WO2019230358A1 - Map information generation system and operation assistance system - Google Patents

Map information generation system and operation assistance system Download PDF

Info

Publication number
WO2019230358A1
WO2019230358A1 PCT/JP2019/018991 JP2019018991W WO2019230358A1 WO 2019230358 A1 WO2019230358 A1 WO 2019230358A1 JP 2019018991 W JP2019018991 W JP 2019018991W WO 2019230358 A1 WO2019230358 A1 WO 2019230358A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
information
map information
work vehicle
work
Prior art date
Application number
PCT/JP2019/018991
Other languages
French (fr)
Japanese (ja)
Inventor
宮本 宗徳
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to CN201980034851.9A priority Critical patent/CN112189227A/en
Priority to KR1020207032263A priority patent/KR20210015773A/en
Publication of WO2019230358A1 publication Critical patent/WO2019230358A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/003Maps
    • G09B29/004Map manufacture or repair; Tear or ink or water resistant maps; Long-life maps
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/02Self-propelled combines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram

Definitions

  • the present invention relates to a map information generation system and a work support system using the map information generation system.
  • Patent Document 1 discloses a technique for generating a field unevenness data map (map information) based on latitude / longitude information and altitude information detected for each hour by a GPS device provided in the center in the vehicle width direction of a work vehicle. It is disclosed.
  • Patent Document 1 although the center height in the vehicle width direction of the work vehicle is acquired by the GPS device, it is not detected until the work vehicle is tilted when viewed from the traveling direction. Therefore, it is not possible to generate a detailed unevenness data map of a point where latitude / longitude information is detected in the field.
  • a field may be composed of a surface of the surface layer and a cultivator located below the surface layer.
  • the cultivator depth which is the distance between the surface of the surface layer and the surface of the cultivator, is important in field work because it affects the growth of the crop and the work efficiency.
  • corrugated data can be acquired, the information about the depth of a cultivation board cannot be acquired.
  • a main object of the present invention is to provide a map information generation system capable of generating map information for improving the quality of work support, and a work support system using the map information generation system.
  • One embodiment of the present invention acquires position information of a first work vehicle having a first body part and a first work part supported by the first body part at a specific point in a field, and Based on the attitude control information of the first airframe unit at the point and / or the attitude control information of the first working unit, a plurality of tillage depth information is specified, and the position of the first work vehicle at the specific point.
  • a map information generation system for generating map information in which information and the plurality of tillage depth information are associated with each other.
  • map information having detailed tillage depth information at the specific point can be generated by associating the position information of the first work vehicle at the particular point with the plurality of tillage depth information. Thereby, the quality of work support can be improved.
  • the plurality of tillage depth information supports the first body part and the first working part, and is arranged at a predetermined interval in the width direction of the first body part. Information on the depth of the cultivator at the location where the pair of traveling units touch the ground.
  • tiller depth information is acquired at two locations in the width direction of the first airframe. Therefore, map information having detailed tillage depth information at a specific point can be generated.
  • the position information of the first work vehicle includes altitude information.
  • the plurality of tillage depth information at the specific point is displayed so as to be distinguishable from each other, and the altitude information of the specific point and the altitude information of another point different from the specific point, Is displayed in an identifiable manner. Therefore, by referring to the map information, it is possible to compare the altitude of the cultivator at a specific point with the altitude of the cultivator at other points.
  • One embodiment of the present invention includes a second machine part that travels in the field, and a second work part that is attached to the second machine part so as to be movable up and down relative to the second machine part and that performs work in the field.
  • a work support system is provided that supports a second work vehicle having the following information based on the map information generated by the map information generation system. Then, the work support system is configured to perform a predetermined process before the second work vehicle reaches the notification target position based on the notification target position specified based on the map information and the position information of the second work vehicle. Notification.
  • the user can prepare for work suitable for the notification target position before the second work vehicle reaches the notification target position. Thereby, the quality of work support can be improved.
  • the work support system is configured such that, based on the map information, the height position of the second working unit is higher than the tilling depth specified based on the map information. Limit the lifting range of the second working part. Therefore, the contact of the 2nd operation part with respect to a cultivation board can be controlled.
  • the work support system specifies a travel prohibition area in which travel of the second work vehicle is prohibited based on the map information, and a travel route for causing the second work vehicle to travel is determined. , So as not to pass through the travel prohibition area. Thereby, since a travel prohibition area can be avoided, the second work vehicle can travel smoothly. As a result, the quality of work support can be improved.
  • the second working part is provided at the front part of the second machine part, and is controlled to move up and down toward a target position where the height relative to the surface of the field is constant. It is configured.
  • the work support system identifies a standard control position and an insensitive control position based on the map information, and the second working unit with respect to the target position when the second work vehicle reaches the insensitive control position. Is made lower than the followability of the second working unit with respect to the target position when the second work vehicle reaches the standard control position.
  • the second working unit When the tiller depth changes along the traveling direction of the second work vehicle, the second working unit is moved up and down toward a target position where the height relative to the surface of the field is constant.
  • the followability of the second working unit with respect to the target position at the insensitive control position is standard, the amount of change in the height position of the second working unit with respect to the second airframe is too large, and the second working unit is There is a risk of contact with the surface. Therefore, the followability of the second working unit with respect to the target position when the second work vehicle reaches the insensitive control position, and the followability of the second work unit with respect to the target position when the second work vehicle reaches the standard control position. By making it lower than this, it is possible to suppress the amount of change in the height position of the second working part relative to the second machine part at the insensitive control position. Thereby, the contact of the 2nd operation part to the surface of a field can be controlled.
  • FIG. 1 is a schematic diagram showing a configuration of a work support system and a map information generation system according to an embodiment of the present invention.
  • FIG. 2 is a side view of a combine as a first work vehicle used in the map information generation system.
  • FIG. 3 is a plan view of the combine.
  • FIG. 4 is a block diagram showing an electrical configuration of the combine.
  • FIG. 5 is a schematic view of the combine that is traveling in the field when viewed from the traveling direction.
  • FIG. 6 shows an example of map information generated by the map information generation system.
  • FIG. 7 is a side view of a tractor as the first work vehicle.
  • FIG. 8 is a plan view of the tractor.
  • FIG. 9 is a block diagram showing an electrical configuration of the tractor.
  • FIG. 1 is a schematic diagram showing a configuration of a work support system and a map information generation system according to an embodiment of the present invention.
  • FIG. 2 is a side view of a combine as a first work vehicle used in the map information generation
  • FIG. 10 is a schematic view of the tractor that is traveling in the field when viewed from the traveling direction.
  • FIG. 11 is a side view of a rice transplanter as the first work vehicle.
  • FIG. 12 is a plan view of the rice transplanter.
  • FIG. 13 is a block diagram showing an electrical configuration of the rice transplanter.
  • FIG. 14 is a schematic diagram showing a notification target position and a notification position specified in the map information.
  • FIG. 15 is a flowchart showing an example of notification processing by the work support system.
  • FIG. 16 is a flowchart showing an example of the lifting range restriction process by the work support system.
  • FIG. 17 is a schematic diagram illustrating an example of a travel route generated by the work support system.
  • FIG. 18A is a schematic diagram for explaining the lifting control at the standard control position of the second working unit provided in the second working vehicle.
  • FIG. 18B is a schematic diagram for explaining the lifting control at the insensitive control position of the second working unit.
  • FIG. 18C is a schematic diagram for explaining the lifting control at the insensitive control position of the second working unit.
  • FIG. 19 is a flowchart showing an example of the lifting control process by the work support system.
  • FIG. 1 is a schematic diagram showing a configuration of a map information generation system 1 and a work support system 2 according to an embodiment of the present invention.
  • the map information generation system 1 is a system that creates map information based on information acquired by a first work vehicle 3 having an information acquisition function.
  • the work support system 2 is a system that supports various works of the second work vehicle 4 on the field based on the map information generated by the map information generation system 1.
  • the work vehicles 3 and 4 can communicate with the management server 6 via the information communication network 5.
  • the work vehicles 3 and 4 and the management server 6 can wirelessly communicate with the wireless communication terminal 7 on which various information for work support is displayed.
  • the work vehicles 3 and 4 for example, agricultural work vehicles such as a combine, a tractor, and a rice transplanter are used.
  • the work vehicles 3 and 4 may be common work vehicles (for example, both tractors), or may be different work vehicles (for example, one is a combine and the other is a tractor).
  • map information generation system 1 and a work support system 2 that generate map information based on information acquired by the first work vehicle 3 and use the map information for various work support will be described.
  • first work vehicle 3 is a combine
  • FIG. 2 is a side view of the combine 8 as the first work vehicle 3.
  • FIG. 3 is a plan view of the combine 8.
  • the combine 8 includes a machine base 11, an engine 12, a threshing device 13, a grain tank 14, a boarding operation unit 15, a discharge auger 16, a mowing unit 17, and a pair of traveling units 18.
  • the engine 12 supplies power to each part of the combine 8.
  • the harvesting unit 17 harvests cereals grown in the field F.
  • the threshing device 13 threshs the cereals harvested by the reaping unit 17.
  • Glen tank 14 stores threshing grains.
  • the discharge auger 16 conveys the threshing grains in order to discharge the threshing grains in the Glen tank 14 to the outside of the combine 8.
  • the boarding driver 15 includes a driver seat 15A for the user to board, a steering handle 15B for steering the combine 8, and various operating units 34 (see FIG. 4) for steering the combine 8. Is provided.
  • the machine base 11 is a frame that supports the engine 12, the cutting unit 17, the discharge auger 16, the threshing device 13, the glen tank 14, and the boarding operation unit 15.
  • a lifting cylinder 43 (see FIG. 4) for moving the cutting unit 17 up and down is connected to the cutting unit 17.
  • the cutting unit 17 is located near the front end of the machine base 11.
  • the mowing unit 17 includes a cutting blade 17A that harvests cereals grown in the field F, and a conveyance path (not shown) that conveys the cereals harvested by the cutting blade 17A to the threshing device 13.
  • the cutting unit 17 is moved up and down around a predetermined rotation center by the lifting cylinder 43.
  • the pair of traveling portions 18 are arranged at a predetermined interval in the vehicle width direction WD of the combine 8.
  • the pair of traveling units 18 support the machine base 11, the engine 12, the cutting unit 17, the discharge auger 16, the threshing device 13, the Glen tank 14, and the boarding operation unit 15.
  • the machine base 11, the engine 12, the discharge auger 16, the threshing device 13, the glen tank 14 and the boarding operation unit 15 are collectively referred to as a machine body unit 19.
  • the cutting unit 17 is an example of a first working unit supported by the machine unit 19 (first machine unit).
  • the vehicle width direction WD is also the width direction of the body part 19.
  • each traveling portion 18 is crawled via a crawler frame 20 extending in the front-rear direction of the combine 8 and a crawler arm (not shown).
  • a plurality of wheels 21 supported by the frame 20, a drive sprocket 22 to which driving force from the engine 12 is transmitted, and a crawler 23 wound around the plurality of wheels 21 and the drive sprocket 22 are included.
  • Each traveling unit 18 is provided with a vehicle height cylinder 41 (see FIG. 4).
  • Each of the vehicle height cylinders 41 expands and contracts the corresponding crawler 23 in the height direction HD (direction perpendicular to the vehicle width direction WD) of the airframe unit 19 by moving the corresponding crawler frame 20 up and down relative to the machine base 11.
  • the pair of vehicle height cylinders 41 adjust the height and inclination of the body part 19 by moving the pair of crawler frames 20 up and down separately. For example, even when the heights of the ground contact surfaces to which the crawlers 23 come in contact with each other in the field F are different from each other, the vehicle body cylinder 19 is horizontally viewed from the traveling direction of the combine 8 by raising and lowering the vehicle height cylinder 41 separately.
  • the inclination of the body part 19 can be controlled so that
  • the cultivator is a layer formed by soil harder than the surface layer.
  • FIG. 4 is a block diagram showing an electrical configuration of the combine 8.
  • the combine 8 includes a control unit 30 for controlling the operation of each unit included in the combine 8.
  • the position information acquisition unit 31 is electrically connected to the control unit 30.
  • the positioning information received by the satellite signal receiving antenna 32 is input to the position information acquisition unit 31.
  • the satellite signal receiving antenna 32 receives signals from positioning satellites that constitute a satellite positioning system (GNSS: Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System
  • the position information acquisition unit 31 calculates the position information of the combine 8 (strictly speaking, the satellite signal receiving antenna 32) as, for example, latitude / longitude / altitude information.
  • the satellite signal receiving antenna 32 is located substantially at the center in the vehicle width direction WD.
  • the position information acquisition unit 31 acquires the position information of the combine 8 for example every second.
  • the communication unit 33 is electrically connected to the control unit 30.
  • the communication unit 33 may include a wireless LAN router (Wi-Fi router).
  • An operation unit 34 is electrically connected to the control unit 30.
  • the controller 30 is electrically connected to each of a plurality of controllers for controlling each part of the combine 8.
  • the plurality of controllers includes an engine controller 35, a crawler drive mechanism controller 36, a vehicle height controller 37, and a lift controller 38.
  • the engine controller 35 is electrically connected to a common rail device 39 as a fuel injection device provided in the engine 12.
  • the common rail device 39 injects fuel into each cylinder of the engine 12.
  • the engine controller 35 controls the number of revolutions of the engine 12 by controlling the common rail device 39.
  • the engine controller 35 can stop the fuel supply to the engine 12 and stop the driving of the engine 12 by controlling the common rail device 39.
  • the crawler drive mechanism controller 36 is electrically connected to a crawler drive mechanism 40 that transmits the drive force from the engine 12 to the pair of drive sprockets 22.
  • the crawler driving mechanism 40 can drive the pair of crawlers 23 separately. When the pair of crawlers 23 are driven separately, the combine 8 can turn.
  • a pair of vehicle height cylinders 41 are electrically connected to the vehicle height controller 37.
  • the control unit 30 has a vehicle height sensor 42 for detecting a vertical distance between the lower end of the corresponding crawler 23 and a reference position provided in the machine body unit 19.
  • the vehicle height sensor 42 is, for example, a potentiometer that detects the position of the cylinder rod of the vehicle height cylinder 41.
  • a lift cylinder 43 is electrically connected to the lift controller 38.
  • the control unit 30 is electrically connected with a cutting height sensor 44 for detecting a vertical distance between a reference position provided on the machine unit 19 and the cutting blade 17A. Yes.
  • the cutting height sensor 44 is, for example, a potentiometer that detects the position of the cylinder rod of the elevating cylinder 43.
  • the lifting controller 38 controls the lifting cylinder 43 based on the detection result of the cutting height sensor 44. Specifically, the elevating controller 38 controls the elevating cylinder 43 so that the cutting blade 17A of the cutting unit 17 is positioned above the field surface FS of the field F by a predetermined distance.
  • the inertial measurement device 45 is electrically connected to the control unit 30.
  • the inertial measurement device 45 is a sensor unit that can specify the posture of the combine 8 (the direction of the machine base 11), acceleration, and the like.
  • the inertial measurement device 45 includes a sensor group in which an angular velocity sensor and an acceleration sensor are attached to each of a first axis, a second axis, and a third axis that are orthogonal to each other.
  • the inertial measurement device 45 includes a first acceleration sensor that detects acceleration in the first axis direction, a second acceleration sensor that detects acceleration in the second axis direction, and a first acceleration sensor that detects acceleration in the third axis direction.
  • the movements around the first, second, and third axes are called pitching, yawing, and rolling, respectively.
  • the control unit 30 includes a microcomputer including a CPU and a memory (ROM, RAM, etc.).
  • the microcomputer functions as a plurality of function processing units by executing a predetermined program stored in a memory (ROM).
  • Examples of the function processing unit include a tillage distance acquisition unit 50, a surface layer distance acquisition unit 51, a tillage depth specification unit 52, and a map information generation unit 53.
  • FIG. 5 is a schematic diagram when the combine 8 traveling in the field F is viewed from the traveling direction.
  • the lower end of the crawler 23 sinks to the height of the tiller TL located below the upper surface (field surface) of the surface layer SL of the field F.
  • the tiller TL is a layer formed of soil harder than the surface layer SL.
  • the height of the tillage TL may be different on one side and the other side in the vehicle width direction WD. Even in such a case, the posture of the airframe unit 19 is maintained in a horizontal posture by extending and contracting the pair of crawlers 23.
  • the cultivator distance acquisition unit 50 acquires the cultivator distances H1 and H2 based on the detection result of each vehicle height sensor 42.
  • the cultivator distance H1 on one side in the vehicle width direction WD is a contact between the horizontal plane HS passing through a predetermined reference position S set in the body part 19 and the crawler 23 on one side in the vehicle width direction WD contacting the cultivator TL. It is the distance in the vertical direction between the point C1 (the ground contact surface).
  • the tiller distance H2 on the other side in the vehicle width direction WD is a vertical distance between the horizontal plane HS and the ground contact point C2 (grounding surface) where the crawler 23 on the other side in the vehicle width direction WD contacts the tiller TL. It is.
  • the surface distance acquisition unit 51 acquires the surface distance h based on the detection result of the cutting height sensor 44.
  • the cultivator depth specifying unit 52 is based on the cultivator distances H1, H2 and the surface layer distance h, and the cultivator depth D1 (one cultivated cultivator depth) of the field F on one side in the vehicle width direction WD,
  • the depth D2 (the other side tillage depth) of the farm field F on the other side in the vehicle width direction WD is specified.
  • position information at each specific point in the field F is acquired by the position information acquisition unit 31, and a plurality of tiller depth information (cultivation at each specific point in the field F) is obtained.
  • the board depth D1, D2) is specified by the tiller depth specifying unit 52.
  • sampling interval of the tillage depth information acquired by the tiller depth specifying unit 52 may be different from the sampling interval (for example, one second interval) of the position information acquired by the position information acquiring unit 31.
  • the specific point is a point from which both the depth information and the position information are acquired.
  • the tiller depth specifying unit 52 is configured to control the attitude of the airframe unit 19 at the specific point (the detection result of the vehicle height sensor 42 and the detection result of the inertial measurement device 45) and the lifting / lowering of the cutting unit 17 at the specific point. Based on the control information (the detection result of the cutting height sensor 44), the tillage depths D1 and D2 are specified.
  • the map information generation unit 53 includes latitude / longitude information at each specific point in the field F acquired by the position information acquisition unit 31 and a cultivation pad at each specific point in the field F identified by the cultivation pad depth identification unit 52. Map information associated with depth is generated.
  • FIG. 6 shows an example of map information generated by the map information generating unit 53.
  • the traveling direction of the combine 8 that has traveled in the field F is indicated by a two-dot chain line arrow, but this arrow is not included in the map information.
  • the map information the field F is divided for each predetermined region R including each specific point P where the position information is acquired in the field F, and each of the map information is determined according to the cultivation depth information acquired at each specific point P.
  • identification information color or numerical value
  • Each region R is divided into two in the vehicle width direction WD corresponding to the respective installation positions of the pair of travel portions 18 around the point P when the center of the body of the combine 8 passes the specific point P.
  • a part R1 on one side in the vehicle width direction WD of each region R is provided with identification information corresponding to the one-side tillage depth D1
  • a part R2 on the other side in the vehicle width direction WD of each region R is on the other side Identification information according to the tiller depth D2 is attached.
  • a plurality of tillage depth information at the specific point P is displayed in the map information so that they can be distinguished from each other.
  • the colors are darker in the portions R ⁇ b> 1 and R ⁇ b> 2 having a larger tiller depth.
  • a storage unit 55 is connected to the control unit 30.
  • the storage unit 55 includes a storage device such as a hard disk or a nonvolatile memory.
  • the storage unit 55 stores the position information storage unit 56 that stores the position information of the combine 8, and the cultivation pad depths D ⁇ b> 1 and D ⁇ b> 2 at each specific point P in the farm field F specified by the cultivation board depth specifying unit 52.
  • a tilling depth storage unit 57 and a map information storage unit 58 that stores the map information generated by the map information generation unit 53 are included.
  • a plurality of tillage depth information (cultivation depths D ⁇ b> 1, D ⁇ b> 2) based on the attitude control information of the airframe 19 at the specific point P and the elevation control information of the cutting part 17. ) Is identified. That is, a detailed tiller depth can be acquired.
  • map information having detailed tillage depths D1 and D2 at the specific point P can be generated. . Thereby, the quality of work support can be improved.
  • the plurality of tillage depth information includes tillage depth information at locations where the pair of traveling units 18 arranged at predetermined intervals in the vehicle width direction WD are in contact with the ground (contact points C1 and C2). . That is, tiller depth information is acquired at two locations in the vehicle width direction WD. Therefore, map information having detailed tillage depth information at the specific point P can be generated.
  • the pair of traveling units 18 of the combine 8 can be expanded and contracted in the vertical direction so that the machine unit 19 maintains a horizontal posture. Therefore, regardless of the irregular shape of the surface of the field F where the combine 8 travels, the cultivation depths D1 and D2 can be accurately specified.
  • altitude information at each specific point P in the field F acquired by the position information acquisition unit 31 may be displayed in an identifiable manner, in addition to the latitude / longitude information and the cultivation depths D1 and D2. .
  • identification information (color or numerical value) is attached to each region R according to the altitude information acquired at each specific point P and the tilling depths D1 and D2.
  • the altitude information may be indicated by numerical values, and the tillage depths D1 and D2 may be indicated by colors. Thereby, the altitude of the tilling TL at each specific point P from which the position information is acquired can be compared.
  • the altitude of the tiller TL of the field F can be used to adjust the height of the field surface FS between the fields F when writing a plurality of fields F having different altitudes.
  • FIG. 7 is a side view of the tractor 9 as the first work vehicle 3.
  • FIG. 8 is a plan view of the tractor 9.
  • the tractor 9 includes a traveling machine body 60 that travels in the field F, and a cultivator 61 as a working machine mounted on the traveling machine body 60.
  • a working machine in addition to the cultivator 61, for example, a plow, a fertilizer applicator, a mower, a seeder, or the like can be used.
  • the traveling machine body 60 of the tractor 9 includes a body part 62 (first body part) and a pair of traveling parts that support the body part 62 and are spaced apart from each other in the vehicle width direction WD (width direction of the body part 62). 63.
  • Each traveling unit 63 includes a front wheel 63A and a rear wheel 63B.
  • the traveling machine body 60 can travel by the driving force of the engine 64.
  • a working machine such as the tiller 61 is an example of a first working unit supported by the first machine part.
  • the airframe unit 62 of the traveling machine body 60 includes a driving seat 62 ⁇ / b> A for the user to board and a steering handle 62 ⁇ / b> B for steering the traveling machine body 60.
  • An operation unit 78 (see FIG. 9) for a user to perform various operations is provided in the vicinity of the steering handle 62B.
  • a chassis 65 of the tractor 9 is provided at the lower part of the machine body 62.
  • the chassis 65 includes a body frame 65A, a transmission 65B, a front axle 65C, a rear axle 65D, and the like.
  • the fuselage frame 65A is a support member at the front portion of the tractor 9, and supports the engine 64 directly or via a vibration isolation member or the like.
  • Transmission 65B changes the power from engine 64 and transmits it to front axle 65C and rear axle 65D.
  • the front axle 65C transmits the power input from the transmission 65B to each front wheel 63A.
  • the rear axle 65D transmits the power input from the transmission 65B to each rear wheel 63B.
  • the cultivator 61 is connected to the rear of the machine part 62 through a lifting link mechanism 66.
  • a PTO shaft 67 for outputting the driving force of the engine 64 to the cultivator 61 and a pair of elevating cylinders 88 (see FIG. 9) for driving the cultivator 61 up and down are arranged at the rear part of the body unit 62. ing.
  • the driving force of the engine 64 is transmitted to the PTO shaft 67 via the transmission 65B.
  • the cultivator 61 includes a rotary 69, a rotary cover 70 that covers the rotary 69 from above, and a rear cover 71 that covers the rotary 69 from behind.
  • the rotary 69 rotates when the driving force of the PTO shaft 67 is transmitted.
  • the rear cover 71 is connected to the rotary cover 70 via a hinge.
  • the rear cover 71 is positioned above the surface (field surface) of the field F in FIG. 7, but is in contact with the field surface while the tractor 9 is traveling, and the field surface is leveled behind the rotary 69 in the traveling direction. Flatten.
  • the elevating link mechanism 66 has a three-point link structure including a pair of left and right top links 66A and a pair of left and right lower links 66B.
  • the pair of top links 66A are provided in the vehicle width direction WD at a distance from each other.
  • the pair of lower links 66B are provided at a distance from each other in the vehicle width direction WD.
  • the elevating cylinder 88 (see FIG. 9) is connected to the three-point link mechanism.
  • the entire tiller 61 can be raised and lowered by extending and retracting the lifting cylinder 88.
  • each lower link 66B is provided with a horizontal control cylinder 88A (see FIG. 9).
  • the horizontal control cylinder 88A is, for example, a hydraulic cylinder.
  • FIG. 9 is a block diagram showing an electrical configuration of the tractor 9.
  • tractor 9 includes a control unit 75 for controlling the operation of each unit included in tractor 9.
  • the control unit 75 is electrically connected to a position information acquisition unit 76, a communication unit 77, an operation unit 78, and an inertial measurement device 79.
  • the positioning information received by the satellite signal receiving antenna 80 located approximately in the center in the vehicle width direction is input to the position information acquisition unit 76.
  • the position information acquisition unit 76, the satellite signal receiving antenna 80, the communication unit 77, and the inertial measurement device 79 are the position information acquisition unit 31, the satellite signal receiving antenna 32, the communication unit 33, and the inertial measurement provided in the combine 8, respectively. Since it is the same structure as the apparatus 45, those description is abbreviate
  • the controller 75 is electrically connected to each of a plurality of controllers for controlling each part of the tractor 9.
  • the plurality of controllers includes an engine controller 81, a vehicle speed controller 82, a steering controller 83, a lift controller 84, an attitude controller 84 ⁇ / b> A and a PTO controller 85. Since the engine controller 81 has the same configuration as the engine controller 35 of the combine 8, description thereof is omitted.
  • the engine controller 81 is electrically connected to a common rail device 81 ⁇ / b> A having the same configuration as the common rail device 39 of the combine 8.
  • the vehicle speed controller 82 controls the vehicle speed of the traveling machine body 60 (also the vehicle speed of the tractor 9) by controlling the transmission 65B (see FIG. 7).
  • the transmission 65B is provided with a transmission 86 that is, for example, a movable swash plate type hydraulic continuously variable transmission.
  • the steering controller 83 controls the turning angle of the front wheel 63A during automatic traveling.
  • a steering actuator 87 is provided in the middle of the rotating shaft (steering shaft) of the steering handle 62B.
  • the steering controller 83 controls the steering actuator 87 so that the rotation angle of the steering handle 62B becomes the target turning angle. Thereby, the turning angle of the pair of front wheels 63A of the traveling machine body 60 is controlled.
  • a lift cylinder 88 is electrically connected to the lift controller 84.
  • a lift sensor 89 and a rear cover sensor 90 are electrically connected to the control unit 75.
  • a horizontal control cylinder 88A is electrically connected to the attitude controller 84A.
  • the lift sensor 89 is a sensor for detecting a vertical distance between a reference position provided in the body part 62 and a predetermined part of the rotary cover 70 (for example, a part to which the rear cover sensor 90 is attached). .
  • the lift sensor 89 is, for example, a potentiometer for detecting the position of the lift cylinder 88.
  • the rear cover sensor 90 is a sensor for detecting a vertical distance between the predetermined portion of the rotary cover 70 and the surface FS.
  • the rear cover sensor 90 is, for example, a potentiometer that detects a rotation angle of the rear cover 71 with respect to the rotary cover 70 that moves up and down integrally with the rotary 69.
  • the rear cover 71 rotates around the hinge in accordance with the elevation of the rotary cover 70 and the rotary 69 while maintaining contact with the surface FS.
  • the rotation angle detected by the rear cover sensor 90 changes. Therefore, by raising and lowering the rotary 69 and the rotary cover 70 while detecting the rotation angle of the rear cover 71 by the rear cover sensor 90, the space between the surface FS (the portion of the rear cover 71 that contacts the surface FS) and the lower end of the rotary 69. Can be adjusted to a desired distance (a distance set by the user).
  • the elevating controller 84 controls the elevating cylinder 88 based on the detection results of the elevating sensor 89 and the rear cover sensor 90. Specifically, the elevating controller 84 controls the elevating cylinder 88 so that the predetermined portion of the rotary cover 70 (for example, a portion to which the rear cover sensor 90 is attached) is positioned above the surface FS by a predetermined distance. .
  • the posture controller 84A controls the pair of horizontal control cylinders 88A separately to cultivate the tiller 61 on one side and the other side in the vehicle width direction WD even when the traveling machine body 60 is tilted when viewed from the traveling direction. By changing the degree of raising and lowering, the posture of the tiller 61 is maintained in a horizontal posture.
  • the attitude controller 84 ⁇ / b> A determines the attitude of the traveling machine body 60 based on the detection result of the inertial measurement device 79.
  • the PTO controller 85 controls the rotation of the PTO shaft 67.
  • the tractor 9 includes a PTO clutch 91 for switching between transmission / cutoff of power to the PTO shaft 67.
  • the PTO controller 85 can switch the PTO clutch 91 based on the control signal input from the control unit 75 to rotate the cultivator 61 via the PTO shaft 67 or stop the rotation drive.
  • the control unit 75 includes a microcomputer including a CPU and a memory (ROM, RAM, etc.).
  • the microcomputer functions as a plurality of function processing units by executing a predetermined program stored in a memory (ROM). Examples of the function processing unit include a tillage distance acquisition unit 96, a surface layer distance acquisition unit 97, a tiller depth specification unit 98, and a map information generation unit 99.
  • FIG. 10 is a schematic diagram when the tractor 9 traveling in the field F is viewed from the traveling direction.
  • the entire tractor 9 is inclined as viewed from the traveling direction.
  • the tractor 9 is tilted so that the traveling portion 63 on one side in the vehicle width direction WD is positioned below the traveling portion 63 on the other side in the vehicle width direction WD.
  • the tiller distance acquisition unit 96 acquires the tiller distances H3 and H4 based on the detection result of the inertial measurement device 79.
  • the tiller distance H3 on one side in the vehicle width direction WD is determined by the horizontal plane HS passing through a predetermined reference position S set in the body portion 62 and the traveling portion 63 (for example, the rear wheel 63B) on one side in the vehicle width direction WD. It is the distance in the vertical direction between the ground contact point C3 and the ground TL.
  • the tiller distance H4 on the other side in the vehicle width direction WD is vertical between the horizontal plane HS and the ground contact point C4 at which the traveling portion 63 (for example, the rear wheel 63B) on the other side in the vehicle width direction WD contacts the tiller TL.
  • the distance in the direction is vertical between the horizontal plane HS and the ground contact point C4 at which the traveling portion 63 (for example, the rear wheel 63B) on the other side in the vehicle width direction WD contacts the tiller TL.
  • the tiller distance obtaining unit 96 obtains the inclination angle ⁇ of the airframe unit 62 with respect to the horizontal direction when viewed from the traveling direction of the tractor 9 based on the detection result of the inertial measurement device 79. Then, the tillage distance acquisition unit 96 calculates the tillage distances H3 and H4 based on the inclination angle ⁇ and the preset reference height T and reference width W.
  • the reference height T is a distance between the contact points C3 and C4 and the inclined surface IS in the height direction HD of the tractor 9.
  • the inclined surface IS is a surface that passes through the reference position S and is inclined by an inclination angle ⁇ with respect to the horizontal plane HS when viewed from the traveling direction of the tractor 9.
  • the reference width W is a distance between each traveling unit 63 and the reference position S in the vehicle width direction WD of the tractor 9.
  • the surface layer distance acquisition unit 97 acquires the surface layer distance j based on the detection results of the elevation sensor 89 and the rear cover sensor 90.
  • the surface layer distance acquisition unit 97 determines the surface layer distance from the difference between the vertical distance between the reference position S and the lower end portion of the rotary 69 and the vertical distance between the field surface FS and the lower end portion of the rotary 69. j can also be calculated.
  • the cultivator depth specifying unit 98 based on the cultivator distances H3 and H4 and the surface layer distance j, depth information of the cultivator TL of the field F on one side in the vehicle width direction WD (one side cultivator depth D3). And the depth information (the other side cultivation board depth D4) of the cultivation board TL of the field F in the other side of the vehicle width direction WD is specified.
  • the position information at each point in the field F is acquired by the position information acquisition unit 76, and the tillage depths D3 and D4 at each specific point P in the field F are plowed. It is specified by the board depth specifying unit 98.
  • the tiller depth specifying unit 98 includes the attitude control information (detection result of the inertial measurement device 79) of the airframe unit 62 at the specific point P and the attitude control information (elevating sensor 89) of the tiller 61 at the specific point P. And the detection result of the rear cover sensor 90), the tillage depths D3 and D4 are specified.
  • the map information generation unit 99 includes the position information at each specific point P in the field F acquired by the position information acquisition unit 76 and the plowing at each specific point P in the field F specified by the tiller depth specifying unit 98. Map information in which the board depths D3 and D4 are associated is generated. Since the generated map information is the same as when the combine 8 is used as the first work vehicle 3, detailed description thereof is omitted.
  • a storage unit 92 is connected to the control unit 75.
  • the storage unit 92 includes a storage device such as a hard disk or a nonvolatile memory.
  • the storage unit 92 stores the position information storage unit 93 that stores the position information of the tractor 9 and the cultivation depths D3 and D4 at each specific point P in the field F identified by the cultivation table depth identification unit 98.
  • a cultivator depth storage unit 94 and a map information storage unit 95 that stores the map information generated by the map information generation unit 99 are included.
  • the pair of running parts 63 of the tractor 9 are not extendable. Instead, in the tractor 9, the tiller distance acquisition unit 96 has an inclination angle ⁇ of the airframe unit 62 when viewed from the traveling direction of the information acquisition vehicle, and a preset reference height T and reference width W. Based on the above, the tiller distances H3 and H4 are specified. Therefore, even when a vehicle such as the tractor 9 configured such that the body portion 62 is inclined when traveling at a point where the cultivating depth is different in the vehicle width direction WD is used as the first work vehicle 3, The board depths D3 and D4 can be specified accurately.
  • FIG. 11 is a side view of the rice transplanter 10 as the first work vehicle 3.
  • FIG. 12 is a plan view of the rice transplanter 10.
  • the rice transplanter 10 performs a planting operation for planting seedlings on the ground of the field F while traveling in the field F.
  • the rice transplanter 10 includes a traveling machine body 100 and a planting unit 101 disposed behind the traveling machine body 100.
  • the traveling aircraft 100 includes an aircraft 102 (first aircraft) and a pair of traveling units 103 that support the aircraft 102 and are spaced apart from each other in the vehicle width direction WD (the width of the aircraft 102). I have.
  • Each traveling unit 103 includes a front wheel 103A and a rear wheel 103B.
  • the traveling machine body 100 can travel with the driving force of the engine 104.
  • the planting unit 101 is an example of a first working unit supported by the first airframe unit.
  • the airframe unit 102 of the traveling machine body 100 includes a driver seat 102A for the user to board and a steering handle 102B for steering the traveling machine body 100.
  • an operation unit 123 (see FIG. 13) for a user to perform various operations is provided.
  • the aircraft unit 102 includes a transmission 105B, a front axle 105C, and a rear axle 105D.
  • Transmission 105B changes the power from engine 104 and transmits it to front axle 105C and rear axle 105D.
  • the front axle 105C transmits the power input from the transmission 27 to each front wheel 103A.
  • the rear axle 105D transmits the power input from the transmission 105B to each rear wheel 103B.
  • the planting part 101 is connected to the rear of the body part 102 via the lifting link mechanism 106.
  • a PTO shaft 107 for outputting the driving force of the engine 104 to the planting unit 101 and an elevating cylinder 108 for driving the planting unit 101 up and down are disposed at the rear part of the body unit 102.
  • the driving force of the engine 104 is transmitted to the PTO shaft 107 via the transmission 105B.
  • the elevating link mechanism 106 has a parallel link structure including a pair of left and right top links 106A and a pair of left and right lower links 106B. Although only one of the pair of top links 106A is shown in FIG. 11, the pair of top links 106A are provided at a distance from each other in the vehicle width direction WD. Similarly, only one of the pair of lower links 106B is shown in FIG. 11, but the pair of lower links 106B are provided at intervals in the vehicle width direction WD.
  • the elevating cylinder 108 is connected to the parallel link mechanism.
  • the entire planting part 101 can be moved up and down by extending and retracting the lifting cylinder 108.
  • the planting unit 101 includes a plurality of (four in this embodiment) planting units 110 for planting seedlings on the ground, a planting input case 111 for driving the planting unit 110, and a seedling mat (not shown).
  • a seedling mounting table 112 to be placed and a plurality of floats 113 rotatable around a predetermined rotation center (float support shaft) are mainly provided.
  • a pair of elevating link mechanisms 106 are connected to the planting input case 111, and a plurality of planting units 110 are attached.
  • Each planting unit 110 is a rotary planting device having a planting transmission case 115, a rotating case 116, and a planting arm 117.
  • Two rotation cases 116 are attached to each of the planting transmission cases 115 of each planting unit 110, and two planting arms 117 are attached to each rotation case 116.
  • the planting input case 111 drives the planting unit 110 when the driving force from the PTO shaft 107 is input. Power is transmitted from the planting input case 111 to the planting transmission case 115.
  • the rotating case 116 is rotationally driven by the power from the planting transmission case 115. Thereby, the front-end
  • a planting claw 117 ⁇ / b> A is provided at the tip of the planting arm 117.
  • the planting claws 117A scrape seedlings from a seedling mat (not shown) placed on the seedling mount 112 when the tip of the planting arm 117 moves from top to bottom, Implant.
  • the float 113 is provided in the lower part of the planting part 101. When the float 113 is in contact with the paddy field, the paddy field before planting seedlings is leveled.
  • the float 113 is located above the surface (field surface) of the field F in FIG. 11, but maintains contact between the lower surface of the float 113 and the field surface FS while the rice transplanter 10 is traveling.
  • a cylinder rod (not shown) of the rolling cylinder 108A (see FIG. 13) is connected to a support frame (not shown) that supports the seedling stage 112.
  • the rolling cylinder 108A rotates the support frame around a predetermined rotation center by extending and contracting the cylinder rod. Thereby, the whole planting part 101 can be made to incline with respect to the body part 102 seeing from the advancing direction.
  • FIG. 13 is a block diagram showing an electrical configuration of the rice transplanter 10.
  • the rice transplanter 10 is provided with the control part 120 for controlling operation
  • the controller 120 is electrically connected to a position information acquisition unit 121, a communication unit 122, an operation unit 123, an inertial measurement device 124, and a plurality of controllers.
  • the position information acquisition unit 121 receives a positioning signal received by the satellite signal receiving antenna 135 located substantially at the center in the vehicle width direction WD.
  • the position information acquisition unit 121, the satellite signal receiving antenna 135, the communication unit 122, and the inertial measurement device 124 are respectively the position information acquisition unit 31, the satellite signal receiving antenna 32, the communication unit 33, and the inertial measurement provided in the combine 8. Since it is the same structure as the apparatus 45, those description is abbreviate
  • the multiple controllers are for controlling each part of the rice transplanter 10.
  • the plurality of controllers include an engine controller 125, a vehicle speed controller 126, a steering controller 127, a lift controller 128, an attitude controller 128A, and a PTO controller 129.
  • a common rail device 130, a transmission 131, a steering actuator 132, and a PTO clutch 129A are electrically connected to the engine controller 125, the vehicle speed controller 126, the steering controller 127, and the PTO controller 129, respectively.
  • the engine controller 125, the vehicle speed controller 126, the steering controller 127, the PTO controller 129, the common rail device 130, the transmission 131, the steering actuator 132, and the PTO clutch 129A are respectively an engine controller 81 and a vehicle speed controller 82 provided in the tractor 9.
  • the steering controller 83, the PTO controller 85, the common rail device 81A, the transmission 86, the steering actuator 87, and the PTO clutch 91 are the same in configuration, and the description thereof is omitted.
  • a lift cylinder 108 is electrically connected to the lift controller 128.
  • a lift sensor 133 and a float angle detection sensor 134 are electrically connected to the control unit 120.
  • a rolling cylinder 108A is electrically connected to the attitude controller 128A.
  • the elevating sensor 133 is a sensor for detecting a vertical distance between a reference position provided in the airframe unit 102 and the rotation center of the float 113.
  • the lift sensor 133 is, for example, a potentiometer that detects the position of the lift cylinder 108.
  • the float angle detection sensor 134 is a sensor for detecting the vertical distance between the rotation center of the float 113 and the field surface FS.
  • the float angle detection sensor 134 is, for example, a potentiometer that detects the rotation angle of the float 113.
  • Rotation center of the float 113 moves up and down according to the raising and lowering of the planting part 101. While the rice transplanter 10 is traveling, the vertical distance between the rice field FS and the rotation center of the float 113 changes. Therefore, in order to maintain the contact between the float 113 and the field surface FS while the rice transplanter 10 is traveling, the float 113 rotates around the center of rotation according to the raising and lowering of the planting unit 101. As a result, the rotation angle detected by the float angle detection sensor 134 changes.
  • the rotation trajectory of the field surface FS (the part in contact with the field surface FS in the float 113) and the planting claw 117A.
  • the vertical distance from the lower end (planting position) can be adjusted to a desired distance (a distance set by the user).
  • the vertical distance between the field surface FS and the lower end of the rotation trajectory of the planting claw 117A is referred to as planting depth.
  • the lift controller 128 controls the lift cylinder 108 based on the detection results of the lift sensor 133 and the float angle detection sensor 134. Specifically, the elevating controller 128 controls the elevating cylinder 108 so that the height of the planting claw 117A with respect to the float 113 is located at a predetermined position.
  • the posture controller 128A maintains the posture of the planting unit 101 in a horizontal posture by rotating the rolling cylinder 108A even when the traveling machine body 100 is tilted when viewed from the traveling direction.
  • the attitude controller 128 ⁇ / b> A determines the attitude of the traveling machine body 100 based on the detection result of the inertial measurement device 124.
  • the control unit 120 includes a microcomputer including a CPU and a memory (ROM, RAM, etc.).
  • the microcomputer functions as a plurality of function processing units by executing a predetermined program stored in a memory (ROM).
  • Examples of the function processing unit include a tillage distance acquisition unit 136, a surface layer distance acquisition unit 137, a tillage depth specification unit 138, and a map information generation unit 139.
  • the cultivator distance acquisition unit 136, the surface layer distance acquisition unit 137, the cultivator depth specification unit 138, and the map information generation unit 139 are a cultivator distance acquisition unit 96 and a surface layer distance acquisition provided in the control unit 75 of the tractor 9, respectively. Functions similar to those of the unit 97, the tiller depth specifying unit 98, and the map information generating unit 99 are performed.
  • the surface layer distance acquisition unit 137 specifies the surface layer distance j based on the elevation sensor 133 and the float angle detection sensor 134.
  • the surface layer distance j is the sum of the distance between the surface FS and the rotation center of the float 113 and the distance between the rotation center of the float 113 and the reference position S.
  • the surface layer distance acquisition unit 137 may acquire the surface layer distance j from the difference between the vertical distance between the reference position S and the planting claw 117A and the planting depth.
  • the tiller depth specifying unit 138 has the attitude control information (detection result of the inertial measurement device 124) of the machine unit 102 at the specific point P and the planting at the specific point P. Based on the attitude control information of the unit 101 (the detection result of the lift sensor 132 and the detection result of the float angle detection sensor 134), the tillage depths D3 and D4 are specified.
  • a storage unit 140 is connected to the control unit 120.
  • the storage unit 140 includes a storage device such as a hard disk or a nonvolatile memory.
  • the storage unit 140 stores a position information storage unit 141 that stores the position information of the rice transplanter 10, and a cultivation pad depth that stores the cultivation pad depth at each point in the field F specified by the cultivation board depth identification unit 138.
  • a storage unit 142 and a map information storage unit 143 that stores the map information generated by the map information generation unit 139 are included.
  • the lifting controller 84 controls the attitude of the tiller 61 horizontally based on the detection result of the inertial measurement device 79. Instead of using the detection result 79, the attitude of the tiller 61 may be controlled horizontally by an angular velocity sensor (horizontal control device) provided in the tiller 61. Similarly, when the first work vehicle 3 is the rice transplanter 10, the attitude of the planting unit 101 may be controlled horizontally by an angular velocity sensor (horizontal control device) provided in the planting unit 101.
  • the map information generated by the map information generation system 1 is used for, for example, field improvement work and fertilization management support performed until the next farm work is performed in the field from which the map information has been acquired.
  • the field improvement work there is a work of putting soil improvement materials such as gravel into a portion where the depth of the cultivator is large in the field.
  • the fertilizer management support includes an operation of reducing fertilizer in a portion where the depth of the cultivator is large in the field. Lodging can be suppressed by reducing the amount of fertilizer in the portion where the depth of the cultivator is large.
  • map information generated by the map information generation system 1 is used for work support by the work support system 2 as described below.
  • the second work vehicle 4 of the work support system 2 a combine, a tractor, a rice transplanter, or the like can be used.
  • the configurations of the combine, the tractor, and the rice transplanter used as the second work vehicle 4 are substantially the same as the combine 8, the tractor 9, and the rice transplanter 10 used as the first work vehicle 3, respectively.
  • the combine 8, the tractor 9, and the rice transplanter 10 are a second machine part (machine parts 19, 62, 102) and a second work part that is supported by the second machine part so as to be movable up and down and works on the field F ( A cutting unit 17, a cultivator 61, and a planting unit 101).
  • the work support system 2 performs a predetermined notification before the second work vehicle 4 reaches the notification target position based on the notification target position specified based on the map information and the position information of the second work vehicle 4.
  • the notification process to be performed can be executed.
  • FIG. 14 is a schematic diagram showing the notification target position NT and the notification position NP specified in the map information.
  • the notification target position NT is, for example, a position where the tiller depth changes abruptly. Whether or not the second work vehicle 4 has approached the notification target position NT depends on whether or not the second work vehicle 4 has reached the notification position NP a predetermined distance before the notification target position NT in the traveling direction of the second work vehicle 4. Based on the determination.
  • the predetermined notification is, for example, a warning displayed on a monitor mounted on the second work vehicle 4 or the wireless communication terminal 7 (see FIG. 1), or a warning issued from the second work vehicle 4 or the wireless communication terminal 7. Such as voice.
  • FIG. 15 is a flowchart showing an example of such notification processing.
  • the second work vehicle 4 acquires the current position of the second work vehicle 4 (step S1). Then, the second work vehicle 4 determines whether or not the current position of the second work vehicle 4 is the notification position NP (step S2). When the current position of the second work vehicle 4 is the notification position NP (step S2: YES), the second work vehicle 4 starts notification to the user (step S3). When the notification to the user is started, the second work vehicle 4 returns to step S1.
  • step S4 determines whether or not it is currently informing. If not currently informing (step S4: NO), the second work vehicle 4 returns to step S1.
  • step S5 determines whether or not it has passed the notification target position NT (step S5). When the second work vehicle 4 has not passed the notification target position NT (step S5: NO), the second work vehicle 4 returns to step S1. When the second work vehicle 4 has passed the notification target position NT (step S5: YES), the second work vehicle 4 ends the notification to the user (step S6) and returns to step S1.
  • the user can prepare for work suitable for the notification target position NT before the second work vehicle 4 reaches the notification target position NT.
  • the second work vehicle 4 is the tractor 9
  • the height position of the cultivator 61 can be changed to avoid contact between the cultivator TL and the cultivator 61. Thereby, the quality of work support can be improved.
  • the notification target position NT may be a specific range (region between two coordinates) instead of specific (single) coordinates.
  • step S5 step S5: YES
  • the second work vehicle 4 proceeds to step S6.
  • the notification target position NT is within a specific range, the notification content from when the second work vehicle 4 passes the notification position NP to the notification target position NT, and the second work vehicle 4 is at the notification target position NT.
  • the content of the notification when traveling is different.
  • the warning sound emitted from the second work vehicle 4 or the wireless communication terminal 7 when 4 is traveling at the notification target position NT may be different from each other.
  • the user can prepare for work suitable for the notification target position NT before the second work vehicle 4 reaches the notification target position NT, and the second work vehicle 4 is set to the notification target position NT. You can be notified by notification.
  • the notification to the user may be ended by operating a notification end button displayed on the wireless communication terminal 7.
  • the notification to the user is ended by operating the notification end button or passing the notification target position NT.
  • the work support system 2 is configured so that the height position of the second working unit (the mowing unit 17, the cultivator 61, the planting unit 101) is higher than the depth of the cultivation pad specified based on the map information.
  • the raising / lowering range of a working part can be restrict
  • the position of the culvert is registered in advance, it is possible to avoid the second working unit (particularly the cultivator 61) from contacting the culvert.
  • FIG. 16 is a flowchart showing an example of such an elevation range restriction process.
  • the second work vehicle 4 acquires the current position of the second work vehicle 4 (step S11).
  • the 2nd work vehicle 4 acquires the cultivation board depth in a present position from map information (step S12).
  • the second work vehicle 4 determines whether or not the current position is a restriction necessary position (step S13).
  • the restriction necessary position is, for example, a position that overlaps with a culvert in a plan view. If the current position of the second work vehicle 4 is a restriction required position (step S13: YES), the lifting range of the second work unit is restricted (step S14). If the raising / lowering range of a 2nd working part is restrict
  • step S13 If the current position of the second work vehicle 4 is not the control-necessary position (step S13: NO), the second work vehicle 4 determines whether the lifting range of the second work unit is currently limited (step S13). S15).
  • step S15 If the lifting range of the working unit is currently limited (step S15: YES), the second work vehicle 4 releases the limitation of the lifting range of the working unit (step S16). If the raising / lowering range of a working part is restrict
  • FIG. 17 is a schematic diagram illustrating an example of a travel route RT generated by the work support system 2.
  • the work support system 2 identifies a travel prohibition area PA where the travel of the second work vehicle 4 is prohibited, and generates a travel route RT so as not to pass the travel prohibition area PA.
  • the traveling route RT shown in FIG. 17 has a substantially spiral shape from the periphery of the field F toward the center.
  • the travel prohibition area PA is indicated by a two-dot chain line.
  • the travel prohibition area PA is an area where there is an obstacle in the farm field F, or an area where the cultivator is recessed as the second work vehicle 4 is fitted.
  • the travel route RT is generated by a terminal capable of generating a travel route, such as the wireless communication terminal 7 (see FIG. 1), and transmitted from the wireless communication terminal 7 to the second work vehicle 4.
  • a terminal capable of generating a travel route such as the wireless communication terminal 7 (see FIG. 1)
  • the travel prohibition area PA can be avoided. Thereby, the 2nd work vehicle 4 can be run smoothly. As a result, the quality of work support can be improved.
  • a travel attention area can be provided on the travel route RT.
  • the travel attention area is, for example, an area in which the second work vehicle 4 is fitted when the vehicle speed is high or when the second work vehicle 4 changes its traveling direction (turns).
  • the second work vehicle 4 reduces the vehicle speed, turns on the diff lock, or positions the steering handles 15B, 62B, and 102B in order to prevent the fitting. Or fix it.
  • the work support system 2 can avoid contact between the field surface FS and the cutting blade 17A using the map information. Specifically, when the combine 8 travels through the farm field F, the combiner 8 moves up and down toward the target position in order to maintain a constant distance between the cutting blade 17A and the field surface FS.
  • the harvesting is performed on the fuselage unit 19 immediately after the fuselage unit 19 leans against the slope.
  • the cutting blade 17A may come into contact with the surface layer SL.
  • the work support system 2 is insensitive to the position 152 at which the cutting unit 17 starts to descend in the region where the tiller depth D decreases sharply toward the downstream side in the traveling direction of the combine 8 based on the map information. Specify as control position.
  • the work support system 2 increases the tillage depth D immediately after the tillage depth D becomes smaller toward the downstream side in the traveling direction of the combine 8 based on the map information.
  • the position 150 for starting the lowering of the cutting unit 17 and the position 151 for starting the rising are specified as the insensitive control position.
  • the work support system 2 specifies a position (position 153 shown in FIG. 18A) where the raising and lowering of the cutting unit 17 is started as a standard control position other than the insensitive control position based on the map information.
  • the work support system 2 shows the followability of the cutting unit 17 with respect to the target position when the combine 8 reaches the insensitive control position, and the followability of the cutting unit 17 with respect to the target position when the combine 8 reaches the standard control position. Lower than.
  • the work support system 2 sets the current position of the combine 8 as the insensitive control position when the tiller depth D decreases or increases immediately after the tiller depth D decreases.
  • the determination as to whether or not is made based on whether or not the amount of change in the tilt angle of the combine 8 per unit time is greater than the reference amount.
  • the reference amount is set to be lower as the vehicle speed of the combine 8 is higher, and is set to be lower as the distance of the inclined portion of the tilling TL is longer.
  • FIG. 19 is a flowchart showing an example of such an elevation control process.
  • the second work vehicle 4 acquires the current position of the combine 8 (step S21). Then, it is determined whether or not the combine 8 is located at either the standard control position or the insensitive control position (step S22).
  • step S22 If the current position of the combine 8 is neither the standard control position nor the insensitive control position (step S22: NO), the combine 8 returns to step S21.
  • the combine 8 is either the standard control position or the insensitive control position (step S22: YES)
  • the combine 8 is either the standard control position or the insensitive control position of the combine 8 Is determined (step S23).
  • step S23 If the current position of the combine 8 is the standard control position (step S23: YES), the combine 8 raises or lowers the reaping part 17 using the lifting sensitivity as a standard (following performance as a standard) (step S24). Then, after step S24, the second work vehicle 4 returns to step S21.
  • step S23: NO When the current position of the combine 8 is the insensitive control position (step S23: NO), the combine 8 raises or lowers the cutting unit 17 with the elevation sensitivity as insensitive (following ability as insensitive) (step S25). Then, after step S25, the combine 8 returns to step S21.
  • the tillage distance acquisition units 50, 96, and 136, the surface layer distance acquisition units 51, 97, and 137, the tillage depth specification units 52, 98, and 138, and the map information generation units 53 and 99 , 139 are function processing units included in the control units 30, 75, 120 of the first work vehicle 3.
  • the control device provided in the management server 6 may function as these function processing units.
  • the tiller depth information includes the posture control information of the first machine part (machine parts 19, 62, 102) and the first working part (the mowing part 17, the tiller 61, the planting part). 101) and the posture control information.
  • the tillage depth information may be specified based only on the attitude control information of the first machine part, or may be specified only based on the attitude control information of the first working part.
  • the detection result of the third angular velocity sensor among the detection results of the inertial measurement devices 45, 79, and 124 is used for the attitude control information of the first body part.
  • the detection result of the first angular velocity sensor and the detection result of the second angular velocity sensor may be used for the attitude control information of the first body part. For example, by using the detection result of the first angular velocity sensor, it is possible to acquire the tilling depth at a point separated by a predetermined interval in the traveling direction of the first work vehicle 3. Moreover, you may combine the detection result of each angular velocity sensor.
  • Map information generation system 2 Work support system 3: 1st work vehicle 4: 2nd work vehicle 8: Combine 9: Tractor 10: Rice transplanter 17: Harvesting part (first working part, second working part) 18, 63, 103: traveling unit 19, 62, 102: body part (first body part, second body part) 61: Tiller (first working part, second working part) 101: Planting part (first working part, second working part) 150: Insensitive control position 151: Insensitive control position 152: Insensitive control position 153: Standard control position NT: Notification target position PA: Travel prohibition area RT: Travel path WD: Vehicle width direction (width direction of the first body part)

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Soil Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Guiding Agricultural Machines (AREA)
  • Combines (AREA)
  • Instructional Devices (AREA)
  • Navigation (AREA)
  • Lifting Devices For Agricultural Implements (AREA)

Abstract

This map information generation system acquires position information for a first work vehicle at a specific location in a field, the first work vehicle having a first machine body and a first operation part supported by the first machine body; determines a plurality of pieces of plow depth information on the basis of the attitude control information for the first machine body and/or the attitude control information for the first operation part that are associated with the specific location; and generates map information in which the position information for the first work vehicle and the plurality of pieces of plow depth information are associated with each other.

Description

地図情報生成システム、および作業支援システムMap information generation system and work support system
 本発明は、地図情報生成システム、および当該地図情報生成システムを利用した作業支援システムに関する。 The present invention relates to a map information generation system and a work support system using the map information generation system.
 下記特許文献1には、作業車の車幅方向の中央に設けられたGPS装置によって時間毎に検出された緯度経度情報および高度情報に基づいて圃場凹凸データマップ(地図情報)を生成する技術が開示されている。 The following Patent Document 1 discloses a technique for generating a field unevenness data map (map information) based on latitude / longitude information and altitude information detected for each hour by a GPS device provided in the center in the vehicle width direction of a work vehicle. It is disclosed.
特開2004-008187号公報JP 2004008187 A
 特許文献1では、GPS装置によって、作業車の車幅方向の中央の高さは取得されるが、作業車が進行方向から見てどちらに傾いているかまでは検出されない。そのため、圃場において緯度経度情報が検出された地点の、詳細な凹凸データマップを生成することができない。 In Patent Document 1, although the center height in the vehicle width direction of the work vehicle is acquired by the GPS device, it is not detected until the work vehicle is tilted when viewed from the traveling direction. Therefore, it is not possible to generate a detailed unevenness data map of a point where latitude / longitude information is detected in the field.
 圃場は、表層の表面と表層の下方に位置する耕盤とによって構成されることがある。表層の表面と、耕盤の表面との間の距離である耕盤深さは、作物の生育や作業効率等に影響するため、圃場作業において重要である。しかし、特許文献1では、凹凸データを取得できるものの、耕盤の深さについての情報を取得することができない。 A field may be composed of a surface of the surface layer and a cultivator located below the surface layer. The cultivator depth, which is the distance between the surface of the surface layer and the surface of the cultivator, is important in field work because it affects the growth of the crop and the work efficiency. However, in patent document 1, although uneven | corrugated data can be acquired, the information about the depth of a cultivation board cannot be acquired.
 そこで、この発明の主たる目的は、作業支援の質を向上させる地図情報を生成することができる地図情報生成システム、および当該地図情報生成システムを利用した作業支援システムを提供することである。 Therefore, a main object of the present invention is to provide a map information generation system capable of generating map information for improving the quality of work support, and a work support system using the map information generation system.
 この発明の一実施形態は、第1機体部と、前記第1機体部に支持された第1作業部とを有する第1作業車両の、圃場内の特定地点における位置情報を取得し、前記特定地点における前記第1機体部の姿勢制御情報、および/または前記第1作業部の姿勢制御情報に基づいて、複数の耕盤深さ情報を特定し、前記特定地点における前記第1作業車両の位置情報と、前記複数の耕盤深さ情報とが対応付けられた地図情報を生成する、地図情報生成システムを提供する。 One embodiment of the present invention acquires position information of a first work vehicle having a first body part and a first work part supported by the first body part at a specific point in a field, and Based on the attitude control information of the first airframe unit at the point and / or the attitude control information of the first working unit, a plurality of tillage depth information is specified, and the position of the first work vehicle at the specific point Provided is a map information generation system for generating map information in which information and the plurality of tillage depth information are associated with each other.
 この構成によれば、特定地点において複数の耕盤深さ情報が特定される。したがって、特定地点における第1作業車両の位置情報と複数の耕盤深さ情報とを対応させることによって、特定地点における詳細な耕盤深さ情報を有する地図情報を生成することができる。これにより、作業支援の質の向上を図ることができる。 According to this configuration, a plurality of tillage depth information is specified at a specific point. Therefore, map information having detailed tillage depth information at the specific point can be generated by associating the position information of the first work vehicle at the particular point with the plurality of tillage depth information. Thereby, the quality of work support can be improved.
 この発明の一実施形態では、前記複数の耕盤深さ情報には、前記第1機体部および前記第1作業部を支持し、前記第1機体部の幅方向に所定間隔を隔てて配される一対の走行部が接地する箇所における耕盤深さ情報が含まれる。 In one embodiment of the present invention, the plurality of tillage depth information supports the first body part and the first working part, and is arranged at a predetermined interval in the width direction of the first body part. Information on the depth of the cultivator at the location where the pair of traveling units touch the ground.
 つまり、第1機体部の幅方向の二箇所において耕盤深さ情報が取得される。したがって、特定地点において詳細な耕盤深さ情報を有する地図情報を生成することができる。 That is, tiller depth information is acquired at two locations in the width direction of the first airframe. Therefore, map information having detailed tillage depth information at a specific point can be generated.
 この発明の一実施形態では、前記第1作業車両の位置情報には高度情報が含まれる。そして、前記地図情報には、前記特定地点における前記複数の耕盤深さ情報が互いに識別可能に表示されるとともに、前記特定地点の高度情報と前記特定地点とは異なる他の地点の高度情報とが識別可能に表示される。そのため、地図情報を参照することによって、特定地点における耕盤の標高と他の地点における耕盤の標高とを比較することができる。 In one embodiment of the present invention, the position information of the first work vehicle includes altitude information. And in the map information, the plurality of tillage depth information at the specific point is displayed so as to be distinguishable from each other, and the altitude information of the specific point and the altitude information of another point different from the specific point, Is displayed in an identifiable manner. Therefore, by referring to the map information, it is possible to compare the altitude of the cultivator at a specific point with the altitude of the cultivator at other points.
 この発明の一実施形態は、前記圃場内を走行する第2機体部と、前記第2機体部に対して昇降可能に前記第2機体部に取り付けられ前記圃場内で作業を行う第2作業部とを有する第2作業車両を、前記地図情報生成システムによって生成された前記地図情報に基づいて、支援する作業支援システムを提供する。そして、前記作業支援システムが、前記地図情報に基づいて特定された報知対象位置と前記第2作業車両の位置情報とに基づいて、前記第2作業車両が前記報知対象位置に至る前に所定の報知を行う。 One embodiment of the present invention includes a second machine part that travels in the field, and a second work part that is attached to the second machine part so as to be movable up and down relative to the second machine part and that performs work in the field. A work support system is provided that supports a second work vehicle having the following information based on the map information generated by the map information generation system. Then, the work support system is configured to perform a predetermined process before the second work vehicle reaches the notification target position based on the notification target position specified based on the map information and the position information of the second work vehicle. Notification.
 この構成によれば、ユーザは、第2作業車両が報知対象位置に至る前に、報知対象位置に適した作業の準備をすることができる。これにより、作業支援の質の向上を図ることができる。 According to this configuration, the user can prepare for work suitable for the notification target position before the second work vehicle reaches the notification target position. Thereby, the quality of work support can be improved.
 この発明の一実施形態では、前記作業支援システムが、前記地図情報に基づいて、前記地図情報に基づいて特定された耕盤深さよりも前記第2作業部の高さ位置が高くなるように前記第2作業部の昇降範囲を制限する。そのため、耕盤に対する第2作業部の接触を抑制できる。 In one embodiment of the present invention, the work support system is configured such that, based on the map information, the height position of the second working unit is higher than the tilling depth specified based on the map information. Limit the lifting range of the second working part. Therefore, the contact of the 2nd operation part with respect to a cultivation board can be controlled.
 この発明の一実施形態では、前記作業支援システムが、前記地図情報に基づいて、前記第2作業車両の走行が禁止される走行禁止領域を特定し、前記第2作業車両を走行させる走行経路を、前記走行禁止領域を通らないように生成する。これにより、走行禁止領域を避けることができるので、第2作業車両をスムーズに走行させることができる。その結果、作業支援の質の向上を図ることができる。 In one embodiment of the present invention, the work support system specifies a travel prohibition area in which travel of the second work vehicle is prohibited based on the map information, and a travel route for causing the second work vehicle to travel is determined. , So as not to pass through the travel prohibition area. Thereby, since a travel prohibition area can be avoided, the second work vehicle can travel smoothly. As a result, the quality of work support can be improved.
 この発明の一実施形態では、前記第2作業部は、前記第2機体部の前部に設けられ、かつ、前記圃場の表面に対する高さが一定となる目標位置に向けて昇降制御されるように構成されている。そして、前記作業支援システムは、前記地図情報に基づいて標準制御位置と鈍感制御位置とを特定し、前記第2作業車両が前記鈍感制御位置に達したときの前記目標位置に対する前記第2作業部の追従性を、前記第2作業車両が前記標準制御位置に達したときの前記目標位置に対する前記第2作業部の追従性よりも低くする。 In one embodiment of the present invention, the second working part is provided at the front part of the second machine part, and is controlled to move up and down toward a target position where the height relative to the surface of the field is constant. It is configured. The work support system identifies a standard control position and an insensitive control position based on the map information, and the second working unit with respect to the target position when the second work vehicle reaches the insensitive control position. Is made lower than the followability of the second working unit with respect to the target position when the second work vehicle reaches the standard control position.
 第2作業車両の進行方向に沿って耕盤深さが変化する場合には、第2作業部は、圃場の表面に対する高さが一定となる目標位置に向けて昇降される。鈍感制御位置において目標位置に対する第2作業部の追従性を標準とした場合には、第2機体部に対する第2作業部の高さ位置の変化量が大きくなりすぎて、第2作業部が圃場の表面に接触するおそれがある。そこで、第2作業車両が鈍感制御位置に達したときの目標位置に対する第2作業部の追従性を、第2作業車両が標準制御位置に達したときの目標位置に対する第2作業部の追従性よりも低くすることによって、鈍感制御位置における第2機体部に対する第2作業部の高さ位置の変化量を抑制することができる。これにより、圃場の表面に対する第2作業部の接触を抑制できる。 When the tiller depth changes along the traveling direction of the second work vehicle, the second working unit is moved up and down toward a target position where the height relative to the surface of the field is constant. When the followability of the second working unit with respect to the target position at the insensitive control position is standard, the amount of change in the height position of the second working unit with respect to the second airframe is too large, and the second working unit is There is a risk of contact with the surface. Therefore, the followability of the second working unit with respect to the target position when the second work vehicle reaches the insensitive control position, and the followability of the second work unit with respect to the target position when the second work vehicle reaches the standard control position. By making it lower than this, it is possible to suppress the amount of change in the height position of the second working part relative to the second machine part at the insensitive control position. Thereby, the contact of the 2nd operation part to the surface of a field can be controlled.
 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above-described or other objects, features, and effects of the present invention will be clarified by the following description of embodiments with reference to the accompanying drawings.
図1は、本発明の一実施形態に係る作業支援システムおよび地図情報生成システムの構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of a work support system and a map information generation system according to an embodiment of the present invention. 図2は、前記地図情報生成システムに用いられる第1作業車両としてのコンバインの側面図である。FIG. 2 is a side view of a combine as a first work vehicle used in the map information generation system. 図3は、前記コンバインの平面図である。FIG. 3 is a plan view of the combine. 図4は、前記コンバインの電気的構成を示すブロック図である。FIG. 4 is a block diagram showing an electrical configuration of the combine. 図5は、圃場を走行中の前記コンバインを進行方向から見たときの模式図である。FIG. 5 is a schematic view of the combine that is traveling in the field when viewed from the traveling direction. 図6は、前記地図情報生成システムによって生成される地図情報の一例を示している。FIG. 6 shows an example of map information generated by the map information generation system. 図7は、前記第1作業車両としてのトラクタの側面図である。FIG. 7 is a side view of a tractor as the first work vehicle. 図8は、前記トラクタの平面図である。FIG. 8 is a plan view of the tractor. 図9は、前記トラクタの電気的構成を示すブロック図である。FIG. 9 is a block diagram showing an electrical configuration of the tractor. 図10は、圃場を走行中の前記トラクタを進行方向から見たときの模式図である。FIG. 10 is a schematic view of the tractor that is traveling in the field when viewed from the traveling direction. 図11は、前記第1作業車両としての田植機の側面図である。FIG. 11 is a side view of a rice transplanter as the first work vehicle. 図12は、前記田植機の平面図である。FIG. 12 is a plan view of the rice transplanter. 図13は、前記田植機の電気的構成を示すブロック図である。FIG. 13 is a block diagram showing an electrical configuration of the rice transplanter. 図14は、前記地図情報に特定された報知対象位置および報知位置を示す模式図である。FIG. 14 is a schematic diagram showing a notification target position and a notification position specified in the map information. 図15は、前記作業支援システムによる報知処理の一例を示すフローチャートである。FIG. 15 is a flowchart showing an example of notification processing by the work support system. 図16は、前記作業支援システムによる昇降範囲制限処理の一例を示すフローチャートである。FIG. 16 is a flowchart showing an example of the lifting range restriction process by the work support system. 図17は、前記作業支援システムによって生成された走行経路の一例を示す模式図である。FIG. 17 is a schematic diagram illustrating an example of a travel route generated by the work support system. 図18Aは、第2作業車両に備えられた第2作業部の標準制御位置における昇降制御を説明するための模式図である。FIG. 18A is a schematic diagram for explaining the lifting control at the standard control position of the second working unit provided in the second working vehicle. 図18Bは、前記第2作業部の鈍感制御位置における昇降制御を説明するための模式図である。FIG. 18B is a schematic diagram for explaining the lifting control at the insensitive control position of the second working unit. 図18Cは、前記第2作業部の鈍感制御位置における昇降制御を説明するための模式図である。FIG. 18C is a schematic diagram for explaining the lifting control at the insensitive control position of the second working unit. 図19は、前記作業支援システムによる昇降制御処理の一例を示すフローチャートである。FIG. 19 is a flowchart showing an example of the lifting control process by the work support system.
 図1は、本発明の一実施形態に係る地図情報生成システム1および作業支援システム2の構成を示す模式図である。地図情報生成システム1は、情報取得機能を備えた第1作業車両3が取得した情報に基づいて地図情報を作成するシステムである。作業支援システム2は、地図情報生成システム1によって生成された地図情報に基づいて、圃場における第2作業車両4の各種作業を支援するシステムである。 FIG. 1 is a schematic diagram showing a configuration of a map information generation system 1 and a work support system 2 according to an embodiment of the present invention. The map information generation system 1 is a system that creates map information based on information acquired by a first work vehicle 3 having an information acquisition function. The work support system 2 is a system that supports various works of the second work vehicle 4 on the field based on the map information generated by the map information generation system 1.
 作業車両3,4は、情報通信網5を介して、管理サーバ6と通信可能である。また、作業車両3,4および管理サーバ6は、作業支援のための各種情報が表示される無線通信端末7と無線通信可能である。 The work vehicles 3 and 4 can communicate with the management server 6 via the information communication network 5. In addition, the work vehicles 3 and 4 and the management server 6 can wirelessly communicate with the wireless communication terminal 7 on which various information for work support is displayed.
 作業車両3,4としては、たとえば、コンバイン、トラクタ、田植機等の農業用作業車両が用いられる。作業車両3,4は、共通する作業車両(たとえば、共にトラクタ)であってもよいし、互いに異なる作業車両(たとえば、一方がコンバインであり、他方がトラクタ)であってもよい。 As the work vehicles 3 and 4, for example, agricultural work vehicles such as a combine, a tractor, and a rice transplanter are used. The work vehicles 3 and 4 may be common work vehicles (for example, both tractors), or may be different work vehicles (for example, one is a combine and the other is a tractor).
 以下では、第1作業車両3が取得した情報に基づいて地図情報を生成し、当該地図情報を各種作業支援に活用する地図情報生成システム1および作業支援システム2について説明する。ここでは第1作業車両3がコンバインである場合を例に説明する。 Hereinafter, a map information generation system 1 and a work support system 2 that generate map information based on information acquired by the first work vehicle 3 and use the map information for various work support will be described. Here, a case where the first work vehicle 3 is a combine will be described as an example.
 図2は、第1作業車両3としてのコンバイン8の側面図である。図3は、コンバイン8の平面図である。 FIG. 2 is a side view of the combine 8 as the first work vehicle 3. FIG. 3 is a plan view of the combine 8.
 コンバイン8は、機台11、エンジン12、脱穀装置13、グレンタンク14、搭乗運転部15、排出オーガ16、刈取部17および一対の走行部18を含む。エンジン12は、コンバイン8の各部に動力を供給する。刈取部17は、圃場Fで生育した穀稈を刈り取る。脱穀装置13は、刈取部17によって刈り取られた穀稈を脱穀処理する。グレンタンク14は、脱穀粒を貯留する。排出オーガ16は、グレンタンク14内の脱穀粒をコンバイン8の外部に排出するために脱穀粒を搬送する。 The combine 8 includes a machine base 11, an engine 12, a threshing device 13, a grain tank 14, a boarding operation unit 15, a discharge auger 16, a mowing unit 17, and a pair of traveling units 18. The engine 12 supplies power to each part of the combine 8. The harvesting unit 17 harvests cereals grown in the field F. The threshing device 13 threshs the cereals harvested by the reaping unit 17. Glen tank 14 stores threshing grains. The discharge auger 16 conveys the threshing grains in order to discharge the threshing grains in the Glen tank 14 to the outside of the combine 8.
 搭乗運転部15には、ユーザが搭乗するための運転座席15Aと、コンバイン8の操舵を行うためのステアリングハンドル15Bと、コンバイン8を操縦するための様々な操作部34(図4参照)とが備えられている。機台11は、エンジン12、刈取部17、排出オーガ16、脱穀装置13、グレンタンク14および搭乗運転部15を支持するフレームである。 The boarding driver 15 includes a driver seat 15A for the user to board, a steering handle 15B for steering the combine 8, and various operating units 34 (see FIG. 4) for steering the combine 8. Is provided. The machine base 11 is a frame that supports the engine 12, the cutting unit 17, the discharge auger 16, the threshing device 13, the glen tank 14, and the boarding operation unit 15.
 刈取部17には、刈取部17を昇降させる昇降シリンダ43(図4参照)が連結されている。刈取部17は、機台11の前端付近に位置する。刈取部17は、圃場Fで生育した穀稈を刈り取る刈刃17Aと、刈刃17Aによって刈り取られた穀稈を脱穀装置13に搬送する搬送路(図示せず)とを含む。刈取部17は、昇降シリンダ43によって、所定の回転中心まわりに昇降される。 A lifting cylinder 43 (see FIG. 4) for moving the cutting unit 17 up and down is connected to the cutting unit 17. The cutting unit 17 is located near the front end of the machine base 11. The mowing unit 17 includes a cutting blade 17A that harvests cereals grown in the field F, and a conveyance path (not shown) that conveys the cereals harvested by the cutting blade 17A to the threshing device 13. The cutting unit 17 is moved up and down around a predetermined rotation center by the lifting cylinder 43.
 一対の走行部18は、コンバイン8の車幅方向WDに互いに所定間隔を隔てて配されている。一対の走行部18は、機台11、エンジン12、刈取部17、排出オーガ16、脱穀装置13、グレンタンク14および搭乗運転部15を支持する。機台11、エンジン12、排出オーガ16、脱穀装置13、グレンタンク14および搭乗運転部15をまとめて機体部19という。刈取部17は、機体部19(第1機体部)に支持された第1作業部の一例である。車幅方向WDは、機体部19の幅方向でもある。 The pair of traveling portions 18 are arranged at a predetermined interval in the vehicle width direction WD of the combine 8. The pair of traveling units 18 support the machine base 11, the engine 12, the cutting unit 17, the discharge auger 16, the threshing device 13, the Glen tank 14, and the boarding operation unit 15. The machine base 11, the engine 12, the discharge auger 16, the threshing device 13, the glen tank 14 and the boarding operation unit 15 are collectively referred to as a machine body unit 19. The cutting unit 17 is an example of a first working unit supported by the machine unit 19 (first machine unit). The vehicle width direction WD is also the width direction of the body part 19.
 図2には、一対の走行部18のうちの一方しか図示されていないが、各走行部18は、コンバイン8の前後方向に延びるクローラフレーム20と、クローラアーム(図示せず)を介してクローラフレーム20に支持された複数の転輪21と、エンジン12からの駆動力が伝達される駆動スプロケット22と、複数の転輪21および駆動スプロケット22に巻き掛けられたクローラ23とを含む。 Although only one of the pair of traveling portions 18 is illustrated in FIG. 2, each traveling portion 18 is crawled via a crawler frame 20 extending in the front-rear direction of the combine 8 and a crawler arm (not shown). A plurality of wheels 21 supported by the frame 20, a drive sprocket 22 to which driving force from the engine 12 is transmitted, and a crawler 23 wound around the plurality of wheels 21 and the drive sprocket 22 are included.
 各走行部18には、車高シリンダ41(図4参照)が設けられている。各車高シリンダ41は、対応するクローラフレーム20を機台11に対して昇降させることによって対応するクローラ23を機体部19の高さ方向HD(車幅方向WDに対して直交する方向)に伸縮させる。 Each traveling unit 18 is provided with a vehicle height cylinder 41 (see FIG. 4). Each of the vehicle height cylinders 41 expands and contracts the corresponding crawler 23 in the height direction HD (direction perpendicular to the vehicle width direction WD) of the airframe unit 19 by moving the corresponding crawler frame 20 up and down relative to the machine base 11. Let
 一対の車高シリンダ41は、一対のクローラフレーム20を別々に昇降させることによって、機体部19の高さおよび傾きを調整する。たとえば、圃場Fにおいて各クローラ23が接地する接地面の高さが互いに異なる場合であっても、車高シリンダ41を別々に昇降させることによって、機体部19がコンバイン8の進行方向から見て水平となるように機体部19の傾きを制御することができる。 The pair of vehicle height cylinders 41 adjust the height and inclination of the body part 19 by moving the pair of crawler frames 20 up and down separately. For example, even when the heights of the ground contact surfaces to which the crawlers 23 come in contact with each other in the field F are different from each other, the vehicle body cylinder 19 is horizontally viewed from the traveling direction of the combine 8 by raising and lowering the vehicle height cylinder 41 separately. The inclination of the body part 19 can be controlled so that
 コンバイン8が、圃場を走行する際、圃場の表層の上面(田面)よりも下方に位置する耕盤の高さまでクローラ23の下端が沈み込む。耕盤とは、表層よりも固い土によって形成された層である。 When the combine 8 travels through the field, the lower end of the crawler 23 sinks to the height of the tiller located below the upper surface (field surface) of the surface of the field. The cultivator is a layer formed by soil harder than the surface layer.
 図4は、コンバイン8の電気的構成を示すブロック図である。図4を参照して、コンバイン8は、コンバイン8に備えられた各部の動作を制御するための制御部30を備える。 FIG. 4 is a block diagram showing an electrical configuration of the combine 8. With reference to FIG. 4, the combine 8 includes a control unit 30 for controlling the operation of each unit included in the combine 8.
 制御部30には、位置情報取得部31が電気的に接続されている。位置情報取得部31には、衛星信号受信用アンテナ32で受信された測位信号が入力される。衛星信号受信用アンテナ32は、衛星測位システム(GNSS: Global Navigation Satellite System)を構成する測位衛星からの信号を受信するものである。 The position information acquisition unit 31 is electrically connected to the control unit 30. The positioning information received by the satellite signal receiving antenna 32 is input to the position information acquisition unit 31. The satellite signal receiving antenna 32 receives signals from positioning satellites that constitute a satellite positioning system (GNSS: Global Navigation Satellite System).
 位置情報取得部31は、コンバイン8(厳密には、衛星信号受信用アンテナ32)の位置情報を、たとえば緯度・経度・高度情報として算出する。衛星信号受信用アンテナ32は、車幅方向WDの略中央に位置している。位置情報取得部31は、コンバイン8の位置情報を、たとえば、1秒毎に取得する。 The position information acquisition unit 31 calculates the position information of the combine 8 (strictly speaking, the satellite signal receiving antenna 32) as, for example, latitude / longitude / altitude information. The satellite signal receiving antenna 32 is located substantially at the center in the vehicle width direction WD. The position information acquisition unit 31 acquires the position information of the combine 8 for example every second.
 制御部30には、通信部33が電気的に接続されている。通信部33は、一例として、無線LANルータ(Wi-Fiルータ)から構成されていてもよい。制御部30には、操作部34が電気的に接続されている。 The communication unit 33 is electrically connected to the control unit 30. For example, the communication unit 33 may include a wireless LAN router (Wi-Fi router). An operation unit 34 is electrically connected to the control unit 30.
 制御部30には、コンバイン8の各部を制御するための複数のコントローラのそれぞれが電気的に接続されている。複数のコントローラは、エンジンコントローラ35、クローラ駆動機構コントローラ36、車高コントローラ37および昇降コントローラ38を含む。 The controller 30 is electrically connected to each of a plurality of controllers for controlling each part of the combine 8. The plurality of controllers includes an engine controller 35, a crawler drive mechanism controller 36, a vehicle height controller 37, and a lift controller 38.
 エンジンコントローラ35は、エンジン12に設けられる燃料噴射装置としてのコモンレール装置39と電気的に接続されている。コモンレール装置39は、エンジン12の各気筒に燃料を噴射するものである。エンジンコントローラ35は、コモンレール装置39を制御することで、エンジン12の回転数等を制御する。エンジンコントローラ35は、コモンレール装置39を制御することで、エンジン12への燃料の供給を停止させ、エンジン12の駆動を停止させることもできる。 The engine controller 35 is electrically connected to a common rail device 39 as a fuel injection device provided in the engine 12. The common rail device 39 injects fuel into each cylinder of the engine 12. The engine controller 35 controls the number of revolutions of the engine 12 by controlling the common rail device 39. The engine controller 35 can stop the fuel supply to the engine 12 and stop the driving of the engine 12 by controlling the common rail device 39.
 クローラ駆動機構コントローラ36には、エンジン12からの駆動力を一対の駆動スプロケット22に伝達するクローラ駆動機構40が電気的に接続されている。クローラ駆動機構40は、一対のクローラ23を別々に駆動することができる。一対のクローラ23が別々に駆動されることによって、コンバイン8は、旋回することができる。 The crawler drive mechanism controller 36 is electrically connected to a crawler drive mechanism 40 that transmits the drive force from the engine 12 to the pair of drive sprockets 22. The crawler driving mechanism 40 can drive the pair of crawlers 23 separately. When the pair of crawlers 23 are driven separately, the combine 8 can turn.
 車高コントローラ37には、一対の車高シリンダ41が電気的に連結されている。車高シリンダ41に関連して、制御部30には、対応するクローラ23の下端と機体部19に設けられた基準位置との間の鉛直方向の距離を検出するための車高センサ42が電気的に接続されている。車高センサ42は、たとえば、車高シリンダ41のシリンダロッドの位置を検出するポテンショメータである。 A pair of vehicle height cylinders 41 are electrically connected to the vehicle height controller 37. In connection with the vehicle height cylinder 41, the control unit 30 has a vehicle height sensor 42 for detecting a vertical distance between the lower end of the corresponding crawler 23 and a reference position provided in the machine body unit 19. Connected. The vehicle height sensor 42 is, for example, a potentiometer that detects the position of the cylinder rod of the vehicle height cylinder 41.
 昇降コントローラ38には、昇降シリンダ43が電気的に接続されている。昇降シリンダ43に関連して、制御部30には、機体部19に設けられた基準位置と刈刃17Aとの間の鉛直距離を検出するための刈取高さセンサ44が電気的に接続されている。刈取高さセンサ44は、たとえば、昇降シリンダ43のシリンダロッドの位置を検出するポテンショメータ等である。 A lift cylinder 43 is electrically connected to the lift controller 38. In connection with the lifting cylinder 43, the control unit 30 is electrically connected with a cutting height sensor 44 for detecting a vertical distance between a reference position provided on the machine unit 19 and the cutting blade 17A. Yes. The cutting height sensor 44 is, for example, a potentiometer that detects the position of the cylinder rod of the elevating cylinder 43.
 昇降コントローラ38は、刈取高さセンサ44の検出結果に基づいて、昇降シリンダ43を制御する。具体的には、昇降コントローラ38は、刈取部17の刈刃17Aが圃場Fの田面FSよりも所定距離だけ上方に位置するように昇降シリンダ43を制御する。 The lifting controller 38 controls the lifting cylinder 43 based on the detection result of the cutting height sensor 44. Specifically, the elevating controller 38 controls the elevating cylinder 43 so that the cutting blade 17A of the cutting unit 17 is positioned above the field surface FS of the field F by a predetermined distance.
 制御部30には、慣性計測装置45が電気的に接続されている。慣性計測装置45は、コンバイン8の姿勢(機台11の向き)や加速度等を特定することが可能なセンサユニットである。具体的には、慣性計測装置45は、互いに直交する第1軸、第2軸、および第3軸のそれぞれに対して、角速度センサと加速度センサとを取り付けたセンサ群を備える。 The inertial measurement device 45 is electrically connected to the control unit 30. The inertial measurement device 45 is a sensor unit that can specify the posture of the combine 8 (the direction of the machine base 11), acceleration, and the like. Specifically, the inertial measurement device 45 includes a sensor group in which an angular velocity sensor and an acceleration sensor are attached to each of a first axis, a second axis, and a third axis that are orthogonal to each other.
 詳述すると、慣性計測装置45は、第1軸方向の加速度を検出する第1加速度センサと、第2軸方向の加速度を検出する第2加速度センサと、第3軸方向の加速度を検出する第3加速度センサと、前記第1軸回りの角速度を検出する第1角速度センサと、前記第2軸回りの角速度を検出する第2角速度センサと、前記第3軸回りの角速度を検出する第3角速度センサとを備える。 More specifically, the inertial measurement device 45 includes a first acceleration sensor that detects acceleration in the first axis direction, a second acceleration sensor that detects acceleration in the second axis direction, and a first acceleration sensor that detects acceleration in the third axis direction. A third acceleration sensor; a first angular velocity sensor that detects an angular velocity around the first axis; a second angular velocity sensor that detects an angular velocity around the second axis; and a third angular velocity that detects an angular velocity around the third axis. A sensor.
 第1軸、第2軸、および第3軸回りの運動を、それぞれ、ピッチング、ヨーイング、ローリングという。 The movements around the first, second, and third axes are called pitching, yawing, and rolling, respectively.
 制御部30は、CPUおよびメモリ(ROM、RAM等)を備えたマイクロコンピュータを含む。マイクロコンピュータは、メモリ(ROM)に記憶されている所定のプログラムを実行することによって、複数の機能処理部として機能する。機能処理部としては、耕盤距離取得部50と、表層距離取得部51と、耕盤深さ特定部52と、地図情報生成部53とが挙げられる。 The control unit 30 includes a microcomputer including a CPU and a memory (ROM, RAM, etc.). The microcomputer functions as a plurality of function processing units by executing a predetermined program stored in a memory (ROM). Examples of the function processing unit include a tillage distance acquisition unit 50, a surface layer distance acquisition unit 51, a tillage depth specification unit 52, and a map information generation unit 53.
 図5は、圃場Fを走行中のコンバイン8を進行方向から見たときの模式図である。コンバイン8が、圃場Fを走行する際、圃場Fの表層SLの上面(田面)よりも下方に位置する耕盤TLの高さまでクローラ23の下端が沈み込む。耕盤TLは、表層SLよりも固い土によって形成された層である。図5に示すように、車幅方向WDにおける一方側と他方側とで耕盤TLの高さが異なる場合がある。このような場合であっても、一対のクローラ23を伸縮させることで、機体部19の姿勢は水平姿勢に維持されている。 FIG. 5 is a schematic diagram when the combine 8 traveling in the field F is viewed from the traveling direction. When the combine 8 travels through the field F, the lower end of the crawler 23 sinks to the height of the tiller TL located below the upper surface (field surface) of the surface layer SL of the field F. The tiller TL is a layer formed of soil harder than the surface layer SL. As shown in FIG. 5, the height of the tillage TL may be different on one side and the other side in the vehicle width direction WD. Even in such a case, the posture of the airframe unit 19 is maintained in a horizontal posture by extending and contracting the pair of crawlers 23.
 耕盤距離取得部50は、各車高センサ42の検出結果に基づいて耕盤距離H1,H2を取得する。車幅方向WDの一方側の耕盤距離H1は、機体部19に設定された所定の基準位置Sを通る水平面HSと、車幅方向WDの一方側のクローラ23が耕盤TLに接地する接地点C1(接地面)との間の鉛直方向の距離である。車幅方向WDの他方側の耕盤距離H2は、水平面HSと、車幅方向WDの他方側のクローラ23が耕盤TLに接地する接地点C2(接地面)との間の鉛直方向の距離である。 The cultivator distance acquisition unit 50 acquires the cultivator distances H1 and H2 based on the detection result of each vehicle height sensor 42. The cultivator distance H1 on one side in the vehicle width direction WD is a contact between the horizontal plane HS passing through a predetermined reference position S set in the body part 19 and the crawler 23 on one side in the vehicle width direction WD contacting the cultivator TL. It is the distance in the vertical direction between the point C1 (the ground contact surface). The tiller distance H2 on the other side in the vehicle width direction WD is a vertical distance between the horizontal plane HS and the ground contact point C2 (grounding surface) where the crawler 23 on the other side in the vehicle width direction WD contacts the tiller TL. It is.
 表層距離取得部51は、刈取高さセンサ44の検出結果に基づいて表層距離hを取得する。詳しくは、表層距離hは、刈取高さセンサ44によって検出される田面FSから刈刃17Aまでの所定距離A1と、ユーザによって設定された刈刃17Aと基準位置Sとの間の距離A2との和に相当する(h=A1+A2)。 The surface distance acquisition unit 51 acquires the surface distance h based on the detection result of the cutting height sensor 44. Specifically, the surface layer distance h is a predetermined distance A1 from the surface FS to the cutting blade 17A detected by the cutting height sensor 44, and a distance A2 between the cutting blade 17A and the reference position S set by the user. It corresponds to the sum (h = A1 + A2).
 耕盤深さ特定部52は、耕盤距離H1,H2および表層距離hに基づいて、車幅方向WDの一方側における圃場Fの耕盤の深さD1(一方側耕盤深さ)と、車幅方向WDの他方側における圃場Fの耕盤の深さD2(他方側耕盤深さ)とを特定する。一方側耕盤深さD1は、車幅方向WDの一方側の耕盤距離H1と、表層距離hとの差分に相当する(D1=H1-h)。他方側耕盤深さD2は、車幅方向WDの他方側の耕盤距離H2と、表層距離hとの差分に相当する(D2=H2-h)。 The cultivator depth specifying unit 52 is based on the cultivator distances H1, H2 and the surface layer distance h, and the cultivator depth D1 (one cultivated cultivator depth) of the field F on one side in the vehicle width direction WD, The depth D2 (the other side tillage depth) of the farm field F on the other side in the vehicle width direction WD is specified. The one-side tiller depth D1 corresponds to the difference between the one-side tiller distance H1 in the vehicle width direction WD and the surface layer distance h (D1 = H1-h). The other-side tillage depth D2 corresponds to the difference between the other-side tillage distance H2 in the vehicle width direction WD and the surface layer distance h (D2 = H2-h).
 コンバイン8が圃場Fの全域を走行し終えると、圃場F内の各特定地点における位置情報が位置情報取得部31によって取得され、圃場F内の各特定地点における複数の耕盤深さ情報(耕盤深さD1,D2)が耕盤深さ特定部52によって特定される。 When the combine 8 finishes traveling all over the field F, position information at each specific point in the field F is acquired by the position information acquisition unit 31, and a plurality of tiller depth information (cultivation at each specific point in the field F) is obtained. The board depth D1, D2) is specified by the tiller depth specifying unit 52.
 なお、耕盤深さ特定部52によって取得される耕盤深さ情報のサンプリング間隔は、位置情報取得部31によって取得される位置情報のサンプリング間隔(たとえば、1秒間隔)と異なっていてもよい。特定地点は、耕盤深さ情報と位置情報との両方が取得される地点である。 Note that the sampling interval of the tillage depth information acquired by the tiller depth specifying unit 52 may be different from the sampling interval (for example, one second interval) of the position information acquired by the position information acquiring unit 31. . The specific point is a point from which both the depth information and the position information are acquired.
 このように、耕盤深さ特定部52は、特定地点における機体部19の姿勢制御情報(車高センサ42の検出結果および慣性計測装置45の検出結果)と、特定地点における刈取部17の昇降制御情報(刈取高さセンサ44の検出結果)とに基づいて、耕盤深さD1,D2を特定する。 In this manner, the tiller depth specifying unit 52 is configured to control the attitude of the airframe unit 19 at the specific point (the detection result of the vehicle height sensor 42 and the detection result of the inertial measurement device 45) and the lifting / lowering of the cutting unit 17 at the specific point. Based on the control information (the detection result of the cutting height sensor 44), the tillage depths D1 and D2 are specified.
 地図情報生成部53は、位置情報取得部31によって取得された圃場F内の各特定地点における緯度経度情報と、耕盤深さ特定部52によって特定された圃場F内の各特定地点における耕盤深さとが対応付けられた地図情報を生成する。 The map information generation unit 53 includes latitude / longitude information at each specific point in the field F acquired by the position information acquisition unit 31 and a cultivation pad at each specific point in the field F identified by the cultivation pad depth identification unit 52. Map information associated with depth is generated.
 図6は、地図情報生成部53によって生成される地図情報の一例を示している。図6では、説明の便宜上、圃場F内を走行したコンバイン8の進行方向を二点鎖線の矢印で示しているが、地図情報には、この矢印は含まれない。地図情報は、圃場F内において位置情報が取得された各特定地点Pを含む所定の領域R毎に圃場Fが区分され、各特定地点Pにおいて取得された耕盤深さ情報に応じて、各領域Rに識別情報(色または数値)が付されたマップである。図6に示す地図情報は、色の濃淡を識別情報とした例を示している。 FIG. 6 shows an example of map information generated by the map information generating unit 53. In FIG. 6, for the sake of convenience of explanation, the traveling direction of the combine 8 that has traveled in the field F is indicated by a two-dot chain line arrow, but this arrow is not included in the map information. In the map information, the field F is divided for each predetermined region R including each specific point P where the position information is acquired in the field F, and each of the map information is determined according to the cultivation depth information acquired at each specific point P. This is a map in which identification information (color or numerical value) is attached to the region R. The map information shown in FIG. 6 shows an example in which color shading is used as identification information.
 各領域Rは、コンバイン8の機体中心が特定地点Pを通過した場合に、地点Pを中心に、一対の走行部18のそれぞれの設置位置に対応して車幅方向WDに二分割される。各領域Rの車幅方向WDの一方側の部分R1は、一方側耕盤深さD1に応じた識別情報が付され、各領域Rの車幅方向WDの他方側の部分R2は、他方側耕盤深さD2に応じた識別情報が付される。このように、地図情報には、特定地点Pにおける複数の耕盤深さ情報が互いに識別可能に表示される。図6に示す地図情報では、耕盤深さが大きい部分R1,R2ほど色が濃くされている。 Each region R is divided into two in the vehicle width direction WD corresponding to the respective installation positions of the pair of travel portions 18 around the point P when the center of the body of the combine 8 passes the specific point P. A part R1 on one side in the vehicle width direction WD of each region R is provided with identification information corresponding to the one-side tillage depth D1, and a part R2 on the other side in the vehicle width direction WD of each region R is on the other side Identification information according to the tiller depth D2 is attached. Thus, a plurality of tillage depth information at the specific point P is displayed in the map information so that they can be distinguished from each other. In the map information shown in FIG. 6, the colors are darker in the portions R <b> 1 and R <b> 2 having a larger tiller depth.
 図4を参照して、制御部30には、記憶部55が接続されている。記憶部55は、ハードディスク、不揮発性メモリ等の記憶デバイスから構成されている。記憶部55は、コンバイン8の位置情報を記憶する位置情報記憶部56と、耕盤深さ特定部52によって特定された圃場F内の各特定地点Pにおける耕盤深さD1,D2を記憶する耕盤深さ記憶部57と、地図情報生成部53によって生成された地図情報を記憶する地図情報記憶部58とを含む。 Referring to FIG. 4, a storage unit 55 is connected to the control unit 30. The storage unit 55 includes a storage device such as a hard disk or a nonvolatile memory. The storage unit 55 stores the position information storage unit 56 that stores the position information of the combine 8, and the cultivation pad depths D <b> 1 and D <b> 2 at each specific point P in the farm field F specified by the cultivation board depth specifying unit 52. A tilling depth storage unit 57 and a map information storage unit 58 that stores the map information generated by the map information generation unit 53 are included.
 第1作業車両3がコンバイン8である場合、特定地点Pにおける機体部19の姿勢制御情報および刈取部17の昇降制御情報に基づいて、複数の耕盤深さ情報(耕盤深さD1,D2)が特定される。つまり、詳細な耕盤深さを取得することができる。 When the first work vehicle 3 is the combine 8, a plurality of tillage depth information (cultivation depths D <b> 1, D <b> 2) based on the attitude control information of the airframe 19 at the specific point P and the elevation control information of the cutting part 17. ) Is identified. That is, a detailed tiller depth can be acquired.
 したがって、特定地点Pにおけるコンバイン8の緯度経度情報と複数の耕盤深さ情報とを対応させることによって、特定地点Pにおける詳細な耕盤深さD1,D2を有する地図情報を生成することができる。これにより、作業支援の質の向上を図ることができる。 Therefore, by associating the latitude / longitude information of the combine 8 at the specific point P with the plurality of tillage depth information, map information having detailed tillage depths D1 and D2 at the specific point P can be generated. . Thereby, the quality of work support can be improved.
 また、複数の耕盤深さ情報には、車幅方向WDに所定間隔を隔てて配される一対の走行部18が接地する箇所(接地点C1,C2)における耕盤深さ情報が含まれる。つまり、車幅方向WDの二箇所において耕盤深さ情報が取得される。したがって、特定地点Pにおいて詳細な耕盤深さ情報を有する地図情報を生成することができる。 Further, the plurality of tillage depth information includes tillage depth information at locations where the pair of traveling units 18 arranged at predetermined intervals in the vehicle width direction WD are in contact with the ground (contact points C1 and C2). . That is, tiller depth information is acquired at two locations in the vehicle width direction WD. Therefore, map information having detailed tillage depth information at the specific point P can be generated.
 また、コンバイン8の一対の走行部18は、機体部19が水平姿勢を維持するように鉛直方向に伸縮可能である。そのため、コンバイン8が走行する圃場Fの表面の凹凸形状にかかわらず、耕盤深さD1,D2を正確に特定することができる。 Also, the pair of traveling units 18 of the combine 8 can be expanded and contracted in the vertical direction so that the machine unit 19 maintains a horizontal posture. Therefore, regardless of the irregular shape of the surface of the field F where the combine 8 travels, the cultivation depths D1 and D2 can be accurately specified.
 地図情報には、緯度経度情報および耕盤深さD1,D2に加えて、位置情報取得部31によって取得された圃場F内の各特定地点Pにおける高度情報が識別可能に表示されていてもよい。この場合、地図情報には、各特定地点Pにおいて取得された高度情報および耕盤深さD1,D2に応じて、各領域Rに識別情報(色または数値)が付される。たとえば、高度情報を数値で示し、耕盤深さD1,D2を色で示してもよい。これにより、位置情報を取得した各特定地点Pでの耕盤TLの標高を比較することができる。 In the map information, altitude information at each specific point P in the field F acquired by the position information acquisition unit 31 may be displayed in an identifiable manner, in addition to the latitude / longitude information and the cultivation depths D1 and D2. . In this case, identification information (color or numerical value) is attached to each region R according to the altitude information acquired at each specific point P and the tilling depths D1 and D2. For example, the altitude information may be indicated by numerical values, and the tillage depths D1 and D2 may be indicated by colors. Thereby, the altitude of the tilling TL at each specific point P from which the position information is acquired can be compared.
 また、圃場Fの耕盤TLの標高は、標高が異なる複数の圃場Fを合筆する際の圃場F間での、田面FSの高さの調整に用いることができる。 Moreover, the altitude of the tiller TL of the field F can be used to adjust the height of the field surface FS between the fields F when writing a plurality of fields F having different altitudes.
 次に、第1作業車両3がトラクタである場合を例に説明する。図7は、第1作業車両3としてのトラクタ9の側面図である。図8は、トラクタ9の平面図である。 Next, the case where the first work vehicle 3 is a tractor will be described as an example. FIG. 7 is a side view of the tractor 9 as the first work vehicle 3. FIG. 8 is a plan view of the tractor 9.
 トラクタ9は、圃場F内を走行する走行機体60と、走行機体60に装着された作業機としての耕耘機61とを含む。作業機としては、耕耘機61以外にも、たとえば、プラウ、施肥機、草刈機、播種機等を用いることができる。 The tractor 9 includes a traveling machine body 60 that travels in the field F, and a cultivator 61 as a working machine mounted on the traveling machine body 60. As a working machine, in addition to the cultivator 61, for example, a plow, a fertilizer applicator, a mower, a seeder, or the like can be used.
 トラクタ9の走行機体60は、機体部62(第1機体部)と、機体部62を支持し車幅方向WD(機体部62の幅方向)に互いに間隔を隔てて設けられた一対の走行部63とを備えている。各走行部63は、前輪63Aおよび後輪63Bを含む。走行機体60は、エンジン64の駆動力によって走行可能である。耕耘機61等の作業機は、第1機体部に支持された第1作業部の一例である。 The traveling machine body 60 of the tractor 9 includes a body part 62 (first body part) and a pair of traveling parts that support the body part 62 and are spaced apart from each other in the vehicle width direction WD (width direction of the body part 62). 63. Each traveling unit 63 includes a front wheel 63A and a rear wheel 63B. The traveling machine body 60 can travel by the driving force of the engine 64. A working machine such as the tiller 61 is an example of a first working unit supported by the first machine part.
 走行機体60の機体部62は、ユーザが搭乗するための運転座席62Aと、走行機体60の操舵を行うためのステアリングハンドル62Bとを含む。ステアリングハンドル62Bの近傍には、ユーザが各種操作を行うための操作部78(図9参照)が設けられている。 The airframe unit 62 of the traveling machine body 60 includes a driving seat 62 </ b> A for the user to board and a steering handle 62 </ b> B for steering the traveling machine body 60. An operation unit 78 (see FIG. 9) for a user to perform various operations is provided in the vicinity of the steering handle 62B.
 機体部62の下部には、トラクタ9のシャーシ65が設けられている。当該シャーシ65は、機体フレーム65A、トランスミッション65B、フロントアクスル65Cおよびリアアクスル65D等を含んでいる。 A chassis 65 of the tractor 9 is provided at the lower part of the machine body 62. The chassis 65 includes a body frame 65A, a transmission 65B, a front axle 65C, a rear axle 65D, and the like.
 機体フレーム65Aは、トラクタ9の前部における支持部材であって、直接、または防振部材等を介してエンジン64を支持している。トランスミッション65Bは、エンジン64からの動力を変化させてフロントアクスル65Cおよびリアアクスル65Dに伝達する。フロントアクスル65Cは、トランスミッション65Bから入力された動力を各前輪63Aに伝達する。リアアクスル65Dは、トランスミッション65Bから入力された動力を各後輪63Bに伝達する。 The fuselage frame 65A is a support member at the front portion of the tractor 9, and supports the engine 64 directly or via a vibration isolation member or the like. Transmission 65B changes the power from engine 64 and transmits it to front axle 65C and rear axle 65D. The front axle 65C transmits the power input from the transmission 65B to each front wheel 63A. The rear axle 65D transmits the power input from the transmission 65B to each rear wheel 63B.
 耕耘機61は、昇降リンク機構66を介して機体部62の後方に連結されている。機体部62の後部には、エンジン64の駆動力を耕耘機61に出力するためのPTO軸67と、耕耘機61を昇降駆動するための一対の昇降シリンダ88(図9参照)とが配置されている。PTO軸67には、トランスミッション65Bを介して、エンジン64の駆動力が伝達される。 The cultivator 61 is connected to the rear of the machine part 62 through a lifting link mechanism 66. A PTO shaft 67 for outputting the driving force of the engine 64 to the cultivator 61 and a pair of elevating cylinders 88 (see FIG. 9) for driving the cultivator 61 up and down are arranged at the rear part of the body unit 62. ing. The driving force of the engine 64 is transmitted to the PTO shaft 67 via the transmission 65B.
 耕耘機61は、ロータリー69と、ロータリー69を上方から覆うロータリーカバー70と、ロータリー69を後方から覆うリアカバー71とを含む。ロータリー69は、PTO軸67の駆動力が伝達されることによって回転する。リアカバー71は、ロータリーカバー70にヒンジを介して連結されている。リアカバー71は、図7では圃場Fの表面(田面)よりも上方に位置しているが、トラクタ9の走行中において田面に接触しており、ロータリー69よりも進行方向の後側で田面を均平化する。 The cultivator 61 includes a rotary 69, a rotary cover 70 that covers the rotary 69 from above, and a rear cover 71 that covers the rotary 69 from behind. The rotary 69 rotates when the driving force of the PTO shaft 67 is transmitted. The rear cover 71 is connected to the rotary cover 70 via a hinge. The rear cover 71 is positioned above the surface (field surface) of the field F in FIG. 7, but is in contact with the field surface while the tractor 9 is traveling, and the field surface is leveled behind the rotary 69 in the traveling direction. Flatten.
 昇降リンク機構66は、左右一対のトップリンク66Aおよび左右一対のロアリンク66Bからなる三点リンク構造により構成されている。一対のトップリンク66Aは、車幅方向WDに互いに間隔を隔てて設けられている。同様に、一対のロアリンク66Bは、車幅方向WDに互いに間隔を隔てて設けられている。 The elevating link mechanism 66 has a three-point link structure including a pair of left and right top links 66A and a pair of left and right lower links 66B. The pair of top links 66A are provided in the vehicle width direction WD at a distance from each other. Similarly, the pair of lower links 66B are provided at a distance from each other in the vehicle width direction WD.
 三点リンク機構には、昇降シリンダ88(図9参照)が連結されている。昇降シリンダ88を伸縮動作させることによって、耕耘機61の全体を昇降させることができる。 The elevating cylinder 88 (see FIG. 9) is connected to the three-point link mechanism. The entire tiller 61 can be raised and lowered by extending and retracting the lifting cylinder 88.
 また、各ロアリンク66Bには、水平制御シリンダ88A(図9参照)が設けられている。水平制御シリンダ88Aは、たとえば、油圧シリンダである。各水平制御シリンダ88Aを別々に伸縮動作させることによって、進行方向から見て機体部62に対して耕耘機61を傾斜させることができる。トラクタ9の走行中、リアカバー71は、ロータリーカバー70とロータリー69の昇降に応じてヒンジまわりに回動して、田面との接触を維持する。 Also, each lower link 66B is provided with a horizontal control cylinder 88A (see FIG. 9). The horizontal control cylinder 88A is, for example, a hydraulic cylinder. By individually extending and contracting each horizontal control cylinder 88A, the cultivator 61 can be tilted with respect to the body portion 62 as viewed from the traveling direction. While the tractor 9 is traveling, the rear cover 71 rotates around the hinge in accordance with the elevation of the rotary cover 70 and the rotary 69 to maintain contact with the rice field.
 図9は、トラクタ9の電気的構成を示すブロック図である。図9を参照して、トラクタ9は、トラクタ9に備えられた各部の動作を制御するための制御部75を備える。 FIG. 9 is a block diagram showing an electrical configuration of the tractor 9. Referring to FIG. 9, tractor 9 includes a control unit 75 for controlling the operation of each unit included in tractor 9.
 制御部75には、位置情報取得部76、通信部77、操作部78および慣性計測装置79が電気的に接続されている。位置情報取得部76には、車幅方向の略中央に位置する衛星信号受信用アンテナ80が受信した測位信号が入力される。位置情報取得部76、衛星信号受信用アンテナ80、通信部77および慣性計測装置79は、それぞれ、コンバイン8に設けられた位置情報取得部31、衛星信号受信用アンテナ32、通信部33および慣性計測装置45と同様の構成であるため、それらの説明を省略する。 The control unit 75 is electrically connected to a position information acquisition unit 76, a communication unit 77, an operation unit 78, and an inertial measurement device 79. The positioning information received by the satellite signal receiving antenna 80 located approximately in the center in the vehicle width direction is input to the position information acquisition unit 76. The position information acquisition unit 76, the satellite signal receiving antenna 80, the communication unit 77, and the inertial measurement device 79 are the position information acquisition unit 31, the satellite signal receiving antenna 32, the communication unit 33, and the inertial measurement provided in the combine 8, respectively. Since it is the same structure as the apparatus 45, those description is abbreviate | omitted.
 制御部75には、トラクタ9の各部を制御するための複数のコントローラのそれぞれが電気的に接続されている。複数のコントローラは、エンジンコントローラ81、車速コントローラ82、操向コントローラ83、昇降コントローラ84、姿勢コントローラ84AおよびPTOコントローラ85を含む。エンジンコントローラ81は、コンバイン8のエンジンコントローラ35と同様の構成であるため、その説明を省略する。エンジンコントローラ81は、コンバイン8のコモンレール装置39と同様の構成のコモンレール装置81Aと電気的に接続されている。 The controller 75 is electrically connected to each of a plurality of controllers for controlling each part of the tractor 9. The plurality of controllers includes an engine controller 81, a vehicle speed controller 82, a steering controller 83, a lift controller 84, an attitude controller 84 </ b> A and a PTO controller 85. Since the engine controller 81 has the same configuration as the engine controller 35 of the combine 8, description thereof is omitted. The engine controller 81 is electrically connected to a common rail device 81 </ b> A having the same configuration as the common rail device 39 of the combine 8.
 車速コントローラ82は、トランスミッション65B(図7参照)を制御することによって、走行機体60の車速(トラクタ9の車速でもある)を制御するものである。トランスミッション65Bには、たとえば可動斜板式の油圧式無段変速装置である変速装置86が設けられている。 The vehicle speed controller 82 controls the vehicle speed of the traveling machine body 60 (also the vehicle speed of the tractor 9) by controlling the transmission 65B (see FIG. 7). The transmission 65B is provided with a transmission 86 that is, for example, a movable swash plate type hydraulic continuously variable transmission.
 操向コントローラ83は、自動走行中に前輪63Aの転舵角を制御するものである。具体的には、ステアリングハンドル62Bの回転軸(ステアリングシャフト)の中途部に操向アクチュエータ87が設けられている。操向コントローラ83は、ステアリングハンドル62Bの回転角が目標転舵角となるように操向アクチュエータ87を制御する。これにより、走行機体60の一対の前輪63Aの転舵角が制御される。 The steering controller 83 controls the turning angle of the front wheel 63A during automatic traveling. Specifically, a steering actuator 87 is provided in the middle of the rotating shaft (steering shaft) of the steering handle 62B. The steering controller 83 controls the steering actuator 87 so that the rotation angle of the steering handle 62B becomes the target turning angle. Thereby, the turning angle of the pair of front wheels 63A of the traveling machine body 60 is controlled.
 昇降コントローラ84には、昇降シリンダ88が電気的に接続されている。昇降コントローラ84に関連して、制御部75には、昇降センサ89およびリアカバーセンサ90が電気的に接続されている。姿勢コントローラ84Aには、水平制御シリンダ88Aが電気的に接続されている。 A lift cylinder 88 is electrically connected to the lift controller 84. In relation to the lift controller 84, a lift sensor 89 and a rear cover sensor 90 are electrically connected to the control unit 75. A horizontal control cylinder 88A is electrically connected to the attitude controller 84A.
 昇降センサ89は、機体部62に設けられた基準位置とロータリーカバー70の所定部(たとえば、リアカバーセンサ90が取り付けられている部分)との間の鉛直方向の距離を検出するためのセンサである。昇降センサ89は、たとえば、昇降シリンダ88の位置を検出するためのポテンショメータ等である。 The lift sensor 89 is a sensor for detecting a vertical distance between a reference position provided in the body part 62 and a predetermined part of the rotary cover 70 (for example, a part to which the rear cover sensor 90 is attached). . The lift sensor 89 is, for example, a potentiometer for detecting the position of the lift cylinder 88.
 リアカバーセンサ90は、ロータリーカバー70の前記所定部と田面FSとの間の鉛直方向の距離を検出するためのセンサである。リアカバーセンサ90は、たとえば、ロータリー69と一体的に昇降するロータリーカバー70に対するリアカバー71の回動角度を検出するポテンショメータ等である。 The rear cover sensor 90 is a sensor for detecting a vertical distance between the predetermined portion of the rotary cover 70 and the surface FS. The rear cover sensor 90 is, for example, a potentiometer that detects a rotation angle of the rear cover 71 with respect to the rotary cover 70 that moves up and down integrally with the rotary 69.
 トラクタ9の走行中、リアカバー71は、田面FSとの接触を維持した状態でロータリーカバー70およびロータリー69の昇降に応じて、ヒンジまわりに回動する。これによって、リアカバーセンサ90が検出する回動角度が変化する。そのため、リアカバーセンサ90でリアカバー71の回動角度を検出しながらロータリー69およびロータリーカバー70を昇降させることによって、田面FS(リアカバー71において田面FSと接触する部分)とロータリー69の下端部との間の鉛直方向の距離を所望の距離(ユーザが設定した距離)に調整することができる。 While the tractor 9 is traveling, the rear cover 71 rotates around the hinge in accordance with the elevation of the rotary cover 70 and the rotary 69 while maintaining contact with the surface FS. As a result, the rotation angle detected by the rear cover sensor 90 changes. Therefore, by raising and lowering the rotary 69 and the rotary cover 70 while detecting the rotation angle of the rear cover 71 by the rear cover sensor 90, the space between the surface FS (the portion of the rear cover 71 that contacts the surface FS) and the lower end of the rotary 69. Can be adjusted to a desired distance (a distance set by the user).
 昇降コントローラ84は、昇降センサ89およびリアカバーセンサ90の検出結果に基づいて、昇降シリンダ88を制御する。具体的には、昇降コントローラ84は、ロータリーカバー70の前記所定部(たとえば、リアカバーセンサ90が取り付けられている部分)が田面FSよりも所定距離だけ上方に位置するように昇降シリンダ88を制御する。 The elevating controller 84 controls the elevating cylinder 88 based on the detection results of the elevating sensor 89 and the rear cover sensor 90. Specifically, the elevating controller 84 controls the elevating cylinder 88 so that the predetermined portion of the rotary cover 70 (for example, a portion to which the rear cover sensor 90 is attached) is positioned above the surface FS by a predetermined distance. .
 姿勢コントローラ84Aは、進行方向から見て走行機体60が傾いている場合であっても、一対の水平制御シリンダ88Aを別々に制御して車幅方向WDの一方側と他方側とで耕耘機61の昇降度合を変化させることによって、耕耘機61の姿勢を水平姿勢に維持する。姿勢コントローラ84Aは、慣性計測装置79の検出結果に基づいて走行機体60の姿勢を判定する。 The posture controller 84A controls the pair of horizontal control cylinders 88A separately to cultivate the tiller 61 on one side and the other side in the vehicle width direction WD even when the traveling machine body 60 is tilted when viewed from the traveling direction. By changing the degree of raising and lowering, the posture of the tiller 61 is maintained in a horizontal posture. The attitude controller 84 </ b> A determines the attitude of the traveling machine body 60 based on the detection result of the inertial measurement device 79.
 PTOコントローラ85は、PTO軸67の回転を制御するものである。具体的には、トラクタ9は、PTO軸67への動力の伝達/遮断を切り換えるためのPTOクラッチ91を備えている。PTOコントローラ85は、制御部75から入力された制御信号に基づいてPTOクラッチ91を切り換えて、PTO軸67を介して耕耘機61を回転駆動したり、この回転駆動を停止させたりできる。 The PTO controller 85 controls the rotation of the PTO shaft 67. Specifically, the tractor 9 includes a PTO clutch 91 for switching between transmission / cutoff of power to the PTO shaft 67. The PTO controller 85 can switch the PTO clutch 91 based on the control signal input from the control unit 75 to rotate the cultivator 61 via the PTO shaft 67 or stop the rotation drive.
 制御部75は、CPUおよびメモリ(ROM、RAM等)を備えたマイクロコンピュータを含む。マイクロコンピュータは、メモリ(ROM)に記憶されている所定のプログラムを実行することによって、複数の機能処理部として機能する。機能処理部としては、耕盤距離取得部96と、表層距離取得部97と、耕盤深さ特定部98と、地図情報生成部99とが挙げられる。 The control unit 75 includes a microcomputer including a CPU and a memory (ROM, RAM, etc.). The microcomputer functions as a plurality of function processing units by executing a predetermined program stored in a memory (ROM). Examples of the function processing unit include a tillage distance acquisition unit 96, a surface layer distance acquisition unit 97, a tiller depth specification unit 98, and a map information generation unit 99.
 図10は、圃場Fを走行中のトラクタ9を進行方向から見たときの模式図である。図10に示すように車幅方向WDにおける一方側と他方側とで耕盤TLの高さが異なる場合には、進行方向から見てトラクタ9全体が傾いている。ここでは、車幅方向WDの一方側の走行部63が車幅方向WDの他方側の走行部63よりも下方に位置するように、トラクタ9が傾いているとする。 FIG. 10 is a schematic diagram when the tractor 9 traveling in the field F is viewed from the traveling direction. As shown in FIG. 10, when the height of the tillage TL is different between one side and the other side in the vehicle width direction WD, the entire tractor 9 is inclined as viewed from the traveling direction. Here, it is assumed that the tractor 9 is tilted so that the traveling portion 63 on one side in the vehicle width direction WD is positioned below the traveling portion 63 on the other side in the vehicle width direction WD.
 耕盤距離取得部96は、慣性計測装置79の検出結果に基づいて耕盤距離H3,H4を取得する。車幅方向WDの一方側の耕盤距離H3は、機体部62に設定された所定の基準位置Sを通る水平面HSと、車幅方向WDの一方側の走行部63(たとえば後輪63B)が耕盤TLに接地する接地点C3との間の鉛直方向の距離である。車幅方向WDの他方側の耕盤距離H4は、水平面HSと、車幅方向WDの他方側の走行部63(たとえば後輪63B)が耕盤TLに接地する接地点C4との間の鉛直方向の距離である。 The tiller distance acquisition unit 96 acquires the tiller distances H3 and H4 based on the detection result of the inertial measurement device 79. The tiller distance H3 on one side in the vehicle width direction WD is determined by the horizontal plane HS passing through a predetermined reference position S set in the body portion 62 and the traveling portion 63 (for example, the rear wheel 63B) on one side in the vehicle width direction WD. It is the distance in the vertical direction between the ground contact point C3 and the ground TL. The tiller distance H4 on the other side in the vehicle width direction WD is vertical between the horizontal plane HS and the ground contact point C4 at which the traveling portion 63 (for example, the rear wheel 63B) on the other side in the vehicle width direction WD contacts the tiller TL. The distance in the direction.
 具体的には、耕盤距離取得部96は、慣性計測装置79の検出結果に基づいて、トラクタ9の進行方向から見たときの水平方向に対する機体部62の傾斜角度θを取得する。そして、耕盤距離取得部96は、傾斜角度θと、予め設定されている基準高さTおよび基準幅Wとに基づいて、耕盤距離H3,H4を算出する。 Specifically, the tiller distance obtaining unit 96 obtains the inclination angle θ of the airframe unit 62 with respect to the horizontal direction when viewed from the traveling direction of the tractor 9 based on the detection result of the inertial measurement device 79. Then, the tillage distance acquisition unit 96 calculates the tillage distances H3 and H4 based on the inclination angle θ and the preset reference height T and reference width W.
 基準高さTは、トラクタ9の高さ方向HDにおける接地点C3,C4と傾斜面ISとの間の距離である。傾斜面ISは、基準位置Sを通り、トラクタ9の進行方向から見て水平面HSに対して傾斜角度θだけ傾斜した面である。基準幅Wは、トラクタ9の車幅方向WDにおける各走行部63と基準位置Sとの間の距離である。 The reference height T is a distance between the contact points C3 and C4 and the inclined surface IS in the height direction HD of the tractor 9. The inclined surface IS is a surface that passes through the reference position S and is inclined by an inclination angle θ with respect to the horizontal plane HS when viewed from the traveling direction of the tractor 9. The reference width W is a distance between each traveling unit 63 and the reference position S in the vehicle width direction WD of the tractor 9.
 この場合、車幅方向WDの一方側の耕盤距離H3は、基準高さTと基準幅Wにtanθを乗じた距離との和に、cosθを乗じた距離である(H3=(T+W・tanθ)cosθ)。車幅方向WDの他方側の耕盤距離H4は、基準高さTと基準幅Wにtanθを乗じた距離との差に、cosθを乗じた距離である(H4=(T-W・tanθ)cosθ)。 In this case, the tiller distance H3 on one side in the vehicle width direction WD is a distance obtained by multiplying the sum of the reference height T and the reference width W by tan θ by cos θ (H3 = (T + W · tan θ ) Cos θ). The tiller distance H4 on the other side in the vehicle width direction WD is a distance obtained by multiplying the difference between the reference height T and the reference width W by tan θ by cos θ (H4 = (TW · tan θ)). cos θ).
 表層距離取得部97は、昇降センサ89およびリアカバーセンサ90の検出結果に基づいて表層距離jを取得する。詳しくは、表層距離jは、田面FSからロータリーカバー70の所定部(たとえば、リアカバーセンサ90が取り付けられている部分)との間の鉛直距離B1と、当該所定部と基準位置Sとの間の鉛直距離B2との和である(j=B1+B2)。 The surface layer distance acquisition unit 97 acquires the surface layer distance j based on the detection results of the elevation sensor 89 and the rear cover sensor 90. Specifically, the surface layer distance j is a vertical distance B1 between the surface FS and a predetermined portion of the rotary cover 70 (for example, a portion to which the rear cover sensor 90 is attached), and between the predetermined portion and the reference position S. It is the sum of the vertical distance B2 (j = B1 + B2).
 なお、前述したように、田面FSとロータリー69の下端部との間の鉛直方向の距離は、ユーザによって設定される。そのため、表層距離取得部97は、基準位置Sとロータリー69の下端部との間の鉛直方向の距離と、田面FSとロータリー69の下端部との間の鉛直方向の距離との差分から表層距離jを算出することもできる。 As described above, the vertical distance between the rice field FS and the lower end of the rotary 69 is set by the user. Therefore, the surface layer distance acquisition unit 97 determines the surface layer distance from the difference between the vertical distance between the reference position S and the lower end portion of the rotary 69 and the vertical distance between the field surface FS and the lower end portion of the rotary 69. j can also be calculated.
 耕盤深さ特定部98は、耕盤距離H3,H4および表層距離jに基づいて、車幅方向WDの一方側における圃場Fの耕盤TLの深さ情報(一方側耕盤深さD3)と、車幅方向WDの他方側における圃場Fの耕盤TLの深さ情報(他方側耕盤深さD4)とを特定する。一方側耕盤深さD3は、車幅方向WDの一方側の耕盤距離H3と、表層距離jとの差分である(D3=H3-j)。他方側耕盤深さD4は、車幅方向WDの他方側の耕盤距離H4と、表層距離jとの差分である(D4=H4-j)。 The cultivator depth specifying unit 98, based on the cultivator distances H3 and H4 and the surface layer distance j, depth information of the cultivator TL of the field F on one side in the vehicle width direction WD (one side cultivator depth D3). And the depth information (the other side cultivation board depth D4) of the cultivation board TL of the field F in the other side of the vehicle width direction WD is specified. The one-side tiller depth D3 is the difference between the one-side tiller distance H3 in the vehicle width direction WD and the surface layer distance j (D3 = H3-j). The other side tilling depth D4 is a difference between the other side tilling distance H4 in the vehicle width direction WD and the surface layer distance j (D4 = H4-j).
 トラクタ9が圃場Fの全域を走行し終えると、圃場F内の各地点における位置情報が位置情報取得部76によって取得され、圃場F内の各特定地点Pにおける耕盤深さD3,D4が耕盤深さ特定部98によって特定される。 When the tractor 9 finishes traveling all over the field F, the position information at each point in the field F is acquired by the position information acquisition unit 76, and the tillage depths D3 and D4 at each specific point P in the field F are plowed. It is specified by the board depth specifying unit 98.
 このように、耕盤深さ特定部98は、特定地点Pにおける機体部62の姿勢制御情報(慣性計測装置79の検出結果)と、特定地点Pにおける耕耘機61の姿勢制御情報(昇降センサ89およびリアカバーセンサ90の検出結果)とに基づいて、耕盤深さD3,D4を特定する。 As described above, the tiller depth specifying unit 98 includes the attitude control information (detection result of the inertial measurement device 79) of the airframe unit 62 at the specific point P and the attitude control information (elevating sensor 89) of the tiller 61 at the specific point P. And the detection result of the rear cover sensor 90), the tillage depths D3 and D4 are specified.
 地図情報生成部99は、位置情報取得部76によって取得された圃場F内の各特定地点Pにおける位置情報と、耕盤深さ特定部98によって特定された圃場F内の各特定地点Pにおける耕盤深さD3,D4とが対応付けられた地図情報を生成する。生成される地図情報は、第1作業車両3としてコンバイン8を用いた場合と同様であるため、詳しい説明を省略する。 The map information generation unit 99 includes the position information at each specific point P in the field F acquired by the position information acquisition unit 76 and the plowing at each specific point P in the field F specified by the tiller depth specifying unit 98. Map information in which the board depths D3 and D4 are associated is generated. Since the generated map information is the same as when the combine 8 is used as the first work vehicle 3, detailed description thereof is omitted.
 図9を参照して、制御部75には、記憶部92が接続されている。記憶部92は、ハードディスク、不揮発性メモリ等の記憶デバイスから構成されている。記憶部92は、トラクタ9の位置情報を記憶する位置情報記憶部93と、耕盤深さ特定部98によって特定された圃場F内の各特定地点Pにおける耕盤深さD3,D4を記憶する耕盤深さ記憶部94と、地図情報生成部99によって生成された地図情報を記憶する地図情報記憶部95とを含む。 Referring to FIG. 9, a storage unit 92 is connected to the control unit 75. The storage unit 92 includes a storage device such as a hard disk or a nonvolatile memory. The storage unit 92 stores the position information storage unit 93 that stores the position information of the tractor 9 and the cultivation depths D3 and D4 at each specific point P in the field F identified by the cultivation table depth identification unit 98. A cultivator depth storage unit 94 and a map information storage unit 95 that stores the map information generated by the map information generation unit 99 are included.
 第1作業車両3がトラクタ9である場合、第1作業車両3がコンバイン8である場合と同様の効果を奏する。 When the first work vehicle 3 is the tractor 9, the same effects as when the first work vehicle 3 is the combine 8 are obtained.
 ただし、トラクタ9の一対の走行部63は伸縮可能ではない。その代わり、トラクタ9では、耕盤距離取得部96が、前記情報取得用車両の進行方向から見たときの機体部62の傾斜角度θと、予め設定されている基準高さTおよび基準幅Wとに基づいて耕盤距離H3,H4を特定するように構成されている。そのため、車幅方向WDにおいて耕盤深さが異なる地点を走行する際に機体部62が傾くように構成されたトラクタ9のような車両を第1作業車両3として用いる場合であっても、耕盤深さD3,D4を正確に特定することができる。 However, the pair of running parts 63 of the tractor 9 are not extendable. Instead, in the tractor 9, the tiller distance acquisition unit 96 has an inclination angle θ of the airframe unit 62 when viewed from the traveling direction of the information acquisition vehicle, and a preset reference height T and reference width W. Based on the above, the tiller distances H3 and H4 are specified. Therefore, even when a vehicle such as the tractor 9 configured such that the body portion 62 is inclined when traveling at a point where the cultivating depth is different in the vehicle width direction WD is used as the first work vehicle 3, The board depths D3 and D4 can be specified accurately.
 次に、図1に示す第1作業車両3が田植機10である場合を例に説明する。図11は、第1作業車両3としての田植機10の側面図である。図12は、田植機10の平面図である。 Next, the case where the first work vehicle 3 shown in FIG. 1 is the rice transplanter 10 will be described as an example. FIG. 11 is a side view of the rice transplanter 10 as the first work vehicle 3. FIG. 12 is a plan view of the rice transplanter 10.
 図11および図12を参照して、田植機10は、圃場F内を走行しながら、圃場Fの地面に苗を植え付ける植付作業を行う。田植機10は、走行機体100と、走行機体100の後方に配置された植付部101とを備える。 Referring to FIG. 11 and FIG. 12, the rice transplanter 10 performs a planting operation for planting seedlings on the ground of the field F while traveling in the field F. The rice transplanter 10 includes a traveling machine body 100 and a planting unit 101 disposed behind the traveling machine body 100.
 走行機体100は、機体部102(第1機体部)と、機体部102を支持し車幅方向WD(機体部102の幅方向)に互いに間隔を隔てて設けられた一対の走行部103とを備えている。各走行部103は、前輪103Aおよび後輪103Bを含む。走行機体100は、エンジン104の駆動力によって走行可能である。植付部101は、第1機体部に支持された第1作業部の一例である。 The traveling aircraft 100 includes an aircraft 102 (first aircraft) and a pair of traveling units 103 that support the aircraft 102 and are spaced apart from each other in the vehicle width direction WD (the width of the aircraft 102). I have. Each traveling unit 103 includes a front wheel 103A and a rear wheel 103B. The traveling machine body 100 can travel with the driving force of the engine 104. The planting unit 101 is an example of a first working unit supported by the first airframe unit.
 走行機体100の機体部102は、ユーザが搭乗するための運転座席102Aと、走行機体100の操舵を行うためのステアリングハンドル102Bとを含む。ステアリングハンドル102Bの近傍には、ユーザが各種操作を行うための操作部123(図13参照)が設けられている。 The airframe unit 102 of the traveling machine body 100 includes a driver seat 102A for the user to board and a steering handle 102B for steering the traveling machine body 100. In the vicinity of the steering handle 102B, an operation unit 123 (see FIG. 13) for a user to perform various operations is provided.
 機体部102は、トランスミッション105B、フロントアクスル105Cおよびリアアクスル105Dを含んでいる。トランスミッション105Bは、エンジン104からの動力を変化させてフロントアクスル105Cおよびリアアクスル105Dに伝達する。フロントアクスル105Cは、トランスミッション27から入力された動力を各前輪103Aに伝達する。リアアクスル105Dは、トランスミッション105Bから入力された動力を各後輪103Bに伝達する。 The aircraft unit 102 includes a transmission 105B, a front axle 105C, and a rear axle 105D. Transmission 105B changes the power from engine 104 and transmits it to front axle 105C and rear axle 105D. The front axle 105C transmits the power input from the transmission 27 to each front wheel 103A. The rear axle 105D transmits the power input from the transmission 105B to each rear wheel 103B.
 植付部101は、昇降リンク機構106を介して機体部102の後方に連結されている。機体部102の後部には、エンジン104の駆動力を植付部101に出力するためのPTO軸107と、植付部101を昇降駆動するための昇降シリンダ108とが配置されている。PTO軸107には、トランスミッション105Bを介して、エンジン104の駆動力が伝達される。 The planting part 101 is connected to the rear of the body part 102 via the lifting link mechanism 106. A PTO shaft 107 for outputting the driving force of the engine 104 to the planting unit 101 and an elevating cylinder 108 for driving the planting unit 101 up and down are disposed at the rear part of the body unit 102. The driving force of the engine 104 is transmitted to the PTO shaft 107 via the transmission 105B.
 昇降リンク機構106は、左右一対のトップリンク106Aおよび左右一対のロアリンク106Bからなる平行リンク構造により構成されている。図11には、一対のトップリンク106Aのうちの一方しか図示されていないが、一対のトップリンク106Aは、車幅方向WDに互いに間隔を隔てて設けられている。同様に、図11には、一対のロアリンク106Bのうちの一方しか図示されていないが、一対のロアリンク106Bは、車幅方向WDに互いに間隔を隔てて設けられている。 The elevating link mechanism 106 has a parallel link structure including a pair of left and right top links 106A and a pair of left and right lower links 106B. Although only one of the pair of top links 106A is shown in FIG. 11, the pair of top links 106A are provided at a distance from each other in the vehicle width direction WD. Similarly, only one of the pair of lower links 106B is shown in FIG. 11, but the pair of lower links 106B are provided at intervals in the vehicle width direction WD.
 平行リンク機構には、昇降シリンダ108が連結されている。この昇降シリンダ108を伸縮動作させることによって、植付部101の全体を昇降させることができる。 The elevating cylinder 108 is connected to the parallel link mechanism. The entire planting part 101 can be moved up and down by extending and retracting the lifting cylinder 108.
 植付部101は、地面に苗を植え付ける複数(本実施形態では4つ)の植付ユニット110と、植付ユニット110を駆動する植付入力ケース111と、苗マット(図示せず)が載置される苗載台112と、所定の回転中心(フロート支持軸)まわりに回転可能な複数のフロート113とを主に備えている。 The planting unit 101 includes a plurality of (four in this embodiment) planting units 110 for planting seedlings on the ground, a planting input case 111 for driving the planting unit 110, and a seedling mat (not shown). A seedling mounting table 112 to be placed and a plurality of floats 113 rotatable around a predetermined rotation center (float support shaft) are mainly provided.
 植付入力ケース111には、一対の昇降リンク機構106が連結されており、複数の植付ユニット110が取り付けられている。 A pair of elevating link mechanisms 106 are connected to the planting input case 111, and a plurality of planting units 110 are attached.
 各植付ユニット110は、植付伝動ケース115と、回転ケース116と、植付アーム117とを有するロータリ式植付装置である。各植付ユニット110の植付伝動ケース115には、回転ケース116が2つずつ取り付けられており、それぞれの回転ケース116には、植付アーム117が2つずつ取り付けられている。 Each planting unit 110 is a rotary planting device having a planting transmission case 115, a rotating case 116, and a planting arm 117. Two rotation cases 116 are attached to each of the planting transmission cases 115 of each planting unit 110, and two planting arms 117 are attached to each rotation case 116.
 植付入力ケース111は、PTO軸107からの駆動力が入力されることによって、植付ユニット110を駆動する。植付伝動ケース115には、植付入力ケース111から動力が伝動される。回転ケース116は、植付伝動ケース115からの動力で回転駆動される。これにより、植付アーム117の先端部は、ループ状の回転軌跡を描いて作動する。
植付アーム117の先端部には、植付爪117Aが設けられている。植付爪117Aは、植付アーム117の先端部が上から下へ向かって動くときに、苗載台112に載せられた苗マット(図示せず)から苗を掻き取って、苗を田面に植え込む。
The planting input case 111 drives the planting unit 110 when the driving force from the PTO shaft 107 is input. Power is transmitted from the planting input case 111 to the planting transmission case 115. The rotating case 116 is rotationally driven by the power from the planting transmission case 115. Thereby, the front-end | tip part of the planting arm 117 operates drawing a loop-shaped rotation locus | trajectory.
A planting claw 117 </ b> A is provided at the tip of the planting arm 117. The planting claws 117A scrape seedlings from a seedling mat (not shown) placed on the seedling mount 112 when the tip of the planting arm 117 moves from top to bottom, Implant.
 フロート113は、植付部101の下部に設けられている。フロート113が田面に接触することにより、苗を植え付ける前の田面が整地される。フロート113は、図11では圃場Fの表面(田面)よりも上方に位置しているが、田植機10の走行中、フロート113の下面と田面FSとの接触を維持する。 The float 113 is provided in the lower part of the planting part 101. When the float 113 is in contact with the paddy field, the paddy field before planting seedlings is leveled. The float 113 is located above the surface (field surface) of the field F in FIG. 11, but maintains contact between the lower surface of the float 113 and the field surface FS while the rice transplanter 10 is traveling.
 また、苗載台112を支持する支持フレーム(図示せず)には、ローリングシリンダ108A(図13参照)のシリンダロッド(図示せず)が連結されている。ローリングシリンダ108Aは、シリンダロッドを伸縮動作させることによって、所定の回動中心まわりに支持フレームを回動させる。これにより、進行方向から見て、機体部102に対して植付部101の全体を傾斜させることができる。 Also, a cylinder rod (not shown) of the rolling cylinder 108A (see FIG. 13) is connected to a support frame (not shown) that supports the seedling stage 112. The rolling cylinder 108A rotates the support frame around a predetermined rotation center by extending and contracting the cylinder rod. Thereby, the whole planting part 101 can be made to incline with respect to the body part 102 seeing from the advancing direction.
 図13は、田植機10の電気的構成を示すブロック図である。図13を参照して、田植機10は、田植機10に備えられた各部の動作を制御するための制御部120を備える。 FIG. 13 is a block diagram showing an electrical configuration of the rice transplanter 10. With reference to FIG. 13, the rice transplanter 10 is provided with the control part 120 for controlling operation | movement of each part with which the rice transplanter 10 was equipped.
 制御部120には、位置情報取得部121、通信部122、操作部123、慣性計測装置124、および複数のコントローラが電気的に接続されている。位置情報取得部121には、車幅方向WDの略中央に位置する衛星信号受信用アンテナ135が受信した測位信号が入力される。 The controller 120 is electrically connected to a position information acquisition unit 121, a communication unit 122, an operation unit 123, an inertial measurement device 124, and a plurality of controllers. The position information acquisition unit 121 receives a positioning signal received by the satellite signal receiving antenna 135 located substantially at the center in the vehicle width direction WD.
 位置情報取得部121、衛星信号受信用アンテナ135、通信部122および慣性計測装置124は、それぞれ、コンバイン8に設けられた位置情報取得部31、衛星信号受信用アンテナ32、通信部33および慣性計測装置45と同様の構成であるため、それらの説明を省略する。 The position information acquisition unit 121, the satellite signal receiving antenna 135, the communication unit 122, and the inertial measurement device 124 are respectively the position information acquisition unit 31, the satellite signal receiving antenna 32, the communication unit 33, and the inertial measurement provided in the combine 8. Since it is the same structure as the apparatus 45, those description is abbreviate | omitted.
 複数のコントローラは、田植機10の各部を制御するためのものである。複数のコントローラは、エンジンコントローラ125、車速コントローラ126、操向コントローラ127、昇降コントローラ128、姿勢コントローラ128AおよびPTOコントローラ129を含む。エンジンコントローラ125、車速コントローラ126、操向コントローラ127およびPTOコントローラ129には、それぞれ、コモンレール装置130、変速装置131、操向アクチュエータ132およびPTOクラッチ129Aが電気的に接続されている。 The multiple controllers are for controlling each part of the rice transplanter 10. The plurality of controllers include an engine controller 125, a vehicle speed controller 126, a steering controller 127, a lift controller 128, an attitude controller 128A, and a PTO controller 129. A common rail device 130, a transmission 131, a steering actuator 132, and a PTO clutch 129A are electrically connected to the engine controller 125, the vehicle speed controller 126, the steering controller 127, and the PTO controller 129, respectively.
 エンジンコントローラ125、車速コントローラ126、操向コントローラ127、PTOコントローラ129、コモンレール装置130、変速装置131、操向アクチュエータ132およびPTOクラッチ129Aは、それぞれ、トラクタ9に設けられたエンジンコントローラ81、車速コントローラ82、操向コントローラ83、PTOコントローラ85、コモンレール装置81A、変速装置86、操向アクチュエータ87およびPTOクラッチ91と同様の構成であるため、それらの説明を省略する。 The engine controller 125, the vehicle speed controller 126, the steering controller 127, the PTO controller 129, the common rail device 130, the transmission 131, the steering actuator 132, and the PTO clutch 129A are respectively an engine controller 81 and a vehicle speed controller 82 provided in the tractor 9. The steering controller 83, the PTO controller 85, the common rail device 81A, the transmission 86, the steering actuator 87, and the PTO clutch 91 are the same in configuration, and the description thereof is omitted.
 昇降コントローラ128には、昇降シリンダ108が電気的に接続されている。昇降コントローラ128に関連して、制御部120には、昇降センサ133およびフロート角検出センサ134が電気的に接続されている。姿勢コントローラ128Aには、ローリングシリンダ108Aが電気的に接続されている。 A lift cylinder 108 is electrically connected to the lift controller 128. In relation to the lift controller 128, a lift sensor 133 and a float angle detection sensor 134 are electrically connected to the control unit 120. A rolling cylinder 108A is electrically connected to the attitude controller 128A.
 昇降センサ133は、機体部102に設けられた基準位置とフロート113の回転中心との間の鉛直距離を検出するためのセンサである。昇降センサ133は、たとえば、昇降シリンダ108の位置を検出するポテンショメータ等である。 The elevating sensor 133 is a sensor for detecting a vertical distance between a reference position provided in the airframe unit 102 and the rotation center of the float 113. The lift sensor 133 is, for example, a potentiometer that detects the position of the lift cylinder 108.
 フロート角検出センサ134は、フロート113の回転中心と田面FSとの鉛直方向の距離を検出するためのセンサである。フロート角検出センサ134は、たとえば、フロート113の回動角度を検出するポテンショメータ等である。 The float angle detection sensor 134 is a sensor for detecting the vertical distance between the rotation center of the float 113 and the field surface FS. The float angle detection sensor 134 is, for example, a potentiometer that detects the rotation angle of the float 113.
 フロート113の回転中心は、植付部101の昇降に応じて昇降する。田植機10の走行中、田面FSとフロート113の回転中心との鉛直距離が変化する。そのため、田植機10の走行中、フロート113と田面FSとの接触を維持するために、植付部101の昇降に応じてフロート113が回転中心まわりに回動する。これによって、フロート角検出センサ134が検出する回動角度が変化する。 Rotation center of the float 113 moves up and down according to the raising and lowering of the planting part 101. While the rice transplanter 10 is traveling, the vertical distance between the rice field FS and the rotation center of the float 113 changes. Therefore, in order to maintain the contact between the float 113 and the field surface FS while the rice transplanter 10 is traveling, the float 113 rotates around the center of rotation according to the raising and lowering of the planting unit 101. As a result, the rotation angle detected by the float angle detection sensor 134 changes.
 そのため、フロート角検出センサ134でフロート113の回動角度を検出しながら植付部101を昇降させることによって、田面FS(フロート113において田面FSと接触する部分)と植付爪117Aの回転軌跡の下端(植付位置)との間の鉛直方向の距離を所望の距離(ユーザが設定した距離)に調整することができる。田面FSと植付爪117Aの回転軌跡の下端との間の鉛直方向の距離を、植付深さという。 Therefore, by raising and lowering the planting part 101 while detecting the rotation angle of the float 113 by the float angle detection sensor 134, the rotation trajectory of the field surface FS (the part in contact with the field surface FS in the float 113) and the planting claw 117A. The vertical distance from the lower end (planting position) can be adjusted to a desired distance (a distance set by the user). The vertical distance between the field surface FS and the lower end of the rotation trajectory of the planting claw 117A is referred to as planting depth.
 昇降コントローラ128は、昇降センサ133およびフロート角検出センサ134の検出結果に基づいて、昇降シリンダ108を制御する。具体的には、昇降コントローラ128は、フロート113に対する植付爪117Aの高さが所定の位置に位置するように昇降シリンダ108を制御する。 The lift controller 128 controls the lift cylinder 108 based on the detection results of the lift sensor 133 and the float angle detection sensor 134. Specifically, the elevating controller 128 controls the elevating cylinder 108 so that the height of the planting claw 117A with respect to the float 113 is located at a predetermined position.
 姿勢コントローラ128Aは、進行方向から見て走行機体100が傾いている場合であっても、ローリングシリンダ108Aを回動させることによって、植付部101の姿勢を水平姿勢に維持する。姿勢コントローラ128Aは、慣性計測装置124の検出結果に基づいて走行機体100の姿勢を判定する。 The posture controller 128A maintains the posture of the planting unit 101 in a horizontal posture by rotating the rolling cylinder 108A even when the traveling machine body 100 is tilted when viewed from the traveling direction. The attitude controller 128 </ b> A determines the attitude of the traveling machine body 100 based on the detection result of the inertial measurement device 124.
 制御部120は、CPUおよびメモリ(ROM、RAM等)を備えたマイクロコンピュータを含む。マイクロコンピュータは、メモリ(ROM)に記憶されている所定のプログラムを実行することによって、複数の機能処理部として機能する。機能処理部としては、耕盤距離取得部136、表層距離取得部137、耕盤深さ特定部138および地図情報生成部139が挙げられる。 The control unit 120 includes a microcomputer including a CPU and a memory (ROM, RAM, etc.). The microcomputer functions as a plurality of function processing units by executing a predetermined program stored in a memory (ROM). Examples of the function processing unit include a tillage distance acquisition unit 136, a surface layer distance acquisition unit 137, a tillage depth specification unit 138, and a map information generation unit 139.
 耕盤距離取得部136、表層距離取得部137、耕盤深さ特定部138および地図情報生成部139は、それぞれ、トラクタ9の制御部75に設けられた耕盤距離取得部96、表層距離取得部97、耕盤深さ特定部98および地図情報生成部99と同様の機能を果たす。 The cultivator distance acquisition unit 136, the surface layer distance acquisition unit 137, the cultivator depth specification unit 138, and the map information generation unit 139 are a cultivator distance acquisition unit 96 and a surface layer distance acquisition provided in the control unit 75 of the tractor 9, respectively. Functions similar to those of the unit 97, the tiller depth specifying unit 98, and the map information generating unit 99 are performed.
 ただし、表層距離取得部137は、昇降センサ133およびフロート角検出センサ134に基づいて表層距離jを特定する。表層距離jは、田面FSとフロート113の回転中心との間の距離と、フロート113の回転中心と基準位置Sとの間の距離との和である。 However, the surface layer distance acquisition unit 137 specifies the surface layer distance j based on the elevation sensor 133 and the float angle detection sensor 134. The surface layer distance j is the sum of the distance between the surface FS and the rotation center of the float 113 and the distance between the rotation center of the float 113 and the reference position S.
 前述したように、田植機10では、植付深さ(田面FSと植付爪117Aの回転軌跡の下端との間の鉛直距離)は、ユーザによって設定される。そのため、表層距離取得部137は、基準位置Sと植付爪117Aとの間の鉛直距離と植付深さとの差分から表層距離jを取得してもよい。 As described above, in the rice transplanter 10, the planting depth (vertical distance between the field surface FS and the lower end of the rotation trajectory of the planting claw 117A) is set by the user. Therefore, the surface layer distance acquisition unit 137 may acquire the surface layer distance j from the difference between the vertical distance between the reference position S and the planting claw 117A and the planting depth.
 第1作業車両3が田植機10である場合、耕盤深さ特定部138は、特定地点Pにおける機体部102の姿勢制御情報(慣性計測装置124の検出結果)と、特定地点Pにおける植付部101の姿勢制御情報(昇降センサ132の検出結果およびフロート角検出センサ134の検出結果)とに基づいて、耕盤深さD3,D4を特定する。 When the first work vehicle 3 is the rice transplanter 10, the tiller depth specifying unit 138 has the attitude control information (detection result of the inertial measurement device 124) of the machine unit 102 at the specific point P and the planting at the specific point P. Based on the attitude control information of the unit 101 (the detection result of the lift sensor 132 and the detection result of the float angle detection sensor 134), the tillage depths D3 and D4 are specified.
 制御部120には、記憶部140が接続されている。記憶部140は、ハードディスク、不揮発性メモリ等の記憶デバイスから構成されている。記憶部140は、田植機10の位置情報を記憶する位置情報記憶部141と、耕盤深さ特定部138によって特定された圃場F内の各地点における耕盤深さを記憶する耕盤深さ記憶部142と、地図情報生成部139によって生成された地図情報を記憶する地図情報記憶部143とを含む。 A storage unit 140 is connected to the control unit 120. The storage unit 140 includes a storage device such as a hard disk or a nonvolatile memory. The storage unit 140 stores a position information storage unit 141 that stores the position information of the rice transplanter 10, and a cultivation pad depth that stores the cultivation pad depth at each point in the field F specified by the cultivation board depth identification unit 138. A storage unit 142 and a map information storage unit 143 that stores the map information generated by the map information generation unit 139 are included.
 第1作業車両3が田植機10である場合、第1作業車両3がトラクタ9である場合と同様の効果を奏する。 When the 1st work vehicle 3 is the rice transplanter 10, there exists an effect similar to the case where the 1st work vehicle 3 is the tractor 9.
 地図情報生成システム1において、第1作業車両3がトラクタ9である場合、昇降コントローラ84は、慣性計測装置79の検出結果に基づいて耕耘機61の姿勢を水平に制御するとしたが、慣性計測装置79の検出結果を用いずに、耕耘機61に設けられた角速度センサ(水平制御装置)によって耕耘機61の姿勢を水平に制御してもよい。第1作業車両3が田植機10である場合でも同様に、植付部101に設けられた角速度センサ(水平制御装置)によって植付部101の姿勢が水平に制御されてもよい。 In the map information generation system 1, when the first work vehicle 3 is the tractor 9, the lifting controller 84 controls the attitude of the tiller 61 horizontally based on the detection result of the inertial measurement device 79. Instead of using the detection result 79, the attitude of the tiller 61 may be controlled horizontally by an angular velocity sensor (horizontal control device) provided in the tiller 61. Similarly, when the first work vehicle 3 is the rice transplanter 10, the attitude of the planting unit 101 may be controlled horizontally by an angular velocity sensor (horizontal control device) provided in the planting unit 101.
 地図情報生成システム1によって生成された地図情報は、たとえば、地図情報を取得した圃場で次に農作業を行うまでに行う圃場改善作業や肥培管理支援に利用される。圃場改善作業の一例としては、圃場において耕盤深さが大きい部分に砂利等の土壌改良資材を投入する作業が挙げられる。肥培管理支援とは、圃場において耕盤深さが大きい部分を減肥する作業が挙げられる。耕盤深さが大きい部分を減肥することによって、倒伏を抑制することができる。 The map information generated by the map information generation system 1 is used for, for example, field improvement work and fertilization management support performed until the next farm work is performed in the field from which the map information has been acquired. As an example of the field improvement work, there is a work of putting soil improvement materials such as gravel into a portion where the depth of the cultivator is large in the field. The fertilizer management support includes an operation of reducing fertilizer in a portion where the depth of the cultivator is large in the field. Lodging can be suppressed by reducing the amount of fertilizer in the portion where the depth of the cultivator is large.
 また、地図情報生成システム1によって生成された地図情報は、以下に説明するような作業支援システム2による作業支援に利用される。作業支援システム2の第2作業車両4としては、コンバイン、トラクタ、および田植機等を用いることができる。 Further, the map information generated by the map information generation system 1 is used for work support by the work support system 2 as described below. As the second work vehicle 4 of the work support system 2, a combine, a tractor, a rice transplanter, or the like can be used.
 第2作業車両4として用いられるコンバイン、トラクタ、および田植機の構成は、それぞれ、第1作業車両3として用いられるコンバイン8、トラクタ9、および田植機10とほぼ同様である。コンバイン8、トラクタ9、および田植機10は、第2機体部(機体部19,62,102)と、第2機体部に対して昇降可能に支持され圃場Fで作業を行う第2作業部(刈取部17、耕耘機61、植付部101)とを有する。 The configurations of the combine, the tractor, and the rice transplanter used as the second work vehicle 4 are substantially the same as the combine 8, the tractor 9, and the rice transplanter 10 used as the first work vehicle 3, respectively. The combine 8, the tractor 9, and the rice transplanter 10 are a second machine part ( machine parts 19, 62, 102) and a second work part that is supported by the second machine part so as to be movable up and down and works on the field F ( A cutting unit 17, a cultivator 61, and a planting unit 101).
 たとえば、作業支援システム2は、地図情報に基づいて特定された報知対象位置と第2作業車両4の位置情報とに基づいて、第2作業車両4が報知対象位置に至る前に所定の報知を行う報知処理を実行することができる。図14は、地図情報に特定された報知対象位置NTおよび報知位置NPを示す模式図である。 For example, the work support system 2 performs a predetermined notification before the second work vehicle 4 reaches the notification target position based on the notification target position specified based on the map information and the position information of the second work vehicle 4. The notification process to be performed can be executed. FIG. 14 is a schematic diagram showing the notification target position NT and the notification position NP specified in the map information.
 第2作業車両4がトラクタ9である場合には、報知対象位置NTは、たとえば、耕盤深さが急激に変化する位置である。第2作業車両4が報知対象位置NTに近づいたか否かは、第2作業車両4の進行方向において報知対象位置NTから所定距離手前の報知位置NPに第2作業車両4が至ったか否かに基づいて判定される。所定の報知とは、たとえば、第2作業車両4に搭載されたモニターや無線通信端末7(図1参照)に表示される警告表示や、第2作業車両4または無線通信端末7から発せられる警告音声等である。 When the second work vehicle 4 is the tractor 9, the notification target position NT is, for example, a position where the tiller depth changes abruptly. Whether or not the second work vehicle 4 has approached the notification target position NT depends on whether or not the second work vehicle 4 has reached the notification position NP a predetermined distance before the notification target position NT in the traveling direction of the second work vehicle 4. Based on the determination. The predetermined notification is, for example, a warning displayed on a monitor mounted on the second work vehicle 4 or the wireless communication terminal 7 (see FIG. 1), or a warning issued from the second work vehicle 4 or the wireless communication terminal 7. Such as voice.
 図15は、このような報知処理の一例を示すフローチャートである。まず、第2作業車両4は、第2作業車両4の現在位置を取得する(ステップS1)。そして、第2作業車両4は、第2作業車両4の現在位置が報知位置NPであるか否かを判定する(ステップS2)。第2作業車両4の現在位置が報知位置NPである場合には(ステップS2:YES)、第2作業車両4は、ユーザへの報知を開始する(ステップS3)。ユーザへの報知が開始されると、第2作業車両4は、ステップS1に戻る。 FIG. 15 is a flowchart showing an example of such notification processing. First, the second work vehicle 4 acquires the current position of the second work vehicle 4 (step S1). Then, the second work vehicle 4 determines whether or not the current position of the second work vehicle 4 is the notification position NP (step S2). When the current position of the second work vehicle 4 is the notification position NP (step S2: YES), the second work vehicle 4 starts notification to the user (step S3). When the notification to the user is started, the second work vehicle 4 returns to step S1.
 第2作業車両4の現在位置が報知位置NPでない場合には(ステップS2:NO)、第2作業車両4は、現在報知中である否かを判定する(ステップS4)。現在報知中でない場合には(ステップS4:NO)、第2作業車両4は、ステップS1に戻る。 If the current position of the second work vehicle 4 is not the notification position NP (step S2: NO), the second work vehicle 4 determines whether or not it is currently informing (step S4). If not currently informing (step S4: NO), the second work vehicle 4 returns to step S1.
 現在報知中である場合には(ステップS4:YES)、第2作業車両4は、報知対象位置NTを通過したか否かを判定する(ステップS5)。第2作業車両4が報知対象位置NTを通過していない場合には(ステップS5:NO)、第2作業車両4は、ステップS1に戻る。第2作業車両4が報知対象位置NTを通過した場合には(ステップS5:YES)、第2作業車両4は、ユーザへの報知を終了し(ステップS6)、ステップS1に戻る。 If currently informing (step S4: YES), the second work vehicle 4 determines whether or not it has passed the notification target position NT (step S5). When the second work vehicle 4 has not passed the notification target position NT (step S5: NO), the second work vehicle 4 returns to step S1. When the second work vehicle 4 has passed the notification target position NT (step S5: YES), the second work vehicle 4 ends the notification to the user (step S6) and returns to step S1.
 報知対象位置NTに近づいたことがユーザに報知されることで、ユーザは、第2作業車両4が報知対象位置NTに至る前に、報知対象位置NTに適した作業の準備をすることができる。たとえば、第2作業車両4がトラクタ9である場合には、耕耘機61の高さ位置を変化させて、耕盤TLと耕耘機61との接触を回避することができる。これにより、作業支援の質の向上を図ることができる。 By notifying the user that the user has approached the notification target position NT, the user can prepare for work suitable for the notification target position NT before the second work vehicle 4 reaches the notification target position NT. . For example, when the second work vehicle 4 is the tractor 9, the height position of the cultivator 61 can be changed to avoid contact between the cultivator TL and the cultivator 61. Thereby, the quality of work support can be improved.
 報知対象位置NTは、特定(単一)の座標ではなく、特定の範囲(二つの座標間の領域)であってもよい。この場合、ステップS5において当該特定の範囲を通過した場合に(ステップS5:YES)には、第2作業車両4は、ステップS6に移行する。 The notification target position NT may be a specific range (region between two coordinates) instead of specific (single) coordinates. In this case, when the specific range is passed in step S5 (step S5: YES), the second work vehicle 4 proceeds to step S6.
 報知対象位置NTが特定の範囲である場合、第2作業車両4が報知位置NPを通過してから報知対象位置NTに至るまでの間の報知内容と、第2作業車両4が報知対象位置NTを走行しているときの報知内容とが異なっていてもよい。 When the notification target position NT is within a specific range, the notification content from when the second work vehicle 4 passes the notification position NP to the notification target position NT, and the second work vehicle 4 is at the notification target position NT. The content of the notification when traveling is different.
 具体的には、第2作業車両4が報知位置NPを通過してから報知対象位置NTに至るまでの間に第2作業車両4または無線通信端末7から発せられる警告音声と、第2作業車両4が報知対象位置NTを走行しているときの第2作業車両4または無線通信端末7から発せられる警告音声とが互いに異なっていてもよい。 Specifically, a warning sound emitted from the second work vehicle 4 or the wireless communication terminal 7 after the second work vehicle 4 passes the notification position NP and reaches the notification target position NT, and the second work vehicle The warning sound emitted from the second work vehicle 4 or the wireless communication terminal 7 when 4 is traveling at the notification target position NT may be different from each other.
 これにより、ユーザは、第2作業車両4が報知対象位置NTに至る前に、報知対象位置NTに適した作業の準備をすることができる上に、第2作業車両4が報知対象位置NTに至ったことを報知によって知ることができる。 Accordingly, the user can prepare for work suitable for the notification target position NT before the second work vehicle 4 reaches the notification target position NT, and the second work vehicle 4 is set to the notification target position NT. You can be notified by notification.
 また、ユーザへの報知は、無線通信端末7に表示された報知終了ボタンを操作することによって、終了されてもよい。この場合、報知終了ボタンの操作または報知対象位置NTの通過によってユーザへの報知が終了する。 Further, the notification to the user may be ended by operating a notification end button displayed on the wireless communication terminal 7. In this case, the notification to the user is ended by operating the notification end button or passing the notification target position NT.
 また、作業支援システム2は、地図情報に基づいて特定された耕盤深さよりも第2作業部(刈取部17、耕耘機61、植付部101)の高さ位置が高くなるように第2作業部の昇降範囲を制限することができる。そのため、耕盤TLに対する第2作業部の接触を抑制できる。また、事前に暗渠の位置を登録しておけば、第2作業部(特に耕耘機61)が暗渠に接触することを避けることができる。 In addition, the work support system 2 is configured so that the height position of the second working unit (the mowing unit 17, the cultivator 61, the planting unit 101) is higher than the depth of the cultivation pad specified based on the map information. The raising / lowering range of a working part can be restrict | limited. Therefore, the contact of the second working unit with respect to the tiller TL can be suppressed. Moreover, if the position of the culvert is registered in advance, it is possible to avoid the second working unit (particularly the cultivator 61) from contacting the culvert.
 図16は、このような昇降範囲制限処理の一例を示すフローチャートである。まず、第2作業車両4は、第2作業車両4の現在位置を取得する(ステップS11)。そして、第2作業車両4は、現在位置における耕盤深さを地図情報から取得する(ステップS12)。 FIG. 16 is a flowchart showing an example of such an elevation range restriction process. First, the second work vehicle 4 acquires the current position of the second work vehicle 4 (step S11). And the 2nd work vehicle 4 acquires the cultivation board depth in a present position from map information (step S12).
 そして、第2作業車両4は、現在位置が制限必要位置であるか否かを判定する(ステップS13)。制限必要位置は、たとえば、平面視で暗渠と重なる位置である。第2作業車両4の現在位置が制限必要位置である場合には(ステップS13:YES)、第2作業部の昇降範囲を制限する(ステップS14)。第2作業部の昇降範囲が制限されると、第2作業車両4は、ステップS11に戻る。 Then, the second work vehicle 4 determines whether or not the current position is a restriction necessary position (step S13). The restriction necessary position is, for example, a position that overlaps with a culvert in a plan view. If the current position of the second work vehicle 4 is a restriction required position (step S13: YES), the lifting range of the second work unit is restricted (step S14). If the raising / lowering range of a 2nd working part is restrict | limited, the 2nd work vehicle 4 will return to step S11.
 第2作業車両4の現在位置が制御必要位置でない場合には(ステップS13:NO)、第2作業車両4は、第2作業部の昇降範囲が現在制限されているか否かを判定する(ステップS15)。 If the current position of the second work vehicle 4 is not the control-necessary position (step S13: NO), the second work vehicle 4 determines whether the lifting range of the second work unit is currently limited (step S13). S15).
 作業部の昇降範囲が現在制限されている場合には(ステップS15:YES)、第2作業車両4は、作業部の昇降範囲の制限を解除する(ステップS16)。作業部の昇降範囲が制限されると、第2作業車両4は、ステップS11に戻る。ステップS15において第2作業部の昇降範囲が現在制限されていない場合には(ステップS15:NO)、第2作業車両4は、ステップS11に戻る。 If the lifting range of the working unit is currently limited (step S15: YES), the second work vehicle 4 releases the limitation of the lifting range of the working unit (step S16). If the raising / lowering range of a working part is restrict | limited, the 2nd work vehicle 4 will return to step S11. In step S15, when the raising / lowering range of the second working unit is not currently limited (step S15: NO), the second working vehicle 4 returns to step S11.
 また、作業支援システム2は第2作業車両4を走行させる走行経路を生成することができる。図17は、作業支援システム2によって生成された走行経路RTの一例を示す模式図である。作業支援システム2は、第2作業車両4の走行が禁止される走行禁止領域PAを特定し、走行禁止領域PAを通らないように走行経路RTを生成する。 Also, the work support system 2 can generate a travel route for traveling the second work vehicle 4. FIG. 17 is a schematic diagram illustrating an example of a travel route RT generated by the work support system 2. The work support system 2 identifies a travel prohibition area PA where the travel of the second work vehicle 4 is prohibited, and generates a travel route RT so as not to pass the travel prohibition area PA.
 図17に示す走行経路RTは、圃場Fの周縁から中心に向かう略らせん状である。図17には、走行禁止領域PAを二点鎖線で示している。走行禁止領域PAとは、圃場F内において障害物で存在する領域や、第2作業車両4が嵌り込むほど耕盤が窪んでいる領域のことである。 The traveling route RT shown in FIG. 17 has a substantially spiral shape from the periphery of the field F toward the center. In FIG. 17, the travel prohibition area PA is indicated by a two-dot chain line. The travel prohibition area PA is an area where there is an obstacle in the farm field F, or an area where the cultivator is recessed as the second work vehicle 4 is fitted.
 走行経路RTは、たとえば、無線通信端末7(図1参照)等、走行経路を生成可能な端末によって生成され、無線通信端末7から第2作業車両4に送信される。走行禁止領域PAを通らないように走行経路RTを形成することで、走行禁止領域PAを避けることができる。これにより、第2作業車両4をスムーズに走行させることができる。その結果、作業支援の質の向上を図ることができる。 The travel route RT is generated by a terminal capable of generating a travel route, such as the wireless communication terminal 7 (see FIG. 1), and transmitted from the wireless communication terminal 7 to the second work vehicle 4. By forming the travel route RT so as not to pass through the travel prohibition area PA, the travel prohibition area PA can be avoided. Thereby, the 2nd work vehicle 4 can be run smoothly. As a result, the quality of work support can be improved.
 また、走行経路RTには、走行禁止領域PAの他に、走行注意領域を設けることができる。走行注意領域とは、たとえば、車速が高い場合や、第2作業車両4が進行方向を変更した(旋回した)場合に、第2作業車両4が嵌り込んでしまう領域のことである。このような走行注意領域を走行する際には、第2作業車両4は、嵌り込みを防止するために、車速を低減にしたり、デフロックをONにしたり、ステアリングハンドル15B,62B,102Bの位置を固定したりする。 In addition to the travel prohibited area PA, a travel attention area can be provided on the travel route RT. The travel attention area is, for example, an area in which the second work vehicle 4 is fitted when the vehicle speed is high or when the second work vehicle 4 changes its traveling direction (turns). When traveling in such a travel caution area, the second work vehicle 4 reduces the vehicle speed, turns on the diff lock, or positions the steering handles 15B, 62B, and 102B in order to prevent the fitting. Or fix it.
 また、第2作業車両4がコンバイン8である場合、作業支援システム2は、地図情報を用いて、田面FSと刈刃17Aとの接触を回避させることができる。詳しくは、コンバイン8は、圃場Fを走行する際、刈刃17Aと田面FSとの間の距離を一定に維持するために、刈取部17を目標位置に向けて昇降制御する。 Further, when the second work vehicle 4 is the combine 8, the work support system 2 can avoid contact between the field surface FS and the cutting blade 17A using the map information. Specifically, when the combine 8 travels through the farm field F, the combiner 8 moves up and down toward the target position in order to maintain a constant distance between the cutting blade 17A and the field surface FS.
 たとえば、図18Aに示すように、コンバイン8の進行方向の下流側に向かうにしたがって耕盤深さDが大きくなる場合には、機体部19(第2機体部)に対して刈取部17(第2作業部)を上昇させることで作業部は目標位置に維持される。 For example, as shown in FIG. 18A, when the tiller depth D increases toward the downstream side in the traveling direction of the combine 8, the cutting unit 17 (first unit) with respect to the unit unit 19 (second unit unit). 2), the working unit is maintained at the target position.
 図18Bに示すように、コンバイン8の進行方向の下流側に向かうにしたがって耕盤深さDが小さくなる場合には、機体部19が斜面に差し掛かって傾いた直後に機体部19に対して刈取部17を下降させることによって、刈刃17Aが表層SLに接触するおそれがある。 As shown in FIG. 18B, when the tiller depth D becomes smaller toward the downstream side in the traveling direction of the combine 8, the harvesting is performed on the fuselage unit 19 immediately after the fuselage unit 19 leans against the slope. By lowering the portion 17, the cutting blade 17A may come into contact with the surface layer SL.
 そこで、作業支援システム2は、地図情報に基づいて、コンバイン8の進行方向の下流側に向かうにしたがって耕盤深さDが急激に小さくなる領域において刈取部17の下降を開始する位置152を鈍感制御位置として特定する。 Therefore, the work support system 2 is insensitive to the position 152 at which the cutting unit 17 starts to descend in the region where the tiller depth D decreases sharply toward the downstream side in the traveling direction of the combine 8 based on the map information. Specify as control position.
 また、図18Cに示すように、コンバイン8の進行方向の下流側に向かうにしたがって、耕盤深さDが小さくなった直後に耕盤深さDが大きくなる場合には、機体部19に対して刈取部17を下降させた直後に機体部19に対して刈取部17を上昇させる必要がある。そのため、目標位置に対する刈取部17の追従性が高い場合には、耕盤深さDが大きくなり始めるときには機体部19に対して刈取部17が下降し過ぎているおそれがある。このような場合にも、刈刃17Aが表層SLに接触するおそれがある。 Further, as shown in FIG. 18C, when the tiller depth D increases immediately after the tiller depth D decreases as it goes downstream in the traveling direction of the combine 8, Therefore, it is necessary to raise the cutting part 17 with respect to the body part 19 immediately after the cutting part 17 is lowered. Therefore, when the followability of the cutting unit 17 with respect to the target position is high, there is a possibility that the cutting unit 17 is excessively lowered with respect to the body unit 19 when the tillage depth D starts to increase. Even in such a case, the cutting blade 17A may come into contact with the surface layer SL.
 この場合であっても、作業支援システム2は、地図情報に基づいて、コンバイン8の進行方向の下流側に向かうにしたがって耕盤深さDが小さくなった直後に耕盤深さDが大きくなる領域において刈取部17の下降を開始する位置150および上昇を開始する位置151を鈍感制御位置として特定する。 Even in this case, the work support system 2 increases the tillage depth D immediately after the tillage depth D becomes smaller toward the downstream side in the traveling direction of the combine 8 based on the map information. In the region, the position 150 for starting the lowering of the cutting unit 17 and the position 151 for starting the rising are specified as the insensitive control position.
 作業支援システム2は、地図情報に基づいて、鈍感制御位置以外で刈取部17の昇降を開始する位置(図18Aに示す位置153)を標準制御位置として特定する。 The work support system 2 specifies a position (position 153 shown in FIG. 18A) where the raising and lowering of the cutting unit 17 is started as a standard control position other than the insensitive control position based on the map information.
 そして、作業支援システム2は、コンバイン8が鈍感制御位置に達したときの目標位置に対する刈取部17の追従性を、コンバイン8が標準制御位置に達したときの目標位置に対する刈取部17の追従性よりも低くする。 Then, the work support system 2 shows the followability of the cutting unit 17 with respect to the target position when the combine 8 reaches the insensitive control position, and the followability of the cutting unit 17 with respect to the target position when the combine 8 reaches the standard control position. Lower than.
 これにより、鈍感制御位置における機体部19に対する刈取部17の高さ位置の変化量を抑制することができる。これにより、表層SLに対する刈刃17Aの接触を抑制できる。 Thereby, the amount of change in the height position of the cutting part 17 relative to the airframe part 19 in the insensitive control position can be suppressed. Thereby, contact of cutting blade 17A with surface layer SL can be controlled.
 図18Cに示すように、耕盤深さDが小さくなる場合や耕盤深さDが小さくなった直後に大きくなる場合において作業支援システム2が現在のコンバイン8の位置を鈍感制御位置とするか否かの判断は、単位時間当たりにコンバイン8の傾斜角度の変化量が基準量よりも大きくなるか否かによって判定される。基準量は、コンバイン8の車速が大きいほど低く設定され、耕盤TLの傾斜部分の距離が長いほど低く設定される。 As shown in FIG. 18C, whether the work support system 2 sets the current position of the combine 8 as the insensitive control position when the tiller depth D decreases or increases immediately after the tiller depth D decreases. The determination as to whether or not is made based on whether or not the amount of change in the tilt angle of the combine 8 per unit time is greater than the reference amount. The reference amount is set to be lower as the vehicle speed of the combine 8 is higher, and is set to be lower as the distance of the inclined portion of the tilling TL is longer.
 図19は、このような昇降制御処理の一例を示すフローチャートである。まず、第2作業車両4は、コンバイン8の現在位置を取得する(ステップS21)。そして、コンバイン8が標準制御位置または鈍感制御位置のいずれかに位置するか否かを判定する(ステップS22)。 FIG. 19 is a flowchart showing an example of such an elevation control process. First, the second work vehicle 4 acquires the current position of the combine 8 (step S21). Then, it is determined whether or not the combine 8 is located at either the standard control position or the insensitive control position (step S22).
 コンバイン8の現在位置が標準制御位置および鈍感制御位置のいずれでもない場合には(ステップS22:NO)、コンバイン8は、ステップS21に戻る。コンバイン8の現在位置が標準制御位置および鈍感制御位置のいずれかである場合には(ステップS22:YES)、コンバイン8は、コンバイン8の現在位置が標準制御位置および鈍感制御位置のいずれであるかを判定する(ステップS23)。 If the current position of the combine 8 is neither the standard control position nor the insensitive control position (step S22: NO), the combine 8 returns to step S21. When the current position of the combine 8 is either the standard control position or the insensitive control position (step S22: YES), the combine 8 is either the standard control position or the insensitive control position of the combine 8 Is determined (step S23).
 コンバイン8の現在位置が標準制御位置である場合には(ステップS23:YES)、コンバイン8は、昇降感度を標準として(追従性を標準として)刈取部17を上昇または下降させる(ステップS24)。そして、ステップS24の後、第2作業車両4は、ステップS21に戻る。コンバイン8の現在位置が鈍感制御位置である場合には(ステップS23:NO)、コンバイン8は、昇降感度を鈍感として(追従性を鈍感として)刈取部17を上昇または下降させる(ステップS25)。そして、ステップS25の後、コンバイン8は、ステップS21に戻る。 If the current position of the combine 8 is the standard control position (step S23: YES), the combine 8 raises or lowers the reaping part 17 using the lifting sensitivity as a standard (following performance as a standard) (step S24). Then, after step S24, the second work vehicle 4 returns to step S21. When the current position of the combine 8 is the insensitive control position (step S23: NO), the combine 8 raises or lowers the cutting unit 17 with the elevation sensitivity as insensitive (following ability as insensitive) (step S25). Then, after step S25, the combine 8 returns to step S21.
 この発明は、以上に説明した実施形態に限定されるものではなく、さらに他の形態で実施することができる。 The present invention is not limited to the embodiment described above, and can be implemented in other forms.
 たとえば、上述の実施形態では、耕盤距離取得部50,96,136、表層距離取得部51,97,137、耕盤深さ特定部52,98,138、および、地図情報生成部53,99,139は、第1作業車両3の制御部30,75,120に含まれる機能処理部である。しかしながら、上述の実施形態とは異なり、管理サーバ6に備えられた制御装置が、これらの機能処理部として機能してもよい。 For example, in the above-described embodiment, the tillage distance acquisition units 50, 96, and 136, the surface layer distance acquisition units 51, 97, and 137, the tillage depth specification units 52, 98, and 138, and the map information generation units 53 and 99 , 139 are function processing units included in the control units 30, 75, 120 of the first work vehicle 3. However, unlike the above-described embodiment, the control device provided in the management server 6 may function as these function processing units.
 また、上述の実施形態では、耕盤深さ情報は、第1機体部(機体部19,62,102)の姿勢制御情報と、第1作業部(刈取部17、耕耘機61、植付部101)の姿勢制御情報とに基づいて特定される。しかしながら、耕盤深さ情報は、第1機体部の姿勢制御情報のみに基づいて特定されてもよいし、第1作業部の姿勢制御情報のみに基づいて特定されてもよい。 In the above-described embodiment, the tiller depth information includes the posture control information of the first machine part ( machine parts 19, 62, 102) and the first working part (the mowing part 17, the tiller 61, the planting part). 101) and the posture control information. However, the tillage depth information may be specified based only on the attitude control information of the first machine part, or may be specified only based on the attitude control information of the first working part.
 また、上述の実施形態では、慣性計測装置45,79,124の検出結果のうち、第3角速度センサの検出結果のみを第1機体部の姿勢制御情報に用いた。しかしながら、上述の実施形態とは異なり、第1角速度センサの検出結果および第2角速度センサの検出結果を、第1機体部の姿勢制御情報に用いてもよい。たとえば、第1角速度センサの検出結果を用いることで、第1作業車両3の進行方向に所定間隔を隔てた地点の耕盤深さを取得することができる。また、各角速度センサの検出結果を組み合わせてもよい。 In the above-described embodiment, only the detection result of the third angular velocity sensor among the detection results of the inertial measurement devices 45, 79, and 124 is used for the attitude control information of the first body part. However, unlike the above-described embodiment, the detection result of the first angular velocity sensor and the detection result of the second angular velocity sensor may be used for the attitude control information of the first body part. For example, by using the detection result of the first angular velocity sensor, it is possible to acquire the tilling depth at a point separated by a predetermined interval in the traveling direction of the first work vehicle 3. Moreover, you may combine the detection result of each angular velocity sensor.
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail, these are only specific examples used to clarify the technical contents of the present invention, and the present invention is construed to be limited to these specific examples. Rather, the scope of the present invention is limited only by the accompanying claims.
 この出願は、2018年5月28日に日本国特許庁に提出された特願2018-101700号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。 This application corresponds to Japanese Patent Application No. 2018-101700 filed with the Japan Patent Office on May 28, 2018, and the entire disclosure of this application is incorporated herein by reference.
1    :地図情報生成システム
2    :作業支援システム
3    :第1作業車両
4    :第2作業車両
8    :コンバイン
9    :トラクタ
10   :田植機
17   :刈取部(第1作業部、第2作業部)
18、63、103 :走行部
19、62、102 :機体部(第1機体部、第2機体部)
61   :耕耘機(第1作業部、第2作業部)
101  :植付部(第1作業部、第2作業部)
150  :鈍感制御位置
151  :鈍感制御位置
152  :鈍感制御位置
153  :標準制御位置
NT   :報知対象位置
PA   :走行禁止領域
RT   :走行経路
WD   :車幅方向(第1機体部の幅方向)
1: Map information generation system 2: Work support system 3: 1st work vehicle 4: 2nd work vehicle 8: Combine 9: Tractor 10: Rice transplanter 17: Harvesting part (first working part, second working part)
18, 63, 103: traveling unit 19, 62, 102: body part (first body part, second body part)
61: Tiller (first working part, second working part)
101: Planting part (first working part, second working part)
150: Insensitive control position 151: Insensitive control position 152: Insensitive control position 153: Standard control position NT: Notification target position PA: Travel prohibition area RT: Travel path WD: Vehicle width direction (width direction of the first body part)

Claims (7)

  1.  第1機体部と、前記第1機体部に支持された第1作業部とを有する第1作業車両の、圃場内の特定地点における位置情報を取得し、
     前記特定地点における前記第1機体部の姿勢制御情報、および/または前記第1作業部の姿勢制御情報に基づいて、複数の耕盤深さ情報を特定し、
     前記特定地点における前記第1作業車両の位置情報と、前記複数の耕盤深さ情報とが対応付けられた地図情報を生成する、地図情報生成システム。
    Obtaining position information of a first work vehicle having a first machine part and a first work part supported by the first machine part at a specific point in an agricultural field,
    Based on the posture control information of the first airframe unit at the specific point and / or the posture control information of the first working unit, identify a plurality of tillage depth information,
    A map information generation system that generates map information in which position information of the first work vehicle at the specific point is associated with the plurality of tillage depth information.
  2.  前記複数の耕盤深さ情報には、前記第1機体部および前記第1作業部を支持し、前記第1機体部の幅方向に所定間隔を隔てて配される一対の走行部が接地する箇所における耕盤深さ情報が含まれる、請求項1に記載の地図情報生成システム。 The plurality of tiller depth information supports the first body part and the first working part, and a pair of traveling parts arranged at predetermined intervals in the width direction of the first body part are grounded. The map information generation system according to claim 1, wherein cultivating board depth information at a location is included.
  3.  前記第1作業車両の位置情報には高度情報が含まれ、
     前記地図情報には、前記特定地点における前記複数の耕盤深さ情報が互いに識別可能に表示されるとともに、前記特定地点の高度情報と前記特定地点とは異なる他の地点の高度情報とが識別可能に表示される、請求項1または2に記載の地図情報生成システム。
    The position information of the first work vehicle includes altitude information,
    In the map information, the plurality of depth information at the specific point is displayed so as to be distinguishable from each other, and the altitude information of the specific point and the altitude information of another point different from the specific point are identified. The map information generation system according to claim 1, wherein the map information generation system is displayed in a possible manner.
  4.  前記圃場内を走行する第2機体部と、前記第2機体部に対して昇降可能に前記第2機体部に支持され前記圃場内で作業を行う第2作業部とを有する第2作業車両を、請求項1または2に記載の地図情報生成システムによって生成された前記地図情報に基づいて、支援する作業支援システムであって、
     前記地図情報に基づいて特定された報知対象位置と前記第2作業車両の位置情報とに基づいて、前記第2作業車両が前記報知対象位置に至る前に所定の報知を行う、作業支援システム。
    A second work vehicle having a second machine part that travels in the field and a second work part that is supported by the second machine part so as to be movable up and down relative to the second machine part and that performs work in the field. A work support system for supporting based on the map information generated by the map information generation system according to claim 1,
    A work support system that performs predetermined notification before the second work vehicle reaches the notification target position based on the notification target position specified based on the map information and the position information of the second work vehicle.
  5.  前記地図情報に基づいて、前記地図情報に基づいて特定された耕盤深さよりも前記第2作業部の高さ位置が高くなるように前記第2作業部の昇降範囲を制限する、請求項4に記載の作業支援システム。 5. The raising / lowering range of the second working unit is limited based on the map information so that a height position of the second working unit is higher than a tilling depth specified based on the map information. The work support system described in 1.
  6.  前記地図情報に基づいて、前記第2作業車両の走行が禁止される走行禁止領域を特定し、前記第2作業車両を走行させる走行経路を、前記走行禁止領域を通らないように生成する、請求項4に記載の作業支援システム。 A travel prohibition area where travel of the second work vehicle is prohibited is specified based on the map information, and a travel route for traveling the second work vehicle is generated so as not to pass through the travel prohibition area. Item 5. The work support system according to Item 4.
  7.  前記第2作業部は、前記第2機体部の前部に設けられ、かつ、前記圃場の表面に対する高さが一定となる目標位置に向けて昇降制御されるように構成されており、
     前記地図情報に基づいて標準制御位置と鈍感制御位置とを特定し、前記第2作業車両が前記鈍感制御位置に達したときの前記目標位置に対する前記第2作業部の追従性を、前記第2作業車両が前記標準制御位置に達したときの前記目標位置に対する前記第2作業部の追従性よりも低くする、請求項4に記載の作業支援システム。
    The second working unit is provided at a front portion of the second airframe unit, and is configured to be controlled up and down toward a target position where a height with respect to the surface of the field is constant,
    Based on the map information, a standard control position and an insensitive control position are specified, and the second work unit follows the target position when the second work vehicle reaches the insensitive control position. 5. The work support system according to claim 4, wherein the work support system has lower followability of the second working unit with respect to the target position when the work vehicle reaches the standard control position.
PCT/JP2019/018991 2018-05-28 2019-05-13 Map information generation system and operation assistance system WO2019230358A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980034851.9A CN112189227A (en) 2018-05-28 2019-05-13 Map information generation system and work assistance system
KR1020207032263A KR20210015773A (en) 2018-05-28 2019-05-13 Map information generation system and job support system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018101700A JP7039026B2 (en) 2018-05-28 2018-05-28 Map information generation system and work support system
JP2018-101700 2018-05-28

Publications (1)

Publication Number Publication Date
WO2019230358A1 true WO2019230358A1 (en) 2019-12-05

Family

ID=68697226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018991 WO2019230358A1 (en) 2018-05-28 2019-05-13 Map information generation system and operation assistance system

Country Status (4)

Country Link
JP (1) JP7039026B2 (en)
KR (1) KR20210015773A (en)
CN (1) CN112189227A (en)
WO (1) WO2019230358A1 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7341954B2 (en) * 2020-06-30 2023-09-11 株式会社クボタ Work equipment display device
JP2022105798A (en) * 2021-01-05 2022-07-15 株式会社クボタ Automatic travel system and automatic travel method
JP7431771B2 (en) 2021-03-25 2024-02-15 ヤンマーホールディングス株式会社 Area management method, area management device, and area management program
CN114489048B (en) * 2021-12-29 2024-04-12 广州极飞科技股份有限公司 Working method and device of cultivator, cultivator and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312408A (en) * 1988-06-13 1989-12-18 Komatsu Ltd Topographic information display device
JPH04104712A (en) * 1990-08-24 1992-04-07 Yanmar Agricult Equip Co Ltd Left and right horizontal attitude controller of working machine in agricultural working machine
JPH09128045A (en) * 1995-11-02 1997-05-16 Hitachi Ltd Route generating system for automatic traveling machine
JP2004008187A (en) * 2002-06-11 2004-01-15 Yanmar Agricult Equip Co Ltd Mobile spraying vehicle
JP2004016160A (en) * 2002-06-19 2004-01-22 Yanmar Agricult Equip Co Ltd Agricultural working vehicle
JP2018013833A (en) * 2016-07-19 2018-01-25 株式会社クボタ Service car and inclination travel management system for service car

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312408A (en) * 1988-06-13 1989-12-18 Komatsu Ltd Topographic information display device
JPH04104712A (en) * 1990-08-24 1992-04-07 Yanmar Agricult Equip Co Ltd Left and right horizontal attitude controller of working machine in agricultural working machine
JPH09128045A (en) * 1995-11-02 1997-05-16 Hitachi Ltd Route generating system for automatic traveling machine
JP2004008187A (en) * 2002-06-11 2004-01-15 Yanmar Agricult Equip Co Ltd Mobile spraying vehicle
JP2004016160A (en) * 2002-06-19 2004-01-22 Yanmar Agricult Equip Co Ltd Agricultural working vehicle
JP2018013833A (en) * 2016-07-19 2018-01-25 株式会社クボタ Service car and inclination travel management system for service car

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11829112B2 (en) 2019-04-10 2023-11-28 Deere & Company Machine control using real-time model
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11650553B2 (en) 2019-04-10 2023-05-16 Deere & Company Machine control using real-time model
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system

Also Published As

Publication number Publication date
KR20210015773A (en) 2021-02-10
JP7039026B2 (en) 2022-03-22
CN112189227A (en) 2021-01-05
JP2019207284A (en) 2019-12-05

Similar Documents

Publication Publication Date Title
WO2019230358A1 (en) Map information generation system and operation assistance system
CN111386215B (en) Slip determination system, travel path generation system, and field work vehicle
JP6278682B2 (en) Field work machine
KR102113386B1 (en) Agricultural work vehicle
JP6638683B2 (en) Farm work support system
CN108684243B (en) Working vehicle
US20100017075A1 (en) Guiding Agricultural Implements
US20100023229A1 (en) System and Method for Configuring a Guidance Controller
JP6956620B2 (en) Travel route generation system and field work vehicle
US20100018726A1 (en) System and Method for Machine Guidance Control
EP3729940B1 (en) Method for adjusting the working depth of a plough implement and agricultural plough
JP2015112070A (en) Field work machine
JP2015112069A (en) Field work machine
JP6241394B2 (en) Work vehicle
WO2017131029A1 (en) Tree planting system, tree planting method, cultivation machine, tree planting machine, and management device
US20100023222A1 (en) System and Method for Location Based Guidance Controller Configuration
JP7179638B2 (en) Agricultural machines
RU2721576C1 (en) Automatic scaling of rows of movement for an off-road vehicle
JP2017099324A (en) Work vehicle
JP6694017B2 (en) Rice transplanter
JP6599425B2 (en) Field work machine
JP7274015B2 (en) Map information generation system
JP6651907B2 (en) Work vehicle
JP2019110817A (en) Planting system implement
JP6519614B2 (en) Work vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810091

Country of ref document: EP

Kind code of ref document: A1