 5 is expressed by the above formula (Equation 2) after defining a different local coordinate system for each position on the bus line as in the second embodiment.
  • Imaging apparatus and imaging system an imaging apparatus (spectral reading apparatus) and imaging system (spectral reading system) as examples of use of the optical system 10 according to the above-described embodiment will be described.
  • FIGS. 10 and 11 are schematic views of main parts of the imaging systems 100 and 200 according to the embodiment of the present invention.
  • the imaging systems 100 and 200 are configured to change the relative positions of the imaging system 101 and 201 having an optical system 10 and an imaging device that receives an image formed by the optical system 10, and the imaging apparatus and the test objects 103 and 203. Sections 102 and 202.
  • Each imaging system desirably has an image processing unit that generates an image based on image information obtained from the imaging element.
  • the image processing unit is a processor such as a CPU, for example, and may be provided inside or outside each imaging apparatus.
  • a plurality of pieces of image information (one-dimensional images) corresponding to a plurality of wavelengths are obtained by imaging the linear reading regions 104 and 204 that are long in the first direction (Y direction) once. Can be obtained.
  • each imaging device it is desirable to configure each imaging device as a multispectral camera that can acquire image information corresponding to four or more types of wavelengths more than a general camera.
  • each imaging device it is more preferable to configure each imaging device as a hyperspectral camera that can acquire image information corresponding to 100 or more wavelengths.
  • a CCD (Charge Coupled Device) sensor As the image pickup element in each image pickup apparatus, a CCD (Charge Coupled Device) sensor, a CMOS (Complementary Metal Oxide Semiconductor) sensor, or the like can be employed.
  • the imaging device may be configured to photoelectrically convert not only visible light but also infrared light (near infrared light or far infrared light).
  • an image sensor using a material such as InGaAs or InAsSb may be employed according to the wavelength band used.
  • the number of pixels of the image sensor is desirably determined based on the resolution required in the reading direction and the spectral direction.
  • the transport unit 102 in the imaging system 100 is means for moving the test object 103 in the second direction (Z direction).
  • a belt conveyor or the like can be employed as the transport unit 102.
  • the conveyance unit 202 in the imaging system 200 is a unit that moves the imaging device 201 in the second direction.
  • a multicopter, an airplane, an artificial satellite, or the like can be employed as the transport unit 202.
  • a plurality of positions in the second direction can be obtained by causing each imaging device to sequentially image the reading area while changing the relative position of each imaging device and each test object in each transport unit.
  • a plurality of pieces of image information corresponding to can be acquired.
  • a two-dimensional image corresponding to a specific wavelength can be generated by performing rearrangement or arithmetic processing of the plurality of captured images by the image processing unit.
  • the image processing unit since each image information represents the light and shade information in the first direction, the image processing unit generates a spectrum distribution (spectrum information) based on the light and shade information for each wavelength at a specific position in the second direction. Also good.
  • each conveyance part so that both each imaging device and each test object may be moved.
  • an optical member focusing member that can be driven inside or outside the optical system 10 is arranged, and the position of the optical member may be adjusted so that the object can be focused.
  • the optical system 10 is suitable for inspection (evaluation) in industrial fields such as manufacturing, agriculture, and medicine.
  • the image information of the object is acquired by imaging the object via the optical system 10.
  • an imaging apparatus or an imaging system as described above can be used. That is, it is possible to acquire image information of the entire object by imaging the object while changing the relative positions of the object and the imaging device.
  • image information of a plurality of objects can be acquired sequentially (continuously).
  • a plurality of pieces of image information corresponding to the wavelengths of the plurality of light beams emitted from the optical system 10 may be acquired.
  • the object is inspected based on the image information acquired in the first step.
  • the user confirms (determines) the presence or absence of foreign matter or scratches in the image information, or the control unit (image processing unit) detects foreign matter or scratches in the image information and notifies the user. May be. Or you may employ
  • the object may be inspected based on the spectrum distribution of the object acquired using a plurality of pieces of image information for each wavelength.
  • the image processing unit may generate image information in which coloring or the like is enhanced for each spectrum distribution, and the user may perform inspection based on the image information.
  • the inspection method according to the present embodiment can be applied to a manufacturing method for articles such as foods, pharmaceuticals, and cosmetics.
  • the material (object) for manufacturing the article can be inspected by the inspection method described above, and the article can be manufactured using the inspected material.
  • the user (manufacturer) or the manufacturing apparatus removes the foreign matter from the material or discards the foreign matter or scratched material. can do.
  • the above inspection method may be used for detecting an abnormality in the manufacturing apparatus.
  • the presence or absence of an abnormality may be determined based on the image information of the manufacturing apparatus, and the driving of the manufacturing apparatus may be stopped or the abnormality may be corrected according to the determination result.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Engineering & Computer Science (AREA)
  • Lenses (AREA)

Abstract

An optical system 10 comprising a front group 11, a light-shielding member 4 and a rear group 12 which are positioned in this order from the object side to the image side, wherein: the light-shielding member 4 is provided with an opening which is long in a first direction; the front group 11 forms an intermediate image of an object in the opening in a second cross-section perpendicular to the first direction, without forming an image of the object in the opening in a first cross-section parallel to the first direction; the rear group 12 has a diffractive surface 5 for diffracting beams of light which have passed through the opening into a plurality of beams of light which have different wavelengths from one another in the second cross-section, and focuses the plurality of beams of light at different locations in the second cross-section; and the beams of light which are emitted by the front group 11 and are incident on the opening are not parallel in the first cross-section.

Description

光学系、それを備える撮像装置及び撮像システムOptical system, imaging apparatus and imaging system including the same
 本発明は、物体からの光束を分光して画像情報を取得する撮像装置に用いられる光学系に関し、例えば製造業、農業、医療などの産業分野における検査や評価に好適なものである。 The present invention relates to an optical system used in an imaging apparatus that obtains image information by splitting a light beam from an object, and is suitable for inspection and evaluation in industrial fields such as manufacturing, agriculture, and medicine.
 従来、被検物(物体)からの光束を互いに波長が異なる複数の光束に分光し、各光束を互いに異なる位置に集光する光学系が知られている。特許文献1には、一方向に長いスリットの両側に配置されたシリンドリカルミラーと、シリンドリカルミラーからの光束を分光する回折格子とを有する光学系が記載されている。 Conventionally, there has been known an optical system in which a light beam from a test object (object) is split into a plurality of light beams having different wavelengths, and the light beams are condensed at different positions. Patent Document 1 describes an optical system having cylindrical mirrors disposed on both sides of a slit that is long in one direction and a diffraction grating that splits a light beam from the cylindrical mirror.
米国特許第7199877号公報US Pat. No. 7,1998,877
 しかしながら、特許文献1に記載の光学系は、シリンドリカルミラーを採用しているため、スリットに入射するときの光束及び回折格子で分光された光束は、スリットの長手方向を含む断面において平行光となっている。よって、その断面において光束を集光するためには、回折格子の像側にレンズを配置する必要がある。さらに、広画角化を実現するためには、より多くの光学素子を配置することが必要になり、全系が大型化してしまう。 However, since the optical system described in Patent Document 1 employs a cylindrical mirror, the light beam incident on the slit and the light beam dispersed by the diffraction grating become parallel light in a cross section including the longitudinal direction of the slit. ing. Therefore, in order to collect the light beam in the cross section, it is necessary to dispose a lens on the image side of the diffraction grating. Furthermore, in order to realize a wide angle of view, it is necessary to arrange more optical elements, and the entire system becomes large.
 本発明は、小型でありながら広画角化を実現することができる光学系、それを備える撮像装置及び撮像システムの提供を目的とする。 An object of the present invention is to provide an optical system capable of realizing a wide angle of view while being small, an imaging apparatus including the optical system, and an imaging system.
 上記目的を達成するための、本発明の一側面としての光学系は、物体側から像側へ順に配置された前群、遮光部材、後群から成る光学系であって、前記遮光部材には、第1の方向に長い開口が設けられており、前記前群は、前記第1の方向に平行な第1の断面においては前記開口上に物体を結像せず、前記第1の方向に垂直な第2の断面においては前記開口上に前記物体の中間像を形成しており、前記後群は、前記第2の断面において前記開口を通過した光束を互いに波長が異なる複数の光束に分光する回折面を有し、前記第2の断面において前記複数の光束を互いに異なる位置に集光しており、前記第1の断面において、前記前群から出射して前記開口に入射する光束は非平行光であることを特徴とする光学系。 In order to achieve the above object, an optical system according to one aspect of the present invention is an optical system including a front group, a light shielding member, and a rear group arranged in order from the object side to the image side. A long opening is provided in the first direction, and the front group does not form an object on the opening in the first cross section parallel to the first direction, and the first group extends in the first direction. In the second vertical section, an intermediate image of the object is formed on the opening, and the rear group splits the light beam that has passed through the opening in the second cross section into a plurality of light beams having different wavelengths. The plurality of light beams are condensed at different positions in the second cross section, and the light beams that exit from the front group and enter the aperture are not in the first cross section. An optical system characterized by parallel light.
実施形態に係る光学系のXY断面における要部概略図。The principal part schematic in the XY cross section of the optical system which concerns on embodiment. 実施形態に係る光学系のZX断面における要部概略図。The principal part schematic in the ZX cross section of the optical system which concerns on embodiment. 実施例1に係る光学系のMTFを示す図。FIG. 3 is a diagram illustrating an MTF of the optical system according to the first embodiment. 実施例2に係る光学系の要部概略図。FIG. 6 is a schematic diagram of a main part of an optical system according to a second embodiment. 実施例2に係る光学系のMTFを示す図。FIG. 6 is a diagram showing an MTF of an optical system according to Example 2. 実施例3に係る光学系の要部概略図。FIG. 6 is a schematic diagram of a main part of an optical system according to Example 3. 実施例3に係る光学系のMTFを示す図。FIG. 6 is a diagram showing an MTF of an optical system according to Example 3. 実施例4に係る光学系の要部概略図。FIG. 7 is a schematic diagram of a main part of an optical system according to a fourth embodiment. 実施例4に係る光学系のMTFを示す図。FIG. 10 is a diagram showing an MTF of an optical system according to Example 4. 実施形態に係る光学系の使用例1としての撮像システムの要部概略図。The principal part schematic of the imaging system as the usage example 1 of the optical system which concerns on embodiment. 実施形態に係る光学系の使用例2としての撮像システムの要部概略図。The principal part schematic of the imaging system as the usage example 2 of the optical system which concerns on embodiment.
 以下、本発明の好ましい実施形態について図面を参照しながら説明する。各図面は、便宜的に実際とは異なる縮尺で描かれている場合がある。また、各図面において、同一の部材については同一の参照番号を付し、重複する説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. Each drawing may be drawn on a different scale for the sake of convenience. Moreover, in each drawing, the same reference number is attached | subjected about the same member and the overlapping description is abbreviate | omitted.
 以下の説明においては、絶対座標系としてXYZ座標系を定め、光学面ごとのローカル座標系としてxyz座標系を定めている。ローカル座標系において、x軸は各光学面の頂点(原点)における法線方向の軸(光軸)、y軸はY軸に平行かつ原点においてx軸と直交する軸、z軸はx軸及びy軸に直交する軸である。また、Y方向及びy方向を第1の方向(読取方向)、Z方向及びz方向を第2の方向(分光方向)、XY断面及びxy断面を第1の断面(読取断面)、ZX断面及びzx断面を第2の断面(分光断面)とも呼ぶ。 In the following description, an XYZ coordinate system is defined as an absolute coordinate system, and an xyz coordinate system is defined as a local coordinate system for each optical surface. In the local coordinate system, the x axis is the normal axis (optical axis) at the apex (origin) of each optical surface, the y axis is parallel to the Y axis and orthogonal to the x axis at the origin, the z axis is the x axis, and It is an axis orthogonal to the y-axis. Further, the Y direction and the y direction are the first direction (reading direction), the Z direction and the z direction are the second direction (spectral direction), the XY cross section and the xy cross section are the first cross section (read cross section), the ZX cross section, and The zx cross section is also referred to as a second cross section (spectral cross section).
 図1及び図2は、本発明の実施形態に係る光学系10の要部概略図であり、図1は第1の断面を示し、図2は第2の断面を示している。なお、図1及び図2においては、各部材の光軸を含む断面での形状を示しており、図1では便宜的に各部材を同一の紙面内に示している。また、図1及び図2では、便宜的に回折面における回折格子を省略している。本実施形態では、YZ平面に平行な物体面におけるZ=0の近傍の位置に被検物が配置されており、光学系10の像面に撮像素子の受光面7が配置されているものとする。また、被検物は、太陽光などの白色光(複数の波長成分を有する光)により照明されているものとする。 FIG. 1 and FIG. 2 are main part schematic views of an optical system 10 according to an embodiment of the present invention, FIG. 1 shows a first cross section, and FIG. 2 shows a second cross section. 1 and 2 show the shape of each member in a cross section including the optical axis. In FIG. 1, each member is shown in the same sheet for convenience. In FIGS. 1 and 2, the diffraction grating on the diffraction surface is omitted for convenience. In the present embodiment, the test object is disposed at a position near Z = 0 on the object plane parallel to the YZ plane, and the light receiving surface 7 of the image sensor is disposed on the image plane of the optical system 10. To do. In addition, it is assumed that the test object is illuminated with white light (light having a plurality of wavelength components) such as sunlight.
 本実施形態に係る光学系10は、物体側から像側へ順に配置された前群11、遮光部材(スリット部材)4、及び後群12で構成される。光学系10は、-X側に位置する不図示の被検物からの光束を集光することで、受光面(像面)7に被検物の像を形成している。前群11は、絞り1、第1反射面2、及び第2反射面3を有する。また、後群12は、第3反射面(回折面)5及び第4反射面6を有する。なお、受光面7の直前にはカバーガラスGが配置されているが、これは結像に寄与しないものとして扱う。 The optical system 10 according to this embodiment includes a front group 11, a light shielding member (slit member) 4, and a rear group 12 arranged in order from the object side to the image side. The optical system 10 forms an image of the test object on the light receiving surface (image surface) 7 by collecting a light beam from a test object (not shown) located on the −X side. The front group 11 includes a diaphragm 1, a first reflection surface 2, and a second reflection surface 3. The rear group 12 has a third reflecting surface (diffraction surface) 5 and a fourth reflecting surface 6. Note that a cover glass G is disposed immediately before the light receiving surface 7, but this is treated as not contributing to image formation.
 絞り1は、被検物からの光束の第2の方向における幅を規制するための部材であり、その開口面がX方向に垂直になるように配置されている。ただし、絞り1は光学系10の外部に設けられていてもよい。なお、図1及び図2に示すように、光学系10における光束の入射口(絞り1)と出射口(受光面7)を、各光学面を挟んで互いに反対側に配置することが望ましい。これにより、光学系10を撮像装置に適用した際に、被検物からの光束が撮像素子や配線等によって遮られることを回避し易くすることができる。 The diaphragm 1 is a member for regulating the width of the light beam from the test object in the second direction, and is arranged so that the opening surface thereof is perpendicular to the X direction. However, the diaphragm 1 may be provided outside the optical system 10. As shown in FIGS. 1 and 2, it is desirable that the light beam entrance (aperture 1) and the light exit (light receiving surface 7) in the optical system 10 be disposed on opposite sides of each optical surface. Thereby, when the optical system 10 is applied to an imaging device, it is possible to easily avoid that the light beam from the test object is blocked by the imaging element, wiring, or the like.
 遮光部材4には、第1の方向に長い開口(スリット)が設けられている。遮光部材4は、光学系10の第2の断面における画角を制限して不要光を遮光しつつ、光束の第1の方向における幅を規制する絞りとしての役割を果たしている。なお、遮光部材4の開口の幅は、求められる光量や解像度などに応じて決定される。遮光部材4の開口の第2の方向における幅は、第1の方向における幅(数mm)よりも短く、数μm~数100μmであることが望ましい。遮光部材4の開口の第2の方向における幅について、大き過ぎる場合は受光面7での解像度が低下してしまい、小さすぎる場合は結像に寄与する有効光束が遮光され易くなってしまうため、10μm以上0.2mm以下であることがより好ましい。 The light shielding member 4 has a long opening (slit) in the first direction. The light shielding member 4 serves as a stop for restricting the width of the light beam in the first direction while restricting the angle of view in the second cross section of the optical system 10 to shield unnecessary light. Note that the width of the opening of the light shielding member 4 is determined according to the required light quantity, resolution, and the like. The width of the opening of the light shielding member 4 in the second direction is preferably shorter than the width (several mm) in the first direction and is several μm to several hundred μm. If the width of the opening of the light shielding member 4 in the second direction is too large, the resolution on the light receiving surface 7 is lowered, and if it is too small, the effective light beam contributing to image formation is easily shielded. More preferably, it is 10 μm or more and 0.2 mm or less.
 絞り1及び遮光部材4における開口以外の領域は、少なくとも光学系10の使用波長帯域(設計波長帯域)の光が透過しない遮光面となっている。絞り1及び遮光部材4としては、板金に穴を開けたものや、ガラス板の表面にクロム蒸着を施したものなどを採用することができる。このような遮光部材4を採用することにより、光学系10は第1の方向に長いライン状の読取領域(被検領域)の像を形成することができる。 The region other than the aperture in the aperture stop 1 and the light shielding member 4 is a light shielding surface that does not transmit light in at least the use wavelength band (design wavelength band) of the optical system 10. As the diaphragm 1 and the light shielding member 4, it is possible to employ one having a hole in a sheet metal or one having a chromium vapor deposited on the surface of a glass plate. By adopting such a light shielding member 4, the optical system 10 can form an image of a linear reading region (test region) that is long in the first direction.
 第1反射面2、第2反射面3、及び第4反射面6は、自由曲面形状を有するベース面に反射コーティングを施すことで得られる反射面である。各反射面のベース面は、ガラス、樹脂、金属などから成るブロック材を加工(切削、研磨、型によるモールド成形など)することによって形成される。反射コーティングは、使用波長帯域において十分なエネルギー効率(光利用効率)を実現することができる分光反射特性を有していることが望ましい。なお、ベース面が使用波長帯域において十分な反射率を有する場合は、反射コーティングを省略してもよい。 The first reflection surface 2, the second reflection surface 3, and the fourth reflection surface 6 are reflection surfaces obtained by applying a reflection coating to a base surface having a free-form surface shape. The base surface of each reflecting surface is formed by processing (cutting, polishing, molding with a mold, etc.) a block material made of glass, resin, metal or the like. The reflective coating desirably has a spectral reflection characteristic that can realize sufficient energy efficiency (light utilization efficiency) in the used wavelength band. When the base surface has a sufficient reflectance in the used wavelength band, the reflective coating may be omitted.
 本実施形態において、第1反射面2、第2反射面3、及び第4反射面6の夫々は非球面であり、具体的には第1の断面と第2の断面とで曲率(パワー)が異なるアナモフィック光学面(アナモフィック反射面)である。これにより、第1の断面と第2の断面とで異なる光学的作用を生じさせることができる。なお、前群11の各反射面はアナモフィック光学面でなくてもよく、例えば各反射面を球面として、代わりにアナモフィック屈折面を設けてもよい。ただし、前群11における光学面の数を減らすためには、第1反射面2及び第2反射面3の少なくとも一方をアナモフィック光学面とすることが望ましい。 In the present embodiment, each of the first reflecting surface 2, the second reflecting surface 3, and the fourth reflecting surface 6 is an aspherical surface, and specifically, the curvature (power) between the first cross section and the second cross section. Are different anamorphic optical surfaces (anamorphic reflecting surfaces). Thereby, different optical actions can be generated in the first cross section and the second cross section. Each reflective surface of the front group 11 may not be an anamorphic optical surface. For example, each reflective surface may be a spherical surface, and an anamorphic refractive surface may be provided instead. However, in order to reduce the number of optical surfaces in the front group 11, it is desirable that at least one of the first reflecting surface 2 and the second reflecting surface 3 is an anamorphic optical surface.
 また、後群12は少なくとも一つの回折面を有していればよく、例えば回折面5のベース面を非球面(アナモフィック面)とした上で、第4反射面6を球面としたり取り除いたりしてもよい。ただし、回折面5により生じる波長ごとに異なるコマ収差などを良好に補正するためには、後群12において回折面5以外にも光学面を設けることが望ましく、本実施形態のように回折面5の像側にアナモフィック光学面を配置することがより好ましい。なお、回折面5を前群11に設けた場合、一部の波長の光束しか遮光部材4の開口を通過できなくなってしまう。よって、回折面5は後群12に設けることが必要である。 The rear group 12 only needs to have at least one diffractive surface. For example, the base surface of the diffractive surface 5 is made an aspherical surface (anamorphic surface), and the fourth reflecting surface 6 is made spherical or removed. May be. However, in order to satisfactorily correct coma aberration and the like generated for each wavelength generated by the diffractive surface 5, it is desirable to provide an optical surface other than the diffractive surface 5 in the rear group 12, and the diffractive surface 5 as in the present embodiment. It is more preferable to dispose an anamorphic optical surface on the image side. When the diffractive surface 5 is provided in the front group 11, only a part of the light beams having a certain wavelength can pass through the opening of the light shielding member 4. Therefore, the diffractive surface 5 needs to be provided in the rear group 12.
 また、光学系10において、光学面同士でパワーを分担することで収差の発生を抑制するためには、前群11及び後群12の全ての光学面をアナモフィック光学面とすることがより好ましい。前群11及び後群12の構成は上述したものに限らず、各群における光学面を増減させてもよい。ただし、全系の小型化と部品点数の削減を実現するためには、本実施形態のように前群11及び後群12の夫々を二つの反射面で構成することが望ましい。 Further, in the optical system 10, in order to suppress the occurrence of aberration by sharing power between the optical surfaces, it is more preferable that all the optical surfaces of the front group 11 and the rear group 12 are anamorphic optical surfaces. The configurations of the front group 11 and the rear group 12 are not limited to those described above, and the optical surfaces in each group may be increased or decreased. However, in order to realize downsizing of the entire system and reduction in the number of parts, it is desirable that each of the front group 11 and the rear group 12 is constituted by two reflecting surfaces as in this embodiment.
 本実施形態においては、全ての光学面を反射面とすることで、光路を折り曲げて光学系10の小型化を実現しつつ、色収差の発生を抑制している。このとき、光学系10の小型化のためには、図2に示すように、前群11及び後群12の夫々において光路が交差するように(4の字になるように)各反射面を配置することが望ましい。なお、必要に応じて反射面を含む反射部材としてプリズムや内面反射ミラーを用いてもよいが、上述したように色収差の発生を抑制するためには、反射部材を外面反射ミラーとし、反射面が空気に隣接するように構成することが望ましい。また、必要に応じて少なくとも一つの光学面を屈折面(透過面)としてもよい。 In the present embodiment, by making all the optical surfaces reflective surfaces, the optical path is bent to realize the miniaturization of the optical system 10 while suppressing the occurrence of chromatic aberration. At this time, in order to reduce the size of the optical system 10, as shown in FIG. 2, the reflecting surfaces are arranged so that the optical paths intersect in each of the front group 11 and the rear group 12 (so that it becomes a character of 4). It is desirable to arrange. If necessary, a prism or an internal reflection mirror may be used as a reflection member including a reflection surface. However, in order to suppress the occurrence of chromatic aberration as described above, the reflection member is an external reflection mirror, and the reflection surface is It is desirable to be configured to be adjacent to air. Further, if necessary, at least one optical surface may be a refractive surface (transmission surface).
 ただし、特に後群12においては、不図示の保持部材や配線などが遮光部材4や受光面7の周りに配置されるため、屈折光学素子を配置するための十分なスペースを確保することが難しい。仮に十分なスペースを確保できたとしても、色収差を良好に補正するためには複数の屈折光学素子を配置することが必要になるため、全系が大型化してしまう。よって、少なくとも後群12に含まれる全ての光学面を反射面とすることが望ましい。さらに、前群11に含まれる全ての光学面を反射面とすることがより好ましい。 However, particularly in the rear group 12, since holding members and wirings (not shown) are arranged around the light shielding member 4 and the light receiving surface 7, it is difficult to secure a sufficient space for arranging the refractive optical element. . Even if a sufficient space can be secured, it is necessary to arrange a plurality of refractive optical elements in order to correct chromatic aberration satisfactorily, so that the entire system becomes large. Therefore, it is desirable that at least all optical surfaces included in the rear group 12 are reflective surfaces. Furthermore, it is more preferable that all the optical surfaces included in the front group 11 are reflecting surfaces.
 第3反射面5は、ベース面と、ベース面に設けられた回折格子とで構成される回折面5である。回折面5におけるベース面は、他の反射面と同様に自由曲面形状を有している。回折格子は、サブミクロンからミクロンのオーダのピッチで配置された複数の格子(凸部)から成り、その各格子の高さもサブミクロンからミクロンのオーダとなっている。回折格子としては、zx断面での形状が、階段形状、矩形凹凸形状、ブレーズ形状、SIN波形状であるものなどを採用することができる。回折格子の形状は、求められる回折効率及び製造の容易性を考慮して選択される。 The third reflecting surface 5 is a diffractive surface 5 composed of a base surface and a diffraction grating provided on the base surface. The base surface in the diffractive surface 5 has a free-form surface shape like the other reflecting surfaces. The diffraction grating is composed of a plurality of gratings (convex portions) arranged at a pitch on the order of submicron to micron, and the height of each grating is on the order of submicron to micron. As the diffraction grating, one having a stepped shape, a rectangular uneven shape, a blazed shape, a SIN wave shape or the like in the zx cross section can be adopted. The shape of the diffraction grating is selected in consideration of the required diffraction efficiency and ease of manufacture.
 本実施形態では回折効率の向上及び製造の容易化の両立が比較的容易であるブレーズ形状を採用している。ブレーズ形状の回折格子において、ベース面に対してx方向に最も離れた部分を格子頂点、入射光を反射させる(回折させる)部分をブレーズ面(格子面)、ブレーズ面に隣接する回折に寄与しない部分を格子壁面と呼ぶ。本実施形態に係る回折面5は、受光面7の側(像側)にブレーズ面が向かい、物体側に格子壁面が向かうように配置されている。これにより、図2における受光面7の+Z側に短波長の光束が入射し、-Z側に長波長の光束が入射することになる。 In the present embodiment, a blazed shape is employed that is relatively easy to achieve both improvement in diffraction efficiency and ease of manufacture. In a blazed diffraction grating, the portion farthest from the base surface in the x direction is the lattice apex, the portion that reflects (diffracts) incident light is the blazed surface (lattice surface), and does not contribute to diffraction adjacent to the blazed surface. The part is called a lattice wall surface. The diffractive surface 5 according to this embodiment is arranged so that the blaze surface faces the light receiving surface 7 side (image side) and the grating wall surface faces the object side. As a result, a short wavelength light beam is incident on the + Z side of the light receiving surface 7 in FIG. 2, and a long wavelength light beam is incident on the −Z side.
 ベース面は、上述した他の反射面と同様の方法で形成される。回折格子は、ベース面を切削や研磨などによって加工することで形成することができるが、ベース面を形成する際に同時に回折格子を形成してもよい。例えば、金型を構成する鏡面駒の表面に微細な凹凸構造を設け、その金型を用いたモールド成形によって回折格子が設けられた回折光学素子を製造してもよい。 The base surface is formed in the same manner as the other reflective surfaces described above. The diffraction grating can be formed by machining the base surface by cutting or polishing, but the diffraction grating may be formed at the same time as the base surface is formed. For example, a diffractive optical element in which a fine concavo-convex structure is provided on the surface of a mirror piece constituting a mold and a diffraction grating is provided by molding using the mold may be manufactured.
 回折面5の回折効率を向上させるために、回折格子の表面に反射コーティングを施してもよい。また、回折面5のベース面は、xy断面とzx断面とで曲率が異なるアナモフィック面であることが望ましい。これにより、他のアナモフィック光学面とともにパワーを分担することができるため、収差の補正が容易になる。本実施形態においては、回折面5のベース面をアナモフィック面としているが、回折格子の製造の容易性を重視して、ベース面を平面や球面で構成してもよい。 In order to improve the diffraction efficiency of the diffraction surface 5, a reflective coating may be applied to the surface of the diffraction grating. The base surface of the diffractive surface 5 is preferably an anamorphic surface having different curvatures in the xy section and the zx section. This makes it possible to share power with other anamorphic optical surfaces, thus facilitating correction of aberrations. In the present embodiment, the base surface of the diffractive surface 5 is an anamorphic surface. However, the base surface may be a flat surface or a spherical surface with emphasis on the ease of manufacturing the diffraction grating.
 図1及び図2を用いて、光学系10の作用について説明する。 The operation of the optical system 10 will be described with reference to FIGS.
 被検物から出射した光束は、絞り1の開口を通過した後、第1反射面2及び第2反射面3で反射されて遮光部材4に到達する。このとき、前群11は、第1の断面(XY断面)においては遮光部材4の開口上に被検物を結像せず、第2の断面(ZX断面)においては遮光部材4の開口上に被検物の中間像を形成している。すなわち、前群11は第1の断面において焦点位置が物体面と一致しないように構成されている。これにより、遮光部材4の開口上には、第1の方向に長いライン状の中間像(線像)が形成されることになる。なお、ここでの「開口上」とは、厳密な開口の位置に限らず、開口の位置から光軸方向に微小に離れた開口の近傍(略開口上)も含むものとする。 The light beam emitted from the test object passes through the aperture of the diaphragm 1, is reflected by the first reflecting surface 2 and the second reflecting surface 3, and reaches the light shielding member 4. At this time, the front group 11 does not image the test object on the opening of the light shielding member 4 in the first cross section (XY cross section), and on the opening of the light shielding member 4 in the second cross section (ZX cross section). An intermediate image of the test object is formed in That is, the front group 11 is configured such that the focal position does not coincide with the object plane in the first cross section. Thus, a line-shaped intermediate image (line image) that is long in the first direction is formed on the opening of the light shielding member 4. Here, “on the opening” is not limited to the exact position of the opening, but also includes the vicinity (substantially above the opening) of the opening slightly separated from the position of the opening in the optical axis direction.
 遮光部材4の開口を通過した光束は、第2の断面において回折面5によって互いに波長が異なる複数の光束に分光される。このとき、回折面5における回折格子はz方向に配列された複数の格子(稜線)から成るため、回折面5に入射した光束はz方向においてのみ分光作用を受け、y方向においては分光作用を受けない。 The light beam that has passed through the opening of the light shielding member 4 is split into a plurality of light beams having different wavelengths by the diffraction surface 5 in the second cross section. At this time, since the diffraction grating on the diffraction surface 5 is composed of a plurality of gratings (ridge lines) arranged in the z direction, the light beam incident on the diffraction surface 5 is subjected to spectral action only in the z direction and spectral action in the y direction. I do not receive it.
 そして、回折面5からの複数の光束は、第4反射面6で反射されて像面に配置された受光面7に入射する。このとき、互いに波長が異なる複数の光束は、第2の断面において受光面7における互いに異なる位置に集光される。すなわち、本実施形態に係る光学系10によれば、受光面7に波長ごとの複数の像を形成することができるため、受光面7は波長ごとの複数の画像情報を取得することができる。 The plurality of light beams from the diffractive surface 5 are reflected by the fourth reflecting surface 6 and enter the light receiving surface 7 disposed on the image surface. At this time, a plurality of light beams having different wavelengths are condensed at different positions on the light receiving surface 7 in the second cross section. That is, according to the optical system 10 according to the present embodiment, since a plurality of images for each wavelength can be formed on the light receiving surface 7, the light receiving surface 7 can acquire a plurality of image information for each wavelength.
 このように、本実施形態に係る光学系10は、読取方向を含む第1の断面と分光方向を含む第2の断面とで異なる光学的作用を生じている。具体的には、第1の断面では被検物を遮光部材4の開口上に一旦結像せずに受光面7に結像しているが、第2の断面では被検物を遮光部材4の開口上に一旦結像してから受光面7に再結像している。すなわち、第1の断面では被検物を1回結像する一方で、第2の断面では被検物を2回結像している。 As described above, the optical system 10 according to the present embodiment generates different optical actions in the first cross section including the reading direction and the second cross section including the spectral direction. Specifically, in the first cross section, the test object is imaged on the light receiving surface 7 without being imaged once on the opening of the light shielding member 4, but in the second cross section, the test object is imaged on the light shielding member 4. The image is once formed on the aperture and then re-imaged on the light receiving surface 7. That is, the test object is imaged once in the first cross section, while the test object is imaged twice in the second cross section.
 この構成によれば、第1の断面においては遮光部材4の開口を通過する際の光束(開口に入射する光束)の収束状態が制限されないため、光学系10の設計自由度を向上させることができる。よって、前群11と後群12とでパワーを適切に分担して受光面7に被検物を結像することができ、諸収差の補正が容易になるため、広画角化(読取領域の広域化)と撮像画像の高精細化を両立することができる。 According to this configuration, since the convergence state of the light beam (light beam incident on the opening) passing through the opening of the light shielding member 4 is not limited in the first cross section, the degree of freedom in designing the optical system 10 can be improved. it can. Accordingly, the front group 11 and the rear group 12 can appropriately share the power to form an image of the test object on the light receiving surface 7, and various aberrations can be easily corrected. Wide area) and high definition of captured images.
 具体的には、第1の断面における焦点位置が物体面と一致しないように前群11を構成することで、遮光部材4の開口を通過する際の光束を非平行光とすることができる。これにより、第1の断面における広画角化を実現することが容易になる。仮に、遮光部材4の開口を通過する際の光束が平行光である場合、光学系10を広画角化するためには後群12に多数の光学素子を配置することが必要になり、全系が大型化してしまう。本実施形態においては、遮光部材4の開口を通過する際の光束を発散光とすることで広画角化を実現しているが、必要に応じて遮光部材4の開口を通過する際の光束を収束光としてもよい。 Specifically, by configuring the front group 11 such that the focal position in the first cross section does not coincide with the object plane, the light beam passing through the opening of the light shielding member 4 can be made non-parallel light. Thereby, it becomes easy to realize a wide angle of view in the first cross section. If the light beam passing through the opening of the light shielding member 4 is parallel light, it is necessary to arrange a large number of optical elements in the rear group 12 in order to increase the angle of view of the optical system 10. The system becomes larger. In the present embodiment, a wide angle of view is realized by using a divergent light as a light beam passing through the opening of the light shielding member 4. However, a light beam passing through the opening of the light shielding member 4 as necessary. May be convergent light.
 また、第1の断面においても遮光部材4の開口上に被検物を一旦結像する場合は、前群11及び後群12の夫々が単独で収差を補正しなくてはならない。よって、各光学面のパワーを大きくすることが必要になるなど、各光学面の設計自由度が低下し、光学系10の広画角化が難しくなる。一方、第2の断面においては、広画角化の必要がないため、遮光部材4の開口上に被検物を一旦結像することで高NA化が可能になる。 Also, in the first cross section, when the test object is once imaged on the opening of the light shielding member 4, each of the front group 11 and the rear group 12 must independently correct the aberration. Therefore, it is necessary to increase the power of each optical surface, for example, the degree of freedom in designing each optical surface is lowered, and it is difficult to increase the angle of view of the optical system 10. On the other hand, in the second cross section, since it is not necessary to widen the angle of view, it is possible to increase the NA by once imaging the test object on the opening of the light shielding member 4.
 上述した構成において、前群11及び後群12の夫々は、第1の断面と第2の断面とで互いに異なるパワーを有することになる。この構成を実現するためには、前群11及び後群12の夫々にアナモフィック光学面を設けることが必要になる。このとき、前群11に含まれるアナモフィック光学面には、第2の断面だけでなく第1の断面にも積極的にパワーを持たせること(曲率の絶対値を0よりも大きくすること)が望ましい。そして、前群11のパワーの符号と後群12のパワーの符号とを互いに異ならせることがより好ましい。 In the configuration described above, each of the front group 11 and the rear group 12 has different powers in the first cross section and the second cross section. In order to realize this configuration, it is necessary to provide an anamorphic optical surface for each of the front group 11 and the rear group 12. At this time, the anamorphic optical surface included in the front group 11 should be positively given power not only to the second cross section but also to the first cross section (make the absolute value of curvature larger than 0). desirable. It is more preferable that the power code of the front group 11 and the power code of the rear group 12 are different from each other.
 具体的に、第2の断面においては、被検物を遮光部材4の開口上に一旦結像してから受光面7に再結像するために、前群11及び後群12に正のパワーを持たせる必要がある。一方、第1の断面では、被検物を遮光部材4の開口上に一旦結像する必要がないため、更なる広画角化を実現するために、前群11に負のパワーを持たせ、後群12に正のパワーを持たせることが望ましい。これにより、第1の断面においては光学系10がレトロフォーカスタイプになるため、全系の焦点距離が短くなり広画角化を実現することができる。ただし、被検物が光学系10から十分に離れている場合は、前群11に正のパワーを持たせ、後群12に負のパワーを持たせることで、光学系10を望遠光学系としてもよい。 Specifically, in the second cross section, a positive power is applied to the front group 11 and the rear group 12 in order to form an image once on the opening of the light shielding member 4 and then re-image the light receiving surface 7. It is necessary to have. On the other hand, in the first cross section, since it is not necessary to once form an image of the test object on the opening of the light shielding member 4, in order to realize a further wide angle of view, the front group 11 is given negative power. It is desirable to give the rear group 12 positive power. Thereby, since the optical system 10 becomes a retro focus type in the first cross section, the focal length of the entire system is shortened, and a wide angle of view can be realized. However, when the test object is sufficiently separated from the optical system 10, the optical system 10 is made a telephoto optical system by giving the front group 11 positive power and giving the rear group 12 negative power. Also good.
 図2を用いて、回折面5によって光束が分光される様子を説明する。ここでは、被検物の1点から発された白色光束が、λ1[nm]、λ2[nm]、λ3[nm](λ2<λ1<λ3)の各波長の光束に分光される場合を考える。ただし、図2においては各光束のうち主光線及びマージナル光線のみを示している。 The manner in which the light beam is split by the diffraction surface 5 will be described with reference to FIG. Here, a case is considered in which a white light beam emitted from one point of the test object is split into light beams having respective wavelengths of λ1 [nm], λ2 [nm], and λ3 [nm] (λ2 <λ1 <λ3). . However, in FIG. 2, only the chief ray and the marginal ray are shown among the light beams.
 被検物から発された白色光束における主光線L1P及びマージナル光線L1U,L1Lは、絞り1、第1反射面2、及び第2反射面3を介して遮光部材4の開口上にライン状の中間像を形成する。遮光部材4の開口を通過した主光線L2P及びマージナル光線L2U,L2Lは、回折面5によって、波長λ1の光線L3P,L3U,L3Lと、波長λ2の光線L4P,L4U,L4Lと、波長λ3の光線L5P,L5U,L5Lに分光される。そして、波長λ1、波長λ2、及びの波長λ3の各光線の夫々は、受光面7における第1の位置73、第2の位置74、及び第3の位置75に集光される。 The chief ray L1P and the marginal rays L1U and L1L in the white light beam emitted from the test object are line-shaped intermediately on the opening of the light shielding member 4 via the stop 1, the first reflecting surface 2, and the second reflecting surface 3. Form an image. The principal ray L2P and the marginal rays L2U, L2L that have passed through the opening of the light shielding member 4 are caused by the diffraction surface 5 to have rays L3P, L3U, L3L of wavelength λ1, rays L4P, L4U, L4L of wavelength λ2, and rays of wavelength λ3. Spectroscopy into L5P, L5U, and L5L. Then, each of the light beams having the wavelength λ1, the wavelength λ2, and the wavelength λ3 is condensed at the first position 73, the second position 74, and the third position 75 on the light receiving surface 7.
 以上、本実施形態に係る光学系10によれば、全系の小型化と広画角化を両立することができる。 As described above, according to the optical system 10 according to the present embodiment, it is possible to achieve both a reduction in size and a wide angle of view of the entire system.
 [実施例1]
 以下、本発明の実施例1に係る光学系10について説明する。本実施例に係る光学系10は、上述した実施形態に係る光学系10と同等の構成を採っている。
[Example 1]
The optical system 10 according to Example 1 of the present invention will be described below. The optical system 10 according to the present example has the same configuration as the optical system 10 according to the above-described embodiment.
 本実施例において、被検物から絞り1までの距離(物体距離)は300mm、読取領域の第1の方向における幅は300mm、第1の断面での画角は±24.17°である。また、本実施例において、使用波長帯域は400nm~1000nmであり、受光面7における光束の結像領域(入射領域)の第2の方向での幅は2.7mmである。 In this embodiment, the distance from the test object to the diaphragm 1 (object distance) is 300 mm, the width of the reading region in the first direction is 300 mm, and the angle of view in the first section is ± 24.17 °. In the present embodiment, the wavelength band used is 400 nm to 1000 nm, and the width of the image forming area (incident area) of the light beam on the light receiving surface 7 in the second direction is 2.7 mm.
 本実施例に係る前群11及び後群12の第1の断面での合成焦点距離は各々-16.27mm、28.30mmであり、前群11及び後群12の第2の断面での合成焦点距離は各々19.99mm、25.76mmである。このように、本実施例に係る光学系10は、第2の断面では中間を行うことで結像性能を向上させつつ、第1の断面ではレトロフォーカスタイプを採ることで広画角化(読取領域の広域化)を実現している。 The composite focal lengths in the first cross section of the front group 11 and the rear group 12 according to this embodiment are -16.27 mm and 28.30 mm, respectively, and the composite focal lengths in the second cross section of the front group 11 and the rear group 12 are respectively. The focal lengths are 19.99 mm and 25.76 mm, respectively. As described above, the optical system 10 according to the present embodiment improves the imaging performance by performing the intermediate in the second cross section, while widening the angle of view (reading) by adopting the retrofocus type in the first cross section. Realization of wide area).
 ここで、本実施例に係る光学系10の各光学面の面形状の表現式について説明する。なお、各光学面の面形状の表現式は後述のものに限られず、必要に応じて他の表現式を用いて各光学面を設計してもよい。 Here, an expression of the surface shape of each optical surface of the optical system 10 according to the present embodiment will be described. In addition, the expression of the surface shape of each optical surface is not limited to that described later, and each optical surface may be designed using another expression as necessary.
 本実施例に係る第1反射面2、第2反射面3、第3反射面(回折面)5、及び第4反射面6の夫々のベース面の第1の断面での形状(母線形状)は、夫々のローカル座標系において以下の式で表される。 The shape (bus shape) of the first reflecting surface 2, the second reflecting surface 3, the third reflecting surface (diffraction surface) 5, and the fourth reflecting surface 6 in the first cross section of the first reflecting surface 2, the second reflecting surface 3, and the fourth reflecting surface 6 according to the present embodiment. Is expressed by the following expression in each local coordinate system.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 但し、Rはxy断面での曲率半径(母線曲率半径)であり、K,B,B,Bはxy断面での非球面係数である。非球面係数B,B,Bについて、必要に応じてx軸の両側(-y側と+y側)で互いに数値を異ならせてもよい。これにより、母線形状をx軸に対してy方向に非対称な形状とすることができる。なお、本実施例では2次~6次の非球面係数を用いているが、必要に応じてより高次の非球面係数を用いてもよい。 Here, R y is a radius of curvature (bus curvature radius) in the xy section, and K y , B 2 , B 4 , and B 6 are aspheric coefficients in the xy section. The numerical values of the aspheric coefficients B 2 , B 4 , and B 6 may be different from each other on both sides of the x axis (−y side and + y side) as necessary. As a result, the bus shape can be asymmetric in the y direction with respect to the x axis. In the present embodiment, secondary to sixth-order aspheric coefficients are used, but higher-order aspheric coefficients may be used as necessary.
 また、本実施例に係る各光学面の夫々のベース面の、y方向における任意の位置の第2の断面での形状(子線形状)は、以下の式で表される。 Further, the shape (sub-wire shape) in the second cross section at an arbitrary position in the y direction of each base surface of each optical surface according to the present embodiment is expressed by the following expression.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 但し、K,Mjkはzx断面での非球面係数である。また、r´は、y方向において光軸からyだけ離れた位置におけるzx断面での曲率半径(子線曲率半径)であり、以下の式で表される。 However, K z and M jk are aspheric coefficients in the zx section. Further, r ′ is a radius of curvature (sub-wire curvature radius) in the zx section at a position separated by y from the optical axis in the y direction, and is represented by the following equation.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 但し、rは光軸上での子線曲率半径であり、E,Eは子線変化係数である。式(数3)においてr=0である場合は、式(数2)の右辺の第1項はゼロとして扱うものとする。なお、子線変化係数E,Eについて、必要に応じて-y側と+y側で互いに数値を異ならせてもよい。これにより、子線形状の非球面量をy方向において非対称にすることができる。また、式(数3)は偶数項のみを含んでいるが、必要に応じて奇数項を加えてもよい。また、必要に応じてより高次の子線変化係数を用いてもよい。 Here, r is the radius of curvature of the strand on the optical axis, and E 2 and E 4 are the strand changing coefficients. When r = 0 in Expression (Expression 3), the first term on the right side of Expression (Expression 2) is treated as zero. Note that the numerical values of the child line change coefficients E 2 and E 4 may be different from each other on the −y side and the + y side as necessary. This makes it possible to make the aspherical amount of the child wire shape asymmetric in the y direction. Moreover, although the equation (Equation 3) includes only even terms, odd terms may be added as necessary. Further, a higher order strand change coefficient may be used as necessary.
 なお、式(数2)におけるzの1次の項は、zx断面での光学面のチルト量(子線チルト量)に寄与する項である。よって、Mjkを-y側と+y側で互いに異なる数値とすることで、子線チルト量をy方向において非対称に変化させることができる。ただし、奇数項用いることで子線チルト量を非対称に変化させてもよい。また、式(数2)におけるzの2次の項は、光学面の子線曲率半径に寄与する項である。よって、各光学面の設計を簡単にするために、式(数3)ではなく式(数2)におけるzの2次の項のみを用いて光学面に子線曲率半径を与えてもよい。 Note that the first-order term of z in the equation (Equation 2) is a term that contributes to the tilt amount (child tilt amount) of the optical surface in the zx section. Therefore, by setting M jk to different values on the −y side and the + y side, it is possible to change the amount of subordinate tilt asymmetrically in the y direction. However, the amount of sub-line tilt may be changed asymmetrically by using odd terms. In addition, the quadratic term of z in the equation (Equation 2) is a term that contributes to the radius of curvature of the optical surface. Therefore, in order to simplify the design of each optical surface, the subsurface curvature radius may be given to the optical surface using only the quadratic term of z in Expression (Expression 2) instead of Expression (Expression 3).
 また、回折面5における回折格子の形状は、既知の回折光学理論に基づく位相関数で表されるものであれば、特に限定されるものではない。本実施例では、基本波長(設計波長)をλ[mm]、zx断面における位相係数をC1とするとき、回折面5における回折格子の形状を以下の位相関数φで定義している。但し、本実施形態では回折格子の回折次数が1であるとする。
  φ=(2π/λ)×(C1×z)
The shape of the diffraction grating on the diffraction surface 5 is not particularly limited as long as it is expressed by a phase function based on a known diffractive optical theory. In this embodiment, when the fundamental wavelength (design wavelength) is λ [mm] and the phase coefficient in the zx section is C1, the shape of the diffraction grating on the diffraction surface 5 is defined by the following phase function φ. However, in this embodiment, it is assumed that the diffraction order of the diffraction grating is 1.
φ = (2π / λ) × (C1 × z)
 なお、ここでの基本波長は、回折格子の高さを決めるための波長であり、被検物に対する照明光の分光特性、回折面5以外の反射面の分光反射率、受光面7を含む撮像素子の分光受光感度、要求される回折効率などに基づいて決定される。すなわち、基本波長は、受光面7による検知の際に重視したい波長に対応する。本実施例においては、基本波長λを542nmとすることで、使用波長帯域における可視域を重点的に観察できるようにしている。ただし、例えば基本波長を850nm程度とすることで近赤外域を重点的に観察できるようにしたり、基本波長を700nm程度とすることで可視域から近赤外域をバランス良く観察できるようにしたりしてもよい。 Note that the fundamental wavelength here is a wavelength for determining the height of the diffraction grating, the spectral characteristics of the illumination light with respect to the object to be examined, the spectral reflectance of the reflective surface other than the diffraction surface 5, and the imaging including the light receiving surface 7. It is determined based on the spectral light receiving sensitivity of the element, the required diffraction efficiency, and the like. In other words, the fundamental wavelength corresponds to a wavelength that is desired to be emphasized during detection by the light receiving surface 7. In this embodiment, by setting the fundamental wavelength λ to 542 nm, the visible range in the used wavelength band can be intensively observed. However, for example, by setting the fundamental wavelength to about 850 nm, the near infrared region can be intensively observed, or by setting the fundamental wavelength to about 700 nm, the near infrared region can be observed in a balanced manner from the visible region. Also good.
 表1に、本実施例に係る光学系10の各光学面の頂点の位置、頂点における法線の方向、及び各断面での曲率半径を示す。表1において、各光学面の頂点の位置は絶対座標系における原点からの距離X,Y,Z[mm]で示し、法線(x軸)の方向は光軸を含むZX断面でのX軸に対する角度θ[deg]で示している。また、d[mm]は各光学面同士の間隔(面間隔)を示し、d´[mm]は各光学面における主光線の反射点同士の間隔を示し、R,Rの夫々は主光線の反射点におけるXY断面及びZX断面での曲率半径を示している。なお、各反射面の曲率半径の値が正のときは凹面を示し、負のときは凸面を示す。 Table 1 shows the position of the vertex of each optical surface of the optical system 10 according to the present embodiment, the direction of the normal at the vertex, and the radius of curvature at each cross section. In Table 1, the position of the vertex of each optical surface is indicated by the distance X, Y, Z [mm] from the origin in the absolute coordinate system, and the direction of the normal line (x axis) is the X axis in the ZX section including the optical axis. Is represented by an angle θ [deg]. Further, d [mm] represents an interval (surface interval) between optical surfaces, d ′ [mm] represents an interval between reflection points of chief rays on each optical surface, and R y and R z are principal components. The curvature radii in the XY cross section and the ZX cross section at the reflection point of the light beam are shown. In addition, when the value of the radius of curvature of each reflecting surface is positive, it indicates a concave surface, and when it is negative, it indicates a convex surface.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2に、本実施例に係る光学系10の各光学面の面形状を示す。 Table 2 shows the surface shapes of the optical surfaces of the optical system 10 according to this example.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3に、絞り1の開口、遮光部材4の開口、及び受光面7のy方向及びz方向における径[mm]を示す。本実施例においては、絞り1の開口、遮光部材4の開口、及び受光面7の何れもが矩形である。 Table 3 shows the aperture [1] in the y direction and the z direction of the aperture of the diaphragm 1, the aperture of the light shielding member 4, and the light receiving surface 7. In the present embodiment, all of the aperture of the diaphragm 1, the aperture of the light shielding member 4, and the light receiving surface 7 are rectangular.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 図3は、本実施例に係る光学系10のMTF(Modulated Transfer Function)を示す。図3では、700nm(frq1),400nm(frq2),1000nm(frq3)の各波長に対するMTFを、読取領域における物体高[mm]がY=0,30,60,90,120,150である場合の夫々について示している。図3に示すように、受光面7を含む撮像素子の各波長に対する空間周波数[本/mm]は、27.8,41.7,55.6である。図3を見てわかるように、読取領域の全域にわたって収差が良好に補正され、焦点深度が十分に確保されている。 FIG. 3 shows an MTF (Modulated Transfer Function) of the optical system 10 according to the present embodiment. In FIG. 3, the MTF for each wavelength of 700 nm (frq1), 400 nm (frq2), and 1000 nm (frq3) is obtained when the object height [mm] in the reading region is Y = 0, 30, 60, 90, 120, 150. Shows about each of them. As shown in FIG. 3, the spatial frequency [lines / mm] for each wavelength of the imaging element including the light receiving surface 7 is 27.8, 41.7, and 55.6. As can be seen from FIG. 3, the aberration is satisfactorily corrected over the entire reading region, and a sufficient depth of focus is ensured.
 [実施例2]
 以下、本発明の実施例2に係る光学系10について説明する。本実施例に係る光学系10において、上述した実施例1に係る光学系10と同等の構成については説明を省略する。
[Example 2]
Hereinafter, the optical system 10 according to Embodiment 2 of the present invention will be described. In the optical system 10 according to the present embodiment, the description of the configuration equivalent to that of the optical system 10 according to Embodiment 1 described above is omitted.
 図4は、本発明の実施形態に係る光学系10の第1及び第2の断面における要部概略図である。本実施例に係る光学系10は、実施例1に係る光学系10に対して、絞り1から受光面7に至る光路長が短く、全系の更なる小型化を実現している。 FIG. 4 is a schematic diagram of a main part in the first and second cross sections of the optical system 10 according to the embodiment of the present invention. The optical system 10 according to the present embodiment has a shorter optical path length from the stop 1 to the light receiving surface 7 than the optical system 10 according to the first embodiment, thereby realizing further downsizing of the entire system.
 本実施例において、被検物から絞り1までの距離は300mm、読取領域の第1の方向における幅は300mm、第1の断面での画角は±24.46°である。また、本実施例においては、使用波長帯域が400nm~1000nmであり、受光面7における第2の方向での結像領域の幅は2.7mmである。本実施例に係る前群11及び後群12の第1の断面での合成焦点距離は各々-14.21mm、16.69mmであり、前群11及び後群12の第2の断面での合成焦点距離は各々19.33mm、11.01mmである。 In this embodiment, the distance from the test object to the diaphragm 1 is 300 mm, the width of the reading region in the first direction is 300 mm, and the angle of view in the first section is ± 24.46 °. In this embodiment, the used wavelength band is 400 nm to 1000 nm, and the width of the imaging region in the second direction on the light receiving surface 7 is 2.7 mm. The composite focal lengths in the first cross section of the front group 11 and the rear group 12 according to the present embodiment are respectively -14.21 mm and 16.69 mm, and the composite focal lengths in the second cross section of the front group 11 and the rear group 12 are respectively. The focal lengths are 19.33 mm and 11.01 mm, respectively.
 実施例1と同様に、表4に本実施例に係る光学系10の各光学面の頂点の位置、頂点における法線の方向、及び各断面での曲率半径を示し、表5に各光学面の面形状を示し、表6に絞り1の開口、遮光部材4の開口、及び受光面7の径を示す。但し、第3反射面5の第2の断面における形状については、式(数1)で表される母線上の各位置での法線とx軸とが一致するように、位置ごとに異なるローカル座標系を定めた上で、上述の式(数2)で表している。なお、表4と表5とで曲率半径Rの値が一致していないのは、表4における曲率半径の値が第2の断面におけるチルト角を考慮したものであるためである。 As in Example 1, Table 4 shows the position of the vertex of each optical surface of the optical system 10 according to this example, the direction of the normal line at the vertex, and the radius of curvature at each cross section, and Table 5 shows each optical surface. Table 6 shows the diameter of the aperture of the diaphragm 1, the aperture of the light shielding member 4, and the diameter of the light receiving surface 7. However, as for the shape of the third reflecting surface 5 in the second cross section, the local line that differs from position to position so that the normal line at each position on the generatrix represented by the equation (Equation 1) matches the x axis. After defining the coordinate system, it is expressed by the above equation (Equation 2). The reason why the values of the curvature radii Ry do not match between Table 4 and Table 5 is that the values of the curvature radii in Table 4 consider the tilt angle in the second cross section.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 図5は、図3と同様に本実施例に係る光学系10のMTFを示したものである。図5を見てわかるように、読取領域の全域にわたって収差が良好に補正され、焦点深度が十分に確保されている。 FIG. 5 shows the MTF of the optical system 10 according to the present embodiment, as in FIG. As can be seen from FIG. 5, the aberration is satisfactorily corrected over the entire reading region, and a sufficient depth of focus is ensured.
 [実施例3]
 以下、本発明の実施例3に係る光学系10について説明する。本実施例に係る光学系10において、上述した実施例1に係る光学系10と同等の構成については説明を省略する。
[Example 3]
The optical system 10 according to Example 3 of the present invention will be described below. In the optical system 10 according to the present embodiment, the description of the configuration equivalent to that of the optical system 10 according to Embodiment 1 described above is omitted.
 図6は、本発明の実施形態に係る光学系10の第1及び第2の断面における要部概略図である。本実施例に係る光学系10は、実施例1に係る光学系10に対して、像側(射出側)のF値が小さい(明るい)構成となっている。具体的には、実施例1に係る光学系10の像側のF値が、第1及び第2の断面において各々4.7及び4.0であるのに対して、本実施例に係る光学系10の像側のF値は、第1及び第2の断面において各々4.1及び3.5となっている。 FIG. 6 is a main part schematic diagram in the first and second cross sections of the optical system 10 according to the embodiment of the present invention. The optical system 10 according to the present embodiment has a smaller (brighter) F value on the image side (exit side) than the optical system 10 according to the first embodiment. Specifically, the F value on the image side of the optical system 10 according to Example 1 is 4.7 and 4.0 in the first and second cross sections, respectively, whereas the optical value according to this example is shown. The image side F values of the system 10 are 4.1 and 3.5 in the first and second cross-sections, respectively.
 本実施例において、被検物から絞り1までの距離は300mm、読取領域の第1の方向における幅は300mm、第1の断面での画角は±24.44°である。また、本実施例においては、使用波長帯域が400nm~1000nmであり、受光面7における第2の方向での結像領域の幅は2.64mmである。本実施例に係る前群11及び後群12の第1の断面での合成焦点距離は各々-14.46mm、26.85mmであり、前群11及び後群12の第2の断面での合成焦点距離は各々19.34mm、24.98mmである。 In this embodiment, the distance from the test object to the diaphragm 1 is 300 mm, the width of the reading region in the first direction is 300 mm, and the angle of view in the first section is ± 24.44 °. In this embodiment, the wavelength band used is 400 nm to 1000 nm, and the width of the imaging region in the second direction on the light receiving surface 7 is 2.64 mm. The composite focal lengths in the first cross section of the front group 11 and the rear group 12 according to the present embodiment are -14.46 mm and 26.85 mm, respectively, and the composite focal lengths in the second cross section of the front group 11 and the rear group 12 are respectively. The focal lengths are 19.34 mm and 24.98 mm, respectively.
 実施例1と同様に、表7に本実施例に係る光学系10の各光学面の頂点の位置、頂点における法線の方向、及び各断面での曲率半径を示し、表8に各光学面の面形状を示し、表9に絞り1の開口、遮光部材4の開口、及び受光面7の径を示す。 As in Example 1, Table 7 shows the position of the vertex of each optical surface of the optical system 10 according to this example, the direction of the normal at the vertex, and the radius of curvature at each cross section. Table 8 shows each optical surface. Table 9 shows the aperture of the diaphragm 1, the aperture of the light shielding member 4, and the diameter of the light receiving surface 7.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 図7は、図3と同様に本実施例に係る光学系10のMTFを示したものである。図7を見てわかるように、読取領域の全域にわたって収差が良好に補正され、焦点深度が十分に確保されている。 FIG. 7 shows the MTF of the optical system 10 according to the present embodiment, as in FIG. As can be seen from FIG. 7, the aberration is satisfactorily corrected over the entire reading region, and a sufficient depth of focus is ensured.
 [実施例4]
 以下、本発明の実施例4に係る光学系10について説明する。本実施例に係る光学系10において、上述した実施例1に係る光学系10と同等の構成については説明を省略する。
[Example 4]
The optical system 10 according to Example 4 of the present invention will be described below. In the optical system 10 according to the present embodiment, the description of the configuration equivalent to that of the optical system 10 according to Embodiment 1 described above is omitted.
 図8は、本発明の実施形態に係る光学系10の第1及び第2の断面における要部概略図である。本実施例に係る光学系10は、実施例1に係る光学系10に対して、絞り1から受光面7に至る光路長が短く、全系の更なる小型化を実現している。 FIG. 8 is a schematic diagram of a main part in the first and second cross sections of the optical system 10 according to the embodiment of the present invention. The optical system 10 according to the present embodiment has a shorter optical path length from the stop 1 to the light receiving surface 7 than the optical system 10 according to the first embodiment, thereby realizing further downsizing of the entire system.
 本実施例において、被検物から絞り1までの距離は300mm、読取領域の第1の方向における幅は300mm、第1の断面での画角は±24.49°である。また、本実施例においては、使用波長帯域が400nm~1000nmであり、受光面7における第2の方向での結像領域の幅は2.37mmである。本実施例に係る前群11及び後群12の第1の断面での合成焦点距離は各々-13.23mm、16.78mmであり、前群11及び後群12の第2の断面での合成焦点距離は各々17.53mm、11.25mmである。 In this embodiment, the distance from the test object to the diaphragm 1 is 300 mm, the width of the reading region in the first direction is 300 mm, and the angle of view in the first section is ± 24.49 °. In this embodiment, the wavelength band used is 400 nm to 1000 nm, and the width of the imaging region in the second direction on the light receiving surface 7 is 2.37 mm. The combined focal lengths in the first cross section of the front group 11 and the rear group 12 according to the present embodiment are −13.23 mm and 16.78 mm, respectively, and the combined focal lengths of the front group 11 and the rear group 12 in the second cross section are respectively. The focal lengths are 17.53 mm and 11.25 mm, respectively.
 実施例1と同様に、表10に本実施例に係る光学系10の各光学面の頂点の位置、頂点における法線の方向、及び各断面での曲率半径を示し、表11に各光学面の面形状を示し、表12に絞り1の開口、遮光部材4の開口、及び受光面7の径を示す。なお、表10と表11とで曲率半径Rの値が一致していないのは、表10における曲率半径の値が第2の断面におけるチルト角を考慮したものであるためである。 As in Example 1, Table 10 shows the position of the vertex of each optical surface of the optical system 10 according to this example, the direction of the normal line at the vertex, and the radius of curvature at each cross section. Table 11 shows each optical surface. Table 12 shows the aperture of the diaphragm 1, the aperture of the light shielding member 4, and the diameter of the light receiving surface 7. The reason why the values of the curvature radii Ry do not match between Table 10 and Table 11 is that the values of the curvature radii in Table 10 take into account the tilt angle in the second cross section.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 なお、本実施例において、第1反射面2、第2反射面3、第3反射面5、及び第4反射面6の子線形状は、上述した式(数3)の代わりに以下の式を用いて表される。また、第3反射面5の子線形状については、実施例2と同様に母線上の位置ごとに異なるローカル座標系を定めた上で、上述の式(数2)で表している。 In the present embodiment, the sub-wire shapes of the first reflecting surface 2, the second reflecting surface 3, the third reflecting surface 5, and the fourth reflecting surface 6 are the following formulas instead of the above formula (Equation 3). It is expressed using Further, the shape of the sub-line of the third reflecting surface 5 is expressed by the above formula (Equation 2) after defining a different local coordinate system for each position on the bus line as in the second embodiment.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 図9は、図3と同様に本実施例に係る光学系10のMTFを示したものである。図9を見てわかるように、読取領域の全域にわたって収差が良好に補正され、焦点深度が十分に確保されている。 FIG. 9 shows the MTF of the optical system 10 according to the present embodiment as in FIG. As can be seen from FIG. 9, the aberration is satisfactorily corrected over the entire reading region, and a sufficient depth of focus is ensured.
 [撮像装置及び撮像システム]
 以下、上述した実施形態に係る光学系10の使用例としての撮像装置(分光読取装置)及び撮像システム(分光読取システム)について説明する。
[Imaging apparatus and imaging system]
Hereinafter, an imaging apparatus (spectral reading apparatus) and imaging system (spectral reading system) as examples of use of the optical system 10 according to the above-described embodiment will be described.
 図10及び図11は、本発明の実施形態に係る撮像システム100,200の要部概略図である。撮像システム100,200は、光学系10及び光学系10により形成された像を受光する撮像素子を有する撮像装置101,201と、各撮像装置及び被検物103,203の相対位置を変更する搬送部102,202とを備える。なお、各撮像システムは、撮像素子から得られる画像情報に基づいて画像を生成する画像処理部を有することが望ましい。画像処理部は、例えばCPUなどのプロセッサであり、各撮像装置の内部又は外部の何れに設けられていてもよい。 FIGS. 10 and 11 are schematic views of main parts of the imaging systems 100 and 200 according to the embodiment of the present invention. The imaging systems 100 and 200 are configured to change the relative positions of the imaging system 101 and 201 having an optical system 10 and an imaging device that receives an image formed by the optical system 10, and the imaging apparatus and the test objects 103 and 203. Sections 102 and 202. Each imaging system desirably has an image processing unit that generates an image based on image information obtained from the imaging element. The image processing unit is a processor such as a CPU, for example, and may be provided inside or outside each imaging apparatus.
 撮像装置101,201によれば、第1の方向(Y方向)に長いライン状の読取領域104,204を1回撮像することで、複数の波長に対応する複数の画像情報(一次元画像)を取得することができる。このとき、各撮像装置を、一般的なカメラよりも多い4種類以上の波長に対応する画像情報を取得できるマルチスペクトルカメラとして構成することが望ましい。さらに、各撮像装置を、100種類以上の波長に対応する画像情報を取得できるハイパースペクトルカメラとして構成することがより好ましい。 According to the imaging devices 101 and 201, a plurality of pieces of image information (one-dimensional images) corresponding to a plurality of wavelengths are obtained by imaging the linear reading regions 104 and 204 that are long in the first direction (Y direction) once. Can be obtained. At this time, it is desirable to configure each imaging device as a multispectral camera that can acquire image information corresponding to four or more types of wavelengths more than a general camera. Furthermore, it is more preferable to configure each imaging device as a hyperspectral camera that can acquire image information corresponding to 100 or more wavelengths.
 各撮像装置における撮像素子としては、CCD(Charge Coupled Device)センサやCMOS(Complementary Metal Oxide Semiconductor)センサなどを採用することができる。撮像素子は、可視光に限らず赤外光(近赤外光や遠赤外線光)などを光電変換できるように構成されていてもよい。具体的には、使用波長帯域に応じてInGaAsやInAsSbなどの材料を用いた撮像素子を採用してもよい。また、撮像素子の画素数は、読取方向及び分光方向において求められる分解能に基づいて決定することが望ましい。 As the image pickup element in each image pickup apparatus, a CCD (Charge Coupled Device) sensor, a CMOS (Complementary Metal Oxide Semiconductor) sensor, or the like can be employed. The imaging device may be configured to photoelectrically convert not only visible light but also infrared light (near infrared light or far infrared light). Specifically, an image sensor using a material such as InGaAs or InAsSb may be employed according to the wavelength band used. In addition, the number of pixels of the image sensor is desirably determined based on the resolution required in the reading direction and the spectral direction.
 図10に示す通り、撮像システム100における搬送部102は、被検物103を第2の方向(Z方向)へ移動させる手段である。搬送部102としてはベルトコンベアなどを採用することができる。一方、図11に示す通り、撮像システム200における搬送部202は、撮像装置201を第2の方向へ移動させる手段である。搬送部202としては、マルチコプタ、飛行機、人工衛星等を採用することができる。搬送部202を用いることで、ベルトコンベアなどでは搬送できない大型の被検物や、移動が困難な被検物などに対しても、第2の方向における複数の位置での撮像を行うことができる。 As shown in FIG. 10, the transport unit 102 in the imaging system 100 is means for moving the test object 103 in the second direction (Z direction). A belt conveyor or the like can be employed as the transport unit 102. On the other hand, as illustrated in FIG. 11, the conveyance unit 202 in the imaging system 200 is a unit that moves the imaging device 201 in the second direction. As the transport unit 202, a multicopter, an airplane, an artificial satellite, or the like can be employed. By using the transport unit 202, it is possible to perform imaging at a plurality of positions in the second direction even for a large test object that cannot be transported by a belt conveyor or the like that is difficult to move. .
 撮像システム100,200によれば、各搬送部に各撮像装置及び各被検物の相対位置を変更させながら、各撮像装置に読取領域を順次撮像させることで、第2の方向における複数の位置に対応する複数の画像情報を取得することができる。画像処理部によってこの複数の撮像画像の並び替えや演算処理などを行うことで、特定の波長に対応する二次元画像を生成することができる。なお、各画像情報は第1の方向における濃淡情報を表すため、第2の方向における特定の位置での波長ごとの濃淡情報に基づいて、画像処理部によりスペクトル分布(スペクトル情報)を生成してもよい。 According to the imaging systems 100 and 200, a plurality of positions in the second direction can be obtained by causing each imaging device to sequentially image the reading area while changing the relative position of each imaging device and each test object in each transport unit. A plurality of pieces of image information corresponding to can be acquired. A two-dimensional image corresponding to a specific wavelength can be generated by performing rearrangement or arithmetic processing of the plurality of captured images by the image processing unit. In addition, since each image information represents the light and shade information in the first direction, the image processing unit generates a spectrum distribution (spectrum information) based on the light and shade information for each wavelength at a specific position in the second direction. Also good.
 なお、各搬送部を、各撮像装置及び各被検物の両方を移動させるように構成してもよい。また、各搬送部によって各撮像装置と各被検物との光軸方向(X方向)における相対位置を調整することができるようにしてもよい。あるいは、光学系10の内部又は外部に駆動可能な光学部材(フォーカス部材)を配置し、その光学部材の位置を調整することで、被検物に対するフォーカシングを行うことができるようにしてもよい。 In addition, you may comprise each conveyance part so that both each imaging device and each test object may be moved. Moreover, you may enable it to adjust the relative position in the optical axis direction (X direction) of each imaging device and each test object by each conveyance part. Alternatively, an optical member (focusing member) that can be driven inside or outside the optical system 10 is arranged, and the position of the optical member may be adjusted so that the object can be focused.
 [検査方法及び製造方法]
 以下、上述した実施形態に係る光学系10を用いた物体(被検物)の検査方法及び物品の製造方法について説明する。光学系10は、例えば製造業や農業、医療などの産業分野における検査(評価)に好適なものである。
[Inspection method and manufacturing method]
Hereinafter, an object (test object) inspection method and article manufacturing method using the optical system 10 according to the above-described embodiment will be described. The optical system 10 is suitable for inspection (evaluation) in industrial fields such as manufacturing, agriculture, and medicine.
 本実施形態に係る検査方法における第1のステップ(撮像ステップ)では、光学系10を介して物体を撮像することで物体の画像情報を取得する。このとき、上述したような撮像装置や撮像システムを用いることができる。すなわち、物体及び撮像装置の相対位置を変更させながら物体を撮像することで、物体の全体の画像情報を取得することができる。また、複数の物体の画像情報を順次(連続的に)取得することもできる。なお、第1のステップでは、光学系10から出射する複数の光束の波長の夫々に対応する複数の画像情報を取得してもよい。 In the first step (imaging step) in the inspection method according to the present embodiment, the image information of the object is acquired by imaging the object via the optical system 10. At this time, an imaging apparatus or an imaging system as described above can be used. That is, it is possible to acquire image information of the entire object by imaging the object while changing the relative positions of the object and the imaging device. In addition, image information of a plurality of objects can be acquired sequentially (continuously). In the first step, a plurality of pieces of image information corresponding to the wavelengths of the plurality of light beams emitted from the optical system 10 may be acquired.
 次の第2のステップ(検査ステップ)では、第1のステップで取得された画像情報に基づいて物体の検査を行う。このとき、例えばユーザ(検査者)が画像情報における異物やキズなどの有無を確認(判定)したり、制御部(画像処理部)により画像情報における異物やキズを検出してユーザに通知したりしてもよい。あるいは、異物やキズの有無の判定結果に応じて、後述する物品の製造装置を制御する制御部を採用してもよい。 In the next second step (inspection step), the object is inspected based on the image information acquired in the first step. At this time, for example, the user (inspector) confirms (determines) the presence or absence of foreign matter or scratches in the image information, or the control unit (image processing unit) detects foreign matter or scratches in the image information and notifies the user. May be. Or you may employ | adopt the control part which controls the manufacturing apparatus of the articles | goods mentioned later according to the determination result of the presence or absence of a foreign material or a crack.
 また、第2のステップでは、波長ごとの複数の画像情報を用いて取得された物体のスペクトル分布に基づいて物体の検査を行ってもよい。光学系10を介して取得された画像情報を用いることで、検査対象の物体の固有のスペクトル情報を検知することができ、これにより物体の成分を特定することが可能になる。例えば、画像処理部によりスペクトル分布ごとに着色などの強調を行った画像情報を生成し、その画像情報に基づいてユーザが検査を行ってもよい。 In the second step, the object may be inspected based on the spectrum distribution of the object acquired using a plurality of pieces of image information for each wavelength. By using the image information acquired via the optical system 10, it is possible to detect unique spectral information of the object to be inspected, and thereby to identify the component of the object. For example, the image processing unit may generate image information in which coloring or the like is enhanced for each spectrum distribution, and the user may perform inspection based on the image information.
 本実施形態に係る検査方法は、食品、医薬品、化粧品などの物品の製造方法に適用することができる。具体的には、物品を製造するための材料(物体)を上述した検査方法により検査し、検査された材料を用いて物品を製造することができる。例えば、上述した第2のステップにおいて材料に異物やキズがあると判定された場合、ユーザ(製造者)又は製造装置は、材料から異物を除去したり、異物やキズがある材料を廃棄したりすることができる。 The inspection method according to the present embodiment can be applied to a manufacturing method for articles such as foods, pharmaceuticals, and cosmetics. Specifically, the material (object) for manufacturing the article can be inspected by the inspection method described above, and the article can be manufactured using the inspected material. For example, when it is determined in the second step that the material has foreign matter or scratches, the user (manufacturer) or the manufacturing apparatus removes the foreign matter from the material or discards the foreign matter or scratched material. can do.
 また、上記検査方法を製造装置の異常の検知に用いてもよい。例えば、製造装置の画像情報に基づいて異常の有無を判定し、その判定結果に応じて製造装置の駆動を停止させたり異常を修正したりしてもよい。 Further, the above inspection method may be used for detecting an abnormality in the manufacturing apparatus. For example, the presence or absence of an abnormality may be determined based on the image information of the manufacturing apparatus, and the driving of the manufacturing apparatus may be stopped or the abnormality may be corrected according to the determination result.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2018年6月7日提出の日本国特許出願特願2018-109857と2019年3月11日提出の日本国特許出願特願2019-044281を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 The present application claims priority based on Japanese Patent Application No. 2018-109857 filed on June 7, 2018 and Japanese Patent Application No. 2019-042881 filed on March 11, 2019, All the descriptions are incorporated herein.

Claims (20)

  1.  物体側から像側へ順に配置された前群、遮光部材、後群から成る光学系であって、
     前記遮光部材には、第1の方向に長い開口が設けられており、
     前記前群は、前記第1の方向に平行な第1の断面においては前記開口上に物体を結像せず、前記第1の方向に垂直な第2の断面においては前記開口上に前記物体の中間像を形成しており、
     前記後群は、前記第2の断面において前記開口を通過した光束を互いに波長が異なる複数の光束に分光する回折面を有し、前記第2の断面において前記複数の光束を互いに異なる位置に集光しており、
     前記第1の断面において、前記前群から出射して前記開口に入射する光束は非平行光であることを特徴とする光学系。
    An optical system composed of a front group, a light shielding member, and a rear group arranged in order from the object side to the image side,
    The light shielding member is provided with a long opening in the first direction,
    The front group does not image an object on the opening in a first cross section parallel to the first direction, and the object on the opening in a second cross section perpendicular to the first direction. An intermediate image of
    The rear group has a diffractive surface for splitting the light beam that has passed through the opening in the second cross section into a plurality of light beams having different wavelengths, and the plurality of light beams are collected at different positions in the second cross section. Light
    In the first cross section, an optical system that emits light from the front group and enters the aperture is non-parallel light.
  2.  前記第1の断面において、前記前群のパワーの符号と前記後群のパワーの符号は互いに異なることを特徴とする請求項1に記載の光学系。 2. The optical system according to claim 1, wherein in the first cross section, the sign of the power of the front group and the sign of the power of the rear group are different from each other.
  3.  前記第1の断面において、前記前群は負のパワーを有し、前記後群は正のパワーを有することを特徴とする請求項2に記載の光学系。 3. The optical system according to claim 2, wherein, in the first cross section, the front group has a negative power and the rear group has a positive power.
  4.  前記第1の断面において、前記前群から出射して前記開口に入射する光束は発散光であることを特徴とする請求項1乃至3の何れか一項に記載の光学系。 4. The optical system according to claim 1, wherein in the first cross section, a light beam emitted from the front group and incident on the opening is divergent light. 5.
  5.  前記第2の断面において、前記前群及び前記後群は正のパワーを有することを特徴とする請求項1乃至4の何れか一項に記載の光学系。 5. The optical system according to claim 1, wherein, in the second cross section, the front group and the rear group have a positive power.
  6.  前記前群の前記第1の断面でのパワーの符号と前記第2の断面でのパワーの符号は互いに異なることを特徴とする請求項1乃至5の何れか一項に記載の光学系。 6. The optical system according to claim 1, wherein a sign of power in the first section and a sign of power in the second section of the front group are different from each other.
  7.  前記回折面のベース面は、非球面であることを特徴とする請求項1乃至6の何れか一項に記載の光学系。 The optical system according to any one of claims 1 to 6, wherein a base surface of the diffractive surface is an aspherical surface.
  8.  前記回折面は、反射面であることを特徴とする請求項1乃至7の何れか一項に記載の光学系。 The optical system according to any one of claims 1 to 7, wherein the diffractive surface is a reflective surface.
  9.  前記遮光部材は、前記物体からの光束の前記第1の方向における幅を規制することを特徴とする請求項1乃至8の何れか一項に記載の光学系。 The optical system according to any one of claims 1 to 8, wherein the light shielding member regulates a width of the light beam from the object in the first direction.
  10.  前記前群は、前記物体からの光束の前記第1の方向に垂直な第2の方向における幅を規制する絞りを有することを特徴とする請求項1乃至9の何れか一項に記載の光学系。 The optical system according to any one of claims 1 to 9, wherein the front group includes a diaphragm that regulates a width of a light beam from the object in a second direction perpendicular to the first direction. system.
  11.  前記前群及び前記後群に含まれる全ての光学面は反射面であることを特徴とする請求項1乃至10の何れか一項に記載の光学系。 The optical system according to any one of claims 1 to 10, wherein all optical surfaces included in the front group and the rear group are reflection surfaces.
  12.  請求項1乃至11の何れか一項に記載の光学系と、該光学系により形成された像を受光する撮像素子とを有することを特徴とする撮像装置。 An image pickup apparatus comprising: the optical system according to any one of claims 1 to 11; and an image pickup element that receives an image formed by the optical system.
  13.  請求項12に記載の撮像装置と、該撮像装置及び前記物体の相対位置を変更する搬送部とを備えることを特徴とする撮像システム。 An imaging system comprising: the imaging device according to claim 12; and a conveyance unit that changes a relative position between the imaging device and the object.
  14.  光学系を介して物体を撮像することで該物体の画像情報を取得する第1のステップと、
     前記画像情報に基づいて前記物体の検査を行うステップ第2のステップとを有し、
     前記光学系は、物体側から像側へ順に配置された前群、遮光部材、後群から成り、
     前記遮光部材には、第1の方向に長い開口が設けられており、
     前記前群は、非球面を有し、前記第1の方向に平行な第1の断面においては前記開口上に物体を結像せず、前記第1の方向に垂直な第2の断面においては前記開口上に前記物体の中間像を形成しており、
     前記後群は、前記第2の断面において前記開口を通過した光束を互いに波長が異なる複数の光束に分光する回折面を有し、前記第2の断面において前記複数の光束を互いに異なる位置に集光しており、
     前記第2の断面における前記非球面のチルト角は、前記第1の方向において変化することを特徴とする検査方法。
    A first step of acquiring image information of the object by imaging the object via an optical system;
    And a second step of inspecting the object based on the image information,
    The optical system is composed of a front group, a light shielding member, and a rear group arranged in order from the object side to the image side,
    The light shielding member is provided with a long opening in the first direction,
    The front group has an aspherical surface, and in the first cross section parallel to the first direction, the object is not imaged on the opening, and in the second cross section perpendicular to the first direction. Forming an intermediate image of the object on the aperture;
    The rear group has a diffractive surface for splitting the light beam that has passed through the opening in the second cross section into a plurality of light beams having different wavelengths, and the plurality of light beams are collected at different positions in the second cross section. Light
    The inspection method according to claim 1, wherein a tilt angle of the aspheric surface in the second cross section changes in the first direction.
  15.  前記第1のステップは、前記物体を前記第1の方向に垂直な方向へ移動させながら前記物体を撮像する工程を含むことを特徴とする請求項14に記載の検査方法。 15. The inspection method according to claim 14, wherein the first step includes a step of imaging the object while moving the object in a direction perpendicular to the first direction.
  16.  前記第1のステップは、前記複数の光束の波長の夫々に対応する複数の画像情報を取得する工程を含むことを特徴とする請求項14又は15に記載の検査方法。 The inspection method according to claim 14 or 15, wherein the first step includes a step of acquiring a plurality of pieces of image information corresponding to wavelengths of the plurality of light beams.
  17.  前記第2のステップは、前記複数の画像情報を用いて取得された前記物体のスペクトル分布に基づいて前記物体の検査を行う工程を含むことを特徴とする請求項14乃至16の何れか一項に記載の検査方法。 17. The method according to claim 14, wherein the second step includes a step of inspecting the object based on a spectral distribution of the object acquired using the plurality of pieces of image information. Inspection method described in 1.
  18.  前記第2のステップは、前記物体における異物の有無を判定する工程を含むことを特徴とする請求項14乃至17の何れか一項に記載の検査方法。 The inspection method according to any one of claims 14 to 17, wherein the second step includes a step of determining the presence or absence of foreign matter in the object.
  19.  請求項14乃至18の何れか一項に記載の検査方法により前記物体を検査するステップと、
     該ステップにより検査された前記物体を用いて物品を製造するステップとを有することを特徴とする製造方法。
    Inspecting the object by the inspection method according to any one of claims 14 to 18,
    And a step of manufacturing an article using the object inspected in the step.
  20.  前記物品を製造するステップは、前記物体における異物を除去する工程を含むことを特徴とする請求項19に記載の製造方法。 The manufacturing method according to claim 19, wherein the step of manufacturing the article includes a step of removing foreign matter from the object.
PCT/JP2019/021656 2018-06-07 2019-05-31 Optical system, and imaging device and imaging system equipped with same WO2019235372A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/108,661 US11674908B2 (en) 2018-06-07 2020-12-01 Optical system, and imaging apparatus and imaging system including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018109857 2018-06-07
JP2018-109857 2018-06-07
JP2019044281A JP6639718B2 (en) 2018-06-07 2019-03-11 Optical system, imaging apparatus including the same, and imaging system
JP2019-044281 2019-03-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/108,661 Continuation US11674908B2 (en) 2018-06-07 2020-12-01 Optical system, and imaging apparatus and imaging system including the same

Publications (1)

Publication Number Publication Date
WO2019235372A1 true WO2019235372A1 (en) 2019-12-12

Family

ID=68769293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021656 WO2019235372A1 (en) 2018-06-07 2019-05-31 Optical system, and imaging device and imaging system equipped with same

Country Status (1)

Country Link
WO (1) WO2019235372A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624654B1 (en) * 2022-11-15 2023-04-11 ML Optic Corp. Compact modulation transfer function colorimeter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6046808A (en) * 1999-04-09 2000-04-04 Three Lc, Inc. Radiation filter, spectrometer and imager using a micro-mirror array
US20060082772A1 (en) * 2004-10-20 2006-04-20 Resonon Inc. Scalable imaging spectrometer
US20180066987A1 (en) * 2016-09-02 2018-03-08 Rand Swanson Optical systems with asymetric magnification

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6046808A (en) * 1999-04-09 2000-04-04 Three Lc, Inc. Radiation filter, spectrometer and imager using a micro-mirror array
US20060082772A1 (en) * 2004-10-20 2006-04-20 Resonon Inc. Scalable imaging spectrometer
US20180066987A1 (en) * 2016-09-02 2018-03-08 Rand Swanson Optical systems with asymetric magnification

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624654B1 (en) * 2022-11-15 2023-04-11 ML Optic Corp. Compact modulation transfer function colorimeter

Similar Documents

Publication Publication Date Title
US20210080402A1 (en) Optical system, and imaging apparatus and imaging system including the same
WO2019235325A1 (en) Optical system, imaging device comprising same, and imaging system
US20120105845A1 (en) Imaging Spectrometer
US7768642B2 (en) Wide field compact imaging catadioptric spectrometer
JP6639718B2 (en) Optical system, imaging apparatus including the same, and imaging system
US20190017869A1 (en) High resolution broadband monolithic spectrometer and method
WO2019235372A1 (en) Optical system, and imaging device and imaging system equipped with same
WO2019235373A1 (en) Optical system, imaging device comprising same, and imaging system
JP6594576B1 (en) Optical system, imaging apparatus and imaging system including the same
JP6639717B2 (en) Optical system, imaging apparatus including the same, and imaging system
JP7214376B2 (en) OPTICAL SYSTEM, IMAGING DEVICE AND IMAGING SYSTEM INCLUDING THE SAME
JP2021081664A (en) Optical device, imaging apparatus and imaging system equipped with the same
WO2019235371A1 (en) Optical system, and imaging device and imaging system equipped with optical system
JP7395318B2 (en) Optical system, imaging device and imaging system equipped with the same
JP7297530B2 (en) OPTICAL SYSTEM, IMAGING DEVICE AND IMAGING SYSTEM INCLUDING THE SAME
JP7214375B2 (en) OPTICAL SYSTEM, IMAGING DEVICE AND IMAGING SYSTEM INCLUDING THE SAME
JP7214377B2 (en) OPTICAL SYSTEM, IMAGING DEVICE AND IMAGING SYSTEM INCLUDING THE SAME
JP2024025312A (en) Optical system, imaging apparatus, and imaging system
US20230091080A1 (en) System including reflective surfaces and apparatus and imaging system including the same
Xu et al. Optical design of wide waveband compact imaging spectrometer with fast speed
US20240053197A1 (en) Image pickup apparatus, measuring apparatus, and article manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19814454

Country of ref document: EP

Kind code of ref document: A1